
Construction of a modular and portable translation system

F u j i o NISIIIDA, Yoneharu FUJITA and Shi.nobu 'FAKAMATS[I
Department of Electrical Engineering,
Faculty of Engineering,
University of Osaka Prefecture,
Saka], Osaka, Japan 59]

i. Introduction
In recent years the study of nlachJ ne

t r a n s] . a t i o n h a s made g r e a t a d v a n c e s and the
t r a n s l a t i o n s y s t e m h a s been l a r g e r and c o m p l i c a t e d
wJ t h a u g m e n t i n g f a e i]] t i e s . F u r t h e r m o r e , most
recently, many powerfu[workstations have been
developed and wtrious MT systems for special
p u r p o s e s a r e r e a d y to be mounted on t h e s e
workstations.

]in snch a state of affairs Jt will be needed
that many MT systems are reorganized or re-
constructed on a program module basis for easy
modification lllaJ ntainance and transplantation.

']'h:is paper has two purposes. One of th~i~l :{s to
show a method of constructing an MT system ~'3" on
a library module basis by the aids ~ a progralnming
construction system called L-MAPS. ~) The M]' system
can be w r i t t e n i n any progranm~Jng l a n g u a g e
d e s i g n a t e d by a u s e r i f an a p p r o p r i a t e d a t a ba se and
the a p p r o p r i a t e p r o c e s s i n g f u n c t i o n s a r e imp].emented
i n a d v a n c e . For e x a m p l e , i t call be w r i t t e n in a
coml)i].er l a n g u a g e l i k e C] a e g u a g e , which J s
preferable for a workstation with a relative slow
running machine speed. 4)

The other purpose is to give a brief
:introduction of a program generating system called
Library-Modul.e Aided Program SynthesizJ ng system
(abbreviated to [,-MAPS) running on a library module
basis. L-MAPS permits us to write program
specifications in a restricted natural]anguage
like Japanese and converts them to formal
specifications. It refines the formal specifications
using the library modules and geeerates a readable
comment of tile refiined specification written in tlre
above natural language every refinement in option.
Tim c o n v e r s i o n be tween f o r m a l e x p r e s s i o n s and
n a t u r a l l a n g u a g e e x p r e s s i o n s i s p e r f o r m e d
e f f i c i e n t] y on a c a s e grammar b a s i s .

• 2) : ~)
2. Overv iew o f t h e MT s y s t e m o r g a n i z a t] . o n

Our machine translation system is constructed
on the intermediate expressions based on universal
subframes of predicates and predicative nouns. It
aims at a multiliugual transfer system. []p to now,
however ~ no universal precise semant J c category
system over various languages has been constructed
yet, and our MT system is compelled to work rather
on a b i l i n g u a l basis i n the selection of
e q u i v a l e n t . s ,

The f i r s t v e r s i o ~ o f t h e p a r ~ q ~ was w r i t t e n in
an e x t e n d e d v e r s i o n " o f LINGOL - ' ~ ' . I t h a s an
a d v i c e p a r t and a s e m a n t i c p a r t i n e a c h r e w r i t i n g
r u l e . Both p a r t s o f them p e r n l i t u s e r s t o d e s c r i b e
any L i s p p r o g r a m f o r d e s i g n a t i n g d e t a i l s o f t h e
r e d u c t i o n p r o c e d u r e s . These t e c h n i q u e s used Jn
LINGOL and ATN seem a p p a r e n t l y c o n v e n i e n t . However ,
t h e y o f t e n make t h e d a t a p a r t i n s e p a r a b l e f rom t h e
p rog ram p a r t and b r i n g an MT s y s t e m t o much
c o m p l e x i t y , and a c c o r d i n g l y , p r e v e n t s a p p l i c a b i l i t y
o f tire p r o g r a m s o f t h e MT s y s t e m Lo a n o t h e r
t r a n s l a t i o n be tween o t h e r l a n g u a g e s .

R e c e n t l y , a r e v i s e d v e r s i o n o f o u r MT s y s t e m
has been c o n s t r u c t e d , rfhe main p r o g r am or

procedural part cons:i sts of uni f:i cat] on arKl
substJtut:ion, while the data part consists of frame
knowledge rewriting ruins and word dictionaries.

Rewriting ru]es wi th arguments describe the
details of the syntactic and semantic structure of
the language explicitly. For example, the predicate
part: of the Hornby's verb llattern VP]3A of Eagl:ish
is written as follows:

PREDP(PRED-co:to,MOI):m , kl-C]:t],k2-c2:t2)

--> VP(PRED-co:to,MOD:m) NP(k]-Cl:t])

PP(k2-c2:TO-t 2)

where PREDP, VP, NP and PP denote a PR]']DJcage
Phrase, a Verb Phrase, a Noun Phrase and a
Prepositional Phrase respecively, k-c:t denotes a
triple of a case label, a semantic category and a
term and in denotes var:ious modal values such as
tense an(] aspect. These rewriting rules are
tabnlated in several tab] es :[or an effJ (lent
processJ ug.

The parsing system first applies the syntactic
p a r t o f a r e w r i t i n g r u l e t o t h a t o f a h a n d l e i n a
reduction sequence of a given source sentence, ff
tile system finds a unJf:iable rewriting rule, :it
checks whether the semantic part is unifiable.]'he
category check of a term in a handle for the
case-frame condition is processed by a special kind
of unification under an interpretation that the term
category in a rule :is a restricted variable.

The intermediate expression of tile handle part
is constructed by substituting the unified terms
for the arguments in the left-hand side of the
rewriting r u l e .

3. The L-MAPS system aud language conversion
The L-MAPS system is costructed on a

fundamental].ibrary module basis. When a user gives
a specification by referrkng to the libraly module,
L-MAPS searches applJ(.:able library modules and
refines the spa(if J cation by linking several modules
or replacing :it by the detailed procedure called the
Operation Part of an applicable library module.

The formal specifications of programs as well
as tile library modules are generally difficult for
users to read and write correctly though they are
efficient and rigorous for inachine operation. Hence,
it is desirab].e to rewrite the formal specification
Jn a natural l.anguage. I.-MAPS performs a conversion
between a restricted natural language expression
and a fornlal language expression through the
intermediate (or the internal) expression of the
natural language expression with the aids of case
].abels.

The conversion between a restricted natural
language expression and the intermediate expression
can be done Jn a similar manner to the conversion
carried out in machine translation.

Formal specifications generaJ.ly have different
forms from those of the intermediate expressions.

649

The intermediate expression of a sentence takes the
following form :

(PRED:tp, Kl:tl Kn:tn) (I)

where PRED K1 and Kn are case labe].s and tp tl
and tn are terms corresponding to their cases° On
the other hand, a procedure expression appearing in
formal specifications as well as in a heading of
each library module has tile following form:

p r o c - l a b e l (K l ' : t l ' , K 2 ' : t 2 ' , K r i ' : t n ') (2)

where the procedure name plays a role of the
key word and it is constructed from the predicate
term the object term and others of the intermediate
expression° It is used for retrieving library
modules a p p l i c a b l e to a g iven s p e c i f i c a t i o n .

].-MAPS per forms the c o n v e r s i o n between the
i n t e r m e d i a t e e x p r e s s i o n (I) and the p rocedu ra l
e x p r e s s i o n (2) by a method s i m i l a r to the case
structure conversion between different languages.

The conversion :ks applied not onJy to the
c o n s t r u c t i o n of a formal specJ f J e a t i o n from an
informal specificatJ on written Jn restricted
Japanese or English but also to the generation of
Japanese or English comments on the refJ ned
specifications generated by L-MAPS itself.

4. Modularization of programs
The revised MT system is reconstructed based on

library modules by the aids of L-MAPS. Each library
module has a structure as shown in Table i.

Table 1 A part of library modules

PROC: HANDLE_REDUCE(SO:reduced_sequence, OBJ:handle,
INSTR:reduction rule,
GOAL:new_reduce~_sequence)

IN: GIVEN(OBJ:reduced_sequence,handle,
reduction_rule)

OUT: REDUCED_FORM(OBJ:new_reduced_sequence)

ENTITYTYPE:
OP: RULE_APPLY(OBJ:reduction_rule, PARTIC:handle,

GOAL:reduced_symbol)
BRARCIII(COND:EQUAL(reducedsymboI,NULL),

OP:RETURN(FAIL))
FOR(COUNT:n,FROM:l,TO:-(stack_pointer,

symbol_number ofhandle),
OP:COPY(OBJ:reduced_sequence(n),

GOAL:new_reducedsequence(n)))
COPY(OBJ:reduced_symbol,

GOAL:newreduced_sequence(+(n,l)))
RETURN(TRUE)

The heading of each module has both the
procedural expression and the input-output predicate
expression (abbreviated to the IO expression).
Program specifications given by a user can call a
module by using one of these headings.

The IO expression consists of a pair of an
input and an output predicate and asserts that the
output predicate holds under the given input
predicate.

The IO expressions are used to automatically
link some modules for a specification and to check
linking of modules specified by their procedural
expressions.

The type part describes the types of regions
structures and roles of input output or local
variables.

650

Tile OP part describes the procedures for the
~nnction assured in the heading part.]'he procedures
are described in a little more detail by using tile
headings of more fundainental modules°

Control statements are represented by using a
prefixed-form of Pascal called the General Control
Expression (abbrewkated to GCE,) here° The control
statements are expanded into a programming language
such as L:isp and C designated by users. Some
conversion rules are shown in Table 2.

Table 2 Conversion rules to objective lauguages

IF TIIEN(CONI): p. OP: s (GCE)
(CORD (p s)) . (L i sp)
I F (p) s ; . (C)

IF TIIEN_I~,LSE(COND: p, OPI: s l , O P 2 : s 2 (GCE)
(CON:[) (p s]) (t s 2)) (L i sp)
IF (p) s] ELSE s2 ; (C)

FOR(COUNT: i , FROM: m, TO: n, OP: s) (GCE)
(SETQ J m)
(],OOP ()(CORD ((EQUAL i n) (EXIT-LOOP))

(T ~ (SETQ i (ADm i)))
)) . (m a p)

FOR(J = m; J <= n; J++) s (C)
• , o . 0 , o o ¢ . 0 . o ° ~ , . 0 . o . o o o o o ~

o o o o , o o , , . 0 . o ~ , , , . o ~ 0 . ° o . . , . o o , . 0 © ° . G

Corresponding to tlle genera] control]anguage~
general data structures are also introduced. If
refined specifications are designated to be expanded
to a programming language which do not have the
corresponding data structures inherently, the
equivalent data structures and the access function
must be imp].emented in advance by combining the
fundamental data structures in the language. For
example, if Lisp is designated as the programming
language, a struct which appears in a general data
structure of a specification is expanded to the
correspondig associative list structure and the
lists can be accessed by associative functions.

5. Refinement and Expansion by the L-MAPS system

Figure 1 shows an outline of the processing by
L-MAPS.

[specificati°ns' I
£J~llibrary modules

(i) Iprocedural l~{input-output] ~ --'
[expressionsJ ~expressions I

",]specification by
I ~input-output I
J, .11 "~expr essions I

(2) I detection of ~I I/
[insuf ficiency]~$/~- -~subproblems I

, / ,/~-q~requests of I
"/I""]additional modules I

/ /

(3) ~ ~ ~ad'ditional modules I

~ - ~intermediate I
-jpr°gra.ms I

j~

~ |object language,l
(4) ~efinement,expansion~---Jexpansion mode I

-~ ~ -~object programs[

Fig.l The processing by L-MAPS

In r e f i n e m e n t , L-MAPS t r i e s to un:i.fy the
heading e l an e x p r e s s i o n in a given s p e e i f J c a t i o n
and the c o r r e s p o n d i n g heading of a l : ib ra ry module.
I f L-MAPS succeeds in the u n i f i c a t i o n , i t c o n s t r u c t s
a more de t a J] ed d e s c r i p t i o n of the s p e c i f i c a t f i o n by
us ing the u n i f i e d Opera t ion Par t of the module .

The refined part with a more detailed
description can be substituted directly for the
original part in the specification or can be called
in a form of a subprogram as a procedure or a dosed
subroutine from the specification part. One of them
is selected by the user.

The principal part of the above refinement is
unification of a specification and the heading of a
library module. When the arguments of a module are
confined to the individual variables and the number
of arguments of a function is confined to a constant
the u n i f i c a t i o n caa be c a r r i e d out; by an o rd ina r y
u n i f i c a t i o n of the f i r s t o rder l o g i c . 0 t h e r w J s e , the
u n i f i c a t i o n procedure fo r the second o rde r ilogic i s
needed.

L-MAPS has a u n i f i c a t i o n procedure f o r the
second o rde r l o g i c . IIowever, the un~ f J c a t J o n
procedure i s conf ined to a u n i l a t e r a l u n i f i c a t i o n
from a module to a s p e c i f i c a t i o n in which each
symbol i s J n t e r p r e t e d as a c o n s t a n t under the
c o n d i t i o n t ha t any s u b s t i t u t i o n f o r the symbol Jn
the s p e c i f i c a t i o n s i s f o r b i d d e n . Accorddagly, the
u n i f i c a t i o n procedure can be much s i m p l i f i e d fo r
p r a c t i c a l pu rpose .

F ig .2 shows p a r t s of a g iven s p e c i f i c a t i o n
w r i t t e n in the r e s t r i c t e d Eng l i sh f o r a p a r s i n g
program of EngI i sh s e n t e n c e s and F ig .3 shows a pa r t
of the gene ra t ed formal s p e c i f i c a t i o n .

. . . , . , , , , ° o

for i from i to m
js:=j
search handles from reducedsequences(i)

by using reduction rules, and
store it in handle(l..k) and rule([..k)
if k is greater than 0

for n from 1 to k
reduce handle(n) Jn reduced_sequences(i)

by using rule(n), and
store the result in

new_reduced_sequences(j)
. . . , , . . . o . , , . . *

Fig.2 The informal specification for a parsing
program

FOR(COUNT:I,FROM:I,IO:M,
OP: =(JS,J)

HANDLE_SEARCH(SO:REDUCEDSEQUENCES(I),
INSTR:REDUCTIONRULES,
GOAL:(HARDLE(1..R),RULE(I..K)))

BRANCNI(COND:>(K,O)
OP:FOR(COUNT:N,FROM:I,TO:K,

OP:HANDLE REDUCE
(SO:REDUCEDSEQUENCES(I),
OBJ:HANDLE(N),
INSTR:RULE(N),
GOAL:NEW_REDUCED

_SEQUENCES(J))
)

)

Fig.3 A part of formal specifications

[,-MAPS r e f i n e s the formal s p e c i f i c a t i o n by r e f e r r d n g
to l i b r a r y modules such as shown in Table] and
g e n e r a t e s a ref:ined s p e c i f i c a t i o n and the comment:
shown in Fig.4.

RULE APPI,Y(OBJ: REDUCTION_RULE, PARTIC : HANDLE,
GOAL:REDUCED SYMBOL)

BRANCH1 (COND: EQUAL(REDUCED_SYMBOL, NULL),
OP:RETURN(FAIL))

FOR (COUNT: N, FROM: 1, TO : - (STACK_POINTER,
SYMBOL NUMBER OF HANDI,E),

OP: COPY(OBJ: REDUCED_SEQUENCE(N), - -
GOAL: NEW_REDUCED _SEQUENCE (N))

, ~ o

F i g . 4 (a) A p a r t of tile r e f i n e d s p e c i f i c a t i o n

apply t:he rnl.e to the handle , and
s t o r e t;he resul t ; in a reduced symbol.
J f the reduced_symbol Js n u l l r e t u r n (f a i l) .
f o r n from t. t:o s tack_po: inter-synlbol_number

of hand] e
copy r e d u c e d s e q u e n c e (n)

:into new reduced s e q u e n c e (n) .
. o , . . . ,

F i g . 4 (b) The comments of the r e f i n e d s p e c i f i c a t i o n
in F i g . 4 (a)

In the refinement process global optimizations
are tried to be done at the user's option. Some of
them are rearrangement of conditional control
statements and fusion of several iteration loops
:i.nto one loop.

6. Conclusion

The translation system :is constructed on a
modular basis consisting of 24 application modules
and 30 bas:[c modules by refining and expanding
specifications by the aids of the L-MAPS system
consisting of about 1000 lines of Lisp statements.
The generated translation-system programs is about
i000 lines in both C language and Franz Lisp.
Besides various advantages due to the modular:[-
zation, the translation speed is almost the same as
that of the old version in LISP. Furthermore, the
translation speed in C language is about three times
faster than that of Franz Lisp at a compiler mode in
English-Japanese translation.

References
l)Pratt,V.R.: LINGOL-A Progress Report, IJCAI4,

422-428 (1975).
2)Nishida,F., Takamatsu,S. and Kuroki,B.:

English-Japanese Translation through
Case-Structure Conversion, COLING-80, pp.447
-454 (1980).

3)Nishida,F. and Takamatsu,S.: Japanese-English
Translation through Internal Expressions,
COLING-82, pp.271-276 (1982).

4)Nishida,F. and Fujita,Y.: Semi-Automatic Program
Refinement from Specification Using Library
Modules, Trans° of IPS of Japan, Voi.25,
No.5, pp.785-793,(1984), (Written in
Japanese).

5)Tanaka,ll., Sato,T and Motoyoshi,F.: Predictive
Control Parser: Extended LINGOL, 6th IJCAI,
Vol.2, pp.868-870, (1979).

651

