
FINITE-STATE PARSING AND DISAMBIGUATION

K i m m o K o s k e n n i e m i

University of Helsinki
Department of General Linguistics

Hallituskatu 11
00100 Helsinki, Finland

ASS ,ACr

A language- independent method of finite-
state surface syntactic parsing and word-dis-
ambiguation is discussed. Input sentences are
represented as finite-state networks already
containing all possible roles and interpretations
of its units. Also syntactic constraint rules are
represented as finite-state machines where
each constraint excludes certain types of un-
grammatical readings. The whole grammar is
an intersection of its constraint rules and ex-
cludes all ungrammatical possibilities leaving
the correct interpretation(s) of the sentence.
The method is being tested for Finnish, Swedish
and English.

INTRODUCTION

The present approach is surface oriented and
shallow, and it does not aim to uncover seman-
tically oriented distinctions. An important source
of inspiration has been Fred Karlsson's syntactic
parser for Finnish, FPARSE (1985). The present
approach tries to formalize the underlying ideas
of that parser in a finite-state framework (cf.
Karlsson 1989a,b). The finite-state formalism at-
tacks the very basic things in syntax such as:
what are the correct readings of ambiguous
words, what are the clauses in a complex sen-
tence, how the words form constituents, and
what are the syntactic roles of the constituents.

Let us consider the full framework of automatic
syntactic parsing. One possible partition of the
whole process is given in the following figure 1.

The morphological analysis is done eg. by
using the two-level model (Koskenniemi 1983).
Comprehensive systems exist now for Finnish,
Swedish, English and Russian (about 30-40,000
root entries in each), and some twenty smaller
ones.

I

I
r .

L _nor _malize_cl_ sentences _~
I

MORPHOLOGICAL ANALYSIS (TWOL)]

I
r . 1

: analyzed words with all interpretations (and alJ :
i . • , i possible syntactic funct=ons) ,
u . ~ J

I

[LOCAL DISAMBIGUATION !

I
r .

[analyzed words with feasible interpretations i
L__ !nonp[efe/red a_nd_im _proba_ble o_ ne_ _s d) s_car_d_e._d_)__ j

i

I
r . 1

i disambiguated sentence (clause boundaries, :
, correct senses and syntactic functions selected) :
L . J

Figure 1.

The local disambiguation is an essential step
eg. in Swedish, because many longer word-
forms have several possible interpretations. In
part, the local disambiguation supplements the
two-level description by imposing more sophis-
t icated restrictions on eg. compounds, and by
reducing redundant or dupl icate analyses (eg,
in case a derived word both exists as a given
lexicalized entry and is productively generated
from its root), The remaining logic concerns
weighing various alternatives and excluding
readings which are significantly less probable
than the best ones.

i 229

FINITE-SI'ATE SYNTAX

The actual finite-state syntax consists of three
components:

• Syntactic disambiguation of word-forms
which have multiple interpretations.

• Determination of clause boundaries.

• Determining the head-modifier relations of
words and the surface syntactic functions
of the heads.

These components are well defined but they
depend on each other in a nontrivial way. It is
more convenient to write constraint rules for
disambiguation and head-modifier relations if
one can assume that the clause boundaries are
already there. And conversely, the clause
boundaries are easier to determine if we have
the correct readings of words available. The
approach adopted in this paper shows one
solution where one may describe the con-
straints freely, ie. one may act as if the other
modules had already done their work.

Representation of sentences

The way we have chosen in order to solve this
interdependence, relies on the representation
of sentences and the constraint rules. Each sen-
tence is represented as a finite-state machine
(fsm) that accepts all possible readings of the
sentence. The task of the grammar is to accept
the correct reading(s) and exclude incorrect
ones. In a reading we include:

• One interpretation of each word-form.

• One possible type of clause boundary or its
absence for each word boundary.

• One possible syntactic tag for each word.

An example of a sentence in this repre-
sentation is given in figure 2 on the next page.
In the input sentence each word is represented
as an analysis given by the morphological ana-
lyzer. The representation consists of one or mo;e
interpretations, and each interpretation, in turn,
of a base form and a set of morphosyntactic
features, eg. "katto" N ELA SG.

Word and clause boundaries

For word boundaries we have four possibilities:

@@ A sentence boundary, which occurs only
at the very beginning and end of the
sentence (and is the only possibility there).

@ A normal word boundary (where there is
no clause boundary).

@/ A clause boundary separat ing two
clauses, where one ends and the other
starts.

@< Beginning of a center embedding, where
the preceding clause continues after the
embedding has been completed.

@> End of a center embedding.

Each word is assumed to belong to exactly
one clause. This is taken strictly as a formal basis
and implies that words in a subordinate clause
only belong to the subordinate clause, not to
their main clause. Furthermore, this implies a
very flat structure to sentences. Tail recursion is
treated as iteration.

There has been a long dispute on the finite-
state property of natural languages. We have
observed that one level of proper center em-
bedding is fairly common in our corpuses and
that these instances also represent normal and
unmarked language usage. We do not insist on
the absence of a second or third level of center
embedding. We only notice that there are very
few examples of these in the corpuses, and
even these are less clear examples of normal
usage.

The present version of the finite-state syntax
accepts exactly one level of center embed-
ding. The formalism and the implementation
can be extended to handle a fixed number of
recursive center-embeddings, but we will not
pursue it further here.

Grammatical tags

One grammatical tag is attached with each
word. Tags for heads indicate the syntactic role
of the constituent, eg. MAIN-PRED, SUBJ, OBJ,
ADV, PRED-COMP, and tags for modifiers reflect
the part of speech of the head and the direc-
tion where it is located, eg. No, <-N.

This kind of simple tagging induces a kind of a
constituent structure to the sentence closely
resembling classical parsing.

GRAMMAR

The proposed grammar constructs no analysis
for input sentences. Instead, the grammar ex-
cludes the incorrect readings. The ultimate re-
suit of the parsing is already present as one
reading in the initial representation of the sen-
tence which acts as an input to the parser. The
result is just hidden among a large number of
incorrect readings.

Input sentences

The following is an example of a sentence
"kalle voisi uida paljonkin" (English glosses 'Char-

230 2

les could swim much+also') to be input to the
finite-state syntax:

(@@
"kalle" PROP N NOM SG (/ SUBJ OBJ

PRED-COMP)

@ @< @> @I)

("voida" VCHAIN V COND ACT

SG3 MAIN-PRED)

("vo:Lda" VCHAIN V COND ACT NEG))

@ 0< @> @t)
(/ ("uida" V INFI NOM)

("uida" V PRES PSS NEG))

(I @ @< @> 01)
(/ ("paljon" ADV kin)

("paljon" AD-A kin))

@0)

Figure 2

This is an expression standing for a finite-state
network. Alternatives are denoted by lists of the
form:

(/ (alterr~,at ive-])

(alternat]ve-2)

o . .)

The input expression lists thus s o m e 256 distinct
readings in spite of its concise appearance.
(The input is here still simplified because of the
omission of the syntactic function tags.)

Constraint rules

Each constraint is formulated as a readable
statement expressing some necessity in all
grammatical sentences, eg.:

NEG > NEGV ..

This constraint says that if we have an occur-
rence of a feature NEG (denoting a negative
form of a verb), then we must also have a
feature NEGV (denoting a negation) in the
same clause. ".." denotes arbitrary features and
stems, excluding clause boundaries except for
full embeddings.

Types of constraint rules

Several types of constraint rules are needed:

. Tect~nical constraints for feasible clause
bracketing.

- Disambiguation rules (eg. imperatives only
in sentence initial positions, negative forms
require a negation, AD-A requires an adjec-
tive or adverb to follow; etc.)

° Clause boundary constraints (relative pro-
nouns and cer ta in con junct ions are
preceded by a boundary, even other
boundaries need some explicit clue to jus-
tify their possibility).

o Even/clause may have at most one finite
verb and (roughlyspeaking) also must have
one finite verb.

Examples of constraint rules

The following rule constrains the occurrence
infinitives by requiring that they must be
preceded by a verb taking an infinitive comple-
ment (signalled by the feature VCHAIN).

INFI NOM ::> VCHAIN .o

Imperatives should occur only at the begin-
ning of a sentence. A coordination of two or
more imperatives is also permitted (if the first
imperative is sentence initial):

IMPV :=>

[@@ I IMPV . @/ , [COMMA

I COORD]] .

(Here COMMA is a feature associated with the
punctuation token, and COORD a feature pres-
ent in coordinating conjunctions.)

The following disambiguation rule requires that
modifiers of adjectives and adverbs must have
their head present:

AD-A :=> . @ , [A I ADV]

For clause boundaries we need a small set of
constraint rules. Part of them specify that in cer-
tain contexts (such as before relative pronouns
or subjunctions) there must be a boundary. The
remaining rules specify converse constraints, ie.
what kinds of clues must be present in order for
a clause boundary to be present.

All these constraints are u l t imately im-
plemented as finite-state machines which dis-
card he corresponding ungrammatical read-
ings. All constraint-automata together leave
(hopefully) exactly one grammatical reading,
the correct one. The grammar as a whole is
logically an intersection of all constraints where-
as the process of syntactic analysis corresponds
to the intersection of the grammar and the input
sentence.

Output

With a very small grammar consisting of about
a dozen constraint rules, the input sentence
given in the above example is reduCed into the
following result:

(@@ "kalle" PROP N NOM SG SUBJ

@ "voida I' VCHAIN V COND ACT

SG3 MAIN-PRED

@ "uida" V INFI NOM

@ "paljon" AD kin
@@)

3 231

Monotonicity

The formalism and implementation proposed
for the finite-state syntax is monotonic in the
sense that no information is ever changed. Each
constraint simply adds something to the discrimi-
nating power of the whole grammar. No con-
straint rule may ever forbid something that
would later on be accepted as an exception.

This, maybe, puts more strain for the grammar
writer but gives us better hope of understanding
the grammar we write.

IMPLEMENTATION

The constraint rules are implemented by using
Ran Kaptan's finite-state package. In the pre-
liminary phase constraints are hand-coded into
expressions which are then converted into fsm's.
We have planned to construct a compiler
which would automatically translate rules in the
proposed formalism into automata like the one
used for morphological two-level rules (Kart-
tunen et al. 1987).

The actual run-time system needs only a very
restricted set of finite-state operations, intersec-
tion of the sentence and the grammar. The
grammar itself might be represented as one
large intersection or as several smaller ones
which are intersected in parallel. The sentence
as a fsm is of a very restricted class of finite-state
nelworks which simplifies the run-time process.
An alternative and obvious framework for im-

plementing constraint rules is Prolog which
would be convenient for the testing phase. Pro-
log would, perhaps, have certain limitations for
the production use of such parsers.

ACKNOWLEDGEMENTS

The work has been funded bythe Academy of
Finland and it is a part of the activities of the
Research Unit for Computational Linguistics at
the University of Helsinki. Special thanks are due
to Ran Kaplan and Lauri Karttunen for the use of
the finite-state package.

REFERENCES

Karttunen, L., K. Koskenniemi, and R. Kaplan
1987. A compiler for two-level phonological
rules. In: Dalrymple et al. Tools for morpho-
logical analysis. Report No. CSU-87-108, Cen-
ter for the Study of Language and Informa-
tion, Stanford University,

Karlsson, F. 1985. Parsing Finnish in terms of a
process grammar. In: Computational Mor-
phosyntax: Report on Research 1981-84.
(Ed.) F. Karlsson, University of Helsinki, Depart-
ment of General Linguistics, Publications, No.
13. pp. 137-176.

--- 1989a. Parsing and constraint grammar. Re-
search Unit for Computational Linguistics,
University of Helsinki. Manuscript, 45 pp.

--- 1989b. Constraint grammar as a framework
for parsing running text. Paper submitted to
Coling'90.

Koskenniemi, K. 1983. Two-level morphology: A
general computational model for word-form
recognition and production. University of Hel-
sinki, Department of General Linguistics, Pub-
lications, No. 11.

2 3 2 4

