
Contribution of a Category Hierarchy to the Robustness of
Syntactic Parsing.

Damien GENTHIAI~, Jacques COURTIN, lr6ne KOWARSKI
Laboratoire de g6nie informatique ° lmag Campus ° BP53X

F-38041 GRENOBLE CEDEX - France
T61 : 76 51 48 78

E-Mail : courti.@imag.imag.fr
courtin@imag.UUCP

Abstrad
We describe how the use o1' at hierarchy of
lexical categories instead of a simple set of
categories leads to the definition of a flexible
and precise language for the description of
dependency structures. After specifying the
t'ormalism we use to decorate these structures,
we present an application aiming to detect and
correct en'ors in a written text. We outline how
tile use of the h ierarchy irnproves the
manii)ulation of unknown words.

]i. it - troduction
The work presented in this paper is part of a
nat)re general project which aims towards a
complete system for detection and corrcctio~ of
errors i~ a written text. Our interes~ here is tit(:
creation of a syritactic--semantic module which
builds depenttency structures decorated with
attribute.-pairs lists integrating a mechanism for
the inheritance of properties. We show the
contribtl t ion of hierarchisat ion of lexical
categories to the constructi(m of syntactical
structures.

2. Construction of dependency
structures
Dependency structures are trees which give a
description of the structure of a sentence by
establishing direct links be|wcen the words (or
lexical items : the terminal symbols according lo
constituent grammars). The idea is that the
structure of a phrase can be thought of as a
particular word (the head or governor) modified
by' the other words (the modif ie rs or
dependents). Dependents can themselves be
modif ied to produce a tree strucure : the
governor as root and dependents as his sons.

Complex intormation (e.g. syntactic functions
or semantic relationships) can easily be added

on the links of such trees and rules of
agreement are convenient ly expressed. For
example, in French, the agreement in gender
and number betweeen a noun and its determiner
and adjectives implies the same gender and
number for both the dependents (determiner
and adjectives) and their governor (noun). On
the other hand, it is difficult to express ptn'ase
properties on dependency structures, because
the properties of a phrase governed by a word
at(: not necessarily limited to the properties of
the word alone.

In order to describe such structures, we write
binmy relations in "governor-dependent" form.
The formalism proposed by Tesni~.res [120]
(dependermy grammars) is very precisE, but all
possible arrangements of the dependents of a
governor must be described. In Courtin's work
[8], weighted dependency relations are defined,
which are well suited to computation, but
limited in power of expression.

We have attempted to design a language for the
description of dependency structures retaining
the prec is ion of g rammars , but more
appropriate for automatic treatment.

To build these structures, we must be able to
determine, for any two words, caracterized by
their lexical category : det, noun, verb
which one governs tile other. More generally,
given two dependency trees, we must know
how to merge them into a unique tree.
t!~,xample : 1

s, eL d e t a d j

We have defined a language based on rewriting
rules ; each rule applies to a dependency forest
and produces a dependency tree. A set of such

|Examples given are simple English adaptations of tile
French originals

139

rules constitutes a dependency grammar, which
can be applied to a sentence by means of an
interpreter. This interpreter can be viewed as a
u'ee-transducer.

Example of a simple rule : (the "--" begins
comments)
N V [-- Name
(~:{N}, (0, SF:{P})2:{V}) -- Forest
=>

((i, SF) 2) --Resulting tree
]
This rule applies to any forest which includes a
sequence of an N and a V, whose left
dependents are only preverbal particles P. It
builds a new tree where the N is added as a
dependent of the v.

The advantage of these rules, compared to
simple binary relations, is that it is possible to
express the context of each category which
appears. It is thus possible to restrict a
governor to one or two dependents only, or to
forbid more than one occurrence of a given
category One can also define linked pairs of
b inary re la t ions , as for c o o r d i n a t i o n
conjunctions:
N coon [
(T ' ""~ :{N}, ~:~coco}, ~:t_, ~)
:>

{ (1) 2 3))
]

On the other hand, they present the drawback
of the primitive dependency grammars : there
nmst be a rule for almost every pair of lexical
categories (LC). To avoid this problem, we
have chosen to use a h ie ra rchy of LCs instead
of the usual l inear set of LCs. This hierarchy is
a set, partially ordered by the ± s - a relation
(Figure 1).

CLS

N \/ A

enoun xbe xhave verb pastp adj

Figure 1 • Example of hierarchy

We can, in this manner, express very general
rules like the two given above (N V and
N c o c o) or more specific ones like '
a u x_pp a s [
(l:{xbe ; xhave}, 2:{pastp)
=>

((1) 2)
]
Thanks to i . s -a ({ c n o u n , pnoun }, N) and
is-a ({xbe, xhave, verb, pastp } , V)
relations, the N_V rule for instance rnay be
applied to all the following pairs of categories :
(cnoun, xbe) (pnoun, xbe)
(cnoun, xhave) (pnoun, xhave)
(cnoun, verb) (pnoun, verb)
(cnoun, pastp) (pnoun, pastp)

We can thus define a set of basic categories
which describe words in a very specific way,
and use these categories for lexical indexing.
The categories can then be grouped in "meta-
categories" according to the structures we want
to build. Finally, we can write the rules which
effectively build these structures.

By using this method, we can avoid the usual
compromise between a very fine set of LCs
(which multiplies morphological ambiguities
and syntactic rules) and a very general set
(which multiplies syntactic ambiguities). We
also obtain a fairly robust syntactic parsing : all
unknown words are given the most general
category (CLS), to which any rule carl apply
(see §4).

Similar type hierarchies have already been used
in work on language semantics to represent the
taxonomy of semantic types. We shall therefore
use the same formalism for the representation
of syntactic and semm]tic knowledge.

3. Type hierarchies and
'e-terms
We have chosen to represent knowledge about
words and trees with a unique formalism ' q'-
terms [2].

q'-terms are case frame structures which permit
the descript ion of types (in the sense of
classical p rogramming languages such as
Pascal), i.e. sets of values. ~ - t e r rns are
directed graphs (Figure 2) in which nodes are
symbols associated to fundamenta l types
(simple types) and arcs are labelled with
attribute symbols. Each node of the graph
includes a reference tag which can be used to
designate it, thus allowing information to be
shared.

Simple types are defined in the signature which
is a set partially ordered by the is-a relation.
This order is extended to q'-terms by the unique
operation used to manipulate them : unification
[1, 2]. The unification of two simple types is

140
2

defined as the set of lower bounds of these two
types; (in the 2 s - a relation).

Ser[i #
sere pat. ient

Linear R.°m :
"tJL (J.@X --> "e&tS";

cdt7 > ve zl~' ;

subj ~:> Uh(sem ':> S:ANIMATE) ;

o b j , : > U L (s o ; a : > O : Y . A ' 2 A B ' . I;;) ;

sere :=> £NGggT(agent: :> g;

pat:Jent > O))

Figure 2 • Example of %l:crm

UHificat ion a l lows implici t irwheritancc of
propert ies, and can be ¢iTic ient ly implemented
I31.

Exmnple of unification •
The two tlJoterms "
Uf,(i_ex :> "dr)g";

CaL : > cr~our%;

nbr -.> sin;

gnu: > re<is;

s e r e -,:> CA~iqi N:<)

U L (c a t : > ,L ;

s e r e : : > A N I M A T P :)

unify as"

UL(ieN : > "d<)g";

C~]L -:> CrlOtID;

9~r > mas ;

nbr > sin;

sere :> CANINE)

under the condition that the associated signature
un i f i e s C A N I N E a n d A N I M A T E a s

CAN I NE.

We can del'ine a sel-senmntics on simple types
[1, 191] ; this semantics can be extended to 't'-
terms giving the fo l lowing interpretat ion of
unif icat ion : if Pl and P2 are two T - t e r m s

descr ibing respect ively two sets el and e2 of
values, then unification o f two q '- terms L](pl,
P2) describes the set e l ne2 .

To t r a n s d u c t i o n ru les we have a d d e d
expressions which enable us to test and modify
' v - t e r m s a t t a c h e d to the t rees we are
manipu la t ing . We can thus s imul t aneous ly
build a syntact ic structure (dependency tree)
and a semantic structure (f - t e r m , which also
c o n t a i n s m o r p h o l o g i c a l and s y n t a c t i c a l
information).

Example of rules ~md application '
We have two words •
U L (• ~ e > : :: '~- " c o g ~ " ;

C&t ::7 (;~l{;,~J~5i ;

s e r e => CANINE)
rTT =:> I t { . ~ c . 11 • ,.:• (] ~ : < ..~ct, .~- ;

".:at. : > v~.~b;

UL(sem ::> ~,c':AN2MATI:) ;

ob I =>

UL {s.em ::=> O:]~ATAJ~L}L) ;

seiI'L =:> 1 ~':f']'°~''~,o.',,.0 L (=~ge?/C. =:> S;

]{:)~.t i e n t : : > O))

and lhe rule "
s ' c b j (- c t : . [(] . : { N } , 2 : 4 V })

/',;:~:i. ~: I , 2 s u b)) ~' ~ ~ • . " ,.. O[i(._,_ L .1 (9,~.::

2>

((i 2) ;

..... ' " c ;b i . . " z~o.:~; (2 s u b] , i , A c t : i o n s
J

The root of the resulting tree is decorated by °
U[, (I(',",1 :> "C'~[L~";

< : t & L : > L ' @ E] :) ;

s u i : ;] : : > U L (I o x > , , H r ~ , , .

t ~ l l < ; < x * * j

s e r e --:> ,~ ~ ' : C A N I N E ;) ;

ob ::> UL(sem => O : E A T A B L E) ;

sere =>]:NGEST (agorzt => f_;;

oaLJeri!; ::> O))

4. Applticafio as : a robus
parser of French and
syamcticait vcril[ica o
We have implemented on a mic rocompute r a
prototype of the dependency- t r ee t ransducer .
This prototype is integrated in a sys tem for
detect ion and correct ion of errors in a written
text as a syntactic filter (Figure 3) o

The p ro to type uses an a lgo r i thm for the
appl ica t ion of rules adap ted to syntactic.-
semantic parsing • the text is pmsed from left to
right ; each time a word is recognized by the
morphologica l parser, it is t ransmit ted to the
syntact ic modu le which inc ludes it in the

141
3

current state of the analysis. This state is
represented by a list of dependency forests to
which the transducer tries to attach the new
word, according to the rules.

Sentence (Text)

Morphol.

Parsing I
Unknown words

E 1
Hypothesis

Generator Correct words

Hypotheses

~yn~actic

F i it e r

I
~J

Syntact ico-semantic structures

Figure 3 : Architecture

If part of the entry string is not recognized, it is
passed on to the hypothesis-generator which
attempts to correct it by means of three
techniques (skeleton key [1611, phonetics [9],
and morphologica l generat ion [7]). The
hypotheses are then passed on to the syntactic
module which handles them exactly in the same
way as morphological ambiguities. It must be
noted that the three modules can function
almost simultaneously (pipe-line) and that the
h y p o t h e s i s - g e n e r a t o r a lways t ransmi t s
something to the syntactic module.

If a word is so ill-formed as to render its
correction impossible, tile hierarchical structure
of categories can be used to transmit the most
general possible word, i.e. • UL (cat :> CLS).
Any rule can apply to CLS (which is tile most
general category), so the choice of the rule to be
applied i,; determined only by the context of the
unknown word, and this rule will in turn
determine which category the word should have
had.
Example"
With a forest such as •
(l:{cnoun}, 2:{coco}, 3: CLS})

we shall obtain •
((l:{cnoun}) 2:{coco} (3 {N}))

after applying the rule N _ c o c o .

The syntactic filter works like a parser but does
not take into account agreement in number and
gender between words. A specialized module in
charge of verification of these agreements is

now being designed. A prototype of such a
module has been implemented in Prolog ; it
detects agreement mistakes and can propose
corrections by means of a morphological
generator. We are now working on rewriting it
in tile transducer language.

The main use of the syntactic filter is therefore
to validate the lexical category of the
hypotheses generated by the lexical corrector by
building dependency trees which take into
account the semantic information attached to the
words.

Example"
With the phrase " s u n a n d m o u n " we obtain
the following hypotheses for m o u n :
UL(Iex => "morn";

cat => cnoun;
sem => TIME)

UL(lex => "moon";

cat :> cnoun;
sem :> CELESTIAL-OBJECT)

UL(iex => "mount";
cat => verb;
subj => UL(sem => S:ANIM, hTED) ;
obj => UL(sem => O:PLACE} ;
sem :> MOVE (agent => S ;

where => O)
)

Each of these hypotheses is considered an
interpretation of the unknown word moun.
The rule of coordination is
N coco [(I:{N}, 2:{coco}, 3:{N})
/Unif(l.sem, 3.sem)/
=>

((i) 2 (3)) ;
ASSiGN(2.sem, Unif(l.sem, 3.sere));

ASSIGN(2 .nbr, plu)
]

with for sun :
UL(lex => "sun";

cat => cnoun;
sem => CELESTIAL-OBJECT) .

The rule cannot be applied to mount because a
verb is not a N. It can only be applied to the
noun m o o n by unification of the seniantic
features of moon and s u n .
With a phrase such as " s u n a n d m i z r n " ,

the hypothesis generator gives for mi z r n :

UL(cat => CLS)

The application of the rule N _ c o c o will give
the tree of the figure 4.

5. Conclusion
The use of a category hierarchy simplifies the
writing of the rules and introduces a way of
manipulating unknown words which is not part
of the mechanisms of the system but which is

142 4

integrated in the objects it manipulates. We can
then write rules without thinking about ill-
formedness (i.e. it is not necessary to make the
rules tolerant because the tolerance is implicit in
the system).

UL(Ie:< => " a n d " ;
C~C =:> COCO;

nbr > plu;

sem =>

CELESTIAL-OBJECT)

/ k
UL(lex -> "and"; UL(cat : > N)

cat => coco;

sem :>

CELESTIAL-OBJECT)

Figure 4 : Decorated tree

The throe modules have each been implemented
on a microcomputer, we are now working on
integrating the three modules and adding the
module for agreement verification. We are also
improving the performance of the transducer :
- by integrating a factorization technique for the
intermediate forests in the form of a graph-
structured stack [21],
- by adding a finer control (graph of rule
application) precomputed at compilation time.

Refi. rences

I1] : H. A'it Kaci
An Algebrai'c Approach to the eJ'['ective
resolution of type equations.
Theoretical Computer Science 45, 1986, pp
293--351

[2] : H. Ait Kaci, P. Lincoln
LIFE ." A natural language for natural
language.
MCC Technical Report, Number ACA-ST-
074-88, February 88

[3] : H. A'it Kaci et al.
Ejficient implementation o./' Lattice
Operations,
ACM Transactions on Programming
Languages and Systems l l : l , 1989, pp
116-146

[4] :C . Boitet
Representation and computation of units of
translation for Machine Interpretation of
spoken texts.
GETA & ATR Technical Report TR-I-0035,
August 88

[5] : J.G. Carbonel l & P.J. Hayes
Recovery Strategies for
Extragrammatical Language.
AJCL 9:3-4, 1983

Parsing

[6] : E. ChaJ'niak
On the use of framed
language comprehension.
AI 11, 1978.

knowledge for

[7] : B. Cohard
Logiciel de d~tection et de correction des
erreurs lexicales.
Mdmoire CNAM, Mars 1988

[8] :J. Courtin
Algorithmes pour le traitement interactif des
langues tmturelles.
Th6se d'dtat, USMG, Octobre 1977

[9] : J. Courtin, D. Dujardin, I. Kowarski, D.
Genthial, V. L. Strube de Lima

Correqdo de erros de ortografia atrav~s da
fondtica em textos escritos em franc~s.
XIV Conferencia Latinoamericana de
Inform~.tica, 17avas Jornadas Argentinas de
Informfitica e Investigacidn Operativa,
Buenos Aires, Sep. 1988. pp 873-891.

[10] : J. Courtin, D. Dujardin, I. Kowarski, D.
Genthial, V. L. Strube de Lima

Interactive Multi-Level Systems for
Correction of Ill-Formed French Texts.
Proceedings of the 2 nd Scandinavian
Conference on Artificial Intelligence,
Tampere, Finland, June 1989

[11] : L. Emirkanianl L. Bouchard
Knowledge integration in a robust and
efficient morpho-syntactic analyser for
French.
12 th CoLing, Budapest, August 1988, pp
166-171.

[12] : J. P. Fournier, J. V6ronis
Traitement des erreurs dans la
communication homme-machine en langage
naturel.
Acres des premi6res journ6es nationales du
GRECO-PRC Communication Homme-
Machine, Paris, Novembre 88

5 143

[13] : R.H. Granger
The NOMAD System : Expectation-Based
Detection and Correction of Errors during
Understanding of Syntactically and
Sermmtically Ill-Formed Text.
AJCL 9:3-4, 1983, pp 188-196,

[14] : Peter He l lw ig
Dependency Unification Grammar
11 th CoLing, Bonn, August 1986, 195-198.

[15] : G. Lapalme, D. Richard
Un systOme de correction automatique des
accords desparticipes passes.
Techniques et Sciences Informatiques, 4,
1986

[16] : J. J. Pollock & A. Zamora
Automatic' spelling correction in scientti[i'c
and scholarly text.
CACM 27:4, 1984

[17] : D. Scott
Data Types as Lattices.
SIAM Journal on Computing 5:3, 1976, pp
522-587

[18] : S. M. Shieber
An Introduction to Unification-Based
Approach to Grammar.
CSLI Lecture Notes 4, 1986

[19] : G. Smolka and H. A'/t-Kaci
inheritance IIierarchies : Semantics and
Unification.
Journal of Symbolic Computation 7, 1989,
pp 343-370

[20] : Tesni6res
Eldments de syntaxe structurale.
Klincksiek, Paris, 1959

[21] :M. Tomita
Graph-structured Stack and Natural
Language Parsing.
Proceedings of the 26 th Annual Meeting of
the ACL, Buffalo, USA, June 88

[22] : R. Zajac, M. Emele
Multiple Inheritance in RETIF.
Report of the ATR Interpreting Telephony
Research Laboratories.

144
6

