ISSUES IN TEXT-TO-SPEECH FOR FRENCH

Evelyne Tzoukermann
AT\&T Bell Laboratories
600 Mountain Avenue, Murray Hill, N.J. 07974
evelyne@research.att.com

Abstract

This paper reports the progress of the French text-to-speech system being developed at AT\&T Bell Laboratories as part of a larger project for multilingual text-to-speech systems, including languages such as Spanish, Italian, German, Russian, and Chinese. 'These systems, based on diphone and triphone concatenation, follow the gencral framework of the Bell Laboratories English TTS system [?], [?]. This paper provides a description of the approach, the current status of the French text-to-speech project, and some problems particular to French.

1 Introduction

In this paper, the new French text-to-speech system being developed at AT\&T is presented; several steps have been already achieved while others are still in progress. First we present a brief description of the phonetic inventory of French, with a discussion of the approach used to select and segment phonetic units for the system. Methods for automatic segmentation, and for the choice of diphone and triphone units are presented. Some comments on durational and prosodic issues follow. We conclude with some discussions on directions for future improvement, including morphological analysis, part-of-speech tagging, and partial phrasal analysis for the purpose of phrasal grouping.

2 Phonetic Description of French

The French phonetic system consists of 36 phonemes, including 17 consonants, 16 vowels, and 3 semi-vowels. Table 1 shows the different phonemes; the IPA column contains the phonernes
in the standard International Phonetic Alphabet; the second column ascir shows the ascii correspondence of these characters for the text-to-speech system, and the third column shows an example of the phoneme in a French word.

Consonants			Vowels		
IPA	ASCII	WORD	IPA	AsCry	word
p	p	paix	I	i	vive
t	t	tout	e	e	the
k	k	cas	E	E	aise
b	b	bas	a	a	table
d	d	dos	a	a	âme
g	${ }^{g}$	gai	5	$>$	hornme
m	m	mais	O	\bigcirc	tôt
n	n	non	u	U	boue
.11	N	gagner	y	y	mur
I	I	livre	ϕ	11	eux
f	f	faux	∞	@	seul
s	s	si	\ni	\&	peser
f	S	chanter	$\tilde{\varepsilon}$	I	bain
v	v	vive	a	A	banc
\%	4	zero	\%	()	bon
3	Z	jupe	¢	I	brun
r	r	rare	0	\wedge	samedi
		Semi-v	owel		
		IPA ASCII	w	R.D	
		j j w w L W	-	ux	

Table 1: French Phonetic Phonemes
For the French text-to-speech synthesis system we use 35 phonemes, consisting of 17 consonants, 15 vowels (and not 16 like in the ira column), and 3 semi-vowels. As shown in Table 1, the fourth nasal / $\tilde{\infty} /$ has been removed, / $\tilde{\alpha} /$ and $/ \tilde{\varepsilon} /$ being represented by the single phoneme $/ \tilde{\varepsilon} /$. The reasons for this change are that (1)/ $/ \dot{\infty} /$ tends to be assimilated to the phoneme $/ \tilde{\varepsilon} /$, and (2) this nasal. vowel occurs in very few words in French. Thus,
it could be said that functionally the distimetion between $/ \tilde{x} /$ and $/ \tilde{\varepsilon} /$ is minimal. French also comtains two phonemes for the character "a", /a/ and $/ \mathrm{a} /$, the first one being a front uncounded vowel and the second one a back romded vowel. A small number of French speakers make this production and perceptual distinction; in addition, today's tendency shows a disappearance of this phonemic disctinction. Therefore, only $/ a /$, the most common phoneme of the (wo, was retamed for synthesis. Notice that two different "schwas" (or mute e), marked as $/ \mathbb{K} /$ and $/ \wedge /$ were retained for synthesis; since schwa in spoken lirench can be, in some cases, present or not . depending on the level of formality of language . it is useful to have two different signs to acconnt for this option. Jn addition, the grapheme-to-phonemesystem used in the French T"IS system and deseribed in Section ?'?, is oquipped with the capability of including or not the schwa depending on the level of language. For example, the sentence "je m'en vais samedi", I am leaving on saturday, can be said either / so mã ve samodi/ or, more colloquially, /smà ve samdi/, depending on whether the schwa is reduced or not. In our system, the sentence will be transeribed / $\leqslant \wedge$ man ve samadi/, \wedge accounting for the trace of the schwa. An additional character "*", was used to represent silences at the beginning and end of words.

French phonemes can also be viewed according to their spectral variability in the context of other phonemes. It is known that lrench vowels show spectral stability and low contextual variability [?], [?]. The voiceless fricatives show somewhat less spectral stability, then the plosives. The nasals and voiced fricatives prosent even less stability. Liquids (/l/and/r/) and semi vowels (/j/, $/ w /, / 4 /$) are the phonemes showing high variability and this poses problems in diphone based synthesis [?]. Liquids are very semsitive to their context; formant structures show substantial of fects of coarticulation. As for the semi vowels, it is diflicult to capture the zone of spectral stability.

For these reasons, some researchers, e.g. [?], organize phonemic classification using the criteria of the stable vs unstatile phoneme rather than place of articulation. Simitar to the approach in the Cuglish 'To'S system, synthesis for French is done using prestored mits. Within this framework, there are various strategies for the collection of units, units that will then constitute the dictionary of polyphones. Due to the contimal aspect of the speech signal and the fact that the nature of phonemes is greatly modified in the
context of obher phonemes, synthesizing separate phonemes canoot capture articulatiory aspects of the language, Adelitionally, transitions are harder to model than steady states. Thus, diphones are the standard minimal units in segmontal synthesis. From an acoustic standpoint, a diphone can be seen as a sigmal passing from the central part of a phoneme to the central part of the subsequent phoneme; in other words, it is a unit composed of two half phonemes. At a segmental level, one can think of a diphone as a stored length of speech that goes from near the target of one phoneme and extends to near the target of the following one, it other word the transition [?].
'The carliest diphone system was deseribed by Peterson et al [?]; other diphone approaches have been reported by [?], [?], [?], and [?]. Although there are only about, 40 phonemes in English about, 1600 diphones sulfice for synthesis. Nevertheless, because of mumerous allophones and the fact that some diphones are not really context-free, researchers like Peterson suggest that about. 8000 diphones are needed for high quality diphone synthesis. Morcover, the vowel diphtongs in Linglish could be treated as peudo-diphones. Larly Prench synthesis systems [?] relied also on synthesis by diphones except for the diphone [yi] that is integrated in a triphonic group. This phonemic pair was stored differently because of its high frequency in French in occurrences stuch as "lui" him/her. In more recent work, systerns contain diphones and larger units, such as triphones, quadriphones, and even quintophones [?] [?], in order to capture coarticulatory phenomena of a longer domain that would not be adequately modeled in a strictly diphonic system.
lu the current system, the diphone inventory for French was built by taking 35^{2} phonomic pairs, that is 1225 units. Adeled to that was the silence symbol in initial and final position, which adds another 70 phonemic pairs. From this initial set, the pairs of semi-vowels were removed. All the other combinations were kept. Lven though all of them do not occur in French lexical structure, they can still appear in the inter-word boundaries. For example, the sequence / $\mathrm{l} /$ / is not permitted word internally, but must be handled since it, appears in the interword assimilation in /val rje/ "valent rien" cost nothing. This is particularly important in French since inter-word liaison is common as
 sont" "hey are, where the final consonant /s/either undergoes liaison with the vowel/ $\bar{\partial} /$ resulting in $/ \mathrm{z} /$, or undergoes linking with the consonant/s/
resulting in the devoiced sibilant.

2.1 Diphone Structure and Selection of Carrier Word

2.1.1 Structure of Diphones

This section discusses the nature of the diphone set and the manner in which diphones were collected. Diphones are structured as follows:

$$
* V, * C, V *, C *, C V, V C, C C, V V
$$

where * is a silence, C a consonant, and V a vowel. Semi-vowels were treated in the same fashion as consonants. Diphones were recorded following two different strategies: the first one consisted of picking existing words from a dictionary list. The second consisted of deciding on a neutral phonetic context in using logatomes or nonexisting words. Logatomes are phonotactjically well-formed strings, which do not exist as words in the current Fronch language.

2.1.2 Selection of existing words from machine-readable dictionary

A word list was extracted from a subset of the Robert French dictionary [?] and the pronunciation fields were extracted. The dictionary contains almost 89,000 entries, of which 85,796 entrics contain a headword, a phonernic transcription, and a part of speech. The remaining entries are prefixes and suffixes. The first task consisted of converting and mapping the dictionary phonemic symbols to the ones adopted in our system (shown in table 1). This was not straightforward since there was not always a onc-to-one mapping between the two sets. For handling symbol mapping, a program was written that converts any set of characters to any other set of characters ${ }^{1}$. The program is developed so that characters coded in octal or decimal code not only can be translated in either code, but also can be input in ascii format for being converted ${ }^{2}$.

Quite often, there was more than one pronunciation in the phonctic field and the pattern matching program chose the pronunciation corresponding to the one required. Moreover, dictionary pro-

[^0]nounciation fields are often not phonctically fincgrained enough for acceptable speech output (see [?] for a discussion on machine-readable dictionarics in text-to-speech systems). Finally, due to the lack of explicit inflectional information for nouns and adjectives, only the non-inflected forms of the entries were extracted during dictionary lookup. Similarly for verbs, only the infinitival forms were used since the dictionary doess not list, the inflected forms as hoadwords. A program was written to search through the dictionary pronunciation field and select the longest word where the phoneme pairs would be in mid-syllable position in order to avoid the extraction of phonemes occuring at the beginning or end of words. In this way, the influonce of lexical stress was reduced. The orthography/pronunciation pair [headword_orth, headword_phon] was extracted and headword_orth was placed in a carrier sentence for recording. Out of 1225 original phonemic pairs, 874 words were found with at least one occurence of the pair. Because 1225 is the number of all phonemic pairs in French whether they are allowed or not, it is interesting to notice that only 874 pairs occur within real words in the Robert dictionary.

2.1.3 Selection of logatomes

For the logatomes, two phonemes /a/ and/t/were used to encompass the selected diphone, since they appear to be fairly stable from a phonetic-acoustic, standpoint. In order to balance the alternation of vowel and consonant, the words were constructed as follows:

Logatome position	Structure	Example
initial vow.	*V-la	ota
initial cons.	${ }^{\text {C C-ata }}$	bata
final vow.	at-V**	ato
final cons.	ta-C*	tab
cons. vow.	ata-CV-ta	atabota
vowel cons.	at-VC-ata	atibata
cons. 1 cons.2	ata-CC-ata	atakrata
vow. 1 vow. 2	at-VV-ta	atoata

Table 2: Phonotactic structure of logatomes

All strings were generated in this way, even if they were not phonotactically well-formed for isolated words in the language. Nonctheless, these forms were generated and used since they were necessary for interword phenomena. Approximatcly 1225 words were constructed following the above model.

Roscarchers disagree as to whether to use logatomes or real words for synthesis. 'The argument for using logatomes is that it is better to collect mon-real words so that the diphome is recorded as neutrally as possible and does not undergo any real word stress. 'I'hose against argue that the diphone is over-articulated in a logatome environment and that it reduces the naturaluess of the syuthesized speech. The choice is more complex in the sense that it greatly depends on the speaker, the articulation, and the comfort in reading the two different sets. Given the controversy, in the present system, we decided to record the phonemic pairs in both enviromments, so that we: could choose the best ones.

2.2 The other polyphonic units

Due to the variability of liquids and semi-vowels, synthesis based only on diphones will not give good results. Indeed, such systems have proven to be insufficient. Researchers [?] argue that diphone concatenation alone is not adequate or surficient, particularly for complex transitions. [?] claims that "ideal diphones with perfect concatenation would give imperfect results". Complex polyphones are not equivalent to concatenated diphones. Therefore, longer concatenative units are necessary. Polyphones are defined by [?] as being a segmental unit where the initial and final phoneme are not subject to variability, thus, excluding liquids and semi-vowels.

The strategy chosen in the l'rench system relies on some phonetic generalitios to build a set of triphones. It was deeided ${ }^{3}$ to form a class of triphones, based on the following transition: PVC_{c}, where P ' is a phoneme, V a vowel, and C_{c} a consonant representative of the articulatory locations, i.e. one velar, one dental, and one nasal. The set consisted then of 35 phones $\times 14$ vowels $\times 3$ consonants $=1470$ triphones. The same methodology used for building the set of diphones was used for the triphones. 'These were inchuded in a carrier word for the logatomes and extracted from the dictionary for the real words.

Researchers disagree on which criteria are best for the selection of triphones; should the selection rely on phonectic-acoustic ovidence, or on statistical ovidence related to the frequency of occurrence of triphones in the language? 'Then, once the criteria is defmed, which triphones should be selected? Can candidates of a class (say the phonome/p/

[^1]representing all the stops, the phoneme/v/represouting all the fricatives) be picked to represent a class or should all the phonemes belonging to the class be selected? Research is underway in this area using a phoneme clustering approach [?], [?] that allows the selection of segmental mits from a database of phonemes containing several instances of the same phoneme. The extraction is made at a spectral point common to the phonemes. Fi nally, because the number of selected mits affects results, the choice of polyphones must be made with care. 'laking into account the size limita tion, one has to balance out the choice of the polyphones considering its frequency in the language. This brings in the additional complexity of corpus selection (its language propertios, dialects, sociolinguistic type of language, topic, and size).
[?] applies a series of rules on phoneme combination to exclude inter-word concatenation that would not occur in Prench. Por example, one cannot find a glide in Prench that is not in the left, or right context of a vowel; therefore, the combination consouant-glide-consonant is excluded. An optimal set of polyphone combinations is computed that reaches a mmber of 7725 units. Calculated from texts, statistics are then run on these mits to determine the most frequent occurences in lrench, and the number of units is lowered to 3000 . It remains to be seen whether this approach is successfull in a working system.

2.3 Construction of the corpus

A carrier sentence "C'est carrier_word que je dis" was selocted to fulfill the following requirements:

- short sentence to record,
- ability to surround the carrier word to avoid sentential accent and effects,
- phonetically neutral environment.

2.4 Choice of a Speaker

Five male native speakers of Continental French were intervicwed for selecting the voice of the French synthesizer. A sample of text representing highly occoring graphemic trigrams was prepared to be used in this task. 'The corpus was run through a groedy algorithm ${ }^{4}$ that returned the most frequent words within their sentences

[^2]along with a measure corresponding to the covcrage of the graphemic triphone. Once the sample was recorded by the 5 speakers, the natural voices were run through LPC analysis and re-syuthesized in order to judge the resistance of the voice to synthesis. Five subjects were asked to give their judgernent on the following criteria:

1. clear articulation: the voice was carcfully listened to cvaluate the articulation of the speaker. Subjective perceptual judgements were madc.
2. neutral French accent: the candidate was asked about the areas of France where ho grew up. The central area of France "l'Ile de France" is known for its neutral accent and is regarded as being a well-received accent. Additionally, for French native spcakers residing in the USA, particular attention was paid to the influence of English in the pronunciation of French, especially for English borrowings, such as for example, the company name AT\&T to be pronounced/ate te/ (the French way) and not/eitnt/as in English.
3. regularity: special attention was given to ensure that the speaker would have a reasonable degree of regularity in uttering French phonemes.
4. pleasantness of the voice: the subjects doing the evaluation were asked to give their opinion on the pleasantness of the voice, in particular the timber, the level of nasality, and the intonation. Of course, this is a highly subjective matter but a critical one for success.

2.5 Recording Conditions

The recording was done on four non-consecutive days under the following conditions. The sentences were recorded directly onto the computer through a DAT (Digital audio Tape) tape recorder, using interactive software allowing easy reading and repotition of the sentences to be recorded. Additional time was devoted to the recording of triphones as well as the re-recording of sentences that were improperly uttered. The same carrier sentence and a regular prosodic context was carefully maintained so that there was minimal suprasegmental variation. Once the recording was done, the 48 kHz digitized acoustic signal was downsized to 12 kHz .

2.6 Transcription of recording material

For the recording, all sentences were transcribed from the phonetic alphabet to an orthographic format. This was done to allow the speaker to utiter sentences with more naturalness. Once the recording was done, the sentences were semiantomatically re-transcribed into phonetic form. For some utterances, the phonetic transcription was manually adjusted to the idiosyncrasies of the speaker. For example, it often happened that confusion arises between open and closed vowels, such in the word "zoologique" zoological that can be pronounced either /zoolozik/ or /zoologik/. In case the output was /zoolozik/ instead of the expected /qoologik/, the transeription was readjusted.

2.7 Segmentation

Segmentation is presently in progress; efforts are being pursued to adapt an automatic segmentor for English to French and other languages. In the meantime, mamual segmentation is being done as a pilot experiment in order to check the accuracy of automatic segmentation. Beyond the scope of this paper are many complex issues raised in segmenting French, such as the segmentation of semivowels ($/ \mathrm{j} /, / \mathrm{w} /$, and $/ \mathrm{q} /$) and liquids ($/ \mathrm{l} /$ and $/ \mathrm{r} /$), each of these phonemes being quite unstable from a phonetic-acoustic standpoint. 'These issues will be addressed in future work.

2.8 Integration of an orthographic transcriber

A grapheme-to-phoneme transcriber [?] was acquired to convert French orthography to a phonemic representation. The software performs some syntactic and partial semantic analysis of the sentence in order to disambiguate the input string. Once performed spellings are converted in a series of steps into a phonemic representation.

3 Issues in Text Analysis

We have pursued work in the text analysis of French in order to obtain linguistic data for intonation and prosody; additionally, the output of the work will be used in the translation project. This aspect of the work has entailed several points:

- acquisition of a large French dictionary: Robert Encyclopedic dictionary (containing
over 85 k entries, 80 k articles, 160 k citations, analogical terms (synonyms, homomyms, etc), and conjugation tables for most french verbs).
- collection of Prench corpora:

French news from Jif MONDE [?]
French news daily compiled by the French embassy in Washington DC (24657K bytes are now encoded, and a monthly update is being done). The data are in ascii and accents were restored using one of the features of the grapheme-io-phoneme software. Another program was wrilten to antomat, ically clean and normalize these e-mail format data.
extraction of some of the Robert dictionary databases: the 160,000 eitations from literary Prench authors are being extracted so that they can constitute some relevant corpus data. A framework is being worked out so that citation author can be retrieved on an optional basis.

- encoding of french data using the already oxisting scheme developed by [?] and entanced by [?]. This scheme allows the use of the concordance program. As English data are encoded in 7 bit characters, an 8 bit encoding format was worked out to allow the retrieval of French toxt with aceents ". For example, the Haccented word "cote" in French can be several words: "cote" with no accent meaning quotalion, ratiog, "cote" moaning coash, and "cote" meaning side all these transtations being also valid in the figurative sense. 'I'hus, a latind compatible window would display french corpora with accents; in the following example, the program returns all intances of the word "cote" (quotation, rating) in the database "We Monde". The query to the system will retrieve all the French senttences where the exact match to the characters "cote" will occur, and neither of the other spelling:
The query producing table ?? returned information of "Le Monde" only, as requested. In specifying "FRLN" for l'rench, the following query in Table ?? returns all instances of

[^3]| $\begin{aligned} & \text { Matrh: } \\ & \text { 'Total: } \end{aligned}$ | $\begin{aligned} & \text { eate } \\ & 9 \\ & 9: \text { note } \end{aligned}$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| MONDI: | 37737 | intombitabe. $\overline{\text { chat }}$ | Ente | changeait $\mathrm{d}^{\text {a }}$ hente |
| Monibli | 11.36.56: | dipamse in | cols | 2000. |
| MONDE | 331622 : | fu-lessus de in | cote | a00, et la |
| MONDF: | 635288: | douloureuse. Sn | cote | de popularite |
| MONDE: | ¢888281: | akos, que la | cote | de Valery Giscaril |
| MONDW | 701355: | Parnnt | :oto | depopularite |

Table 3: Some concordances of the word "cote" in the database "Le Monde"
the word "cote" in the three Prench corpora. Moreover, the "-i" option allows the retrieval of all instances of a word with or without ac. cent, therefore the three French words "cote", "cote", and"côte". For more information on the use of the concordance tools, refer to [?].

$\begin{aligned} & \text { Match: } \\ & \text { Hotal: } \end{aligned}$	$\begin{aligned} & \text { cote } \\ & 0 \\ & 5: c o t e \end{aligned}$			
MONDF	2n5f:	Utah Heach, gurla	Ente	तucotmatin
MONDE	26\%4:	pied num la	conte	(gil' its seraicat
MONID	$3835:$	preva: la	conte	du Calvados.
MONDI:	41881:	de conx de hat	coste	sut de
MONiPI:	415100 ${ }^{\text {a }}$	universitesa de in	conte	athantique.
AEP	2570	savent.	cote	travailliste
Ais	43946:	plan Shamit.	Conts	ismalien
AP1	53874 :	u-numais, en	cote	d' $^{1} \mathrm{O}$.
${ }^{\text {AlP }}$	126794	Gamermun,	cote	d' tvone,
A ${ }^{\text {a }}$	181788:	sécurite ".	cote	libanais
A!P	188101:	6uncter	Cots	franciais
HANSF*	267386	a meture de	toots	1'antipathit
IANSE	271232:	trèm tranible du	cota	des ministériels.
[IANSI'	272137:	40.'atre	cata	delatas
HANEF	278500:	d-1' autre	cots	delà chanure.
HANS以	276522:	arrieta-bantsu	colts	dugonvermenent

Thable 4: Some concordances of the word "cote" in all French databases

- development of a morphological analyzer and generator for French, using finite-state transducer: the system is built with an approach similar to the one for Spanish [?]; it is mainly based on the headwords of the Robert dictionary.
- accent filters: conversion tables are still being produced at each time a now database arrives that is not in a compatible form.

4 Conclusion

'The Fremeh 'I'LS system is part of a large project, of multilingual text-to-speech synthesis in progress at N'R'I Bell Laboratorios. Speech synthesis for Prench brings a variety of challenges, some of which are specific to l'rench, such as nasalization, liaison, schwa realization, ete. and some of which are more general issues, such as vowel lengthening, prosodic contouring, and intonation. Several systems are in experimental stages for other languages, such as Spanish (Castillan as woll as South American), Italian, Chinese, Navajo, German, and Russian. Once Continental French is completed,
we also intend to build a TTS system for Canadian French.

References

[1] Veronique Aubergé. La synthèse de la parole: 'des règles aux lexique'. PhD thesis, Universitć de Grenoble, Grenoble, France, 1991.
[2] Jared Bernstein. Speech synthesis: System design and applications. pages 39 42. National Computer Conference, 1987.
[3] Frédéric Bimbot. Synthèse de la Parole: Des Segments aux règles, avec utilisation de la décomposition temporelle. PhD thesis, '「elecom Paris 88 E019, Paris, France, 1988.
[4] M. Chafcouloff. Les propriétés acoustiques de $[j, y, l, r]$ en fran cais. volume 6 , pages 10-24. Travaux de l'Institut de Phonétique d'Aix, 1979.
[5] N.R. Dixon and H. D. Maxey. Terminal analog synthesis of continuous speech using the diphone method of segment assembly. In IEEE Transactions on Audio and Electroacoustics AU16, pages 40-50, 1968.
[6] Francoise Emerard. Synthèse par diphones et traitement de la prosodie. PhD thesis, Université de Grenoble III, Grenoble, France, 1977.
[7] Alain Duval et al. Robert Encyclopedic Dictionary (CD-ROM). Hachette, Paris, 1992.
[8] Judith Klavans and Evelyne Tzoukermann. The use of machine-readable dictionaries in text to speech. under review, 1994.
[9] P. Laferrière, G. Chollet, L. Miclet, and J.P. Tubach. Segmentation d'une base de donnćes de 'polyson', application à la synthèsc de parole. In JEP: 14, pages 107-110, 1985.
[10] L'histoire au jour le jour 1944-1991. In version 1992. CD-ROM, 1992.
[11] E. Marty. 'Trois systèmes informatiques de transcription phonétique et graphémique. Le Fran cais Moderne, LX, 2:179-197, 1992.
[12] L. Miclet. Enregistrement d'une base de données vocales. In LAA/TSS/RCP E.N.S.T. CNET, 1984.
[13] Joe P. Olive. Rule synthesis of speech from dyadic units. In Proceedings of the IEEEICASSP', pages 569 570, 1977.
[14] Joe P. Olive. A new algorithm for a concatenative speech synthesis system using an augmented acoustic inventory of spech sounds. In Gérard Bailly and Christian Benoit, editors, Proceedings of the ESCA Workshop on Speech Synthesis, 1990.
[15] Joe P. Olive and Mark Y. Liberman. A set of concatenative units for speech synthesis. In In J. J. Wolf and D. H. Klatt, editors, Speech Communication Papers Presented at the 97th Meeting of the Acoustical Society of America, pages 515 518, New York: American Institutc of Physics, 1979.
[16] G. E. Peterson, W.S.Y. Wang, and E. Siversten. Segmentations techniques in speech synthesis. Journal of the Acoustical Society of America, 30:8:739-749, 1958.
[17] Scott Rosenberg and Joseph P. Olive. Expediting the selection and clipping of multiphone sequences for acoustic inventory. In 11222-930890-12TM, Murray Hill, N.J., USA, 1993. Technical Memorandum, A'I\& Bell Laboratories.
[18] Jim Rowley. Phoneme clustering tools. In 11220-931123-25TM, Murray Hill, N.J., USA, 1993. Technical Memorandum, AT\& Bell Laboratories.
[19] R. Schwartz, J. Klovstad, J. Makhoul, D. Klatt, and V. Zue. Diphone synthesis for phonetic vocoding. In Proceedings of the LEEE-ICASSP, page 891, 1979
[20] Evelyne Tzoukermann and Mark Y, Liberman. A finite-state morphological processor for spanish. In Proceedings of Coling90, Helsinki, Finland, 1990. International Conference on Computational Linguistics.
[21] Church Kenneth W. Concordances for parallel text. Oxford, England, 1991. Seventh Annual Conference of the UW Centre for the New OED and 'Text Rescarch.
[22] David Yarowsky. Conc: 'Tools for text corpora. In 11220-921220-29TM, Murray Hill, N.J., USA, 1992. Technical Memorandum, AT\& Bell Laboratorics.

[^0]: ${ }^{1} \mathrm{I}$ am very grateful to Mike Canemblatt who wrote this program and made a succession of changes until complete flexibility of character conversion was obtained.
 ${ }^{2}$ This tool allowed the conversion of databases originally written on Macintosh, PC, or Unix. Additionally, we used it to convert all the French textual databases into latin1 8 bit encoding format.

[^1]: ${ }^{3}$ personal communication with Joe Olive

[^2]: ${ }^{4}$ Thanks to Jan Van Santen for developing and running his greedy algorithm.

[^3]: ${ }^{3}$ I am very grateful to David Yarowsky for encoding the Erench data.

