Two Parsing Algorithms by Means of Finite State Transducers

Emmanuel Roche*
Mitsubishi Electric Research Laboratories
201, Broadway, Cambridge, MA 02139, rocheemerl.com

Abstract

We present a new approach, illustrated by two algorithms, for parsing not only l'inite State Grammars but also Context Free Grammars and their extension, by means of finite state machines. The basis is the computation of a fixed point of a finite-state function, i.e. a finite-state transducer. Using these techiques, we have built a program that parses French sentences with a grammar of more than 200,000 lexical rules with a typical response time of less than a second. The first algorithm computes a fixed point of a non-deterministic finite-state transducer and the second computes a fixed point of a deterministic bidirectional device called a bimachine. These two algorithms point out a new connection between the theory of parsing and the theory of representation of rational transductions.

INTRODUCTTON

Finite state devices have recently attracted a lot of interest in computational linguistics. Computational efficiency has been drastically improved for morphological analysis by representing large dictionaries with Pinite State Automata (FSA) and by representing twolevel rules and lexical information with finite-state transducers [8, 4] More recently, [11] has achieved parsing with low level lexical sensitivity by means of finite state automata. Finite state approximation of contextfree grammars also proved both useful and efficient for certain application [9].

One common motivation of all this work is to improve efliciency dramatically, hoth in terms of time and space. These results often provide programs orders of magnitude faster than more traditional implementations. Moreover, FSAs are a natural way to express lexical sensitivity, which has always been a requirement in morphology and which has proved crucial in syntax. The grammar we used for French, called LexiconGrammar (see [6] [7] [2] [3] [10] for instance), pushes the lexicalization very far and it is our belief that this lexicalization trend will amplify itself and that it will result in grammars several orders of magnitude larger than today's representations. 'This uncovers the need for new methods that will be able to handle such large scale grammars.

[^0]However, a main drawback of the finite state approach to syntax is the difficulty of representing hierarchical data; this partly explains why FSA-based programs only do incomplete parsing. This paper presents a new parsing approach based on finite-state transducers, a device that has been used already in morphology [8] but not yet in syntax, that provides both hierarchical representations and efficiency in a simple and natural way. The representation is very compact, this allows to implement large lexical grammars.
'rwo new parsing algorithms illustrate the approach presented here. The first one uses a linite state transducer and computes a fixed point. But finite state t ranstucers, mike FSAs, canot be made deterministic; however, a hidirectional device called a himachime [1] can indirectly make them deterministic. This leads to the second algrorithm presented here. 'The very high efficiency of this approach can be seen in the experinents on French. Sentences can be parsed with a grammar containing more than 200,000 lexical rules'; this grammar is, we think, the largest grammar ever implemented.

PRINCIPLES

The concept of Finite-State Transducer
The basic concept here, since we nol only match but also add markers, is the concept of finite-state trams ducer. This device has already proved very efficient in morphological amalysis [8]. It can deal with very lange anomit of data, namely morphological diclionaries containing more than 500,000 entries,

A linite state transducer is simply an FSA except that, white following a path, symbols are emitted. A finite state transducer can also simply be seen as a graph where the vertices, called states, are linked through oriented arrows, called transitions. 'The transitions are labeled by pairs (inpul_label, outpul_label) ${ }^{2}$.

[^1]
The parser in term of rational transduction

In our parser, the grammar is a rational transduction f, represented by a transducer T. The input of the parser is the set s_{0} containing as only element the input sentence bounded by the phrase marker $[P]$, i.e. $s_{0}=\{[P]$ sentence $[P]\}$. The analysis consists in computing $s_{1}=f\left(s_{0}\right), s_{2}=f\left(s_{1}\right)$ until a fixed point is reached, i.e. $s_{p}=f\left(s_{p}\right)$. The set s_{p} contains trees represented by bracketed strings, this set is the set of grammatical analysis of the sentence, it contains more than one element in the case of syntactically ambiguous inputs. Each set s_{i} is represented by a Directed Acyclic Graph (DAG) A_{i}, thus the computation consists in applying the transducer 7 ' on the DAGs A_{i}. We shall write it $A_{i+1}=T\left(A_{i}\right)$.

In the next section we give two complete examples of that.

TWO SIMPLE EXAMPLES

An example of a Top-Down analysis

The graph on figure 1 describes the analysis of the sentence:

$$
s_{1}=\text { John said that Mary left }
$$

The graph on this figure has to be read in the following way: the input sentence is represented by the DAG A_{1} on the upper left corner; the subset of the grammar required for the analysis of this sentence is the transducer f on the right hand side of the figure 1.

The analysis is then computed in the following way: we apply the transducer f to A_{1}, that is we compute $A_{2}=f\left(A_{1}\right)$, this represents one step of a Top-Down analysis of the sentence. The box with a star inside represents this operation, namely applying a transducer to a DAG . If we then apply f to this result (i.e. A_{2}), we obtain $A_{3}=f\left(A_{2}\right)=f^{2}\left(A_{1}\right)$ represented under A_{2}. If this operation is applied once more, one gets $A_{4}=f\left(A_{3}\right)=f^{3}\left(A_{1}\right)$. This last result, A_{4}, is a fixed point of the transducer f, i.e. $f\left(A_{4}\right)=A_{4} . A_{4}$ is a DAG; that represents a finite set $\operatorname{Sel}\left(A_{4}\right)$ of strings. Here, this set only contains one element, namely Set $\left(A_{4}\right)=$ $\{($ John $) N 0($ said $) V 0($ that (Mary $) N 0($ lefl $) V 0)$ ThatS $\}$. Each element is a bracketed representation of an analysis. Here the analysis is unique.

An example of a simultaneous Top-Down Bottom-Up analysis

The previous example might give the impression that computing a fixed point of a translucer automatically leads to simulating a top-down context free analysis. However, we shall now see that using the flexibility of manipulating transducers, namely being able to compute the composition and the union of two transducers, allows a context sensitive parsing which is simultancously Top-Down and Bottom-up with the possibility of choosing which kind of rule should be parsed BottomUp.

Suppose one wants to analyze the sentence $s_{2}=$ Max bought a little bit more than five hundred share certificates. Suppose one has the following small functions, each one being specialized in the analysis of an atomic fact (i.e. each function is a lexical rule):

- $f_{1}: w$ a little bit more than $w^{\prime} \longrightarrow w$ (pred a little bit more than pred) $w^{\prime} ; w, w^{\prime} \in A^{*}$
- $\int_{2}{ }^{3}: w$ five hundred $w^{\prime} \longrightarrow w$ (num five hundred num) w^{\prime}
where $w \in A^{*}$ and $w^{\prime} \in A^{*}-\{N U M E R A L\}$
- $\int_{a}: w$ share certificates $w^{\prime} \longrightarrow w$ (cn share certificates cn) w^{\prime} where $w, w^{\prime} \in A^{*}$
- $f_{4}:[\mathrm{P}] w$ bought $w^{\prime}[\mathbf{P}] \longrightarrow[\mathrm{N} w \mathrm{~N}]$ bought $[\mathrm{N}$ $\left.w^{\prime} \mathrm{N}\right]$ where $w, w^{\prime} \in A^{*}$
- $f_{5}: w[\mathrm{~N} \operatorname{Max} \mathrm{~N}] w^{\prime} \rightarrow w \operatorname{Max} w^{\prime} ; w, w^{\prime} \in A^{*}$
- $\int_{6}: w_{1}\left[\mathrm{~N}\right.$ (pred w_{2} pred) (num w_{3} mum) (cn $\left.\left.w_{4} \mathrm{cn}\right) \mathrm{N}\right] w_{5} \longrightarrow w_{1}\left(\mathrm{~N} w_{2} w_{3} w_{1} \mathrm{~N}\right) w_{5}$
where $w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \in A^{*}$
- $f_{7}: w \longrightarrow w ; w \in A^{*}-\left(\operatorname{Dom}\left(f_{1} \cup f_{2} \cup f_{3} \cup f_{4} \cup f_{5}\right)^{4}\right.$

If we precompute the transducer representing the rational transduction $\int=\left(f_{4} \circ f_{3} \circ f_{2} \circ f_{1}\right) \cup\left(f_{5} \circ\right.$ $\left.f_{6}\right) \cup f_{7}$ then the analysis of the sentence is a two-step application of f, namely
$f([\mathrm{P}]$ Max bought a little bit more than five hundred share certificates $[\mathbf{r}])=$
[N Max N] bought [N (pred a little bit more than pred) (num five hundred num) (cin share certificates cm) N]
and

$$
f^{2}([\mathbf{P}] s[\mathrm{P}])=
$$

(N Max N) bought (N a little bit more tham five humdred share certificates N)
which is the analysis of the sentence ${ }^{5}$.

FORMAL DESCRIPTION

The algorithm

Formally, a transducer T is defined by a 6 -uplet (A, Q, i, F, d, δ) where A is a finite alphabet, Q is a finite set of states, $i \in Q$ is the initial state, $r^{\prime} \subset Q$ is the set of terminal states, d the transition function maps $Q \times A$ to the set of subsets of Q and δ the emission function maps $Q \times A \times Q$ to A.

The core of the procedure consists in applying a transducer to a FSA, the algorithm is well known, we give it here for the sake of readability.

```
is_fixed_point \(=\) Apply'Transducer \(\left(A, T_{1}, A_{2}\right)\)
\(1 i=0 ; P[0]=\left(i_{1}, i_{2}\right) ; n=1 ; q=0 ; i_{-}\)- ixed_poinl \(=Y E S ;\)
2 do \{
\(\left.3 \quad\left(x_{1}, x_{2}\right)=P[4]\right)\)
```



```
5 if \(x_{1} \in F_{1}\) and \(x_{2} \in r_{2}\) then \(x \in F\);
```

[^2]

Figure 1: Overview of the analysis of the sample

```
foreach s\inAlph| d
```



```
        i\int}p<n\mathrm{ such that P[p]===(y/1,y2) H.wn
            e=p;
        clseP[e=n-++]=( l/1, 汭);
        add e to d(q, \delta, (x ( , , , x2));
q++;
3} while (q<n);
```



```
1Freturn is_fixed_point;
```

The amalysis algorithm is then the following one:

```
ANAIYSE_l(A,T)
l fin =NO;
2 while fin }\not=YES\mathrm{ do
3 fin = Applylransiucer (A,'I,A);
```


Transducers v.s. Context Free Grammars

It should be pointed out that, given a Context-Free Grammar, it is always possible to build a transducer
such that this mothod applies. In other words, any rondext free prammar can be tramslated into a tramsducer such hat the atgoridhm patse the labgotge do. seribed by this grammar. Moreover, the operation that transforms a Cl'(into its related transducer is itself a rathomal tramsduction. Althongh this camod be devel opped here due to the lack of place, this result cones naturally when looking at the example of section 3.1 .

Moreover the method has much more expressive power than CP(i, in fact computing a fixed point of a rational transduction has the same power as applying a 'Turing Machine (ahthought there might not be any practical interest for that).

THE SECOND ALGORITHM : A DETERMINISTIC DEVICE

Given a transducer representing the grammar there are two different ways of obtaining new parsing programs. The first solution is to build a transducer 'T' equivalent to T ' from the view point of their fixed points,
$T \sim$ fixed-point $^{\prime \prime} T^{\prime \prime}$. Namely $T^{\prime} \sim$ fixed-point $?^{\prime \prime}$ ifl for each $x \in A^{*}, T(x)=x \Leftrightarrow T^{\prime}(x)=x$. For instance, if T is such that for each $x \in A^{*}, T^{n}(x)$ converges then $T^{2} \sim_{\text {fixed-point }} T$. The second approach is to try using a different representation of T or to apply it differently. In this section, we shall give an algorithm illustrating this second approach. The basic idea is to transform the finite-state transducer into a deterministic device called bimachine [1]. We will detail that latter but, basically, a bimachine stands for a left sequential function (i.e deterministic from left to right) composed to a right sequential function (i.e. deterministic from right to left). Such a decomposition always exists.

The interest of this concept appears when one looks at how the algorithm ApplyTransducer performs. In fact the output DAG of this algorithm has a lot of states that lead to nothing, i.e. states that are not coaccessible, thus the PRUNE function (called on line 14 of the ApplyTransducer function) has to remove most of the states (around 90% in our parser of French).

Let us for instance consider the following example: suppose the transducer T_{a} is the one represented ligure 2 and that we want to compute $T_{a}(A)$ where A is the DAG given figure 2.

Figure 2: lefl: initial transducer; right: initial DAG
Following the algorithm described in Apply'Transducer up to line 14 excluded provides the DAG A^{\prime} of figure 3.

Figure 3: left: before pruning; rightafter pruning
The PRUNE function has then to remove 3 of the six states to give the DAG $A^{\prime \prime}$ of figure 3

A way to avoid the overhead of computing unnecessary states is to first apply a left sequential transducer $T_{a n}$, (that is a transducer deterministic in term of its input when read from left to right) given figure 4 and then apply a right sequential transducer $T_{a b}$ (i.e. deterministic in term of its input when read from right to left) given figure 4. We shall call the pair $B_{a}=\left(T_{a a}, T_{a b}\right)$ the bimachine functionally equivalent to T_{a}, i.e. $B_{a} \sim_{f u n c t i o n} T_{a}$. With the same input. A we first obtain $A_{a}=T_{a u}(A)$ of figure 5 and then $A_{b}=$ $A^{\prime \prime}=\operatorname{revcrse}\left(T_{a b}\left(\operatorname{reverse}\left(A_{a}\right)\right)\right)=T(A)=B_{a}(A)$.

Figure 4: left:left sequential function; right:right sequential function

Figure 5: A_{4}

It should be pointed out that both $T_{a a}$ and $T_{a b}$ are deterministic in term of their input, i.e. their left lat bels, which was not the case to T_{a}. Just like for ESA, the fact that it is deterministic implies that it can be applied faster (and sometime much faster) than nondeterministic devices, on the other hand the size of the bimachine might be, in the worst case, exponential in term of the original transducer. The following algorithm formalizes the analysis by mean of a bimachine ${ }^{7}$.

```
\(\operatorname{ANALYSE}, 2\left(A, B=\left(T_{1}, T_{2}\right)\right)\)
sin \(=N O\);
    while fin \(\neq\) YES do \(\{\)
        fin \(=\) ApplyTransducer \(\left(A, T_{1}, A\right)\);
        if \(\sin \neq Y E S\{\)
                reverse(A);
                Apply'Transducer \((A, T 2, A)\);
                reverse(A);
            \(\}\)
    \}
```


IMPLEMENTATION AND RESULTS

The main motivation for this work comes from the linguistic claim that the syntactic rules, roughly the sentence structures, are mostly lexical. The grammar of French we had at our disposal wats so large that mone of the available parsers could handle it.

Although the implemented part of the grammar is still incomplete, it atready describes 2,878 sentential verbs (coming from [6]), that is verbs that can take a sentence as argument, leading to 201,723 lexical rules"; 1,359 intransitive verbs [2] leading to 3,153 lexical rules; 2,109 transitive verbs [3] Ieading to 9,785 lexical rules; 2,920 frozen expression (coming from [7]) leading to 9,342 lexical rules and 1,213 partly frozen adverbials leading to 5,032 lexical rules. Thus, the grammar describes 10,479 entries and 229,035 lexical rules. This

[^3]grammar is represented by one transducer of 13,408 states and 47,119 transilions stored in $908 k 1$.
'The following input:
Jean est agace par le fait que som ami , dans la crainte d'être pomi par ses parents, ne leme ait pas avoué ses manvaises notes.
is parsed in the following way in $0.95 s^{9}$ with a program implementing the algorithm $\triangle N A L Y S F_{i}$ -
(N Jean)N est \& Vppo agacé par
lefait Qup le fait (QuF que (N son
n ami ami) N, (ADV dans la crainte
de (VoW No etre ${ }^{(} V_{\mathrm{P}} \mathrm{p} 0$ puni par (N
ses n parent parents) N VoW) ADV)
, leur \#Nhmm2 avoir ait (op \#ne-pas
op) $\mathbb{E} V_{p p o}$ avoué (N ses matuvaises n
note motes) N QuI)
'I'ypical time spending varies from 0.05 second for a ten words sentence to 5 seconds for a hundred words sentence under the current implententation. A key point about this method is that the time spending; is quite insensitive to the size of the grammar, this is crucial for scaling up the program to much larger grammars. For instance the preceding example is analyzed in 0.93 s (instead of 0.95 s) for a gramman of half its size (around 100,000 lexical rules).

The coverage of this grammar still has to be extended, not all data we had at our disposal are yet encoded in the transducer (around 50% remain). Thus, given an arbitrary text, whereas most of the simple short sentences (five to lifteen words) are analyzed, the probability of having all lexical descriptions for longer sentences decreases rapidly. However, since all the lexical rules have been checked by hand one by one, the accuracy of the amalysis is higher than what can be expected with less lexicalized grammars. This means two things:

- whenever the analysis is found and unless the sentence is syntachically ambiguons, the analysis is unique,
- incorrect sentences are systematically rejected. 'lhus the set of sentence defined by the parse: is a subset of the set of correct sentences. 'This property is very difficult to athieve thromph nom or less lexicalized grammars.

CONCLUSION

We have introduced two different parsing atgorithms based on Finite-State 'Transducers illustrating a method capable of handling extremely large grammars very efficiently. We have shown how Finite-State Transducers can handle not only finite state grammars but also hierarchical descriptions expressed by contextfree based formalisms.

[^4]The method has been successfully implemented for a French Lexicon-(irammar consishing of 200,000 lexical rules. The use of Pinite-State 'lransducers yields a typical response time of a fractions of a second.

We have also introduced a bidirectional parsing, ab gorithm which further improves response time.

These investigations have, we believe, important implications for the implementation of large grammars. Moreover, it should be possible to improve these results appreciably by exploring different representations and different decompositions of the grammar transducer with tools from the theory of Finite-State 'Transderces.

References

[1] Berstel, Jean, 1979. Transductions and ContextPree Languages. Stutugart, B.(: Teubner 277p.
[2] Boons, Jean-Panl; Alain (inillet; Ohristian Leclere 1976. La structure des phrases simples on francuis. I Constructions intranstives. Cenceve: Droz:377p.
[:3] Boons, Jean. Pand; Alain Caillet; Christian Leclere 1976 . La stow ture des phrases simples en jrangats. II Construclions bansilives. 'Techamal Report LADM. Universite Paris 7. Paris.
[4] (lemenceau, David; Emmantel Roche, 1993. Enhancing a morphological dictionary with two-level rules. FACL'93, Procedings of the Conference. Utrecht.
[5] Courtois, Blandine, 1989. DHLAS : Diclionnabe Slectronique du LADI, pour les mols simples du francais, Rappore technicue du IADJ, Paris: Universite l'aris 7.
[6] Cross, Maurice, 1975. Mélhodes en synlaxe, régime des constructions complétives. Paris: Hermat, 115 p .
[7] Ciross, Maurice, 1986. Grammaire transformationnelle du fronças: 3) Syntaxe de l'uduerbe. Paris: Cantilene, 660p.
[8] Karthunen, Lauri; Ronald M. Kaplan; Amie Zamen 1992. Two-Lencl Morphology wilh Composi. tion. (OHN (:92, brocedings of the conference. Nantes.
[9] Peireim, lemando (. N., Rebecea N. Wright, 1991. Jinite-Stale Approximation of Phrase Structure Grammars. 29th Anmal Meeting of the A SH, Proceedings of the conference. University of California, Berkeley.
[10] Roche, limmanuel, 1993. Analyse Syntaxique Transformationnelle du Prançais par Transducteurs et hexique-(orammaire. Phl) dissertation, Universilé Paris 7, Paris.
[11] 'lapanainen, Pasi; Atro Voutilainen, 199's. Ambiguty resolution in a reductionislic parser. Sixat Conference of the himopean (hapter of the \triangle Ch, Procedings of the Conference. Utrecht, April 1993.

[^0]: *Supported by a DRET-Fcole Polytechnique contract, this work was done at the Institut Gaspard Monge and at the LADL

[^1]: 'By lexical rule we basically mean a sentence structure, as for example Nhum say to Nham that S, where Nhum and S respectively stand for hmman nominal and sentence Thus the rules we deal with can roughly be seen as sentence structures where at least one element is lexical. This will be developed in section.
 ${ }^{2}$ An extensive description of this concept can be found in [1].

[^2]: ${ }^{3}$ Here f_{2} simmates a context sensitive analysis because of $w^{\prime} \in A^{*}-\{N U M E R A L\}$
 ${ }^{4}$ Dom (f) stands for the domain of f.
 ${ }^{5}$ Note that it is always possible to keep more information along the analysis and to keep track, for instance, of the position of the determiners.

[^3]: ${ }^{7}$ The $\operatorname{PS} A$ reverse (A) is A where the transitions have been reversed and the initial and final states exchanged.
 ${ }^{8}$ For a verb like étonner the set of rules include $N / h a m n_{0}$ élonner $N h u m_{1}$ as well as $N h u m_{0}$ avoir étonné $N h u m_{1}$, Nhum ${ }_{0}$ être étonné par $N h_{1} m_{1}$ or hlum $_{0}$ s'élonne auprès de Nhum $_{1}$ de ce $Q_{u} \mathrm{~F}_{2}$ which gives an idea of how these complexe verbs generate an average of 100 rules, or sentence structures, even if no embbeding is involved at this stage.

[^4]: ${ }^{9}$ On an HP720, this is the unique parsing, in wher words the input is found not to be ambignons. The time spending; includes a morphological inalysis by mean of a dictionary look-up. This inflected form dictionary contains 600,000 entries [5].

