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Abstract

Named entity recognition (NER) has attracted a substantial amount of research. Recently, sev-
eral neural network-based models have been proposed and achieved high performance. However,
there is little research on fine-grained NER (FG-NER), in which hundreds of named entity cat-
egories must be recognized, especially for non-English languages. It is still an open question
whether there is a model that is robust across various settings or the proper model varies depend-
ing on the language, the number of named entity categories, and the size of training datasets. This
paper first presents an empirical comparison of FG-NER models for English and Japanese and
demonstrates that LSTM+CNN+CRF (Ma and Hovy, 2016), one of the state-of-the-art methods
for English NER, also works well for English FG-NER but does not work well for Japanese,
a language that has a large number of character types. To tackle this problem, we propose a
method to improve the neural network-based Japanese FG-NER performance by removing the
CNN layer and utilizing dictionary and category embeddings. Experimental results show that the
proposed method improves Japanese FG-NER F-score from 66.76% to 75.18%.

1 Introduction

Named entity recognition (NER) is a well studied topic in natural language processing. There have been
many methods proposed for NER, including the conventional methods based on Conditional Random
Fields (CRF) (McCallum and Li, 2003), Support Vector Machines (SVM) (Yamada et al., 2002; Takeuchi
and Collier, 2002) and Hidden Markov Model (HMM) (Zhou and Su, 2002). Recently, neural net-
work based methods, such as LSTM+CNN+CRF (Ma and Hovy, 2016) or BiLSTM/LSTM-CRF/Stack
LSTMs (Lample et al., 2016; Misawa et al., 2017), have achieved state-of-the-art performance. How-
ever, while most existing studies mainly focus on recognizing a relatively small number of named entity
(NE) categories (e.g., ten or twelve categories) such as Person, Organization, Location, Artifact, etc.,
modern NLP applications often require domain-specific and fine-grained (FG) NER with hundreds of
NE categories. For example, a movie recommendation system might require the recognition of movie
names, but does not need to recognize Locations. Similarly, a chatbot software might require not only
the recognition of Organization, but also the fine-grained classification to recognize a music band name
to answer the question “Which band was Paul in”, from the information shown in Figure 1.

A fine-grained named entity recognition (FG-NER) model refers to a NER model that can recog-
nize and classify a large number of entity categories (e.g., hundreds of NE categories). In classical
coarse-grained named entity (NE) definition, often less than ten named entity categories are defined. For
example, in the CoNLL-2003 Named Entity Recognition task, there are four NE categories: Person,
Location, Organization and Miscellaneous (Sang and Meulder, 2003). Ritter et al. (2011) proposed a
NER algorithm to recognize ten categories of entities from Twitter text. On the other hand, in FG-NER,
there are hundreds of NE categories, which are fine-grained classification of coarse-grained categories.

*) Equally contributed to the paper
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Paul, a former member of The Beatles, known for "Let It Be”,

will be holding a concert at Carnegie Hall in New York.

Person Organization Artifact

Location Location

(a) Named entity recognition result

Paul, a former member of The Beatles, known for "Let It Be”,

will be holding a concert at Carnegie Hall in New York.

Person Org > Show_Org Product > Art > Music

Facilty > GOE > Theatre Location > GPE > City

(b) Fine-grained NER result

Figure 1: Example of NER and FG-NER

For example, Sekine (2008) divided the coarse-grained category Organization into the fine-grained cate-
gories such as Political Party, Military, Sports Organization, Show Organization, as shown in Figure 2.

Person Organization Location Time Numx...

International 

Org Family Show Org Political Org...

Political 

Party
Cabinet Military

Other 

Political Org
Government

Figure 2: Sekine’s Extended Named Entity (ENE) hierarchy

FG-NER is still an open research domain, with little information concerning the state-of-the-art per-
formance, the relation between training data size and performance, and how to select the best model
for different settings of training data size and target language. In FG-NER, because the number of NE
categories is large, some categories might face with the data sparseness problem, whereas some other
categories might have a large number of training samples in a dataset. Hence, it would be worth investi-
gating the relation between dataset size and the performance of the system. The current state-of-the-art
method for English NER (coarse-grained NER) is a neural network-based method, which uses convo-
lutional neural network (CNN) to calculate the character level embeddings (Ma and Hovy, 2016). This
leads to the question whether this method works well for languages with a large number of character
types, such as Japanese.

In this paper, we first investigate the relationship between the F-score of various FG-NER algorithms
with the size of training datasets for both English and Japanese. Second, we suggest the direction to
choose an appropriate FG-NER algorithm for appropriate target language and training data size. We
show that the state-of-the-art method for English NER also performs well for English FG-NER. On the
other hand, for Japanese FG-NER, the state-of-the-art method does not work well. To solve this problem,
we propose a method to significantly improve the neural network-based Japanese FG-NER performance
by removing the CNN layer, as well as utilizing dictionary and category embeddings information. Ex-
periments show that, the proposed method improves the F-score of the Japanese FG-NER system from
66.76% to 75.18%, which is a wide margin. We applied the proposed method to build an FG-NER system
that can recognize 200 categories of named entities in the Sekine’s Extended Named Entity Hierarchy
(ENEH) (Sekine, 2008). To the best of our knowledge, the proposed system achieves the state-of-the-art
performance in the task of recognizing 200 NE categories in the Sekine’s ENEH. We publish the test
dataset1 and our FG-NER API on the Web to allow other researchers to freely use2.

The rest of this paper is organized as follows. In Section 2, we describe the fine-grained named entity
tag sets and datasets. We present various algorithms for FG-NER and show our proposal to achieve high
performance for Japanese FG-NER in Section 3. We present detailed experimental results to find out
the relationships between models, training data size and target languages in Section 4. Finally, Section 5
concludes the paper.

1https://fgner.alt.ai/duc/ene/testsets/comp/en/
2https://fgner.alt.ai/extractor/

https://fgner.alt.ai/duc/ene/testsets/comp/en/
https://fgner.alt.ai/extractor/
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2 Fine-Grained Named Entity Tag Sets and Datasets

2.1 FG-NER tag set

The first challenge in FG-NER is defining a comprehensive tag set with a very large number of entity cat-
egories (Ling and Weld, 2012). There are two methods for defining a tag set (i.e., set of entity categories
to recognize) in previous studies on FG-NER. The first method is to take the entity categories from a
knowledge base such as Freebase (Bollacker et al., 2008) or YAGO (Suchanek et al., 2007), filtering out
the categories with a small number of entities and merging the categories with similar semantic meaning
into one FG-NER category (Ling and Weld, 2012; Yosef et al., 2012; Gillick et al., 2014). The second
method is to manually build an entity hierarchy to cover important domains in the real world. Following
the second method, Sekine et al. proposed an Extended Named Entity Hierarchy (ENEH), which con-
tains 200 entity categories in a three-layer hierarchy, as shown in Figure 2 (Sekine et al., 2002; Sekine,
2008).

In this paper, we use the entity hierarchy described by Sekine (2008), which contains 200 NE cat-
egories at the leaf-level, as our tag set3. At the top level of the hierarchy, there are about twenty
coarse-grained named entity categories, such as Person, Organization, Location, Facility, Product,
Event, . . . Each top-level categories is further divided into several second-level categories as shown in
Figure 2. Each second-level category is in turn divided into several leaf-level categories.

We use this hierarchy because it is carefully designed by humans, it does not ignore important domains
with small numbers of entities (e.g., Continental Region) and it includes a systematic categorization of
date/time and number. Moreover, for subsequent applications such as search engines or chatbot platforms
to easily utilize the FG-NER results, we want to classify an entity to exactly one category in the hierarchy
based on the context in which the entity appears. Consequently, we need an entity category hierarchy
that does not allow overlap between the categories (Sekine, 2008). For all experiments in this paper, we
will build Fine-grained NERs to recognize the leaf-level categories in this hierarchy. The parent level
categories can be easily inferred once we recognize the leaf-level categories.

2.2 FG-NER Dataset

We hired several human annotators to annotate two text corpora to create FG-NER tagged datasets for
English and Japanese. The number of annotators for English is ten and the number of annotators for
Japanese is seven. All of the annotators are native speakers of the corresponding language.

For each category in the Sekine’s Extended Named Entity (ENE) Hierarchy (Sekine, 2008), the human
annotators are first asked to write down 100 entities that belong to each ENE category. We then search
the Web for sentences that contain these entities. In the search result, we retrieve the sentences that
include at least one entity of the corresponding category. The human annotators then tag the sentences
with 200 ENE labels. For example, for the entity “Tokyo”, the Web search results might contain the
sentence “Tokyo is the capital of Japan”. This sentence must then be tagged as “<City>Tokyo</City>
is the capital of <Country>Japan</Country>”. Consequently, we have 20,000 sentences for English
and 20,000 sentences for Japanese (as the number of leaf-level categories defined in Sekine’s ENEH is
200). Note that the number of entities is larger than the number of sentences because in one sentence we
might have multiple entities, of different NE categories.

After filtering out erroneous sentences (sentences with invalid tag format, e.g., without closing the
tag </City>), we obtain totally 19,800 well-formed English sentences and 19,594 well-formed Japanese
sentences. Each category has at least 100 sentences containing the entities of that category. We divided
the dataset into three subsets: the training set (70% of the total data), development set (10%) and test set
(20%), as shown in Table 1. We use the development set to check the stop condition while training our
LSTM model.

To have an estimation of the difficulty of the FG-NER annotation task, we measured the coherence
between the annotators by calculating two coefficients for some categories in the English dataset: the
Fleiss’ kappa (κ) and the F-score of an annotator when assuming that another annotator created gold-

3The full tag set is here: https://nlp.cs.nyu.edu/ene/version7 1 0Beng.html

https://nlp.cs.nyu.edu/ene/version7_1_0Beng.html
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Table 1: Statistics of the datasets

Dataset
English Japanese

Sents Entities Sents Entities
Train 13,860 27,107 13,749 37,128
Dev 1,980 3,870 1,948 5,304
Test 3,960 7,739 3,897 10,485

Table 2: Agreement between annotators

Category Fleiss’ κ F-score
Country 0.977 0.966
Dish 0.890 0.738
Car Stop 0.873 0.672
Organization Other 0.835 0.483

standard data4. The results are shown in Table 2. We choose these categories to calculate the coefficients
because they represent typical categories in the dataset: a category with limited number of frequently
used entities (Country), a category with entities that are often not proper nouns (Dish), a category with
ambiguous and complicated location names (Car Stop) and a category that is ambiguously defined (Or-
ganization Other).

The κ coefficient is calculated on tokens so it is only slightly different between the four categories in
Table 2. This is because the ratio between the number of tokens with label “Other” is very large, com-
pared against the number of tokens with specific NE category labels. We calculated Fleiss’ κ on tokens
but not on entities because at entity level, there are some cases in which two annotators made overlap-
ping tags, but not identical. For example, Annotator1 might tag “<City>Greater Tokyo Area</City>”
and Annotator2 might tag “Greater <City>Tokyo</City> Area”. If we calculate on entity level then
the score would be 0 but if we calculate on token level, the score is greater than 0. Consequently, we
calculate the κ based on B/I/O tags at token level.

On the other hand, when calculating the entity-based F-score, the difference is very large between
the category Country and Organization Other. This is because the category Country is very easy to
recognize, as there are only about 200 entities frequently used in this category, whereas, recognizing
Organization Other or Car Stop is very difficult because of the ambiguity. This also indicates that the
performance of an FG-NER system tends to depend on the categories and we can confirm this in the
experimental results in the next sections.

3 Fine-Grained Named Entity Recognition Methods

3.1 Dictionary and Rule-based FG-NER

The simplest method for FG-NER is using a dictionary and a set of rules. Sekine and Nobata (2004)
presented a dictionary and rule-based Japanese FG-NER system that contains more than 1400 rules to
recognize 140 entity categories.

In this work, we added 200 rules to the existing 1400 rules by Sekine and Nobata to create a rule set
of 1600 rules to classify 200 NE categories in the Sekine’s Extended Named Entity Hierarchy. We then
built a rule-based Japanese FG-NER model to recognize 200 NE categories based on these 1600 rules.

We use a Japanese FG-NER dictionary containing 1.6 million Wikipedia entities in this model. In the
1.6 million entities in the dictionary, only 70 thousand entities are assigned NE tags by human, the rest
are assigned by an existing Wikipedia NE labeling algorithm (Suzuki et al., 2016), which gives a score
for each (entity, NE category) pair. We created similar rules for English FG-NER and we translated the
Japanese dictionary into English by looking up parallel entries in Wikipedia.

We use this method as a baseline for performance evaluation of FG-NER systems.

3.2 CRF+SVM hierarchical classifier for FG-NER

Hierarchical classifiers have been successfully used in previous research for FG-NER (Ling and Weld,
2012; Yosef et al., 2012). Ling and Weld proposed FIGER, an FG-NER system with the entity categories
taken from Freebase tags (Ling and Weld, 2012). In FIGER, the entity category is represented as a path,
such as /location/city or organization/company. FIGER divides the entity categories into

4In this case, we only have two annotators for each categories, so Fleiss’ kappa is equal to Cohen’s kappa
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a hierarchy of two layers: the categories in the first layer corresponding to the categories in coarse-
grained NER systems, whereas, the second layer (the leaf-layer) contains fine-grained entity categories.
FIGER uses a hierarchical classifier that contains a CRF at the top layer for sequence labelling and then
a Perceptron at the second layer for classification of the entities into fine-grained categories.

In this work, we propose a hierarchical classification method in which CRF is used for sequence
labelling at top-level and SVM is used for named entity classification at leaf-level of the Sekine’s ENE
Hierarchy, as shown in Figure 3. We use SVM at the leaf-level to classify an entity to fine-grained
categories because SVM is good for classification tasks.

Input sentence : He studied in The University of Tokyo. 

Sequence labelling 

by CRF (top level

categories)

Classify the entity into 

200 categories by 

SVM

Token:         Label:

He Other

studied      Other

in                 Other

The             Facility

University   Facility

of                 Facility

Tokyo          Facility

The University of Tokyo :  

Facility > GOE >  School

Output ENE Label : 

School

Figure 3: CRF+SVM based hierarchical classifier for FG-NER

Specifically, we use a training dataset (containing FG-NER tagged sentences) to train a CRF model to
tag the input sentences with the top-level ENE categories in Figure 2. As illustrated in Figure 2, at the
top level, we have only less than 20 categories of entities, thus using a CRF model here would achieve
comparable performance with existing NER systems. We cannot directly use CRF for a large number
of categories at leaf-level of the hierarchy, because with this number of classes, it would take a huge
amount of memory and running time to train the CRF model. Actually, we have tried to use CRF for
200 classes, but the training process took a long time and did not finish. After tagging the sentences
with the top-level categories, we can convert the FG-NER problem into a simple classification problem
(not a sequence labeling problem anymore), thus we can use SVM to classify the extracted entities at
the top level into leaf-level categories. Therefore, we have a CRF model to tag the input sentences with
top-level categories, and several SVM models (each for a top-level category) to classify the entities into
the leaf-level categories.

We use the following features for both SVM and CRF: bag-of-words, POS-tag, the number of digits in
the word, the Brown cluster of the current word, the appearance of the word as a substring of a word in the
Wikipedia ENE dictionary, the orthography features (the word is written in Kanji, Hiragana, Katakana or
Romanji), is capital letter, and the last 2-3 characters. Those features are proved to be useful in previous
work on named entity recognition (Ling and Weld, 2012; Yosef et al., 2012; Yogatama et al., 2015;
Suzuki et al., 2016).

Once we have the sequence labelling result, we have already known the surfaces and the top-level
categories of the entities in the input sentence. We then use SVM to classify the entities into leaf-level
categories. Because the number of leaf-level categories in each top-level categories is also not too large
(e.g., less than 15), SVM can achieve a reasonable performance at this step.

We also propose a method to incorporate dictionary information in both CRF and SVM step to improve
the entire performance, as described in Section 3.4.

3.3 LSTM+CNN+CRF model for FG-NER

We re-implemented the LSTM+CNN+CRF NER model described by Ma and Hovy (2016) and adjust
the model to work with FG-NER. The LSTM+CNN+CRF model originally described by (Ma and Hovy,
2016) is for NER problem with few NE categories. It first uses Convolutional Neural Network (CNN)
to learn character level embeddings in the training process. For NLP tasks, previous works have shown
that CNN is likely to extract morphological features such as prefix and suffix effectively (Ma and Hovy,
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2016; dos Santos and Guimarães, 2015; Chiu and Nichols, 2016). The model then concatenates the
character level embeddings with word embeddings to create a feature vector for each token in the input
sentence. The input sentence is then fed to a BiLSTM network (Bi-directional Long-Short Term Memory
network). Finally, CRF is used at the top layer of the BiLSTM to explore the correlations between outputs
and jointly decode the best sequence of labels (i.e., NE categories).

For both English and Japanese FG-NER task, we use pre-trained word embeddings as input for
our models. Previous studies have shown that GloVe achieves the best performance for English NER
task (Reimers and Gurevych, 2017). Consequently, we use the embeddings based on GloVe for English5.
For Japanese, we use pretrained word2vec6 embeddings. The vector dimension is 300 for English and
200 for Japanese.

We use the default hyperparameters by Ma and Hovy (2016) in our model: learning rate = 0.01,
batch size = 10 and decay rate = 0.09.

3.4 Incorporating dictionary information
Dictionary information (gazetteer feature) has been proved to be efficient in many NER and FG-NER
tasks (McCallum and Li, 2003; Sekine and Nobata, 2004; Yosef et al., 2012). While there are previous
studies that use dictionary for CRF (McCallum and Li, 2003) or SVM (Yosef et al., 2012) in the NER/FG-
NER tasks, we believe that dictionary information would be useful in both sequence labelling and entity
category disambiguation phase in the CRF+SVM method. Furthermore, the dictionary information can
also be used in LSTM+CNN+CRF method. Consequently, we propose a method that efficiently utilizes
dictionary information in the method LSTM+CNN+CRF and in both sequence labelling (CRF) and entity
category disambiguation (SVM) phase of the method CRF+SVM.

We search the dictionary and assign a label in the set {B, I,O} for each token in the input sentence
w1w2 . . . wn, in which a token wi is assigned the label B if it is a start token of an entity in the dictionary,
label I if it is a token inside an entity in the dictionary, otherwise, it is assigned the label O. If there is a
conflict (e.g., overlapping with two different entities in the dictionary) then we take the entities with the
largest number of tokens. This is because we want to tag the longest sequence that could be an entity
(e.g., if we have “United States” and “United States Army” then we take “United States Army”). We do
not directly use these labels as the final results of the sequence labelling phase since they are not reliable
as we drop all context information while assigning labels. Instead, we use these labels as features for
CRF model for sequence labelling the entire input sentence or we add it to the additional dimensions of
the vector representation of a token in the method LSTM+CNN+CRF.

Other than features from previous research on entity disambiguation (Yosef et al., 2012; Suzuki et al.,
2016), we propose to use the following feature derived from the dictionary. We tokenize all the entities
in the dictionary and calculate the probability that a token w is contained in an entity of type c :

P (c|w) = count(w, c)

count(w, ∗)
(1)

in which count(w, c) is the number of occurences of w in an entity of type c, whereas, count(w, ∗) is the
total number of times that w appears. We then use this probability as a feature for SVM to classify the
entities into leaf-level categories in the method CRF+SVM and we directly add this feature to the feature
vector of a token in the LSTM+CNN+CRF method. This feature is helpful because it represents the
likelihood that an entity e (which is a sequence of tokens wiwi+1 . . . wi+m) is contained in the category
c.

We add these features to the CRF+SVM method to have the CRF+SVM+Dict method. Similarity,
while using these features for LSTM+CNN+CRF, we obtained LSTM+CNN+CRF+Dict method.

3.5 Utilize entity category embeddings to improve Japanese FG-NER performance
For languages with a large number of character types such as Japanese, the CNN layer in the
LSTM+CNN+CRF+Dict network architecture might not work well. This is because with a large

5https://nlp.stanford.edu/projects/glove/
6http://www.cl.ecei.tohoku.ac.jp/∼m-suzuki/jawiki vector/

https://nlp.stanford.edu/projects/glove/
http://www.cl.ecei.tohoku.ac.jp/%7Em-suzuki/jawiki_vector/
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number of character types (e.g., 2000 frequently used characters in Japanese), it is difficult to cal-
culate high quality character embeddings. Consequently, we propose a modification to the existing
LSTM+CNN+CRF network architecture to alleviate this problem: We remove the CNN layer from the
LSTM+CNN+CRF+Dict method to have the LSTM+CRF+Dict method. Moreover, we add another ad-
ditional information concerning the entity category, as described below.

In the spirit of taking advantage of available dictionaries to improve our model as in CRF+SVM,
we propose to integrate statistical information from the dictionary to improve the word embeddings.
Specifically, for a word, we form a vector in which each element is the probability that this word is
contained in an entity category, as follows:

C(w) = (x1, x2, . . . , xn−1, xn) (2)

where xi is the probability that word w is contained in ith category (ci) :

xi = P (ci|w) =
count(w, ci)

count(w, ∗)
(3)

We call these “entity category embeddings”. For new words or words that do not appear in any
entity category in the dictionary, their entity embeddings are zero at all dimensions. We concatenate
this entity category embedding vector with the original word embedding vector to form a new word
embedding vector. We call the LSTM+CRF+Dict method that also utilizes entity category embeddings
as LSTM+CRF+Dict+Cate.

4 Experiments

4.1 Performance comparison between FG-NER methods
We evaluated the performance of the FG-NER methods using the test dataset, as described in Table 1.
We calculated the Precision, Recall and F1-score for each category and the micro-average Precision and
Recall over all 200 entity categories. Finally, we derived the average F1-score from the average Precision
and Recall.

Method English Japanese
F-score (%) F-score (%)

Rule+Dict 24.43 48.29
FIGER(Ling and Weld, 2012) 23.41 -
CRF+SVM+Dict 72.58 73.30
LSTM+CNN+CRF
(Ma and Hovy, 2016)

80.93 66.76

LSTM+CNN+CRF+Dict 83.14 70.34
LSTM+CRF+Dict 81.89 73.05

(a) Average F-score of the FG-NER methods

Method English Japanese
LSTM+CNN+CRF
(Ma and Hovy, 2016)

80.93 66.76

LSTM+CNN+CRF+Dict 83.14 70.34
LSTM+CNN+CRF+Dict+Cate 82.29 -
LSTM+CRF+Dict - 73.05
LSTM+CRF+Dict+Cate - 75.18

(b) Average F-score of the FG-NER systems with and without
entity category embeddings

Category Precision Recall F-score
(%) (%) (%)

URL 100.00 100.00 100.00
Phone Number 100.00 100.0 100.00
Cabinet 95.24 100.00 97.56
Country 90.06 92.67 91.35
... ... ... ...
Award 80.65 92.59 86.21
Car Stop 80.00 76.19 78.05
Book 87.50 63.64 73.67
Dish 67.31 76.09 71.43
... ... ... ...
Mollusk Arthropod 65.79 64.10 64.93
Art Other 63.16 57.14 59.99
Organization Other 57.14 48.00 52.17
Average 83.25 83.04 83.14

(c) Precision, Recall, F-score of the method
LSTM+CNN+CRF+Dict on the English test dataset,
sorted by F-score

Table 3: Performance of FG-NER methods

The evaluation results are shown in Table 3a. Rule and dictionary-based methods (Rule+Dict) can
only achieve an F-score of less than 50%, even we used more than 1000 rules and a huge number of
entries in the dictionaries. Because there are many Wikipedia entries that are in Japanese Wikipedia but
they are not in English Wikipedia and we translated the dictionary from Japanese by looking up parallel
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entries in English Wikipedia, these entities do not appear in the English dictionary. Consequently, the
F-score of English Rule+Dict is very low.

The method FIGER is the CRF+Perceptron hierarchical classifier described by Ling and Weld (Ling
and Weld, 2012). We use the published source code of FIGER7 and our training dataset (identical to the
training dataset of other methods in this paper) to get an FG-NER model. We evaluated this model with
the test dataset described in the previous section. We can only evaluate FIGER with English because the
source code of FIGER can only work with English (e.g., the feature extraction code can only work with
English if we don’t modify it). Although the architecture of the method FIGER is very similar to that
of CRF+SVM+Dict, the performance is very different (the F-score is 24.43%, compared to 72.58%).
This is because of several reasons. First, FIGER is designed for classifying the two-layer hierarchy of
named entities based on Freebase. This hierarchy is different from the three-layer hierarchy of Sekine’s
Extended Named Entity Hierarchy (ENEH) that we use in this work. Second, we use SVM at the leaf-
level, instead of Perceptron. We believe that SVM gives high performance than Perceptron in multi-class
classification tasks. And finally, the training data size is not large enough for FIGER to work well.
FIGER uses millions of training samples (which are automatically extracted from Wikipedia) to train
the system (Ling and Weld, 2012), whereas, in our method, we only have about 13 thousand sentences
in the training dataset. Automatically creating the NE tagged data is a reasonable approach for FG-NER
definitions that are derived from existing knowledge bases like Freebase or Wikipedia. For FG-NER
definitions that are not based on existing knowledge bases, it is difficult to automatically extract the NE
tagged data from a large text corpus like Wikipedia. Consequently, for FG-NER system working with
these definitions, we must design an algorithm that requires only a small amount of training data.

We can observe that the state-of-the-art method for English NER (Ma and Hovy, 2016) also works
well with English FG-NER, as LSTM+CNN+CRF outperforms CRF+SVM+Dict by a wide mar-
gin (80.93%, compared to 72.58%). However, for Japanese FG-NER, the situation is different. The
method CRF+SVM+Dict achieves the best performance, and it significantly outperforms the origi-
nal LSTM+CNN+CRF model in (Ma and Hovy, 2016). Even when we add dictionary information,
CRF+SVM+Dict still outperforms LSTM+CNN+CRF+Dict for Japanese FG-NER (the F-score is
73.30 and 70.34, respectively). We measured the statistical significance of the F-score difference by an
approximate randomization test (Chinchor, 1992) with significance level α = 0.05 and 99,999 iterations.
The randomization test is used because we want to check the difference between the micro-average F-
score over all ENE categories. The result of this test indicates that the difference in F-score is statistically
significant (the p-value is 10−5). The reason for this difference lies in the character level embeddings that
LSTM+CNN+CRF+Dict creates in the CNN layer. For English, we only have less than 30 characters
in the alphabet, whereas, in Japanese, we have more than 2,000 Hiragana, Katakana and Kanji characters
that are frequently used (the total number of Japanese characters is above 10,000). Because the number
of characters is large in Japanese, the CNN layer does not work well to create good quality character
embeddings.

We verified the above reason by the following experiment: we removed the CNN layer from
LSTM+CNN+CRF+Dict and we measured the performance on the test dataset. Removing the CNN layer
means disabling the character level embedding features in the LSTM+CNN+CRF+Dict method. The re-
sult of this experiment is shown in the last row of Table 3a. We can observe that, removing the CNN layer
boosts the performance of the neural network based method from 70.30% (LSTM+CNN+CRF+Dict)
to 73.05% (LSTM+CRF+Dict), making it comparable with the performance of CRF+SVM+Dict
(73.30%) for Japanese FG-NER. However, for English FG-NER, the performance decreased if we re-
move the CNN layer. This proves that the CNN layer works well for English, but it does not work for
Japanese.

We also verify the difference between CRF+SVM+Dict and LSTM+CRF+Dict using a random-
ization test as described previously. For Japanese, the difference between CRF+SVM+Dict and
LSTM+CRF+Dict is not statistically significant. This suggests that with enough amount of training
data and dictionary information, we can use both CRF or LSTM for FG-NER problem.

7https://github.com/xiaoling/figer

https://github.com/xiaoling/figer
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4.2 Result of removing CNN and using entity category embeddings

To verify the effectiveness the proposed method for Japanese FG-NER, we compared the performance of
the best neural network-based model for each language with and without the entity category embeddings.
The results are shown in Table 3b.

Because removing the CNN layer does not improve the performance of English FG-
NER, we compared LSTM+CNN+CRF with the method LSTM+CNN+CRF+Dict and
LSTM+CNN+CRF+Dict+Cate for English. We observe that, by adding dictionary information,
we can improve the F-score from 80.93% to 83.14%. This improvement is statistically significant under
a randomization test (similar to the tests in Section 4.1). However, if we further add the entity category
embedding information (in LSTM+CNN+CRF+Dict+Cate), the performance slightly decreased (from
83.14% to 82.29%, which is statistically significant under the randomization test). This is because the
quality of the translated English dictionary is not good enough to have practical statistics information.

Table 3b also shows a series of improvements we made for Japanese FG-NER. First, if we add the
dictionary information, we obtained a similar result with that of English FG-NER (we boost the perfor-
mance from 66.76% to 70.34%, as shown in the 1st and 2nd row of Table 3b). Second, if we remove
the CNN layer from the network, we improve the performance from 70.34% to 73.05%, as described in
the previous section. Finally, if we add category entity embeddings, we further improve the performance
from 73.05% to 75.18%. This makes the method LSTM+CRF+Dict+Cate significantly outperforms
the method CRF+SVM+Dict (the randomization test result shows that the improvement is statistically
significant). This proves the effectiveness of the newly added entity category embedding feature for
Japanese FG-NER.

With this result, we can unify the FG-NER model for both English and Japanese: we don’t need to use
CRF+SVM anymore, but we can utilize neural network-based models for both languages. We can have
an identical system for both English and Japanese FG-NER by simply setting an option to enable/disable
the CNN layer and the entity category embedding information to switch between English and Japanese.
This makes the engineering of the system easier and helps to cut the maintenance cost of the FG-NER
system.

4.3 Performance of each category

In the 200 NE categories in the Sekine’s ENEH (Sekine, 2008), there are several categories that can
be recognized by rule-based method (such as URL or Email). There are also some categories that
are actually not named entities, and difficult to recognize, such as Mollusk Arthropod (cellar spider,
turbinidae,. . . ) or Art Other (e.g., “the Venus of Milo”, “Genji Monogatari Emaki”,. . . ). Consequently,
the performance of the FG-NER models for each category will be different. In this section, we inves-
tigate the performance some typical entity categories in the method LSTM+CNN+CRF+Dict (the best
method for English).

Table 3c shows the Precision, Recall and F-score of the LSTM+CNN+CRF+Dict method on some
specific categories as well as the average evaluation results of the entire 200 categories (in the last row).
We achieved very high performance on the categories with a small number of known entities (such as
Country) or the categories that the rules can capture almost all entities (such as Intensity, Volume, URL,
and Email). For categories with free text names (e.g, printing names) or very short name (e.g., AK-47,
a type of weapon) the system can not predict the NE tag very well because these names might appear in
various contexts. This result is consistent with the difficulty of the tasks as described in Section 2.2 and
in Table 2.

4.4 Training data size and performance

To find out the relation between the training data size with the FG-NER models, we varied the training
data size and measured the F-score of each model on the test dataset.

Specifically, we randomly sample the training dataset by the rates of 20%, 40%, 60%, 80% and 100%
(i.e., using the entire training dataset). We then use the sampled training dataset to train the FG-NER
models and evaluated these models with the test dataset. The results of this experiment are shown in
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Figure 4: Relation between training data size and F-score

Figure 4a and Figure 4b.
For English, we observe that the neural network-based method (LSTM+CNN+CRF+Dict) consis-

tently outperforms the method CRF+SVM+Dict by a wide margin, irrespective of the training data size.
If we only use 20% of the training data (i.e., about 4000 training sentences), we can get the F-score of
68.49%, whereas, using the entire of the training dataset (100%), we get the F-score of 83.14%. How-
ever, from 60% of the data size, the F-score increases gradually. This indicates that, we can still get a
comparable performance even if we do not have a large amount of training data (an F-score of 78.68%
for 60% of training data size).

For Japanese, the situation is totally different. When the training data size is small, CRF+SVM+Dict
outperforms LSTM+CRF+Dict+Cate by a wide margin (F-score of 60.60%, compared to 45.43%).
However, when the training data size is increased to 100%, LSTM+CRF+Dict+Cate is the best method
(it achieves an F-score of 75.18%, compared to 73.30% of CRF+SVM+Dict). Therefore, if we only
have a small amount of training data (e.g., 4,000 sentences), we must use CRF+SVM+Dict. If we have
a larger amount of training data (e.g., 20,000 sentences), we can use the neural network-based model
LSTM+CRF+Dict+Cate to achieve the best performance. When the amount of training data is large
enough, the LSTM layer can learn the relation between the NE tags and the underlying words (tokens)
as well as the grammatical structures. Consequently, it can precisely model the NE tagging problem.

These comparison results give us a suggestion to choose the appropriate model for each setting of
target language and training data size: if the target language is English then we should use the neural
network-based methods; if the language is Japanese then we should use CRF+SVM+Dict if we only
have little amount of training data and we use the neural network-based method when we have enough
amount of training data.

5 Conclusion

We presented an empirical study of fine-grained named entity recognition (FG-NER) methods. We in-
vestigated the relation between the performance of the methods with various settings of target languages
and training data sizes. We found that the state-of-the-art method for English NER, which is based on
neural network architecture, also works well with English FG-NER. However, for Japanese FG-NER,
it does not achieve state-of-the-art performance. We proposed two additional features to the existing
method: first, incorporating dictionary information to the model and second, utilizing entity category
embeddings. Moreover, we proposed a modification to the architecture of the neural network-based
model, that is removing the CNN layer for Japanese FG-NER to alleviate problem concerning a large
number of characters in the Japanese alphabet. Experimental results show that, the proposed additional
features and network architecture modification improve the performance of Japanese FG-NER by a wide
margin.



721

References
Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: A Collab-

oratively Created Graph Database for Structuring Human Knowledge. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, pages 1247–1250.

Nancy Chinchor. 1992. The Statistical Significance of the MUC-4 Results. In Proceedings of the 4th Conference
on Message Understanding, MUC 1992, pages 30–50.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional LSTM-CNNs. Transactions
of the Association for Computational Linguistics (TACL), 4:357–370.
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