Reverse Queries in DATR*

Hagen Langer
University of ()smabrück, Germany
hlanger(ojupiter. rz.umi-osnabrueck.de

Abstract

DATlR is a declarative representation language for lexical information and as such, in principle, nentral with respect to particular processing strategies. Previons DATR compiler/interpreter systoms support only one aceess strategy that closely resembles the set of inference rules of the procedural semanties of DA'Tl? (Evans \& Gazdar 1989a). In this paper we present an alternative access strategy (remerse query strateqy) for a nomtrivial subset of DA'Tl?

1 The Reverse Query Problem

DATlR (Evans \& Gaydar 1989a) has become one of the most widely used formal languages for the representation of lexical information. DATRR applications have been developed for a wide variety of languages (including Fnglish, Japauese, Kikuyn, Arabic, Latin, and others) and many different subdomains of lexical repesentation, including inflectional morphology, underspecification phonology, non-concatenative morphophonology, lexical semanties, and tone systems ${ }^{1}$.
We presuppose that the reader of the present paper is familiar with the basic features of DAT'R as specified in Evans \& Gazdar [1989a].
The adecuacy of a lexicon representation formatism depends basically on two major factors:

- its declarative expressiveness: is the formalism, in principle, capable of representing the phenomena in

[^0]question, and doss it allow for an explicit treatment of generalisations, subgeneralisations, and exceptions?

- its range of accessing strategies: are there accossing strategies for all applications which presuppose a lexicon (e.g. parsing, gencration, ...), and do they support, the development, maintenance, and evaluation of lexica in an adequate mannor?

Most of the previous work on DATR has focussed on the former set of criteria, i.e. the declarative features of the language, its expressive capabilitios, and its andequacy for the re-formulation of pre-theoretic informal linguistic concepts. This paper is mainly concerned with the latter set of criteria of adequacy. However, in the case of DATR, the limited access in only one direction has led to a somewhat procedural view of the langnage which, in particular cases, has also had an impact on the declarative representations themselves. DAT'R has often been characterised as a functionat and deterministic language. These features are, of course, not properties of the language itself, but rather of the language together wilh a particular procedural interpretation. Actually, the temn deterministic is not applicable to a declarative language, but only makes sense if applied to a procedural language or a particular procedural interpretalion of a language. The DA'TR in terproter/compiler systems developed so far ${ }^{2}$ have in common that they support only one way of accessing the information represented in a DA'l'R theory. 'This access strategy, which we will refer to as the standard procedural interpretation of DATR, closely resembles the inference rules clefined in Evans \& Gazdar [1989a]. liven if one considers DAT'R neither as a tool for parsing nor for gencration tasks, but rather as a purely representational device, the one-way-only access to DAT'R theories turns out to be one of the major drawbacks of the model.
One of the clains stated for DATR in Fvans \& Gazdar [1989] is that it is computationally tractable. But for many practical purposes, including lexicon development and evaluation, it is not sufficient that there is any

[^1]arbitrary accessing strategy at all, but there should be an appropriate way for accessing whatever information that is necessary for the purpose in question. This is a strong motivation for investigating alternative strategies for processing IDAT'R representations. This paper is concerned with the reverse query problem, i.c. the problem how a given DATR value can be mapped onto the queries that evaluate to it. A standard query consists of a node and a path, e.g. Sheep:<orth plur>, and evaluates to a sequence of atoms (value), c.g. sheep. A reverse query, on the other hand, starts with the value, e.g. sheep, and querics the set of node-path pairs which evaluate to it, for instance, Sheep:<orth sing> and Sheep:<orth plur>. Our solution can be be regarded as an inversion of the parsing-as-deduction approach of the logic programming tradition, since we treat reverse-query theorem proving as a parsing problem. We adopt a wellknown strategy from parsing technology: we isolate the context-free "backbone" of DATR and use a modified chart-parsing algorithm for CF-PSG as a theorem prover for reverse queries.
For the purposes of the present paper we will introduce a DATR notation that slightly differs from the standard notation given in Evans \& Gazdar [1989] in the following respects:

- the usual DATR abbreviation conventions are spelled out
- the global environment of a DATR descriptor is explicitly represented (even if it is uninstantiated)
- each node-path pair $N: P$ is associated with the set of extensional suffixes of $N: P$ that are defined within the DATR theory

In standard DATR notation, what one might call a non-terminal symbol, is a node-path pair (or an abbreviation for a node-path pair). In our notation a DATR nonterminal symbol is an ordered set [$N, P, C, N^{\prime}, P^{\prime}$]. N and N^{\prime} are nodes or variables ranging over nodes. P and P^{\prime} are paths or variables ranging over paths. C is the set of path suffixes of $N: P$.
A DATR terminal symbol of a theory θ is an atom that has at least one occurence in a sentence in θ where it is not an attribute, i.e. where it does not occur in a path.
The suffix-set w.r.t. a prefix p and a set of sequences S (written as $\sigma(p, S)$) is the set of the remaining suffixes of strings in S which contain the prefix $p: \sigma(p, S)=$ $\left\{s \mid p^{\wedge} s \in S\right\}$.
Let $N: P$ be the left hand side of a DATR sentence of some DATR theory θ. Let be Π the set of paths occurring under node N in θ. The path extension constraint of P w.r.t. N and θ (written as $C(P, N, \theta)$, or simply $C)$ is defined as: $C(P, N, \theta)=\sigma(P, \Pi)$.
Thus, the constraint of a path P is the set of path suffixes extending P of those paths that have P as a prefix.
Example: Consider the DATR theory θ :

N:

$$
\begin{aligned}
& \rangle==0 \\
& \langle a\rangle==1 \\
& \langle a b\rangle==2 .
\end{aligned}
$$

The constraint of \rangle (w.r.t. N and θ) is $\{\langle\mathrm{a}\rangle,\langle\mathrm{a}$ $\mathrm{b}\rangle\}$, the constraint of $\langle\mathrm{a}\rangle$ is $\{\langle b\rangle\}$, and the constraint of $\langle a b>$ is \emptyset.
We say that a sequence $S=s_{1} \ldots s_{n}(1 \leq n)$ satisfies a constraint C iff $\left\{x \in C \mid x^{\wedge} X=S\right\}=\emptyset$ (i.e. a sequence S satisfies a constraint C iff there is no prefix of S in C).

Now having defined some basic notions, we can give the rules that map standard DATR notation onto our representation:

Mapping rules

()	\Rightarrow	N	
$\mathrm{N}: \mathrm{P}==$ atom	\Rightarrow	[$\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{N}$,	\rightarrow atom
$\mathrm{N}: \mathrm{P}==\mathrm{N}_{2}: \mathrm{P}_{2}$	\Rightarrow	[$\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{N}, \mathrm{P}$	$\rightarrow\left[\mathrm{N}_{2}, \mathrm{P}_{2}, \mathrm{C},^{2} \mathrm{~N}^{\prime}, \mathrm{P}^{\prime}\right]$
$\mathrm{N}: \mathrm{P}==\mathrm{N}_{2}$	\Rightarrow	[$\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{N}^{\prime}, \mathrm{P}$ '	$\rightarrow\left[\mathrm{N}_{2}, \mathrm{P}, \mathrm{C}, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}\right]$
$\mathrm{N}: \mathrm{P}==\mathrm{P}_{2}$	\Rightarrow	[$\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}$]	$\rightarrow\left[\mathrm{N}, \mathrm{P}_{2}, \mathrm{C}, \mathrm{N}^{\top}, \mathrm{P}^{\prime}\right]$
$\mathrm{N}: \mathrm{P}=={ }^{\prime} \mathrm{N}_{2}: \mathrm{P}_{2}{ }^{\prime}$	\Rightarrow	[$\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}$]	$\rightarrow\left[\mathrm{N}_{2}, \mathrm{P}_{2}, \mathrm{C}, \mathrm{N}_{2}, \mathrm{P}_{2}\right]$
$N: P=={ }^{\prime} N_{2}{ }^{\prime}$	\Rightarrow	[$\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{N}, \mathrm{P}$	$\rightarrow\left[\mathrm{N}_{2}, \mathrm{P}^{\prime}, \mathrm{C}, \mathrm{N}_{2}, \mathrm{P}^{\prime}\right]$
$\mathrm{N}: \mathrm{P}==$ " P_{2} "	\Rightarrow	[$\left.\mathrm{N}, \mathrm{P}, \mathrm{C}, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}\right]$	$\rightarrow\left[\mathrm{N}^{\prime}, \mathrm{P}_{2}, \mathrm{C}, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}{ }^{2}\right]$

How these mapping principles work can perhaps best be clarified by a larger example. Consider the small DATR theory, below, which we will use as an example case throughout this paper:

$$
\begin{aligned}
& \text { House: } \\
& \quad<>==\text { Noun } \\
& \quad<\text { root }>==\text { house. } \\
& \text { Sheep: } \\
& \quad<>==\text { Noun } \\
& \text { <root }>==\text { sheep } \\
& <\text { affix plur }>==\text {. } \\
& \text { Foot: } \\
& \quad<>==\text { Sheep } \\
& <\text { root }>==\text { foot } \\
& <\text { root plur> }>==\text { fect. } \\
& \text { Noun: } \\
& \quad<\text { orth }>=="<\text { root }>" \text { "<affix }>" \\
& <\text { affix sing }>== \\
& <\text { affix sing gen }>==\mathrm{s} \\
& <\text { afflix plur> }>=\mathrm{s} .
\end{aligned}
$$

The application of the mapping rules to the DATR theory above yields the following result (unstantiated variables are indicated by bold letters):

```
\(\left[\right.\) House, \(\left\langle>,\{<\right.\) root \(\left.>\}, \mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right] \rightarrow\left[\right.\) Noun, \(\left\langle>,\{<\right.\) root \(\left.>\}, \mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right]\)
[House, \(<\) root \(>,\{ \}, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}\) ] \(\rightarrow\) house
[Sheep, \(,<>,\{<\) root \(>,<\) affix plur \(\left.>\}, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}\right] \rightarrow\)
    [Noun,<>,\{<root>,<alfix plur>\}, \(\left.\mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right]\)
\(\left[\right.\) Sheep,\(<\) root \(>,\left(\cap, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}\right] \rightarrow\) sheep
[Sheep,,\(<\) aflix plur \(\left.>, \emptyset, \mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right] \rightarrow \varepsilon\)
\([\) Foot \(,\langle \rangle,\{\langle\) rool \(\rangle,<\) root plur \(\left.\rangle\}, \mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right] \rightarrow\)
    [Sheep, \(\left\langle>,\{<\right.\) root \(>,<\) root plur \(\left.>\}, N^{\prime}, \mathbf{P}^{\prime}\right]\)
\(\left[\right.\) Foot \(,\langle\) root \(\rangle,\{\langle\) plur \(\left.\rangle\}, \mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right] \rightarrow\) Coot
```

l'oot, $<$ root plur $>,\left(\hat{Q}, \mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right] \rightarrow$ feet
$[$ Nom,$<$ orth $\rangle,\left(\eta, \mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right] \rightarrow\left[\mathbf{N}^{\prime},\langle\right.$ root $\rangle, \emptyset, \mathbf{N}^{\prime},\langle$ root $\left.\rangle\right]$
$\left[\mathbf{N}^{\prime},<\mathrm{alfix}>, \mathrm{h}^{\prime}, \mathbf{N}^{\prime},<\mathrm{affix}>\right]$
$\left[\right.$ Noun, $<$ allix sing $>,\{<$ gen $\left.>\}, \mathbf{N}^{\prime}, \mathbf{P}^{\prime}\right] \rightarrow \varepsilon$

[Noun,<alfix plur>, (), N', $\left.\mathbf{1}^{\mathbf{P}}\right] \rightarrow$ s
The general aim of this (somewhat redunclant) notation is to put everything that is needed for drawing inferences from a sentence (especially its global enviromment: and possibly competing clauses at the same note) into the representation of the sentence itsolf. Similar internal representations are used in several DATR implomentations.

2 Inference in DATR

Both standard inference and reverse query inference can be regarded as complex substitution operations defined for sequences of $D A^{\prime} \Gamma R$ terminal and non-terminal symbols which apply if particular matching criteria are satisfiod. In case of DATR standard procedural semantics, a step of inference is the substitution of a DATR nonterminal by a sequence of DATR terminal and nonterminal symbols. The matehing criterion applies to a given DATR query and the lefl hand sides of the sentences of the DATR theory. If the IHS of a DAJ'R sentences satisfies the matching criterion, a modified version of the right hand side is substituted for the JFIS. Since the matching criterion is such that there is at most one sentence in a DATR theory with a matehing LHS, DATLR standard inference is cleterministic and functional. The starting point of DATR standard inference is single nonterminal and the derivation process terminates if a sequence of terminals is obtained (or if there is no ISHS in the theory that satisfies the nateching criterion, in which case the process of inference terminates with a failure).

In terms of DATR reverse query procedural semantics, a step of inference is the substitution of a subsequence of a given sequence of DATR teminial and non-temminal symbols by a DATR non-teminal. The matching criterion applies to the subsequence and the right hand sides of the sentences of the DATR theory. If the matching criterion is satisfied, a modified version of the LHS of the DAT'l sentence is substituted for the matching subsequence. In contrast to DA'R standard inference, the matching criterion is such that there might be several DATR sentencos in a given theory which satisfy it. DATR reverse query inference is hence neither functional, nor deterministic. Starting point of a reverse query is a sequence of terminals (a value). A derivation teminates, if the substitutions finally yield a single nonterminal with identical local and global enviromment (or if there are no matching, sentences in the theory, in which case the derivation fails).

We now define the matching criteria for DA'J'l terminal symbols, DATTR nonterminal symbols and sequences of DATR symbols. 'These matching criteria relate extensional lemmata (i.e. already derived partial analyses) to DATR definitional sentences (i.e. "rules" that may yield a further reduction) w.r.t. a given DATR theory θ.

A terminal symbol t_{1} matches another terminal symbol t_{2} ifl $t_{1}=t_{2}$. We also say that t_{1} matches t_{2} with an arbitrary suffix and an empty constraint in order to provide compatibility with the defmitions for nonterminals, below.

1. A nonterminal $\left[N, P_{1}, C_{1}, N^{\prime}, P^{\prime \prime}\right]$ matches another nonterminal $\left[N, \Gamma_{2}, C_{2}, N^{\prime}, I^{\prime}\right]$ with a suffix H and a constraint C_{2} if (a) $P_{2}=P_{1}^{\wedge} E$, and (b) E satisfics C_{1}. 2. A nonterminal $\left[N, P_{1}, C_{1}, N^{\prime}, I^{\prime \prime}\right]$ matches another nonterminal $\left[N, P_{2}, C_{2}, N^{\prime}, P^{\prime}\right]$ with an empty suffit and a constraint $\sigma\left(P_{1}, C_{2}\right)$ if (a) $P_{1}=P_{2}^{\wedge} I_{1}$, and (b) E_{2} satisfies C_{2}.

Example: 'Ihe non-terminal symbol [Node, <a b>, $\left\{\langle\mathrm{c}\right.$ d e> $\left.\rangle, N_{\mathrm{L}}^{\prime}, P_{1}^{\prime}\right]$ matches [Node,<a b c d>, $\left.\emptyset, N_{2}^{\prime}, P_{2}^{\prime}\right]$ with suffix $S=\langle c \mathrm{~d}\rangle$ and constraint, \emptyset.

From the definitions, given above, we can derive the matching criterion for sequences:

1. The cmpty sequence matches the empty sequence with an empty suffix and constraint \emptyset.
2. A non-empty sequence of (terminal and nonterminal) symbols $s_{1}^{\prime} \ldots s_{n}^{\prime}(1 \leq n)$ matches another sequence of (terminal and non-terminal) symbols $s_{1} \ldots s_{n}$ with suffix E and constraint C if
(a) for cach symbol $s_{i}(1 \leq i \leq n)$: s_{i}^{\prime} matches s_{i} with suffix E and constraint C_{i}, and
(b) $C=C_{1} \cup C_{2} \ldots \cup C_{n}$.

To put it roughly, this definition requires that the symbols of the sequences match one another with the same (possibly empty) suffix. The resulting constraint of the sequence is the union of the constraints of the symbols.

Example: The string of nonterminal symbols $\left[\mathrm{N} 1,<\mathrm{a}>, \mathrm{C}_{1}, \mathrm{~N}^{\prime} 1, \mathrm{P}^{\prime} 1\right] \quad\left[\mathrm{N} 2,<\mathrm{x}>, \mathrm{C}_{2}, \mathrm{~N}^{\prime} 2, \mathrm{P}^{\prime} 2\right]$ matches $\left.[\mathrm{N} 1,<\mathrm{a} \mathrm{b}\rangle,\{\langle\mathrm{c}\rangle,\langle\mathrm{d}\rangle\}, \mathrm{N}^{\prime} 1, \mathrm{P}^{\prime} \mathrm{l}\right][\mathrm{N} 2,<\mathrm{x} \mathrm{b}\rangle$, $\left.\{<\mathrm{e}\rangle\}, \mathrm{N}^{\prime} 2, \mathrm{P}^{\prime} 2\right]$ with suffix $\langle\mathrm{b}\rangle$ and constraint $\{\langle\mathrm{c}\rangle$, $\langle d\rangle,\langle\mathrm{e}\rangle\}$. ${ }^{3}$

[^2]
3 The Algorithm

Metaphorically, DATR ${ }^{5}$ can be regarded as a formalism that exhibits a context-free backbone ${ }^{4}$. In analogy to a context-free phrase structure rule, a DATR sentence has a left hand side that consists of exactly one non-terminal symbol (i.e. a node-path pair) and a right hand side that consists of an arbitrary number of non-terminal and terminal symbols (i.e. DATR atoms). In contrast to context-free phrase structure grammar, DATR nonterminals are not atomic symbols, but highly structured complex objects. Additionally, DATR differs from CF-PSG in that there is not a unique start symbol but a possibly infinite set of them (i.e. the set of node-path pairs that, taken as the starting point of a query, yield a valuc).

Despite these differences, the basic similarity of DATR sentences and CF-PSG rules suggests that, in principle, any parsing algorithm for CF-PSGs could be a suitable starting point for constructing a reverse query algorithm for DATR. The algorithm adopted here is a bottom-up chart parser.

A chart parser is an abstract machine that performs exactly one action. This action is monotonically adding itcms to an abstract data-structure called chart, which might be thought of as a graph with amotated ares (which are also often referred to as edges) or a matrix. There are basically two different kinds of items:

- inactive items (which represent completed analyses of substrings of the input string)
- active items (which represent incomplete analyses of substrings of the input string)

If one thinks of a chart in terms of a graph structure consisting of vertices connected by arcs, then an item can be defined as a triple (START, END, LABEL), where START and END are vertices comnected by an arc labeled with LABEL. Active and inactive items differ with respect to the structure of the label. Inactive items are labeled with a catcgory representing the analysis of the substring given by the START and END position. An active item is labeled with a category representing the analysis for a substring starting at START and ending at some yet unknown position $\mathrm{X}(\mathrm{END} \leq \mathrm{X})$ and a list of categories that still have to

[^3]be proven to be proper analyses of a sequence of connected substrings starting at END and ending at X. For the purpose of processing DATR rather than ClPSGs, each active item is additionally associated with a path suffix. Thus an active item has the structure:
(START,END,CAT0, $\mathrm{CAT}_{1} \ldots \mathrm{CAT}_{n}$, SUFFIX) Consider the following examples: the inactive item
($0,1,\left[\right.$ House, $<$ orth sing $>,\{<$ gen $>\}$, House, $\left.\mathbf{P}^{\prime}\right]$) represents the information that the substring of the imput string consisting of the first symbol is the value of the query House:<orth sing> (with any extensional path suffix, but not gen) in the global environment that consists of the node House and some still uninstantiated path \mathbf{P}^{\prime}. The active item $\left(0,1,\left[\right.\right.$ Nom,$<$ orth $>, ~ \emptyset$, House, $\left.\mathbf{P}^{\prime}\right]$,
[House, <affix>, $\boldsymbol{\emptyset}$, House, $\left.\mathbf{P}^{\prime}\right], \varepsilon$)
represents the information that there is a partial analysis for a substring of the input string that starts with the first symbol and ends somewhere to the right. This substring is the value of the query Noun:<orth> within the global environment consisting of the node House and some uninstantiated global path \mathbf{P}^{\prime}, if there is a substring starting from vertex 1 that turns out to be the value of the query House:<affix> in the same global environment House: P'.

The general aim is to get all inactive items la beled with a start symbol (i.e. a DATR nonterminal with identical local and global enviromment) for the whole string which a derivable from the given grammar. There are different strategies to achieve this. The one we have adopted here is based on a chart-parsing algorithm proposed in Kay [1980].

Here is a brief description of the procedures:

- parse is the main procedure that scans the iuput, increments the pointer to the current chart position, and invokes the other procedures
- reduce searches the DATR theory for appropriate rules in order to achieve further reductions of inactive items
- add-epsilon applies epsilon productions
- complete combines inactive and active items
- add-item ards items to the chart

We will now give a more detailed description of the procedures in a pseudo-code notation (the input arguments of a procedure are given in parentheses after the procedure name). Since the only chart-modifying operation is carried out as a side effect of the procedure add-item, there are no output values, at all.

The procedure parse takes as input arguments a vertex that indicates the current chart position (in the initial state this position is 0) and the suffix of the
input string starting at this position. As long as the remaining suffix of the input string is non-empty, parse calls the procedures add-epsiton, reduce, and complete, increments the pointer to the current chart position, and starts again with the new current vertex.
procedure parse (VERTEX, $S_{1} \ldots S_{n}$) varables:

VERTMEX, NEXT VERTEX (integer)
$S_{1} \ldots S_{n}$ (string of DATR symbols)
data: A DATR theory θ
begin
if $n>0$
then
NHXT-VERTHX : $=$ VERTEX +1
call-proc adde-essilon(VERTEX)
call-proc reduce(VERI'EX, S_{1}, NEXI'VERTLSX)
call-proc complete(VIERTHX, S_{1}, NEXT-VERTEX)
call-proc parse(NFXT-VERTTEX, $\mathrm{S}_{2} \ldots \mathrm{~S}_{n}$)
clse add-epsilon(VERTEX)
end
The procedure add-epsilon inserts ares for the epsilon productions into the chart:

```
procedure add-c;psilon(VFRRTEX)
variables: VFRTl'X (integer)
data: A DATR theory }
begin
for-cach rule CAT }->\varepsilon\mathrm{ in 教
    call-proc reduce(VERTHX, CAT, VJBRTFX)
    call-proc complete(VIRRTFX, CAT, VERTEX)
end
```

The procedure reduce takes an inactive item as the input argunent and searches the DATR theory for rutes that have a matching left-comer category. For cach such rule found, reduce invokes the procedure add item.

```
procedure reduce \(\left(\mathrm{V}_{1}, \mathrm{CAT}_{1}, \mathrm{~V}_{2}\right)\)
data: \(\triangle\) DATR theory \(\theta\)
begin
if is-terminal \(\left(\mathrm{CAT}_{1}\right)\)
then
    for-each rule
        \(\left[\mathrm{N}_{0}, \mathrm{P}_{0}, \mathrm{C}_{0}, \mathrm{~N}_{0}, \mathrm{P}^{\prime}{ }_{0}\right] \rightarrow \mathrm{CAT}_{1} \ldots \mathrm{CAT}_{n}\) in \(\theta\)
    call-proc add-item \(\left(\mathrm{V}_{1}, \mathrm{~V}_{2},\left[\mathrm{~N}_{0}, \mathrm{P}_{0}, \mathrm{C}_{0}, \mathrm{~N}^{\prime}{ }_{0}, \mathrm{P}^{\prime}{ }_{0}\right]\right.\),
        \(\left.\mathrm{CAT}_{1} \ldots \mathrm{CAT}_{n}^{\prime}, \mathrm{X}\right)\)
else
    for-each rule
            \(\left[\mathrm{N}_{0}, \mathrm{P}_{0}, \mathrm{C}_{0}, \mathrm{~N}_{0}, \mathrm{P}^{\prime}{ }_{0}\right] \rightarrow \mathrm{CAT}_{1}{ }^{\prime} \ldots \mathrm{CAT}_{n}\) in 0
            such that CAT,' matches C NO' \(_{1}\) with suffix \(S\)
            and constraint C
    call-proc add-item( \(\mathrm{V}_{1}, \mathrm{~V}_{2}\),
            \(\left[\mathrm{N}_{0}, \mathrm{P}_{0}, \mathrm{C} \cup \sigma\left(\mathrm{S}, \mathrm{C}_{0}\right), \mathrm{N}_{0}, \mathrm{P}^{\prime}{ }_{0}\right], \mathrm{CAT} \mathrm{P}_{2} \ldots\left(\mathrm{CAT}{ }_{n}, \mathrm{~S}\right)\)
end
```

The procedure complete takes an inactive item as an input argument and scarches the chart for active items which can be completed with it.
procedure complete ($\mathrm{V}_{1}, \mathrm{CAT}, \mathrm{V}_{2}$)
data: A chart CII
begin
if is-terminal($\mathrm{CA}^{\prime} \Gamma$)
then for-each active item ($\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{CAT}_{0}, \mathrm{CAT}_{1} \mathrm{CAT}_{2} \ldots \mathrm{CAT}_{n}, \mathrm{~S}$) in CH
call-proc add-item ($\left.\mathrm{V}_{0}, \mathrm{~V}_{2}, \mathrm{M}_{\mathrm{L}}, \mathrm{CAT}_{2} \ldots \mathrm{CAT}_{n}, \mathrm{~S}\right)$
else for-each active item
$\left(\mathrm{V}_{0}, \mathrm{~V}_{1},\left[\mathrm{~N}_{0}, \mathrm{P}_{0}, \mathrm{C}_{0}, \mathrm{~N}_{0}, \mathrm{P}^{\prime}{ }_{0}\right], \mathrm{CAT}_{1} \ldots \mathrm{CAT}_{n}, \mathrm{~S}\right)$ in CH such that C $\mathrm{N}_{1} \Gamma_{1}$ matches CAT with constraint: C and suflix s
call-proc
add-item $\left(\mathrm{V}_{0}, \mathrm{~V}_{2},\left[\mathrm{~N}_{0}, \mathrm{P}_{0}, \sigma\left(S, C_{0}\right) \cup \mathrm{C}\right.\right.$, $\left.\left.\mathrm{N}^{\prime}, \mathrm{l}^{\prime}\right], \mathrm{CAT}_{2} \ldots \mathrm{Cat}_{u}, \mathrm{~S}\right)$
end
The procodure add item is the chart-modifying operation. It takes an active item as an input argument. If this active item has no pending categories, it is regarded as an inactive itom. In this case add-item inserts a new chart entry for the item, provided it is not already included in the chart, and calls the procedures reduce and complete. If the item is an active item, then it is inserted into the chart, provided it is not already inside.

```
procedure add-item \(\left(\mathrm{V}_{1}, \mathrm{~V}_{2},\left[\mathrm{~N}_{0}, \mathrm{P}_{0}, \mathrm{C}_{0}, \mathrm{~N}_{0}, P_{0}^{\prime}\right]\right.\),
    \(\left.\mathrm{CAT}_{1} \ldots \mathrm{CAT}_{n}, \mathrm{~S}\right)\)
data: \(\Lambda\) chart CII
begin
if \(\mathrm{CAT}_{1} \ldots \mathrm{CA}^{\prime} \mathrm{L}_{n}=\varepsilon\)
then
        if \(\left(\mathrm{V}_{1}, \mathrm{~V}_{2},\left[\mathrm{~N}_{0}, \mathrm{P}_{0} \mathrm{O}_{\mathrm{S}}, \mathrm{C}_{0}, \mathrm{~N}_{0}^{\prime}, \mathrm{P}^{\prime}{ }_{0}\right]\right) \in \mathrm{CH}\)
        then end
        else CII :=: CII U ( \(\left.\mathrm{V}_{1}, \mathrm{~V}_{2},\left[\mathrm{~N}_{0}, \mathrm{P}_{0}^{\prime} \mathrm{S}_{0}, \mathrm{C}_{0}, \mathrm{~N}^{\prime}{ }_{0}, \mathrm{P}^{\prime}{ }_{0}\right]\right)\)
else
        if
        \(\left(\mathrm{V}_{1}, \mathrm{~V}_{2},\left[\mathrm{~N}_{0}, \mathrm{P}_{0}, \mathrm{C}_{0}, \mathrm{~N}_{0}^{\prime}, \mathrm{P}^{\prime}{ }_{0}\right], \mathrm{CAI}_{2} \ldots \mathrm{CAT}_{n}, \mathrm{~S}\right) \in \mathrm{CH}\)
        then end
        else CH:= CII U
            \(\left(\mathrm{V}_{1}, \mathrm{~V}_{2},\left[\mathrm{~N}_{0}, \mathrm{P}_{0}, \mathrm{C}_{0}, \mathrm{~N}_{0}, P_{0}^{\prime}\right], \mathrm{CAT}_{2} \ldots \mathrm{CAT}_{n}, \mathrm{~S}\right)\)
end
```


4 Cycles

A hard problem for DATR interpreters are cycles, i.e. DATR statements and sets of 1)ATR statements which involve recursive definitions such that standard inference or reverse-cuery inference does not necessarily terminate alter a finite number of steps of inference. Here are some examples of cyeles:

- simple cycles: $\mathrm{N}:\langle\mathrm{a}\rangle=-\cdots\langle a\rangle$.
- path lemgthening cycles: $\mathrm{N}:\langle\mathrm{a}\rangle-=\langle\mathrm{a}$ a> .
- path shortening cycles: $\mathrm{N}:\langle\mathrm{a}$ a> $==\langle\mathrm{a}\rangle$.

While simple cycles have to be considered as semantically ill-formed and thus typically occur as typing errors only, both path lengthening and path shortening cycles occur quite frequently in many DATR representations. Note that path lengthening cycles turn out to be path shortening cycles in the reverse query direction, and vice versa. The DATR inforence engine can be prevented from going lost in path-lengthening and path-shortening cycles by a limit on path length. This finite bound on path length can be integrated into our algorithm by modifying the add-item procedure such that only items with a path shorter than the permitted maximum path length are added to the chart.

5 Complexity

CF-PSG parsing is known to have a cubic complexity w.r.t. the length of the inputs string. Though it is crucial for our approach that we exploit the CF-backbone of DATR for computing reverse queries, this result is of no significance, here. DATR is Turing-equivalent (Moser 1992d), and Turing-equivalence has also been shown for a proper subset of DATR (Langor 1993). These theoretical results may a priori outrule DATR as an implementation language for large scale real time applications, but not as a development environment for prototype lexica which can be transformed into efficient task-specific on-line lexica (Audry et al. 1992). With a finite bound on path length our algorithm works, in practice ${ }^{5}$, fast enough to be regarded as a useful tool for the dovelopment of small and medium scale lexica in DATR.

6 Conclusions

We have proposed an algorithm for the evaluation of reverse queries in DATR. This algorithm makes DATRbased representations applicable for various parsing tasks (e.g. morphological parsing, lexicalist syntactic. parsing), and provides an important tool for lexicon development and evaluation in DATR.

References

[Andry ct al. 1992] François Andry, Norman M. Fraser, Scott McGlashan, Simon Thornton \& Nick J. Youd [1992]: Making DATR Work for Speech: Lexicon Compilation in SUNDIAL. In: Comp. Ling. Vol. 18, No. 3, pages 245-267.

[^4][Cahill 1993] Lynne J. Cahill: Morphonology in the Lexicon. In Sixth Conference of the Buropean Chapter of the Association for Computational Linguistics, pages 87-96, 1993.
[Evans \& Gazdar 1989a] Roger Evans \& Gerald Gazdar: Inference in DATR. In Fourth Conference of the European Chapter of the Association for Computational Linguistics, pages 66-71, 1989.
[Evans \& Gazdar 1989b] Roger Evans \& Gerald Gazdar: The Scmantics of DATR. In: Anthony G. Cohn [ed.]: Proccedings of the Scventh Conference of the Society for the Study of Artificial Intelligence and Simulation of Behaviour, pages 79-87, London 1989, Pitman/Morgan Kaufmann.
[Evans \& Gazdar (cds.) 1990] Evans, Roger \& Gerald Gazdar [eds.]: The DATR Papers. Brighton: University of Sussex Cognitive Scionce Research Paper CSRP 139, 1990.
[Gazdar 1992] Gerald Gazdar: Paradigm Function Morphology in DATR. In: L. J. Cahill \& Richard Coates [eds.]: Sussex Papers in General and Computational Linguistics: Presented to the Linguistie Association of Great Britain Conference at Brighton Polytechnic, 6th-8th April 1992. Cognitive Science Research Paper (CSRTP) No. 239. University of Sussex, 1992, pages 43-54.
[Gibbon 1992] Dafydd Gibbon: ILEX: A linguistic approach to computational lexica. In: Ursula Klenk [ed.]: Computatio Iinguae. Aufsätze zur algorithmischen und quantitativen Analyse der Sprache, pages 32-53.
[Gibbon 1993] Dafydd Gibbon: Generalised DATR for flexible access: Prolog specification. English/Linguistics Occasional Papers 8. University of Bielefeld.
[Gibbon \& Ahoua 1991] Dafydd Gibbon \& Firmin Ahoua: DDATR: un logiciel de traitement, d'héritage par défaut pour la modélisation lexical. Chiers Ivoriens de Recherche Linguistique (civl) 27. Université Nationale de Côte d'Ivoire. Abidjann, 1991, pages 5-59.
[Jenkins 1990] Elizabeth A. Jenkins: Enhancements to the Sussex Prolog DATR Implomentation. In: Evans \& Gazdar [eds.] [1990], pp. 41-61.
[Kay 1980] Martin Kay: Algorithm Schemata and Data Structures in Syntactic Processing. XEROX, Palo Alto.
[Kilbury 1993] James Kilbury: Paradigm-Based Derivational Morphology. In: Günther Görz [cd.]: KONVENS 92. Springer, Berlin etc. 1992, pages 159-168.
[Langer 1993] Hagen Langer: DATR without nodes and global inheritance. In: Proc. of 4. Fachtagung Deklarative und prozedurale Aspekte der Sprachverarbeitung der DGfS/CL, University of Hamburg, pages 71-76.
[Moser 1992a] Lionel Moser: DATR Paths as Arguments. Cognitive Science Research l'aper CSRP 216, University of Sussex, Brighton.
[Moser 1992b] Kionel Moser: Lexical Constraints in DATR. Cognitive Science Research Paper CsRP 215, University of Sussex, Brightom.
[Moser 1992c] Lionel Moser: Evaluation in DATR is co-NP-Hard. Cognitive Science Rescarcl Paper CSRP 240, University of Sussex, Brighton.
[Moser 1992d] Liond Moser: Simulating 'luring Machines in DATTR. Cognitive Science Research Paper CSRP 241, University of Sussex, Brighton.

[^0]: *This research was partly supported by the (iemman Federal Ministry of Research and Techmology (BMfI', project VFRRBMOBIL) at the University of Bielefeld. I would like to thank Dafydd Gibbon for very useful comments on an earlier draft of this paper.
 ${ }^{1}$ See Cahill [1993], Gibbon [1992], Gazdar [1992\}, and Kilbury [1992] for recont DACR applications in these areas. An informal introduction to DATR is given in Cazdar [1990]. The standard syntax and semantios of DAT'R is defined in buans \& Gazdar [1989a, 1989b]. Implementation issues are discussed in Gibbon \& Aloua [1991], Jenkins [1990], and in (ibbom [1993. Moser [1992a, 1902h, 1902c, 1992d] provides interesting insights into the formal properties of DATR (see also the DA'LR representations of finite state antomata, different kinds of logics, register operations etc. in Livans \& (azadar [1990], and Langer [1993]). Andry et al. [1993] describe how 1)ATR can be used in speech-oriented applications.

[^1]: ${ }^{2}$ DA'TR implementations have been developed by R. Bvans (DATROO), D. (ibion (DI)ATR, ODE $)$, A. Sikorski (TPDA'TRS), J. Kilbury (QDAT'R), G. Drexel (YADE), M. Duda (lIUB DA'RR), and others.

[^2]: ${ }^{3}$ The matching eriteria, defined above, do not cover nonterminals with evoluable paths, i.e. paths that include (an arbitrary number of possibly recursively ernbedded) nonterminals. The matching criterion for nonterminals has to be extended in order to accomet for statements with evaluable paths: Let be $\operatorname{cval}(\alpha, e, 0)$ a function that maps a string of DATR terminal and nonterminal symbols $\alpha=A_{1} \ldots A_{n}$ onto a string of DA'TR terminals α^{\prime} such that (a) each terminal symbol $A_{i}(1 \leq i \leq n)$ in α is mapped onto itself in α^{\prime}, and (b) each nonterminal $A_{j}=\left[N_{j}, P_{j}, Q_{j}, N_{j}^{\prime}, I_{j}^{\prime}\right](1 \leq$ $j \leq n$) in α is mapped outo the sequence $a_{j}^{1} \ldots a_{j}^{m}$ in α^{\prime} such that $N_{j}: I_{j}^{\wedge} e=a_{j}^{\prime} \ldots a_{j}^{m}$ in 0 . 'A' refers to (recum-

[^3]: sive) DATTR path extension (cf. Evans \& Gazdar 1989a). Notice that e has no index and thus has to be the same for all nonterminals A_{j}. Let $X_{1}=\left[N, I_{1}, C_{1}, N^{\prime}, P^{\prime}\right]$ be a nonterminal symbol including an evaluable path P_{1}. X_{1} matches $\left[N, P_{2}, C_{2}, N^{\prime}, P^{\prime}\right]$ with a suflix E and a constraint C_{x} if (a) $\operatorname{eval}\left(P_{1}, l^{\prime}, \theta\right)=\pi$, and (b) $\left[N, \pi^{\wedge} E^{\prime}, C_{1}, N^{\prime}, P^{\prime}\right]$ matches $\left[N, P_{2}, C_{2}^{\prime}, N^{\prime}, l^{\prime}\right]$ with suflix E and constraint C_{x} (according to the matching criteria, defined above).
 ${ }^{4}$ The similarity of cortain DATR sentences and contextfree phrase structure rules has first been mentioned in Gibbon [1992].

[^4]: ${ }^{5}$ A prolog implementation of the algorithm deseribed in this paper is freely available as a DOS executable program. Please, contact the author for further information.

