
PART ~E - LELIEOSTATIST]DS 

The Swadesh theory of lexicostatistics (1950, 1952, 1955) 

provided the first quantitative comparison of related languages 

based on a well-defined model of language change. The stochastic 

nature of this model was poorly understood by linguists, in the 

main, and many have rejected the theory in the course of a protracted 

and confused controversy. Meanwhile field linguists, especially 

those working with language groups of unknown history, have accepted 

lexicestatisties and have found it to he an efficient, valid and 

reliable tec huique. 

The Swadesh thee .r~ 

There are serious oversimplifications of reality implicit 

in lexicostatistics, and it is these, rather than the stochastic 

aspects, which are limitations of the theory. Swadesh hypothesized, 

in effect, that 

(i) it is possible to discover a set of basic, universal and 

non-cultural meanings, and he constructed a list of about 200 such 

meanings; 

(ii) in every natural language, at a given tl ~e, there is a 

unique lexical representation (word)corresponding to each of these 

meanings; but 

(iii) over short time intervals, the word representing any 

meaning runs a small but constant risk of being replaced by a 

different (non-cognate) word; and 

(iv) the replacement, or non-replacement, of the lexical 



representation of a meaning occurs independently of that of any other 

meaning, and independently over different periods of time. 

To formalize (i) and (ii), we must postulate the existence, 

for each natural language, at all points t in time, of a lexico_..___~n, 

represented by a finite abstract set Lt. A well-defined equivalence 

relation corresponding to cognation parti- 

tions the elements of ~TLt (T a real interval) into equivalence 

classes. If k6Ls, I~L t (t,s6T) are cognate, we write ~(k,l) = i. 

Otherwise ~(k,1) = O. 

Further, we must postulate the existence of a finite 

abstract set M (corresponding to the universal set of meanings), and 

a procedure for defining, for any t, and any Lt, a unique map from 

M into Lt. This map, written M ~Lt, specifies that for each 

t 
m~M there is a i~ L t such that m ~ l  (i mean., ss m). 

Hypotheses (iii) and (iv) imply that the changes over 

time in the image of the map M---~*-t Lt have a certain stochastic 

aspect. This can be modelled by the probability statement 

P [ ~ ( k , l )  = 1] = i - X ( t -  s) ÷ h , 

a universal constant, t>s, and ~t-s -~ 0 as t-~s; and two 

independence conditions ; let 

S 
m i ----~ k i 

for i = 1,2,...,IM~ (~Mi the number of elements in M), 

t 
mi------'-~ i i 

~'oCkl,ll; , ~ ( k 2 , 1 2 ) ,  • • • , ~ o ( k ~ M l , l ~ m  ) , , ' ,  ~ d o ~ n d e n t  ~hen 

random v a r i a b l e s ;  let 
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s i 
m ~ h  i 

for _ [si,ti) , i = 1,2,...,N, 
ti 

m ~  j± 

then ~ (h~,j~, I(~,j2~,... , 

variables. 

This model has a number of immediate properties which form 

the central thesis of the Swadesh theory. These are presented here 

as Theorems I, 2 and 3. For simplicity we will assume that at any 

time t, at most one word in L t can belong to a cognation equivalence 

class. This simplifies notation and proofs, although the assumption 

may be relaxed without substantively affecting this development. 

One further type of assumption is required to ensure a 

degree of randomness in the choice of replacing word during lexical 

replacement. To prove Theorem I as stated below, we require 

BC > I such that 

for all m, t>s, ~(k,l) = O. 

a finite number of 

disjoint intervals, 

(~ ' JN ) are independent random 

ILtl 

= O(ILtl ) , 

Theorem i 

]MCI ~S(~,Im) = e "~t's> • O([Ltl ) 



Proof 

Let N(t-s) be the number of changes (with respect to the 

cognation relation) of the mapping m~t i in the interval (s.t]. 

Then N(Z-s) = 0 is just the event tha% a Poisson process remains at 

zero onthe interval (s,t] (see, e.g. Parzen, 1960, p.252), and 

However, 

P [ ~(~s): 0] : e "~(~s) 

• PIN(t-s)> o] x p [ last c~ge Is te 

k (o~ co~a~) I N(t-~) > o] 

= e " ~ ' ( t ' s )  ÷ (i - e " ~ ( ~ ' s ) )  O ( I L t l )  

= e-A(~-s)  . O( IT . t l )  

Then 

IMi -1 

~. ~(k,1) = e "A(t's) • 0(|Lt!) 

EZ~(~,~> ~ i~ 1 ~E~(k~,~) 
m(M mEM 

= tMj -1 I M I L e - ~ s )  • O( ILtl )~ 

= e + O(ILtl) 



Definition 
B I| 

Lt, Lt, t> s represent the lexicons of two languages 

which are indenendent ~ languages of the same parent language 

(which are said to solit at time s) if 

' = L" Ls s ' and if 

s 
m---*-k (in beth languages) 

m--t-~t l' in the first language 

t 
m~l" in the second language, 

then ~(k,l') and ~(k)l") are independent random variables. 

Theorem 2 

Then 

Let Lt, .Lt, t>s be as above. 

el 

P [ l ( ~ ' , l " )  = 1] = . - 2 X i ~ s ) .  O(~.~L,ti ,iLtl) 

m6.M ) 

Proof  

Ass'~l~g m~-~k  in beth languages, 

By t r ans i t i v i t y  of the equivalence relation represented by S ,  the 

first term on the right is 

P [ ~ ( k , l " )  = 1~ $ ( k , l ' )  = 1]~w~oh, by independence 

.. [s-~,C~s>. o~<, ~1 [ e . a ~ + ' s >  * o~(,.~, >] 



- z~  ( t -s)  e -A( t -s )  ' = e • ( O ( I L t l )  * 0(1 ' .  i ) )  ÷ O ( I L t l l L t | '  " ) 

tl = e - z A ( t ' s )  * O ( ~ I z , [ l  , ILtl  ) 

Now the second probability on the right hand side above is, similarly, 

P [ ~ ( l ' , f ' )  = 1~ I ( k , l ' )  = o~ ~(k , f ' )  = o] 

= ~P[m-~e-t l ' ( ls t  language)~ m--~t l"(2nd language)] J ( l ' , l " )  
I |  

I'~ L t 
11 It 

1 ~L t 

S(~', ~o 
~(~", ~o  

= ~P[m t--~l '] P[m t--~p-lU ~( l ' , l " ) ,  by independence. 

Since we have fixed m--~ k 

The summation contains at most 

I I! 

m x  (I L t [ ,  { Ltl ) 

terms which are not annihilated by "- " ~) (i',i") 

and so the total is 

o c max ( I L ' I , I L " I ) t  t 
"< IL[I {L~I 

t H 

= O(.~n f Lt | ,  ILt/) 



This completes the proof of the first statement of the theorem. 

The proof of the second parallels the analogous result in the 

previous theorem. 

In natural languages, [Ltl is several thousands and 
[LJ 

is ne~ligible compared to the exponential te~u, except for 

very high values of t (where the theory has little applicability). 

In the n e x t  theorem, the results of Theorems 1 and 2 are utilized, 

neglecting the emr terms of the form O(lLt[ ). 

Under certain, more s p e c i f i c  restrictions on 

P[o-*~ llm-~ ~] , B ~  ~n.~ ~Ived ~or ~ e~ot ~o~ of 

the error term a t t a c h e d  to  t h e  expommtial laws (here formulated as 

Theorems 1 mad 2). 

Theorem 3 

Insofar as we may approximate the results of Theorems I and 2 

by 

l.1-1 E ~  $(k~) = j':~e,..s) 

and 

l . l  "1 E ~., J o . ' , l " )  = o ' ' 2~e '~ )  

r e s p e c t i v e ~  i f  i t  i s  known t h a t  t - s  = T, t hen  

: - l o ~ l x l - l ~ c k . 1 )  
T 

is the maximum likelihood estimator (~) of ~ in the first 

formula above, and if ~ is known, 



- l og  | M l . l ~ S d ( k ~ l  ) - v .  . /% 
%~-s -- .... k 

is the }~E of t-s. 

In the case of two independent daughter languages (Thin. R), 

A ~  - io~ IMI'ZZ ~ ( i ' ~ i " )  t - s  = 

is the MLE of t-s. 

Proof 

It suffices to find the MLE of ~ , the other cases being 

analogous. 

-AT 
Consider binomial trials with parameter p = e 

~(k,l) = 1 is the equivalent of a success in one such trial. 

~. ~(km,l m) = r is the equivalent of r successes in [M I trials. 
m~M 

The likelihood function of ~ in such a case is 

l o g  L ( ~ )  = c o n s t a n t - ~ T r  • ( | M | - r )  l og  ( 1 - e ' A ~ .  

d io~ L( ~ ) = -Tr -Te-~T~_ML~ 

dk l-e-"" 

At the MLE, ~ , this derivative should be zero, 

~ = - l o g ~  I 

T 



and the same process yields 

t-s 
A 

Letr= ~ 
me M as in Theorem 3. Swadesh (1950) derived 

a method~logy to utilize the three results 

~), = - log ( r / ~ )  

t . -s 

A 
~.$ = - loz CrlIMl) 

2A 

as follows. He first selected his list of meanings which he 

considered basic to all languages. He then • compared Old English 

with Modern English (t-s ~.I000 years), i.e. he compared the 

words in each language corresponding to the basic meanings. The 

etymology of words in those languages being fairly well known, 

he was able to decide when a pair of words corresponding to 

the same meaning were cognate (i.e. one was historically derived 

from the other, or both were derived from a co~n root, by a 

series of phonological alterations, each of which affected only 

a part of the word in question). This Immedi&tely led to 

~-~ 2 ~ I0"4° Using the estimate which he obtained as a constant, 

he dated the relative times of separation or "split" of 
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various Salish (western NorthAmerican Indian) languages from a 

common parent with the estimator t-s . After the work of Lees (1953), 

was considered to be a universal constant~ t-s could estimate 

absolute dates of split, and t-s could date a collection of texts 

from a dead language. 

Criticisms of the theor 7 

Criticisms of lexicostatlstics fall into two classes. In 

the first class are protests based on or resulting from the stochas- 

tic nature of the model an~or the stochastic nature of the pheno- 

mena of lexical loss and replacement. The second class of criticisms 

refer to particular assumptions in the model , and I will discuss 

these in the next section. 

Bergsland and Vogt (1962) presented four cases where 

t-s (or ~s are not accurate (thre~ too low and one too high), 

and rejected the Swadesh theory o n  this basis. In statistical terms, 

the authors constructed a sample consisting entirely of outliers and 

rejected an hypothesis without even considering the distribution of 

the test statistic. Fodor (1962) took the same approach to "disprove" 

lexicostatistlcs. Chretien (1962) calculated and published pages 

of ordinary binomial functions to prove, in essence, that t-s is a 

random variable and hence not "an acceptable mathematical formula. 

tion" of the Swadesh theory. This basic misunderstanding of the 

nature of statistical estimation is characteristic not only of 

critics of lexicostatistics, hut also of many of its practitioners. 
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A more important criticism has been expounded, at great 

lengthp by Fodor (1965) and, more clearly, by Teeter (1963). 

Quoting from the latter: 

"Lexical similarities and dissimilarities do net 
come about in any one simple way, and any mechanical 
method of counting lexical similarities cannot 
separate those due to chance, universals, diffusion, 
and common origin. Lexical change is the result of 
many factors, and all are scrambled together in the 
final result." 

(p .~ l )  

This diversity of causes of lexical and semantic change has received 

detailed study by linguists and semanticists; see, for example, 

Bloomfield (1933) p.392 ff., Ullman (1957) p.183 ff. Quoting from 

Lees (1953): 

" The reasons for morpheme decay, i.e. for changes 
in vocabulary, have been classified by many authors; 
they include such processes as word tabu, phonemic 
confusion of etymologically distinct items close in 
meaning, change in material culture with loss of ob- 
solete terms, rise of witty terms or slang, adoption 
of prestige forms from a superstratum language, and 
various gradual semantic shifts, such as specializa- 
tion, generalization, and peroration." 

(p. 114) 

And it is Just this diversity and the difficulty of "unscrambling" 

which, contrary to Teeter and to Fodor, justifies a stochastic 

model incorporating retention parameters. Consider, for comparison, 

the problem of constructing a model for the behaviour of gases. We 

have an enclosed volume containing a large number of particles of 



finite dimension, undergoing rapid motion. We can assume everything 

is perfectly deterministic, all the particles obeying Eewton's three 

laws of motion, and all collisions perfectly elastic. The position 

of any particle at any time can, theoretically, be calculated pre- 

cisely if we know the initial state of the system and the time 

elapsed. Practically speaking, of course, this would be impossibly 

tedious, boring and pointless, there being so many particles, any 

two of which may collide, plus the walls, plus gravitational or 

electrical charge attractions and repulsions to consider. What is 

possible, interesting, and of great value (witness the fields of 

kinetic theory and statistical mechanics, dating from the work of 

men such as Maxwell, Bolt~man% and Einstein) is to consider the 

nature of each particle as a random process involving appropriate 

parameters and to consider the statistical bohaviour of the model 

thus constructed. It is complexity and great difficulty of predie. 

tion which make a statistical model workable. In the same way, Fodor 

and others have inadvertently Justified the preposition that some 

sort of stochastic process might be an appropriate model for lexical 

change phenomena. The question remains, what process? The Swadesh 

theory provides at least a first approximation to the correct answer. 

Problems with Swadesh's mode ~ 

Before discussing details of the model, it is appropriate 

to present the results of an early (1953) lexicostatistic investiga. 

tion of R. Lees. He chose thirteen language pairs, each pair con- 

sistlng of an historio language and a modern descendant. The 

12 
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p a r t i c u l a r  choice of  pa i r s  presumably s t e w e d  from a v a i l a b i l i t y  and 

not  from any sampling technique.  He t r a n s l a t e d  each word i n  

Swadesh's 215-word list (1950) i n to  the 26 languages. After count- 

ing the number, r ,  of  cognates between each language pairp he used 

(in effect), 

-~S 

where {MJ ~ 215 according to the number Of indeterminate  cognations 

and uncertainties of translation. To get an estimate of a "universal" 

, he combined the individual estimates in 

i=l 

( ~ =~A~gives approximately the same result. ) 

Using p = e "At as the parameter in the binomial experiment 

he calculated, for each language pair, 

(JMIo - r)2 
IMI p(1-p) 

which should be approximately the square of a standard normal random 

variable, if the assumptions of the theory are true. Since an 

est~imate of ~ is used in calculating p, the sum of the squared 

va~bles s~d ~ ~,~-~strlbuted. ~ut Z~<9.5, ei~iflcant ,t 

the I% level, suggesting rejection of the theory. 

Lees, however, suggested four reasons for not rejecting on 

the basis of the ~2 test; the large values for ~M~ and r, uncertainty 

in t, possible inappropriateness of the ~2 test, and the error in 

estimating ~ . The first and third of those are not valid 
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statistically, and the fourth is a source of very little of the 

excess ~2. The variability in the time parameter can be incor- 

porated into the ~2 calculation. This only reduces 

~2 to 25.9 - 27.5 depending on the variation assumed in t. Lees' 

results, then, indicate strongly that the theory Is an inadequate 

model for the phenomena. 

We turn now to the second class of criticisms of the 

Swadesh model, those that involve objections, evaluations or im- 

provements related to the generalizations and simplification of 

reality inherent in lexicostatistlo theory. The listing of assump- 

tions earlier in this chapter will serve as a framework for classify- 

ing this latter class of criticisms. 

(i) There are no universal sets of meanings, it being difficult 

to specify most meanings without recourse to particular natural 

languages. ~o llst of meanings yet devised is completely satisfactory 

for sufficiently diverse languages; Holier (1956), O'Grady (1960), 

Cohen (196~), Levin (1964), Trager (1966). 

(ii) The existence of synonymy proves the non-uniqueness of 

the meaning map MT-~L; and no known methods of eliclting words for 

given meanings are completely and reliably reproducible, from 

speaker to speaker or even from occasion to occasion for a single 

speaker; Gudschinsky (1960). The existence of general and specific 

terms for a single entity provides a further complication. 
i 

(iii) If the parameter ~ can be sald to exist at all, It Is 

constant neither from language to'language; Bergsland and Vogt (1962), 
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Fodor (1962), from meaning to meaning; Swadesh (1955), Androyev 

(1962), Ellegard (1962), and especially Dyen (1964), van der Merwe 

(1966), Dyen, James and Cole (1967), nor even from time interval 

to time interval for the same meaning; Swadesh (1962). 

Judgements about cognation are unreliable, especially 

with respect to languages which are separated by large t-s and 

whose history is mostly unknown; Fairbanks (1955), Teeter (1963), 

Lunt (1964). An analysis of this latter problem is beyond the scope 

of this study. 

(iv) Lexioal loss and replacement do not occur independently 

for different meanings, neither are current and future trends entire- 

ly independent of what has happened in the past, especially in lang- 

uages which have possessed an orthography for some time. This has 

been noted especially in connection with the independence assumption 

of Theorem 2, as in the interval immediately after a split we might 

expect parallel (to some extent, at least) evolution of the two 

daughter langumges; Lees (1953), Hymes (1960), Teeter (1963). Also 

in this connection~ independence of evolution does not strictly hold 

where borrowings, loan-translations and imitations of other types are 

frequent occurrences. 

Towards a new thgor ~ 

A number of authors have attempted to deal with one or more 

of these problems. Swadesh (1952) discarded more than half of the 

meanings in his original list. For choosing among synonyms, Gudschin- 

sky (19~) proposed a random selection, ~vmes (1960) suggested a 

procedure which would seleot cognate forms whenever they were 



16 

available, Satterthwaite (1960) and D,Jen (1960) pointed out that 

it would be more reasonable to choose the word which is most fre- 

quently used for the meaning in question. 

Little could be done about the central postulate or result 

of the theory; that ~ is a constant, until the work of Dyen became 

well known. Dyen, on the basis of comparisons of a large number of 

Malayopolynesian languages was able to segregate meanings into 

groups on the basis of their individual ~ 's. A discussion of the 

mathematical implications of this ( p=e~i (t's) for meaning m i leads 

to E(r/I M I) = "i~=e "~i(t's) ) was published by van der Merwe (1966). 

Meanwhile, Dyen (1964) had statistically demonstrated that meanings 

with high A in the Malayopolynesian languages tend to have high 

in the Indoeuropean languages and vice ve~. This was the first 

new type of lexicostatistic result since the work of Lees. Later 

(1967) this work was refined so that Dyen et al were able to 

estimate a separate ~ for each meaning on a 196-word list of the 

Swadesh type. 

On the problem of independence, Swadesh pointed out that 

interaction between languages because of contact would bias estimates 

of t-s downward. Hattori (1953) suggested and Hymes (1960) discussed 

the formula 

~-(r/t Z~I) = e " l ' ~ ( t ' s )  

as a way of taking into account parallel evolution and the effect of 

those meanings with lower ~ than the rest of the llst. The latter 

effect is, however, properly described by using a sum of exponen- 

tials and, for the former, it is unreasonable to expect a constant 



multiplier (1.4) to express the dependence of two languages over 

all time. It is Clear that the multiplier of -~(t~s) should be 

near zero when t is close to s and to approach 2 as t gets very 

large. This was noted by Gleason (1960) who rightly suggested that 

for all sufficiently large t, estimates of t-s could be corrected 

by adding a small positive constant. 

One further suggestion that has been made by many authors 

and implemented by some, e.g. Hirseh (19~)~ Hattori (1957), is to 

attempt to construct a larger set M to provide a better (i.e. 

lower variance) estimate of time intervals. 

The primary purpose of this paper will be to develop a 

formal theory of word-meaning relationship, applicable to lexical 

and semantic change, which incorporates most of the criticisms 

levelled against the Swadesh theor~ 
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Relationship j to linguistic theories 

This theory is unique in that ~ t provides a link between 

two previously unrelated linguistic theories, that of generative 

grammar, and the conventional descriptive semantics. Elsewhere (1969) 

we show how stochastic models, like our theory of word meaning 

behaviour, and Labov's (1967,1968) frequency approach to optional 

grammatical rules, can be derived by imposing probabilistic struc- 

ture on formal grammars. On the other hand, the major phenomena 

and problems of descriptive and historical semantics can be elegant- 

ly formalized in terms of this same model. 
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PART TWO - WORD-MEAN]I~G PROCESSES 

The problems of the Swadesh theory stem from its assump- 

tions about the nature of meaning, and its oversimplified mechanism 

of lexical replacement. I propose a model of word-meaning relation- 

ship in which lexical replacement is a consequence of a more basic 

stochastic phenomenon - fluctuations in probabilities of word usage. 

The only aspect of a "meaning" which is relevant to this model is 

its representability by one or more words. I make no assumption 

as to the psychological or cultural nature of meaning. In fact, Thm. 4 

below shows that the set of meanings as defined here can be 

considered a purely analytical construct. This set is completely 

determined by comparing word usage probabilities in certain con- 

texts. For a natural language there is the possibility of construct- 

ing the set of meanings by empirical means (from word usage frequency 

data). 

Whether the entities I refer to as meanings correspond well 

to aspects of the intuitive (or the semanticists') concept of 

meaning depends on whether they have important properties in common 

and whether they behave similarly over time. It is ~ thesis that 

these entities model the processes of historical semantics at least 

as closely as, say, the "meanings" of Osgood e_~t a_~l (1957) model 

psychological aspects of meaning or the "m?anings" of Katz and 

Postal (1964) model the grammatical function of meaning. 
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The word-meanin~ relationship 

The mapping type of relationship in the Swadesh theory 

can be represented by a bipartite graph as in Fig. I . 

M L 

m 1, , ira1 

~' ~'lm 2 

miMl ~imiM i 

Fig. I. Map relationship (many-to- 
one possible but not 
one-to-many). 

The first generalization to be made is to allow a many-to-one 

(in both directions) relation= as in Fig. 2. 

Fig. 2 • Unrestricted word-meanlng 
relationship. 

The next important refinement of the model is the introduc- 

tion of probability distributions on words and meanings. The 

frequency with which a word takes on a meaning in M has, as cited 

in PART 1, been recognized as important to lexicostatistics. 

DFen's (1960) essay contains a clear description of how fluctuations 



in these frequencies underlie the phenomena of lexical replacement. 

In what follows, L can be understood as in PART 1, hut M is 

completely reinterpreted. 

,~finitio.n 

Let L and M be finite sets. 

Let p(. ," ) be a bivariate probability distribution on MX L. 

 .et S m =  l qp(m,l  > 01. 

If S m ~ ~ for all m~M, and if for distinct m,n~M, S m ~ S n , 

then M is a set of meanings on L, with respect to the distribution 

p, and eaoh non-zero p(m,l) represents a word-mean in ~ relationshi p 

between 1 and m. 

p(m,l) should be understood as the probability that the 

word i will be used, and that meaning m will be intended (when no 

information is given about the context). The definition incorporates 

two restrictions on abstract meaning, s, neither of which is overly 

restrictive when considered as properties of meanings in the in- 

tuitive sense. First, if a meaning is expressible by some word or 

other in the lexicon, that word must have a non-zero probability 

of expressing it (in some context which has a non-zero probability 

of occurring). Second, if two meanings are to be distinct, on our 

level of analysis, at least one of them must be expressible by at 

least one word which the other is not, Fig. 3 illustrates these 

conditions. The latter principle, lexica..._~l distinguishability of 

meanings, might seem to place too much emphasis on marginal or 

threshold word-meaning relationships (those with very low p(. ,. )). 
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- . ~ calm 

mj ~ i  t = happy 

m k ~ l  u overjoyed 

~ I v exube rant 

Fig. 3 . Part of word-meaning system. 
iff p(m,l)> 0. 

A line Joins m and i 

Such objections will be seen to have little importance, however, 

after Theorem 9 below, where M is embedded in a metric space. 

Hero all meanings which do not differ greatly in their usage proba- 

bilities will cluster together in the metric space, and any com- 

parisons between meanings will be in terms of the metric. Assuming 

lexical distinguishability facilitates the particular line of 

development followed here, but relaxing it (e.g. in favour of a more 

quantitative distinction between meanings, or in favour of a defini- 

tion of meaning grouping closely related lexically distinguished 

entities) is not likely to radically affect the behaviour of 

meanings in the metric space. An important consequence of the 

definition of a set of meanings is 

.T..hoorem 

Let ~(L) be the s e t  of  subsets  of L, and l e t  M be a s e t  

of meanings on L with respect  to p. I f  S m ~ l ~ L I p ( m , 1 )  > 0~, 

then 

m ~ S  m 

is a one-one map from M onto a subset of ~(L). 
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Proo~ 

It need only be shown that if 

m -----*- S m , n ~ S  n 

then 
S n = S m 

or equivalently, 

m~n 

m ~ n =:$ s m ~ s n , 

but this is just the condition of lexical distinguishability in the 

definition. 

Theorem @ tells us t~at, for analytical or computational 

purposes, we can treat meanings as sets of words. Two meanings 

are distinguished by the words they do no_~t share and are related by 

these they have in common. Note that the case p(m,l) = 0 can arise 

in two ways. Either p(m,l) = O, for all i, in which case S m = 

and m is not a meaning, or m i_~s a meaning but I ~S m. From now 

on, no distinction will be drawn between the meaning m and the set 

Sm, and the latter notation will be discarded. Sometimes, an 

entity whose status as a meaning or not is under study, will be 

labelled m. If m is not a meaning, p(m,l) -- O, for all i; m ~ M; 

S m = ~, etc., and every attempt will be made to keep this usage 

unambiguous. 

_Interpretation of the marglnal, distrlbu~ions 

With the usage probability interp~tation of p(. ,. ), 

g(1) = ~p(m,l) 
m 

22 
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is the overall probability that i is used. The probability 

function g(1) underlies word-frequency distributions, e.g. those 

of Zipf (1945), Josselson (1953), and Juilland (196~a, 1965b). 

1 

is the overall probability that m is used. This is related (at 

least conceptually) to the "semantic frequency lists" of Eaton (1940). 

Since these are probability distribution functions, 

m i m,l 

and~ of course, 

p(m,l) ~ 0 . 

Recapitulating, a word-meaning relationship exists between 

m and i, or a line is drawn between m and i on a word-meaning graph 

like Fig. 2 or 3 , iff i can take on meaning m, which occurs iff 

p(m,l) ~ O. (I.e., we require that if a word ca..~n take on a meaning, 

there is a non-zero probability that it wil_.~l do so. ) The statement 

f(m) = 0 is equivalent to saying that m is not lexically represent- 

able by elements of L, and m~ M. 

Precision of speech 

In constructing a model involving the grouping of words 

and the distinction between meanings, provision should be made 

for some degree of variation to correspond to the variation which 

occurs in reality, from person to person and, more especially, from 

situation to situation. This variation is a complex effect, but 
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a good deal of it may. be interpreted as alternation between precise 

and loose speech. In certain situations, and for certain topics, 

effective communication requires unambiguous usages, specific rather 

than generic terms, and other manifestations of precision which 

are, on the other hand, inefficient, uneconomical or just too 

difficult to sustain in everyday speech. This alternation may occur 

independently in different parts of the lexicon in a natural 

language, but for our model we will use a single precision parameter 

06. Each value of o6 will specify a set M~ of meanings on L. In 

the next few sections, the probability distributions and other 

entities dependent on OC will be so subscripted (e.g. pK(m,l), M~). 

In what manner should the system depend on ~6 ? In natural 

languages, as a speaker becomes more precise he draws more distinc- 

tions between words and he groups two words of similar meaning less 

frequently (i,e. with smaller probabilities). One measurement 

which is sensitive to this process in the model is the average size 

of the meanings 

where Iml = [Sol, the number of words connected to, representing, 

or simply in, a meaning. This measurement would be too crude, by 

itself, to serve as a precision parameter, since it does not 

distinguish between overall precision in the system and extreme 

precision in o n e  part o f  the system but li%tle precision in the 

rest. Instead, a condition should be placed on the system so that 

if ~ increases, then in any Dart o~ ' the  ~ I, this increase 
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would c o i n c i d e  w i t h a n  i n c r e a s e  ~n t h e  p r o b a b i l i t y  w e i g h t  on smal l  

meanings (i.e. ~m~ is small) and a decrease in ~ would coincide 

with an increase on largo meanings. Such a restriction may be 

formalized as follows. 

Let 0(6 [0,I]. Let DC ~(L) be any set of subsets of L, 

meanings or not, such that 

m ~ D, nCm ~ n~ D . 

Then it is required that 

m~D mGD ]~m 

is monotonic and non-decreaslng with ~. Another way of looking at 

this is in terms of the lattice of subsets of L. If we choose any 

points in the lattice or even draw a llne right across it~ the prob- 

ability assigned to all sets below these points 9 or below the line~ 

must increase (or at least not decrease) as ~9 the precision~ in- 

A simple example ~ illustrate this. Let L = (11,~,13} creases. @ 

Fig. 4 depicts the lattice of subsets of L. 

: [ i ,12,13I 

Fig. 4 . Possible meanings when L = [11,12,13~ . 
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For three values of ~ , values of ~(m,l) might he as in 

Table 1, and it is easy to verify that the precision condition 

hel~ ~o car = one o~ ~I~, [~, ~, ~,~, ~'=3] ' 

f~3'~ ' ~=i'~'~] ' {~'~'~}' f~'~-'~3~ ' ~'~3'~J ' 

{=~.,~,,b,=~,=~,=~,,~ >. 

~=1 I 
f 

12 

13 

~ / 8  - o ~ - o ~ , 0 ~  = ~ . ~  

. 1/8 - ~ 0 0 high precision 

I 
ll 

~ = 0 . 5  i z 

t / t o  - . -  o - z / lo  z/zo ~ . 5  = {"4-'"~'mS'm6'm?} 

- Z/tO - o Z/5 - l /Zo % ~ ]  = z ' z  

- - 0 - 1 /10 1/10 1 /10 medium p r e c i s i o n  

~ = 0  f 
l 

13 

o - - o - 1 / 8  ,~ ~ = { ' ~ . " ~ }  

- o . o o - .~ ~ - . O = , ] = z . 7 ~  

. - -  0 l O 1/8 ~ low precision 

Table 1. A word-meaning system a t  3 l eve l s  of prec is ion .  

The example suggests the next theprem, which confirms 

t h a t  the p rec i s ion  requirement i s  strong enough to imply 

monotonlcity of  the averQge meaning s i ze .  
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P r o o f  

E,~[|ml) i s  a d e c r e a s i n g  f u n c t i o n  of '  ~ . 

~ t  ~( i )  =~] ~,~(~) "~ i = 1,2,.  , I ~ I  , 
Iml=i 

lml=i 

.Then a(.) and b(.) are probability distributions on the integers, 

where a(i) is the probability that an unspecified meaning will 

contain i words. Consider 

Clearly 

requires 

D i =  [m~L(  ImISJ~ . 

re(D, n~m ~ n &D . Then the precision condition 

Therefore 

ImI.~J lm|eJ 

J 

i=l " i=1 

Since a(.) and b(') are probability distributions, 

ill • ILt 

i=l i=i 

i=J i--i i=1 i=J 

J 
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Then 

~" ja(J) ~" Jb(J) 
J=l J=l 

since a(. ) and b(,) are the probability distributions of the 

values of |m|. 

Regularity conditions 

We have imposed a condition on the p~(m,l) so that the 

probability weight must flow down the lattice of subsets of L as 

C( increases. It would be desirable, from the viewpoints of model 

realism and analytical convenience, to have this "flo~' behave in 

as continuous a manner as possible. It would be most convenient if 

the pJm,l) were required to be continuous functions of ~ , but 

there are good reasons to relax this somewhat. 

Again trying to model natural fan,ages, it would be 

realistic to require that the following process may occur in the 

system. Suppose a meaning m'~ is connected to k,ll,12,...,ir~ L. 

our earlier notation, Sme= ~k,ll,12,...,I~, in our current (in 

notation m' -- {k,11,12,...,lr~ , po<~',k),O, Po(m',li>> O, ~ li'~). 

As ~ increases, the values of all the p~,l i) fluctuate but 

remain greater than some positive value, except for p~(m~k) which 

gradually drops to zero at ~o" In terms of speech behaviour, 

the words k, iI,12,...,i r are used interohangeably (in certain 
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contexts) to mean m t, when precision is low. As precision increases, 

11,12,...,i r continue to be interchangeable but k is seldom usable 

in this sense and~ at ~(o, never. It is most important in what 

ensues to understandthat the set m I = {k,11,12,...,I ~ ceases to 

be a meaning when the precision is ~o' 

i.e. e 
m e M~, GC<O(  o 

m' ~ M~.. 

It is, however, most natural that m = me-~I,~1,12,... Sir ~ 

b~e a meaning at O( o' since the interchangeability of these words is 

not necessarily dependent on the behaviour of k. Hence, if any 

psychological interpretation is to be attached to the set of abstract 

meanings in our model, it must be realized that as precision changes, 

the abstract label attached to a psychological or cognitive entity 

may suddenly change as lexical representability of that entity 

changes. If this seems strange behaviour for a symbolic system, 

it should seem less so later, when the M~are embedded in a metric 

space and the relative position of meanings in this space becomes 

more important than the letters that identify them. 

e 
Returning to quantitative considerations, since m ceases 

to be a meaning at ~o and m suddenly takes over its role, it is 

necessary that p~(m' ~l~,..., p~m',l r) drop discontinuously to 

zero at % and poc(m,ll), . . . ,  p~(m,l r) Jump to compensate. 

We must, therefore, accept certain discontinuities of 

this sort in the model. For simplicity°s sake~ we restrict 
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occurrences such as this so that only on_~e p~(m,l) may drop 

' k continuously to zero at any particular value of a6 o (p~(m , ) in 

the example above). This is in fact a weak restriction, in that 

we can approximate situations where N of the pm(m,l) go to zero 

at ~o by having them do this one at a time, at a(o, ~o ~ E , 

~o * 2G , . . . , ~o ~ (N-I)E for arbitrarily small 

An appropriate continuity-discontinuity condition may be 

most economically phrased as in condition (iii) in the next seetlon. 

Summary of development thus far 

We assume that there exists a finite set L (the set of 

words) and for each ~ • [0,I] a finite set M~ (a set of meanings 

on L) and a hivariate probability distribution pm on MmM L such that 

m~M~ IGL 

The elements of M~ are in one-one correspondence with certain 

non-empty subsets of L. 

mw---*s m ¢~ ~(m,l)> O, ~l~S m . 

This correspondence enables us %o unambiguously identify S m with 

m~ and we may rewrite the above condition 

As 

(i) p~(m,l) > 0 ~ le m and mcM~ 

varies between zero and I, the followin E conditions must hold: 

(ii) If DC @(L) such that m~D, n~m ~ n&D, then 

~ p~(m,1) is monotone non-decreasing with ~. 
maD l~m 
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( i i i )  The pc (m,1)  a r e  c o n t i n u o u s  f u n c t i o n s  o f  ~ o n l y  where 

M~ i s  f i x e d .  M K changes  a t  @~o o n l y  a s  a r e s u l t  o f  d i s c o n t i n u i -  

t i e s  o c c u r r i n g ,  f o r  un ique  m, and  u n i q u e  k ~  m, to  a l l  o f  

but " " 

p, Jm,1)  • p=(m * { k } , l )  i s  oontinuous,  for  ~ n  1~ L. 

Before. enunciating the continuity and discontinuity 

condition (lii), we described the desired behaviour of some of the 

functions p(. ,. ) at a point where the condition is relevant. We can 

prove that this condition implies this behaviour. 

In the system as described above, if ~o is a point where 

M l changes, then p~(m @ {k},k) (as in condition (ill) above) is 

continuous at ~op and if it goes to zero at ~o it is the only 

such function. 

P r o o f  

By condition (iii), 

T h e r e f o r e  

p~(~,k) • p~(~ • [k},k) is aontinuous ,t =o. 

But 

pw(m,k) ~ o since k ~ m ; 

he~. the contin~ty of ~(. * @},kL 
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~ow if any other p (n,l')• goes to zero at go' n ceases to be a 

meaning and MoQ changes as a result. This contradicts condition 

(iii) unless n = m or m • ~ k~, in which case discontinuities are 

prescribed by the same condition. 

Existence and local behaviour 

The next theorem gives assurance that the conditions 

on the components of a word-meaning system, as developed so far, 

are not contradictory. The proof consists of a construction of a 

particular system (which is otherwise uninteresting) and is presented 

as Appendix 3 in Sankoff (1969). 

,Theorem 7 

Word-meanings systems exist. 

Specifically, it is possible to construct a word-meaning 

system using any finite set 

, L 

The r e g u l a r i t y  cond i t ions  a re  s t rong  enough, however, so 

t h a t  a s i d e  f romeon t inuous  v a r i a t i o n  in  the p , ~ ( . , . ) ,  on ly  c e r t a i n  

types of change in 1~,~ are possible. 

Theorem 8 

Suppose M K changes at ~o" Let M" , M ~ be the state of 

Mm in small enough intervals to the left and right of ~o, 
I 

respectively. Then one of A, B or C must hold. 



A. For a unique m, and unique k~m, as in condition (ili), 

r e p r e s e n t e d  by  

Be 

C. 

Proof 

( ~ , ~ :  ~ , ~ ) ,  

(~, #': ¢,~), 

• p~.Cm * {k~,k) - 0 , 

.P~o(m + (k},k) ~ 0 , 

p{.(m • Ik),k) = 0 . 
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There are 16 ways of filling four places ~rAth e or 4 • 

( ¢ , c ,  ~ , e  ),  ( ¢ , 4  , 4 , ~  ),  ( ~ , ~  : ¢,# )  and ( 4 , 4 ,  e ,~)  

i n v o l v e  no change  i n  H,~ ,. 

imply either p~(m,l)--'--- 0 or p (m • {k]tl)~ 0 near ~ot and henoe 

h a v e n o  d i s c o n t i n u i t y .  

zn (4 ,e,4,~ ) and (~,¢:6,4), p~(m,Z) and p=(m • {k},Z) "jump. 

i n  t h e  same d i r e c ~ i o n ,  henoe t h e i r  sum c o u l d  n o t  be  c o n t i n u o u s .  

(¢ , E ; ~ , ~ ) ,  (4-,~ , e , ~ )  and ( ~ , ~ ; ~ , 4 )  v4_oZ,,te con~tJ.on (44). _ 

There remain only' the three possibilities, 

A. m *~k) disappears, llm p~(m *{k~,k) = p~m "l" (k~,k) = 0 . 

B. r e a p p e a r s ,  m e  (k} in H" a n d H  + ,  p~  (m +{k},k)>0. 
D 

C. m appears, m • {k]dlsappears, p~o(m • {kl,k) = o . 

These three situations are illustrated in Fig. 5A,~ B and 5C. 



t 
F~.g..~A~ . (,-,Z) . f , ' ; ~  
Possibility A, ( ~'J"~ 
The. 8 

(m.÷ 
0 @C@ -- ~--~  

N.B. right oontinulty instead o f  

left oont inui ty  would be 
" ~'p[  equal ly  ~sslble here. 

, L . .  k ' ~  ~ , . ~  ..., '1 " 

Fi~. 5,B, / " ~ - R : . : ] . .  (,,,,Z) 
Possibility B, G] t " " '  " - :  " " 

? 

(a + 

(m+ 

Fig. 5~; 
Possibility C, 
Thm. 8 

( "',..,.--"1 
Lk] L . / ' " ~ - _ . . )  : 

k'~,k) . - .  
,% 
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NeaninMs as points in a metric space 

The idea of distances between meanings is not new, and 

there have been a number of attempts to operetionalize this concept. 

We shall examine a very natural way of defining such a distance for 

the meanings in a word-meaning system in terms of the functions 

p,~(m,l). 

_ L  

Definition 

Let agM~, nGM B 

The°rein 9 

d~,a defines a metric on Mo~. 

The norm Z ~ o  [ def ines  a metric  on p r o b a b i l i t y  d i s t r i b u t i o n s  

def ines  a p r o b a b i l i t y  d i s t r i b u t i o n  on L. 

z~(.) 

It remains to prove that two such mK M~ do not define the 

same distribution. But this follows from the fact that each m ~ M~ 

defines a unique subset of L such that pg(m,l)> O. 

Remark 

If as/~ increases beyond ~< , p~(m,l) changes, d~Afm,m) 

will have a minimum value at F = ~ and will increase for ~ on 

either side of @~ . In a neighbourhood of ~ , ~ (re,m) for fixed 
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m, then, measures distance from ~ . This relevance of d to the 

parameter as well as to the meanings will become important in later 

sections. 

Theorem iO 

If ~ =M I,M i =Mj~or 

and if 

Proo___ff 

m~I, #e J, two intervals, 

mG M I , n~Mj 

d~a~(m,n) is continuous on IXJ. 

This follows from the continuity of the p~ on such intervals 

and from the fact that d is a continuous function of such p~ . 

As ~ ehanges, the points in M~ move continuously. 

When M ~ changes, two (at most) points experience a sudden shift in 

position with respect to the rest of the points. This may involve 

the creation or annihilation of these points. When ~ is close to 

1, there will be few ~rds in common between two meanings, on the 

average~ and hence the distance between them will be close to I. 

When c~ is close to zero, on the other hand, the reverse is true, 

and distances will tend toward zero. This rather succinct comparison 

of precise versus loose usage accords well with more intuitive notions 

of precision of spe~h. Fig. 6 and Table ~ present, as illustrations t 

the distances in the metric spa@es defined by the 3-word system 

described earlier in this chapter. 
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~ ' = 1  

c,' =0..5 

,% 1 

,~ 2/3 

1 

½ 

~2 

"b 

1 
2 

1 2/3 

2/3 ~/3 ~/~ 

m6 

= o ~ !  
I 

1/3 

Table 2. d~,o((o,.) for system 
of Table  1. 

m6 ----_m 7 

Fig. 6. 2-dimensional 
visualization of 
distances in 
Table 2. 

Di~c~ronic word.meanin~ systems 

We have developed, in some detail, a synchronic (i.e. at a 

fixed point in time) theory of words and meanings. It remains to show 

what relevance this has to historical linguistics and lexicostatlstics. 

As Ullman (1957) remarks: 

"The two C semantic relationship, simple or multiple, 
and semantic change~ are interdependentt one being 
the projection of the other on a different plane. 
The functional analysis of meaning will entail there- 
fore a definition of semantic change along similar 
lines. If a meaning is conceived as a reciprocal 
relation obtaining between name and sense ~word and 
meaning 3 , then a semantic change will occur whenever 
a new name becomes attached to a sense an~or a new 
sense to a name." (p.171) 



and, as he points out, word-meaning phenomena at a fixed time have 

parallels in processes of change over time. 

In our particular model, changes in the system as the 

precision parameter changes will provide the prototype for change 

with time. 

Definition 

A word-meaning system history is a word-meaning system with 

W([0,1] replaced by tE[O,T] (time parameter) and with condition (il) 

relaxed entirely. Condition (iii) is changed so that if k and m are 

given as before, and ~ is a ne_~w meaning or if m disappears 

starting at to, there are discontinuities in Pt(m ÷ [kJ ,k) and 

Pt(m @ (k~,l) ~" Pt(m,1) for one lgm, but 

Pt(m @ [k},k) 4', Pt(m .{- {~k} ,1) '¢" pt(m,1) 
is continuous. 

Although an adjustment  to the cons t ruc t ion  necessary for  T ~ . 8  

could adapt the ex is tence  proof of  word.meaning systems to t ha t  

of  word-meaning system h i s to r i e s~  i t  w i l l  be s impler  to leave 

ex is tence  to be i m p l i c i t  i n  the cons t ruc t ions  c a r r i e d  out  l a t e r .  

Theo rein , 1 1  

Suppose M t changes at t o . Let M', ~ be as in Thm. 
l 

Then one of A, B, C, A', B', C' holds. 

A. (~,~,~,~), ~o(m* {k},k) :0, 
A e . 

8. 

( ~,~ ~, 4), ~(~ * {kJ,k) > o. pg(= ÷ {k},k) = 0, 



B. (~ , E ;  ¢,~), Pto(m *{k},k)>O, 

B'. (¢,G;~,e), Pto(m * {k},k)~O, 

C. ... (~,~;~,'e), p~(m÷ ~k},k)~O, 

C'. (¢,G'; ~, #), p~(m ÷ ~k},k)> 0, 

A, B and C were the three possibilities admitted in Thin. 8. 

The only new restriction applies when m • ~k~ appears or m dis- 

appears at to, and therefore applies to none of the three. A', 

B' and C' were discarded in Thin. 8 because they violated condition 

(ii). The new condition (iii) applies to all of these cases. In 

A, ~ d  c ' ,  ~ .  ~k~ app~are so p t (~  * ~k} ,k )  ~ust  J ~ p  r ~  s e ~  a t  t o .  

The cases A, B and C are still represented by Fig. 5A~ 5B 

andSC , with e~ replaced by t. Cases A', B' and C' would he rep- 

resented by mirror images of these three figures, except that 

Pt(m ÷ {k~,k) must exhibit a d i s c o n t i n u i t y  a t  t o ,  and one o f  the  

Pt(m * (k t  ,1)  must compensate f o r  t h i s .  

The asynnuetry wi th  r e s p e c t  to  time o f  the  cond i t i ons  f o r  

changes in  ~ may be i n t e r p r e t e d  as  foll.ows, The p r o b a b i l i t y  

t h a t  a word may he used f o r  a meaning may drop to  zero con t inuous ly ,  

but it may not  increase from zero continuously. Instead, it must 

at some time jump to some finite value. This distinction is not too 

important to the overall characteristics of word-meaning system 

39 
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h i s t o r i e s ,  but  we note i t  because the p a r t i c u l a r  type o f  h i s t o r i e s  

we s h a l l  s tudy have t h i s  proper ty .  

The development o f  the metr ic  d in  the previous s ec t i on  

c a r r i e s  over  complete ly  when the time parameter rep laces  the p re -  

c i s i o n  parameter ,  except ,  o f  course ,  t ha t  the re  i s  no longer  any 

necessary trend in the average distance between meanings as t increases. 

Anticipating some of our later discussion, consider the 

case where all meanings consist of exactly one word, as in the 

Swadesh model. In this case, letting s and t be time as in Thin. I, 

ds,t(m,n) = I - ~(k,1) 

where m = {k%~Ms, n = {l~'~. d then, is in a certain sense a 
P 

generalization of the cognation indicator ~ . 

Wo rd-meanln~ Drogesses 

So far, changes in M~ or M t have been deterministic as the 

value of the parameter changes. (Even though the p~ or Pt are 

abillty functions, we have not studied further properties of the 

random variables which are distributed according to these functions, 

and we will not do so. In linguistic terms, we are still dealing 

with lan~ue and not parole. ) To generalize the Swadesh theory, and 

to provide a realistic model, we must take into account unpredict- 

ability of lexical and semantic change. In probability theoretical 

terms, we must impose a probability measure, on the set of all 

possible histories. We shall not do this explicitly. Rather we 

shall assume it is possible, and assume that the examples we construct 

by specify-ing l o c a l  behaviour a re  wel l -behaved in  terms o f a n  

under ly ing  p r o b a b i l i t y  measure space. 



Definition 

A word-meaning process is a set of word-meaning system 

histories indexed by 60 ~ ~ where (~ ,~ , P) is a probability 

measure space. This means that any event or combination of events 

in which we may be interested is represented by a set, A, of 

histories (WE ~ ) where A is a member of the ~-algebra ~ , 

and where P(A) is well-deflned for all A6~. 

A wo,rd-meaning process based on Brownian , motion 

To construct the word-meaning process which is the best 

model for natural languages would require the operationalizing of 

definitions, collection of much data and its statistical analysis. 

At present, we shall attempt only an heuristic investigation. 

In PART i, we emphasized the basic unpredictability 

of change in the word-meaning relationship. In terms of our model, 

(and considering only small intervals of time) this means that for 

t> s, 

X [Pt(m,l) - Ps(m,l)3 = 0 

Furthermore, it should not be possible to. predict the future 

behavlouF of Individtml Pt(mDl) from trends established in the 

past :  fo r  any t > s l > s 2 ~  . . . > s  r 

p [p t (m,1)  ~ ps (re , l ) ,  ps z(m,1),  . . . ,psr (m,1)  ] 

. t h e  oo d tion 

But these two conditions and the continuity conditions on 

Pt indicate that the local behaviour of Pt(m,l) should resemble a 

41 



diffusion process, with zero drift. The simplest such process is 

the well-known Brownian motion, whose behaviour characteristics 

change n e i t h e r  w i t h  t ime ,  t ,  no r  w i t h  p o s i t i o n ,  x.  

We proceed to construct a word-meaning process satisfying : 

these properties. Let (L i M~, p~,, ,)) be a word-meaning system 

f o r  a f i x e d  c~ . Fo r  t = O, l e t  P t ( m , l )  = p ~ ( m , l ) ,  M t = M=.  

L e t  

n o is the number of word-meaning relationships in the system. 

Let xl(t) , ~(t), . . .)~(t) t t ~ 0 be n o sample paths of a 
n O 

Brownian motion process, chosen independently, and x(t) =~ £~--j1xl (t). 

Let Yi(t) = xi(t) . x(t). The Yi are also 8rownlan sample paths, 

but are no longer completely independent in that 

yi(t) = xi(t) - ~(t) 
i=1 i=l i=l 

= no~(t) - no~(t) 

Let 

= O .  

Pt(m,l) = po(m,l) * yi(t) , 

where i = l(m,l) is determined beforehand. Then Pt is continuous 

in ~ O,T~ with probability I. We must en~ure that pt(. ,.) is a 

p r o b a b i l i t y  d i s t r i b u t i o n .  



i 

~3 

n o 

~. Z pt(m, l) = I ~ Pc(m, 1) ~ ~ Yi (t) 
m~l~ lem m~M o l~m i=l 

= 1 ÷ 0 

= 1 

It is not necessarily true, however, that pt(m,l)~ O, 

since Yi(t) may be negative. To adjust for this, let 

In other words, all the Pt(m,l) are positive before 1 ~ . Then 
t 

with probability 1, there is a unique m'~ ~, k~ m , such that 

zim ~(~',k) = p~(m',k) = 0 . 

But this is reminiscent of case A or C in Thin. 11 (see Fig.5), 

where one word in a meaning loses its ability to be grouped with the 

others. Then all the pT(m' ,1) should drop %o zero and all the 

p~(m'-[k~,l) Jump to compensate. According to whether m' - {k} ~ % 

or not, we have ease A or case C respectively. Then it is a simple 

matter to determine ~. Now, change the definition of all the 

Pt(m,l) for t >~, by calculating 

and starting over as for t = O. 

Continuing this way until t = T, we ensure that no Pt(m,l) 

ever drops below zero. 

We now have a word.meaning process, but not a very healthy 

One, in that IMtJ decreases monotonically with t .  



To counte rac t  t h i s ,  we superimpose another  process on our 

cons t ruc t i on .  We s e l e c t  po in ts  i n  [O,T] a t  random as fol lows:  

The p r o b a b i l i t y  of no poin ts  being se lec ted  i n  an i n t e r v a l  I t , t ÷  ~ 

i s  

I -/~At + h 

where ~ t ~  0 as ArgO) .  At each po in t  ~ se lec ted ,  randomly 

choose m~ M~and k e L ,  k / r e .  I f  f%~(m + {k} ) > 0 ,  the system 

undergoes a change as i n  case B w of  Thin. 11 . I f  f ~ . ( m  + ~k}) = Oj 

the system undergoes an A ' - type  change with p r o b a b i l i t y  1Y , and 

a C'-type change with probability I -~ . In each of these cases 

an element i~ m must be selected at random so that Pt(m + ~k},k) 

Pt(m +{k),l) and Pt(m,l) are discontinuous but their sum is 

continuous. The size of the discontinuity is uniformly distributed 

between 0 and Pt(m,l). In case A', we assume that after this latter 

step is done, each element in m loses a random (but fixed) propor- 

tion of its probability weight to the corresponding element in 

This ends the cons t ruc t i on .  Note t h a t  case B of Thm.ll 

does not  occur i n  t h i s  example.  

Had we not insisted on the extra discontinuities (in 

Pt(m + ~k~,k)) in the definition of a word-meaning system history, 

we would not have been able to use the Brownian motion. If 

p~ (m + {k~,k) = O, and if we add a Brownian motion Yi(t), 

B~.~t(m + ~k) ,k )  w i l l  be zero again  f o r  a r b i t r a r i l y  small  t .  Hence 

we must s t a r t  p (m + (k~,k)  a t  a f i n i t e  va lue ,  i . e .  d i scon t inuous ly .  

4. 
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Stability 

"The first thing we would like to know about our system is 

whether or not it is degenerate. Does it tend to degenerate into a 

single word-meaning relationship with p(~l~ ,1) = I ? Does the 

number of meanings I~l or word-meaning relationships n t tend to 

grow without bounds as T and ILl increase? 

By increasing ~A to a high enough value, we can increase 

the rate at which new word-meaning relationships are created, 

and hence reduce the time during which n t is at low values. At 

the same time, n t cannot increase without bound, since as the 

number of word-meaning relationships increases, the probability 

weight attached to each must decrease, on the average. Hence a 

higher proportion of relationships tends to be annihilated per 

unit time, as in cases A and C of Theorem11 . A rigorous proof 

that n t is neither too large nor too small most of the time does 

not seem easy to achieve, simply because of the complication of 

the model and the importance of the initial conditions. In any 

case, such a result would be rather weak. It seems likely, and 

we will present evidence from sampling experiments to support 

this, that as t ~ ~, n t tends to vary about an equilibrium 

mean value acoording to an equilibrium distribution, depending only 

on the system parameters ~A and ~ . 
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R e ~ a r i t y  of 'c~nge ~ ( ~ ,  dt, t) 

For each ~ , a word-meaning system ( r e l a t i v e l y  complicated) 

was associated with a relatively simple metric space (M~,d,~. The 

meanings corresponded to points in the metric space and the distance 

• between meanings varied continuously almost everywhere with respect 

to ~. 

The same remarks hold true, of course, for the analogous 

metric spaces (~,dt, ~. As t increases each meaning moves continu- 

ously except at certain points where it can split into two or merge 

with another meaning. At such times there are discontinuities in 

~,t, but these are not usually very large. This regularity of motion 

ensures that we have some sort of correspondence between the sets of 

meanings at two distinct times. In the Swadesh model, a well defined 

correspondence is assumed, in terms of the universal set of meanings. 

If we do not postulate anything of this nature, since it must 

necessarily refer to cultural universals, not linguistic universals, 

it becomes more difficult to make word-meaning comparisons at two 

points in time. Indeed, if after a point in time, s, a meaning 

loses a lexical representation (as in case C in Thin. 11 ), it ceases 

to exist, in our technical sense, and ethers close to it take up 

its semantic load - and we must, at the very least, assume some rule 

for choosing a related or close meaning, for all later points in 

time, if we are to make lexical comparisons. The intuitive use of 

the term "close" gives a clue as to the appropriate choice - the 

% 



meaning n which minimizes 

ds,t(m, n) • 

This has one important desirable property for such a rule. For t 

very close to s, in most cases n will, of course, be m itself. 

ds,t(m,m) = ds,t(m,n) will then be the sum of the absolute values 

of quantities approximately proportional to Brownian motion (see 

definition of d~, 6) and hence will, on the average (or in expectation) 

increase monotonically. 1 - ds,t(m,m) will decrease monotonically. 

After a discontinuity 1 - rain do +(re,n) will continue to decrease. 

Since it is the processes of lexlcal less and lexical replacement 

which are responsible for this decrease, 1 ~ (1 - mln ds,t(m,n)) 

is a likely candidate to replace Swadesh's ~M 
m~Z 

lexicostatlstlc indicator. We will so use it, keeping in mind that 

it does not involve any pan-cultural or pan-llnguistic method of 

selecting universal meanings to compare. If such a method existed 

(and it does, approximately speaking, e.g. the Swadesh llst) our 

indicator must necessarily provide an upper bound for any indicator 

of the form i - ds,t. 

Simulating word-meaning processes 

A complete, purely mathematical treatment of the Browuian- 

based word-meaning system would be difficult, and no results analo- 

gous to Theorems I - 3 are yet available. On the other hand, by 

ChOOSing a set of Po(m,l) = p~o(m,l) from a word-meaning system, 
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and fixing ~ and ~ it is possible to simulate the behaviour of 

the bivariate functions pt(m,l). A sample from a number of simulated 

histories might produce some hint of what the Corresponding theorems 

might be. The remainder of this chapter consists of an account of 

such an experiment. 

Asimulation nro ~ram 

A computer program (see Fig. 7) was written to provide 

word.meaning histories sampled from the Brownian-based process 

(actually an approximation of this process). 

The program accepts as initial data T (the length of the 

simulation), parameters I (from which /~ can be calculated), 7/ 

and ~ ; and two matrices N(i,J) and P(i,J) with ~M} rows and 20 

columns. The row index i identifies the meaning being consideredp 

and the non-zero N(i,J) identify the words connected to that meaning 

(up to 20). P(i,J) then, represents Po(mi,lk) of the system where 

~(i,j) = i k. (It is more economical to store two IMI X 20 matrices 

than one ~M i X |LJ matrix if ~L~> 40.) 

To approximate the Brownian motion from time t=O to t=I, 

one part of the program adds a normal random variable to each of the 

non-zero P(i,j). These variables have mean zero and variance I and 

their sum is zero, as specified in the model. Each of these P(i,J) 

is then examined to see whether it has dropped to zero or below. If 

it has, the rest of the non-zero P(i,k) are set to zero as in cases 

A and C of Thin. 11 and P(h,g) are increased by compensating amounts 

where h and g are the appropriate meanings and words for the cases. 
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Another part of the program picks an integer according to 

a Poisson random variable, with mean lOp and this variable represents 

the number of cases A', B' and C' which have occurred during the time 

increment I. Hence J4 ~ 10/I. For each of these occurrences the 

program then allows a choice of whether the word (see Thm~l ) is to 

be a new word (borrowing) or a word that is already used for another 

meaning (this choice is made at random with probabilities 0 ,I-~ ). 

The meaning m and the word 16 m (again as in ThinS1 ) are chosen at 

random. If necessary (not in case B') a random choice is made 

between A' and C' according to parameter ~ , and if necessary (case 

A') the allocation of probabilities between m and m • ~ is decided 

by choosing a random number (uniformly distributed between 0 and 

p(~,z)). 

The program then provides for the examination of the system 

to oalculats the resulting values of ~M~, IL|, ~(., .) , P(.,-) and 

n t and it prints these out. From this point it returns to the Brownlan 

motion section and sets t = 21 and adds another batch of normal varia- 

bles with variance I, eto. 

The above is only a summary of the program. Other routines 

relabal words or meanings so that they may be stored and examined 

economically, and others allocate any "negative probability" from 

Brownian paths going ~ zero during a time increment (when in 

theory they are only allowed to go as far as zero) among the other 

word-meaning relationships of the meaning involved. Finally, in the 

versionrsprosentsd~nFl~Tthere is a routine which compares the word- 

meaning system at time t with the initial word-meaning system (at 
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N,P,T ~ ? 
I,/, ,~ , ~| 

if t--T,store / 
ne 

Calculate t 
IMt I, ILtl, ~ t  I 

~tus status 
1 0 

,~t |, nt,F(t) 

Choose Poi 
integer J, 
mean i0 

Calculate F(t) I 

I Add normal r.v. 1 
to each P(i,J)~O~ 

I Adjust according . 
to Thin, 11 1 e~ 

I Allocate "negative 0 
probabilities" ~e~ 

.4 
~ess ...... than J J cycles / 

cycles completed 
completed 

1 Choose meaning 1 

Borrowed word 
or old word 

(choice) 

I 

Fig. ?. Flow ohart f o r  s i m u l a t i o n  program. 
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time t--O) according to our lexicostatistic indicator 

~---~I ~0(1 ~ do,t(m,n)) F(t) = .rain . 

Results of a simulation exper~mep% 

To illustrate the properties of a Brownian-based process, 

we will present the results on 12 sample histories of a simulated 

process with the parameters fixed. 

These histories were obtained as follows. For the first, the 

initial system was represented as in Fig. 8 . 

20 1 

18 ~ 3  

13 ~ 8  

11 10 

Fig. 8. Ini%ial word-meaning system. 

where each line between an m and an i represents Po(m,l) = .01 . 

~ere I~2o, l~o, no=lO0. CO,T]was ~vlded inte I00 inore. 

ments, and details of the system were extracted at time T 



and these were used to provide the initial system for the second 

history. This general procedure was followed thereafter with the 

final status of some of the systems serving as the initial systems 

for others. 

Stability and equilibrium distributions 

As we conjectured earlier, the system moves rather quickly 

to equilibrium and we can trace this in the first history. Fig. 9 

shows how [ ~ { ,  ~Ltl and n t t end  to  approach and then o s c i l l a t e  around 

an equilibrium value, 

The "equilibrium" distributions in Fig. I0 are calculated 

from all the values of the system characteristics, at all points in 

time, of the last 11 histories (since the first history started with 

a non-equilibrium state). 

Zi~f' s Law 

It is a property . of natural languages that, aside 

from the few most frequent words, the frequency of occurrence of a 

word G(1) and the rank order of this frequency, H(ll are related 

approximately as 

G(l~ = Ce "KH~I~ 

where C and K are constants. 

Our word-meaning systems do not have as many words as natural 

languages. Nevertheless, it is possible to calculate the probabili- 

ties (not frequencies) g(1) from 

g(1) = m ~, Pt(m,l) . 
l&m 
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This was c a r r i e d  ou t  f o r  e i E h t  o f  the  t e r m i n a l  word-meaning 

systems o f  our  s i m u l a t i o n  and t h e  g ( 1 ) w e r e  t hen  o rde red  to  g ive  H(1). 

Plotting these (Fig. 11), it is clear that a Zipf's law can be stated 

which holds for the majority of the words in the system, excepting 

the first few and the last few. The "tailing off" effect can perhaps 

be ascribed to the homogeneity of the Brownlan process - any word, 

whose total probability fluctuates close to zero, is very likely to 

hit zero and be absorbed. By introducing an inhomogeneous diffusion, 

where the variance of the displacement of p(m,l) after time ~t is 

an increasing function of Pt(m,l), this effect could be removed, and 

the total number of words end meanings could increase as well. 

One interesting comparison can be made between the g(1) 

vs. H(1) curves for the initial and the terminal states of the first 

history (see Fig. 8 ). In the initial, non-equilibrlum state all 

words have equal probability g(1) =.05 . The terminal state has 

shifted to a typical Zipf's law. 

Lexico statistic s 

Finally, we present the results of the lexicostatistic 

survey of the 11 equilibrium system histories. These are displayed 

in Fig. 12 end the mean behaviour is extracted and is displayed in 

Fig. 13 • These diagrams speak for themselves - after an initial 

sharp drop,  the  index 

~-- ~ (I - min do,t(m,n)) 

undergoes an unmistakeably e x p o n e n t i a l  decline. 



0.1 

lJo e 

e 

0.1 

°o 
ee o 

e•leee•oe 

0.I 

e 

ee• e•o • e- 

".. 

O. 01 

t 
g{z~ 

O. 001 

Fig. 11..  Zipf's law for 8 examples (note semi- - 
logarithmic plot). Successive 
examples sh i f t ed  downward by 
factors  o f  0.1 (,Con%Lnued on nex% page) 

• e e ° e O e e e e e  

e • e a  

eeee  • 
• eeo  

l i ' ° e e e e e e  ° 

eeeo  e 
• e  

ea  e 
o •  

0 •  
e .  e •  e e 

e ° o e o  • 
oe 

• eoe• 

• • o  • ! 

• ea e e  e •  

8 e  • 

• ~ • o e e  

t e % e e o - • e o  • 
eOee o 

• "e  e % e e e e  ° 

• 0e ~ ' ~  . . %  ~ 

eeo  

" •  I e e  

° .  I e e 
° e  o 

m •  
• e •  

e~ e 

e eeeeeeeee eOe°eeee eee eee 

eeeoeeeee eeo 

eeee 

°eeoe I 
eeeee e 

eeoee 

H(1) --~ 

O0 e 

QO 

0 

e•%ee e 
eoe o 

Qe 
ee  

0 

l 
I 
I 
l 
I 

l 
l 
l 
l 

I 

I 
| 
l 



0.1 

b. 

0,'I ~ 

°•e, 

0.1 

0.01 

O. 001 

b 

e o 

• i e 

eeoC, 

oo • 

oe e t e e  eoe  

"e'e 
ee 

me e 

eeo 

• a 

• Qo 

NQ~eg~o 

t g(1) 

Fig. 11 

e o e  e 

eee • eeee o ,  e 

e e 

° e e o o j  

° e  o e ~ o  ° 

e .  • • ee  e 
e°oe  • 

e e o e e "  

° e s  • 
Qe 

o5 
doge@ 

e e e o e °  

O o 

ee~eoe 

° e e q b  ° e o e o e e e ~  e 

eoe  e 

e ° ° ° e e e o  e o ~  

~ o e e e  

.(i) ---~ 

(Continued) 

ee  e 

gee  

. e  

° e  e 

e •  o 
e •  

o e e  

% 

e e 

eeee  

°e~ e•  e •  • %,, 

@ 



0.~ 

0.1 

) 

ee • 

oe 

e I 

O.(X 

;.001 

g(1) 

Be e 

ee 
e, 

e,e 

et 

H(15--,- 

aee  • 

• eo 

e °  e e e  • eeeeo • 

e ~ , e e  

e e e  
• e ,  

" ee  ~ ) e e  

) . 0 0 0 ~  - -  

me me ee 

ee e 

eee e 

eee, 

eo eee • eeee e 

Fig. 11 (Continued) 

•Q o 
• Q °Q o Q o  

QIQ oo 
o I 

@@°i • 

°Q 

iOoo 
Q 

I O 

°e)  e 

we" ee, , )  e , ~ "  

e e .  

q)e~e e 

% 

i ) e ,  

gQ 

t 0 



E 

m 

c~ 

m 

0 

o ~ 

N ID 

~...g 

,el 

e"l ~ 2~ 
d 

J 
0 

! 

• 0 

O :  

t 

e 

0 

O 

Q 

O 

Q 

59 

f 
I 



I ~ . . ~ "  

0 

U 

P 

I 

Q 

~,  i l l  

6O 



To wha t  e x t e n t  t h e  i n i ~ a l  d r o p  i s  a p r o p e r t y  o f  t h e  

p a l ~ i c u l a r  m e t r i c  he~u~ u s e d  and  t o  wha t  e x t e n t  i t  i s  an  i n e v i t a b l e  

consequence  o f  t h e  Broun ian  mo~ton ,  l u s t  a w a i t  f u r t h e r  s t u d y .  I n  

any case, it does not seem to be a sidle ccmmequence of a Zipf's 

law distribution of wrd probubilltlem or t~e analogous effect for 

meaning ,  since i t  a l s o  occurs f o r  v e r y  s y ~ e t r i c a l  initial sys t ems  

s u c h  a s  t h e  one  i n  F i g .  8 . 

Without cc~ to any speclf~ cc~cluslons, it is 

appropriate to end this chapter ~ ~Int~n E out that both $wadesh's 

relatively simple model of lexical loss, using a universal meaning 

set to compare language stages i and o u r  m o r e  complicated model, in 

which  compar i sons  be tween  s t ~ E e s  o f  l a n g u a g e s  a r e  made i n  t e rms  o f  

i n t e r n a l  p r o p e r t i e s  o f  t h e  l e x i c o n ;  c o , c u r  i n  t h e  v e r y  s i m i l a r  

b e h a v i o u r  o f  t h e i r  i e x i c o s t a t i s t ~  i n d e x e s .  
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