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Abstract

Representing the semantic relations that exist between two given words (or entities) is an im-
portant first step in a wide-range of NLP applications such as analogical reasoning, knowledge
base completion and relational information retrieval. A simple, yet surprisingly accurate method
for representing a relation between two words is to compute the vector offset (PairDiff) between
their corresponding word embeddings. Despite the empirical success, it remains unclear as to
whether PairDiff is the best operator for obtaining a relational representation from word embed-
dings. We conduct a theoretical analysis of generalised bilinear operators that can be used to
measure the `2 relational distance between two word-pairs. We show that, if the word embed-
dings are standardised and uncorrelated, such an operator will be independent of bilinear terms,
and can be simplified to a linear form, where PairDiff is a special case. For numerous word
embedding types, we empirically verify the uncorrelation assumption, demonstrating the general
applicability of our theoretical result. Moreover, we experimentally discover PairDiff from the
bilinear relational compositional operator on several benchmark analogy datasets.

1 Introduction

Different types of semantic relations exist between words such as HYPERNYMY between ostrich and
bird, or ANTONYMY between hot and cold. If we consider entities1, we can observe even a richer diver-
sity of relations such as FOUNDER-OF between Bill Gates and Microsoft, or CAPITAL-OF between
Tokyo and Japan. Identifying the relations between words and entities is important for various Natural
Language Processing (NLP) tasks such as automatic knowledge base completion (Socher et al., 2013),
analogical reasoning (Turney and Littman, 2005; Bollegala et al., 2009) and relational information re-
trieval (Duc et al., 2010). For example, to solve a word analogy problem of the form “a is to b as c is to
?”, the relationship between the two words in the pair (a, b) must be correctly identified in order to find
candidates d that have similar relations with c. For example, given the query “Bill Gates is to Microsoft
as Steve Jobs is to ?”, a relational search engine must retrieve Apple Inc. because the FOUNDER-OF
relation exists between the first and the second entity pairs.

Two main approaches for creating relation embeddings can be identified in the literature. In the first
approach, from given corpora or knowledge bases, word and relation embeddings are jointly learnt such
that some objective is optimised (Guo et al., 2016; Yang et al., 2015; Nickel et al., 2016; Bordes et al.,
2013; Rocktäschel et al., 2016; Minervini et al., 2017; Trouillon et al., 2016). In this approach, word and
relation embeddings are considered to be independent parameters that must be learnt by the embedding
method. For example, TransE (Bordes et al., 2013) learns the word and relation embeddings such that
we can accurately predict relations (links) in a given knowledge base using the learnt word and relation
embeddings. Because relations are learnt independently from the words, we refer to methods that are
based on this approach as independent relational embedding methods.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

1We interchangeably use the terms word and entity to represent both unigrams as well as a multi-word expressions including
named entities.
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A second approach for creating relational embeddings is to apply some operator on two word embed-
dings to compose the embedding for the relation that exits between those two words, if any. In contrast to
the first approach, we do not have to learn relational embeddings and hence this can be considered as an
unsupervised setting, where the compositional operator is predefined. A popular operator for composing
a relational embedding from two word embeddings is PairDiff, which is the vector difference (offset) of
the word embeddings (Mikolov et al., 2013b; Levy and Goldberg, 2014; Vylomova et al., 2016; Bolle-
gala et al., 2015b; Blacoe and Lapata, 2012). Specifically, given two words a and b represented by their
word embeddings respectively a and b, the relation between a and b is given by a− b under the PairDiff
operator. Mikolov et al. (2013b) showed that PairDiff can accurately solve analogy equations such as
#       »

king− #       »man+ #                »woman = #            »queen, where we have used the top arrows to denote the embeddings of the
corresponding words. Bollegala et al. (2015a) showed that PairDiff can be used as a proxy for learning
better word embeddings and Vylomova et al. (2016) conducted an extensive empirical comparison of
PairDiff using a dataset containing 16 different relation types. Besides PairDiff, concatenation (Hakami
and Bollegala, 2017; Yin and Schütze, 2016), circular correlation and convolution (Nickel et al., 2016)
have been used in prior work for representing the relations between words. Because the relation em-
bedding is composed using word embeddings instead of learning as a separate parameter, we refer to
methods that are based on this approach as compositional relational embedding methods. Note that in
this approach it is implicitly assumed that there exist only a single relation between two words.

In this paper, we focus on the operators that are used in compositional relational embedding methods.
If we assume that the words and relations are represented by vectors embedded in some common space,
then the operator we are seeking must be able to produce a vector representing the relation between two
words, given their word embeddings as the only input. Although there have been different proposals
for computing relational embeddings from word embeddings, it remains unclear as to what is the best
operator for this task. The space of operators that can be used to compose relational embeddings is open
and vast. A space of particular interest from a computational point-of-view is the bilinear operators that
can be parametrised using tensors and matrices. Specifically, we consider operators that consider pair-
wise interactions between two word embeddings (second-order terms) and contributions from individual
word embeddings towards their relational embedding (first-order terms). The optimality of a relational
compositional operator can be evaluated, for example, using the expected relational distance/similarity
such as `2 between analogous (positive) vs. nonanalogous (negative) word-pairs.

If we assume that word embeddings are standardised, uncorrelated and word-pairs are i.i.d, then we
prove in §3 that bilinear relational compositional operators are independent of bilinear pairwise interac-
tions between the two input word embeddings. Moreover, under regularised settings (§3.1), the bilin-
ear operator further simplifies to a linear combination of the input embeddings, and the expected loss
over positive and negative instances becomes zero. In §4.1, we empirically validate the uncorrelation
assumption for different pre-trained word embeddings such as the Continuous Bag-of-Words Model
(CBOW) (Mikolov et al., 2013a), Skip-Gram with negative sampling (SG) (Mikolov et al., 2013a),
Global Vectors (GloVe) (Pennington et al., 2014), word embeddings created using Latent Semantic Anal-
ysis (LSA) (Deerwester et al., 1990), Sparse Coding (HSC) (Faruqui et al., 2015; Yogatama et al., 2015),
and Latent Dirichlet Allocation (LDA) (Blei et al., 2003). This empirical evidence implies that our
theoretical analysis is applicable to relational representations composed from a wide-range of word em-
bedding learning methods. Moreover, our experimental results show that a bilinear operator reaches its
optimal performance in two different word-analogy benchmark datasets, when it satisfies the require-
ments of the PairDiff operator. We hope that our theoretical analysis will expand the understanding of
relational embedding methods, and inspire future research on accurate relational embedding methods
using word embeddings as the input.

2 Related Work

As already mentioned in §1, methods for representing a relation between two words can be broadly
categorised into two groups depending on whether the relational embeddings are learnt independently
of the word embeddings, or they are composed from the word embeddings, in which case the relational
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embeddings fully depend on the input word embeddings. Next, we briefly overview the different methods
that fall under each category. For a detailed survey of relation embedding methods see Nickel et al.
(2015).

Given a knowledge base where an entity h is linked to an entity t by a relation r, the TransE
model (Bordes et al., 2013) scores the tuple (h, t, r) by the `1 or `2 norm of the vector (h + r − t).
Nickel et al. (2011) proposed RESCAL, which uses h>Mrt as the scoring function, where Mr is a ma-
trix embedding of the relation r. Similar to RESCAL, Neural Tensor Network (Socher et al., 2013) also
models a relation by a matrix. However, compared to vector embeddings of relations, matrix embeddings
increase the number of parameters to be estimated, resulting in an increase in computational time/space
and likely to overfit. To overcome these limitations, DistMult (Yang et al., 2015) models relations by
vectors and use elementwise multilinear dot product r � h� t. Unfortunately, DistMult cannot capture
directionality of a relation. Complex Embeddings (Trouillon et al., 2016) overcome this limitation of
DistMult by using complex embeddings and defining the score to be the real part of r � h� t̄, where t̄
denotes the complex conjugate of t.

The observation made by Mikolov et al. (2013b) that the relation between two words can be rep-
resented by the difference between their word embeddings sparked a renewed interest in methods
that compose relational embeddings using word embeddings. Word analogy datasets such as Google
dataset (Mikolov et al., 2013b), SemEval 2012 Task2 dataset (Jurgens et al., 2012), BATS (Drozd et al.,
2016) etc. have established as benchmarks for evaluating word embedding learning methods.

Different methods have been proposed to measure the similarity between the relations that exist be-
tween two given word pairs such as CosMult, CosAdd and PairDiff (Levy and Goldberg, 2014; Bolle-
gala et al., 2015a). Vylomova et al. (2016) studied as to what extent the vectors generated using simple
PairDiff encode different relation types. Under supervised classification settings, they conclude that
PairDiff can cover a wide range of semantic relation types. Holographic embeddings proposed by Nickel
et al. (2016) use circular convolution to mix the embeddings of two words to create an embedding for the
relation that exist between those words. It can be showed that circular correlation is indeed an elemen-
twise product in the Fourier space and is mathematically equivalent to complex embeddings (Hayashi
and Shinbo, 2017).

Although PairDiff operator has been widely used in prior work for computing relation embeddings
from word embeddings, to the best of our knowledge, no theoretical analysis has been conducted so far
explaining why and under what conditions PairDiff is optimal, which is the focus of this paper.

3 Bilinear Relation Representations

Let us consider the problem of representing the semantic relation r(h, t) between two given words h
and t. We assume that h and t are already represented in some d-dimensional space respectively by
their word embeddings h, t ∈ Rd. The relation between two words can be represented using differ-
ent linear algebraic structures. Two popular alternatives are vectors (Nickel et al., 2016; Bordes et al.,
2013; Minervini et al., 2017; Trouillon et al., 2016) and matrices (Socher et al., 2013; Bollegala et al.,
2015b). Vector representations are preferred over matrix representations because of the smaller number
of parameters to be learnt (Nickel et al., 2015).

Let us assume that the relation r is represented by a vector r ∈ Rδ in some δ-dimensional space.
Therefore, we can write r(h, t) as a function that takes two vectors (corresponding to the embeddings of
the two words) as the input and returns a single vector (representing the relation between the two words)
as given in (1).

r:Rd × Rd→Rδ (1)

Having both words and relations represented in the same δ = d dimensional space is useful for perform-
ing linear algebraic operations using those representations in that space. For example, in TransE (Bordes
et al., 2013), the strength of a relation r that exists between two words h and t is computed as the `1,2
norm of the vector (h+r−t) using the word and relation embeddings. Such direct comparisons between
word and relation embeddings would not be possible if words and relations were not embedded in the
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same vector space. If δ<d, we can first project word embeddings to a lower δ-dimensional space using
some dimensionality reduction method such as SVD, whereas if δ>d we can learn higher δ-dimensional
overcomplete word representations (Faruqui et al., 2015) from the original d-dimensional word embed-
dings. Therefore, we will limit our theoretical analysis to the δ = d case for ease of description.

Different functions can be used as r(h, t) that satisfy the domain and range requirements specified by
(1). If we limit ourselves to bilinear functions, the most general functional form is given by (2).

r(h, t) = h>At + Ph + Qt (2)

Here, A ∈ Rd×d×d is a 3-way tensor in which each slice is a d × d real matrix. Let us denote the
k-th slice of A by A(k) and its (i, j) element by A(k)

ij . The first term in (2) corresponds to the pairwise
interactions between h and t. P,Q ∈ Rd×d are the nonsingular2 projection matrices involving first-order
contributions respectively of h and t towards r.

Let us consider the problem of learning the simplest bilinear functional form according to (2) from a
given dataset of analogous word-pairs D+ = {((h, t), (h′, t′))}. Specifically, we would like to learn the
parameters A, P and Q such that some distance (loss) between analogous word-pairs is minimised. As a
concrete example of a distance function, let us consider the popularly used Euclidean distance3 (`2 loss)
for two word pairs given by (3).

J((h, t), (h′, t′)) =
∣∣∣∣r(h, t)− r(h′, t′)

∣∣∣∣2
2

(3)

If we were provided only analogous word-pairs (i.e. positive examples), then this task could be trivially
achieved by setting all parameters to zero. However, such a trivial solution would not generalise to
unseen test data. Therefore, in addition to D+ we would require a set of non-analogous word-pairs D−
as negative examples. Such negative examples are often generated in prior work by randomly corrupting
positive relational tuples (Nickel et al., 2016; Bordes et al., 2013; Trouillon et al., 2016) or by training
an adversarial generator (Minervini et al., 2017).

The total loss J over both positive and negative training data can be written as follows:

J =
∑

((h,t),(h′,t′))∈D+

∣∣∣∣r(h, t)− r(h′, t′)
∣∣∣∣2

2
−

∑
((h,t),(h′,t′))∈D−

∣∣∣∣r(h, t)− r(h′, t′)
∣∣∣∣2

2
(4)

Assuming that the training word-pairs are randomly sampled from D+ and D− according to two
distributions respectively p+ and p−, we can compute the total expected loss, Ep[J ], as follows:

Ep[J ] =Ep+
[∣∣∣∣r(h, t)− r(h′, t′)

∣∣∣∣2
2

]
− Ep−

[∣∣∣∣r(h, t)− r(h′, t′)
∣∣∣∣2
2

]
(5)

We make the following assumptions to further analyse the properties of relational embeddings.

Uncorrelation: The correlation between any two distinct dimensions of a word embedding is zero. One
might think that the uncorrelation of word embedding dimensions to be a strong assumption, but we
later show its validity empirically in §4.1 for a wide range of word embeddings.

Standardisation: Word embeddings are standardised to zero mean and unit variance. This is a linear
transformation in the word embedding space and does not affect the topology of the embedding
space. In particular, translating word embeddings such that they have a zero mean has shown to
improve performance in similarity tasks Mu et al. (2018).

Relational Independence Word pairs in the training data are assumed to be i.i.d. For example, whether
a particular semantic relation r exists between h and t, is assumed to be independent of any other
relation r′ that exists between h′ and t′ in a different pair. For example, (ostrich, is-a-large, bird)
is independent from (Trump, president-of, USA).

2If the projection matrix is nonsingular, then the inverse projection exists, which preserves the dimensionality of the embed-
ding space.

3For `2 normalised vectors, their Euclidean distance is a monotonously decreasing function of their cosine similarity.
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For relation representations given by (2), 1 holds:

Theorem 1. Consider the bilinear relational embedding defined by 2 computed using uncorrelated word
embeddings. If the word embeddings are standardised, then the expected loss given by 5 over a relation-
ally independent set of word pairs is independent of A.

Proof. Let us consider the bilinear term in (2), because i and j(6= i) dimensions of word embeddings are
uncorrelated by the assumption (i.e. corr(ui, uj) = 0), from the definition of correlation we have,

corr(ui, uj) = E[uiuj ]− E[ui]E[uj ] = 0 (6)

E[uiuj ] = E[ui]E[uj ]. (7)

Moreover, from the standardisation assumption we have, E[ui] = 0, ∀i=1...n. From (7) it follows that:

E[uiuj ] = 0 (8)

for i 6= j dimensions.
We will next show that (5) is independent of A. For this purpose, let us consider the Ep+ term first and

write the k-th dimension of r(h, t) using A(k), P and Q as follows:∑
i,j

(
A

(k)
ij hitj

)
+
∑
n

Pknhn +
∑
n

Qkntn (9)

Plugging (9) in (5) and computing the loss over all positive training instances we get,

Ep+ [
∑
k

(
∑
i,j

(
A

(k)
ij (hitj − h′it

′
j)
)
+
∑
n

Pkn(hn − h′n) +
∑
n

Qkn(tn − t′n))
2] (10)

Terms that involve only elements in A(k) take the form:

∑
i,j

∑
l,m

Ep+

[
A

(k)
ij A

(k)
lm (hitj − h′it

′
j)(hltm − h′lt

′
m)
]

=
∑
i,j

∑
l,m

A
(k)
ij A

(k)
lm (Ep+ [hitjhltm]− Ep+ [hitjh

′
lt
′
m]− Ep+ [h

′
it
′
jhltm] + Ep+ [h

′
it
′
jh
′
lt
′
m]) (11)

Lets first analyse the cases where i 6= j and l 6= m. Because of the relational independence assump-
tion, the second and the third expectations in (11) can be written as follows: Ep+ [hitj ]Ep+ [h′lt

′
m] and

Ep+ [h′it
′
j ]Ep+ [hltm], respectively. Each of the these expectations contains the product of different di-

mensionalities in two different words. Expected correlation of different dimensions in the same word is
zero from (8). Therefore, such cross-correlations are likely to be small for different word pairs, which are
nonsynomyous. On the other hand, first and fourth expectations in (11) involve the same pair of words.
For example, we could write the first expectation as follows:

Ep+ [hitjhltm] = Ep+ [(hihl)(tjtm) = Ep+ [HilTjm]

where H = hihl and Tjm = tjtm. If we think of H and T as d2-dimensional word embeddings,
Ep+ [HilTjm] represents the expectation over two distinct dimensions of H and T for il 6= jm. There-
fore, from the same logic as above, this expectation is approximately zero.4

For i = j = l = m case we have,

A
(k)
ij

2
(Ep+ [h

2
i t

2
i ]− 2Ep+ [hitih

′
it
′
i] + Ep+ [h

′
i
2
t′i

2
]) (12)

4Note that il could be equal to jm even when i 6= j and l 6= m. However, such cases will be a rare minority. Nevertheless,
it is an approximation and not an exact zero.
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Because we are considering word-pairs (h, t) for which a relation r is known to hold, from the definition
of the correlation between the same dimension in different words we have:

corr(h2i , t
2
i ) = E[h2i t

2
i ]− E[h2i ]E[t2i ] = 1

E[h2i t
2
i ] = E[h2i ]E[t2i ] + 1

Because E[h2i ] = E[t2i ] = 1 from the standardisation, we get:

E[h2i t
2
i ] = 2 (13)

Lets analyse the second term in (12). From the relational independence and because the word embeddings
are assumed to be standardised to unit variance, we obtain the follows:

2Ep+ [hitih
′
it
′
i] = 2Ep+ [hiti]Ep+ [h′it

′
i] = 2. (14)

According to (13) and (14), (12) evaluates to 2A
(k)
ij

2
. We will then get the same term from the negative

expectations and they would cancel out as 2A
(k)
ij

2
is independent of the training dataset.

Next, lets consider the A(k)
ij Pkn terms in the expansion of (10) given by,

2
∑
i,j

∑
n

A
(k)
ij Pkn(hitj − h′it′j)(hn − h′n). (15)

Taking the expectation of (15) w.r.t. p+ we get,

2
∑
i,j

∑
n

A
(k)
ij Pkn(Ep+ [hitjhn]− Ep+ [hitjh

′
n]− Ep+ [h

′
it
′
jhn] + Ep+ [h

′
it
′
jh
′
n]). (16)

Likewise, from the uncorrelation assumption and following the same logic as above it follows that all
the expectations in (16) are approximately zero. A similar argument can be used to show that terms
that involve A(k)

ij Qkn disappear from (10). Therefore, A does not play any part in the expected loss
over positive examples. Similarly, we can show that A is independent of the expected loss over negative
examples. Therefore, from (5) we see that the expected loss over the entire training dataset is independent
of A.

3.1 Regularised `2 loss
As a special case, if we attempt to minimise the expected loss under some regularisation on A such as the
Frobenius norm regularisation, then this can be achieved by sending A to zero tensor because according
to 1 2 is independent from A.

With A = 0, the relation between h and t can be simplified to:

r(h, t) = Ph + Qt (17)

Then the expected loss over the positive instances is given by (18).

Ep+ [
∣∣∣∣P(h− h′) + Q(t− t′)

∣∣∣∣2
2
]

= Ep+ [(h− h′)>P>P(h− h′)] + Ep+ [(h− h′)>P>Q(t− t′)]+

Ep+ [(t− t′)>Q>P(h− h′)] + Ep+ [(t− t′)>Q>Q(t− t′)] (18)

The second expectation term in the right hand side of (18) can be computed as follows:

Ep+ [(h− h′)>P>Q(t− t′)]

=
∑
i,j

(P>Q)ijEp+ [(hi − h′i)(tj − t′j)]

=
∑
i,j

(P>Q)ij
(
Ep+ [hitj ]− Ep+ [hit

′
j ]− Ep+ [h

′
itj ] + Ep+ [h

′
it
′
j ]
)

(19)
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When i 6= j, each of the four expectations in the RHS of (21) are zero from the uncorrelation assumption.
When i = j, each term will be equal to one from the standardisation assumption (unit variance) and
cancel each other out. A similar argument can be used to show that the third expectation term in the RHS
of (18) vanishes.

Now lets consider the first expectation term in the RHS of (18), which can be computed as follows:

Ep+ [(h− h′)>P>P(h− h′)]

=
∑
i,j

(P>P)ijEp+ [(hi − h′i)(hj − h′j)]

=
∑
i,j

(P>P)ij(Ep+ [hihj ]− Ep+ [hih
′
j ]− Ep+ [h

′
ihj ] + Ep+ [h

′
ih
′
j ]) (20)

When i 6= j, it follows from the uncorrelation assumption that each of the four expectation terms in the
RHS of (20) will be zero. For i = j case we have,

∑
i,j

(P>P)ii
(
Ep+ [h

2
i ]− 2Ep+ [hih

′
i] + Ep+ [h

′
i
2
]
)

= 2
∑
i,j

(P>P)ii (21)

Note that from the relational independence between h and h′ we have Ep+ [hih
′
i] = Ep+ [hi]Ep+ [h′i].

From the standardisation (zero mean) assumption this term is zero. On the other hand Ep+ [h2i ] =

Ep+ [h′i
2] = 1 from the standardisation (unit variance) assumption, which gives the result in (21).

Similarly, the fourth expectation term in the RHS of (18) evaluates to 2
∑

i,j (Q>Q)ii, which shows
that (18) evaluates to 2

∑
i,j

(
(P>P)ii + (Q>Q)ii

)
. Note that this is independent of the positive instances

and will be equal to the expected loss over negative instances, which gives Ep[J ] = 0 for the relational
embedding given by (17).

It is interesting to note that PairDiff is a special case of (17), where P = I and Q = −I. In the general
case where word embeddings are nonstandardised to unit variance, we can set P to be the diagonal matrix
where Pii = 1/σi, where σi is the variance of the i-th dimension of the word embedding space, to enforce
standardisation. Considering that P,Q are parameters of the relational embedding, this is analogous to
batch normalisation (Ioffe and Szegedy, 2015), where the appropriate parameters for the normalisation
are learnt during training.

4 Experimental Results

4.1 Cross-dimensional Correlations

A key assumption in our theoretical analysis is the uncorrelations between different dimensions in word
embeddings. Here, we empirically verify the uncorrelation assumption for different input word embed-
dings. For this purpose, we create SG, CBOW and GloVe embeddings from the ukWaC corpus5. We
use a context window of 5 tokens and select words that occur at least 6 times in the corpus. We use the
publicly available implementations for those methods by the original authors and set the parameters to
the recommended values in (Levy et al., 2015) to create 50-dimensional word embeddings. As a repre-
sentative of counting-based word embeddings, we create a word co-occurrence matrix weighted by the
positive pointwise mutual information (PPMI) and apply singular value decomposition (SVD) to obtain
50-dimensional embeddings, which we refer to as the Latent Semantic Analysis (LSA) embeddings.

We use Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to create a topic model, and represent each
word by its distribution over the set of topics. Ideally, each topic will capture some semantic category and
the topic distribution provides a semantic representation for a word. We use gensim6 to extract 50 topics
from a 2017 January dump of English Wikipedia. In contrast to the above-mentioned word embeddings,

5http://wacky.sslmit.unibo.it/doku.php?id=corpora
6https://radimrehurek.com/gensim/wiki.html

http://wacky.sslmit.unibo.it/doku.php?id=corpora
https://radimrehurek.com/gensim/wiki.html
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Figure 1: Cross-dimensional correlations for six word embeddings

which are dense and flat structured, we used Hierarchical Sparse Coding7 (HSC) (Yogatama et al., 2015)
to produce sparse and hierarchical word embeddings.

Given a word embedding matrix W ∈ Rm×d, where each row correspond to the d-dimensional em-
bedding of a word in a vocabulary containing m words, we compute a correlation matrix C ∈ Rd×d,
where the (i, j) element, Cij , denotes the Pearson correlation coefficient between the i-th and j-th di-
mensions in the word embeddings over the m words. By construction Cii = 1 and the histograms of
the cross-dimensional correlations (i 6= j) are shown in Figure 1 for 50 dimensional word embeddings
obtained from the six methods described above. The mean of the absolute pairwise correlations for each
embedding type and the standard deviation (sd) are indicated in the figure.

From Figure 1, irrespective of the word embedding learning method used, we see that cross-
dimensional correlations are distributed in a narrow range with an almost zero mean. This result em-
pirically validates the uncorrelation assumption we used in our theoretical analysis. Moreover, this result
indicates that Theorem 1 can be applied to a wide-range of existing word embeddings.

4.2 Learning Relation Representations

Our theoretical analysis in §3 claims that the performance of the bilinear relational embedding is inde-
pendent of the tensor operator A. To empirically verify this claim, we conduct the following experiment.
For this purpose, we use the BATS dataset (Gladkova et al., 2016) that contains of 40 semantic and syn-
tactic relation types8, and generate positive examples by pairing word-pairs that have the same relation
types. Approximately each relation type has 1,225 word-pairs, which enables us to generate a total of
48k positive training instances (analogous word-pairs) of the form ((h, t), (h′, t′)). For each pair (h, t)
related by a relation r, we randomly select pairs (h′, t′) with a different relation type r′, according to
the `2 distance between the two pairs to create negative (nonanalogous) instances.9 We collectively refer
both positive and negative training instances as the training dataset.

Using the d = 50 dimensional word embeddings from CBOW, SG, GloVe, LSA, LDA, and HSC
methods created in §4.1, we learn relational embeddings according to (2) by minimising the `2 loss, (4).
To avoid overfitting, we perform `2 regularisation on A, P and Q are regularised to diagonal matrices
pI and qI, for p, q ∈ R. We initialise all parameters by uniformly sampling from [−1,+1] and use
AdaGrad (Duchi et al., 2011) with initial learning rate set to 0.01.

Figure 2 shows the Frobenius norm of the tensor A (on the left vertical axis) and the values of p

7http://www.cs.cmu.edu/~ark/dyogatam/wordvecs/
8http://vsm.blackbird.pw/bats
910 negative instances are generated from each word-pair in our experiments.

http://www.cs.cmu.edu/~ark/dyogatam/wordvecs/
http://vsm.blackbird.pw/bats
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Figure 2: The learnt model parameters for different word embeddings of 50 dimensions.

Figure 3: The training loss and test performance on SAT and SemEval benchmarks for relational embed-
dings.

and q (on the right vertical axis) for the six word embeddings. In all cases, we see that as the training
progresses, A goes to zero as predicted by Theorem 1 under regularisation. Moreover, we see that
approximately p ≈ −q = c is reached for some c ∈ R in all cases, which implies that P ≈ −Q = cI,
which is the PairDiff operator. Among the six input word embeddings compared in Figure 1, HSC has
the highest mean correlation (0.082), which implies that its dimensions are correlated more than in the
other word embeddings. This is to be expected by design because a hierarchical structure is imposed
on the dimensions of the word embedding during training. However, HSC embeddings also satisfy the
A ≈ 0 and p ≈ −q = c requirements, as expected by the PairDiff. This result shows that the claim of
Theorem 1 is empirically true even when the uncorrelation assumption is mildly violated.

4.3 Generalisation Performance on Analogy Detection

So far we have seen that the bilinear relational representation given by (2) does indeed converge to
the form predicted by our theoretical analysis for different types of word embeddings. However, it
remains unclear whether the parameters learnt from the training instances generated from the BATS
dataset accurately generalise to other benchmark datasets for analogy detection. To emphasize, our
focus here is not to outperform relational representation methods proposed in previous works, but rather
to empirically show that the learnt operator converges to the popular PairDiff for the analogy detection
task.
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To measure the generalisation capability of the learnt relational embeddings from BATS, we measure
their performance on two other benchmark datasets: SAT Turney and Bigham (2003) and SemEval 2012-
Task210. Note that we do not retrain A, P and Q in (2) on SAT nor SemEval, but simply to use their
values learnt from BATS because the purpose here to evaluate the generalisation of the learnt operator.

In SAT analogical questions, given a stem word-pair (a, b) with five candidate word-pairs (c, d), the
task is to select the word-pair that is relationally similar to the the stem word-pair. The relational similar-
ity between two word-pairs (a, b) and (c, d) is computed by the cosine similarity between the correspond-
ing relational embeddings r(a, b) and r(c,d). The candidate word-pair that has the highest relational
similarity with the stem word-pair is selected as the correct answer to a word analogy question. The re-
ported accuracy is the ratio of the correctly answered questions to the total number of questions. On the
other hand, SemEval dataset has 79 semantic relations, with each relation having ca. 41 word-pairs and
four prototypical examples. The task is to assign a score for each word pair which is the average of the
relational similarity between the given word-pair and prototypical word-pairs in a relation. Maximum
difference scaling (MaxDiff) is used as the evaluation measure in this task.

Figure 3 shows the performance of the relational embeddings composed from 50-dimensional CBOW
and LSA embeddings11. For CBOW, the level of performance reported by PairDiff on SAT and SemEval
datasets are respectively 35.16% and 41.94%, and are shown by horizontal dashed lines. From Figure 3,
we see that the training loss gradually decreases with the number of training epochs and the performance
of the relational embeddings on SAT and SemEval datasets reach that of the PairDiff operator. This result
indicates that the relational embeddings learnt not only converge to PairDiff operator on training data but
also generalise to unseen relation types in SAT and SemEval test datasets.

5 Conclusion

This paper theoretically analyses the bilinear operator for representing relations between words using
their embeddings. We showed that, if the word embeddings are standardised and uncorrelated, then the
expected `2 distance between analogous and non-analogous word-pairs is independent of bilinear terms,
and the relation embedding further simplifies to the popular PairDiff operator under regularised settings.
Among diverse methods for calculating word embeddings, we empirically show the uncorrelation in
word embedding dimensions, which is one of the prerequisites for simplifying the bilinear operator to a
linear one. Empirically, we supports the theoretical analysis by showing that when optimising a general
bilinear formulation on a labeled word pair relational dataset, the solution converges to the simple linear
form, and more specifically to the simple PairDiff formulation.

In this work, we model relations as vectors and we measure relational strength using Euclidean dis-
tance. We are aware that there are many other relation representation methods and relational strength
measurement methods besides what we have considered in the paper. Similar analysis can be conducted
in follow-up work for different types of relation representations and strength measures. For instance, an
interesting future research direction of this work is to extend the theoretical analysis to nonlinear relation
composition operators, such as for nonlinear neural networks.
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