
An ENcient Parser Gener;ttor fl)r Nat;rea,1 Language

M a s a y u k i ISI t l I* l (a z u h i s a O H T A Iliro~dd S A I T O
F u j i t s u Inc. A p p l e Technology, Inc. Keio U n i v e r s i t y

m a s a y u k i ~ . n a k . m a t h . k e i o . a c . j p k -oh ta@kol)o .apple .co ln h x s ~ n a k . m a t h . k e i o . a c . j p

A b s t r a c t

We. have developed a parser generator for natu-
ral language i)rocessing. The generator named
"NLyace" accepts g rammar rules written in the
Yacc format . NLyacc, unlike Yacc, can handle
a rb i t ra ry context-free grammars using the gen-
eralized Lll. parsing Mgorithm. The parser pro-
duced by NLyacc elliciently parses given sen-
tences and executes semantic actions. NLyacc,
which is a free and sharable software, runs on
UNIX workstat ions and personal computers.

1 P a r s e r G e n e r a t o r for N L P

Yacc[4] was designed for unambiguous progl'anl-
ming languages. Thus, Yacc cat) not elegantly
handle a script language with a natural lan-
guage flavor, i.e. Yacc forces a g rammar writer
to use tricks for handling ambiguities. To rem-
edy this s i tuat ion we have developed Nl,yacc
which can handle a rb i t ra ry context-fi 'ee gr;tnl-
mars t and allows a g rammar writer to write
natura l rules and semantic actions. Although
there are several parsing algorithms for a gen-
eral context-fi 'ee language, such as ATN, CYI(,
and gar ley, "the generalized Eli. parsing algo-
ri thm [2]" would be the best in terms of its
compat ibi l i ty with Yacc and its efficiency.

An ambiguous g rammar causes a conflict in
the parsing table, a s ta te which has more than
one action in an entry. The. generalized LR
parsing proceeds exactly tit(.' same way as the
stm~dard one except when it encounters a con-
flict. The s tandard determinist ic LR parser
chooses only one action in this si tuation. The
generalized I,R parser, on the other hand, per-
forms all the actions in the mult iple entry by

*This work was done while lshil stayed at l)ept, of
Computer Science, Keio University, Japan.

1To be exact, NLyacc ca,t not handle ;t circular rule
like "A --+ A".

spli t t ing the parse stack fin' each action. The
parser merges the divided sta.ck br;tnches, only
when they have the same top state. This merger
operation is impor tan t for efficiency. As a re-
suit, the s tacl(becomes a. gra.plt instead of a
simph,, linear s ta te sequence.

There is already a generalized LR parser
for natural language processing developed at
Carnegie Mellon Universi ty [3]. Nl,yacc diflhrs
fi'om CMU's system in the following points .

• NLyacc is writ ten in C, while CMU's in
Lisp.

• CMU's cannot handh', c rules, while NI,y-
ace does. c rules are handful for writing
natural rules.

The way to execute semantic actions dif-
fers. CMU's evaluates an Ll?(]-like se-
mantic action a t tached to each rule when
reduce action is performed on that rule.
NLyacc executes a semantic action in two
levels; one is perfin'med during parsing
for syntact ic control and the. other is per-
formed onto each successfifl final p;~rse. We
will desc.ribe the details of NLyacc 's ap-
proach in the next section.

NLyacc is , ,pper-compat ible to Yacc. NLy-
acc consists of three modules; a reader, a pars-
ing table constructor, and a drive routine for
the gene.ralized LR parsing. The reader accepts
grammar ruh;s in the Yacc format. The table
constructor produces a generalized LR. parsing
t;tble instead of the s tandard I,R. parsing table.
We describe the de.tails of the parser in the next
sectiou.

417

2 E x e c u t i o n o f S e m a n t i c A c -
t i o n s

NLyacc differs from Yacc mainly in the exe-
cution process of semantic actions attached to
each grammar rule. Namely, Yacc evaluates a
semantic action a.q it parses the input. We ex-
amine if this evaluation mechanism is suitable
for the generalized LR. parsing here. If we can
assume that there is only one final parse, the
parser can ewtluate semantic actions when only
one branch exists on top of the stack. Although
having only one final parse is often the cruse in
practical applications, the constraint of being
unambiguous is too strong in generM.

2.1 H a n d l i n g S i d e E f f e c t s

Next, we examine what would happen if seman-
tic actions are executed during parsing. When
a reduce action is performed, the parser eval-
uates the action attached to the current rule.
As described in the previous section, the parse
stack grows in a graph form. Thus, when the
action contains side effects like an assignment
operation to a variable shared by different ac-
tions, that side effect must not propagate to tile
other paths in the graph.

If an environment, which is a set of v,zdue of
variables, is prepared to each path of the parse
branches, such side effect can be encapsulated.
When a stack splits, a copy of the environment
should be created for each branch. When the
parse branches are merged, however, each en-
vironment can not be merged. Instead, the
merged state must have all the environments.
Thus, the number of environments grows expo-
nentially as parsing proceeds. Therefore this
approach decreases the parsing e[Iiciency dras-
tically. Also this high cost operation would be
vain when the parse fails in the middle. To
sum it up, although this approach retains com-
patibility with Yacc, it sacrifices efficiency too
much.

2 .2 T w o K i n d s o f S e m a n t i c A c t i o n s

We, therefore, take another approach to han-
dling semantic actions in NLyacc. Namely, the
parser just keeps a list of actions to be exe-
cuted, and performs all the actions after pars-
ing is done. This method can avoid the problem

418

above during parsing. After parsing is done,
the semantic action evMuator performs the task
as it traces all the history paths one by one.
This approach retains parsing efficiency and can
avoid the execution of useless semantic actions.
A drawback of this approach is that semantic
actions can not control the syntactic parsing,
because actions are not evaluated until tile pars-
ing is clone. To compensate the cons above, we
have introduced a new semantic action enclosed
with [] to enable a user to discard semantically
incorrect parses in the middle of parsing.

Namely, there are two types of semantic ac-
tions:

An action enclosed with [] is executed
during parsing .just as done in Yacc. If
' r e tu rn 0;' is execute<t in the action, the
partial parse having invoked this action
fails and is disca.rded.

* An action enclosed with {) is executed al-
ter the syntactic parsing.

In the example below, the bracketed action
checks if the subtraction result is negative, and,
if true, discar<ts its partial parse.

number : number '-' number

[$$ = $1-33; i f (3 5 < 0) r e t u r n 0;]
{ $$ = 31-33; pr in t (..... , 31, $3, $$); }

2 .3 K e e p i n g P a r s e H i s t o r y

Our generalized Lll. parsing algorithm is differ-
ent from tile original one [2] in that ore' algo-
rithm keeps a history of parse actions to exe-
cute semantic actions after the syntactle pars-
ing. The original algorithm uses a packe<l forest
representation for the stack, whereas our algo-
rithm uses a list representation.

The algorithm of keeping the parse history is
shown as follows.

1) If the next action is " s h i f t s", then make
< s > as the history, where < s > is a list of
only one element s.

2) If the next action is " r e d u c e r : A -+ B I B 2

"".11~", then make append(lh , l I 2 , ..., I I n , l - r])
as the history, where H i is a history of B i , r

is the rule number of production " A -+ 1~1132

• "1] , / ' , an<l the function 'append ' concatenates
multiple lists and returns the result.

Now we describe how to execute semantic ac-
tions using the parse history. First , before start-
ing to parse, the parser ca.lls "yyinit" function
to initialize wtriables in the semantic actions.

Our system requires the. user to define "yyinit"
to set init ial values to the variables. Next, the
parser s tar ts parsing and l)erforms a shift ac-
tion or a reduce action according to the parse
history and evaluates the apl)ropriate semantic
actions.

2 .4 E f f i c i e n t M e m o r y M a n a g e m e n t

We use a list s t ructure to implement the. parse
stack, because the stack becomes a complex
grN)h s t ructure as described l)reviously. Be-
cause the parser discards fa.iled branches of the
stack, the system rechfims the memory allo-
cated for the discarded parses using the "mark
and sweep garhage collection algorithm [1]" to
use memory efficiently. 'Phis garl)age collection
is triggered only when the memory is exhausted
in our current implementat ion.

3 Distribution

P o r t a b i l i t y
Currently, NLyacc runs on UNIX worksta.-

tions and DOS personal computers.

D e b u g g i n g G r a m m a r s
For g rammar debugging, NLyacc provides

l)arse trace information such as a history of
shif t / reduce actions, execution information of
' [] act ions. '

When NLya.cc encounters an error state,
"yyerror" function is called just a.s in Yacc.

D i s t r i b u t i o n
NLyacc is dis t r ibuted through e-mail (ple:tse

contact n l y a c c ~ n a k . m a t h . k e i o . a c . j p) . I)is-
t r ibut ion package includes all the source codes,
a manual , and some sample grammars.

R e f e r e n c e s

[1] J. McCarthy. Recursive flmctions of symbolic
expressions and their computation by machine,
part 1. Communications of the A CM, 3(4), April
1960.

[2] M. Tomita. EJficieut Parsing for Nalural Lan-
guage. Kluwer Academic P.blishers, l~oston,
MA, 1 9 8 5 .

[3] M. Tomita and J. G. Carbonell. The universal
parser architecture for knowledge-based machine
translation. In Proceedings, lOlh hdcvaational
Joint Um~ference on Arlificial IMelligence (IJ-
CAI), Milan, A,gust 1987.

[J] y a c c - yet another compiler-compiler: l)arsing
l)rogram generator, in UNLV manual.

Appendix - Sample Runs -

A sa,mple grammar helow covers a sm~fll set of
l'~nglish sentences. The. parser I)ro(h:,ees syntac-
tic trees o f a g i v e n sentence. Agreement check
is done by the semantic actions.

/* grml~ar.y */
%{
#include <stdio.h>
#include <stdlib.h>
#include "gran~ar ,h"
#include "proto.h"
%}

%token NOUN VERB DET PREP

%%

SS : S

S : NP VP

{ p r _ t r e e ($ 1) ; }

[return checkl($1, $2);]

{ $$ = mk_tree2("S", $1, $2); }

S : S PP { $5

NP : NOUN [$$
{ $$

NP : DET NOUN [$$

{ 55

NP : NP PP [55
{ $$

PP : PREP NP { $$

VP : VERB NP [$5
{ $$

%%

FILE* yyin;
extern int yydebug;

int main(argc, argv)

int argc;
char *argv[];

{

int result;

= mk_tree2("S", $1, $2); }

: $1;]
: mk treel("NP", $I); }

= $2; return check2($1, $2);]
= mk tree2("NP", $I , $2); }

= $1 ;]

= mk_t ree2("NP" , $1, 52); }

= mk_tree2("PP", $1, 52); }

= $1;]
= mk_%ree2("VP", $1, $2); }

yydebug = I;

419

yyin = stdin;

read_dictionary("dict");

yyinitialize_heap();

result = yyparse();
printf("Result = Zd\n", result);

yyfree_heap();

return O;

void yyinit()
{}

int yyerror(message)
char* message;

{
fprintf(stderr, "%s\n", message);

e x i t (l) ;
}

int checkl(seml, sem2)
SEMPTR seml, sem2;

{
return (seml->seigen & sem2->seigen);

}

int check2(seml, sem2)

SEMPTR seml, sem2;
{

return (seml->seigen & sem2->seigen);
}

/* grammar.h */
#define SPELLING_SIZE 32

#define HINSBI_SIZE 32
#define BUFFER_SIZE 64

typedef s t r u c t word
{

struct word *next;

char *spelling;
int hinshi; /* parts of speech */
int seigen; /* constraints */

} WORD;

typedef enum tag
{

TLEAF, TNDDE

} TAG;

typedef struct node
{

TAG tag;

union {
WORD* _lea~;

struct {

char *_pos;
struct node *_left;
struct node * right;

420

} _pair;
} contents;

} NODE, *NODEPTR;

#define leaf contents._leaf
#define pos contents._pair._pos
#define left contents._pair, left

#define right contents, pair._right

typedef WORD SEM, *SEMPTR;

#define YYSTYPE NODEPTR

#define YYSEMTYPE SEMPTR

/* dict */
I:NOUN:OI
You:NOUN:22
you:NOUN:22
He:NOUN:04
he:NOUN:04

She:NOUN:04

she:NOUN:04
It:NOUN:04

it:NOUN:04
We:NOUN:IO

we:NOUN:IO

They:NOUN:40
they:NOUN:40

see:VERB:73
sees:VERB:04

a:DET:07

the:DET:77

with:PREP:O0

telescope:NOUN:07
man:NOUN:07

Sample Runs

sentence no.l
}[e sees a man with a telescope "D
parse 1
S:(S:(NP:(NOUN:He)

VP:(VERB:sees
NP:(DET:a NOUN:man)))

PP:(PREP:with NP:(DET:a
NOUN:telescope)))

parse 2
S:(NP:(NOUN:He)

VP:(VERB:sees

NP:(NP:(DET:a NOUN:man)

PP:(PREP:with
NP:(DET:a NOUN:telescope)))))

sentence no.2

He see a man "D

The semantic actions prune syntactically-
sound but semantically-incorrect parses.

