PARSING AGGLUTINATIVE WORD STRUCTURES AND ITS
 APPLICATION TO SPELLING CHECKING FOR TURKISH

by

AYSIN SOIAK and KFMAL OFIAZER
Department of Computer Eingineering and Information Sciences
Bilkent University
Bilkent. Ankara, 06593 Türkiye

Abstract

Most of the research on parsing matnal languges has been concerned with linglish, or with other languages morphologically similar to English. Parsing agghtinative word structures has attracted relatively little attention nost probably because agglutinative languages contain word structures of considerable complexity, and parsing words in such languages requires morphological analysis techniques. In this paper, we present the design and implementation of a morphological root-driven parser for 'Turkish word structures which has been incorporated into a spelling checking kepel for on-lime turkish text. The agglutimative nature of the langage and the resultimg complex word formations, varous phometic hasmony rules and subtle exceptions present certain difficulties not usnally encountered in the spelling checking of languages like Fnglish and make this a very challenging problem.

1. Introduction

Norphological classification of natural languages arcotding to their word structures phaces languages like Turkish, Fimish, and Humarian to a class called "agglutimative languages". In such langhages, words are combination of several morphemes. There is a root and several suffixes are contbined to this root in order to modify or extent its meaning. What characterizes agglutinative languages is that stem formation by affixation to previously derived stems is extremely prosductive. A given stem, even though itself quite complex, can generally serve as hasis for even more complex words. Consequently, agglutmative languages contain words of considerable complexity, and parsing such languages necessitates a thomogh morphological analysis.
Morphological parsing has attracted relatively little attention in computational linguistics. The reason is that nearly all patsing researeh has been conceneed with English, or with languages morphologically simibar to English. Since in such languages words contain only a few mumber of aflixts, or mone ath at allmost atl of the parsing models for them consider recognizing those affixes as beeng trivial. and thets do not reguire a morphological analysis. In agslutinative langnages, words condatu dien indication of morpheme bommaties which are in gemeal deperndent on the morphological and phonological context. A morphological parser requires a morphophonological eomponent. which mediates between the surface form of a morpheme as cncountered in the input text and the lexical form in which the morpheme is stored in the morpheme inventory, ic., a means of recognizing variant forms of mompener as the same, and a morphotactic component which specilies which contbinations of morphemes ate permitued $[\vec{i}]$.

Worphological parsing algorithms may be divided into lwo classes as affer strippong and mot-drumenand.
ysis methods. Both upproaches have been used from very early on in the history of morphological parsing. for instance, Dackard's parser for ancient (rreek [15]. and Brodda and Karlsson's for Fimnish [3] used affix stripping. Sagvalt, on the other hand, devised a rootdriven morphological analyoer for Russian [17]. In addition, other root-driven morphological parsers for the agglutinative languges Quechna [9, 10], Finnish [11], and 'lurkish [[i] were developed independently in the early 1980 's. All of these three parsers proceed from left to right. Roots are sought in the lexicon that match initial substrings of the word, and the granmatical category of the root determines what class of suffixes may follow. When a suffix in the permitted class is found to match a further substring of the word, grammatical information in the lexical entry for that suffix determines once again what class of suffixes may follow. If the end of the word can be: reached by iteration of this process. and if the last sulfix amalyed is one which may end a word, the parse is successful [7].
Another left-to-right parsing algorithon for antomatio: analysis of Turkish words was proposed and applied by Koksal in his Ph.D. thesis [12]. His algorithm called "Identified Maximum Match (IMM) Al" gorithm". tries to find the maximum length substring: Which is present in at root dictionary, from the left of the word If it solation is ohtained. i.e., the root morpheme is identified, the remaining part of the word is considered as the search element. This part is looked for in the suflix mopheme forms dictionary and the mophemes are identified one by one. The process stops when there is no remaining part. However in some cases, attbough a solution is ohtained further consistency analysis proves that this solution is unt the correct one. In such cases the previous psendosolution is reduced by one character and all the seareh procedure is intiated once more.

These approaches to morphological parsing of 'Turk
ish words have the following shortcoming: They do not consider the fact that in Turkish, words contain tremendous amount of semantic information that has to be taken into account. In these parsers, it is only the grammatical category of the stem that determine the suffixes that may follow. However, most of the suffixes in Turkish, especially the derivational ones, can be attached only to a limited number of roots or steme mostly due to semantic reasons.

Another shortcoming of the previous parsers for Turkish is that they allow the terative usage of derivational suffixes. Although, Köksal [12], prevents the consecutive usage of the same morpheme twice, be still parses the word GÖZIÜKC'ÜLÜKC,ULÜK correctly, so do llankamer [7]. It is trom that some Turkish suffixes call form an iterative loop, but usually the number of iteration is not too high. The above word can be parsed correctly up to the point GOZZLïk(ÜLU゙K (the occupation of oculists) but the
 ('ULU E are meaningless, and therefore some control mechanisms using semantic information should be included within the parser to avoid parsing such meaningless words as if they were correct.

One of the most important application areas of parsing words in matural languages is checking their spelings. Although many spelling checkers for English and some other languages have been developed. so far no such tool was present for Turkish. The reason for this is probably the conplexity of patsing problem for Turkish as explained above. Wrong ordering of morphemes and errors in vowel or consonant. harmoties may cause the wrong spelling of Turkish words. (onseguently. in order to check the spetling of a Turkish word, it is necessary to make signilicant phonological and morphological analyses.
This paper describes a morphological root-driven parser descloped for Turkish language and its application to spelling checking. A major portion of this work depends on a detailed and carefal research on sone features of Turkisl that make the parsing problem for this language espectally hard and interesting The following section presents an owrew of certann morphophonemic and morphological aspects of the Turkish language which are espectally mevant to the problem under consideration (for details see [20$]$)

2. The Turkish Language

'lurkish is an agglutinative language that belongs to a gromp of languages known as Altaic languages. For an agghtinative langage the conept of worl is much larger than the set of vocabulary items. Word structures can grow to be melatively long by addition
of suffixes and sometimes contain an amount of semantic information equivalent to a complete sentence in another language. A popular example of complex Turkish word formation is CEKOSIOVAKYALILASTTIRAMADIKLARIMIZDANMISSINIZ whose equivalent in English is "(it. is speculated that) you had been one of those whom we could not convert to a Czechoslovakian." In this example, one word in Turkish corresponds to a full sentence in English. Fach suffix has a certain function and modifies the semantic information in the stem preceding it. In our example, the root morpheme CEKOSLOVAKYA is the name of the country Czechoslovakit and the suffix -LI converts the meaning into Czechoslovakian, while the following suffix -LA.S makes a verb from the previous stem meaning to become a Cuechoslovakian, ${ }^{1}$ and so on.

2.1. Turkish Phonetic Model

Being phonetic, the Turkish language can be adapted to a number of different alphabets. In the past, various alphabets have been used to transcribe Turkish, e.g., Arabic. Since 1928 , Latin characters have been used. The Turkish alphabet consists of 29 letters of which 8 (A, E, I, I, O, Ö, U, \ddot{U}) are vowels, and 21 ($B, C, C, D, F, G, G, H, J, K, L, M, N, P, R, S, S$, ' $\mathrm{I}, \mathrm{V}, \mathrm{Y}, \mathrm{Z}$) arc consonants.

Turkish word formation uses a number of phonetic harmony rules. Vowels and consouants change in certain ways when a suffix is appended to a root, so that such larmony constraints are not violated.

2.1.1. Vowel Change in Suffixes

Almost all suffixes in Turkish use one of two basic vowets and their allophones. We have denoted these sets of allophones with braces around the main vowels A and I, as $\{A\}$ and $\{I\}$. The allophones of $\{A\}$ are A and E , where $\{\mathrm{J}\}$ represents $\mathrm{I}, \mathrm{I}, \mathrm{U}$, or $\ddot{\mathrm{I}}$. The vowels O and O are only used in root morphemes (especially in the first syllable) of Turkish words.?

The vowel harmony rules require that vowels in a suffix change according to certain rules when they are affixed to a stem. The first vowel in the suffix changes according to the last vowel of the stem. Succeeding vowels in the suffix change according to the vowel preceding it. If we denote the preceding vowel (be it in the stem or in the suffix) by w then $\{A\}$ is resolved as A if r is A, I. O. or U, otherwise it is resolved as \mathbf{F}. On the other hand. $\{I\}$ is resolved as I if r is A or I, as lif t is F , or $\dot{\mathrm{l}}$. as E if v is O or V , and as $\ddot{\mathrm{C}}$ if v is \ddot{O} or U'. For example the word "YAPMAYACAKTINIZ" can be broken into suffixes as:

$$
\mathrm{YAP} / \mathrm{M}\{A\} /[\mathrm{Y}]^{3}\{\mathrm{~A}\} \mathrm{C}\{\mathrm{~A}\}\{\mathrm{K}\}^{4} /\{\mathrm{D}\}^{5}\{\mathrm{I}\} / \mathrm{N}\{\mathrm{I}\} Z
$$

[^0]It can be seen that the vowels in the corred spelling of the word obey the rules above, while a spelling like "YAPMAYACEK'IINIZ" violates the harmony rules becanse an $\{\lambda\}$ in the suffix can not resolve to an K as the preceding vowel is an A. It should be mentioned in passing that there are also some suffixes, such as KNN, whose vowels never change.

2.1.2. Consonant Harmony

Amother basic aspect of Furkish phonology is consonam harmony. It is based on the classification of 'turkish consonants into two main groups, voiceless and poied. The voiceless consomants are (\because, F, I. II, S. K. I', S. The remaning consonants are voiced. Interested readers can find the complete list of consonant harmony rules in hoksal [12]. and Solak [20]. To give an example, one of the rules says that if a sulfix begins with one of the consomants D. (S, (i,
 voiceless consonant is present as the finat phoneme of the previous morpheme, eg.. Y(OLIDA (on road). but C(AK工A (on plame).
Sone morphemes ate aflixed with the insertion of either N. S. S. Y when two vowels happen to follow each other (e.g. BABCESi (his/her garden). BAIICEYi (accusative of garden). IKISBR (1wo each), or when there is another morpheme following (e.g. BALICUSINI)E (in his/her garden), or in context of some prououns (eg., BUNA (to this), KENDINDEN (from yourself)) and the promomial suffix - ki (e.g. SbNiNRIXI (accushtive of yoursh). lu our example abowe the future temse suffix (1] $\{A\}(\{A\}\{\mathrm{F}\}$ comes alter the stem YNPMA and sime the last phoneme is a vowe Y is inserted.

2.1.3. Deformation of Roots

Nombally Turkish roots are not flexed. Howerer. there are some cases where some phomentes are changed by assimilation or varions other deformations [12]. An exceptional case related to the flexion of roots is observed in personal pronoms BEN (I) and
 (to you) respectively. These ate individual cases and rau be lemated as exceptions.
A more sestematic eflipsis occurs when the suffix $\{1\}$ OOR comes after the verbal roots and steme meding with the phomethe $\{\lambda\}$. In shelt cases, the wite fowel at the end of the stem in narrowed. e.g.. Yap - CADIYOR (s/he/in is cloing [il]). but ARA ARIYOR (s/he/it is searching).
Another root deformation occurs as a vowel ellipsis. When a suffix begimulng with a vowe comes after sonn mouns, generally designating parts of the human bods. which has a vowel $\{1\}$ in its: last syllable. this vowel drops r.g. BCRON (nose) - - BERRNDM (my nose). Similarly: when the passiveness suffix $\{I\} L$ is affixed to some werlse whose last vowel is $\{I\}$, this rowed also drops e.g. (ACillalAK (to call) (Acimadali (to be called). Other root deforma-
tions and their exceptions can be found in Solak [20].

2.2. 'Turkish morphology

Turkish roots can be classified into two main classes: nommal and verbal. The verbal class comprises the verhs, while nominal class comprises nouns, pronouns and adjectives, etc. The suffixes that can be received by either of these groups are different, i.e., a suffix which can be affixed to a nominal root can not be aflixed to a verbal root with the same semantic function.

Turkish suffixes can be classified as derivalional and conjugational. Derivational suffixes change the meaning and sometimes the class of the stems they are aflixed. while a conjugated verb or noun remains as such after the affixation. Conjugational suffixes can bee affixed to all of the roots in the class that they belong. On the other hand, the number of roots that each derivational suffix can be affixed changes. The nominal model

The simplified models for nommal and verbal grammars can be given as follows: ${ }^{3}$

The nominal model:

nominal root + pharal suflix + possessive suffix + case suffix + relative suffix

The verbal model:

verbal root + voice suffixes + megation suffix + compound verb suffix + main tense suffix + question suffix + second tense suflix + person suffix

3. Implementation

We have implemented a root-driven morphological amalyaer for lurkish and used it as a spelling checking kernel that ean be integrated to diflerent applications on a variety of platiforms.

The program takes a list of Thrkish words as imput, and then chects them one by one in the order they appear. If the spelling of an input word is incorrect. it is out.put as misspelled. Fach word is amalyzed individually with no attention to the semanties or to the context. If a word is spelled cormetty but is the wrong word in the context. we have no intention for and way of flagging it as erroneous. Thus, as in all other spelling programs, the text is examined with respert to words, not with respect to sentences. In addition, we do not yet give any suggestion about the most likely correet words after detecting a misspetled word. i.e., speling correction is not done. Word analystis is hatded in fonr step as syllabification check, roon detemmation, norphophonemic check, and morphological analysis. During these steps a dictionary of Turkish root words, and a set of rules for Turkish syllable structure morphophonemics. and morphology are used concurrently. All these steps will be explained in the following sections, after a

[^1]brief information on the dictionary used in this implementation.

3.1. Dictionary

The dictionary is based on the Turkish Writing Cuide [23] as the source. Some words in the dictionary have to be marked as having certain semantic and structural properties such as being a verbal root or a nominal root, being a proper noun, not obeying to vowel harmony rules, deforming under certain conditions. and so onl. For example, the word BCIRUN (nose) have to be marked as being a nominal root, and deforming by vowel ellipsis. For this reason, for each word in the dictionary a series of flags representing certain properties of that word are held. Thus each entry of the dictionary contains a word in Turkish aud a series of flags showing certain properties of that. word.
Nearly 23.500 words mach having \bar{i} Ietters on the average, are listed in our current dictionary, Il flags per word ${ }^{-}$have been used so far, but later it may be necessary to use more. Because of this, two long integers (whose bits represent flags. for a total of 64 flags) are assigned for every word.

3.2. Syllabification Check

Analyzing all the words in Thrkish Writing Guide [2:3] and all the suffixes in 'lurkish [1, 8] we have constructed a regular expression and a corresponding finite state antomaton for validating if a word matehes the syllable structure rules of Turkish [18]. This regnatar expression is used as a heuristic in our spelling checker. The input word is first processed with the regular expression. It is reported as misspelled if its syllable structure can not be matched with this expression, i.e. the phonemes of the word do not form valid sequences according to Turkish syllabie structures. On the other hand, if it can be matched, it is further analyzed as it may still be a non-Turkish or a misspelled word.
With the help of the syllabification check, most of the typographical errors can be detected. For example. if the word YAPMAK (to make) were typed as YPMAK or YAPMKA, the word would not be mateded by the expression and its spelling would be reported incorrect. On the other hand, if it were written as CAPMEK, where a vowel harmony eror is made, it would pass the syliabification check. but would be reprorted as misspelled during morphophonemic checks.

3.3. Root Determination

Before analyzing the morphophonemic and morphological structures of a Turkish word. the root has to be detemined. If the word passes the syllabification check. its root is searched in the dictionary using a maxinal match algorithm. In this algorithm, first
the whole word is searched in the dictionary. If it is found then the word has no suffixes and therefore its spelling is correct. Otherwise, we remove a letter from the right and search the resulting substring. We continue this by removing letters from the right until we find a root. If no root can be found although the first letter of the word is reached, the word is reported as misspelled.
The maximum length substring of the word that is present in the dictionary is not always its root. If further analyses show that the word is misspelled, a new root is searched in the dictionary, this time removing letters from the end of the previous root. If a new root can be found the same operations are repeated, otherwise the word is reported as misspelled.
Root determination presents some difficulties when the root of the word is deformed. For the root words which have to be deformed during certain agglutinations, a flag indicating that property is set in the dictionary. For example, the root of the word SEHRE (to the city) must be found as SEHIR (city). In order to determine it correctly, when the substring SEHR is not found in the dictionary. considering that it may be a deformed root by vowel ellipsis, the vowel İ is inserted between the consonants $I I$ and R, and the word SEHIR is searched in the dictionary. When it is found, the flag corresponding to vowel ellipsis is checked. Since it is set for this word, the root of the word SPHRE is determined as SEIIIR, and remaining analyses are contimued. If that word were written as SEHIRE, we should report it as incorrect although SBEHIR + dative case suffix form looks correct. For all other root deformations, the real root of the word can be found by making such checks and some necessary changes (see [20]).

For sone roots both of the forms above are valid. For example, both METNI (accusative of text.) and METINI (accusative of strong) are correct although the root of both words is METIN (text, strong) be(ause this word can be used in two different meanings.

3.4. Morphophonemic Check

'Turkisi words obey vowel and consonant harmony rules during agglutination (see sections 3.2.1 and 3.2 .2). The vowel harmony check may be done just after the root determination, but other morphophonemic checks should be done during morphological analysis.
After the root of the word is found, the rest of the word is considered as its suffixes. The first vowel in the suffixes part must be in harmony with the last vowel of the root, while the succeeding vowels must be in havmony with the vowel preceding them. Since there are some suflixes, such as -KEN, whose vowels never change. when a disharmony is found, we check whether it is the result of such a suffix (e.g., rinARKEN (white it is burning)).

[^2]Some words of foreign origin de not obey vowel harmony mules during agglutination (e.g., KONTROL, (coutrol)). Hefore the wowel harmony checks are done, the llag corresponding to that property must the checked. If it is set for the root of the word. the vowel harmony check must be applied inversely. Thus, the first vowel in the sullixes part must be in disharmony with the last vowel of the root. (e.g. KONTROLLER (controls)). As mother interesting case, some roots that may be used in two meanings. i.e. the homonyms, obey vowel harmony rules when they are used with a certain meaning, while they do not obey them when they are used in the other meaning. For example, both SOLA (to the left, and SOLE, (to the note sol) pass the vowel harmony check since their root SOI, has wo meanings as "left" and "musical note." ${ }^{8}$

The sudfixes mast be determined before the consonant harmony checks are done. Because of this. these checks are done during morphologicat analysis. after wallos sulfix is isolated.

If a word does not pass any of the momphophonemic checks. considering the possibility that the root may have been determined wrongly, a new root is searched in the dictionary.

3.5. Morphological Analysis

The spelling checker has two separate set of rules for the two main root classes. For the implementation of the lexical analyzers and parsers in which the rules are included, two standard UNIX utilities. ler and yacc. have been utilized respectively [1:3]. Les is used to separate the suffixes of a word from left to right, and yace is used to parse those suffixes using morphological rules of Turkish grammar.
The models given in various books on Turkish granimar [1.2, 4, 5, 14] and previons research on Turkish computational linguistics [12.16] have been utilized in for generating the rutes used in the parsers. Addifonally, all of the kown exceptional cases have also been considered (see $[20\}$). Athough all the comul gational sutfixes have been included into the rules, only a small subset of the derivational suffixes have heren handed. The reasons for this are that majority of the derivational sulfixes may be received by only a small group of roots, and determining surh groups is a rather difficult and time-consuming job, and depends on varions semantic criteria. The derivational suffixes that nay be affixed to all of the roots in a class and those which can be affixed to large percentage, but not all, of the roots in their class are included in the rules. 'Tlat makes it possible to chminate a number of words from the dictionary.

The two parsers are altermatively used. First parser lo be used is detemmed according to the class of the root. hut as the parsing continues it may be necessaty to switech from one parser to another and continue
there, or again pass back to the previous one, since the class of a stem can change when treceives certain suffixes. The switches between parsers can sometimes be very complicated. Some suffixes can have two dif. ferent usages. In such cases both possibilities have to be considered.

If a word has received more than one derivational suffixes then many switches between parsers will be necessary. For example, the root of the word BEYAZLASSTYRMAYANLARDAN (from those which do not cause to become white) is found as the nom BEYAZ (white) in our dictionary. Then comes the suffix $L\{A\} S$, which makes a verb from a noun, therefore a switel to the verb parser has to be made. Parsing continues there until the suffix - $\mathrm{A}\{\mathrm{A}\}$ is matched. This suffix can either make a verb a noun or negate it. First considering the possibility that it is used as a derivational suffix, the nown parser is invoked. The remaining part of the word can not be parsed by this parser. So accepting $M\{N\}$ as the negation suffix, the verb patser is returned to and parsing continues there. Iater comes the suflix $[Y]\{A\} N$, which is a suffix that makes a mom from a verb, so again a switeh to the nom parser is made. Continuing in this parser, the word is parsed correctly.

Some Turkish roots can take the suffixes belonging to both nominal or verbal classes. For such roots if parsing is unsuccessful in the first parser chosen, the other one must also be tried. For example, the root of Whe word $\mathrm{A}(\mathrm{S}$ LAld (hungry people) is AC . This root may either be used as a verb (open) or as a noun (hungry). If parsing is first attempted with the verbal parser it will be unsuccessful. So we backtrack and use the nominal parser. With the nominal parser the word can be parsed successfully.

Figure 1 shows the block diagram of the word analysis. Summarizing, first the syllable structure of the word is checked. If it is wrong the word is added into the output, list of misspelfed words, otherwise the root is determined. If no root can be found the word is reported as misspelled. If a root is found, first the vowel hamony chect is done. 'Then, according to the class of the root, one of the parsers is activated. In the parsers, as the suffixes are isolated ons by one, necessary morphophonemic checks are dome. Depending on the suffixes, switches between the parsers are possible. When the cud of the word is reached, if no errors can be found then the spelling of the word is correct. If any cror is found in any of the parsers or cluring morphophonemic checks, a new root is searched. If another root is found same operations are done. If no successfil parsing can be done although the first letter of the word is reached, the word is added into the output hist.

4. Performance Results

This spelling checker has been implemented in UNIX enviromment. on SUN SPARC: workstations,

[^3]

Figure 1: Word analysis
at Bilkent University, using the © programming langnage. Its current version takes nearly 600 Kbytes including the dictionary.

The checker can be inserted to different word processing applications or can be used separately. We have integrated it to GND-EMACS text editor for use on Io $\mathrm{T}_{\mathrm{F}} \mathrm{X}$ documents. In this form, the program is available for use within the university and around a number of sites on Internet. It is also possible to obtain some statistical information by running the program with -s option.
Our results indicate that the number of distinct words within a document is relatively stuall, and more particularly, the percentage of distinct words to total words processed increases as the length of the document decreases. Approximately 40% of the misspelted words are detected by syllabification check and the rest ate deteeted by other checks. The number of distinct words affect the exceution time more than the total number of words, as expected, because at word is fully analyzed only once. If it orcurs again in the text. the result of the previous check is used. In gencel, the spelling checker can process at 1000-3000 words (roughly $2-6$ pages) per second depending on the document. The finctional performance of the spelling checker can be fite tuned by analyzing the word list and inserting the additionad appropriate flages.

5. Conclusions

It this paper. we have presented a morphological parser for an agglutimative languge. Turkish, and its
application to spelling checking of this language.
Parsing agglutinative word structures necessitates rather uontrivial phonological and morphological analyses which present special difficulties in the development of parsers for such languages, not usually encountered in parsers for other languages. As a result, the number of parsers developed for agghtinative languages, and particularly for Turkish, is quite limited, and they have certain shortcomings. We have solved most of the problems encountered in the previous parsers by making a detailed and careful research on Turkish word formation rules and their exceptions [20]. These results may hopefully be helpful for future researchers on Turkish linguistics. We should note that even though it is claimed that word formation rules in Turkish are well-defined and lurkish is a very regular language, as used today it shows many irregularities that cause the problem of parsing this language to become a very hard and interesting problem

Many grammar books have been referred to collect Turkish word formation rules. In those books, after each rule is defined, usually it is reminded that there may oceur some exceptions to that rule in some conditions, but mostly those conditions can not be "well" defined. For example, in all Turkish grammar books, it is said that "When a Turkish word ending with one of the consonants P, S, T, K receives a suffix beginning with a consonant, that final consonant is softened, but there are some such words whose final consonant does not change." However, none of the books says what the common property of those words which do not obey to that rule is, because most
probably it is not known yet. In order to include that rule correctly in the parser, all words having the indicated property have been examined, the list of the irregukar ones have been obtained. and special checks have been done to catch those irregularities. In order to obtain reliable results from the spelling checker, all of the known rules and their exceptions have been implenemted.

Thes spelling checker sometines reports correct words as bucorect. One reason of this is the absence of some words in our dictionary. Althongh the dictionary is reasonably complete, there still remains many techoical terns and proper names which are not included. Adding more and more words will obvionsly increase the fanctional performance of the checker. Another reason is that, most of the derivational suffixes are not included into the rules. If a stem that is derived by such a suffix is not present in the dictionary, it is reported as misspelled. Additionally for the derivational suffixes that are inchuded in our rules, the list of the roots that they can be affixed to may not be fully determined. This problem can also be solved by examining the dictionary, As far as execution performance goes, our implementation is very satisfactory giving an almost 1000 words/second word analysis t.hroughput [19].

References

[1] Adah. O.. "Türkiye Türkesinte bicimbinmer" TDK, Ankara, 1979.
[2] Banguoglu. 'T.. "Türkenin grameni". TDK. Antara. 1986.
[3] Brodda, B., Karlsson, F'., "An experiment with morphological analysis of Fimnish". Papers from the hustitude of Linguistics, Eniversity of Stockhohn. Publication 40. Stockholm. 1980
[1] (an. K., "Yabancılar için 'Türkeç-ingilizee acthlanalı Türke dersteri". MET'U, Ankara. $198{ }^{\circ}$
[5] Demircan, O.. "Türkiye Türkgesinde kokeek bileçmeleri". 'Tok. dukara. 1977.
[6] Hankamer, J., "Turkish generative morphology and morphological parsing". a paper presented at Second International Conference on Turkish Linguistics, İstanbul. 198.4.
[7] Ifankamer. J., "Morphological parsing and the lexicon", edited by William Marslen-Wilson. MITT Press.
[8] Matiboglu, V'. "Türksenin ekleri". TDK, Ankara, 198 E .
[9] Kasper. R.. Weber. D.. "Users refereme manual for the ("s Quechua adaptation program". Occasional Jublications in Academic Computing.

Number 8, Summer Institude of Linguistic, Inc., 1982.
[10] Kasper, R., Weber, D., "Programmer's reference manmal for the O's Quechua adaptation progran", Occasional Publications in Academic Computing, Number 9, Summer Institude of Linguistic, Ine., 1982
[11] Koskenniemi, K., "I'wo-level morphology", University of Helsinki, Department of General Linguistics, Publication No 11, Helsinki, Fintand, 1983.
[12] Köksal, A." "Automatic morphological analysis of Turkish". Ph.D. 'Thesis, Hacettepe University, Ankara, 1975.
[13] Mason, 'I'., Brown, D., "lex \& yacc", edited by Dale Dougherty, O'Reilly \& Associates, Inc., USA, May 1990.
[14] Özel, S., "Türkiye 'T'̈̈rkcesinde sözcük türetme ve bileştime", 'TDKK. Ankara, 1977.
[15] 1'ackard, D., "Computer-assisted morphological analysis of Ancient Greek", Computational and Mathematical Linguistics: Proceedings of the Intemational Conference on Computational Linguistics, Pisa Leo S. Olschki, Jirenze, 343 - 355, 1973.
[16] Sagay, Z., "Sözcük cekimi", Bilişim’78, Ankara, 1978.
[17] Sagvall, A., "A system for antomatic inflectional analysis implemented for Russian, Data Linguistica 8, Almquist and Wiksell, Stockholm, 1973.
[18] Solak, A. Oflazer. K.. "A fimite state machine for "Turkish syllable structure analysis", In Proceedings of the Fifth Intermational Symposium on Computer and Information Sciences, Nevşehir, Türkiye, 1990.
[19] Solak, A., Of lazer, K.. "Imphementation details and performance results of a spelling checker for 'Turkish", in I'roceedings of the Sixth International Symposium on Computer and Information Sciences, Side, Antalya, Türkiye. Oct. 1991.
[20] Solak, A.. "Design and implementation of a spelling checker for Turkish". M.S. Thesis, Bilkent University, Aukara, 1991.
[21] Underhill, R., "Turkish". Studies in Turkish Linguistics, edited by Dan Isaac Slobin and Karl Zimmer. 7 - 21, 1986.
[22] "Türkçe sözlü", TDK, Ankara, 1988.
[23] "Yeni yazm kilavuzu". Fileventh Fdition, TDK, Ankara, 1981.

[^0]: 'From now on, we will indicate the Vaglish meaning of a word in Turkish in parentheses following it.
 ? The progressive tonse suffix. $\{1\}$ YOR in an excrption
 "[] indicates an optional morphence that must be inserted before a suffix to satisfy certain harmony rules. In this case. [Y] indicate that the consomam Y^{\prime} must be inserted if the last teter of the stem is a vowel, otherwise it is dropped: e.g., OKI (read) - OKIGACAK (s/he will read), hus GOR (ask) - SORACSE (s/he will ask).

 The two allophone of \{D\} are D and J.

[^1]:

[^2]: The list of all flage can be fommed in Solak [20].

[^3]: ${ }^{*}$ Whe wort SOL is pronommed slighty rlifferent in the latere.

