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A b s t r a c t  

Prob~bilistic l{,ecursive Tr~msition Network(Pl~TN) is 
an elevated version of t{51'N to model and process lan-. 
guages in stoch~st, ic parameters. The representation 
is a direct derivation front the H,TN and keeps much 
the spirit of ltidden Markov Model at the same tint(,. 
We present a reestimation algorithm ['or Ptl,TN that is 
~ variation of Inside-Ontside algorithm that comput, es 
the vMues of the probabilistic parameters from sample 
sentences (parsed or unparsed). 

1. ln trodu( : t ion  

In this pal)er , we introduce a network represen- 
ta t ion,  Probabilistic Recursive Transitio. Network 
tha t  is directly derived fl'Oln R'CN and I tMM, and 
present an est imat ion algori thm lot  tile proba- 
bilistic paraHteters. PR;12N is a ][]TN mJgmented 
with probabil i t ies in the transi t ions ~md states 
and with the lexical distr ibutions in the transi-- 
tions, or is the Hidden Markov Model augmented 
with a stack tha t  makes some traltsit ions deter 
ministic. 

The paramete.r esthnat ion of PI{;I'N is devel 
oped as a wu'iation of Ins ide ( )u t s ide  algorithm. 
The hlsidc ()utside algori thm has becn applied 

e(,10t ,  I;o ~, ,.~* recently by Jelinek (1{t9{/) and ],ari 
(1991). The algori thm was first introduced by 
Baker in 1.979 and is the context free lmtguage 
version o[ Forward-.Backw~rd algori thm in IIid-. 

*This research is partly supported by KOSEF (Km:ea 
Science altd Teclntology l"oundation) under tit{= title "A 
Study mt the Bnilding '[~echni(lues for [txdmst Km~wledge 
based Systems" from 19911 through 1994. 

den Markov Models. Its theoret ical  lbund~Ltion is 
laid by Baam aud Weh:h in the late 6l)'s, which 
in t a rn  is a type of the F,M Mgorithm in statist ics 
(Rabiner,  1989). 

Kupiec (1991) introduced a trellis based es-. 
t imation Mgorithm of Hidden SCFG tha t  ae 
commodates  both ilnside-Outside ~dgorithm and 
l!brward-.Backward ",flgorithm. The meaning of 
our work can be sought from the use of more 
plain topology of I{TN, whereas Kupiec 's  work is 
a unilied version of tbrward-.backword and Inside 
Outside ~lgorithms. Nonetheless, the implemen. 
rat ion of reest imat ion Mgorittun carries no more 
theoretical  significance than  the applicative efli 
ciency and variation for differing representat ions 
since B~ker first apt)lied it to CI"Gs. 

2. Probab i l i s t i c  R e c u r s i v e  Tran- 
s i t ion  N e t w o r k  

A probabilistic ff.l.'N (PRTN, hereafter) denoted 
by A is ~ 4 tuple. 

A is ~ t ransi t ion m~trix containing tr~n.sition 
probabili t ies,  ~tnd 13 is aiL observation mat r ix  con- 
taining probabi l i ty  dis tr ibut ion of the words ob 
servable at each terminM transi t ion where row 
and column correspond to terminM transi t ions 
and a list of words respective, ly. F specilies the 
types of transit ions,  and D2 denotes a stack. The 
first two model parameters  are the same as tha t  of 
I[MM, thus typed transi t ions and the existence of 
a stack art', what  distinguishes I ' t tTN fl'om t[MM. 
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The stack operat ions are associated with tran- 
sitions. According to the stack operat ion,  t ran- 
sitions are classified into three types.  The first 
type is push transition in which s tate  identifica- 
t ion is pushed into the stack. The second type is 
pop transition which is selected by the content of 
stack. Transit ions of the third type  are not com- 
mi t ted  to stack operation.  The three types are 
also accompanied by different grammat ica l  impli- 
cation, hence grammat ica l  categories are assigned 
to trartsitions except pop transit ions.  Push transi- 
tions are associated with nonterminal  categories, 
and will be called nonterminal transition when it 
is more t ransparent  in la ter  discussions. In gen- 
eral, the g r ammar  expressed in PRTN consists 
of layers. A layer is a fragment of network tha t  
corresponds to a nonterminal.  The third type  of 
t ransi t ion is linked to the category of terminals 
(words),  titus is named terminal transition. Also 
a table  of probabi l i ty  dis tr ibut ion of words is de- 
fined on each terminal  t ransi t ion.  In the context 
of HMMs, tile words in the terminal  t ransi t ion 
are observations to be generated.  Pop transi t ions 
represent re turning of a layer to one of its possibly 
mult iple higher layers. 

The network topology of PI~TN is not differ- 
ent fi-om tha t  of RTN. In a conceptual drawing 
of a g rammar ,  each layer looks like an indepen- 
dent network. Compared with conceptual draw- 
ing of the network,  an operat ional  view provides 
more vivid representat ion in which actual  paths  
or parses are composed. The only difference be- 
tween the two is tha t  in operat ional  view a nonter- 
minal  t ransi t ion is connected directly to the first 
s ta te  of the corresponding layer. In this paper ,  
the parses or paths  are assumed to be sequences 
of dark-headed transi t ions (see Fig. I for exam- 
ple). 

Before we s ta r t  explaining the algorithms let us 
define some notat ions.  There is one s ta r t  s ta te  
denoted by 8,  and one final s ta te  denoted by 
f .  Also let us ca]] states immediate ly  following 
a terminal  t ransi t ion terminal state, and states at 
which pop transi t ions are defined pop state. Some 
more notat ions  are as follows. 

• f i r s t ( l )  returns the first s ta te  of layer I. 

• last( l )  returns the last  s ta te  of layer 1. 

• layer(,s) returns the layer s ta te  s belongs to. 

• bout(l)  returns the s tates  from which layer l 
branches out. 

• bin(l) returns the s tates  to which layer I re 
turns. 

• t erminal (1)  returns a set of terminal  edges in 
layer I. 

• n o n t e r m i n a l ( l )  returns a set of nonterminal  
edges in layer 1. 

• i j  denotes the edge between states  i and j .  

• [i,j] denotes the network segment between 
states i and j .  

• W a ~  b i s  a n  observation sequence covering 
from ath to bth observations. 

3. Reesti lnation Algori thm 

PRTN is a RTN with probabil is t ic  t ransi t ions 
and words 1 tha t  can be es t imated from sample 
sentences by means of s ta t is t ical  techniques, we 
present a reest imat ion algori thm for obtaining the 
probabil i t ies of t ransi t ions and the observation 
symbols (words) defined at  each terminal  transi-  
tion. Inside-Outside algori thm provides a formal 
basis for es t imat ing parameters  of context  free 
languages such tha t  the probabil i t ies of the ob- 
servation sequences (sample sentences ) are max- 
imized. The reest imation algori thm i terat ively 
est imates the probabil ist ic parameters  until  the 
probabi l i ty  of sample sentence(s) reaches a cer- 
tain stability. The reest imat ion algori thm for 
PI tTN is a variation of Inside-Outside algori thm 
customized for the  representat ion.  The algori thm 
to be discussed is defined only for well formed ob- 
servation sequences. 

D e f i n i t i o n  1 An observation sequence is well 
formed  if there exists at  least a pa th  tha t  gen- 
erates the sequence in the network and s tar ts  at 
S and ends at 2:'. 

Let an obserw~tion sequence of length N denoted 
by 

W -  W ~ W ~ . . . W u .  

We star t  explaining the reest imat ion Mgorithm by 
defining Inside-probabili ty.  

The Inside probabi l i ty  denoted by PI(i)s~t  of 
s ta te  i is the probabi l i ty  tha t  a por t ion of layer( i )  

1we do not consider probabilistic states in this p~per. 
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Figure 1: Illustration of PI¢TN. A parse is composed of dard-heatded transitions. 

(front state i to the last state of the layer) gen 
erattes W;~t. Thatt is, it is the probatbility thatt 
a certain fragment of a layer generates at certain 
segment of an input sentence, and this can be 
computed by summing the probabilities of all the 
possible paths in the layer segment that generate 
the given input segment. 

w h e r e  c = l a s t ( l a y e r ( i ) ) .  

More constructive re.presentation of Inside prob 
atbility is then 

k 
t 

wh, c r e  ik C tcrminal(h~ycr(i)), 

ia < i) ), 
, ,  = ), 

v ~ b in ( layer ( j ) ) ,  

'].'he paths starting at state i arc classilied into two 
cases according to the type of hnmedi~te transi-- 
tion fl'om i: it can be of terminal or nonterminal 
type, In ease of terminal, ~J'ter the probatbility of 

the terminal transition is taken into account, the 
rest of the layer segment is responsible for the in- 
put segment short of one word just generated by 
the terminM tratnsition, in caase of nontmminM, 
first the transition probabilities (push and respec- 
tive pop tratnsitions) atre multiplied, then depend- 
ing on the coverage of the nonterminal transition 
(sublatyer) the rest of the current latyer is responsi- 
ble for the rmnaining input sequence after done by 
the sublaycr. After the last observation is made, 
the last state (pop state) of layer(i) should be 
reached. 

:1 i r  i := 

l:)I(i)vH~t = 0 otherwise. 

Fig. 2 is the pi('toriM view of the Inside prob- 
ability. A well formed sequence can begin oidy 
at state ,S, thus to be strict, t ~ (5 )  has additional 
product term F(,5) that  can be computed also 
using InsideOutside algorithm. Now define the 
Outside probability. 

The Outside probatbility denoted by Po(i, j).,~~. 
is the probatbility thatt patrtial sequences, Wl~.,q 
and Wt+1~N, are generated provided that  the par- 
tiatt sequence, Ws~t, is generated by [i,j] given 

ruodel, A. This is a complementary point of 
Inside-probability. This time, we look at the out- 
side of given layer segme,tt and input segment. 
Assunfing a given latyer segment generates a given 
input segment, we want to colnpute the probat- 
bility that  the surrounding portion of the whole 
I'R:i'N generates the rest of the input sequence. 
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Figure 2: Illustration of Inside probability. 

The Outside probability is computed first by 
considering the current layer consisting of two 
parts after' excluding [i,j] that  are captured in 
Inside-probability. Beyond the current layer is 
simply an Outside probability with respect to the 
current layer. 
And by definition, 

Po(i,j),~t = p ( [ s ,  i] ~ w>~_~ ,  [j, y ]  - ~  

W,+I~N I A ) 

axfaev X 
x a = l  b = t + l  

*~( f , i)o~,~ P d j ) ~ ~ b e o (  ~, y)o~~ . 
P;(f ,  i)~~t 

Fig. 3 shows the network configuration in com- 
puting the Outside probability, t'~(f,i)=~~_t is 
the probability that  sequence, W=~~I, is gener- 
ated by layer(i) left to state i. PI(j)t+l~b is the 
probability that  sequence Wt+l~b is generated by 
layer(i) right to state j .  The portions of W not 
covered by W=~b is then left to the parent layers 
of layer(i). 

P~(f, i).,~t is a slight wriat ion of Inside proba- 
bility in which PI(f)=~b'S in the Inside probabil- 
ity formula are replaced by P~(f, i)a~b. [ts actual 
computation is done as follows: 

PI(f),~t i f s _ < t ,  
1 i f s > t a n d f = i ,  
0 i f s  > t  and f )Ai. 

wheTe x E b o u t ( l a y e r ( i ) ) ,  

y e b~n(layer(i)),  

f = f i r s t ( l a y e r ( i ) ) ,  

e = l a s t ( l a y e r ( i ) ) ,  

l a y e r ( i )  = l a y e r ( j ) ,  

layer(~) = layer(y).  

x represents a state from which layer(i) 
branches out, and y represents a state to which 
layer(j) returns to. Every time a different com- 
bination of left and right sequences with respect 
to W~~t is tried in the layer states i and j belong 
to, the rest of remaining sequences is the Outside 
probability at the layer above layer(i). 

When there is no subsequence to the right of 
W~~b (i.e., b = N), 

Po(i,j)a~N = 1. 

It is basically the same as Inside probability ex- 
cept that  it carries a state identification i to check 
the vMidity of stop state. If there are observations 
left for generation (s _< t), things are done just as 
in computing Inside probability, ignoring i. When 
boundary point is reached (s > t), if the last state 
is i, it returns 1, and 0, otherwise. 

The probability of an observation sequence can 
be computed using Inside probability ~s 

p ( w J A )  -- P ( [ s , a = ] - ~  w > N I ~ )  

= P , ( s ) I _ N .  

Now we can derive the reestimation algorithm for 
Ji and/~ using the Inside and Outside probabilL 
ties. As the result of constrained maximization of 
Bantu's auxiliary function, we have the following 
form of reestimation for each transition (Rabiner 
1989). 
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Figure 3: I l lustrat ion of Outside probabili ty.  

expected no. of t ransi t ions from i to j 
d~j = 

expected no. of t ransi t ions front i 

The expected frequency is defined for each of 
the thre(, types of t ransi t ion.  For a terminal  tran- 
sition, 

~ N  ¸ E,.=~ aijb(i j ,  W,.)l 'o(i , j) , .~, .  
E t ( i j )  == r ( w  I a) 

For a nontcrminal  t ransi t ion,  

alj 
E t ( i j )  

~2~ e~(ik) + )2k e, . ( i~)  

For nonterminal  t ransi t ions,  

aij 
E ,a( i j )  

?2k e~(ik) + ?;k e,.(ik) 

And for pop transi t ions,  notice tha t  only pop 
transi t ions are possible at a pop s ta te ,  

__, ~ N  ~ . ~  aijPi(j).~~ta~,,I 'o(i,  v)~~t E~,ov(ij) 
P),~t(ij) =- '~=~ aij - 

~'( w I ~ ) E~ z,:,,o;,( i~ ) 
- . +  

"lDh¢7'~ '[' = l a . ~ t ( l f , ~ y ¢ ? ' ( j ) ) ,  ',J ~ bin( layer( j ) ) ,  For a terminal t ransi t ion i j  aud ~I, observation 

1 , , y ,~ ( i )  = 1 .y ,~ ( . 0 ) ,  l . : , j ~ . ( j ) : ~  l~ ' r ( , , l  y'"b°l " 

uv is a p o p  t rans i t ion .  
, - +  

Y'-,t .,.t. wt=~, aijb(i j ,  Wt ) l ' o ( i ,  J)t~t 
For a pop transi t ion,  b(ij ,  w) ~: 

~ ] V  - ~  )2t=~ aijb(ij, Wt)l'o(i,j)t~t 

Epov( i j ) : :  v(w I a) 

where  u E: bout( layer(i)) ,  

j (~ bin( layer( i ) ) ,  

v := f i r s t ( l ayer ( i ) ) ,  
l . . , j~, . ( , . )  - l . y~ , , . ( j ) ,  

l<,jc,,,(~)- l~y~,,(0, 
u'~ is a nonterminM transit iolt  . 

Considering tha t  tr~msitions of terminal  and 
nonterminM types can occur together at a state,  
the reestim~tion ['or terminal  tr~msitions is done 
as follows: 

' f i le reest imation process co~ltinues until the 
probabi l i ty  of the observation sequences reaches a 
certain stability. It is not nnusuM to assume tha t  
the tra.iHing set can be very large, and even grow 
indefinitely in non tr ivial  applications in which 
case additive traini~tg c~n be tr ied using a smooth- 
ing tectmiquc as in (Jarre and I ' ieraccini ] 987). 

The complexity of [Itside-Outside ~dgorithm is 
O ( N  a) both in the mnnber of s tates  and input  
length (l~ari 1990). The ei[iciency comes from the 
fact that  the algori thm successfully exploits the 
context-freeness, l!br instance, the ge~mration of 
substrings by a nonterminal  is independent  of tit(; 
surroundings of the .aonterminal, and this is ]tow 
the product  of the Inside and Outside probabi l i  
ties works and the COlnplexity is derived. 
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4. C o n c l u s i o n  

Recently several probabilistic parsing approaches 
have been suggested such as SCFG, probabilis- 
tic GLR, and probabilistic link grammar (Laf- 
ferty, 1992). Kupiec extended the reestimation 
algorithm for SCFG to cover non-Chomsky nor- 
mal forms (Carroll, 1993). This paper further ad- 
vances the trend by implanting the Inside-Outside 
algorithm on the plain topology of RTN which 
distinguishes itself from Kupiec's work. 

[8] Lari, K.; and Young, S. J. (1991). "Applica- 
tions of stochastic context-free grammars u s  
ing the Inside-Outside algorithm." Computer 
Speech and Language 5: 237-257. 

[9] Rabiner, Lawrence R. (1989). A Tutorial on 
Hidden Markov Models and Selected Applica- 
tions in Speech Recognition. Proceedings of the 
IEE E  ~27 (2). 
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