
The Generalized LR Parser/Compiler V8-4:
A Software Package for Practical NL Projects

1. Introduction
This paperldescribes a software package designed

for practical projects which involve natural language
parsing.] he Generalized LR Parser/Compiler V8-4 is
based on Tomita's Generalized LR Parsing Algorithm
[7, 6], augmented by pseudo/full unification modules.

While the parser/compiler is not a commercial product,
it has been thoroughly tested and heavily used by
many projects inside and outside CMU last three
years. It is publicly available with some restrictions for
profit-making industries 2. It is written entirely in
CommonLisp, and no system-dependent functions,
such as window graphics, are used for the sake of
portabili.ty. Thus, it should run on any systems that
run CommonLisp in principle 3, including IBM RT/PC,
Mac II, Symbolics and HP Bobcats.

Each rule consists of a context-free phrase
structure description and a cluster of pseudo
equations as in figure 1-1. The non-terminals in the
phrase structure part of the rule are referenced in the
equations as x 0 . . . xn, where x0 is the non-terminal

1Many members of CMU Center for Machine Translation have
made contributions to the development of the system. People who
implement(~ parts of the system, besides the author, are: Hideto
Kagamida, Kevin Knight, Hiroyuki Musha and Kazuhiro Toyoshima.
People who made contributions in maintaining the system include:
Steve Morrisson, Eric Nyberg, Hiroakl Saito and Hideto Tomabechi.
People who provided valuable comments/bug reports in writing and
debugging grammars include: Donna Gates, Lori Levin, Toru
Matsuda and Teruko Mitamura. Other members who made indirect
contributions in many ways include: Ralph Brown, Jaime Carbonell,
Mari~n Kee, Sergei Nirenburg and Koichi Takeda.

2For those interested in obtaining the software, contact Radha
Rao, Business Manager, Center for Machine Translation, Carnegie
Mellon University, Pittsburgh, PA 15213 (rdr@nl.cs.cmu.edu).

3In practice, however, we usually face one or two problems when
we transport it to another CommonLisp system, due to bugs in
CommonLiop and/or file I/O complications.

Masaru Tomita
School of Computer Science and
Center for Machine Translation

Carnegie Mellon University
Pittsburgh, PA 15213, USA

mt@cs.cmu.edu

(<DEC> <=> (<NP> <VP>)
(((xl case) =nom)
((x2 form) =c finite)
(*OR*

(((x2 :time) = present)
((xl agr) = (x2 agr)))

(((x2 :time = past)))
(x0 = x2)
((x0 subj) = xl)
((x0 passive) = -)))

Figure 1-1 : A Grammar Rule for Parsing

in the left hand side (here, <DEC>) and xn is the n-th
non-terminal in the right hand side (here, x l
represents <NP> and x2 represents <vP>). The
pseudo equations are used to check certain attribute
values, such as verb form and person agreement, and
to construct a f-structure. In the example, the first
equation in the example states that the case of <NP>
must be nominative, and the second equation states
that the form of <VP> must be finite. Then one of the
following two must be true: (1) the time of <VP> is
present and agreements of <NP> and <VP> agree,

OR (2) the time of <VP> is past. If all of the
conditions hold, let the f-structure of <DEC> be that of
<VP>, create a slot called "subj" and put the f-
structure of <NP> there, and create a slot called
"passive" and put "-" there. Pseudo equations are
described in detail in section 3.

Grammar compilation is the key to this efficient
parsing system. A grammar written in the correct
format is to be compiled before being used to parse
sentences. The context-free phrase structure rules
are compiled into an Augmented LR Parsing Table,
and the equations are compiled into CommonLisp
functions. The runtime parser then does the shift-
reduce parsing guided by the parsing table, and each
time a grammar rule is applied, its CommonLisp
function compiled from equations is evaluated.

1 59

In the subsequence sections,

Generalized LR Parser/Compiler
described.

features of the

v8-4 are briefly

2. Top-Level Functions
There are three top-level functions:

; to compile a grammar
(compgra grammar-file-name)

; to load a compiled grammar
(l oadg ra grammar-file-name)

; to parse a sentence string
(p sentence)

3. Pseudo Equations
This section describes pseudo equations for the

Generalized LR Parser/Compiler V8-4.

3.1. P s e u d o Un i f i ca t i on , =

path = val
Get a value from path, unify it with val, and assign the

unified value back to path. If the unification fails, this

equation fails. If the value of path is undefined, this
equation behaves like a simple assignment. If path
has a value, then this equation behaves like a test

statement.

path I = path2
Get values from path1 and path2, unify them, and
assign the unified value back to path1 and path2. If
the unification fails, this equation fails. If both path1
and path2 have a value, then this equation behaves

like a test statement. If the value of path1 is not

defined, this equation behaves like a simple
assignment.

3.2= O v e r w r i t e A s s i g n m e n t , <=

path <= val
Assign val to the slot path. If path1 is already defined,
the old value is simply overwritten.

path I <= path2
Get a value from path2, and assign the value to path 1.
If path1 i.,{ already defined, the old value is simply

overwritten.

path <= lisp-function-call
Evaluate lisp-function-call, and assign the returned
value to path. If path1 is already defined, the old
value is simply overwritten, lisp-function-call can be
an arbitrary lisp code, as long as all functions called in
lisp-function-call are defined. A path can be used as a

special function that returns a value of the slot.

3.3. Removal Assignment, ==

path I == path2
Get a value from path2, assign the value to path I, and
remove the value of path2 (assign nil to path2). If a
value already exists in path1, then the new value is
unified with the old value. If the unification fails, then
this equation fails.

3.4. Append Multiple Value, >
path I > path2

Get a value from path2, and assign the value to path 1.
If a value already exists in path1, the new value is
appended to the old value. The resulting value of
path1 is a multiple value.

3.5. Pop Multiple Value, <
path 1 < path2

The value of path2 should be a multiple value. The
first element of the multiple value is popped off, and
assign the value to path1. If path1 already has a

value, unify the new value with the old value. If path2
is undefined, this equation fails.

3.6. *DEFINED* and *UNDEFINED*

path= *DEFINED*

Check if the value of path is defined. If undefined,
then this equation fails. If defined, do nothing.

3.7. C o n s t r a i n t Equa t i ons , =c

path =c val
This equation is the same as an equation

path = val

60 2

except if path is not already defined, it fails.

3.8. R e m o v i n g Va lues , *REMOVE*

path = * REMOVE*

This equation removes the value in path, and the path

becomes undefined.

3.9. Disjunctive Equations, *OR*
(*OR* list-of-equations

list-of-equations)

All lists of equations are evaluated disjunctively. This

is an inclusive OR, as oppose to exclusive OR; Even if
one of the lists of equations is evaluated successfully,
the rest of lists will be also evaluated anyway.

3.13. Recurslve Evaluation of Equations,
INTERPRET

(* I N T E R P R E T path)

The *INTERPRET* statement first gets a value from
path. The value of path must be a valid list of
equations. Those equations are then recursively

evaluated. This *INTERPRET* statement resembles
the "eval" function in Lisp.

3.14. D i s j u n c t i v e Value, *OR*

(*OR* valval . . .)

Unification of two disjunctive values is set interaction.
For example, (u n i f y ' (* O R * a b c d) ' (* O R *

b d e f))is (*OR* b d).

3.10. Exclusive OR, *EOR*

(*EOR* list-of-equations
fist-of-equations)

]h is is the same as disjunctive equations *OR*,
except an exclusive OR is used. That is, as soon as

one of the element is evaluated successfully, the rest

of elements will be ignored.

3.1 1. Case S ta tement , *CASE*

(*CASE* path
(key1 equation1-1 equation1-2 ...)
(Key2 equation2-1 ...)
(Key3 equation3-1))

] h e *CASE* statement first gets the value in path.
] h e value is then compared with Key1, Key2 and

as soon as the value is eq to some key, its rest of

equations are evaluated.

3.12. Test w i th an User -de f ined LISP

Func t i on , *TEST*

(*TEST* lisp-function-carl)

] h e l isp.function-call is evaluated, and if the function

returns nil, it falls. If the function returns a non-nil
value, do nothing. A path can be used as special

function that returns a value of the slot.

3.15. Nega t i ve Value, *NOT*

(*NOT* valval . . .)

Unification of two negative values is set union. For

example, (u n i f y ' (* N O T * a b c d) " (* N O T *

b d e f)) is (*NOT* a b c d e f).

3.16. Mu l t ip le Values, *MULTIPLE*

(*MULTIPLE* valval...)

Unification of two multiple values is append. When
unified with a value, each element is unified with a
value. For example, (u n i f y ' (* M U L T I P L E * a b

c d b d e f) "d) is (*MULTIPLE* d d).

3.17. User Defined special Values,
* u s e r - d e f i n e d *

The user can define his own special values. An
unification function with the name
UNIFY*user-def ined* must be defined. The function
should take two arguments, and returns a new value

or *FAIL* if the unification fails.

4. S t a n d a r d U n i f i c a t i o n M o d e
The pseudo equations described in the previous

section are different from what functional grammarians
call "unification". The user can, however, select "full
(standard) unification mode" by setting the global

variable *UNIFICATION-NODE* from PSEUDO to

3 61

FULL. In the full unification mode, equations are

interpreted as standard equations in a standard
functional unification grammar [5], although some of

the features such as user-defined function calls
cannot be used. However, most users of the
parser/compiler find it more convenient to use

PSEUDO unification than FULL unification, bot only
because it is more efficient, but also because it has

more practical features including user-defined function
calls and user-defined special values. Those practical

features are crucial to handle low-level non-linguistic
phenomena such as time and date expressions
[8] and/or to incorporate semantic and pragmatic

processing of the user's choice. More discussions on
PSEUDO and FULL unifications can be found in [10].

5. Other Important Features

5.1. Character Basis Parsing
The user has a choice to make his grammar

"character basis" or standard "word basis". When
"character basis mode" is chosen, terminal symbols in
the grammar are characters, not words. There are at
least two possible reasons to make it character basis:

1. Some languages, such as Japanese, do
not have a space between words. If a
grammar is written in character basis,
the user does not have to worry about
word segmentation of unsegmented
sentences.

2. Some languages have much more
complex morphology than English. With
the character basis mode, the user can
write morphological rules in the very
same formalism as syntactic rules.

5.2. Wild Card Character

In pseudo unification mode, the user can use a wild
card character "%" in his grammar to match any
character (if character basis) or any word (if word

basis). This feature is especially useful to handle
proper nouns and/or unknown words.

5.3. Grammar Debugging Tools
The Generalized LR Parser/Compiler V8-4 includes

some debugging functions. They include:

• dmode - - - debugging mode; to show a
trace of rule applications by the parser'.

• t r a c e --- to trace a particular rule.

• disp-trees, disp-nodes, etc. ---
to display parlial trees or values of nodes
in a tree.

All of the debugging tools do not use any fancy

graphic interface for the sake of system portability.

5.4. Interpretive Parser
The Generalized LR Parser/Compiler V8-4. includes

another parser based on chart parsing which can
parse a sentence without ever compiling a grammar:

; to load a grammar
(i-loadgra grammar-file-name)

; to run the interpretive parser
(i - p sentence)

While its run time speed is significantly slower than

that of the GLR parser, many users find it useful for
debugging because grammar does not need to be
compiled each time a small change is made.

5.5. Grammar Macros
The user can define and use macros in a grammar.

This is especially useful In case there are many similar
rules in the grammar. A macro can be defined in the
same way as CommonLisp macros. Those macros

are expanded before the grammar is compiled.

6. Concluding Remarks
Some of the important features of the Generalized

LR Parser/Compiler have been highlighted. More

detailed descriptions can be found in its user's manual
[9]. Unlike most other available software [1,2, 4], the

Generalized LR Parser/Compiler v8-4 is designed

specifically to be used in practical natural language
systems, sacrificing perhaps some of the linguistic and

theoretical elegancy. The system has been

thoroughly tested and heavily used by many users in

many projects inside and outside CMU last three

62 4

years. Center for Machine Translation of CMU has [8]
developed rather extensive grammars for English and
Japanese for their translation projects, and some
experimental grammars for French, Spanish, Turkish
and Chinese. We also find the system very suitable to [9]
write and parse task-dependent semantic grammars.
Finally, a project is going on at CMU to integrate the
parser/compiler with a speech recognition system
(SPHINX [3]).

7. References

[1] Karttunen, L.
D-PATH: A Development Environment for

Unification-Based Grammars.
In 12th International Conference on

Computational Linguistics. Bonn, 1986.

[2] Kiparsky, C.
LFG Manual
Technical Report, Xerox Palo Alto Research

Center, 1985.

[3] Lee, K. F. and Hon, H. W.
Large-Vocabulary Speaker-Independent

Continuous Speech Recognition.
Proceedings of IEEE Int'l Conf. on Acoustics,

Speech and Signal Processing, 1988.

114] Shieber, S. M.
The Design of a Computer Language for

Linguistic Information.
In lOth International Conference on

Computational Linguistics, pages 362-366.
Stanford, July, 1984.

[5] Shieber, S. M.
CSLI Lecture Notes: An Introduction to

Unification Approaches to Grammar.
Center for the Study of Language and

Information, 1986.

[6] Tomita, M.
Efficient Parsing for Natural Language.
Kluwer Academic Publishers, Boston, MA,

1985.

[7] Tomita, M.
An Efficient Augmented-Context-Free Parsing

Algorithm.
Computational Linguistics 13(1-2):31-46,

January=June, 1987.

[10]

Tomita, M.
Linguistic Sentences and Real Sentences.
12th International Conference on

Computational Linguistics, 1988.

Tomita, M., Mitamura, T. and Kee, M.
The Generalized LR Parser~Compiler: User's

Guide.
Technical Report, Center for Machine

Translation, Carnegie-Mellon University,
1988.

Tomita, M. and Knight, K.
Pseudo Unification and Full Unification.
Technical Report unpublished, Center for

Machine Translation, Carnegie-Mellon
University, 1988.

5 63

