
QPATR and Constraint Threading

James Kllbury
Seminar ffir Allgemelne Sprachwissenschaft

Unlverslt~t Diisseldorf, Unlversltiitsstr. 1
D-4000 Diisseldorf 1, Fed. Rep. of Germany

e-maih KIIbury@DDORUD81.BITNET

Abstract

QPATR is an MS-DOS Arity/PROLOG implemen-
tation of the PATR-II formalism for unification grammar.
The fbnnalism has been extended to include the constraints
of LFG as well as negation and disjunction, which are
implemented with the disjunction and negation-as-failure of
PROLOG itself. A technique of constraint threading is
employed to collect negative and constraining conditions in
PROLOG difference lists. The parser of QPATR uses a
left-corner algorithm for context-free grammars and
includes a facility for identifying new lexical items in
input on the basis of contextual information.

I Introduction

QPATR ("Quick PATR") is an MS -DOS
Arity/PROLOG implementation of the PATR-II formalism
(of Shieber et al. 1983, Shieber 1986) with certain logical
extensions. The name was chosen to reflect the fact that
the prototype system was developed in a short period of
time but nevertheless runs quickly enough for practical
use. QPATR was developed at the University of
Dt~sseldorf within the research project "Simulation of
Lexical Acquisition", which is funded by the Deutsche
Forsehtmgsgemeinschaft.

In contrast to most existing PATR implementations
such as D-PATR (cf Karttunan 1986a, 1986b), QPATR
runs under MS-DOS and thus makes minimal hardware
demands. Like ProP (of Carpenter 1989) QPATR is
implemented in PROLOG but uses both the negation and
disjunction of PROLOG in the extended PATR formalism;
moreover, it employs a left-comer parser with a "linking"
relation and PROI/3G baclctracking rather than a pure
bottom-up chart parser.

The system comprises the following components: (1)
grammar compiler, (2) unification, (3) left-comer parser,
(4) lexieal look-up, (5) input/output, (6) testing off-line
input, and (7) tracing. The grammar compiler (1)
transforms syntax rules and lexical entries from their
external notation to an internal form; at the same time
partial feature structure matrices (FSMs) are constructed
and the linking relation (see below) is constructed. The
unification package (2) uses techniques introduced by
Eisele and D5rre (1986) and described by Gazdar and
Mellish (1989) to implement the unification of FSMs with
the term unification of PROLOG. A facility of prediction
is included in the input/output package that allows new
lexicai items in input to be identified on the basis of
contextual information. While QPATR uses a full-foma
lexicon at present, a package for morphological analysis is
being developed.

Since QPATR is distributed in a compiled version,
knowledge of PROLOG is only needed in order to write

macros (see below) but not to write grammars or to rttrl
the system. Thus, QPATR can also be used in instruction
with students who have no background in PROLOG
programming.

2 Descriptions of FSMs

The formalism of PATR-H has been adopted for
QPATR and will not be inuoduced here. As presented by
Shieber (1986: 21) rules consist of a context-flee skeleton
introducing variables for FSMs and a conjunction of path
equations that describe the FSMs, e.g.:

Xo --> Xt X2
~ o cat> = S
<X, cat> = n p
<X~ cat> = vp
<Xo head> = <X, head>
<Xo head subject> = <X, head>

where cat, head, and subject are attributes. Such path
equations are written with "*=" in QPATR, which is
implemented with the nonaal ("destructive") PROLOG
unification. Furthermore, QPATR provides for pseudo-
constraints written with "*==" in the path equations, which
capture the expressiveness of constraining schemata in
LFG (of Kaplan/Bresnan 1982: 213) and allow the
grammar writer to specify that some attribute must ,ugt
receive a value unifiable with the indicated value. These
are implemented with the "==" unification of PROLOG.

FSMs are described in QPATR with a logic
generally based on that developed by Kasper and Rounds
(1986). The presentation of the logical description language
here is parallel to that of Carpenter (1989).

Atomic well-formed formulas (wffs) of this logic
consist of the two types of equations just introduced as
well as macro heads (see below); heads of macros defined
in terms of constraints are prefixed with the operator "@"
in atomic wffs. Equations contain two designators, which
are atoms or FSM variables, implemented with PROLOG
atoms and variables, respectively, or else paflm. The latter
are defined recursively and may contain atoms or paths as
attribute expressions. The evaluation of emtwxlded paths
must yield an atom.

All derived wffs of the logic are built from atomic
descriptions with conjunction ",", disjunction ";", and
negation "not"; parentheses may be simplified in the
customary manner. Disjunction and negation are not
directly reflected in the FSMs generated in QPATR.
Disjunctions are implemented with PROLOG backtracking,
wtfile negations are treated like pseudo-constraints, which
are executed as tests after the complete FSM of an input
phrase has been constructed by the parser. The "negation"
employed here is thus the negation-as.failure of PROLOG.

FSMs themselves are represented internally as a
PROLOG list of feature-value pairs with a variable

382

remainder list (ef Eisele/D0rre 1986: 551; Oazdar/MeUish
1989: 228). Since FSMs are described rather than directly
represented in the grammar and lexicon, these internal
PROLOG representations normally are neither constructed
nor seen by the user.

The syntax of the logical description language is
defined here in Backus-Naur form:

well-formed formula
<wff> :::= <awff> I

'(' <wff> ' , ' <wff> 5 ' 1
'(' <wff> ' ; ' <wff> ') ' I
'(' 'not' <wff> ') '

conjunction
disjunction
negation

atomic wff
<awff> ::-'= <deser> I

<cdescr> I
<macro-head> I see below
'(' '@' <macro-head> ') ' constraining macro

FSM description
<descr> :::= '(' <desig> '*=' <desig> ') '

constraining FSM description
<cdescra ::= '(' <desig> '*==' <desig> ') '

designator
<desig> ::= <atom> I <fsm-variable> I <path>

path
<path> ::= <fsm-variable> ' / ' <attr-exprs>

attribute expressions
<a~-exprs> ::= <attr-expr> I <attr-expr> '/ ' <attr-exprs>

attribute expression
<attr-expr> ::= <atom> I '{ ' <path> '} '

3 Maer~

Macros (or templates; cf Shieber 1986: 51) may be
employed in QPATR to reduced redundancy in syntax
rules and lexical entries and thereby to capture
generalizations. In the present version of QPATR macros
are defined as conjunctions of other macros and FSM
descriptions with "*=" and "*=="; they may not contain
disjunctions or negations. Furthermore, macros may not be
defined reeursively as this would lead to nonterminating
loops.

Since macros are ultimately defined in terms of FSM
descriptions with "*=" and "*==", which themselves are
implemented as executable PROLOG goals, macros are
represented in the present QPATR version simply as
PROLOG inference rules with a head consisting of the
macro name as its predicate and the variables for FSMs
referred to as its arguments. This is the only part of the
system that requires elementary PROLOG programming in
order to write grammars in the formalism.

A special representation language for the definition
of macros is being developed and will be included in new
versions of QPATR.

4 Rules and Lexlcal Entries

Syntax rules are indexed with an hlteger which is
used by the linking relation constructed during compilation
of the grammar into its intea:nal form (see below). The
mtmbering of rules is arbitrary and need not be
consecutive or ordered.

Category descriptions are macro heads. In principle,
a single dummy macro name cat can be used for all
categories so that all information about the FSMs
contained in a rule is put in the description wff of the
right-hand side; however, the linking relation would then
lose its value for the parser. In order to modularirz the
grammatical description, the wffs of rules and entries may
be defined exclusively in terms of macros.

The syntax of rules and lexical entries is defined as
follows:

l i l le
<rule> ::= <integer> '# ' <cat> '--->' <rhs> ' . '

right-hand side
<rhs> ::= <cats> I <cats> ' : : ' <wff>

categories
<eats> ::= <eat> I <cat> ' , ' <cats>

category
<cat> ::= <macro-head>

lexical entry
entry ::= <atom> 'lex' <khs> ' . '

lexieal right-hand side
<lrhs> ::= <cat> I <cat> ' : : ' <wff>

Orthographic word forms are represented as
PROLOG atoms.

5 Constraint Threading

By convention, the wffs of rules and lexical entries
are written in conjunctive normal form as a list of atomic
wffs, disjunctions, and negations. When a rule or entry is
compiled the list representing its wff is sorted into lists of
atomic wffs (except constraints), disjunctions, and
constraints (including negations) whose members are
executed as PROLOG goals before, during, and after
parsing, respectively. The execution of the atomic wffs
without constraints builds partial FSMs which contribute to
the information encoded in the linking relation (see below).
In their compiled form rules and entries thus contain
partial FSMs associated with lists of disjunctions and
negations that apply to them.

Disjunctions are executed during parsing and make
use of the normal backtracking mechanism of PROI.£K]
while constraints and negations are executed after parsing
to test whether a FSM in fact fulf'dls all conditions of the
original wff. During parsing the constraints and negations
contributing to the complete description of the FSM
associated with the input must be collected. In order to
accomplish this a technique of constraint threading is
introduced based on the difference lists used by Pereira

383

and Shieber (1987) for gap threading. The PROLOG term
associated with a syntactic constituent contains difference
lists of constraints associated with the constituent before
and after it has been parsed. The first difference list for an
entire input phrase is the empty list, whi!e the second is
instantiated with the complete list of constraints and
negations after parsing is completed.

A complication arises from the fact that constraints
and negations may be embedded in disjunctions and that
their execution must be deferred. This can be dealt with
by "percolating" such embedded constraints up into rite
difference lists for constraint threading when the
disjunction is solved. The following program implements
the execution of disjunctions during parsing:

% solve disjunctions(
% <disjunctions>,<constrah~ts0>,<constralnts>)

solve_disjunctions([], C, C).

solve disjunctions([DIDs], C0, C) :-
dsolve(D, C0, C1),
solve_disjunctions(Ds, C1, C).

dsolve((Wff ; Wffs), CO, C):-
l, (dsolve(Wff, C0,C) ; dsolve(Wffs,C0,C)).

dsolve(fWff , Wffs), C0, C) :-
I, dsolve(Wff, C0,C1), dsolve(Wffs,C1,C).

dsolve((not Wff), C, [(not Wff)lC]) :- I.

dsolve((@ Wff), C, [WfflC]) :- I.

dsolve(Wff, C, C) :- call(Wff).

6 The Parser of QPATR

The parser is based on a left-comer algorithm with
backtracking for context-free grammars (cf Kilbury 1988
and Pereira/Shieber 1987: 179fO. The efficiency of the
parser is improved with top-down filtering in the feral of a
linking relation (cf Pereira/Shieber 1987: 182). This
ordinarily is a transitive binary relation over categories
represented as PROliX] atoms or terms with atomic
category labels as functors. The PATR formalism requires
a modified technique since the syntax rules contain FSMs,
whose unification is more costly than that of atomic
category lables. QPATR therefore uses numbered syntax
rules and then defines the filter with a binary relation over
the rule indices. If the grammar contains some rules

i # F~ ---> Fit F~
j # Fie ---> F~ F~,

where the subscripted F 's are FSMs, then we have
dlink(ij) iff F~z subsumes F~0, i.e. if F~ is an immediate
left corner of F/0. Then link(ij) is the reflexive and
transitive closure of dlink(ij).

7 Lexlcal Prediction

QPATR includes a facility of prediction whereby
FSMs are proposed for new lexical items encountered in
input but not contained in the lexicon. Predictions are

made on tim basis of contextual infomaation coUoeted
during the analysis of input. A ftmdamental distinction is
made between open and closed lexical categories, and dds
inl'ormation must be represented with definitions of
con'esponding nmcros in the grammar. These definitions
may refer to semantic as well as syntactic categorial
information. A prediction is blocked if the proposed FSM
does not match an open lexical class or if it is described
by an entry already in the lexicon, but FSMs may be
constructed tbr new lexieal items having homonyms in the
lexicon. The definition of open is not used actively to
propose an FSM but rather passively to test rite
admissibility of an FSM already constructed from the
context.

References

Carpenter. Bob (1989) Prop Documentation. Computational
Linguistics Program, Carnegie Mellon University.

Eisele, Andreas / Dtrre, Jochen (1986) A l.~xieal
Functional Grammar System in PROLOG, Proceedings of
COLING-86, 551-3.

Gazdar, Gerald / Mellish, Chris (1989) Natural Language
Processing in PROLOG. Wokingham, England et al.:
Addison-Wesley.

Kaplan, Ronald M. / Bresnan, Joan (1982) Lexieal-
Functional Grammar: A System for Grammatical
Representation, in The Mental Representation of
Grammatical Relations (Joan Bresnan, ed.). Cambridge,
Mass. / London: MIT Press.

Karttunen, Lauri (1986a) D-PATR: A Development
Environment for Unification-Based Grammars, Proceedings
of COLING-86, 74-80.

Karttunen, Lauri (1986b) D-PATR: A Development
Environment for Unification-Based Grammars (& CSLI
Report No. 86-61). Stanford, CaliL: CSLI.

Kasper, Robert T. / Round, William C. (1986) A Logical
Semantics for Feature Structures, Praceedingsof the 24th
Annual Conference of the ACL, 235-242.

Kilbury, James (1988) Parsing with Category Cooceurrence
Restrictions, Proceedings of COLING.88, 324-327.

Pereira, Femando C. N. / Shieber, Smart M. (1987) Prolog
and Natural-Language Analysis (= CSLI Lecture Notes,
10). Stanford, Calif.: University of Chicago Press.

Shieber, Smart M. (1986) An Introduction to Unification-
Based Approaches to Grammar (= CSLI Lecture Notes, 4).
Stanford, Calif.: University of Chicago Press.

Shieber. Smart M. et al. (1983) The Structure and
Implementation of PATR-II, Research on Interactive
Acquisition and Use of Knowledge, 39-93. Menlo Park,
Calif.: SRI International

384

