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Abstract

Aspect-level sentiment classification aims to determine the sentiment polarity of a review sen-
tence towards an opinion target. A sentence could contain multiple sentiment-target pairs; thus
the main challenge of this task is to separate different opinion contexts for different targets. To
this end, attention mechanism has played an important role in previous state-of-the-art neural
models. The mechanism is able to capture the importance of each context word towards a target
by modeling their semantic associations. We build upon this line of research and propose two
novel approaches for improving the effectiveness of attention. First, we propose a method for
target representation that better captures the semantic meaning of the opinion target. Second,
we introduce an attention model that incorporates syntactic information into the attention mech-
anism. We experiment on attention-based LSTM (Long Short-Term Memory) models using the
datasets from SemEval 2014, 2015, and 2016. The experimental results show that the conven-
tional attention-based LSTM can be substantially improved by incorporating the two approaches.

1 Introduction

Aspect-level sentiment classification is an important task in fine-grained sentiment analysis (Pang and
Lee, 2008). Given a sentence and an opinion target (also called aspect expression) occurring in the
sentence, the task aims to determine the sentiment polarity of the sentence towards the opinion target. An
opinion target or target for short refers to a word or a phrase (a sequence of words) describing an aspect of
an entity. For example, in the sentence “This little place has a cute interior decor and affordable prices”,
the targets are interior decor and prices, and they belong to the aspects ambience and price respectively.

Compared to document-level or sentence-level sentiment classification, the main challenge of aspect-
level sentiment classification is to differentiate sentiments towards different targets when there are mul-
tiple targets in a sentence. For instance, the sentence “The appetizers are ok, but the service is slow.”
expresses a neutral sentiment on the target appetizers and a negative sentiment on the target service. To
this end, attention mechanism has played an important role in state-of-the-art neural models for this task.
It assigns a positive weight atti for each context word wi, which can be interpreted as the probability that
wi is the right word to focus on when inferring the sentiment polarity of the given target. The weight atti
is generally computed as a function of the hidden representation hi of wi and the target representation t
as follows:

atti ∝ fscore(hi, t) (1)

It has been shown that adding an attention model substantially improves the accuracy of aspect-level
sentiment classification (Tang et al., 2016b; Wang et al., 2016; Liu and Zhang, 2017).

Our work builds upon this line of research. We propose two novel approaches for improving the
effectiveness of attention models. The first approach is a new way of encoding a target which better
captures the aspect semantics of the target expression. The target representation is crucial since attention
weights are computed based on it as shown in Eq. 1. In representing the target, we are mapping a word or
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a phrase into a vector in Rd. Ideally, targets that are semantically similar should be mapped to vectors that
are close together in Rd. However, previous neural attention models simply map a target by averaging
its component word vectors. This may work fine for targets that only contain one word but may fail
to capture the semantics of more complex expressions, as also mentioned by Tang et al. (2016b). For
example, we cannot obtain a good representation for “hot dog” by averaging the word vectors of “hot”
and “dog”. Hot would be close to words like warm or cold and dog would be close to animals like cat.
The average would not be close to other food like burgers or spaghetti. Another example is “hong kong
style food”. As it consists of many words, the averaged word vector could be far away from “food” in
vector space.

To address this problem, inspired by He et al. (2017), we instead model each target as a mixture
of K aspect embeddings where we would like each embedded aspect to represent a cluster of closely
related targets. We use an autoencoder structure to learn both the aspect embeddings as well as the
representation of the target as a weighted combination of the aspect embeddings. The weight vector
represents the probability distribution over aspects for the given target. The autoencoder structure is
jointly trained with a neural attention-based sentiment classifier to provide a good target representation as
well as a high accuracy on the predicted sentiment. We found the learned embeddings to be semantically
meaningful, i.e., embeddings of words that are semantically related appear close to the same aspect
embedding. For example, embeddings of the words service, servers, staff, and courteous appear close to
the same aspect embedding, which we interpret to represent the aspect service.

Our second approach exploits syntactic information to construct a syntax-based attention model. The
attention models used in previous works give equal importance to all context words. In that case, the
computed attention weights rely entirely on the semantic associations between context words and the
target. However, this may not be sufficient for differentiating opinions words for different targets. In-
stead, our syntax-based attention mechanism selectively focuses on a small subset of context words that
are close to the target on the syntactic path which is obtained by applying a dependency parser on the
review sentence.

We conducted experiments on attention-based LSTM models using the SemEval 2014, 2015, and 2016
datasets. The results show that attention-based LSTM can be substantially improved by incorporating
our two proposed methods, and that the resulting model outperforms all baseline methods on aspect-level
sentiment classification.

2 Related Work

Under supervised learning conditions, aspect-level sentiment classification is typically considered as a
classification problem. Early works (Boiy and Moens, 2009; Jiang et al., 2011; Kiritchenko et al., 2014;
Wagner et al., 2014) mainly used manually designed features such as sentiment lexicon, n-grams, and
dependency information. However, these methods highly depend on the quality of the designed features,
which is labor-intensive. With the advances of deep learning methods, various neural models (Dong et
al., 2014; Nguyen and Shirai, 2015; Vo and Zhang, 2015; Tang et al., 2016a; Tang et al., 2016b; Wang
et al., 2016; Zhang et al., 2016; Liu and Zhang, 2017; Chen et al., 2017; He et al., 2018) have been
proposed for automatically learning target-dependent sentence representations for classification. The
main idea behind these works is to develop neural architectures that are capable of learning continuous
features without feature engineering and at the same time capturing the intricate relatedness between a
target and context words.

Among these works, attention-based neural models have attracted growing interest due to their ability
to explicitly capture the importance of context words. Tang et al. (2016b) have shown that a better
sentence representation could be obtained by stacking multiple layers of attention. In the work of Wang
et al (2016), a variant of attention-based LSTM was proposed. Chen et al. (2017) also adopts multiple
layers of attention and aggregates the attention outputs through a recurrent neural network.

As aspect information is very beneficial, in some works (Wang et al., 2016; Cheng et al., 2017; Ma et
al., 2018), an aspect embedding is directly used to capture the importance of context words through an
attention mechanism, where the authors assume that the aspect label is provided as an input. Unlike them,
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we do not assume that the aspects of each sentence are given. Instead, we propose to learn the probability
distribution over aspects for the given target, and use the weighted summation of aspect embeddings
for target representation. The probability distribution and the aspect embeddings are learned via an
unsupervised objective, which is jointly trained with the neural attention-based sentiment classifier.

3 Model Description

We propose two approaches to improve the effectiveness of the attention mechanism. The approaches
may be applied more generally but we use them on attention-based LSTM as it has been widely used in
previous works for sentiment analysis (Chen et al., 2016; Wang et al., 2016; Chen et al., 2017; Liu and
Zhang, 2017; Ma et al., 2018). We first give the task definition in (§3.1). Then, we briefly describe the
architecture of attention-based LSTM (§3.2) and introduce the two proposed approaches (§3.3 & §3.4).
Finally, we describe the overall architecture of our model for aspect-level sentiment classification and
the training objective (§3.5).

3.1 Task Definition and Notation
Given a review sentence s = (w1, w2, ..., wn) consisting of n words, and an opinion target occurring in
the sentence a = (a1, a2, ..., am) consisting of a subsequence ofm continuous words from s, aspect-level
sentiment classification aims to determine the sentiment polarity of sentence s towards the opinion target
a. When dealing with a text corpus, we begin by associating each word w with a continuous feature
vector ew ∈ Rd, also known as word embedding (Mikolov et al., 2013), where d denotes the embedding
dimension. The vectors associated with the words correspond to the rows of a word embedding matrix
E ∈ RV×d, where V is the vocabulary size.

3.2 Attention-based LSTM
We briefly describe a conventional attention-based LSTM in this subsection. Given a sequence of word
embeddings {ew1 , ew2 , ..., ewn} of a sentence s, LSTM with trainable parameters θlstm makes use of
three gates to discard or pass the information through time (Hochreiter and Schmidhuber, 1997), and
outputs a sequence of hidden vectors h = {h1,h2, ...,hn}. The sentence representation zs used for
sentiment classification is then computed as the weighted summation of hidden vectors.

zs =
n∑

i=1

pihi (2)

A positive weight pi is computed for each hi, which can be interpreted as the probability that wi is
the right word to focus on when inferring the sentiment polarity of the opinion target a. The value
pi is computed by an attention model, which conditions on the hidden vector hi as well as the target
representation. In previous works (Tang et al., 2016b; Wang et al., 2016; Liu and Zhang, 2017), the
attention process is usually described with the following equations:

pi =
exp(di)∑n
j=1 exp(dj)

(3)

di = fscore(hi, ts) (4)

ts =
1

m

m∑
i=1

eai (5)

where fscore is a function that computes a score for word wi according to the semantic association
between hi and ts, and ts is the vector representation of the given target.

3.3 Target Representation
Most previous work (Tang et al., 2016b; Liu and Zhang, 2017; Chen et al., 2017) represent a target by
averaging its component word or hidden vectors as shown in Equation 5. Simple averaging may not
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Figure 1: The overall architecture of the integrated model.

capture the real semantics of the target well. Inspired by He et al. (2017), we represent the target as
a weighted summation of aspect embeddings, as illustrated in Fig. 1. An aspect embedding matrix is
represented by T ∈ RK×d, where K, the number of aspects defined by the user, is much smaller than V .
The process is formalized as follows:

ts = T> · qt (6)

qt = softmax(Wt · cs + bt) (7)

cs = Average(
1

m

m∑
i=1

eai ,
1

n

n∑
j=1

ewj ) (8)

where Average returns the mean of the input vectors. cs captures both target information and context
information. qt is the weight vector over K aspect embeddings, where each weight represents the prob-
ability that the target belongs to the related aspect. Wt and bt are a weight matrix and a bias vector
respectively.

We would like the learned aspect embeddings to be meaningful and semantically coherent. This
would allow us to interpret an aspect by looking at its nearby words in vector space. However, the aspect
embedding matrix T is randomly initialized. It is difficult to obtain coherent aspect embeddings if we
only rely on the training of the sentiment classifier. Therefore, we add an unsupervised objective function
to ensure the quality of the aspect embeddings, which is jointly trained with the attention-based LSTM.
Indeed, we can understand the process shown by Eq. (6) (7) (8) as an autoencoder, where we first reduce
cs from d dimensions toK dimensions with softmax non-linearity. Only the dimensions that are relevant
to the aspects are retained in qt, whereas the other dimensions are removed. Then we reconstruct cs from
qt through linear combination of aspect embeddings. The unsupervised objective is thus to minimize the
reconstruction error as shown below:

U(θ) = −
∑

(s,a)∈D

log(min(ε,CosSim(ts, cs))) (9)

where cosine similarity CosSim() is used as the similarity measure. ε denotes a very small positive
number. We set it to 10−7 in all experiments. D denotes all training samples, (s, a) denotes a sentence-
target pair, and θ = {E,T,Wt,bt} is the set of trainable parameters.

The learning process can also be viewed as multi-task learning where the unsupervised objective
shown as Eq. 9 is an auxiliary task. Multi-task learning can help to reduce the amount of data required
for learning and to improve the model generalization ability.

3.4 Syntax-based Attention Mechanism

The attention mechanism used in previous works (Tang et al., 2016b; Wang et al., 2016; Liu and Zhang,
2017) gives equal importance to all context words, where the attention weight is merely a measure of
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semantic association between the target and the context word. But intuitively not all words are equally
important for determining the polarity of a target. Words that appear near the target or have a modifier
relation to the target, for example, are more important and should receive higher weight. This is par-
ticularly true for opinion words that express sentiment and when there are multiple targets and multiple
opinion words in one sentence. To address this issue, we propose an attention mechanism that also en-
codes the syntactic structure of a sentence, where syntactic information is obtained from a dependency
parser. Fig. 2 shows the dependency tree of an example sentence. The opinion words that are closer to
the target in the dependency tree are more relevant for determining its sentiment. In our model, we define
the location l of a context word as its distance to the target1 along the dependency path. The attention
model selectively attends to a small window of context words based on their location. We use ws to
denote the attention window size. In our experiment, we ignore context words whose location is larger
than ws and for context words within the window, different weights are applied so that words closer to
the target receive more attention. The details of the proposed syntax-based attention model are described
as follows:

pi =
di∑
j dj

(10)

di =

{ 1
2(li−1) · exp(fscore(hi, ts))), if li ∈ [1, ws]

0, otherwise
(11)

where ts is the target representation constructed using the method described in §3.3. We adopt a simple
score function as follows:

fscore(hi, ts) = tanh(hT
i ·Wa · ts) (12)

where Wa ∈ Rd×d is a trainable weight matrix.

3.5 Overall Architecture and Training Objective
After incorporating the two proposed approaches into the attention-based LSTM, our final model is
illustrated in Fig. 1. The attention-based LSTM component is associated with the categorical cross
entropy loss of sentiment classification. The loss function is given below:

J(θ) = −
∑

(s,a)∈D

∑
c∈C

P g
(s,a)(c) log(P(s,a)(c)) (13)

where C is the collection of sentiment classes, P g
(s,a)(c) is either 1 or 0, indicating whether the gold

label is c for (s, a), and P(s,a)(c) is the predicted probability that (s, a) has sentiment class c. θ =
{E,T,Wt,bt,Wa, θlstm} is the set of trainable parameters.

The aspect embeddings in T may become similar to each other during training. To ensure diversity,
we employ a regularization term to enforce the uniqueness of each aspect embedding:

R(θ) = ‖(Tnorm ·T>norm − I)2‖ (14)

where I is the identity matrix, Tnorm is the L2 normalization of T, and ‖‖ denotes the sum of all
entries in the matrix. R reaches the minimum when the dot product between any two different aspect
embeddings is zero. Thus, the regularization term aims to enforce orthogonality among the rows of T,
which punishes redundancy between aspect embeddings.

The final objective function of our model is defined as:

L(θ) = J(θ) + λuU(θ) + λrR(θ) (15)

where λu and λr are hyperparameters that control the weights of the unsupervised objective described in
§3.3 and the regularization term respectively.

1For a target containing multiple words, the distance between a context word and each word in the target is computed, and
the minimal value is used to define the location of the context word.
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Figure 2: A dependency tree example. The numbers
indicate the distances from the word to the two targets
respectively along the syntactic path.

Dataset Pos Neg Neu

D1 Restaurant14-Train 2164 807 637
Restaurant14-Test 728 196 196

D2 Laptop14-Train 994 870 464
Laptop14-Test 341 128 169

D3 Restaurant15-Train 1178 382 50
Restaurant15-Test 439 328 35

D4 Restaurant16-Train 1620 709 88
Restaurant16-Test 597 190 38

Table 1: Dataset description.

4 Experiments

4.1 Datasets
We evaluate our proposed model on four benchmark datasets, taken from SemEval 2014 task 4 (Pontiki et
al., 2014), SemEval 2015 task 12 (Pontiki et al., 2015), and SemEval 2016 task 52 (Pontiki et al., 2016).
Each training and test sample in the 2014 datasets consists of the review sentence, the opinion target, and
the sentiment polarity towards the opinion target. Following previous works (Tang et al., 2016b; Wang
et al., 2016), we remove samples with conflicting polarity in the 2014 datasets – the number of samples
in that class is very small and incorporating it will make the training dataset extremely unbalanced. The
data format in the 2015 and 2016 datasets is a bit different, where each opinion target is also associated
with one or multiple aspects and thus can have multiple sentiment polarities. Below is an example:

The food was delicious but expensive.
(target=“food”, aspect=food#quality, polarity=Pos)
(target=“food”, aspect=food#prices, polarity=Neg)

Since our model only takes a sentence and an opinion target as input, without using the aspect informa-
tion, we remove a sample in both training and test sets if the opinion target has different polarities as
the example above. This removes about 5% and 4% of test samples from the 2015 and 2016 datasets
respectively. Statistics of the resulting datasets are presented in Table 1.

We initialize word embeddings using the 300-dimension GloVe vectors supplied by Pennington et al.
(2014) and we use the dependency parser from spaCy3 to obtain dependency paths of review sentences.
We randomly select 20% of the original training data as the development set and only use the remaining
80% for training. Values for the hyperparameters are obtained empirically on the development set of one
task and are fixed for all other experiments. The dimension of the LSTM hidden vectors is set to 300,
the objective weights λu and λr are set to 1 and 0.1 respectively, the attention window size ws is set to 5
and the number of aspects K is set to 8.

We use RMSProp with base learning rate set to 0.001 and decay rate set to 0.9 for network training.
The minibatch size is set to 32. As a regularizer, we apply dropout (Srivastava et al., 2014) with proba-
bility 0.5 to the LSTM layer and the output layer. We train the network for a fix number of epochs and
select the best model according to the performance on the development set, and evaluate it on the test set.

4.2 Model Comparisons
We compare our model with the following baselines:

(1) Feature-based SVM (Kiritchenko et al., 2014): We compare with the reported results of a top
system in SemEval 2014. We could not directly compare with the reported results from SemEval 2015
and 2016 as their model inputs are different from ours (aspect is also one of their inputs).

(2) LSTM: An LSTM network is built on top of word embeddings. The mean over hidden vectors is
used as the sentence representation.

2Although there is another English dataset in the laptop domain from SemEval 2015 and 2016, it does not contain opinion
targets, thus it cannot be used directly in our work.

3https://spacy.io
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Methods D1 D2 D3 D4
Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

Feature-based SVM 80.16 NA 70.49 NA NA NA NA NA
LSTM 75.23 64.21 66.79 64.02 75.28 54.10 81.94 58.11
LSTM+ATT 76.83 66.48 68.07 65.27 77.38 60.52 82.73 59.12
TDLSTM 75.37 64.51 68.25 65.96 76.39 58.70 82.16 54.21
TDLSTM+ATT 75.66 65.23 67.82 64.37 77.10 59.46 83.11 57.53
ATAE-LSTM 78.60 67.02 68.88 65.93 78.48 62.84 83.77 61.71
MM 76.87 66.40 68.91 63.95 77.89 59.52 83.04 57.91
RAM 78.48 68.54 72.08 68.43 79.98 60.57 83.88 62.14
Ours: LSTM+ATT+TarRep 78.95 68.67 70.69 66.59 80.05 68.73 84.24 68.62
Ours: LSTM+SynATT 80.45 71.26 72.57 69.13 80.28 65.46 83.39 66.83
Ours: LSTM+SynATT+TarRep 80.63∗ 71.32∗ 71.94 69.23 81.67∗ 66.05∗ 84.61∗ 67.45∗

Table 2: Average accuracies and Macro-F1 scores over 5 runs with random initializations. The best
results are in bold. ∗ indicates that our full model (LSTM+SynATT+TarRep) is significantly better than
LSTM, LSTM+ATT, TDLSTM, TDLSTM+ATT, ATAE-LSTM, MM and RAM with p < 0.05 based on
one-tailed unpaired t-test.

(3) LSTM+ATT: The model described in section 3.2.
(4) TDLSTM (Tang et al., 2016a): It uses a forward LSTM and a backward LSTM to encode the

information before and after the target.
(5) TDLSTM+ATT: It extends TDLSTM by incorporating an attention mechanism.
(6) ATAE-LSTM (Wang et al., 2016): It is a variant of the attention-based LSTM model.
(7) MM (Tang et al., 2016b): It uses multi-hops of attention layers for sentence representation.
(8) RAM (Chen et al., 2017): It uses multi-hops of attention layers and combines the multiple attention

outputs with a recurrent neural network for sentence representation.
We produce the results of TDLSTM, ATAE-LSTM, and MM with the source codes released by their

authors. We re-implement RAM following the instructions in its paper as the code is not available. The
comparison results are shown in Table 2. Both accuracy and macro-F1 are used for evaluation as the label
distributions are unbalanced. The reported numbers are obtained as the average value over 5 different
runs with random initializations for each method. Significant test results are included for testing the
robustness of methods under random parameter initializations. We also show the effect of each proposed
approach: LSTM+ATT+TarRep denotes the model where the proposed target representation is used
while the attention model remains the same as LSTM+ATT; LSTM+SynATT denotes the model where
only the conventional attention is replaced by our syntax-based attention; and LSTM+SynATT+TarRep
denotes the full model with both approaches integrated as shown in Fig. 1.

We make the following observations: 1) Feature-based SVM is still a strong baseline, our best model
achieves competitive results on D1 and D2 without relying on so many manually-designed features and
external resources. 2) Compared with all other neural baselines, our full model achieves statistically sig-
nificant improvements (p < 0.05) on both accuracies and macro-F1 scores for D1, D3, D4. 3) Compared
with LSTM+ATT, all three settings of our model are able to achieve statistically significant improve-
ments (p < 0.05) on all datasets. This demonstrates that both proposed approaches are effective. 4)
The integrated full model overall achieves the best performance compared to using only one of the two
proposed approaches. This indicates that the two proposed approaches are complementary, thus further
improvements could be obtained when combining them. 5) The proposed target representation is more
helpful on restaurant domain (D1, D3, and D4) than laptop domain (D2). A plausible reason is that
restaurant domain has clearer aspects for opinion targets, while it is much harder to determine the as-
pects for many opinion targets in the laptop domain. Since our model represents the target as weighted
summation of aspect embeddings, domains with clear aspects may benefit more from the model.

4.3 Model Analysis
We conduct more detailed analysis of the proposed approaches quantitatively and qualitatively. By ex-
amining the final test outputs of the relevant models, we try to investigate what kind of errors made by
the baseline can be more effectively treated by our proposed approaches.
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Figure 3: Classification accuracies on groups with different number of opinion targets. The number in
brackets indicates the number of test instances in that group. Restaurant14 (left), Laptop14 (right).
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Figure 4: Attention visualization on example sentence-target pairs. The opinion target is in bold.
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Figure 5: t-SNE visualization of embedding
space. Subscripts 1 and 2 are used to de-
notes the target representation learned by our
method and the method of averaging word
vectors used in previous works respectively.

Impact of Syntax-based Attention Syntax-based at-
tention is supposed to better differentiate opinion con-
texts for different targets when there are multiple targets
appearing in the sentence. To verify this, we compare
LSTM+SynATT with LSTM and LSTM+ATT on sen-
tences grouped by their number of targets. Fig. 3 shows
the accuracies on the test sets of Restaurant14 (D1) and
Laptop14 (D2).

LSTM+SynATT performs the best on all groups. In
particular, it performs substantially better on groups
with two or three targets. By analyzing a number of
examples from these groups, we find that the proposed
syntax-based attention is more effective in capturing the
relevant opinion context for a given target when there
are multiple targets in the sentence. Two examples are
given in Fig. 4a, where our syntax-based attention suc-
cessfully captures the correct opinion word towards the
target of interest, whereas since conventional attention
only relies on semantic association between words and
the target, it fails by mis-attending to the opinion word
towards other target which has similar aspect semantics.

In addition, we observe that all models perform poorly on the group with more than three targets.
By analyzing the errors, we find two main causes. First, those sentences are relatively long, involving
more complex opinion expressions and sentence structures. Second, the proportion of neutral samples
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service table atmosphere price champagne curry bagels scallops
servers tables ambience prices wine thai bagel fillet
staff reservation ambiance buy drink dumplings dessert mignon
courteous reservations decor buying bottle sushi pastries salmon
waitstaff waiting surroundings cost wines samosa pies tuna

Table 3: Top 5 representative words of the eight discovered aspects on Restaurant14

contained in this group is much higher than in other groups. Since the number of neutral samples in the
training set is small, the trained classifier has difficulties in predicting neutral samples in the test set.

Impact of Target Representation To investigate how the proposed target representation helps to im-
prove performance, we extract test examples from Restaurant14 which are mis-classified by LSTM+ATT
but are correctly classified by LSTM+ATT+TarRep. Among these examples, 56% are associated with
opinion targets consisting of more than one words. Two examples are shown in Fig. 4b where the targets
are “green chillis” and “boutique selection of wines” respectively. Fig. 5 uses t-SNE visualization to
show the comparison of the learned target representations between our method and the method of aver-
aging word vectors used in previous works on these two examples. In Fig. 5, we can observe that simply
averaging the component word vectors fails to capture the correct semantics of both targets, as the target
representations are far away from the food-related words in the embedding space. Due to the inaccurate
representation of target, as shown in Fig. 4b, LSTM+ATT fails to attend to the right opinion context in
both examples. Our proposed target representation is able to capture the correct aspect semantics for
both targets and as a result, the attention mechanism can capture the correct opinion context.

Furthermore, the proposed target representation also outputs aspect embeddings after the training pro-
cess. Each aspect can be interpreted by its nearby words in vector space. Table 3 presents top representa-
tive words of the eight discovered aspects on Restaurant14. The words are ranked based on their cosine
similarities with the aspect embedding. As shown, each aspect is semantically coherent and our model
is able to discover the typical aspects of a restaurant such as food, ambience, service, and price. Since qt
in Equation (8) represents the probability distribution over aspects for the input target, our model could
additionally be used to map the input target to an aspect. We did not conduct further experiments on this
since it is not our main focus in this work, but it could be an interesting direction to explore in future.

4.4 Remaining Error Analysis

We additionally conduct a careful analysis of a subset of errors made by our full model, in order to better
understand its limitations. To do that, we randomly sample 100 examples with classification errors on
the test set of Restaurant14, and classify them into several error categories. Table 4 shows the top three
error categories, the corresponding proportions, and some representative examples for each category.
The top category is Neutral, which denotes examples where the gold sentiment label is neutral. There
are two main groups of errors under this category: (1) The polarity of the target is affected by other
sentiment words in the sentence. As shown in example 1), the sentence holds a positive sentiment
on atmosphere, but expresses no specific opinion on drinks. However, affected by the word perfect,
the predicted sentiment towards drinks is positive. Although the proposed attention mechanism aims
to address this type of errors, it still fails on complex examples; (2) The sentence is objective, with
no opinion expression such as example 2). Since there are many more positive training examples, the
predictions on such neutral examples are often biased towards positive sentiment.

The second most common error category is Complex, which includes examples with implicit opinion
expressions (example 3) or those that require deep comprehension to be understood (example 4). This
type of errors is difficult to handle with current techniques, especially when trying to build an end-to-
end neural network. The diversity and low frequency of those expressions make it hard for a statistical
approach to capture their patterns. For errors made on examples with negation words, we believe this is
due to the insufficient training data such that LSTM cannot effectively capture certain sequential patterns.
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No. Category (%) Examples
1 Neutral 43 1) A beautiful atmosphere, perfect for [drinks]neu

2) We started with the [scallops]neu and [asparagus]neu and also had the [soft shell crab]neu.
2 Complex 28 3) The [banana pudding]neg they serve has never seen as oven ...

4) I can understand the [prices]neg if it served better food.
3 Negation words 9 5) I thought the [food]neg is not cheap at all compared to Chinatown.

(sentiment shifter) 6) The [dinner]pos here is never disappointing.

Table 4: Top three error categories.

5 Conclusion

We propose two novel approaches to improve the effectiveness of attention mechanism for aspect-level
sentiment classification. In our experiments, we show quantitatively and qualitatively that both methods
help to improve the performance of a conventional attention-based LSTM. The integrated model achieves
the best results over baseline methods.

As future work, we can consider improving the accuracy on neutral examples. Possible methods in-
clude data augmentation on neutral examples and integration of linguistic knowledge to better determine
target-relevant opinion expressions.
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Gülşen Eryiğit. 2016. SemEval-2016 task 5: Aspect based sentiment analysis. In International Workshop on
Semantic Evaluation (SemEval 2016).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. 2016a. Effective LSTMs for target-dependent sentiment
classification. In International Conference on Computational Linguistics (COLING 2016).

Duyu Tang, Bing Qin, and Ting Liu. 2016b. Aspect level sentiment classification with deep memory network. In
Conference on Empirical Methods in Natural Language Processing (EMNLP 2016).

Duy-Tin Vo and Yue Zhang. 2015. Target-dependent Twitter sentiment classification with rich automatic features.
In International Joint Conference on Artificial Intelligence (IJCAI 2015).

Joachim Wagner, Piyush Arora, Santiago Cortes, Utsab Barman, Dasha Bogdanova, Jennifer Foster, and Lamia
Tounsi. 2014. DCU: Aspect-based polarity classification for SemEval task 4. In International Workshop on
Semantic Evaluation (SemEval 2014).

Yequan Wang, Minlie Huang, Li Zhao, and Xiaoyan Zhu. 2016. Attention-based LSTM for aspect-level sentiment
classification. In Conference on Empirical Methods in Natural Language Processing (EMNLP 2016).

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016. Gated neural networks for targeted sentiment analysis. In
AAAI Conference on Artificial Intelligence (AAAI 2016).


