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Preface: General Chair

Welcome to COLING 2016 — the 26th International Conference on Computational Linguistics — held
in Osaka, Japan! It is the third COLING in Japan after Tokyo (1980) and Kyoto (1994). It is a special
pleasure for me to be General Chair (10 years after chairing the joint COLING-ACL 2006 in Sydney) of
a COLING held in Japan, a country I love.

COLING is organised under the auspices of the International Committee on Computational Linguistics
(ICCL, http://nlp.shef.ac.uk/iccl/index.html). ICCL is a very special committee, with no fixed rules and
no funding, whose only function is to make sure that a COLING appears every two years and that it is a
good and friendly conference.

I have participated to many COLINGs, since the one in Pisa in 1973. It was a COLING without email! I
still remember when Antonio Zampolli (Local chair) received by Hans Karlgren (Program chair) a sketch
of the program written by hand, almost unreadable, and asked me (very young at the time) to interpret
it. I have seen COLINGs where submissions arrived on paper and many packages were sent around the
world to area chairs, to be sent to reviewers, and all the results back again by normal mail. It seems
impossible now.

COLING has changed over the years, together with the changes in our field. But it has always been
important for ICCL to maintain the COLING “spirit”: we always wanted COLING to be an inclusive and
broad conference. We also want to underline that in our field “language” is important and we therefore
pay special attention to having papers and workshops focusing on understanding language properties and
complexities. Moreover, for us the social part of the conference is as important as the scientific one.

An outstanding competent and dedicated team has worked for the organisation of COLING 2016. I wish
to warmly thank, also on behalf of ICCL, all the various Chairs, too many to mention them all here, for
the wonderful work they have done. It has been a pleasure and a privilege for me to work together with
all of them: they made my work as General chair very easy. But I owe a special thanks to Yuji Matsumoto
and Rashmi Prasad, Program chairs, for their hard work in managing so smoothly an impressive number
of submissions, many more than we expected. And I wish to express my deepest gratitude to the Local
chairs — Eiichiro Sumita, Takenobu Tokunaga and Sadao Kurohashi — who have done a fantastic work
with great dedication in all the various phases of the conference organisation, always keeping everything
under control. Not an easy task, as I know too well!

I also want to thank the generosity of all the sponsors for their great support to COLING.

Last but not least, I thank the colleagues (so many) who submitted their work to COLING, the organisers
of Workshops and Tutorials, the participants (more than 900 at the time of writing) and the many students
among them. It is important that many young researchers can attend COLINGs. They show the great
interest of our community in COLING.

I hope that you benefit not only from the scientific programme but also from the social parts of COLING.
I hope you get from this COLING both new exciting ideas and also new friends.

Enjoy COLING 2016 in Japan!
Nicoletta Calzolari (ICCL, ILC-CNR and ELRA)
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Preface: Program Chairs

It is with great pleasure that we welcome you to the 26th International Conference on Computational
Linguistics (COLING 2016) in Osaka, Japan! COLING covers a broad spectrum of technical areas
related to natural language and computation. This year, we received 1,039 valid submissions (from a
total of 1127 submissions), of which we accepted 337 papers (32.4% acceptance rate). 134 papers were
selected for oral presentation and 203 papers for poster presentation. No distinction is made in these
proceedings between papers presented orally or as a poster, as they were not distinguished qualitatively
but rather by judging the best mode for delivering the paper content.

To effectively cover the broad spectrum of topics included in the conference, we have 18 thematic areas,
each chaired by two or more area chairs. We are extremely grateful to the area chairs, who led and
monitored the reviewing and reviewer discussions, and sent us detailed recommendation reports resulting
from the reviewing process, including best paper recommendations. We cannot thank enough the over
800 reviewers who have put in the requisite time and effort to carefully assess the very large number
of submissions we received this year. Their dedication and commitment, and willingness to work with
us even when there were tight time constraints, made the entire task proceed much more smoothly than
we had hoped! Almost all papers were reviewed by at least three reviewers and we are very happy with
the highly strong set of papers accepted for presentation. We thank all authors for their submissions
describing their very commendable research, and hope that authors of papers we could not accept have
nevertheless benefited from the feedback they received from reviewers.

We have structured the accepted submissions into ten sessions, with multiple thematic areas included in
parallel, either for oral presentation or poster presentation. Only one session — the first session — does not
have a parallel poster session. We are delighted to have four invited speakers to the conference: Joakim
Nivre from Uppsala University: “Universal Dependencies — Dubious Linguistics and Crappy Parsing?”;
Reiko Mazuka from RIKEN Brain Science Institute & Duke University: “Getting the Input Right:
Refining our Understanding of What Children Hear”; Dina Demner-Fushman from the U.S. National
Library of Medicine: “NLP to support clinical tasks and decisions”, and Simone Teufel from University
of Cambridge: “A Look at Computational Argumentation and Summarisation from a Text-Understanding
Perspective”.

We are extremely grateful to the members of the best paper committee, Tim Baldwin, Vincent Ng,
and Hinrich Schiitze, who agreed to put in extra time to select the two best papers at the conference.
Best paper nominations were collected in a bottom-up fashion, with reviewers first providing their
recommendation for each paper, and area chairs then collecting the positive recommendations, and upon
their own assessment of the corresponding reviews and papers, selecting some or all to be forwarded to
the PC chairs. PC chairs then invited the three experts to form a committee (chaired by the PC chairs) to
select the two best papers from this set of nominated papers.

We would like to thank the many members of the organizing committee who have helped us in crucial
ways at various stages of organizing the technical program — the General Chair, Nicoletta Calzolari;
the Local Chairs, Eiichiro Sumita, Takenobu Tokunaga and Sadao Kurohashi; the Publication Chairs,
Hitoshi Isahara and Masao Utiyama; the Publicity Chairs, Srinivas Bangalore, Dekai Wu and Antonio
Branco; and the Web Master Akifumi Yoshimoto. Our special thanks go to Swapna Somasundaran for
her voluntary help to recruit additional reviewers to handle the much larger than expected submissions
to the conference. Last but not the least, we are grateful to the softconf manager, Rich Gerber, for his
continuous help with our various questions and needs.

We hope that you enjoy the conference!

Yuji Matsumoto, Nara Institute of Science and Technology, Japan
Rashmi Prasad, University of Wisconsin-Milwaukee, U.S.A.
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Preface: Local Chairs

Welcome to the COLING 2016!

It is a pleasure to welcome you to COLING 2016 organized by the Japanese Association of Natural
Language Processing (ANLP) in Osaka. It has been 22 years since Japan last held the conference. While
we are meeting here to discuss NLP, there is no substitute for personal contact. Therefore, we have
arranged breaks, a reception, an excursion and a delightful banquet to facilitate discussion, collaboration
and making connections. We hope and the modern conference venue together with the ambience of
western Japan including Osaka, Nara and Kyoto (famous for their nature, culture, history, and food),
help to make this an enjoyable experience for all. We hope the conference will result in accelerated
growth of NLP.

Organizing a conference always takes a lot of work, and fortunately, we have experienced people from
all around the world in attendance at the COLING 2016 site. It is both an honor and a great pleasure to
work with them, and we thank them gratefully.

Since the proposal to host COLING was accepted by ICCL in 2014, our world has experienced some
drastic changes. Under unfavorable economic conditions in Japan and considering the distance from
Europe and America, we had to make a very conservative financial plan for the conference. The
sponsorship chairs worked very hard and collected 33 sponsors, which is considerably more than in
previous COLINGsS.

This year’s conference has attracted a huge number of submissions and has a high level of participation,
reflecting the ongoing dynamism in artificial intelligence around the globe. We were both overwhelmed
by the numbers of visa applications we had to handle, and at the same time delighted and excited by the
tremendous response.

We’d like to end by reporting two special features of COLING 2016: (1) COLING will assist student
participants with registration subsidies. Successful applicants for the Student Support Program will
receive all-inclusive free registration; (2) the collocation of the first international symposium for young
researchers working on Natural Language Processing (YRSNLP) as an official satellite event at COLING
2016.

Welcome, and enjoy the conference!
Eiichiro SUMITA, Takenobu TOKUNAGA, and Sadao KUROHASHI
COLING 2016 Local Chairs
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Invited talk 1
Universal Dependencies — Dubious Linguistics and Crappy Parsing?

Joakim Nivre (Uppsala University)

Universal Dependencies is a framework for cross-linguistically consistent treebank annotation that has
so far been applied to over 50 languages. It was developed primarily to support multilingual parsing
research, but the resources have proven useful for a wide range of studies that were not foreseen origi-
nally, including research on language typology. A basic design principle in Universal Dependencies is to
give priority to grammatical relations between content words, which are more likely to be parallel across
languages, and to treat function words essentially as features of content words. This principle has been
criticized both for being incompatible with theoretical linguistics, which tend to treat function words
as syntactic heads, and for being suboptimal as a representation for dependency parsing, where higher
accuracy is often observed with function words as heads. I will argue that both of these criticisms rest
on a misinterpretation of the syntactic representations, and I will show that an alternative interpretation
is compatible with both sound linguistics and improved parsing technology.
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Invited talk 2
Getting the Input Right: Refining our Understanding of What Children Hear
Reiko Mazuka (RIKEN Brain Science Institute & Duke University)

As models for language learning become increasingly sophisticated, it is essential to pay close attention
to the purported input received by learners. This talk presents two examples of phonological input for
which a failure to account for relevant factors has led to misleading conclusions. A fully annotated
dataset of infant-directed speech is now allowing a more refined analysis of what children actually hear.
The first example concerns vowel-duration contrasts (long vs. short) in Japanese. One previous study,
working under the assumption that long and short vowels occurred with equal frequency, concluded that
the distinction could be learned by a simple distributional model. Our dataset, however, reveals that
(a) in reality over 90% of vowels in Japanese are short, and (b) the distribution of long vowel duration
is entirely encompassed within that of short vowels. The second example concerns the widely accepted
claim that when adults speak to infants (infant-directed speech, IDS), they speak with a slower speech rate
than when speaking to adults (adult-directed speech, ADS). Studies supporting this conclusion, however,
have consistently failed to account for the fact that IDS utterances are shorter than those of ADS. Our
dataset differentiates between utterance-internal speech rate and utterance-final lengthening, and finds
taken separately, these values almost identical between IDS and ADS. As it turns out, IDS appeared to
have a slower overall rate only because of the greater frequency of utterance-final segments.
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Invited talk 3
NLP to support clinical tasks and decisions

Dina Demner-Fushman (U.S. National Library of Medicine)

Clinical decision support (CDS) provides clinicians and patients with information needed to enhance
health and health care. Clinical NLP — natural language processing methods to support healthcare by
operationalizing clinical information contained in clinical narrative — is an integral part of CDS. Clinical
NLP has started in the early 1960s, with several successful applications now integrated in daily care.
I will first discuss the successful applications that are already positively impacting clinical practice,
as well as publicly available resources, including those developed by our group. Consumer language
understanding is an equally important and rapidly evolving part of CDS. In the second part of the talk, I
will present our work in understanding consumer health questions. I will conclude with the challenges
and opportunities to contribute to these fascinating research areas that have practical implications for our
health.
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Invited talk 4

A Look at Computational Argumentation and Summarisation from a
Text-Understanding Perspective

Simone Teufel (University of Cambridge)

In the past five years, computational argumentation has emerged as a new, active research field. This
field studies all aspects of analysing and generating human argumentation, including argument mining,
supportive debating technologies, logical representation of arguments, models of reasoning, and the
connection of discourse processing and argumentation. As somebody who is mainly interested in the
text-understanding challenges of computational argumentation, I think this new field has the potential to
advance (and provide means of evaluating) the text-understanding capabilities of today’s NLP systems.

When humans construct an argument in order to convince others, how do they order and structure the
information they want to convey? I will argue that whatever principles are at work, they are almost identi-
cal to those needed when summarising a text. Amongst the relations of particular interest are entailment,
causal and rhetorical relationships. I will give an overview of currently available (text understanding-
based) analysis methods that can inform our understanding of these principles, and I will also say a few
words about a proposition-based approach to summarisation we have developed at Cambridge University
that has the potential to contribute insights to computational argumentation.
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Gustavo Paetzold and Lucia Specia

Applications

Using Argument Mining to Assess the Argumentation Quality of Essays
Henning Wachsmuth, Khalid Al Khatib and Benno Stein

Grammatical Templates: Improving Text Difficulty Evaluation for Language Learn-
ers

Shuhan Wang and Erik Andersen

Still not there? Comparing Traditional Sequence-to-Sequence Models to Encoder-

Decoder Neural Networks on Monotone String Translation Tasks
Carsten Schnober, Steffen Eger, Erik-Lan Do Dinh and Iryna Gurevych

12:30-14:00 Lunch break

lix



Thursday, December 15, 2016 (continued)

14:00-16:00

14:00-16:00

Session 6-A: Information Retrieval, Information Extraction, Question Answer-
ing I

Towards Time-Aware Knowledge Graph Completion
Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao Chang, Sujian Li and Zhifang
Sui

Learning to Weight Translations using Ordinal Linear Regression and Query-
generated Training Data for Ad-hoc Retrieval with Long Queries
Javid Dadashkarimi, Masoud Jalili Sabet and Azadeh Shakery

Neural Attention for Learning to Rank Questions in Community Question Answer-
ing

Salvatore Romeo, Giovanni Da San Martino, Alberto Barron-Cedefio, Alessan-
dro Moschitti, Yonatan Belinkov, Wei-Ning Hsu, Yu Zhang, Mitra Mohtarami and
James Glass

Simple Question Answering by Attentive Convolutional Neural Network
Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou and Hinrich Schiitze
Session 6-B: Machine Learning for NLP II

Recurrent Dropout without Memory Loss
Stanislau Semeniuta, Aliaksei Severyn and Erhardt Barth

Modeling topic dependencies in semantically coherent text spans with copulas
Georgios Balikas, Hesam Amoualian, Marianne Clausel, Eric Gaussier and Massih
R Amini

Consensus Attention-based Neural Networks for Chinese Reading Comprehension
Yiming Cui, Ting Liu, Zhipeng Chen, Shijin Wang and Guoping Hu

Semantic Annotation Aggregation with Conditional Crowdsourcing Models and

Word Embeddings
Paul Felt, Eric Ringger and Kevin Seppi

Ix



Thursday, December 15, 2016 (continued)

14:00-16:00

14:00-16:00

Session 6-C: Machine Translation 11

Interactive-Predictive Machine Translation based on Syntactic Constraints of Prefix
Na Ye, Guiping Zhang and Dongfeng Cai

Topic-Informed Neural Machine Translation
Jian Zhang, Liangyou Li, Andy Way and Qun Liu

A Distribution-based Model to Learn Bilingual Word Embeddings
Hailong Cao, Tiejun Zhao, Shu ZHANG and Yao Meng

Pre-Translation for Neural Machine Translation
Jan Niehues, Eunah Cho, Thanh-Le Ha and Alex Waibel

Session 6-D: Semantic Processing, Distributional Semantics, Compositionality
I

Direct vs. indirect evaluation of distributional thesauri
Vincent Claveau and Ewa Kijak

D-GloVe: A Feasible Least Squares Model for Estimating Word Embedding Densi-
ties
Shoaib Jameel and Steven Schockaert

Predicting human similarity judgments with distributional models: The value of
word associations.
Simon De Deyne, Amy Perfors and Daniel J Navarro

Distributional Hypernym Generation by Jointly Learning Clusters and Projections

Josuke Yamane, Tomoya Takatani, Hitoshi Yamada, Makoto Miwa and Yutaka
Sasaki

Ixi



Thursday, December 15, 2016 (continued)

14:00-16:00 Session 6-P: Poster Session 5

Discourse Relations, Coreference, Pragmatics

Incremental Fine-grained Information Status Classification Using Attention-based
LSTMs
Yufang Hou

Detection, Disambiguation and Argument Identification of Discourse Connectives
in Chinese Discourse Parsing
Yong-Siang Shih and Hsin-Hsi Chen

Multi-view and multi-task training of RST discourse parsers
Chloé Braud, Barbara Plank and Anders Sggaard

Implicit Discourse Relation Recognition with Context-aware Character-enhanced
Embeddings
Lianhui Qin, Zhisong Zhang and Hai Zhao

Measuring Non-cooperation in Dialogue
Brian Pliiss and Paul Piwek

Representation and Learning of Temporal Relations
Leon Derczynski

Revisiting the Evaluation for Cross Document Event Coreference
Shyam Upadhyay, Nitish Gupta, Christos Christodoulopoulos and Dan Roth

Modeling Discourse Segments in Lyrics Using Repeated Patterns

Kento Watanabe, Yuichiroh Matsubayashi, Naho Orita, Naoaki Okazaki, Kentaro
Inui, Satoru Fukayama, Tomoyasu Nakano, Jordan Smith and Masataka Goto

Ixii



Thursday, December 15, 2016 (continued)

Dialog Processing and Dialog Systems, Multimodal Interfaces

Multi-level Gated Recurrent Neural Network for dialog act classification
Wei Li and Yunfang Wu

Multimodal Mood Classification - A Case Study of Differences in Hindi and Western
Songs
Braja Gopal Patra, Dipankar Das and Sivaji Bandyopadhyay

Detecting Context Dependent Messages in a Conversational Environment
Chaozhuo Li, Yu Wu, Wei Wu, Chen Xing, Zhoujun Li and Ming Zhou

Joint Inference for Mode Identification in Tutorial Dialogues
Deepak Venugopal and Vasile Rus

Dialogue Act Classification in Domain-Independent Conversations Using a Deep
Recurrent Neural Network

Hamed Khanpour, Nishitha Guntakandla and Rodney Nielsen

Non-sentential Question Resolution using Sequence to Sequence Learning
Vineet Kumar and Sachindra Joshi

Context-aware Natural Language Generation for Spoken Dialogue Systems
Hao Zhou, Minlie Huang and xiaoyan zhu
Speech Recognition, Text-To-Speech, Spoken Language Understanding

Weakly-supervised text-to-speech alignment confidence measure
Guillaume Serriere, Christophe Cerisara, Dominique Fohr and Odile Mella

Domainless Adaptation by Constrained Decoding on a Schema Lattice
Young-Bum Kim, Karl Stratos and Ruhi Sarikaya

Sub-Word Similarity based Search for Embeddings: Inducing Rare-Word Embed-

dings for Word Similarity Tasks and Language Modelling
Mittul Singh, Clayton Greenberg, Youssef Oualil and Dietrich Klakow

Ixiii



Thursday, December 15, 2016 (continued)

16:00-16:30

Applications

Semi-automatic Detection of Cross-lingual Marketing Blunders based on Pragmatic
Label Propagation in Wiktionary
Christian M. Meyer, Judith Eckle-Kohler and Iryna Gurevych

Ambient Search: A Document Retrieval System for Speech Streams
Benjamin Milde, Jonas Wacker, Stefan Radomski, Max Miihlhduser and Chris Bie-
mann

Semi-supervised Gender Classification with Joint Textual and Social Modeling
Shoushan Li, Bin Dai, Zhengxian Gong and Guodong Zhou

Predicting proficiency levels in learner writings by transferring a linguistic com-
plexity model from expert-written coursebooks
I1diké Pilan, Elena Volodina and Torsten Zesch

User Classification with Multiple Textual Perspectives
Dong Zhang, Shoushan Li, Hongling Wang and Guodong Zhou

Says Who...? Identification of Expert versus Layman Critics’ Reviews of Docu-
mentary Films

Ming Jiang and Jana Diesner

Knowledge-Driven Event Embedding for Stock Prediction
Xiao Ding, Yue Zhang, Ting Liu and Junwen Duan

Distributed Representations for Building Profiles of Users and Items from Text Re-
views

Wenliang Chen, Zhenjie Zhang, Zhenghua Li and Min Zhang

coffee break

Ixiv



Thursday, December 15, 2016 (continued)

16:30-18:00

16:30-18:00

16:30-18:00

Session 7-A: Machine Translation II1

Improving Statistical Machine Translation with Selectional Preferences
Haiging Tang, Deyi Xiong, Min Zhang and Zhengxian Gong

Hierarchical Permutation Complexity for Word Order Evaluation
Milos Stanojevi¢ and Khalil Sima’an

Interactive Attention for Neural Machine Translation
Fandong Meng, Zhengdong Lu, Hang Li and Qun Liu

Session 7-B: Applications IV

Get Semantic With Me! The Usefulness of Different Feature Types for Short-Answer
Grading
Ulrike Pado

Automatically Processing Tweets from Gang-Involved Youth: Towards Detecting
Loss and Aggression

Terra Blevins, Robert Kwiatkowski, Jamie MacBeth, Kathleen McKeown,
Desmond Patton and Owen Rambow

Content-based Influence Modeling for Opinion Behavior Prediction

Chengyao Chen, Zhitao Wang, Yu Lei and Wenjie Li

Session 7-C: Computational Psycholinguistics and Linguistic Issues in NLP III
Data-driven learning of symbolic constraints for a log-linear model in a phonolog-
ical setting

Gabriel Doyle and Roger Levy

Chinese Tense Labelling and Causal Analysis
Hen-Hsen Huang, Chang-Rui Yang and Hsin-Hsi Chen

Exploring Topic Discriminating Power of Words in Latent Dirichlet Allocation
Yang Kai, Cai Yi, Chen Zhenhong, Leung Ho-fung and LAU Raymond

Ixv



Thursday, December 15, 2016 (continued)

16:30-18:00

16:30-18:00

Session 7-D: Lexical Semantics, Ontologies & Paraphrasing, Textual Entail-
ment II

Textual Entailment with Structured Attentions and Composition
Kai Zhao, Liang Huang and Mingbo Ma

plWordNet 3.0 — a Comprehensive Lexical-Semantic Resource
Marek Maziarz, Maciej Piasecki, Ewa Rudnicka, Stan Szpakowicz and Pawet
Kedzia

Time-Independent and Language-Independent Extraction of Multiword Expressions
From Twitter
Nikhil Londhe, Rohini Srihari and Vishrawas Gopalakrishnan

Session 7-P: Poster Session 6

Information Retrieval, Information Extraction, Question Answering

Incremental Global Event Extraction
Alex Judea and Michael Strube

Hierarchical Memory Networks for Answer Selection on Unknown Words
jiaming xu, Jing Shi, Yiqun Yao, Suncong Zheng, Bo Xu and Bo Xu

Revisiting Taxonomy Induction over Wikipedia
Amit Gupta, Francesco Piccinno, Mikhail Kozhevnikov, Marius Pasca and Daniele
Pighin

Joint Learning of Local and Global Features for Entity Linking via Neural Networks
Thien Huu Nguyen, Nicolas Fauceglia, Mariano Rodriguez Muro, Oktie Hassan-
zadeh, Alfio Massimiliano Gliozzo and Mohammad Sadoghi

Structured Aspect Extraction
Omer Gunes, Tim Furche and Giorgio Orsi

Robust Text Classification for Sparsely Labelled Data Using Multi-level Embed-
dings
Simon Baker, Douwe Kiela and Anna Korhonen

Mathematical Information Retrieval based on Type Embeddings and Query Expan-

sion
Yiannos Stathopoulos and Simone Teufel

Ixvi



Thursday, December 15, 2016 (continued)

Text Retrieval by Term Co-occurrences in a Query-based Vector Space
Eriks Sneiders

Pairwise Relation Classification with Mirror Instances and a Combined Convolu-
tional Neural Network
Jianfei Yu and Jing Jiang

FastHybrid: A Hybrid Model for Efficient Answer Selection
Lidan Wang, Ming Tan and Jiawei Han

Extracting Spatial Entities and Relations in Korean Text
Bogyum Kim and Jae Sung Lee

Hybrid Question Answering over Knowledge Base and Free Text
kun xu, Yansong Feng, Songfang Huang and Dongyan Zhao

Improved Word Embeddings with Implicit Structure Information
Jie Shen and Cong Liu

Sentiment Analysis, Computational Argumentation

Word Embeddings and Convolutional Neural Network for Arabic Sentiment Classi-
fication

Abdelghani Dahou, Shengwu Xiong, Junwei Zhou, Mohamed Houcine Haddoud
and Pengfei Duan

Combination of Convolutional and Recurrent Neural Network for Sentiment Analy-
sis of Short Texts
Xingyou Wang, Weijie Jiang and Zhiyong Luo

Stance Classification in Rumours as a Sequential Task Exploiting the Tree Structure
of Social Media Conversations
Arkaitz Zubiaga, Elena Kochkina, Maria Liakata, Rob Procter and Michal Lukasik

Tweet Sarcasm Detection Using Deep Neural Network
Meishan Zhang, Yue Zhang and Guohong Fu

Agreement and Disagreement: Comparison of Points of View in the Political Do-
main

Stefano Menini and Sara Tonelli

Targeted Sentiment to Understand Student Comments
Charles Welch and Rada Mihalcea

Ixvii



Thursday, December 15, 2016 (continued)

Towards Sub-Word Level Compositions for Sentiment Analysis of Hindi-English
Code Mixed Text
Aditya Joshi, Ameya Prabhu, Manish Shrivastava and Vasudeva Varma

Distance Metric Learning for Aspect Phrase Grouping
Shufeng Xiong, Yue Zhang, Donghong JI and Yinxia Lou

Friday, December 16, 2016

09:00-10:00

10:00-10:30

10:30-12:30

Invited talk 4: Simone Teufel (University of Cambridge)

coffee break

Session 8-A: Information Retrieval, Information Extraction, Question Answer-
ing I1

Constraint-Based Question Answering with Knowledge Graph
Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou and Tiejun Zhao

Selecting Sentences versus Selecting Tree Constituents for Automatic Question
Ranking

Alberto Barrén-Cedeio, Giovanni Da San Martino, Salvatore Romeo and Alessan-
dro Moschitti

Attention-Based Convolutional Neural Network for Semantic Relation Extraction
yatian shen and Xuanjing Huang

Table Filling Multi-Task Recurrent Neural Network for Joint Entity and Relation

Extraction
Pankaj Gupta, Hinrich Schiitze and Bernt Andrassy

Ixviii



Friday, December 16, 2016 (continued)

10:30-12:30

10:30-12:30

Session 8-B: Machine Translation I'V

Bilingual Autoencoders with Global Descriptors for Modeling Parallel Sentences
Biao Zhang, Deyi Xiong, jinsong su, Hong Duan and Min Zhang

Multi-Engine and Multi-Alignment Based Automatic Post-Editing and its Impact on
Translation Productivity
Santanu Pal, Sudip Kumar Naskar and Josef van Genabith

Measuring the Effect of Conversational Aspects on Machine Translation Quality
Marlies van der Wees, Arianna Bisazza and Christof Monz

Enriching Phrase Tables for Statistical Machine Translation Using Mixed Embed-
dings
Peyman Passban, Qun Liu and Andy Way

Session 8-C: Discourse Relations, Coreference, Pragmatics

Anecdote Recognition and Recommendation
Wei Song, Ruiji Fu, Lizhen Liu, Hanshi Wang and Ting Liu

Training Data Enrichment for Infrequent Discourse Relations
Kailang Jiang, Giuseppe Carenini and Raymond Ng

Inferring Discourse Relations from PDTB-style Discourse Labels for Argumentative
Revision Classification

Fan Zhang, Diane Litman and Katherine Forbes-Riley

Capturing Pragmatic Knowledge in Article Usage Prediction using LSTMs
Jad Kabbara, Yulan Feng and Jackie Chi Kit Cheung

Ixix



Friday, December 16, 2016 (continued)

10:30-12:30

10:30-12:30

Session 8-D: Sentiment Analysis, Computational Argumentation I

Aspect Based Sentiment Analysis using Sentiment Flow with Local and Non-local
Neighbor Information
Shubham Pateria

Two-View Label Propagation to Semi-supervised Reader Emotion Classification
Shoushan Li, Jian Xu, Dong Zhang and Guodong Zhou

A Joint Sentiment-Target-Stance Model for Stance Classification in Tweets
Javid Ebrahimi, Dejing Dou and Daniel Lowd

SenticNet 4: A Semantic Resource for Sentiment Analysis Based on Conceptual
Primitives
Erik Cambria, Soujanya Poria, Rajiv Bajpai and Bjoern Schuller

Session 8-P: Poster Session 7

Machine Learning for NLP

Joint Embedding of Hierarchical Categories and Entities for Concept Categoriza-
tion and Dataless Classification

Yuezhang(Music) Li, Ronghuo Zheng, Tian Tian, Zhiting Hu, Rahul Iyer and Katia
Sycara

Latent Topic Embedding
Di Jiang, Lei Shi, Rongzhong Lian and Hua Wu

Neural-based Noise Filtering from Word Embeddings
Kim Anh Nguyen, Sabine Schulte im Walde and Ngoc Thang Vu

Integrating Distributional and Lexical Information for Semantic Classification of
Words using MRMF
Rosa Tsegaye Aga, Lucas Drumond, Christian Wartena and Lars Schmidt-Thieme

Semi Supervised Preposition-Sense Disambiguation using Multilingual Data
Hila Gonen and Yoav Goldberg

Monday mornings are my fave :) #not Exploring the Automatic Recognition of Irony

in English tweets
Cynthia Van Hee, Els Lefever and Veronique Hoste

Ixx



Friday, December 16, 2016 (continued)

CNN- and LSTM-based Claim Classification in Online User Comments
Chinnappa Guggilla, Tristan Miller and Iryna Gurevych

Experiments in Idiom Recognition
JIng Peng and Anna Feldman

An Empirical Evaluation of various Deep Learning Architectures for Bi-Sequence
Classification Tasks
Anirban Laha and Vikas Raykar

Learning Succinct Models: Pipelined Compression with L1-Regularization, Hash-
ing, Elias-Fano Indices, and Quantization
Hajime Senuma and Akiko Aizawa

Semantic Processing, Distributional Semantics, Compositionality

Bad Company—Neighborhoods in Neural Embedding Spaces Considered Harmful
Johannes Hellrich and Udo Hahn

Implementing a Reverse Dictionary, based on word definitions, using a Node-Graph
Architecture
Sushrut Thorat and Varad Choudhari

Is an Image Worth More than a Thousand Words? On the Fine-Grain Semantic
Differences between Visual and Linguistic Representations
Guillem Collell and Marie-Francine Moens

On the contribution of word embeddings to temporal relation classification
Paramita Mirza and Sara Tonelli

Modeling Context-sensitive Selectional Preference with Distributed Representa-
tions

Naoya Inoue, Yuichiroh Matsubayashi, Masayuki Ono, Naoaki Okazaki and Ken-
taro Inui

Exploring the value space of attributes: Unsupervised bidirectional clustering of
adjectives in German
Wiebke Petersen and Oliver Hellwig

Distributional Inclusion Hypothesis for Tensor-based Composition
Dimitri Kartsaklis and Mehrnoosh Sadrzadeh

Parameter estimation of Japanese predicate argument structure analysis model us-

ing eye gaze information
Ryosuke Maki, Hitoshi Nishikawa and Takenobu Tokunaga

Ixxi



Friday, December 16, 2016 (continued)

12:30-14:00

14:00-15:30

Paraphrasing, Textual Entailment

Reading and Thinking: Re-read LSTM Unit for Textual Entailment Recognition
Lei Sha, Baobao Chang, Zhifang Sui and Sujian Li

A Paraphrase and Semantic Similarity Detection System for User Generated Short-
Text Content on Microblogs
Kuntal Dey, Ritvik Shrivastava and Saroj Kaushik

Modeling Extractive Sentence Intersection via Subtree Entailment
Omer Levy, Ido Dagan, Gabriel Stanovsky, Judith Eckle-Kohler and Iryna Gurevych

Context-Sensitive Inference Rule Discovery: A Graph-Based Method
Xianpei Han and Le Sun

Modelling Sentence Pairs with Tree-structured Attentive Encoder
Yao Zhou, Cong Liu and Yan Pan

Neural Paraphrase Generation with Stacked Residual LSTM Networks

aaditya prakash, Sadid A. Hasan, Kathy Lee, Vivek Datla, Ashequl Qadir, Joey Liu
and Oladimeji Farri

Lunch break

Session 9-A: Information Retrieval, Information Extraction, Question Answer-

ing II1

English-Chinese Knowledge Base Translation with Neural Network
Xiaocheng Feng, Duyu Tang, Bing Qin and Ting Liu

Keyphrase Annotation with Graph Co-Ranking
Adrien Bougouin, Florian Boudin and Beatrice Daille

What’s in an Explanation? Characterizing Knowledge and Inference Requirements

for Elementary Science Exams
Peter Jansen, Niranjan Balasubramanian, Mihai Surdeanu and Peter Clark

Ixxii



Friday, December 16, 2016 (continued)

14:00-15:30

14:00-15:30

14:00-15:30

Session 9-B: Sentiment Analysis, Computational Argumentation II

“All I know about politics is what I read in Twitter”: Weakly Supervised Models for
Extracting Politicians’ Stances From Twitter
Kristen Johnson and Dan Goldwasser

Leveraging Multiple Domains for Sentiment Classification
Fan Yang, Arjun Mukherjee and Yifan Zhang

Political News Sentiment Analysis for Under-resourced Languages
Patrik F. Bakken, Terje A. Bratlie, Cristina Marco and Jon Atle Gulla

Session 9-C: Applications V

Fast Inference for Interactive Models of Text
Jeffrey Lund, Paul Felt, Kevin Seppi and Eric Ringger

Combining Heterogeneous User Generated Data to Sense Well-being
Adam Tsakalidis, Maria Liakata, Theo Damoulas, Brigitte Jellinek, Weisi Guo and
Alexandra Cristea

Hashtag Recommendation with Topical Attention-Based LSTM
Yang Li, Ting Liu, Jing Jiang and Liang Zhang

Session 9-D: Resources, Software, Tools & Under-resourced languages I11

Better call Saul: Flexible Programming for Learning and Inference in NLP
Parisa Kordjamshidi, Daniel Khashabi, Christos Christodoulopoulos, Bhargav
Mangipudi, Sameer Singh and Dan Roth

Crowdsourcing Complex Language Resources: Playing to Annotate Dependency
Syntax
Bruno Guillaume, Karén Fort and Nicolas Lefebvre

Borrow a Little from your Rich Cousin: Using Embeddings and Polarities of English

Words for Multilingual Sentiment Classification
Prerana Singhal and Pushpak Bhattacharyya

Ixxiii



Friday, December 16, 2016 (continued)

14:00-15:30 Session 9-P: Poster Session 8

Machine Translation

A Character-Aware Encoder for Neural Machine Translation
Zhen Yang, Wei Chen, Feng Wang and Bo Xu

Convolution-Enhanced Bilingual Recursive Neural Network for Bilingual Semantic
Modeling
jinsong su, Biao Zhang, Deyi Xiong, Ruochen Li and Jianmin Yin

Improving Attention Modeling with Implicit Distortion and Fertility for Machine
Translation
Shi Feng, Shujie Liu, Nan Yang, Mu Li, Ming Zhou and Kenny Q. Zhu

Neural Machine Translation with Supervised Attention
Lemao Liu, Masao Utiyama, Andrew Finch and Eiichiro Sumita

Lightly Supervised Quality Estimation
Matthias Sperber, Graham Neubig, Jan Niehues, Sebastian Stiiker and Alex Waibel

Improving Translation Selection with Supersenses
Haiqing Tang, Deyi Xiong, Oier Lopez de Lacalle and Eneko Agirre

Is all that Glitters in Machine Translation Quality Estimation really Gold?
Yvette Graham, Timothy Baldwin, Meghan Dowling, Maria Eskevich, Teresa Lynn

and Lamia Tounsi

Connecting Phrase based Statistical Machine Translation Adaptation
Rui Wang, Hai Zhao, Bao-Liang Lu, Masao Utiyama and Eiichiro Sumita

Fast Collocation-Based Bayesian HMM Word Alignment
Philip Schulz and Wilker Aziz

Learning to translate from graded and negative relevance information
Laura Jehl and Stefan Riezler

Universal Reordering via Linguistic Typology
Joachim Daiber, Milo§ Stanojevi¢ and Khalil Sima’an

Ixxiv



Friday, December 16, 2016 (continued)

15:30-16:00

A Deep Fusion Model for Domain Adaptation in Phrase-based MT
Nadir Durrani, Hassan Sajjad, Shafiq Joty and Ahmed Abdelali

Inducing Bilingual Lexica From Non-Parallel Data With Earth Mover’s Distance
Regularization
Meng Zhang, Yang Liu, Huanbo Luan, Yiqun Liu and Maosong Sun

What Makes Word-level Neural Machine Translation Hard: A Case Study on
English-German Translation
Fabian Hirschmann, Jinseok Nam and Johannes Fiirnkranz

Improving Word Alignment of Rare Words with Word Embeddings
Masoud Jalili Sabet, Heshaam Faili and Gholamreza Haffari

Applications

Measuring the Information Content of Financial News
Ching-Yun Chang, Yue Zhang, Zhiyang Teng, Zahn Bozanic and Bin Ke

Automatic Generation and Classification of Minimal Meaningful Propositions in
Educational Systems
Andreea Godea, Florin Bulgarov and Rodney Nielsen

First Story Detection using Entities and Relations
Nikolaos Panagiotou, Cem Akkaya, Kostas Tsioutsiouliklis, Vana Kalogeraki and
Dimitrios Gunopulos

Textual complexity as a predictor of difficulty of listening items in language profi-
ciency tests

Anastassia Loukina, Su-Youn Yoon, Jennifer Sakano, Youhua Wei and Kathy Shee-
han

The Construction of a Chinese Collocational Knowledge Resource and Its Applica-
tion for Second Language Acquisition
Renfen HU, Jiayong Chen and Kuang-hua Chen

coffee break
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Friday, December 16, 2016 (continued)
16:00-17:00 Session 10-A: Information Retrieval, Information Extraction, Question An-
swering IV

Joint Inference for Event Coreference Resolution
Jing Lu, Deepak Venugopal, Vibhav Gogate and Vincent Ng

Event Detection with Burst Information Networks
Tao Ge, Lei Cui, Baobao Chang, Zhifang Sui and Ming Zhou
16:00-17:30 Session 10-B: Sentiment Analysis, Computational Argumentation I1I

Corpus Fusion for Emotion Classification
Suyang Zhu, Shoushan Li, Ying Chen and Guodong Zhou

Effective LSTMs for Target-Dependent Sentiment Classification
Duyu Tang, Bing Qin, Xiaocheng Feng and Ting Liu

Towards assessing depth of argumentation
Manfred Stede
16:00-17:30 Session 10-C: Applications VI

Video Event Detection by Exploiting Word Dependencies from Image Captions
Sang Phan, Yusuke Miyao, Duy-Dinh Le and Shin’ichi Satoh

Predicting Restaurant Consumption Level through Social Media Footprints
Yang Xiao, Yuan Wang, Hangyu Mao and Zhen Xiao

A Novel Fast Framework for Topic Labeling Based on Similarity-preserved Hashing

Xian-Ling Mao, Yi-Jing Hao, Qiang Zhou, Wen-Qing Yuan, Liner Yang and Heyan
Huang

Ixxvi



Friday, December 16, 2016 (continued)

16:00-17:30

16:00-17:30

Session 10-D: Dialog Processing and Dialog Systems, Multimodal Interfaces

Sequence to Backward and Forward Sequences: A Content-Introducing Approach
to Generative Short-Text Conversation
Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang and Zhi Jin

Disfluent but effective? A quantitative study of disfluencies and conversational
moves in team discourse
Felix Gervits, Kathleen Eberhard and Matthias Scheutz

A Neural Network Approach for Knowledge-Driven Response Generation
Pavlos Vougiouklis, Jonathon Hare and Elena Simperl

Session 10-P: Poster Session 9

Resources, Software and Tools

PersoNER: Persian Named-Entity Recognition
Hanieh Poostchi, Ehsan Zare Borzeshi, Mohammad Abdous and Massimo Piccardi

OCR++: A Robust Framework For Information Extraction from Scholarly Articles
Mayank Singh, Barnopriyo Barua, Priyank Palod, Manvi Garg, Sidhartha Satapathy,
Samuel Bushi, Kumar Ayush, Krishna Sai Rohith, Tulasi Gamidi, Pawan Goyal and
Animesh Mukherjee

Efficient Data Selection for Bilingual Terminology Extraction from Comparable
Corpora
Amir Hazem and Emmanuel Morin

TweetGeo - A Tool for Collecting, Processing and Analysing Geo-encoded Linguis-
tic Data
Nikola Ljubesi¢, Tanja Samardzic and Curdin Derungs

Extending WordNet with Fine-Grained Collocational Information via Supervised
Distributional Learning

Luis Espinosa Anke, Jose Camacho-Collados, Sara Rodriguez-Ferndndez, Horacio
Saggion and Leo Wanner

A News Editorial Corpus for Mining Argumentation Strategies
Khalid Al Khatib, Henning Wachsmuth, Johannes Kiesel, Matthias Hagen and
Benno Stein

Universal Dependencies for Turkish

Umut Sulubacak, Memduh Gokirmak, Francis Tyers, Cagr1 Coltekin, Joakim Nivre
and Giilsen Eryigit

Ixxvii



Friday, December 16, 2016 (continued)

Creating Resources for Dialectal Arabic from a Single Annotation: A Case Study
on Egyptian and Levantine
Ramy Eskander, Nizar Habash, Owen Rambow and Arfath Pasha

Multilingual Aliasing for Auto-Generating Proposition Banks
Alan Akbik, Xinyu Guan and Yunyao Li

PanPhon: A Resource for Mapping IPA Segments to Articulatory Feature Vectors
David R. Mortensen, Patrick Littell, Akash Bharadwaj, Kartik Goyal, Chris Dyer
and Lori Levin

Semantic Processing, Distributional Semantics, Compositionality

Text Classification Improved by Integrating Bidirectional LSTM with Two-
dimensional Max Pooling
Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao and Bo Xu

More is not always better: balancing sense distributions for all-words Word Sense
Disambiguation
Marten Postma, Ruben Izquierdo Bevia and Piek Vossen

Language classification from bilingual word embedding graphs
Steffen Eger, Armin Hoenen and Alexander Mehler

Word Embeddings, Analogies, and Machine Learning: Beyond king - man + woman
= queen

Aleksandr Drozd, Anna Gladkova and Satoshi Matsuoka

Semantic Tagging with Deep Residual Networks
Johannes Bjerva, Barbara Plank and Johan Bos

Ixxviii



Friday, December 16, 2016 (continued)

Lexical Semantics, Ontologies

A Supervised Approach for Enriching the Relational Structure of Frame Semantics
in FrameNet
Shafqat Mumtaz Virk, Philippe Muller and Juliette Conrath

Reddit Temporal N-gram Corpus and its Applications on Paraphrase and Semantic
Similarity in Social Media using a Topic-based Latent Semantic Analysis
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Abstract

We present an efficient model selection method using boosting for transition-based constituency
parsing. It is designed for exploring a high-dimensional search space, defined by a large set of
feature templates, as for example is typically the case when parsing morphologically rich lan-
guages. Our method removes the need to manually define heuristic constraints, which are often
imposed in current state-of-the-art selection methods. Our experiments for French show that the
method is more efficient and is also capable of producing compact, state-of-the-art models.

1 Introduction

Model selection in feature-based parsing is crucial because features define a parsing model’s capacity
to predict syntactic structure. Choosing an optimal model is a trade-off between generalisation perfor-
mance, compactness and parsing speed. Although too rarely mentioned, to this we should also add
the speed of the selection method, which can determine how much of the search space can actually be
explored. Parsing of languages other than English, and in particular morphologically rich languages,
spurred on by initiatives such as the SPMRL (Statistical Parsing of Morphologically Rich Languages)
shared tasks (Seddah et al., 2014), has received a heightened interest in recent years. For such languages,
it is natural to want to exploit morphologically rich data to improve parsing performance. However the
effect of this is an explosion in the number of possible models due to a huge number of potential features.

In this paper we introduce an efficient, language-independent model selection method for transition-
based constituency parsing. It is designed for model selection when faced with a large number of possible
feature templates, which is typically the case for morphologically rich languages, for which we want to
exploit morphological information. The method we propose uses multi-class boosting (Zhu et al., 2006)
for iterative selection in constant time, using virtually no a priori constraints on the search space. We do
however introduce a pre-ranking step before selection in order to guide the selection process. We provide
experiments on the adaptation of boosting for model selection in the parsing of high-dimensional data,
using the transition-based lexicalised constituency parser presented in (Crabbé, 2015) and illustrating
the feasibility of the method for our working language, French. Our results show that it is possible to
produce high-performing, compact models much more efficiently than naive methods.

The structure of the paper is as follows. We begin by describing the transition-based parser used
throughout the paper (Section 2). In Section 3 we review related work, both in model selection for
parsing (Section 3.1) and on the boosting algorithm used (Section 3.2) in our proposal. In Section 4 we
present our adaptation of the method for parsing and in Section 5 our experiments and results.

2 Discriminative constituency parsing
We base our experiments on the multilingual discriminative constituency parser described in (Crabbé,
2014; Crabbé, 2015) and inspired by transition-based parsing algorithms (Zhu et al., 2013). The parser

*This work was carried out while the first author was a Master’s student at Alpage (Univ. Paris-Diderot & Inria).
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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is an accurate and efficient transition-based lexicalised parser, capable of easily integrating lexical and
morphological features. Following standard practice in transition-based parsing, the key structure for
parsing is the configuration C' = (j,S) where j is the index of the parser in the queue of input tokens
and S is a stack of partially constructed tree structures. A derivation Cp—, of length 7 is represented by a
sequence of configurations Cy =2 . .. “ZS' C, where each a; € A is the parser action used to move from
C; to Cjy1. We use the same set A of actions as described in (Crabbé, 2014). Derivations are scored by
a function of the form:

T—1
W(COZ>T) = ZW : (I)(ai’ CZ)
=0

where w € RP is a weight vector and where ®(a, C') € {0, 1} denotes a function encoding a boolean-
valued feature vector from a pair (a, C).
Let GEN.: be the set of derivations of length 7. The best derivation in this set is defined as:

Cowr = argmax W (Co=r)
Co=+EGEN,
Weights for individual features are learnt using an averaged multi-class perceptron (Collins, 2002). They
can either be optimised globally (over sequences of derivations) or locally (for each individual action).
The first strategy is known to give better results for perceptron-based parsing (Zhang and Nivre, 2012).

2.1 Feature functions

The feature vector ®(a, C') is the result of a sequence of boolean feature functions ¢1(a,C) ... ¢p(a,C),
which have access to the action, to the top elements of the stack in C' and to the beginning of the queue
from index j. Each function is defined as per the following pattern:

1 if attro = a

and attr; = vy
o1(a,C) = (and attry = v2)?
(and attrs = Ug)?

0 otherwise

in which attrg is valued by the action a € A and the attributes attr|<;<3 are extracted from configuration
C. In practice, feature functions have access to the top three elements of the stack (see Figure 1) and the
first four elements of the queue. They can address non-terminal categories, word-forms and morpholog-
ical features (such as the part-of-speech (PoS), the gender, the number, the mood etc.) from the heads
in the stack and from the words in the queue. Their values v; are extracted from the configuration C, as
illustrated in the following example:

1 if attro = a
. and qo.word = “pot”
¢l(a7 C) - and so.cat = VP

0 otherwise

As shown in the pattern above, a function can contain up to three attribute-value pairs, excluding the
action. We refer to each pair as a condition, and refer to features as being uni-, bi- or tri-conditional
depending on the number of conditions they contain.

2.2 Feature templates

It is common practice to use feature templates when defining hand-crafted models rather than to specify
individual features. Feature templates are abstract feature representations in which only the attributes are
specified, such that features with the same attribute types are grouped into sets. In the case of templates,
which can also have up to three conditions, a condition refers simply to the attribute. For example, the
bi-conditional template ‘go(word) & s1(t, h, tag)’ represents all bi-conditional feature functions related
to the word-form of the first queue element and to the PoS tag of the lexical head associated with the top
of the second stack element.



S9.c¢[s2.w¢] s1.¢¢[s1.w¢] S0-Ct[S0.w¢]

/\/\

s1.¢ls1.wy]  sy.cr[s1.wy]  so.ci[so.wy]  So.cr[so.wy]

Figure 1: Stack elements for instantiation in feature functions. c¢;, ¢; and ¢, represent non-terminal
categories at three positions (top (¢), left (I) and right (r)). Lexical information about the head is also
available, indicated in squared brackets as s;.wy; 1.

Since a feature vector is usually sparse, using templates is an advantage for computational reasons;
the values of the feature functions can be dynamically and efficiently bound during parsing. They also
enable a more compact and readable representation of models, making models easier to define manually.

When working with parsers that rely on templates, which is the case of most current implementations
of existing feature-based parsers (Nilsson and Nugues, 2010; Ballesteros and Nivre, 2014; Crabbé, 2014,
etc.), the template seems to be an acceptable level of granularity for specifying models. A selection
process at the template-level rather than the feature-level has the advantage of being compatible with
these parsers and also reduces the selection time by reducing the combinatorics of the selection process.
We therefore focus our work on template selection.

3 Model selection for parsing

3.1 Previous work

For feature-based models, there are two main strategies for model selection. Filter methods remove
features based on a static analysis, whereas wrapper methods iteratively refit the model by forward or
backward selection. In the parsing literature, the wrapper method is the most prevalent. While some
backward wrappers exist, provided that the template set is small (Attardi et al., 2007), most work focuses
on forward wrappers, with a variety of constraints to reduce the search space and thus the time required.
Nilsson and Nugues (2010) constrain the search space by imposing an order on stack and queue elements,
under the assumption that more local elements are more useful than more distant ones. Ballesteros and
Nivre (2014) and Ballesteros and Bohnet (2014) use a combination of forward and backward methods
and fix heavy rule-based constraints on the order of templates selected. He et al. (2013) also implement
template selection for discriminative parsing. Although applied to graph-based parsing, their work shares
a likeness with our own, by their use of a pre-ranking wrapper to order templates prior to selection.

The reason for introducing such constraints is that wrapper methods are computationally intensive
and can be known to take weeks to select a model, even with constraints and fully optimised, multi-
processed implementations. Take for example the case of the forward wrapper. It starts with an empty
model (M < (). At each iteration, the template ¢ from the pool of potential templates P that results
in the highest overall accuracy gain is added to the model (M « M U t). The process stops when
the model’s loss ceases to decrease. The most time-consuming part of the process is the training of the
possible models, in order to select the template ¢ that results in the highest accuracy gain. In principle,
this requires fitting | P| models at each iteration, and the size of the models requiring training grows at
each iteration. Given that fitting a single parsing model can take hours (see Section 5.4), it is impractical
to perform selection for parsing based on iteratively refitting a series of large and ever-growing models.

3.2 Model selection via boosting

We propose to overcome the limitations of the naive forward wrapper by using sequential additive fitting
based on boosting (Freund and Schapire, 1999). Starting with an empty model (M <« ()), additive
fitting consists of evaluating the addition of a new template ¢ by fitting ¢ on its own before adding it
(M «— M U t), without modifying the already fitted content M. At each iteration, as with the naive
method, |P| models need to be fit, but they are small and of constant size. As we will show in the



Algorithm 1 SAMME (Zhu et al., 2006)
> Data={(z1,y1),.-., (zn,yn)}

1: Initialisation of data weights
o_ 1 12N
w, N i=h2e
2: for iteration t=1 to T do
()

i

(i)  Fit each weak learner h;(z) in the pool P to data using weights w

(i) Calculate the weighted error of each weak learner h;(x)

S wiM Wy # by (1))
errn; = R
i Wi
. . . 1
(iii) Select the h;(x) with the lowest weighted error erry; provided that erry,; > (1 — m)

Call the learner g and its weighted error err(*)
(iv) Calculate oD, where Y is the set of classes
1—err®
(t) — _

o' =log ( ) Tlee(Y-1)
(v) Update data weights using (")

witﬂ) = wlm - exp (a(t>]I (yi % gm(mi))), i=12,....N
(vi) Normalise weights such that Zivzl w; =1

end for

3: Prediction is the argmax of a weighted prediction of models g”), t=1,2,...,T
f(x) = argmax, >.7_ a(”ﬂ(g“) (z) = y)

remainder of the paper, this allows for a huge reduction in selection time, meaning that heavy constraints
are not needed to reduce the search space.

We use the multi-class AdaBoost variant SAMME (Stagewise Additive Modelling using a Multi-
class Exponential loss function) as described in (Zhu et al., 2006) and adapted here in Algorithm 1.
The algorithm is designed for predictive modelling and provides the means of combining a set of weak
learners' to produce a strong learner, by additively and iteratively selecting the best weak learner ¢(*)
and calculating its coefficient a(*) (its importance in the final model) until no more weak learners are
available. An additive fit is achieved by encoding the exponential loss of already selected learners in a
weight distribution over data examples, which is updated at each iteration. The algorithm comes with
a theoretical guarantee that as long as the selected learner has a weighted accuracy above chance, the
model’s boosted accuracy will not decrease.

In the case of parsing, weak learners can be seen as weak parsers, trained each on a very small set of
templates. It can be seen as iterative forward selection in that the selection of a weak parser constitutes
the selection of the templates on which it is trained. In this paper, we use the term weak parser as
an alias for the set of templates on which it is trained. Boosting has previously been used for feature
selection for automatic face-detection in the domain of imagery (Viola and Jones, 2004) and for a variety
of classification tasks by Das (2001). However to our knowledge, boosting methods have not yet been
used in the context of template selection for parsing.

4 Adapting boosting for template selection for parsing

Although the algorithm has a theoretical guarantee, certain aspects must be reviewed to adapt it to tem-
plate selection for parsing. Here we shall review four of these aspects, which prove essential, both in
terms of providing a correctly functioning implementation of boosted selection and in terms of the time
required for selection: (i) local training during selection, (ii) template grouping for weak parsers, (iii) a
user-defined stopping criterion, and (iv) pre-ranking of weak parsers to reduce the pool size at each
iteration.

'A weak learner (or weak classifier, weak hypothesis) is a classifier that performs better than random classification.



4.1 Local training of weak parsers

Ensemble methods such as boosting are notoriously problematic when it comes to structured predic-
tion problems such as parsing that require globally optimised training (Cortes et al., 2014). Following
Wang et al. (2007), who achieve good results on English and Chinese by boosting locally optimised
parsers, we decide to train weak parsers locally during selection. However, unlike Wang et al. (2007),
we perform boosting for the unique aim of selecting templates, rather than using the model fitted during
boosting. In order to subsequently use the selected templates for parsing, we take the resulting template
set, once selection is complete, and fit a globally optimised model. We make the assumption that lo-
cally boosted weak parsers provide a good approximation of a template set that can be used to produce a
high-performing global model.?

4.2 Template grouping for weak parsers 1

In our approach, the smallest manipulable units for se-

lecting parse models are templates. Instead of consid- § 0.9 Group - rain
ering that each weak parser is trained on a single tem- 5 +§‘°gl"d“ ,
. . —&— NoGroup - train
plate, we choose to group templates in order to train 5 0.8 —— NoGroup - dev
larger and stronger weak parsers. The pool of weak <
. . o
parsers is therefore represented by the different tem- =

S
EN

plate groups available for selection.

Basis for grouping We use the conditions contained 0.6 L | ! !
by templates (as defined in Section 2.2) as the basis for 10 20. 30 40 50
. ... Iteration number

grouping. We group templates that share conditions,

such that each group contains a single tri-conditional
template as well as all the templates with a combination
of the three conditions. Each group therefore contains
seven templates. Note that uni- and bi-conditional templates necessarily belong to more than one group.

Figure 2: Boosted accuracy with and without
grouping

Why group? Grouping templates has several advantages: it allows for cases of co-prediction, it can
accelerate model selection by reducing the number of weak parsers trained, and it strengthens the weak
parsers. Although in theory handling individual templates would allow for a finer-grained selection, in
practice, boosted accuracy does not increase as expected. It has previously been noted by Mukherjee and
Schapire (2011) that the guarantee appears to be too weak when the learners perform only just above
random. This can be seen in Figure 2, which shows the boosted accuracy for training and development
sets with and without grouping. The scores of the resulting models are also significantly lower for
individual rather than for grouped templates, and selection is more likely to terminate prematurely due
to a lack of sufficiently strong weak parsers, effectively stunting the final model size.

4.3 Stopping criterion

The boosting algorithm has a last-resort stopping criterion, when there are no more weak parsers left.
However this is not ideal for a parsing model; time efficiency at parse time is important and, depending
on the number of weak parsers available, a model selected with this stopping criterion could be huge,
and therefore slow at test time. We observe that the F-score of the retrained model continues to increase
(albeit very gradually as the model size increases) as more and more templates are added (tested up to
200 templates), despite the fact that the weighted error during boosting appears to stabilise. We propose
a practical stopping criterion, by which the maximum model size (the maximum number of templates) is
defined in advance by the user, serving as a second stopping criterion for selection.

4.4 Limiting the pool size by pre-ranking

The size of the weak parser pool is a potential source of problems in terms of efficiency, given the
possibility of a very large number of weak parsers. We therefore limit the pool size, by selecting the

2 Although boosted accuracy is not in strictly perfect correlation with the accuracy of a retrained global model.



parsers from a pool of size k at each iteration, according to a certain criterion. The aim of model selection
being to optimise the final performance of the parsing model, we introduce a pre-ranking step, in which
all possible weak parsers are globally trained and ranked according to their accuracy. Although this is an
approximation of the search space, pre-ranking should be able to guide the search. Weak parsers are not
replaced in the pool once selected, which means that the pool is not limited to the original %k best-ranked
learners; each time a learner is selected, a new one becomes available.3

5 Experiments

The aim of our experiments is to investigate the properties of the boosting algorithm in terms of selection
time and performance to test the feasibility of the selection method for high-dimensional search spaces.
Our working language is French, for which we use a corpus with rich morphological annotations.*

5.1 Data

We conduct our experiments for French, using the French TreeBank (FTB) (Abeillé et al., 2003), from the
2014 SPMRL shared task (Seddah et al., 2014), but with automatic predictions of morphological tags® by
MarMoT (Mueller et al., 2013), trained with ten-fold jackknifing. Templates can refer to the following
morphological attributes: word-form, PoS tag, gender, number, mood and multi-word expression tags,
as well as the syntactic categories of stack elements. They can access the top two stack elements and
the next three queue elements, making a total of 36,050 possible templates and 34,220 possible weak
parsers.® The corpus is divided into three sets: train, dev and test. Training data is used for pre-ranking
and selection, and development data is used for tuning and comparing parameter values. Results on
the test set are reported in Section 5.5. For pre-ranking, we use variants of the training set, which vary
depending on the maximum length of the sentences they contain. We refer to these variants as FTB-
10, FTB-20, FTB-50, where FTB-X contains all sentences from the original with a maximum sentence
length of X. To avoid any confusion, we refer to the full set as FTB-all. Data characteristics can be
found in Table 1.

Set #Sents.  #Tokens Avg. Len. #(a, C)
FTB-20-train 4,903 63,239 12.90 184,811
FTB-50-train 13,006 330,711 25.43 979,127
FTB-all-train 14,759 443,113 30.02 1,314,580
FTB-all-dev 1235 38,820 31.43 115,225
FTB-all-test 2541 75,216 29.60 223,107

Table 1: Basic data characteristics

5.2 Setup

As described in Section 4, our weak parsers use template groups selected without replacement. During
the pre-ranking step, different FTB-X -train variants are evaluated. Weak parsers are trained globally
using a single perceptron iteration, a beam size of 4 and early updates (Collins and Roark, 2004). During
selection, we also use a single perceptron iteration, but training is done locally. We evaluate the perfor-
mance of selected models by retraining them globally using FTB-all data, with 30 perceptron iterations,
a beam of size 8 and early updates. All experiments were run on an Intel(R) Xeon(R) CPU E5645 @
2.40GHz. Training is multi-processed but all times reported are approximated for a single processor to
enable a rough comparison.

3Replacement of learners is common in boosting, especially if they are decision stumps. However we find that with replace-
ment, selection is slower and larger models are unobtainable.

* Although not amongst the most morphologically rich languages, the French data contains sufficiently rich morphological
annotations to result in a huge number of possible templates, enabling us to test our selection method.

>In a realistic scenario where taggers are applied to raw texts before parsing, better parsing results are obtained when training
is done on predicted rather than gold tags.

The huge number of templates is due to the large number of morphological attributes available.



5.3 Parameter choices

We investigate the effect on performance and efficiency of selection of varying two parameters: (i) the
data used to pre-rank the weak parsers and (ii) the size k of the pool during selection. We also compare
against a non-boosted version in which weak learners are simply added in pre-ranking order, which is
equivalent to greedy forward selection.

Data # Sents.  Pre-ranking Time (hours) Selection method  Time (mins./iter.)
FTB-20-train 4,903 63 Pre-rank order 0
FTB-50-train 13,006 496 Boost, £ = 50 18.53
FTB-all-train 14,759 743 Boost, £k = 100 33.67
Table 2: Pre-ranking times using different data types. Table 3: Selection time per iteration.

Pre-ranking is the most time-consuming step in the process, and the speed is largely determined by
training data size (see Table 2). The number of weak parsers is identical for all FTB data, yet there is a
stark difference in pre-rank times; FTB-20-train is more than ten times faster than FTB-all-train. Average
selection times per iteration, (see Table 3),” are directly correlated with the size of the pool k, but are fast
compared to the pre-ranking step.

In Figure 3 we study the effect on model performance of varying pre-ranking data and the value of k
for two types of model: a small model with a maximum size of 36 templates (for efficient parsing) and a
larger model with a maximum size of 120 templates (for higher accuracy but slower parsing).®

For the 36-template model, all boosting runs outperform the selection method by pre-ranking only.
The effect is greatest when the smaller datasets are used. The crossing pattern seen in the graph for
k = 50 and k£ = 100 indicates that when the smaller dataset is used for pre-ranking, the larger value
for £ (of 100) is a better choice, and conversely, when the full dataset is used, the smaller value (of
50) is better. It is therefore possible to achieve almost comparable F-scores as when using full data for
pre-ranking and a pool size of 50 by using a smaller dataset (and drastically reducing the time needed to
pre-rank) and a larger, less constraining pool size of 100.

F-scores for the larger, 120-template models are higher, but for all methods we observed that the F-
score starts to converge at such a large model size. Again, scores are superior when FTB-all-train data
is used, but this time, the best model is reached using the simple pre-ranking order of template groups,
as long as FTB-all-train is used to pre-rank. For these larger models, it appears that there is less need
for the selection process, since a sufficiently large number of reasonably strong templates is all that is
required. The disadvantage with this method is that all data is needed for pre-ranking, which, as we
have shown above, is more time-consuming. However, as with the smaller models, boosting enables a
high-performing model to be selected much faster, by using smaller pre-ranking data.

5.4 Topline model: Naive forward wrapper

We also implemented a naive forward wrapper (see Section 3.1), which we refer to as FWRAP. This
method serves as a topline for parsing performance, as the method is a more accurate exploration of
the model space, and, as it is very time-consuming, a baseline for selection time. As with the boosting
method, templates are added by groups. We change the setup slightly to make the method feasible,
using a smaller and less annotated dataset to reduce the number of weak parsers and the time taken to
train them. Selection is performed using a variant of FTB-20-train, with the selection criterion being an
increased accuracy on FTB-20-dev. We forbid templates from addressing morphological values other
than the word-form, the PoS tag and a smoothed version of the word-form, although we allow access to
the third stack element and the fourth queue element. Importantly, the total number of weak parsers is far
fewer than with the FTB data used above (9,880 vs. 34,220), which means that the initial setup is more

"We take the median selection time rather than the mean due to variation due to sporadic differences in machine usage.

8For all boosting methods for each parameter combination, an average is calculated over 5 runs to account for random
variation due to the use of weighted resampling for training.

“Where words of fewer than two occurrences are replaced by a symbol $unknown$.
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Figure 3: Average F-scores (over 5 separate runs) of selected models with a maximum size of 36 tem-
plates (left) and 120 templates (right) for different FTB pre-ranking data and different pool sizes (k).

favourable for FWRAP. Models are trained globally with a beam size of 4 and max-violation updates
(Huang et al., 2012) for added speed. Since model sizes vary, the maximum number of perceptron
iterations is 35, but we use a test for convergence, enabling training to stop early for smaller models.
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Figure 4: Comparison of cumulative selection time (including pre-ranking) in hours (approximated for a
single processor) for FWRAP and a boosted method.

Figure 4 shows selection times for FWRAP and the boosting method (FTB-20-train, £ = 100). Train-
ing an ever-growing model during selection for FWRAP results in an increasing selection time per itera-
tion, whereas the boosting method’s selection time is constant and considerably faster overall.

5.5 Results

In Table 4, we provide results for the final selected models on both the development and test sets, eval-
uated using evalb. We provide comparative scores of the Berkeley parser (Petrov et al., 2006), of the
current highest performing single parser on French SPMRL data (Durrett and Klein, 2015), of the manu-
ally chosen model in (Crabbé, 2014) and of the model selected by FWRAP (Section 5.4). As before, we
give our results for two model sizes, using the stopping criterion mentioned in Section 4.3 (a maximum
size of 36 templates and of 120 templates).



F-score (%) on FTB-all Select. time Parse speed

Model #tpls. dev(P) dev(NoP) test(P) test(NoP) (hrs)  (#Toks./Sec.)
Berkeley (Petrov et al., 2006) - 79.74 - 80.38 80.73 - -
Neural CRF (Durrett and Klein, 2015) - 80.65 - 81.25 - - -
Manual (Crabbé, 2014) 68 - 81.79 - 81.43 - -
FWRAP (Section 5.4) 34 81.80 83.53 81.52 83.43 1,163 3,646
FTB-all-train/Pre-rank order 35 79.13 80.75 78.50 80.36 743 3,607
FTB-all-train/k = 50 36 80.73 82.42 79.91 81.69 745 3,478
FTB-20-train/k = 100 36 80.58 82.11 80.34 82.23 66 3,426
FTB-all-train/Pre-rank order 117 81.63 83.34 81.14 82.97 743 1,347
FTB-all-train/k = 100 119 81.84 83.39 81.26 83.08 762 1,328
FTB-20-train/k = 100 119 81.59 83.29 80.98 82.71 80 1,295

Table 4: Comparison of models. Results are given for evaluation with punctuation (P) and without punc-
tuation (NoP). Selection times include pre-ranking. All times are approximated for a single processor.

The best-performing model is selected using FWRAP, with a higher F-score than the current state-
of-the-art single parser (Durrett and Klein, 2015).!° However the selection time of 1,163 hours means
that the method is not very tractable. Our final boosting-based results show the same general pattern
as obtained on the development set in the previous section, showing that the approach is robust to a
change in dataset, and also to a scaling-up of model training to full optimisation. As in Section 35,
the best compromise is the boosted model with pre-ranking on FTB-20-train and £ = 100. It results
in one of the highest scores for the compact model, and the overall selection time is greatly reduced.
Importantly, it also outperforms the state-of-the-art manual model (Crabbé, 2014), whilst being almost
twice as compact. The results show that for larger models, selection via boosting is less useful, with
comparable results between boosted and the “pre-rank only” model. If a large model is needed, simply
sequentially adding individually trained weak parsers based on their accuracies can produce a high-
performing model.

6 Conclusion

We have successfully performed efficient model selection by using stepwise additive fitting. Experiments
on high-dimensional data for French show that compact, state-of-the-art parse models can be achieved,
and confirm our hypothesis that locally trained parsers can provide a good approximation for globally
trained models. Unlike current template selection methods for parsing (Nilsson and Nugues, 2010;
Ballesteros and Nivre, 2014), we use no hand-written heuristic constraints to limit the search space,
instead opting for pre-ranking of weak parsers to guide the search. Although pre-ranking is relatively
time-consuming, the times are very low compared to standard selection methods. We provide a realistic
selection scenario, which involves using only a portion of the training data for pre-ranking, capable of
selecting a large model (120 templates) in a couple of hours (when multi-processed), as well as compact
models that outperform state-of-the-art manually defined models. A release of all source code is available
online at https://bitbucket.org/rbawden/hyparse-boost-feature-selection.
In future works, we will extend the approach to a variety of other languages, in particular morpholog-
ically rich languages (e.g. Arabic, Hungarian or Korean) and extend the possible templates used to take
into account further features. Another interesting perspective would be to study the combination of our
approach with constraining heuristics, although language-specific and manual rules would be required.
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Abstract

Various treebanks have been released for dependency parsing. Despite that treebanks may be-
long to different languages or have different annotation schemes, they contain common syntactic
knowledge that is potential to benefit each other. This paper presents a universal framework for
transfer parsing across multi-typed treebanks with deep multi-task learning. We consider two
kinds of treebanks as source: the multilingual universal treebanks and the monolingual hetero-
geneous treebanks. Knowledge across the source and target treebanks are effectively transferred
through multi-level parameter sharing. Experiments on several benchmark datasets in various
languages demonstrate that our approach can make effective use of arbitrary source treebanks to
improve target parsing models.

1 Introduction

As a long-standing central problem in natural language processing (NLP), dependency parsing has been
dominated by data-driven approaches for decades. The foundation of data-driven parsing is the avail-
ability and scale of annotated training data (i.e., treebanks). Numerous efforts have been made towards
the construction of treebanks which established the benchmark research on dependency parsing, such as
the widely-used Penn Treebank (Marcus et al., 1993). However, the heavy cost of treebanking typically
limits the existing treebanks in both scale and coverage of languages.

To address the problem, a variety of authors have proposed to exploit existing heterogeneous tree-
banks with different annotation schemes via grammar conversion (Niu et al., 2009), quasi-synchronous
grammar features (Li et al., 2012) or shared feature representations (Johansson, 2013) for the enhance-
ment of parsing models. Despite their effectiveness in specific datasets, these methods typically lack the
scalability of exploiting richer source treebanks, such as cross-lingual treebanks.

In this paper, we aim at developing a universal framework for transfer parsing that can exploit multi-
typed source treebanks to improve parsing of a target treebank. Specifically, we will consider two kinds
of source treebanks, that are multilingual universal treebanks and monolingual heterogeneous treebanks.

Cross-lingual supervision has proven highly beneficial for parsing low-resource languages (Hwa et al.,
2005; McDonald et al., 2011), implying that different languages have a great deal of common ground in
grammars. But unfortunately, linguistic inconsistencies also exist in both typologies and lexical repre-
sentations across languages. Figure 1(a) illustrates two sentences in German and English with universal
dependency annotations. The typological differences (subject-verb-object order) results in the opposite
directions of the dobj arcs, while the rest arcs remain consistent.

Similar problems also come with monolingual heterogeneous treebanks. Figure 1(b) shows an English
sentence annotated with respectively the universal dependencies which are content-head and the CONLL
dependencies which instead take the functional heads. Despite the structural divergences, these treebanks
express the syntax of the same language, thereby sharing a large amount of common knowledge that can
be effectively transferred.

1 Corresponding author: Wanxiang Che
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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(a) Multilingual universal dependencies. (b) Monolingual heterogeneous dependencies.

Figure 1: Comparisons between multilingual universal dependencies (a) and monolingual heterogeneous
dependencies (b).

The present paper proposes a simple yet effective framework that aims at making full use of the con-
sistencies while avoiding suffering from the inconsistencies across treebanks. Our framework effectively
ties together the deep neural parsing models with multi-task learning, using multi-level parameter sharing
to control the information flow across tasks. More specifically, learning with each treebank is maintained
as an individual task, and their interactions are achieved through parameter sharing in different abstrac-
tion levels on the deep neural network, thus referred to as deep multi-task learning. We find that different
parameter sharing strategies should be applied for different typed source treebanks adaptively, due to the
different types of consistencies and inconsistencies (Figure 1).

We investigate the effect of multilingual transfer parsing using the Universal Dependency Treebanks
(UDT) (McDonald et al., 2013). We show that our approach improves significantly over strong su-
pervised baseline systems in six languages. We further study the effect of monolingual heterogeneous
transfer parsing using UDT and the CONLL-X shared task dataset (Buchholz and Marsi, 2006). We
consider using UDT and CoNLL-X as source treebanks respectively, to investigate their mutual benefits.
Experiment results show significant improvements under both settings. Moreover, indirect comparisons
on the Chinese Penn Treebank 5.1 (CTBS5) using the Chinese Dependency Treebank (CDT)! as source
treebank show the merits of our approach over previous work.”

2 Related Work
The present work is related to several strands of previous studies.

Monolingual resources for parsing Exploiting heterogeneous treebanks for parsing has been explored
in various ways. Niu et al. (2009) automatically convert the dependency-structure CDT into the phrase-
structure style of CTB5 using a trained constituency parser on CTBS5, and then combine the converted
treebanks for constituency parsing. Li et al. (2012) capture the annotation inconsistencies among dif-
ferent treebanks by designing several types of transformation patterns, based on which they introduce
quasi-synchronous grammar features (Smith and Eisner, 2009) to augment the baseline parsing models.
Johansson (2013) also adopts the idea of parameter sharing to incorporate multiple treebanks. They fo-
cuse on parameter sharing at feature-level with discrete representations, which limits its scalability to
multilingual treebanks where feature surfaces might be totally different. On the contrary, our approach is
capable of utilizing representation-level parameter sharing, making full use of the multi-level abstractive
representations generated by deep neural network. This is the key that makes our framework scalable to
multi-typed treebanks and thus more practically useful.

Aside from resource utilization, attempts have also been made to integrate different parsing models
through stacking (Torres Martins et al., 2008; Nivre and McDonald, 2008) or joint inference (Zhang and
Clark, 2008; Zhang et al., 2014).

"https://catalog.ldc.upenn.edu/LDC2012T05
2Qur code is available at: https://github.com/jiangfengl124/mt1l-nndep.
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Multilingual resources for parsing Cross-lingual transfer has proven to be a promising way of induc-
ing parsers for low-resource languages, either through data transfer (Hwa et al., 2005; Tiedemann, 2014;
Rasooli and Collins, 2015) or model transfer (McDonald et al., 2011; Téackstrom et al., 2012; Guo et al.,
2015; Zhang and Barzilay, 2015; Guo et al., 2016).

Duong et al. (2015b) and Ammar et al. (2016) both adopt parameter sharing to exploit multilingual
treebanks in parsing, but with a few important differences to our work. In both of their models, most of
the neural network parameters are shared in two (or multiple) parsers except the feature embeddings,?
which ignores the important syntactical inconsistencies of different languages and is also inapplicable
for heterogeneous treebanks that have different transition actions. Besides, Duong et al. (2015b) focus
on low resource parsing where the target language has a small treebank of ~3K tokens. Their models
may sacrifice accuracy on target languages with a large treebank. Ammar et al. (2016) and Vilares et
al. (2016) instead train a single parser on a multilingual set of rich-resource treebanks, which is a more
similar setting to ours. We refer to their approach as shallow multi-task learning (SMTL) and will
include as one of our baseline systems (Section 4.2). Note that SMTL is a special case of our approach
in which all tasks use the same set of parameters.

Bilingual parallel data has also proven beneficial in various ways (Chen et al., 2010; Huang et al.,
2009; Burkett and Klein, 2008), demonstrating the potential of cross-lingual transfer learning.

Multi-task learning for NLP There has been a line of research on joint modeling pipelined NLP tasks,
such as word segmentation, POS tagging and parsing (Hatori et al., 2012; Li et al., 2011; Bohnet and
Nivre, 2012). Most multi-task learning or joint training frameworks can be summarized as parameter
sharing approaches proposed by Ando and Zhang (2005). In the context of neural models for NLP, the
most notable work was proposed by Collobert and Weston (2008), which aims at solving multiple NLP
tasks within one framework by sharing common word embeddings. Henderson et al. (2013) present a
joint dependency parsing and semantic role labeling model with the Incremental Sigmoid Belief Net-
works (ISBN) (Henderson and Titov, 2010). More recently, the idea of neural multi-task learning was
applied to sequence-to-sequence problems with recurrent neural networks. Dong et al. (2015) use multi-
ple decoders in neural machine translation systems that allows translating one source language to many
target languages. Luong et al. (2015) study the ensemble of a wide range of tasks (e.g., syntactic parsing,
machine translation, image caption, etc.) with multi-task sequence-to-sequence models.

To the best of our knowledge, we present the first work that successfully integrate both monolingual
and multilingual treebanks for parsing, with or without consistent annotation schemes.

3 Approach

This section describes the deep multi-task learning architecture, using a formalism that extends on the
transition-based dependency parsing model with LSTM networks (Dyer et al., 2015) which is further en-
hanced by modeling characters (Ballesteros et al., 2015). We first revisit the parsing approach of Balles-
teros et al. (2015), then present our framework for learning with multi-typed source treebanks.

3.1 Transition-based Neural Parsing

Neural models for parsing have gained a lot of interests in recent years, particularly boosted by Chen and
Manning (2014). The heart of transition-based parsing is the challenge of representing the stafte (config-
uration) of a transition system, based on which the most likely transition action is determined. Typically,
a state includes three primary components, a stack, a buffer and a set of dependency arcs. Traditional
parsing models deal with features extracted from manually defined feature templates in a discrete feature
space, which suffers from the problems of Sparsity, Incompleteness and Expensive feature computation.
The neural network model proposed by Chen and Manning (2014) instead represents features as contin-
uous, low-dimensional vectors and use a cube activation function for implicit feature composition. More
recently, this architecture has been improved in several different ways (Dyer et al., 2015; Weiss et al.,
2015; Zhou et al., 2015; Andor et al., 2016). Here, we employ the LSTM-based architecture enhanced
with character bidirectional LSTMs (Ballesteros et al., 2015) for the following major reasons:

*Duong et al. (2015b) used L2 regularizers to tie the lexical embeddings with a bilingual dictionary.
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Figure 2: The LSTM-based neural parser (a) and the Char-BiLSTM for modeling words (b).

* Compared with Chen & Manning’s architecture, it makes full use of the non-local features by mod-
eling the full history information of a state with stack LSTMs.

* By modeling words, stack, buffer and action sequence separately which indicate hierarchical ab-
stractions of representations, we can control the information flow across tasks via parameter sharing
with more flexibility (Section 3.2).

Besides, we did not use the earlier ISBN parsing model (Titov and Henderson, 2007) due to its lack
of scalability to large vocabulary. Figure 2(a) illustrates the transition-based parsing architecture using
LSTMs. Bidirectional LSTMs are used for modeling the word representations (Figure 2(b)), which
we refer to as Char-BiLSTMs henceforth. Char-BiLSTMs learn features for each word, and then the
representation of each token can be calculated as:

x = ReLU(V[W; W;t] + b) (1)

where t is the POS tag embedding. The token embeddings are then fed into subsequent LSTM layers to
obtain representations of the stack, buffer and action sequence respectively referred to as s, by and a;
(The subscript ¢ represents the time step). Note that the subtrees within the stack and buffer are modeled
with a recursive neural network (RecNN) as described in Dyer et al. (2015). Next, a linear mapping (W)
is applied to the concatenation of s;, b; and a;, and passed through a component-wise ReLU:

Pt = ReLU(W[St; bt; at] + d) (2)
Finally, the probability of next action z € A(S, B) is estimated using a softmax function:

exp(glpt + )
YreAs,B) eXP(8L Pt + d2r)

p(2lpe) = 3)

where A(S, B) represents the set of valid actions given the current content in the stack and buffer.

We apply the non-projective transition system originally introduced by Nivre (2009) since most of the
treebanks we consider in this study has a noticeable proportion of non-projective trees. In the SWAP-
based system, both the stack and buffer may contain tree fragments, so RecNN is applied both in S and
B to obtain representations of each position.

3.2 Deep Multi-task Learning

Multi-task learning (MTL) is the procedure of inductive transfer that improves learning for one task by
using the information contained in the training signals of other related tasks. It does this by learning
tasks in parallel while using a shared representation. A good overview, especially focusing on neural
networks, can be found in Caruana (1997).
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Figure 3: Illustration of the MTL framework.

We illustrate our multi-task learning architecture in Figure 3. As discussed in previous sections, multi-
ple treebanks, either multilingual or monolingual heterogeneous, contain knowledge that can be mutually
beneficial. We consider the target treebank processing as the primary task, and the source treebank as a
related task. The two tasks are interacted through multi-level parameter sharing (Section 3.2.1). Inspired
by Ammar et al. (2016), we introduce a task-specific vector e! (task embedding) which is first com-
bined with s;, by, a; to compute p, and then further concatenated with p; to compute the probability
distribution of transition actions. Therefore, Eqn 2, 3 become:

p: = ReLU(W(s; by; ay; et] +d) 4)

p(zlpt) = softmax(g;[pe;e'] +q.) (5)

The joint cross-entropy is used as the objective function. The key of multi-task learning is parameter
sharing, without which the correlation between tasks will not be exploited. In this work, we design
sophisticated parameter sharing strategies according to the linguistic similarities and differences between
the tasks.

3.2.1 Parameter Sharing

Deep neural networks automatically learn features for a specific task with hierarchical abstractions,
which gives us the flexibility to control parameter sharing in different levels accordingly.

In this study, different parameter sharing strategies are applied according to the source and target tree-
banks being used. We consider two different scenarios: MTL with multilingual universal treebanks
as source (MULTI-UNIV) and MTL with monolingual heterogeneous treebanks as source (MONO-
HETERO). Table 1 presents our parameter sharing strategies for each setting.

MULTI-UNIV  Multilingual universal treebanks are annotated with the same set of POS tags (Petrov et
al., 2012), dependency relations, and share the same set of transition actions. However, the vocabularies
(word, characters) are language-specific. Therefore, it makes sense to share the lookup tables (embed-
dings) of POS tags (£,s), relations (F,..;) and actions (Fq.), but separate the character embeddings
(Echar) as well as the Char-BiLSTMs (BiLSTM(chars)). Additionally, linguistic typologies such as the
order of subject-verb-object and adjective-noun (Figure 1(a)) varies across languages, which result in the
divergence of inherent grammars of transition action sequences. So we set the action LSTM (LSTM(A))
as task-specific.

MONO-HETERO Monolingual heterogeneous treebanks instead share the same lexical representa-
tions, but have different POS tags, structures and relations due to the different annotation schemes. Hence
the transition actions set varies across treebanks. For simplicity reasons, we convert the language-specific
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MuLTI-UNIV MONO-HETERO
Ep087 Erelu Eact Epos; Echar
Shared LSTM(S), LSTM(B), RecNN | LSTM(S), LSTM(B), BiLSTM(chars), RecNN
WA7W57WB WA7W57WB
lacharaet li}elvlaactyet
Task-specific | LSTM(A), BiLSTM(chars) LSTM(A)
g g

Table 1: Parameter sharing strategies for MULTI-UNIV and MONO-HETERO. LSTM(S) — stack LSTM,;
LSTM(B) — buffer LSTM; LSTM(A) — action LSTM; BiLSTM(chars) — Char-BiLSTM; RecNN - re-
cursive NN modeling the subtrees; W4, Wg, Wp — weights from A, S, B to the state (p¢); g — weights
from the state to output layer; F/ — embeddings.

POS tags of the heterogeneous treebanks into universal POS tags (Petrov et al., 2012). Consequently,
Echar and BILSTM(chars), E),,¢ are shared across tasks, but E,.¢;, Eyct, LSTM(A) are task-specific.

Besides, the LSTM parameters for modeling the stack and buffer (LSTM(S), LSTM(B)), the RecNN
for modeling tree compositions, and the weights from S, B, A to the state p; (W4, Wp, Wg) are shared
for both MULTI-UNTV and MONO-HETERO. As standard in multi-task learning, the weights at the output
layer (g) are task-specific in both settings.

3.2.2 Learning

Training is achieved in a stochastic manner by looping over the tasks:

1. Randomly select a task.
2. Select a sentence from the task, and generate instances for classification.
3. Update the corresponding parameters by back-propagation w.r.t. the instances.

4. Goto 1.
We adopt the development data of the target treebank (primary task) for early-stopping.

4 Experiments

We first describe the data and settings in our experiments, then the results and analysis.

4.1 Data and Settings

We conduct experiments on UDT v2.0* and the CoNLL-X shared task data. For monolingual hetero-
geneous source, we also experiment on CTBS5 using CDT as the source treebank, to compare with the
previous work of Li et al. (2012). Statistics of the datasets are summarized in Table 2. We investigate the
following experiment settings:

* MULTILINGUAL (UNIV—UNIV). In this setting, we study the integration of multilingual universal
treebanks. Specifically, we consider the DE, ES, FR, PT, IT and SV universal treebanks as target
treebanks, and the EN treebank as the common source treebank.

* MONOLINGUAL (CONLL«<>UNIV). Here we study the integration of monolingual heterogeneous
treebanks. The CONLL-X corporas (DE, ES, PT, SV) and the UDT treebank of corresponding
languages are used as source and target treebanks mutually.

* MONOLINGUAL (CDT—-CTBS5). We follow the same settings of Li et al. (2012), and consider two

scenarios using automatic POS tags and gold-standard POS tags respectively.

*https://github.com/ryanmcd/uni-dep-tb

17



Train Dev Test Train Dev Test
UDT CoONLL-X

EN | 39,832 1,700 2,416 - - -
DE | 14,118 800 1,000 | 35,295 3,921 357
ES | 14,138 1,569 300 | 2,976 330 206
FR | 14,511 1,611 300 - -

PT | 9,600 1,200 1,198 | 8,164 907 288
IT | 6,389 400 400 - - -
SV | 4447 493 1,219 | 9,938 1,104 389

ZH | 55,500 1,500 3,000 | 16,091 803 1,910

Table 2: Statics of UDT v2.0 and CoNLL-X treebanks (with languages presented in UDT v2.0).

MULTILINGUAL (UNIV — UNIV)

Sup CASEN SMTLEgN MTLgnN
UAS LAS | UAS LAS | UAS LAS | UAS LAS
DE | 8424 7840 | 84.24 78.65 | 84.37 79.07 | 8493 79.34
ES | 8531 8123 | 8542 81.42 | 8578 81.54 | 86.78 82.92
FR | 85.55 81.13 | 84.57 80.14 | 86.13 81.77 | 86.44 82.01
PT | 8840 86.54 | 88.88 87.07 | 89.08 87.24 | 89.24 87.50
IT | 86.53 83.72 | 86.58 83.67 | 86.53 83.64 | 87.26 84.27

Table 3: Parsing accuracies of MULTILINGUAL (UNIV—UNTIV). Significance tests with MaltEval yield
p-values < 0.01 for (MTL vs. SUP) on all languages.

4.2 Baseline Systems

We compare our approach with the following baseline systems.

* Monolingual supervised training (SUP). Models are trained only on the target treebank, with the
LSTM-based parser.

* Cascaded training (CAS). This system has two stages. First, models are trained using the source
treebank. Then the parameters are used to initialize the neural network for training target parsers.
Similar approach was studied in Duong et al. (2015a) and Guo et al. (2016) for low-resource parsing.

For MULTILINGUAL (UNIV—UNIV), we also compare with the shallow multi-task learning (SMTL)
system, as described in Section 2, which is representative of the approach of Duong et al. (2015b) and
Ammar et al. (2016). In SMTL all the parameters are shared except the character embeddings (E.},47-),
and task embeddings (e?) are not used. Unlike Duong et al. (2015b) and Ammar et al. (2016), we don’t
use external resources such as cross-lingual word clusters, embeddings and dictionaries which is beyond
the scope of this work.

4.3 Results

In this section, we present empirical evaluations under different settings.

4.3.1 Multilingual Universal Source Treebanks

Table 3 shows the results under the MULTILINGUAL (UNTV—UNTIV) setting. CAS yields slightly better
performance than SUP, especially for SV (+1.52% UAS and +2.04% LAS), indicating that pre-training
with EN training data indeed provides a better initialization of the parameters for cascaded training.
SMTL in turn outperforms CAS overall (comparable for I'T), which implies that training two treebanks
jointly helps even with a unique model.
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DE ES FR
Sup 58.93 | 61.99 | 60.45
CAs 64.08 | 70.45 | 68.72
SMTL 63.57 | 69.01 | 65.04
+ weighted sampling | 63.50 | 70.17 | 68.52
MTL 62.43 | 66.67 | 64.23
+ weighted sampling | 64.22 | 68.42 | 66.67

Duong et al. 61.2 | 69.1 | 65.3
Duong et al. + Dict 61.8 | 70.5 | 67.2

Table 4: Low resource setup (3K tokens), evaluated with LAS.

Furthermore, with appropriate parameter sharing, our deep multi-task learning approach (MTL) out-
performs SUP overall and achieves the best performances in five out of six languages. An exception is
Swedish. As we can see, both CAS and SMTL outperforms MTL by a significant margin for SV. The
underlying reasons we suggest are two-fold.

1. SV morphology is similar to EN with less inflections, encouraging the morphology-related param-
eters like BILSTM(chars) to be shared.

2. SV has a much smaller treebank compared with EN (1:9). We suggest that SMTL and CAS work
better than MTL in low resource setting. To our intuition, since knowledge contained in the low-
resource target treebank is very limited, it is reasonable for us to put more emphasis on the source
treebank through SMTL or CAS.

To verify the first issue, we conduct tests on SMTL without sharing Char-BiLSTMs, and observe
significant degradation in performance (-0.73 in UAS and -0.81 in LAS). This observation also suggests
that MTL has the potential to reach higher performances through language-specific tuning of parameter
sharing strategies.

To verify the second issue, we consider a low resource setup following Duong et al. (2015b), where
the target language has a small treebank (3K tokens). We train our models on identical sampled dataset
shared by the authors on DE, ES and FR. As we can find in Table 4, while all the models outperform
Sup, both CAS and SMTL work better than MTL, which confirms our assumption. Although not the
primary focus of this work, we find that SMTL and MTL can be significantly improved in low resource
setting through weighted sampling of tasks during training. Specifically, in the training procedure (Sec-
tion 3.2.2), we sample from the source language (EN) which has a much richer treebank with larger
probability of 0.9, while sample from the target language with probability of 0.1. In this way, the two
tasks are encouraged to converge at a similar rate. As shown in Table 4, both SMTL and MTL benefit
from weighted task sampling.

4.3.2 Monolingual Heterogeneous Source Treebanks

Among the four languages here, the SV universal treebank is mainly converted from the Talbanken part
of the Swedish bank (Nivre and Megyesi, 2007), thus has a large overlap with the CONLL-X Swedish
treebank. Therefore, we exclude the sentences in SV test set that appear in the source treebank for
evaluation. Table 5 shows the results of MONOLINGUAL (CONLL<+>UNIV). Overall MTL systems
outperforms the supervised baselines by significant margins in both conditions, showing the mutual
benefits of UDT and CONLL-X treebanks.’

To show the merit of our approach against previous approaches, we further conduct experiments on
CTBS using CDT as heterogeneous source treebank (Table 2). For CTBS, we follow (Li et al., 2012)
and consider two scenarios which use automatic POS tags and gold-standard POS tags respectively.
To compare with their results, we run SUP, CAS and MTL on CTBS5. Table 6 presents the results.

3 An exception is PT in MONOLINGUAL (UNIV—~CONLL). This may be due to the low quality of the PT universal treebank
caused by the automatic construction process. We discussed and verified this with the author of UDT v2.0.
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MONOLINGUAL (CONLL—UNIV) MONOLINGUAL (UNIV—CONLL)
Sup CAS MTL Sup CAS MTL

Table 5: MONOLINGUAL (CONLL<+UNIV) performance.

Auto-POS Gold-POS
Sup CAs MTL Sup CAS MTL
UAS | 79.34 80.25(+0.91) 81.13 (+1.79) || 85.25 86.29 (+1.04) 86.69 (+1.44)

OuRs LAS | 76.23 77.26 (+1.03) 78.24 (+2.01) || 83.59 84.72 (+1.13) 85.18 (+1.59)
Sup with QG Sup with QG

Li12-02 UAS 79.67 81.04 (+1.37) 86.13 86.44 (+0.31)

L112-02sIB 79.25 80.45 (+1.20) 85.63 86.17 (+0.54)

Table 6: Parsing accuracy comparisons of MONOLINGUAL (CDT—CTBS). L112-0O2 use the O2 graph-
based parser with both sibling and grandparent structures, while L112-O2S1B only use the sibling parts.

The indirect comparison indicates that our approach can achieve larger improvement than their method
in both scenarios. Beside the empirical comparison, our method has the additional advantages in its
scalability to multi-typed source treebanks without the painful human efforts of feature design.

5 Conclusion

This paper propose a universal framework based on deep multi-task learning that can integrate arbitrary-
typed source treebanks to enhance the parsing models on target treebanks. We study two scenarios,
respectively using multilingual universal source treebanks and monolingual heterogeneous source tree-
banks, and design effective parameter sharing strategies for each scenario.

We conduct extensive experiments on benchmark treebanks in various languages. Results demonstrate
that our approach significantly improves over baseline systems under various experiment settings.
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Abstract

Grammar induction is the task of learning syntactic structure in a setting where that structure is
hidden. Grammar induction from words alone is interesting because it is similiar to the problem
that a child learning a language faces. Previous work has typically assumed richer but cognitively
implausible input, such as POS tag annotated data, which makes that work less relevant to human
language acquisition. We show that grammar induction from words alone is in fact feasible
when the model is provided with sufficient training data, and present two new streaming or
mini-batch algorithms for PCFG inference that can learn from millions of words of training
data. We compare the performance of these algorithms to a batch algorithm that learns from less
data. The minibatch algorithms outperform the batch algorithm, showing that cheap inference
with more data is better than intensive inference with less data. Additionally, we show that the
harmonic initialiser, which previous work identified as essential when learning from small POS-
tag annotated corpora (Klein and Manning, 2004), is not superior to a uniform initialisation.

1 Introduction

How children acquire the syntax of the languages they ultimately speak is a deep scientific question of
fundamental importance to linguistics and cognitive science (Chomsky, 1986). The natural language pro-
cessing task of grammar induction in principle should provide models for how children do this. However,
previous work on grammar induction has learned from small datasets, and has dealt with the resulting
data sparsity by modifying the input and using careful search heuristics. While these techniques are use-
ful from an engineering perspective, they make the models less relevant to human language acquisition.

In this paper, we use scalable algorithms for Probabilistic Context Free Grammar (PCFG) inference
to perform grammar induction from millions of words of speech transcripts, and show that grammar
induction from words alone is both feasible and insensitive to initialization. To ensure the robustness of
our results, we use two algorithms for Variational Bayesian PCFG inference, and adapt two algorithms
that have been proposed for Latent Dirichlet Allocation (LDA) topic models. Most importantly, we find
that the three algorithms that scale to large datasets improve steadily over training to about the same
predictive probability and parsing performance.

Moreover, while grammar induction from small datasets of POS-tagged newswire text fails without
careful ‘harmonic’ initialization, we find that initialization is much less important when learning directly
from larger datasets consisting of words alone. Of the algorithms in this paper, one does 2.5% better with
harmonic initialization, another does 5% worse, and the other two are insensitive to initialization.

The rest of the paper is organized as follows. In Section 2, we discuss previous grammar induction
research, in Section 3 we present the particular model grammar we will use, in Section 4 we describe the
inference algorithms, and in Section 5 we present our experimental results.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2 Background

Previous grammar induction work has used datasets with at most 50, 000 sentences. Fully-lexicalized
models would struggle with data sparsity on such small datasets, so previous work has assumed input
in either the form of part-of-speech (POS) tags (Klein and Manning, 2004; Headden III et al., 2009) or
word representations trained on a large external corpus (Spitkovsky et al., 2011; Le and Zuidema, 2015).

Some previous work has moved towards learning from word strings directly. Bisk and Hockenmaier
(2013) used combinatory categorial grammar (CCG) to learn syntactic dependencies from word strings.
However, they initialise their model by annotating nouns, verbs, and conjunctions in the training set with
atomic CCG categories using a dictionary, and so do not learn from words alone. Pate and Goldwater
(2013) learned syntactic dependencies from word strings alone, but used sentences from the Switchboard
corpus of telephone speech that had been selected for prosodic annotation and so were unusually fluent.

Kim and Mooney (2010), Borschinger et al. (2011), and Kwiatkowski et al. (2012), learned from word
strings together with logical form representations of sentence meanings. While children have situational
cues to sentence meaning, these cues are ambiguous, and it is difficult to represent these cues in a way that
is not biased towards the actual sentences under consideration. We focus on the evidence for syntactic
structure that can be obtained from word strings themselves.

Grammar induction directly from word strings is interesting for two reasons. First, this problem setting
more closely matches the language acquisition task faced by an infant, who will not have access to
POS tags or a corpus external to her experience. Second, this setting allows us to attribute behavior of
grammar induction systems to the underlying model itself, rather than additional annotations made to the
input. Approaches to grammar induction that involve replacing words with POS tags or other lexical or
syntactic observed labels make the process significantly more difficult to understand or compare across
genres or languages, as the results will depend on exactly how these labels are assigned. Models that
only require words alone as input do not suffer from this weakness.

3 PCFGs and the Dependency Model with Valence

3.1 Probabilistic Context Free Grammars

A Probabilistic Context Free Grammar is a tuple (W, N, S| R, 6), where W and N are sets of terminal
and non-terminal symbols, S € N is a distinguished start symbol, and R is a set of production rules.
0 is a vector of multinomial parameters of length |R| indexed by production rules A — 3, so 64,3
is the probability of the production A — (3. We use R4 to denote all rules with left-hand side A, and
use 0 4 to denote the subvector of € indexed by the rules in R 4. We require for all rules, 045 > 0,
and forall Ae N,> ser, 0a—p = 1, and use A to denote the probability simplex satisfying these
constraints. The yield y(t) of a tree t is the string of terminals of ¢, and the yield of a vector of trees
T = (t1,...,typ)) is the vector of yields of each tree: y(T') = (y(t1),...,y(tjr|)). The probability of
generating a tree ¢ given parameters 0 is:

Pa(tle) = [T {4
A—)ﬂER

where f(t, A — (3) is the number of times rule A — (3 is used in the derivation of ¢.

To model uncertainty in the parameters, we draw the parameters of each multinomial 84 from a
prior distribution P(04|c4), where the vector of hyperparameters a4 defines the shape of this prior
distribution (and « is just the concatenation of each ax4). The joint probability of a vector of trees T°
with one tree ¢; for each sentence s;, and parameters 0 is then:

T,A—
P(T,60la) = P(T|0)P(Bla) = [] 91{1(% 8)
A—BER

I1 P(OAICIA)]

AeN

where f (T, r) is the number of times rule r is used in the derivation of the trees in T'.
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Dirichlet priors for these multinomials are both standard and convenient:

r (ZA—%?’GRA OZA_>,8) eaA_,g—l
| | A
a—per, Pl@a—p) , ien. g

Pp(0alas) =

where the Gamma function I' generalizes the factorial function from integers to real numbers. Dirichlet
distributions are convenient priors because they are conjugate to multinomial distributions: the product
of a Dirichlet distribution and a multinomial distribution is itself a Dirichlet distribution:

P(T,0la) = Po(T|0)Pp(0la) <[] eﬁﬁmﬁ taag-1 0
A—)ﬁeR

For grammar induction, we observe only the corpus of sentences C, and modify Equation 1 to
marginalize over trees and rule probabilities.

P(Cla)= > /P(T,ea)da (2)
T.y(T)=C”’»

This sum over trees introduces dependencies that make exact inference intractable.

We assessed grammar induction from words alone using the Dependency Model with Valence (DMV)
(Klein and Manning, 2004). In the original presentation, it first draws the root of the sentence from a Pyt
distribution over words, and then generates the dependents of head h in each direction dir € {«, —}
in a recursive two-step process. First, it decides whether to stop generating (a Stop decision) according
to Pstop(+|h, dir,v), where v indicates whether or not h has any dependents in the direction of dir. If
it does not stop (a —Stop decision), it draws the dependent word d from P,j,,sc(d|h, dir). Generation
ceases when all words stop in both directions.

Johnson (2007) and Headden III et al. (2009) reformulated this generative process as a split-head
bilexical PCFG (Eisner and Satta, 2001) so that the rule probabilities are DMV parameters. Such a
PCFG represents each token of the string with two ‘directed’ terminals that handle leftward and rightward
decisions independently, and defines rules and non-terminal symbols schematically in terms of terminals.
Minimally, we need rightward-looking R,,, leftward-looking L,,, and undirected Y, non-terminal labels
for each word w. The grammar has a rule for each dependent word d of a head word h from the left
(Ly, — Yy Lp) and from the right (R, — R}y Yy), a rule for each a word w to be the sentence root
(S — Y,), and a rule for each undirected symbol to split into directed symbols (Y, — Ly Ry).

To incorporate Stop decisions into the grammar, we distinguished non-terminals that dominate a Stop
decision from those that dominate a Choose decision by decorating Choose non-terminals with ’ (so a
left attachment rule is L;1 — Yy Lp), and introduced unary rules that rewrite to terminals (L;, — h;) for
Stop decisions, and to Choose non-terminals (L;, — L} ) for =Stop decisions. We implemented valence
with a superscript decoration on each non-terminal label: L% indicates h has no dependents to the left,
and Lj indicates that h has at least one dependent to the left. Figure 1 presents PCFG rule schemas
with their DMV parameters, and dependency and split-head PCFG trees for “dogs bark.” We use several
inference algorithms to learn production weights for this PCFG, and study how the parsing accuracy
varies with algorithm and computational effort.

4 Inference'

One central challenge of learning from words alone is data sparsity. Data sparsity is most naturally
addressed by learning from large amounts of data, which is easily available when learning from words
alone, so we use algorithms that scale to large datasets. To ensure that our system reflects the underlying
relationship between the model and the data, we explore three such algorithms. These algorithms are ex-
tensions of the batch algorithm for variational Bayesian (batch VB) inference of PCFGs due to Kurihara

"Implementations and pre-processing software are available at http://github.com/jkpate/streamingDMV
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PCFG Rule DMV parameter S
S — Y, Proot (h) ‘

Yh — L2 R?z 1 Ybark
LY h Pktop (Stop|h, <, no_de 0 0
g -~ l/ stop ( p| - p) Lbark Rbark

L) — L, Pitop (—Stop|h, «<—,no_dep) | |
L, — Yq Ly Pehoose (d|h, <) L/bark bark,
Lh - hl Pstop (St0p|h7 A one,dep) Y. L
L, — L;z Pstop(_‘Stop‘ha A One—dep) degs b‘m’k

(a) Split-head rule schemas and corresponding probabilities for Lgogs Rgogs bark;

the DMV. The rules expanding LY and L, symbols encode ‘ ‘
Stop decisions with no dependents and at least one dependent, dogs dogs
respectively, and the the rules expanding L} symbols encode ! r

Choose decisions. (b) Tree for “dogs bark” using the grammar in Figure la.
(®o0T)
/\?
dogs  bark

(c) Example dependency tree with one root and left arc.

Figure 1: The DMV as a PCFG, and dependency and split-head bilexical CFG trees for “dogs bark.”

and Sato (2004), so we first review batch VB. Inspired by the reduction of LDA inference to PCFG in-
ference presented in Johnson (2010), we then develop new streaming on-line PCFG inference algorithms
by generalising the streaming VB (Broderick et al., 2013) and stochastic VB (Hoffman et al., 2010) al-
gorithms for Latent Dirichlet Allocation (LDA) to PCFG inference. We finally review the collapsed VB
algorithm due to Wang and Blunsom (2013) for PCFGs that we compare to the other algorithms.

Figure 2 summarizes the four algorithms for PCFG inference.

4.1 Batch VB

Kurihara and Sato’s (2004) batch algorithm for variational Bayesian inference approximates the pos-
terior P(T',0|C, ) by maximizing a lower bound on the log marginal likelihood of the observations
In P(C|a). This lower bound £ involves a variational distribution Q(T', @) over unobserved variables
T and 6. By Jensen’s inequality, for any distribution Q(T', 8), we have:

In P(Cla) an/QTO CT9|ad0>Z/QT0 gmdezﬁ

In P(C|a) — L is the Kullback-Leibler divergence KL (Q(T', 0)||P(T', 0|C, c)). Variational inference
adjusts the parameters of the variational distribution to maximize £, which minimizes the KL divergence.

VB makes inference tractable by factorizing the variational posterior. The mean-field factorization
assumes parameters and trees are independent: Q(T,0) = Qg(0) H‘ﬂl Qr(t;). Kurihara and Sato
showed that Qg(0) is also a product of Dirichlet distributions, whose hyperparameters ¢ 4 are a sum of
the prior hyperparameters a 4,3 and the expected count of A — 3 across the corpus under Q:

IC]
danpg=oaap+ Y flsi A—p)
i=1
fls,A— B) =Eqq [f(t, A — )]
f(t, A — () is the number of times rule A — (3 is used in the derivation of tree t. f(sl-, A — [3) is the

expected number of times A — (3 is used in the derivation of sentence s;, and can be computed using the
Inside Outside algorithm (Lari and Young, 1990). Batch VB alternates between optimizing (g, using

26



expected counts, and Q, using the hyperparameters & of (Qg to compute probability-like ratios m4_.:

A exp (¥ (g
Qr(t) = H W,J;(iﬁ B) TAp = (v ( B)A)
A—pBER exp <\Ij <ZA*>ﬁ/€RA aA—>,6/>>

where the digamma function ¥(-) is the derivative of the log Gamma function. Algorithm 1 presents the
full algorithm.

4.2 Scalable VB algorithms

Batch VB requires a complete parse of the training data before parameter updates, which is computation-
ally intensive. We explore three algorithms that divide the data into minibatches C' = {C O ....c (”)}
and update parameters after parsing each minibatch.

Streaming VB: Broderick et al. (2013) proposed a ‘streaming VB’ algorithm for LDA that approxi-
mates Bayesian Belief Updates (BBU) to make a single pass through the training data. A BBU uses the
current posterior as a prior to compute the next posterior without reanalyzing previous minibatches:

P (9|C<1>, o C(">) x P (C(“Ma) P (9|C<1>, . ,CWU)

However, the normalization constant involves an intractable marginalization. Broderick et al. suggested
approximating each posterior with some algorithm .4 that computes an approximate posterior Q™) given
a minibatch C'™) and the previous posterior Q("~1):

P (9|c<1>7 - C<">) ~ QM (9) = A (C<">, QWU(Q))

where Q¥ is the true prior. By using a mean-field VB algorithm for LDA inference for A, they ap-
proximate each subsequent Q") as a product of Dirichlets, whose hyperparameters are a running sum of
expected counts from previous minibatches and prior hyperparameters. We used the batch VB algorithm
for A to generalise this algorithm to PCFG inference. Algorithm 2 presents the full algorithm.
Stochastic VB: Hoffman et al. (2010) proposed a ‘stochastic VB’ algorithm for LDA that uses each
minibatch to compute the maximum of an estimate of the natural gradient of £. This maximum is
obtained by computing expected counts for C' (), and scaling the counts as though they were gathered
from the full dataset. The new hyperparameters are obtained by taking a step toward the maximum:

ol = (1 =)ol QS flent (A - )

where 7 is the step size, f (en+1) (A — () is the expected count of rule A — 3 in minibatch ¢ of epoch
e, and ZSL 5 1s the scaling term for rule A — /3. In their LDA inference procedure, each word has one
topic, so the scaling term is the number of words in the full dataset divided by the number of words
in the minibatch. For the DMV, a string s with |s| terminals has one root, |s| — 1 choose rules, and

2|s| + (]s| — 1) stop decisions (two Stops and one —Stop rule for each arc). The scaling terms are then:

root rules choose rules stop rules
el | S si=1 | @ I 20yl 4ss -1
S=Yn = [CO] | ‘A=B T A—B =

c(9)
z'j 25 s | 4+]s; 11

c(i)
ST syl =1 o

Collapsed VB: Teh et al. (2007) proposed, and Asuncion et al. (2009) simplified, a ‘collapsed VB’
algorithm for LDA that integrates out model parameters and so achieves a tighter lower bound on the
marginal likelihood. This algorithm cycled through the training set and optimized variational distribu-
tions over the topic assignment of each word given all the other words.

Wang and Blunsom (2013) generalized this algorithm to PCFGs. The variational distribution for each
sentence is parameterized by expected rule counts for that sentence, and they optimize each sentence-
specific distribution by cycling through the corpus and optimizing the distribution over trees for sentence
s; using counts from all the other sentences C (7%), The exact optimization, marginalizing over rule prob-
abilities, is intractable, so they instead use the posterior mean. Algorithm 4 presents the full algorithm.
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Data: a corpus of strings C
Initialization: prior hyperparameters o

for j =1tomdo
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fori = 1to |C| do
f(j)(siv A— ﬁ) =
Eﬂ' [f(t7A - ﬂ)}
end

&) = o+ F0)

TA-pB =

)

end

output: &™)
Algorithm 1: Batch VB. Here, GU) are the pos-
terior counts after iteration j, which define rule
weights 7 for the next iteration.

Data: n minibatches {C),....CW}

Initialization: prior hyperparameters c,
step size schedule parameters
T, K, epoch count E/

1 a0 =q

2 fore=0to £ —1do

3 fori =1tondo
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e (9(a575))

(¥ (Tampeny 65757))

s || fer - =
Ex[f(t,A— B)]

6 n=(r+14)"

7 for A— 3 € Rdo

; W = (- el ¢

Qs fE+ (A — )

9 end

10 end

1 end

output: &™)
Algorithm 3: Stochastic VB. f(¢"t9) (4 — 3)
is the expected count of rule A — 3 in the i
(@)

minibatch in the e epoch, and I A 1s the scal-

ing parameter for rule A — 3 for the i mini-
batch, as described in the text.

Data: n minibatches {C),...,.CW}
Initialization: prior hyperparameters o
a0 = o
for: =1tondo
VA= BER fOA—-B) =0
for j =1tomdo

TA—B =

exp(V(F(C A=) +i4.5))

ey O 7))
fOI (A= B) =Ex [f(t,A— B)]
end

&) = fim) 4 46D

end

output: &™)
Algorithm 2: Streaming VB with m steps of
VB per minibatch. fU) (A — ) is the ex-
pected count of rule A — (3 in the i** minibatch
after j iterations.

Data: n single-string minibatches
e, .. cmy
Initialization: prior hyperparameters c,
epoch count F, initial
sentence-specific expected
counts f

1

2 fore=0to £ —1do

3 fori =1tondo

4 a=a—f0

> A= = ZAﬂB’;I;f&AHﬁ’

‘ FO (A= B) = Bx [f(t, A — B)]
7 a=a+ fA(")

8 end

9 end

A~

output: sentence-specific expected counts f,
global hyperparameters &
Algorithm 4: Collapsed VB. f() (A — j3) is
the expected count of rule A — f3 for the i
sentence, and the global hyperparameters & are
the sum of the expected counts for each sen-
tence and prior hyperparameters.

Figure 2: The four variational Bayes algorithms for PCFG inference that are evaluated in this paper.
Algorithm 1 is from Kurihara and Sato (2004), and Algorithm 4 is from Wang and Blunsom (2013). Al-
gorithms 2 and 3 are novel PCFG inference algorithms developed here that generalise the LDA inference
algorithms of Broderick et al. (2013) and Hoffman et al. (2010).
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train dev test
> Words 363,002 24,015 23,872
& Sentences 43,577 2,951 2,956
& Words 5,576,173 — -

>

& Sentences 664,346 - -

Table 1: Data set sizes. Fisher is only for training.

5 Experiments

We evaluate how millions of words of training data affects grammar induction from words alone by
examining learning curves. We ran each algorithm 5 times, each with a different random shuffle of the
training data on each run, and evaluated on the test set at logarithmically-spaced numbers of training
sentences. Stochastic, collapsed, and batch VB used more than one pass over the training corpus, while
streaming VB makes one pass over the training corpus. To obtain a consistent horizontal axis in our
learning curves, we plot learning curves as a function of computational effort, which we measure by the
number of sentences parsed, since almost all the computational effort of all the algorithms is in parsing.

Stochastic, collapsed, and streaming VB can learn from the full training corpus (although collapsed
VB requires more RAM — 60GB rather than 6GB for us — as it stores expected rule counts for each
sentence). Batch VB required about 50 iterations for convergence for large training sets, and so cannot
be applied to the full training set due to long training times. We used batch VB with training sets of up
to 100, 000 strings.

5.1 Hyperparameters and initialization

We use Dirichlet priors with symmetric hyperparameter o« = 1 for all algorithms (preliminary experi-
ments showed that the algorithms are generally insensitive to hyper-parameter settings). We ran batch
VB until the log probability of the training set changed less than 0.001%. For stochastic VB, we used
k = 0.9, 7 = 1, and minibatches of 10,000 sentences. To investigate convergence and overfitting, we ran
stochastic and collapsed VB for 15 epochs of random orderings of the training corpus. For streaming VB,
the first minibatch had 10, 000 sentences, the rest had 1, and we used one iteration of VB per minibatch.

Klein and Manning (2004) showed that initialization strongly influences the quality of the induced
grammar when training from POS-tagged WSJ10 data, and they proposed a harmonic initialization pro-
cedure that puts more weight on rules that involve terminals that frequently appear close to each other
in the training data. We present results both for a uniform initialization, where the only counts initially
are the uninformative Dirichlet priors (plus, for collapsed VB, random sentence-specific counts), and a
harmonic initialization. For streaming VB, harmonic counts are gathered from each minibatch, and for
the others, harmonic counts are gathered from the entire training set.

5.2 Data

We present experiments on two corpora of words from spontaneous speech transcripts. Our first corpus is
drawn from the Switchboard portion of the Penn Treebank (Calhoun et al., 2010; Marcus et al., 1993). We
used the version produced by Honnibal and Johnson (2014), who used the Stanford dependency converter
to convert the constituency annotations to dependency annotations (Catherine de Marneffe et al., 2006).
We used Honnibal and Johnson’s train/dev/test partition, and ignored their second dev partition. We
discarded sentences shorter than four words from all partitions, as they tend to be formulaic backchannel
responses (Bell et al., 2009), and sentences with more than 15 words (long sentences did not improve
accuracy on the dev set).

We augmented the Switchboard training set with the Fisher corpus of telephone transcripts. We again
used only sentences with 4 to 15 words. Unlike the words-only evaluation of Pate and Goldwater (2013),
which used only the fluent sentences from Switchboard that had been prosodically annotated, both of
these corpora contain disfluencies. These corpora have a vocabulary of 40, 597 word types. The gram-
mars have one Root rule for each word type, four Stop rules (two directions x two Stop decisions) for
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Figure 3: Directed accuracy (top) and predictive log probability (bottom) of test-set sentences from
Switchboard with 4-15 words. The horizontal axis is the number of sentences parsed (all algorithms
except streaming VB re-parse sentences multiple times). The left column presents inference with a
harmonic initialization, and the right column presents inference with a uniform initialization (and, for
collapsed VB, random sentence-specific counts). The black line is a uniform-branching baseline.

each word type, and 5, 381, 644 Choose rules. Table 1 presents data set sizes.

5.3 Evaluation measures

We evaluated all algorithms in terms of predictive log probability and directed attachment accuracy.
We computed the log probability of the evaluation set under posterior mean parameters, obtained by
normalizing counts. Directed accuracy is the proportion of arcs in the Viterbi parse that match the gold
standard, including the root. We also compared with a left-branching baseline, since it outperformed a
right-branching baseline. A left-branching (right-branching) baseline sets the last (first) word of each
sentence to be the root, and assigns each word to be the head of the word to its left (right). The left-
branching baseline on this dataset is about 0.29, while on the traditional ws 310 dataset of Klein and
Manning (2004) it is 0.336, suggesting our dataset, with longer sentences, is somewhat more difficult.

5.4 Results

The bottom row of Figure 3 presents the predictive log probability of the test set under the posterior mean
parameter vector as training proceeds. The figure contains one point per evaluation per run, and a loess-
smoothed curve for each inference type. We see among all algorithms that the log probability of the test
set constantly increases, regardless of initialization, with one exception. The sole exception is streaming
VB with harmonic initialization, where predictive log probability drops after the initial minibatch of
10,000 sentences. Streaming VB with harmonic init parses each sentence of the initial minibatch using
prior pseudocounts and harmonic counts. We will return to this drop when we discuss accuracy.

Batch VB learns more slowly (as a function of computational effort) than the online and minibatch
algorithms, but the online and minibatch algorithms all ultimately obtain similar performance. Collapsed
VB obtains the best predictive log probability, which, as it integrates out parameters and therefore has a
tighter bound, is to be expected (Teh et al., 2007). There is no clear advantage to the harmonic initial-
ization except early in training for streaming and stochastic VB, so it may be that earlier results showing
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the importance of harmonic initialisation reflect the small training data sets used in those experiments.

The top row of Figure 3 presents directed accuracy on the test set as training proceeds. As in the pre-
dictive probability evaluation, there is no clear advantage to a harmonic initialization across algorithms.
Batch VB and collapsed VB perform identically with both initializations, and streaming VB ultimately
does 5% better while stochastic VB does 2.5% worse. While streaming VB showed a drop in predictive
probability after the initial 10,000 sentence minibatch with harmonic initialization, it obtains a small but
sharp improvement in parse accuracy at the same point. These two results suggest that the harmonic
initialization, applied to words, captures regularities that are not syntactic but still explain data well.

The inference algorithms differ most obviously when they have parsed few sentences, indicating that
each algorithm’s bias is strongest in the face of small data. Streaming VB learns slowly initially because,
throughout the large initial minibatch, it gathers counts using only the uninformative prior or only the
uninformative prior plus harmonic counts. Collapsed VB, on the other hand, has sentence-specific counts
for the entire training corpus even in the random case. These counts provide a rough estimate of how
many opportunities there are for an arc to exist between each word in each direction at each valence,
and therefore provide a stronger starting point that takes more time to overcome. Finally, the good
performance of stochastic VB with small datasets, compared to streaming VB and batch VB, may reflect
the conservatism of only taking a step in the direction of the gradient rather than always maximizing.

Regardless of the details of the different algorithms’ performance, we see that they all steadily im-
prove or stabilize as inference proceeds over a large dataset, and that initialization is not important when
learning from large numbers of words.

6 Conclusion

Grammar induction from words alone has the potential to address important questions about how children
learn and represent linguistic structure, but previous work has struggled to learn from words alone in
a principled way. Our experiments show that grammar induction from words alone is feasible with
a simple and well-known model if the dataset is large enough, and that heuristic initialization is not
necessary (and may even interfere). Future computational work on child language acquisition should take
advantage of this finding by applying richer models of syntax to large datasets, and learning distributed
word representations jointly with syntactic structure.
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Abstract

Existing sentence regression methods for extractive summarization usually model sentence im-
portance and redundancy in two separate processes. They first evaluate the importance f(s) of
each sentence s and then select sentences to generate a summary based on both the importance
scores and redundancy among sentences. In this paper, we propose to model importance and
redundancy simultaneously by directly evaluating the relative importance f(s|.S) of a sentence s
given a set of selected sentences S. Specifically, we present a new framework to conduct regres-
sion with respect to the relative gain of s given S calculated by the ROUGE metric. Besides the
single sentence features, additional features derived from the sentence relations are incorporated.
Experiments on the DUC 2001, 2002 and 2004 multi-document summarization datasets show
that the proposed method outperforms state-of-the-art extractive summarization approaches.

1 Introduction

Sentence regression is one of the branches of extractive summarization methods that achieves state-of-
the-art performances (Cao et al., 2015b; Wan et al., 2015) and is commonly used in practical systems
(Hu and Wan, 2013; Wan and Zhang, 2014; Hong and Nenkova, 2014). Existing sentence regression
methods usually model sentence importance and sentence redundancy in two separate processes, namely
sentence ranking and sentence selection. Specifically, in the sentence ranking process, they evaluate the
importance f(s) of each sentence s with a ranking model (Osborne, 2002; Conroy et al., 2004; Galley,
2006; Li et al., 2007) through either directly measuring the salience of sentences (Li et al., 2007; Ouyang
et al., 2007) or firstly ranking words (or bi-grams) and then combining these scores to rank sentences
(Lin and Hovy, 2000; Yih et al., 2007; Gillick and Favre, 2009; Li et al., 2013). Then, in the sentence
selection process, they discard the redundant sentences that are similar to the already selected sentences.

In this paper, we propose a novel regression framework to directly model the relative importance
f(s]S) of a sentence s given the sentences S. Specifically, we evaluate the relative importance f(s|5)
with a regression model where additional features involving the sentence relations are incorporated.
Then we generate the summary by greedily selecting the next sentence which maximizes f(s|.S) with
respect to the current selected sentences .S. Our method improves the existing regression framework
from three aspects. First, our method is redundancy-aware by considering importance and redundancy
simultaneously instead of two separate processes. Second, we treat the scores computed using the official
evaluation tool as the groundtruth and find that our method has a higher upper bound. Third, there is no
manually tuned parameters, which is more convenient in practice. We carry out experiments on three
benchmark datasets from DUC 2001, 2002, and 2004 multi-document summarization tasks. Experimen-
tal results show that our method achieves the best performance in terms of ROUGE-2 recall metric and
outperforms state-of-the-art extractive summarization approaches on all three datasets.

* This work was done during the internship of the first author at Microsoft Research Asia.
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2  Framework

2.1 Background

Formally, given a sentence set (from one or multiple documents) D € C, extractive summarization tries
to select a sentence set S* as the summary that maximizes an utility function f(S) with respective to
the length limit [/, Existing sentence regression methods usually model the importance of each sentence
independently (Osborne, 2002; Galley, 2006; Li et al., 2007). Then, they use a threshold parameter to
control the redundancy (Cao et al., 2015b; Galanis et al., 2012) when selecting sentences with the Greedy
algorithm or Integer Linear Programming (ILP) algorithm (Cao et al., 2015a). The framework for these
regression methods can be formulated as follows.

f(s) 1—=SIM(s,S)>t

(1)
0  1-—SIM(s,8) <t

f(s19) = {

where S is the set of already selected sentences, f(s) models the importance of sentence s. STM (s, S)
evaluates the similarity of sentence s with the current generated summary S. Usually, STM(s,S) =
bl'gmwzzze(gap (29 ' which is the bi-gram overlap ratio. Len(s) is the length of s. ¢ is a threshold param-

eter used to control the redundancy, which is usually set heuristically.

2.2 Our Framework

In this paper, we propose to directly model the relative importance f(s|S) instead of the independent
importance of each sentence f(s). Specially, we model the importance of s given the sentences S as
follows:

f(s|8) = min f(s|s") 2)
s'esS

which considers the minimum relative importance of sentence s with respect to each sentence of S.
f(s|s’) models the relative importance of sentence s given sentence s’, which makes Equation 2 a
redundancy-aware framework.

When generating summaries, we select the first sentence by treating s’ = () or using a f(s) model.
Then, we select the rest summary sentences with the following greedy algorithm:

* . /
o= o s iy S el) ®
The algorithm starts with the first selected sentence. In each step, a new sentence is added to the summary
that results in the maximum relative increase according to Equation 3. The algorithm terminates when
the summary length constraint is reached.
Next we conduct experiments to analyze the upper bounds of the new framework compared with the
existing framework (Equation 1). To this end, we compute f(s) and f(s|s’) as follows:

;(s’) = ROUGE-2(s|Syef) )

(s|s") = f({s,s'}) — f(s') = ROUGE-2({s, s'}|Sref) — ROUGE-2(s'|Scf)

where S,..r is one or several summaries written by people. The ROUGE-2 recall metric gives a score
to a set of sentences with respective to the human written summaries. We compute f(s|s’) as the total
gain of s and s’ (f({s, s'})) subtracted by the individual gain of s’ (f(s)). Equation 4 can be seen as the
groundtruth computation of f(s) and f(s|s’).

The experimental upper bounds of different frameworks are shown in Figure 1. Similar results of
ROUGE-1 and ROUGE-2 are achieved on all three benchmark datasets from DUC 2001, 2002 and 2004.
The advantages of the new framework (Equation 2) are three-fold compared with the framework of
Equation 1. First, there is no parameter to be tuned manually. By comparison, Equation 1 has a threshold
parameter ¢, which is very sensitive around the best performance, as shown in the red dashed line parts of
Figure 1. Second, the new framework has a higher upper bound, which means there is a bigger potential
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Figure 1: Experimental Upper bounds of our sentence regression framework and existing sentence re-
gression framework.

for improvement. Finally, besides single sentence features, additional features involving the relations of
two sentences can be extracted to improve the regression performance

The new proposed framework also has some challenges. First, the groundtruth of f(s|s’) is usually

s
unavailable for many tasks. Fortunately, in the text summarization task, the groundtruth of f(s|s) can be

/
computed according to Equation 4. Second, the number of training instances is O(|C||D|?) (O(|C||D|)
for Equation 1). We come up with two ways to speed up the training process in the next session
3 Implementation

3.1 Objective Function

We implement f(s|s’) with MultiLayer Perceptron (MLP) (Ruck et al., 1990; Gardner and Dorling,
1998).

f(s|s')=MLP (@(s\s’)]@) 5)

where ®(s|s’) is the set of features and 6 is the parameters to be learned.
We use the standard Mean Square Error (MSE) as the loss function as follows
L(9) = —|C||D| (D=1 ZZ Z Err(s|s’)

DeC seD éleD
s'#s

(6)
— ROUGE(s|s', Srey))’
= ROUGE-2({s,5"}|Sres)

Err(s|s’) = (MLP (®(s|s")|0)
ROUGE(s|s', Sres) — ROUGE-2(5"|Sref)

We use ROUGE-2 recall as the groundtruth score due to its high capability of evaluating automatic
summarization systems (Owczarzak et al., 2012)

The s’ in f(s|s") should mainly refer to the sentences that have a big potential to be selected into the
summary. To this end, we do not have to treat each sentence in D as s’ during training. We can accelerate
the training process by generating a set of sentences S’ from D. We come up with two ways as shown
in Algorithm 1. The first way is using the greedy strategy (Line 4 of Algorithm 1). Specifically, for each
training episode of sentence s, we use the current model to generate the summary with greedy algorithm
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as a part of the S’. We refer to this part as S]. The advantage is that S’ is adaptively generated with
respective to the training status of the model. The second way is randomly sampling a small set of s’ with
respect to its groundtruth ROUGE score (Line 6 of Algorithm 1). Specifically, for each training episode
of sentence s, we sample a small set S, according to the following rule:

NotSelected rnd(0,1) > 0.05 «+ ROUGE-2(s) 4+ 0.05 @
Selected Otherwise

where rnd(0,1) generates random number from a uniform distribution within the range [0,1].
ROUGE-2(s) is normalized to [0, 1]. Each sentence is selected with at least 5% probability and sen-
tences with higher ROUGE scores have higher probabilities. Different probabilities will influence the
speed of the training process but will not make much difference in the final results according to our
experiments. We use the randomly sampled S} to avoid the premature convergence caused by S7. Fi-
nally, S” = S7|JS5. In this way, the number of training instances is O(|C||D||S’|) while originally it
is O(|C||D|?), where C is the set of all D in the training corpus. Note that |S’| is a very small number
compared to | D|.

Algorithm 1 The adaptive & randomized training.

Input:
Training corpus, C';
Max iterations, N;
Output:
Model parameters, 6;
1: Randomly initialize the parameters 6;
2: fori=1;i < N;i++ do
3 for each D such that D € C do
4 Generate S’ greedily according to Equation 3;
S: for each sentence s such that s € D do
6: Generate S5 randomly according to Equation 7;
7.
8
9

for each s’ such that s’ € S| S5,s # sdo
Make forward and backward propagation w.r.t the loss L(6) (Equation 6);
: Update the model parameters 6;
10: end for

11: end for

12: end for

13:  if 6 converges then
14: break;

15: end if

16: end for

17: return 6,

3.2 Feature

We employ two groups of features in terms of sentence importance and redundancy, namely Sentence
Importance Features and Sentence Relation Features. The former are widely studied by existing methods
(Gupta et al., 2007; Li et al., 2007; Aker et al., 2010; Ouyang et al., 2011; Galanis et al., 2012; Hong et
al., 2015). However, to our knowledge, the latter are firstly incorporated into a regression model in this
paper. Details of used features are listed in Table 1. We use Sentence Importance Features to model the
independent sentence importance of s. Len(s), Position(s), Stop(s), T'F(s) and DF'(s) are commonly
used features. Embedding feature Emb(s) is an effective feature that encodes the sentence content which
can be seen as summary prior nature of the sentence (Cao et al., 2015b). We use Sentence Relation
Features to evaluate the content overlap between s and s’. Match-P(s N s’) and Match-R(s N s')
evaluate the ratio of the overlap words, while TF (s N's"), DF (s N s") and Stop(s N ') evaluate the
importance of the overlap words. Cos(s, s’) evaluates the exact match similarity while Emb-Cos(s, s')
evaluates the meaning match similarity. All features in Table 1 are basic features commonly used in
summarization.
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Features Formulations Descriptions
Len(s) Length of s
Position(s) Position of s in its document
Sentence Importance Features Stop(s) = sw’fiﬁlﬁt(s) Stop words ratio of s
TF(s) — > wes GTF(w) Average Term Frequency
8= Len(s) GTF(w) is the Global Term Frequency
DF(s) = %(S(M) Average Document Frequency
Emb(s) > wes Emb(w) Average Word Embedding
mots Len(s) Emb(w) is the word embedding

Match-P(s, S,) — Match(s,s’)

Term match precision

Len(s) Match-P(s,s') =0ifsns =1
;s Term match recall
Match-R(s, ') = Match(s,s) N —oq: r_
Sentence Relation Features ) Match-R(s,s) = 0ifs 05 =10 7
TF(s,s') = Len(sns’) Average Global Term Frequency of overlap s N s
’ Ywesns’ GTF(w) TF(s,s')=0ifsNs =0
DF(s,8') = Len(sns’) Average Document Frequency of overlap s N s
58) 7 ¥ ens DFw) DF(s,s') =0ifsns =0
N _ 1 _ Stop-Count(sns’) | Stop words ratio of overlap s N s’
Stop(&s ) =1 T Len(sns’) Stop(s,s') —0ifsns =0
Cos(s, s")

— Cosine(GTF(s), GTF(s")) Cosine of Global Term Frequency vector

Emb-Cos(s, s)

— Cosine(Emb(s), Emb(s')) Cosine of average embedding vector

Table 1: Summary of features

4 Experiment

4.1 Experimental Setup

Datasets. The benchmark evaluation corpora for summarization are the ones published by the Document
Understanding Conferences (DUC'). We focus on the generic multi-document summarization task, so
we carried out all our experiments on DUC 2001, 2002 and 2004 datasets. The documents are all from
the news domain and are grouped into various thematic clusters. For each document set, we concatenated
all the articles and split them into sentences using the tool provided with the DUC 2003 dataset. We train
the model on two years’ data and test it on the other year.

Evaluation Metric. ROUGE metrics are the official metrics of the DUC extractive summarization tasks
(Rankel et al., 2013). We use the official ROUGE tool? to evaluate the performance of the baselines as
well as our approach (Lin, 2004). The parameter of length constraint is “-1 100” for DUC 2001/2002, and
“-b 665” for DUC 2004. We take ROUGE-2 recall as the main metric for comparison because Owczarzak
et al. prove its high capability of evaluating automatic summarization systems (Owczarzak et al., 2012).
Comparison Methods. The comparison methods used in the experiments are listed as follows.

e LexRank: State-of-the-art summarization model (Erkan and Radev, 2004).

o ClusterHITS: State-of-the-art results on DUC 2001 (Wan and Yang, 2008).

o ClusterCMRW: State-of-the-art results on DUC 2002 (Wan and Yang, 2008).
e REGSUM?: State-of-the-art results on DUC 2004 (Hong and Nenkova, 2014).

e R2N2_GA/R2N2_ILP: State-of-the-art results on DUC 2001/2002/2004 (Cao et al., 2015a) with a
neural network regression model.

e PriorSum: To our knowledge, the best results on DUC 2001, 2002 and 2004 using regression ap-
proaches (Cao et al., 2015b).

e SR (Sentence Regression): Evaluate sentence importance with MLP and the Sentence Importance
Features in Table 1 and select the top ranks as the summary (without handling redundancy).

'http://duc.nist.gov/

>ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0
SREGSUM truncates a summary to 100 words.

37



DUC 2001 DUC 2002 DUC 2004

ROUGE-1 | ROUGE-2 | ROUGE-1 | ROUGE-2 | ROUGE-1 | ROUGE-2
BestSentence 37.32 10.44 39.75 11.60 40.36 11.68
Strategy 1 36.31 8.49 37.80 9.61 39.60 10.57
Strategy 2 36.32 8.52 37.82 9.26 38.75 10.19

Table 2: First sentence selection strategies

e t-SR (threshold ¢ based Sentence Regression): Evaluate sentence importance with MLP and the
Sentence Importance Features in Table 1 and generate the summary with greedy by directly dis-
carding the redundant sentence according to Equation 1.

¢ RASR (Redundancy-Aware Sentence Regression): The proposed method in this paper.

Note that for the methods with the parameter ¢, we tried all values of ranging from O to 1 with a step
size of 0.05. The final value of ¢ on each dataset is decided by 3-fold cross validation on the training
datasets.

Model Configuration. The word embedding used in this paper is trained on the English Wikipedia
Corpus* with Google’s Word2Vec tool’. The dimension is 300. We use 4 hidden layers MLP with tanh
activation function and the sizes of the layers are [300, 200, 100, 1]. To update the weights of MLP, we
apply the diagonal variant of AdaGrad with mini-batches. We set the mini-batch size to 20.

4.2 Results and Analysis

First Sentence Selection. Remember that when generating a summary, our method first selects the
first sentence then greedily selects the rest sentences with respective to f(s|.S). We tried two strategies to
select the first sentence with RASR. Strategy 1: treating RASR as an united model by setting the Sentence
Relation Features to zero when fitting f(s) during training period or selecting the first sentence during
test period. Strategy 2: treating RASR as two models that fit f(s) and f(s|.S) respectively. The former is
used to select the first sentence and the latter is used to select the rest sentences. We also use the sentence
that gets the highest ROUGE-2 score as the first sentence as a comparison, namely BestSentence. The
results are shown in Table 2. As expected, BestSentence is much better than Strategy 1 and Strategy 2,
which means selecting a better first sentence will greatly improve the performance of RASR. It does not
make too much difference whether using Strategy 1 or Strategy 2. We report the results of Strategy 1 to
compare with the baseline methods in Table 3.

Performance Analysis. As shown in Table 3, the bold face indicates the best performance. Generally,
our method RASR achieves the best performance in terms of ROUGE-2 metric on all three datasets. The
improvement of ROUGE-2 on DUC 2001 is significant with p-value < 0.05 compared with LexRank,
SR and ¢-SR. Although ClusterHITS and ClusterCMRW get higher ROUGE-1 scores, their ROUGE-2
scores are much lower. In contrast, our method works quite stably.

The improvements of our method come from two aspects. First, it is effective to model sentence im-
portance and redundancy simultaneously with multiple nonlinear function transformations. This can be
reflected by the following comparison experiments. SR does not handle redundancy at all, so it achieves
bad performance especially on the DUC 2004 corpus. The other methods in Table 3 model sentence
importance and redundancy in two separate processes by first ranking the sentences and then discarding
the redundant ones whose bi-gram overlap ratio is larger than a threshold parameter. Although we tune
the threshold parameter carefully, RASR still outperforms them. Second, effective features involving the
sentence relations (i.e., Sentence Relation Features) are considered which cannot be incorporated by the
baseline methods.

*https://en.wikipedia.org/wiki/Wikipedia: Database_download
>https://code.google.com/archive/p/word2vec/
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System ROUGE-1 ROUGE-2
Peer T 33.03 7.86
ClusterHITS* 37.42 6.81
LexRank 3343 6.09
R2N2_GA* 35.88 7.64
R2N2_ILP* 3691 7.87
DUC 2001 PriorSum* 35.98 7.89
SR 35.34 7.67
t-SR 3541 7.76
RASR 36.31 8.49
Peer 26 35.15 7.64
ClusterCMRW*  38.55 8.65
LexRank 35.29 7.54
R2N2_GA* 36.84 8.52
R2N2_ILP* 37.96 8.88
DUC 2002 PriorSum* 36.63 8.97
SR 36.70 8.59
t-SR 37.49 8.95
RASR 37.80 9.61
Peer 65 37.88 9.18
REGSUM* 38.57 9.75
LexRank 37.87 8.88
R2N2_GA* 38.16 9.52
R2N2_ILP* 38.78 9.86
DUC 2004 PriorSum* 38.91 10.07
SR 35.76 8.73
t-SR 38.36 9.98
RASR 39.60 10.57

Peer T/Peer 26/Peer 65 are the original results on DUC 2001/2002/2004 respectively. We cite the scores
of some systems from their papers, indicated with the sign “*”.

Table 3: Comparison results (%) on DUC datasets

Parameter Sensitiveness. We present the ROUGE-2 performance of ¢-SR with the threshold parameter
t ranging from 0 to 0.9 with a step size of 0.05 shown in Figure 1 and 2a. The best achieved perfor-
mances of the groundtruth implementation are around 0.75, 0.65, 0.6 (Figure 1) while the best achieved
performances in practice are around 0.7, 0.7, 0.65 (Figure 2a). t is still very sensitive around the best
performance, as shown in the red dashed line in both Figure 1 and 2a.

Training Convergence. In order to speed up the training process of RASR, we randomly sample some
pairwise training instances with Equation 7 for training of RASR. We want to know whether this will
influence the convergence of RASR, so we present the decrease of loss with respect to training iterations
in Figure 2b. We find that the random sampling has little influence on the convergence of RASR with
t-SR as a comparison.

5 Related Work

Existing work on extractive summarization can be divided into two categories: unsupervised and super-
vised.

Two most famous unsupervised frameworks are Centroid based and Maximum Marginal Relevance
based. Centroid-based methods evaluate the sentence centrality as its importance (Mihalcea, 2004).
Radev et al. first propose to model cluster centroids in their summarization system, MEAD (Radev et
al., 2000; Radev et al., 2004). Then LexRank (or TextRank) is proposed to compute sentence importance

39



Loss
ROUGE-2 0.12

10.5 0.115

10

9.5

\ ’ ~\ RASR DUC 2001 —RASR DUC 2002 ~RASR DUC 2004
0.105

9 9.383

v 01

\ \‘ t-SR DUC 2001 —t-SR DUC 2002 -t-SR DUC 2004
8.5 ‘\ \ 0.095

WA
8 - \\ 0.09 N
75 7.859 =4y

\
\ M
0.085
\
\ \‘\

7 \ 0.08

DUC 2001 DUC 2002 DUC 2004 \

6.5 N 0.075
6 A 0.07

t= 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 1 31 61 91 121 151 181 211 241 271

(a) Sensitiveness of the parameter ¢ of ¢-SR. (b) Loss decrease with respect to training iterations.

based on the concept of eigenvector centrality in a graph of sentence similarities (Erkan and Radev, 2004;
Mihalcea and Tarau, 2004). Due to its expansibility and flexibility, centroid-based methods have a lot of
extensions. Wan et al. propose several centroid-based approaches for different summarization tasks, e.g.,
cross-language summarization, etc (Wan, 2008; Wan and Xiao, 2009; Wan, 2011). Maximum Marginal
Relevance (MMR) based methods consider the linear trade-off between relevance and redundancy (Car-
bonell and Goldstein, 1998). Goldstein et al. first extend MMR to support extractive summarization by
incorporating additional information (Goldstein et al., 2000). McDonald achieves good results by refor-
mulating this as a knapsack packing problem and solving it using ILP (McDonald, 2007). Later Lin and
Bilmes propose a variant of MMR framework which maximizes an objective function that considers the
linear trade-off between coverage and redundancy terms (Lin and Bilmes, 2010; Lin and Bilmes, 2011).

Supervised methods model the extractive summarization task from various perspectives. Kupiec et
al. train a naive-Bayes classifier to decide whether to include a particular sentence in the summary or
not. (Kupiec et al., 1995). Li et al. evaluate the sentence importance with support vector regression,
then a simple rule-based method is applied for removing redundant phrases (Li et al., 2007). Gillick
and Favre evaluate bi-grams importance and then use these scores to evaluate sentence importance and
redundancy with a linear combination (Gillick and Favre, 2009). Sipos et al. propose a structural SVM
learning approach to learn the weights of feature combination using the MMR-like submodularity func-
tion proposed by Lin and Bilmes (Lin and Bilmes, 2010). Cao et al. evaluate the sentence importance
with a neural regression model, then they remove the redundant sentence larger than a threshold param-
eter during greedy algorithm (Cao et al., 2015b). In another paper, they remove the redundant sentence
by adding a redundancy constraint to the ILP objective which restricts the bi-gram redundancy of the
selected sentences smaller than a threshold (Cao et al., 2015a).

In all above extractive summarization methods, redundancy is mainly considered in two ways. The first
way is measuring the importance of each sentence then explicitly removing the redundant sentence larger
than a threshold parameter during the sentence selection process. Another way is linearly substracting
the sentence redundancy score or scoring the redundant parts with low weights. To the best of our
knowledge, none of them studies the summarization task and models redundancy from the perspective
of this paper.

6 Conclusion and Future Work

This paper presents a novel sentence regression framework to conduct regression with respect to the rel-
ative importance f(s|S) of sentence s given a set of sentences S. Additional features involving the sen-
tence relations are incorporated. We conduct experiments on three DUC benchmark datasets. Generally,
our approach achieves the best performance in terms of ROUGE metrics compared with state-of-the-art
approaches.

We believe our work can be advanced and extended from many different perspectives. First, more
features can be designed especially those involving the relations of two sentences. Second, the results
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can be further improved by exploring better strategies to select the first sentence. Third, the framework
can be extended to other tasks, e.g., query-focused summarization, which can be achieved by introducing
query-related features.
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Abstract

Automatic video description generation has recently been getting attention after rapid advance-
ment in image caption generation. Automatically generating description for a video is more
challenging than for an image due to its temporal dynamics of frames. Most of the work relied
on Recurrent Neural Network (RNN) and recently attentional mechanisms have also been ap-
plied to make the model learn to focus on some frames of the video while generating each word
in a describing sentence. In this paper, we focus on a sequence-to-sequence approach with tem-
poral attention mechanism. We analyze and compare the results from different attention model
configuration. By applying the temporal attention mechanism to the system, we can achieve a
METEOR score of 0.310 on Microsoft Video Description dataset, which outperformed the state-
of-the-art system so far.

1 Introduction

Since the recent breakthrough in machine learning, generating description for static images has been
intensively researched and high-quality image description can be achieved in the past few years by many
research groups (Vinyals et al., 2014; Karpathy and Fei-Fei, 2015; Fang et al., 2015; Xu et al., 2015; You
et al., 2016). However, video description generation is a much more challenging task, which requires
understanding temporal relationship between video frames. Automatically generating video description
can be useful in many aspects. It can help visually-impaired people to understand the content of videos.
More importantly, it will enable computers to understand videos, rather than just working at pixel lev-
els, because the generated descriptions contain objects appearing the videos along with their attributes,
locations, actions, and relations with other objects. Though considered very challenging, being able to
understand videos can have great impact and will be useful to many other applications, such as human-
robot interaction, video indexing and query, and video classification.

This paper focuses on generating video description using a encoder-decoder sequence-to-sequence
model with temporal attention mechanism. We perform a set of experiments using different configura-
tions of attention mechanisms and also can achieve state-of-the-art results. Our main contributions are
as follows: First, we apply temporal attention mechanism to the encoder-decoder sequence-to-sequence
model and are able to outperform the state-of-the-art system on Microsoft Video Description dataset
(MSVD) (Chen and Dolan, 2011) in terms of the METEOR (Denkowski and Lavie, 2014), CIDEr
(Vedantam et al., 2014), and ROUGE-L (Lin, 2004) scores. Second, we analyze and compare the results
from different model configurations, and show how temporal attention works in generating sentences. We
also performed the experiments on a large movie dataset, Montreal Movie Annotation Dataset (M-VAD)
collected by Torabi et al. (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/
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2 Related Work

There exist many works in the image captioning task inspired by recent advances in machine translation
using encoder-decoder Recurrent Neural Network (RNN) (Bahdanau et al., 2014). Vinyals et al. (2014)
replaced the RNN encoder with a Convolutional Neural Network (CNN) which was pre-trained for an
image classification task. Then, the last hidden layer of the pre-trained CNN can be used to produce a
meaningful representation of an image, which they used as an input to the RNN decoder that generates
sentences.

Karpathy and Fei-Fei (2015) used a combination of a CNN and a bidirectional RNN to generate natural
language sentences from an image as well as their corresponding regions. Fang et al. (2015) first trained
visual detectors from a dataset of image-caption pairs, and then used the output words from the visual
detectors as input to the language model for generating image description. Xu et al. (2015) also used
a CNN-RNN encoder-decoder scheme and applied a spatial attention mechanism over an input image,
so that the model can attend to a specific region of an image while generating each word of a caption
sentence. The model of You et al. (2016) learned to selectively attend to semantic concepts (similar to
visual concepts in (Fang et al., 2015)) of an image and input them into the RNN decoder at each time
step of generating image description.

After great success in image captioning, researchers are currently moving forward into working on
generating sentences that describe videos. Venugopalan et al. (2015b) proposed the first end-to-end sys-
tem to translate a video into natural language by extending the CNN-RNN encoder-decoder framework
for image captioning proposed by Vinyals et al. (2014) to generate description for videos. They per-
formed a mean pooling over CNN feature vectors of frames to generate a single vector representation for
a video, and then use the vector as input to the RNN decoder to generate a sentence. Yao et al. (2015) has
incorporated an attentional mechanism to video caption generation. They took into account both local
and global temporal structures of videos by incorporating a spatial temporal 3D CNN.

A sequence-to-sequence model for generating description of videos has been first proposed by Venu-
gopalan et al. (2015a). They used 2 layers of RNN for both encoding the videos and decoding into
sentences, so their model is able to learn both a temporal structure of a sequence of video frames and a
sequence model for generating sentences.

3 Sequence-to-sequence Model

This section describes the concept and structure of the sequence-to-sequence model, including Long
Short-Term Memory (LSTM), the two-layer encoder-decoder LSTM, and the temporal attention mecha-
nism that we used in this work.

3.1 Long Short-Term Memory

An LSTM network, proposed by Hochreiter and Schmidhuber (1997), is a type of RNN that is com-
monly used in sequence-to-sequence models. It has been intensively used in machine translation, speech
recognition as well as in image/video description generation.

LSTM can help to avoid exploding and vanishing gradient problems by using forget gates to reset
memory block when they are out of date. Given an input x;, at time step ¢, one unit of an LSTM can be
formulated as

it = Sigmoid(Wml't + Whihi—1 + bi)
ft = sz’gmoid(foxt + thht71 + bf)
ot = sigmoid(Wyoxs + Whohi—1 + bo)
gt = tanh(Wygzy + Whghi—1 + bg)
= frxc—1+i kg

hy = oy x tanh(cy)

(1

where 4;, f; and o; are input gates, forget gates, and output gates. The symbol * represents the element-
wise multiplication. W, Wi, Wer, Wi, Wao, Who, Wag, Whg and by, by, b,, by are the parameters
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Figure 1: System architecture of the sequence-to-sequence model with temporal attention. In the figure,
we omit the image embedding layer, the word embedding layer, and the softmax layer, due to the space
constraint.

to be learned during training. h; is the hidden state at time step ¢ which will be an input to the next time
step’s LSTM unit.
3.2 Two-layer LSTM for Sequence-to-sequence Model

Figure 1 depicts our two-layer LSTM model for generating sentences from a video, which is based on
the sequence-to-sequence model proposed by Venugopalan et al. (2015a). Given a video as a sequence
of frames V' = {v1, vo, ..., v, }, where the video V has n frames and v; is the ith frame of the video, we
can formulate our system as

hY = LSTMD (2, V) )

where hgl) is the hidden state of the first (upper) LSTM layer, defined as LSTM ™), at time step ¢. In
the encoding stage, the input x; = v; and, in the decoding stage, x; = 0.

The input to the second (lower) LSTM layer is the concatenation of the word (represented as word
embedding) generated on the previous time step ¢ — 1 and the hidden state of the first LSTM layer.

W = LSTM® ([wi_y; V), B2 3)

where h,EQ) is the hidden state of the second LSTM layer, defined as LSTM ), at time step ¢. In the
encoding stage, we fix the word w;_1 = 0, since there is no word being generated. Lastly, the distribution
over all the words at time step ¢ can be computed by

p(wiwy, ...;wi—1, V) = softma:r(WshEQ) + bs) 4

3.3 Temporal Attention Mechanism

Our approach incorporates the previously-proposed sequence-to-sequence model with a temporal atten-
tion mechanism. The second-layer LSTM at decoding stage can be formulated as

W = LSTM® ([wy_y; hgl)L h?—)p ct) ®

where the context vector ¢, at the time step ¢ in the decoding stage, is the weighted sum of encoder’s
hidden states hgl).

=Y o (©)
=1
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‘ videos sentences tokens vocabsize avg. length captions/video source
MSVD | 1,970 80,827 567,874 12,594 10.2s ~40 crowd
M-VAD | 46,589 55,904 502,926 17,609 6.2 1 professional

Table 1: Video description dataset statistics. Refer to Venugopalan et al. (2015a) and Torabi et al. (2015)
for more details.

(*)

The weight ;" is computed at every time step ¢ and can be computed by

1 2
Q= D@ %)
Z;}ZI ealhy k=)

where a(hz(-l), hgl) is the alignment function used to calculate relevance scores between every hidden

state hgl) in the encoding stage the hidden state hgz_)l at the previous time step t — 1.

3.4 Alignment model

To see which alignment functions are suitable for the model, we have used four different alignment
functions in this work. Three of them were used in Luong et al. (2015), and we also use summation of
hidden states as an alignment function.

-
hl(l) hg)l dot
ORRTING) i
a(hgl), h§2_)1) _J)h VlVaht51 bilinear ®)
Wa[hg ); hif)l] concat

WbV + Wyh?,  sum

The parameters W, and W}, of the alignment model are jointly learned at training time with all other
parameters in the network.

4 Dataset and Experiment Setting

This section describes the video description datasets, the pre-processing steps, the experiment setting,
and the evaluation metrics that we used.

4.1 Dataset and pre-processing

In this paper, we trained the models and generated descriptions for two publicly-available video datasets
as follows. The summary of the datasets is shown in Table 1.

Microsoft Research Video Description Corpus (MSVD) collected by Chen and Dolan (2011). It
is a set of video clips aggregated from Youtube, containing 1,970 short clips with ~240 captions/per
clip. The videos were collected and annotated by crowdsourcing on Amazon Mechanical Turk. The
clips mostly contain a single activity and can be described using only one sentence. For fair comparison
with other previous work, we split the dataset into train/validation/test sets following Venugopalan et
al. (2015b) and Yao et al. (2015). The size of the train, validation, and test sets is 1200, 100, and 670,
respectively. We also use the pre-processed sentences and vocabularies from Venugopalan et al. (2015b).
The pre-processing includes tokenizing, converting to lower case, and removing punctuations.

Montreal Video Annotation Dataset (M-VAD) M-VAD is a large collection of movie clips provided
by Torabi et al. (2015). It was collected from 92 movies, and spitted into 46,589 short clips. Each clip
is associated with a description, which can be more than one sentence. The dataset provides an official
training/validation/test split, consisting of 36,921, 4,717 and 4,951 video clips respectively. We used
all words in the training data as our vocabulary set and only pre-processed the data by tokenizing the
sentences.
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Model BLEU METEOR CIDEr ROUGE-L
Results reported by Venugopalan et al. (2015a)

Mean pooling (VGG16) - 0.277 - -
Sequence to sequence (VGG16) - 0.292 - -
Sequence to sequence (VGG16) + Flow (AlexNet) - 0.298 - -
Results reported by Yao et al. (2015)

Enc-Dec (Basic) 0.387 0.287 0.448 -

+ Local (3-D CNN) 0.388 0.283 0.509 -

+ Global (temporal attention) 0.403 0.290 0.480 -

+ Local + Global 0.419 0.296 0.517 -
Our system (VGG16) - non-attention 0.381 0.300 0.562 0.654
Our system (VGG16) - dot 0.411 0.307 0.574 0.664
Our system (VGG16) - bilinear 0.407 0.310 0.615 0.676
Our system (VGG16) - concat 0.390 0.310 0.595 0.667
Our system (VGG16) - sum 0.385 0.306 0.584 0.664
Our system (ResNet) - non-attention 0.427 0.318 0.706 0.675
Our system (ResNet) - dot 0.406 *0.326 *0.750 0.680
Our system (ResNet) - bilinear 0.425 0.318 0.733 0.675
Our system (ResNet) - concat 0.417 0.325 0.723 *0.681
Our system (ResNet) - sum *0.437 0.319 0.718 0.676

Table 2: Scores of video description generation results on the MSVD dataset. * marks the top scores of
each column.

4.2 Experiment Setting

We down-sample all the video clips by selecting every 8" frame from the original videos and resize
them to 224x224. We extract features for each frame using the pre-trained image classification models
provided publicly in Caffe Model Zoo (Jia et al., 2014). In this work, we performed the experiments
using the features extracted from the 4096-dimensional fc7 layer of the 16-layer VGG model (VGG16),
proposed by Simonyan and Zisserman (2014), and the 2048-dimensional output from Deep Residual
Networks (ResNet), recently proposed by He et al. (2015), who is the winner in the ILSVRC 2015
classification task. We embed input frame features into 512-dimensional embeddings.

For text input, after pre-processing, the word tokens are represented by one-hot vectors. We use the
word BOS to mark the beginning of a sentence and EOS to represent the end of the sentence. We also
embed the word vectors into 512-dimensional embeddings. The parameters for both image and word
embedding layers are jointly learned with other parameters at training time.

We fix the number of encoding and decoding time steps in order to enable batch training. For the
MSVD dataset, we constrain the number of encoding and decoding time steps to be 60 and 20, respec-
tively. The M-VAD corpus has longer sentence length, so we set the number time steps to 50 and 30 for
encoding and decoding, respectively, to allow the language model to generate longer sentences.

In every experiment, the LSTM hidden layer size is set to 1,000. We use the Adam optimizer (Kingma
and Ba, 2014) with the learning rate of 0.0001 and the mini-batch size of 40. We also apply the dropout
strategy (Srivastava et al., 2014) with the ratio of 0.3 at the video input layer to avoid overfitting. We
implemented our system using Chainer, which is a powerful framework for developing neural networks
developed by Tokui et al. (2015).

S Experimental Results and Discussion

This section shows the experimental results in both qualitative and quantitative aspects. We performed a
quantitative analysis of results based on four evaluation metrics, including
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Model BLEU METEOR CIDEr ROUGE-L
Results reported by Venugopalan et al. (2015a)

Mean pooling (VGG16) - 0.061 - -
Sequence to sequence (VGG16) - 0.067 - -
Results reported by Yao et al. (2015)

Enc-Dec (Basic) 0.003 0.044 0.044 -

+ Local (3-D CNN) 0.004 0.051 0.050 -

+ Global (temporal attention) 0.003 0.040 0.047 -

+ Local + Global 0.007 0.057 0.061 -
Our system (VGG16) - non-attention *0.008 *0.072 0.087 *0.159
Our system (VGG16) - dot *0.008 0.062 *0.088 0.140
Our system (VGG16) - concat 0.006 0.067 0.082 0.143
Our system (VGG16) - sum 0.007 0.070 0.074 0.155

Table 3: Scores of video description generation results on the M-VAD dataset. * marks the top scores of
each column.

e BLEU (Papineni et al., 2002), an evaluation metric widely used in machine translation. BLEU
calculates a score based on modified n-gram precision of the generated sentence against a set of
human-annotated reference sentences.

e METEOR (Denkowski and Lavie, 2014), an automatic metric for machine translation evaluation.
It is based on explicit word-to-word matching between the generated sentence and one or more ref-
erence sentences. METEOR supports matching between words with simple morphological variants
and synonyms.

e CIDEr (Vedantam et al., 2014), an automatic consensus metric of image description quality.
Consensus-based Image Description Evaluation (CIDEr) measures the similarity of a computer-
generated sentence against a set of human-annotated sentences. It gives a higher score to the sen-
tence that is more similar to the majority of human written descriptions.

¢ ROUGE-L (Lin, 2004), a recall-oriented evaluation metric popularly used in summarization com-
munity. It measures the number of in-sequence unigram matches between the generated sentence
and sentences created by annotators.

We use the caption evaluation package provided by the Microsoft COCO Image Captioning Challenge
(Chen et al., 2015).

We compare our results to the results reported by the mean-pooling and sequence-to-sequence ap-
proaches reported in (Venugopalan et al., 2015a), and results from the CNN-RNN encoder-decoder
model with a temporal attention mechanism reported in (Yao et al., 2015). However, the comparison
to (Yao et al., 2015) is probably not a fair comparison, since we used different CNNs for feature extrac-
tion, e.g. they used GoogleNet and 3D-CNN but we used VGG16 and ResNet.

5.1 Results on the MSVD dataset

The results on the MSVD dataset are presented in Table 2 and the sample sentences are shown in Figure
2. The attention model plays an important role for both VGG16 and ResNet experiments. We can achieve
the BLEU scores of 0.411 with VGG16 features and 0.437 with ResNet features. Our METEOR scores
reached 0.310 when using VGG16 and 0.326 when using ResNet. However, in the experiment using
VGGI16 features, the bilinear alignment function seems to work best, while the dor alignment function
gives the highest performance for the ResNet feature set.

As we can clearly see from the table, ResNet features are very powerful and can achieve the highest
scores in all evaluation metrics.
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VGG16 ResNet

(non-attention) a man is adding sauce to a bowl (non-attention) a man is pouring sauce into a pot
(dot) a man is adding sauce to a bowl (dot) a man is stirring a pot of food
(bilinear) a man is pouring sauce into a bowl (bilinear) a man is pouring sauce into a pot

of chili (concat) a person is adding water to a pot
(concat) a man is pouring some sauce into (sum) a man is stirring a pot

a bowl
(sum) a man is pouring some sauce into a bowl

(ground truth)

(1) the man is pouring sauce over the pasta
(2) a man is putting food from pan to a plate
(3) a man is adding sauce to his spaghetti

Figure 2: Generated descriptions from MSVD dataset.

5.2 Results on the M-VAD dataset

The results on the M-VAD dataset are presented in Table 3. For this dataset, we did not perform the
experiments using all the model configurations and feature types, due to the time constraints.

Even though the previous experiment on MSVD dataset showed that the result with ResNet were
better than those with VGG16, we decided to use image features extracted from VGG16 to make a
fair comparison with the previous work. From the table, our non-attention model can outperform the
previous work in all evaluation metrics, but the attention model does not work well in this dataset. The
reason probably comes from the characteristic of the M-VAD dataset that the videos contain a very high
diversity of scenes and descriptions, so our attention models cannot be learned properly.

Some samples of generated sentences are shown in Figure 3.

6 Conclusion

In this paper, we have proposed a framework to automatically generate descriptions for video clips. We
have applied the temporal attention mechanism to the sequence-to-sequence LSTM model. The results
have proved that our model can generate high-quality short descriptions for videos, and can outperform
the previous work. With the temporal attention mechanism, the model can learn to selectively focus on
different parts of a video while generating each describing word.

For future work, we would like to use audio features or include a text-to-speech system in our frame-
work since we think that audio is a very important piece of information for video understanding.
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VGG16

(non-attention) SOMEONE grabs a gun and the man steps out of the room .

(dot) SOMEONE and SOMEONE watch the men in their hands and the others .

(concat) He turns and walks off . SOMEONE follows SOMEONE to the floor , his eyes closed .

(sum) SOMEONE and SOMEONE step out of the room . SOMEONE and SOMEONE walk through the
crowd .

(ground truth) SOMEONE appears and shoots SOMEONE in the leg . The mobster slips away .
SOMEONE grabs SOMEONE .

Figure 3: Generated descriptions from M-VAD dataset.
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Abstract

Teaching large classes remains a great challenge, primarily because it is difficult to attend to all
the student needs in a timely manner. Automatic text summarization systems can be leveraged
to summarize the student feedback, submitted immediately after each lecture, but it is left to be
discovered what makes a good summary for student responses. In this work we explore a new
methodology that effectively extracts summary phrases from the student responses. Each phrase
is tagged with the number of students who raise the issue. The phrases are evaluated along two di-
mensions: with respect to text content, they should be informative and well-formed, measured by
the ROUGE metric; additionally, they shall attend to the most pressing student needs, measured
by a newly proposed metric. This work is enabled by a phrase-based annotation and highlight-
ing scheme, which is new to the summarization task. The phrase-based framework allows us to
summarize the student responses into a set of bullet points and present to the instructor promptly.

1 Introduction

Effective teachers use student feedback to adjust their teaching strategies. Nowadays, in large classes,
there is far too much feedback for a single teacher to manage and attend to. If different perspectives in
the student feedback could be summarized and pressing issues identified, it would greatly enhance the
teachers’ ability to make informed choices. In this work we seek to automatically summarize the student
course feedback into a set of bullet points. Each bullet point corresponds to a phrase, tagged with the
number of students who raise the issue. Our emphasis is on the textual feedback submitted by students
after each lecture in response to two reflective prompts (Boud et al., 2013): 1) “Describe what you found
most interesting in today’s class” and 2) “Describe what was confusing or needed more detail.” Education
researchers have demonstrated that asking students to respond to reflection prompts can improve both
teaching and learning (Van den Boom et al., 2004; Menekse et al., 2011). However, summarizing these
responses for large classes (e.g., introductory STEM, MOOCs) remains costly, time-consuming, and an
onerous task for humans (Mosteller, 1989).

In our prior work, Luo and Litman (2015) (henceforth L&L) introduced the task of automatic summa-
rization of student responses. The challenges of this task include 1) high lexical variety, because students
tend to use different word expressions to communicate the same or similar meanings (e.g., “bike ele-
ments” vs. “bicycle parts”), and 2) high length variety, as the student responses range from a single word
to multiple sentences. To tackle the challenges, L&L proposed a phrase summarization framework con-
sisting of three stages: phrase extraction, phrase clustering, and phrase ranking. The approach extracts
noun phrases from student responses, groups the phrases using a greedy clustering algorithm, and finally
selects representative phrases from the clusters using LexRank (Erkan and Radev, 2004).

There are three limitations in the phrase summarization framework. First, noun phrases do not suffice.
Other types of phrases such as “how confidence intervals linked with previous topics” are useful and
should be allowed. Second, clustering is based on similarity, but similarity of phrases that do not appear
in a background corpus (i.e., the corpus used to learn the similarities) cannot be captured in the previous

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Reflective Prompt
Describe what was confusing or needed more detail.

Student Responses Human Summary 1

S1: In the age of distributions example, application - central limit theorem Y [12]
of - 9 9]
S2: m .

S3: central limit teorem Y and A And B events -

9 was confusing

example formulas were different. I did not - " 3]
understand that part well

S4: " was a little bit abstract Human Summary 2

S5: - central limit theorem [13]
S6: Central Limit Thm ¥ - g-q plots [9]
S7: CLT ¥ - general more explanations/details,

SS:_ better handwriting, move slower [9]
S9: bernaulli random variables - sampling distributions [6]

S10: The central limit ¥ and _” - nothing [6]

Table 1: Example prompt, student responses, and two human summaries. ‘S1°-‘S10’ are student IDs. The summary phrases
are each tagged with the number of students who raise the issue (i.e., student supporters). The summary and phrase highlights
are manually created by annotators. Phrases that bear the same color belong to the same issue. Each annotator is free to choose
his/her color palette. We have only demonstrated the highlights of Human Summary 1 to avoid overlaying of two sets of
colors on student responses. The superscripts of the phrase highlights are imposed by the authors of this paper to differentiate

colors when printed in grayscale (y: yellow , g:-, r:-, b:-, and m:-).

setting. Lastly, a greedy clustering algorithm K-medoids (Kaufman and Rousseeuw, 1987) was previ-
ously used to group candidate phrases. It ignores global information and may suffer from a “collapsing”
effect, which leads to the generation of a large cluster with unrelated items (Basu et al., 2013).

The goal of this work is to explore a phrase-based highlighting scheme, which is new to the summa-
rization task. We aim to improve the phrase summarization framework by exploiting new capabilities
that are enabled by the highlighting scheme. In the new scheme, human annotators are instructed to 1)
create summary phrases from the student responses, 2) associate a number with each summary phrase
which indicates the number of students who raise the issue (henceforth student supporters), and 3)
highlight the corresponding phrases in both the human summary and student responses. Table 1 illus-
trates the highlighting scheme and more details are presented in §3. The new highlighting scheme makes
it possible to develop a supervised candidate phrase extraction model (§4.1) and estimate pairwise phrase
similarity with supervision (§4.2). To solve the third limitation, we explore a community detection al-
gorithm OSLOM (Lancichinetti et al., 2011) that optimizes the statistical significance of clusters with
respect to a global null model (§4.3). Experimental results show that the newly developed phrase ex-
traction model is better than noun phrases only, in terms of both intrinsic and extrinsic measures; phrase
similarity learning appears to produce marginal improvement; and the community detection approach
yields better phrase summaries with more accurate estimation of the number of student supporters.

In summary, the contribution of this work is threefold.

e We introduce a new phrase-based highlighting scheme for automatic summarization, a departure
from prior work. It highlights the phrases in the human summary and also the semantically similar
phrases in student responses. We create a new dataset annotated with this highlighting scheme!.

e We push the boundary of a phrase-based summarization framework by using our highlighting
scheme to enable identification of candidate phrases as well as estimation of phrase similarities
with supervision, and by using community detection to group phrases into clusters.

e We conduct comprehensive evaluations in terms of both summary text quality, measured by
ROUGE (Lin, 2004), and how well phrase summaries capture the most pressing student needs,
measured by a new evaluation metric based on color matching.

'This data set is publicly available at ht tp: //www.coursemirror.com/download/dataset?
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2 Related Work

Work on automatic text summarization involves multiple granularities, ranging from keywords, phrases,
to sentences. Traditional approaches have largely focused on sentence extraction (Martins and Smith,
2009; Berg-Kirkpatrick et al., 2011; Li et al., 2013) and document abstraction (Liu et al., 2015; Rush et
al., 2015; Durrett et al., 2016; Nallapati et al., 2016). In both cases, the produced summary is expected
to be cohesive and coherent. We deviate from this path and seek to directly generate a set of bullet points
as a summary. Phrases are easy to search and browse like words but more meaningful, and fit better on
the small screen of a mobile device compared to sentences (Ueda et al., 2000; Luo et al., 2015).

Our task setting differs from those of keyphrase extraction (Wu et al., 2005; Liu et al., 2009; Medelyan
et al., 2009; Hasan and Ng, 2014; Kan, 2015). Of key importance is that each summary phrase is associ-
ated with a numerical value, indicating the number of students who raise the issue. This information is
critical to course instructors for making informed choices. Intuitively our task setting bears similarity to
word/phrase cloud (Yatani et al., 2011; Brooks et al., 2014), where the cloud gives greater prominence to
words or phrases that appear frequently in the source text. The downside is that they do not take lexical
variety into account or considering semantically-equivalent words/phrases.

A summarization system is expected to produce high quality summary phrases and accurate estimates
of the number of student supporters for each phrase. Luo and Litman (2015) focus on extracting noun
phrases from student responses, however there lacks a comprehensive evaluation of the results, taking the
number of student supporters into account. Other related work on student responses includes collecting
student responses using a mobile application named CourseMIRROR (Luo et al., 2015; Fan et al., 2015),
determining the quality of a student reflective response and providing feedback (Luo and Litman, 2016),
and extracting informative sentences from the student feedback (Luo et al., 2016).

Traditional approaches to summary annotation have been based on either sentence extracts or docu-
ment abstracts (Loza et al., 2014; Xiong and Litman, 2014; Wang and Ling, 2016). An effective linkage
between the document content and human summary on the micro level have been largely absent. Barker
et al.(2016) partially address this challenge by linking a summary back to a group of sentences that sup-
port the summary. However, this linkage is weak since it tells only that there is one sentence or more
supporting the summary within the group, without explicitly telling which one(s). Approaches such as
Pyramid (Nenkova and Passonneau, 2004) have exploited creating Summary Content Units (SCUs) to
establish such links and alleviate the challenge. The new highlighting scheme described in this work
holds promise for establishing direct links between the phrases in student responses and those in the
human summary, allowing us to develop a new evaluation metric based on color matching.

3 New Data and Annotation

When reviewing the student feedback, we observe that not all issues are equally important. Some teach-
ing problems are more prominent than others. Summary phrases should naturally reflect the number of
students who raise the issue. But until now a reasonable sized dataset has been missing for this type of
summarization setting. In this work we create a new dataset for this purpose. This allows us to develop a
class of summarization approaches that learn to extract summary phrases from the student responses and
estimate the number of student supporters for each summary phrase.

Our dataset consists of two statistics courses offered in a research university for industrial engineers.
After each lecture, the students were asked to respond to two carefully designed reflection prompts using
a mobile application named CourseMIRROR?: 1) “Describe what you found most interesting in today’s
class,” and 2) “Describe what was confusing or needed more detail.” For each course, two independent
human annotators (native English speakers) with a statistics/mathematics background were recruited to
create summaries for each lecture and prompt. The instructions we provide to the annotators include
“create a summary using 5 phrases and mark how many students semantically mentioned each phrase.”
We limit the number of summary phrases to 5 per lecture and prompt in order to provide a concise
summary to the instructor. Note that the summary phrases are not limited to extracts; while abstracts

https://play.google.com/store/apps/details?id=edu.pitt.cs.mips.coursemirror
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and fusion of phrases are also possible, they are rare. We further ask the annotators to “highlight the
corresponding phrases in the student responses which are semantically the same to the summary phrases
using the same highlight colors.” The number of highlights in student responses should match the number
of students who semantically mentioned the phrase. An example is illustrated in Table 1.

Note that L&L attempt to annotate the number of student supporters for summary phrases on a small
dataset but without the highlighting scheme. We argue that the new highlighting scheme can provide
many unique benefits. First, it allows us to track the “source phrases” that humans use to create the
summary phrase. For example, the first summary phrase in Human Summary 1 of Table 1 is “central
limit theorem.” It is created from a collection of phrases in the student responses, including “The cen-
tral limit”, “central limit teorem” (a typo by the student), “CLT” (its abbreviation), and “Central Limit
Thm” (another abbreviation). Naturally the highlighted source phrases lend themselves to a supervised
approach to candidate phrase extraction. Second, the highlights inform us about the similarity and dis-
similarity of phrases. For example, the source phrases that bear the same color are semantically similar to
each other, whereas those with different colors are semantically dissimilar. In a similar vein, we develop
a supervised approach that learns to predict the phrase similarity using highlights as guidance. Third,
we are now able to accurately match the phrases in a system summary to those in a human summary,
allowing the development of a novel summarization evaluation metric. For instance, assuming the sys-
tem summary contains the phrase “Last problem about normalization” from S2 (Table 1), using the color
highlights, we know that this phrase matches the human summary phrase “normalization (last exam-
ple).” Such semantic matching between system and human summaries remains an elusive challenge for
traditional summarization evaluation, but highlights make it an easy decision. Finally, the highlights on
source texts indicate to what extent the information has been retained in the human summary. Specific to
our task, we are interested to know the percentage of students whose responses are covered by the human
summary. We define a student coverage score where a student is covered if and only if part of his/her
response is highlighted. For example, in Table 1, S9 is considered not covered by Human Summary 1.

Basic statistics of the dataset are presented in Table 2.3 The student coverage scores (75.9% for Course
A and 82.4% for Course B) highlight the effectiveness of the current annotation scheme, with a majority
of students covered by the human summaries.

Averaged by Lecture/Prompt
# Responses | # Words | Words Per Res. | # Highlights | Student Coverage
A 66 11 34.1 156.5 4.5 27.8 75.9%
B 74 24 41.9 161.8 3.7 37.2 82.4%

Course | # Students | # Lectures

Table 2: Basic statistics of the dataset. Because the student responses and human summaries are created for each lecture and
prompt, we take the average of the corresponding statistics.

4 Improved Phrase Summarization

So far we have motivated the need for a new dataset with a highlighting scheme for phrase-based summa-
rization. We proceed by describing three improvements to the phrase-based summmarization framework.
Our first improvement involves a supervised approach to candidate phrase extraction (§4.1). Next, we
learn to predict the pairwise phrase similarity (§4.2). Further, we explore a community detection algo-
rithm to group the phrases into clusters (§4.3). We use the cluster size as an approximation to the number
of student supporters for all the phrases within the cluster. L&L adopt LexRank (Erkan and Radev,
2004) to finally choose one representative phrase from each cluster. We follow the convention in this
study. Note that our focus of this paper is not on developing new algorithms but to explore new capabil-
ities that are enabled by the highlighting scheme. We thus perform direct comparisons with approaches
described in L&L and leave comparisons to other approaches to future work. We present an intrinsic
evaluation of each improvement in this section, followed by a comprehensive extrinsic evaluation in §5.

3While there are 22 lectures in total for Course A, unfortunately, only 11 of them have phrase highlighting.
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4.1 Candidate Phrase Extraction

The phrase-based highlighting scheme lends itself to a supervised phrase extraction approach. In con-
trast, L&L used heuristics to extract noun phrases (NPs) only. This limitation has meant that informative
non-NP phrases such as “how confidence intervals linked with previous topics” will be excluded from
the summary, whereas uninformative NP phrases such as “the most interesting point” may be included.
We attempt to resolve this issue by formulating candidate phrase extraction as a word-level se-
quence labeling task. Concretely, we aim to assign a label to each word in the student responses.
We choose to use the ‘BIO’ labeling scheme, where ‘B’ stands for the beginning of a phrase, ‘I’ for
continuation of a phrase, ‘O’ for outside of a phrase. For example, *“ The (B) central (I) limit (I) and

O) _ illustrates the tagging of individual words, where the “The central
limit” and “normal approximations” are two phrases highlighted by our annotators.

Local Features Word trigram within a 5-word window
Part-of-Speech tag trigram within a 5-word window
Chunk tag trigram within a 5-word window

Whether the word is in the prompt

Label bigrams.

Global Features Total number of word occurrences (stemmed)

[ ]
[ ]
L]
[ ]
e Whether the word is a stopword
[ ]
[ ]
[ ]

Rank of the word’s term frequency

Table 3: Local and global features for supervised phrase extraction. Local features are extracted within one student’s response.
Global features are extracted using all student responses to a prompt in one lecture.

We choose to use the Conditional Random Fields (CRF) (Lafferty et al., 2001) as our sequence labeler*
and develop a number of features (Table 3) based on sentence syntactic structure and word importance
to signal the likelihood of a word being included in the candidate phrase. During training, we merge
the phrase highlights produced by two annotators in order to form a large pool of training instances.
When two highlights overlap completely, e.g., “normal approximations” are marked by both annotators
using different colors, we keep only one instance of the phrase, resulting in 1,115 and 2,682 instances
for Course A and Course B respectively. When the highlights partially overlap, we use each phrase
highlight as a separate training instance. In this and all the following experiments, we perform leave-
one-lecture-out cross validation on all the lectures and report results averaged across folds. Table 4
presents the intrinsic evaluation results on the phrase extraction task. We calculate Precision (P), Recall
(R) and F-measure (F) scores based on the exact match of system phrases to gold-standard phrases. While
the sequence labeling approach and the features presented here are straightforward, they do produce a
collection of candidate phrases with higher precision. It removes noun phrases that are commonly used
by students but uninformative (e.g., “a little bit abstract”, “a problem with today’s topic”) as they were
not highlighted by annotators. Phrase well-formedness is highly important to the summary quality, as
evaluated in §5.

Course A Course B
Candidate Phrase Extraction P R F P R F
L&L (NPs only) 0.426 0.633 0.503 0.538 0.714 0.609
Sequence Labeling with Highlights 0.692" 0.569* 0.618" 0.771*  0.743 0.753*

Table 4: Results of phrase extraction, intrinsically evaluated by comparing the system phrases to gold-standard phrases using
exact match. The highest score in each column is shown in bold. * means the difference is significant with p < 0.05.

4.2 Similarity Learning

Accurately estimating pairwise phrase similarity plays an essential role in phrase-based summarization.
Better similarity learning helps produce better phrase clusters, which in turn leads to more accurate
estimation of the number of student supporters for each summary phrase. While a human annotator

*We use the implementation of Wapiti (Lavergne et al., 2010) with default parameters.
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could distinguish the semantic similarity or dissimilarity of the phrase highlights, it remains unclear if a
single similarity metric could fulfill this goal or if we may need an ensemble of different metrics.

L&L calculate the pairwise phrase similarity using SEMILAR (Rus et al., 2013) with the latent se-
mantic analysis (LSA) trained on the Touchstone corpus (Stefdnescu et al., 2014). One drawback of this
approach is that the similarity of phrases that do not appear in a background corpus cannot be captured. In
this work we develop an ensemble of similarity metrics by feeding them into a supervised classification
framework. We use the phrase highlights as supervision, where phrases of the same color are positive
examples and those of different colors are negative examples. We experiment with a range of metrics
for measuring lexical similarity, including lexical overlap (Rus et al., 2013), cosine similarity, LIN sim-
ilarity (Miller, 1995), BLEU (Papineni et al., 2002), SimSum (Lin, 2004), Word Embedding (Goldberg
and Levy, 2014), and LSA (Deerwester et al., 1990). LIN similarity is based on WordNet definitions.
Lexical overlap, cosine similarity, BLEU, and SimSum are related to how many words the two phrases
have in common, while Word Embedding and LSA both capture the phrase similarity in a low dimen-
sional semantic space. Therefore, we use an ensemble of the above similarity metrics by feeding them
as features in a SVM classification model, assuming it will be better suited for this task than the LSA
alone. Table 5 presents the intrinsic evaluation results. LSA has a poor degree of coverage (low recall)
with many phrase similarities not being picked up by the metric.

Course A Course B
Pairwise Phrase Similarity P R F P R F
L&L (LSA) 0.904 0.665 0.730 0.878 0.506 0.584
Similarity Learning with Highlights | 0.895 0.801" 0.833" 0.943" 0.768* 0.836"

Table 5: Results of predicting pairwise phrase similarity, measured using classification P/R/F.

4.3 Phrase Clustering

L&L use K-medoids for phrase clustering. It is a greedy iterative clustering algorithm (Kaufman and
Rousseeuw, 1987), which may suffer from local minimal. We instead treat phrase clustering as a com-
munity detection problem. We define a community as a set of phrases that are semantically similar
to each other, as compared to the rest of the phrases in student responses (Malliaros and Vazirgiannis,
2013). In our formulation, we consider each candidate phrase as a node in the network graph. We create
an edge between two nodes if the two phrases are considered semantically similar to each other using
the above similarity learning approach. Our goal is to identify tightly connected phrase communities in
the network structure. The community size is used as a proxy for the number of students who seman-
tically mention the phrase. Community detection has seen considerable success in tasks such as word
sense disambiguation (Jurgens, 2011), medical query analysis (Campbell et al., 2014), and automatic
summarization (Qazvinian and Radev, 2011; Mehdad et al., 2013).

Phrase Clustering Course A | Course B
L&L (K-medoids) 82.2% 84.0%
Community Detection with OSLOM 85.2%" 88.8%"

Table 6: Results of phrase clustering measured by purity: ratio of number of phrases agreeing with the majority color in clusters.

We use OSLOM (Order Statistics Local Optimization Method, Lancichinetti et al., 2011) in this work.
It is a widely used community detection algorithm that detects community structures (i.e., clusters of
vertices) from a weighted, directed network. It optimizes locally the statistical significance of clusters
with respect to a global null model during community expansion. We use an undirected version of
OSLOM and set the p-value as 1.0 to encourage more communities to be identified® since the number
of vertices in the constructed graph is relatively small compared to large complex networks. The key
feature of OSLOM is that it supports finding overlapped community structures and orphaned vertices,
offering more flexibility in the clustering process than K-medoids. We want to investigate if the unique
characteristics of OSLOM allow it to produce better phrase clusters, hence more accurate estimation of

SL&L set the number of clusters is to be the square root of the number of extracted phrases.
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the number of student supporters. We conduct an intrinsic evaluation using purity, corresponding to the
percentage of phrases in the cluster that agree with the majority color. Results are presented in Table 6.
While this metric by itself is not thorough enough, it does highlight the strength of the community
detection approach in generating cohesive clusters. One advantage of OSLOM we found is that it will
treat a phrase different from any other phrase as a singleton, while this phrase must be assigned to one of
the clusters in K-medoids, resulting in a noisy cluster.

5 Summary Evaluation

The previous section described three improvements to the phrase summarization framework. Next, we
evaluate them on the end task of summarizing student course responses. The phrase summaries are
evaluated along two dimensions: we expect ROUGE (Lin, 2004) to measure the informativeness of the
summary text content (§5.1); we further propose a new metric to quantify to what extent the most pressing
student needs have been captured in the summary (§5.2).

5.1 ROUGE

ROUGE measures the n-gram overlap between system and human summaries. In this work, we report R-
1, R-2, and R-SU4 scores, which respectively measure the overlap of unigrams, bigrams, and unigrams
plus skip bigrams with a maximum distance of 4 words. These are metrics commonly used in the DUC
and TAC competitions (Dang and Owczarzak, 2008). We implement the phrase summarization frame-
work described in (Luo and Litman, 2015), named as PhraseSum. Further, we include LexRank (Erkan
and Radeyv, 2004) as a competitive baseline. LexRank is a graph-based summarization approach based on
eigenvector centrality. It has demonstrated highly competitive performance against the PhraseSum on
a prior dataset (Luo and Litman, 2015). The summary is limited to 5 phrases or less in all experiments.
Note that, the summary length is set independently of the number of clusters. If the number of clusters
produced in §4.3 is less than 5, the phrase number is equal to the cluster number.

Course | System R-1 R-2 R-SU4
y P R F P R F P R F
A LexRank 276* 511 .348* | .118* .245 154 | .077* 260 .106°

PhraseSum 402 466 415 | .170 208 .178 | .162 222 160
SequenceSum | .600* 448  .493* | .307* 231  .249* | .368" 225 = .244*

SimSum 597 460 .504% | 302% 241 .260* | .355* 227  .249*
CDSum 634" 435  .499* | .335* 229  .262" | 404* 210 .250*
B LexRank 357 560 .429% | 187 304 227 | .129* 290  .168*

PhraseSum 492 545 508 | 231 258 239 | 234 283 241

SequenceSum | .618* 485" 531 | 347" 267 .294* | .385% 238" 274

SimSum 618 500 543 | .353* 284 .309* | 379 250  .285%
CDSum 702°1 480* 550 | 433*T 279 .324* | .500*T 240" 293"
Table 7: Summarization Performance. SequenceSum means replacing the syntax phrase extraction in the PhraseSum baseline
with the supervised sequence labeling phrase extraction. SimSum means replacing not only the phrase extraction but also the
similarity scores using the supervised models. CDSum means using all three proposed techniques including the community

detection. * indicates that the difference is statistically significant compared to PhraseSum with p < 0.05. T means that the
improvement over SequenceSum is statistically significant with p < 0.05.

The summarization performance is shown in Table 7 (the caption explains the system names). The
PhraseSum baseline, compared to LexRank, gets better P and F scores for all three ROUGE metrics
for both courses, and the improvement of P is significant. This is the same as the findings in (Luo and
Litman, 2015), and verifies our implementation of their model. For our enhancements of PhraseSum,
the proposed supervised phrase extraction (SequenceSum) significantly improves P and thus improves
(mostly significantly) F as well. SimSum is slightly better than SequenceSum for R and F, however, it
is not significant using a two-tailed paired t-test. It suggests that a supervised method is not necessarily
better than an unsupervised model in terms of the end-task performance, and its improvement over the
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PhraseSum baseline is mainly due to the supervised phrase extraction step. In fact, the predicted simi-
larity scores using the similarity learning model and the LSA model are highly correlated to each other
(r = 0.852, p < 0.01) although it has a better classification performance (Table 5). Although CDSum
is not significantly different from SequenceSum for the Course A, it does improve P significantly for all
three ROUGE metrics for Course B. One possible explanation is that the latter course has a larger number
of student responses, and thus benefits more from the community detection as the graph is larger.

5.2 A New Metric based on Color Matching

Our goal is to create a comprehensive evaluation metric that takes into account the following two factors.
e Phrase matching. While ROUGE is a classic summarization evaluation metric, it trivially com-
pares the system vs. human summaries based on surface text form. In contrast, the phrase highlights
allow us to accurately match the phrases in the system summary to those in the human summary
based on color matching. This is due to two facts: first, our methods are extractive-based and all
candidate phrases are extracted from the student responses; second, in the new highlighting scheme,
the annotators are asked to highlight both the human summary phrase and any phrases in the student
responses that are semantically the same with the summary phrase using the same color. It thus be-
comes easy to track the colors of the extracted phrases and verify if they match any of those in the
human summary.
e Student supporters. Each summary phrase is tagged with the number of students who raise the
issue. For human summary, this number is created by human annotators. For system summary, we
approximate this number using the size of the cluster, from which the summary phrase is extracted.
Our proposed new metric resembles precision, recall, and F-measure. We define the true positive (TP)
as the number of shared colors between system and human summaries. Each color is weighted by the
number of student supporters, taken as the smaller value between system and human estimates. The
precision is defined as TP over the total number of colors in the system summary, each weighted by
system estimates; while recall is defined as TP over the total number of colors in the human summary,
each weighted by human estimates. For example, assuming the phrases in the human summary are
colored and tagged with estimates on student support: yellow/12, green/9, red/6, blue/5, magenta/3;
similarly the phrases in the system summary are colored and tagged: yellow/11+3, green/17, red/7,
blue/7. There are two phrases in the system summary that bear the same color, we thus add up the system
estimates into yellow/11+3 (see Human Summary 1 in Table 1 and SequenceSum in Table 9). There are 4
shared colors between system and human summaries. The true positive is calculated as: 124+946+5 =
32. The precisionis 32/((11+3) +17+747) = 0.711, and recall is 32/(12+9+ 6 + 5+ 3) = 0.914.
The F-measure is calculated as the harmonic mean of precision and recall scores.

The performance is shown in Table 8. Similar to the ROUGE evaluation, SequenceSum improves the
P and F significantly. Now, CDSum not only significantly improves P, but also F for Course B.

Course A Course B
P R F P R F
PhraseSum 349 615 437 | 485 747 576
SequenceSum | .626* .642 .614* | .698* 757 717"
SimSum .602* 636 .595* | 711* 753 .723*
CDSum 643 634 .613* | 7771 762 .759*1

Table 8: Evaluation based on the new metric of color matching. P, R, and F are averaged by the annotators.

5.3 Example Summaries

The automatic summaries generated by different systems for the same example in Table 1 are shown
in Table 9. The PhraseSum baseline extracts unnecessary content, which could be eliminated by the
supervised phrase extraction model. For example, including “the example after” before “central limit
theorem” makes it too specific. The “collapse” effect with a large cluster with unrelated items (Basu

17342

et al., 2013) can also be illustrated (e.g., the quantitative numbers for the phrase “i” in PhraseSum and
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“q-q plot” in “SequenceSum” are much larger than the gold standard). This is solved by the community
detection algorithm where such bigger clusters will not be considered as a single community.

PhraseSum SequenceSum CDSum
-1[40] -1g-q plot ’ [17] - central limit theorem ¥ [11]
- the example after central limit theorem ¥ [12] | - central limit theorem ¥ [11] | -'g-q plot Y [10]

g gplot ‘ [9] - - " [7]

- the fact that we can sample as many

" [7]

R samplng disbuions | E
L ain 4

Table 9: Example system summaries for the example in Table 1. Note, the highlights in these summaries are NOT annotated
by human after they are generated. Instead, they are automatically extracted from the dataset (§5.2).

6 Conclusion and Future Work

In this work, we introduce a new phrase-based highlighting scheme for automatic summarization. It
highlights the phrases in the human summary and also the corresponding phrases in student responses.
Enabled by the highlighting scheme, we improved the phrase-based summarization framework proposed
by Luo and Litman (2015) by developing a supervised candidate phrase extraction, learning to estimate
the phrase similarities, and experimenting with different clustering algorithms to group phrases into
clusters. We further introduced a new metric that offers a promising direction for making progress on
developing automatic summarization evaluation metrics. Experimental results show that our proposed
methods not only yield better summarization performance evaluated using ROUGE, but also produce
summaries that capture the pressing student needs. Future work includes thorough comparison with
other approaches and extending the current research to multiple courses and other summary lengths in
order to test the generalizability. We also plan to supplement our ROUGE scores with human evaluations
of system summaries.
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Abstract

We present CATENA, a sieve-based system to perform temporal and causal relation extraction and
classification from English texts, exploiting the interaction between the temporal and the causal
model. We evaluate the performance of each sieve, showing that the rule-based, the machine-
learned and the reasoning components all contribute to achieving state-of-the-art performance
on TempEval-3 and TimeBank-Dense data. Although causal relations are much sparser than
temporal ones, the architecture and the selected features are mostly suitable to serve both tasks.
The effects of the interaction between the temporal and the causal components, although limited,
yield promising results and confirm the tight connection between the temporal and the causal
dimension of texts.

1 Introduction

When the Greek government missed its 1.6 billion euro payment to the IMF as its bailout expired on 30
June 2015, people started to look for information, such as What is going on? Why did it happen and what
will happen next? A compact summary that represents the development of a story over time, highlighting
not only the temporal connections between events but also cause-effect chains, would be very beneficial
for providing information that the readers need. Besides, this kind of knowledge, derived from structured
information about events and their temporal-causal relations, could be used in a number of applications,
from tools for automated generation of timelines to question answering and decision support systems.

While temporal relation classification is a well-studied task with a number of systems participating in
the TempEval campaigns (Verhagen et al., 2010; UzZaman et al., 2013; Llorens et al., 2015), less attention
has been devoted by the NLP community to the detection of causal links between events. Although recent
attempts have tried to settle an annotation standard for causality inspired by TimeML (Mirza et al., 2014),
the interactions between the temporal and the causal dimension of texts have been scarcely explored,
especially from an empirical point of view. In this work, we face this challenge by presenting CATENA
(CAusal and TEmporal relation extraction from NAtural language texts),' a multi-sieve architecture for
the extraction and classification of both relation types from English documents, which are pre-annotated
with temporal entities, namely events and time expressions.

2 Related Work

Our proposed approach for relation extraction is inspired by recent works on hybrid approaches for
temporal relation extraction (D’Souza and Ng, 2013; Chambers et al., 2014). D’Souza and Ng (2013)
introduce 437 hand-coded rules along with supervised classification models using lexical relation, semantic
and discourse features. CAEVO, a CAscading EVent Ordering architecture by Chambers et al. (2014),
combines rule-based and data-driven classifiers in a sieve-based architecture for temporal ordering. The
classifiers (sieves) are ordered by their individual precision, and transitive closure is applied after each
sieve to ensure consistent temporal graph.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://

creativecommons.org/licenses/by/4.0/
'The system is made available at https://github.com/paramitamirza/CATENA.
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Figure 1: System architecture of CATENA

The problem of detecting causality between events is as challenging as recognizing their temporal
order, but less analyzed from an NLP perspective. Besides, previous works have mostly focused on
specific types of event pairs and causal expressions in text (Bethard et al., 2008; Do et al., 2011; Riaz and
Girju, 2013). Several works, relying on corpus of parallel temporal and causal relations developed with
specific connectives in mind (Bethard et al., 2008), have presented analyses on the interaction between
temporal and causal relations (Bethard and Martin, 2008; Rink et al., 2010). Exploiting gold temporal
labels as features for the causal relation classifier is shown to be beneficial. Mirza et al. (2014) presented
some annotation guidelines to capture explicit causality between event pairs, inspired by TimeML. The
resulting corpus, Causal-TimeBank, is then used to build supervised classification models for extracting
causal relations (Mirza and Tonelli, 2014a). None of the above systems presents a hybrid approach in a
sieve-based architecture to deal with this task. CATENA is at present the first integrated system available
performing temporal and causal relation extraction.

3 System architecture

The CATENA system includes two main classification modules, one for temporal and the other for causal
relations between events. As shown in Figure 1, they both take as input a document annotated with the
so-called temporal entities according to TimeML guidelines (Pustejovsky et al., 2003), including the
document creation time (DCT), events and time expressions (timexes). The output is the same document
with temporal links (TLINKS) set between pairs of temporal entities, each assigned to one of the TimeML
temporal relation types, such as BEFORE, INCLUDES or SIMULTANEOUS, which denotes the temporal
ordering. The document is also annotated with causal relations (CLINKs) between event pairs.

The modules for temporal and causal relation classification rely both on a sieve-based architecture, in
which the remaining unlabelled pairs — after running a rule-based component and/or a transitive reasoner —
are fed into a supervised classifier. Although some steps can be run in parallel, the two modules interact,
based on the assumption that the notion of causality is tightly connected with the temporal dimension
and that information from one module can be used to improve or check the consistency of the other. In
particular, (i) TLINK labels for event-event (E-E) pairs, resulting from the rule-based sieve + temporal
reasoner modules, are used as features for the CLINK classifier; and (i1) CLINK labels (i.e. CLINK and
CLINK-R) are used as a post-editing method for correcting the wrong labelled event pairs by the TLINK
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classifier. This step relies on a set of rules based on the temporal constraint of causality, i.e. (i) CLINK(e1,
e2) — BEFORE(ey, e2) and (ii) CLINK-R(ej, e2) — AFTER(eq, e2). The modules for temporal and causal
relation extraction are detailed in Section 4 and 5 respectively.

4 Temporal Relation Extraction System

The module for the extraction of temporal relations contains two main components, one for (i) temporal
relation identification, which is based on a set of rules, and the other for (ii) temporal relation type
classification, which is a combination of rule-based and supervised classification modules, with a temporal
reasoning component in between. The three steps for temporal relation type classification are ordered
based on their individual precisions. This mechanism allows the system to first label few links with high
precision using rules, then to infer new links through the reasoner, and finally to increase recall through
supervised classification, based on the output of the previous steps.

4.1 Temporal Relation Identification

All pairs of temporal entities satisfying one of the following rules, inspired by the TempEval-3 task
description, are considered as having temporal links (TLINKs): (i) two main events of consecutive
sentences, (ii) two events in the same sentence, (iii) an event and a timex in the same sentence, (iv) an
event and a document creation time and (v) pairs of all possible timexes (including document creation
time) linked with each other.? These pairs are then grouped together into four different groups: timex-timex
(T-T), event-DCT (E-D), event-timex (E-T) and event-event (E-E).

4.2 Temporal Relation Type Classification

Our sieve-based architecture is inspired by CAEVO (Chambers et al., 2014), although we significantly
reduce the system complexity as follows:

e We merge all rule-based classifiers into one sieve component (rule-based sieve), and all Support
Vector Machine (SVM) classifiers in the machine-learned sieve.

e Instead of running transitive inference after each classifier, we run our temporal reasoner module on
the output of the rule-based sieve, only once.

Furthermore, we use the output of the rule-based sieve (Section 4.2.1) as features for the machine-
learned sieve (Section 4.2.3), specifically: (i) the timex-DCT link label proposed by the timex-timex rules
are used as a feature in the event-timex SVM, and (ii) the event-DCT link label proposed by the event-DCT
rules are used as a feature in the event-event SVM.

4.2.1 Temporal Rule-Based Sieve

The temporal rule-based sieve relies on specific hand-crafted rules designed for each type of temporal
entity pairs, and takes as input the entity pairs identified in the previous step.

Timex-timex Rules For timex-timex relations, we take into account temporal expressions of types DATE
and TIME, and determine the relation types based on their normalized values. For example, “7 PM tonight”
(2015-12-12T19:00) IS_.INCLUDED in “foday” (2015-12-12).

Event-DCT Rules The rules for labelling E-D pairs are based on the fense and/or aspect of the event
word. For example, for the event mention “(had) fallen”, which is in the past tense with perfective aspect,
its relation with the DCT is labelled as BEFORE.

Event-timex Rules As for E-T pairs, we build a set of rules based on the temporal senses of some
prepositions (Litkowski and Hargraves, 2006; Litkowski, 2014).3 In particular we assign a label whenever
a temporal preposition establishes a dependency path between an event (E) and a timex (T), in which T
acts as the temporal modifier of E. For example, if T is introduced by a temporal prepositions expressing a
STARTTIME sense such as from or since, the relation is labelled as BEGUN_BY.

?Note that this is not included in the enumerated possible TLINKs in the TempEval-3 task description.
3We took the list of temporal prepositions from http: //www.clres.com/db/classes/ClassTemporal . php.
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In the absence of a temporal preposition, T might simply be a temporal modifier of E, as exemplified in
“Police [confirmed] g [Friday] T that the body was found...”. In this case, we assume that the E-T label is
IS_INCLUDED. Moreover, sometimes events are modified by temporal expressions marking the starting
time and ending time in a duration pattern such as ‘between TBEGIN and TEND’ or ‘from TBEGIN to/until
TEND’. We define additional rules as follows: (i) If T matches TBEGIN then E-T label is BEGUN_BY, and
(i1) if T matches TEND then E-T label is ENDED_BY.

Event-event Rules E-E pairs are finally labelled following two sets of rules. The first set is based on
the dependency path possibly existing between the first (e;) and the second event (e2), and the verb
information encoded in e;. For example, if es is the logical subject of ey as in “...the chain reaction
[touched] ., off by the [collapse] ., of Lehman Brothers”, e; and ey are connected by an AFTER relation.
The other set of rules is taken from CAEVO, including: (i) rules for linking a reporting event and
another event syntactically dominated by the first, based on fense and aspect; and (ii) rules based on the
role played by various tenses of English verbs in conveying temporal discourse (Reichenbach, 1947).

Further details on the implemented rules for the temporal rule-based sieve can be found in Appendix A.

4.2.2 Temporal Reasoner

Based on the output of the previous sieve, we run a transitive reasoner layer, similar to CAEVO, in order
to infer new temporal links among candidate pairs. This alleviates the issue of high precision and low
recall, typical of the rule-based sieve.

An annotated TimeML document can be mapped into a constraint problem according to how TLINKSs
are mapped into Allen relations (Allen, 1983). We apply the following mapping:

e < and > for BEFORE and AFTER

o and o~ ! for DURING and DURING_INV

d and d~! for IS_INCLUDED and INCLUDES
s and s~! for BEGINS and BEGUN_BY

f and f~! for ENDS and ENDED_BY

Once the documents are mapped into constraint problems, they are then processed by an automated
temporal reasoner for computing their deductive closure, globally reasoning on them. We rely on the
Generic Qualitative Reasoner (GQR) (Westphal et al., 2010), a fast solver for generic qualitative constraint
problems, such as Allen constraint problems. The rationale of preferring GQR to other solutions, such as
fast Boolean Satisfiability Problem (SAT) solvers, is due to its scalability, simplicity of use and efficient
performances (Westphal and Wolfl, 2009).

4.2.3 Temporal Supervised Classifiers

We build three supervised classification models, one for event-DCT (E-D), one for event-timex (E-T)
and one for event-event (E-E) pairs. We use LIBLINEAR (Fan et al., 2008) L2-loss linear SVM (default
parameters), and one-vs-rest strategy for multi-class classification.

Tools and Resources Several external tools and resources are used to extract features from each
temporal entity pair, including:

e MorphoPro (Pianta et al., 2008), to get PoS tags and phrase chunk for each token.

e Mate tools (Bjorkelund et al., 2010) to extract the dependency path between words.

o WordNet similarity module* to compute semantic similarity (Lin, 1998) between words.

o Temporal signal lists from Mirza and Tonelli (2014b), further expanded using the Paraphrase Database
(Ganitkevitch et al., 2013), and manually clustered e.g. {before, prior to, in advance of }.

Feature Set 'We implemented a set of features, listed in Table 1, largely inspired by the best performing
systems in TempEval-2 (Verhagen et al., 2010) and TempEval-3 (UzZaman et al., 2013) campaigns. We
simplified the possible values of some features as follows:

*nttp://ws4jdemo.appspot .com/

67



Feature E-D TI];,‘I}K E-E CEEK Rep. Description
Morphosyntactic information
PoS X X X X one-hot  Part-of-speech tags of e; and ea.
phraseChunk X X X X one-hot  Shallow phrase chunk of e; and e».
samePoS X X X binary =~ Whether e; and e> have the same PoS.
Textual context
entityOrder X binary  Appearance order of e; and e in the text.’
sentenceDistance X X X binary 0 if e; and e2 are in the same sentence, 1 otherwise.
entityDistance X X X binary 0 if e; and ez are adjacent, 1 otherwise.
EVENT attributes
class X X X X one-hot
tense X x X x one-hot EVENT attributes as specified in TimeML.
aspect X X X X one-hot
polarity X X X X one-hot
sameClass X X binary
sameTenseAspect X X binary Whether e; and es have the same EVENT attributes.
samePolarity X X binary
TIMEX3 attributes
type X X one-hot  TIMEX3 attributes as specified in TimeML.
Dependency information
dependencyPath X X one-hot  Dependency path between e; and es.
isMainVerb X X X X binary =~ Whether e1/ez is the main verb of the sentence.
Temporal signals
tempSignalTokens X X X one-hot  Tokens (cluster) of temporal signal around e; and es.
tempSignalPosition X X X one-hot  Temporal signal position w.r.t e;/e2 (BETWEEN, BEFORE, BEGIN, etc.)
tempSignalDependency X X X one-hot  Temporal signal dependency path between signal tokens and e;/es.
Causal signals
causSignalTokens X one-hot  Tokens (cluster) of causal signal around e; and es.
causSignalPosition X one-hot  Causal signal position w.r.t e;/e> (BETWEEN, BEFORE, BEGIN, etc.)
causSignalDependency X X one-hot  Causal signal dependency path between signal tokens and e1/ez.
Lexical semantic information
wnSim X X one-hot  WordNet similarity computed between the lemmas of e; and e».
TLINK labels from the rule-based sieve
timex-DCT label X one-hot  The TLINK type of the ez (timex) and DCT pair (if any).
event-DCT label X one-hot  The TLINK types of the ei/e2 and DCT pairs (if any).

Table 1: Feature sets for TLINK classification of event-DCT (E-D), event-timex (E-T) and event-event
(E-E) pairs, and for CLINK classifier (E-E pairs), with corresponding feature representation (Rep).

e dependencyPath We only consider a dependency path between an event pair if it describes coordina-
tion, subordination, subject or object relation.

e signalTokens Given a temporal signal, we do not include in the feature set the token but the clusterID
of the cluster containing synonymous signals, e.g. {before, prior to, in advance of }.

e wnSim The value of WordNet similarity measure is discretized as follows: sim < 0.0, 0.0 < sim <
0.5, 0.5 < sim < 1.0 and sim > 1.0.

We exclude lexical features such as token/lemma of temporal entities from the feature set in order to
increase the classifiers’ robustness in dealing with completely new texts with different vocabularies.
Instead, we include WordNet similarity in the feature set to capture the semantic relations between event
words.

Label Simplification For training the classification models, we only consider 10 out of the 14 relation
types defined in TimeML by collapsing some types, i.e., IBEFORE into BEFORE, IAFTER into AFTER,
DURING and DURING_INV into SIMULTANEOUS, due to the sparse annotation of such labels in the datasets.

5 Causal Relation Extraction System

We propose the same hybrid approach combining rule-based and supervised classifiers for the identification
of causal relations. However, while temporal order has a clear formalization in the NLP community,
capturing causal relationships in natural language text is more challenging, for they can be expressed
by different syntactic and semantic features and involve both situation-specific information and world
knowledge. We adopt the notion of causality proposed in the annotation guidelines of the Causal-
TimeBank (Mirza et al., 2014; Mirza and Tonelli, 2014a), which accounts for CAUSE, ENABLE and

5The order of e; and ey in E-E pairs is always according to the appearance order in the text, while in E-T pairs, ez is always
a timex regardless of the appearance order.
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PREVENT phenomena (Wolff, 2007; Wolff and Song, 2003) that are overtly expressed in text. In particular,
we aim at assigning a causal link to pairs of events when: (i) the causal relation is expressed by affect,
link and causative verbs (CAUSE-, ENABLE- and PREVENT-type verbs), hereinafter simply addressed as
causal verbs; or (ii) the causal relation is marked by a causal signal (see e.g. footnote 6).

The two cases require different algorithms: while causal constructions containing causal verbs are
quite straightforward to identify, causal signals are very ambiguous and can appear in different syntactic
constructions.® Therefore, we tackle the first through a rule-based approach, while the second is best
covered via supervision, taking advantage of the freely available Causal-TimeBank.

5.1 Causal Relation Identification

Similar to the temporal processing module, the first step towards causal relation classification is the
identification of candidate event pairs. Given a document already annotated with events, we take into
account every possible combination of events in a sentence in a forward manner as candidate event pairs.
For example, if we have a sentence “ej, triggered by e, cause them to e3,” the candidate event pairs are
(e1,e2), (e1,e3) and (ea,e3). We also include as candidate event pairs the combination of each event in a
sentence with events in the following one, to account for inter-sentential causality, under the simplifying
assumption that causality may be expressed also between events in two consecutive sentences.

5.2 Causal Rule-Based Sieve

In the rule-based sieve, we classify causal constructions containing causal verbs. These show strong
regularities: given a causal verb v, the first event e; is usually the subject of v and the second event e; is
either the object or the predicative complement of v. Such relations between events and causal verbs are
usually syntactically expressed, therefore our rules aim at identifying pairs of events being related to a
causal verb in a causal construction by looking at their dependency paths.

We take the list of 56 affect, link and causative verbs presented in Mirza et al. (2014) as the causal verb
list. We further expand the list using the Paraphrase Database (Ganitkevitch et al., 2013) and original
verbs as seeds, resulting in a total of 97 verbs. We then manually cluster the causal verbs sharing the
same syntactic behaviour in groups and define a set of rules for each verb group, taking into account the
possible existing dependency paths between v and e/es, as well as the causal direction sense’ conveyed
in v. Further details on the implemented rules for the causal rule-based sieve can be found in Appendix B.

5.3 Causal Supervised Classifier

In order to recognize and determine the causal direction of CLINKs that are signalled by a causal signal,
we adopt a supervised approach. We build a classification model using LIBLINEAR (Fan et al., 2008)
L2-loss linear SVM (default parameters), and one-vs-rest strategy for multi-class classification. The
classifier has to label an event pair (e, e2) with CLINK, CLINK-R or O for others.

We take as candidate event pairs only those in which the causal signal is connected via dependency path
to either e; or eg, or both. Besides, we exclude event pairs where the two events are directly connected
through relations such as subject, object, coordinating or locative adverbial, because a causal relation
usually does not hold in these cases.

Tools and Resources The same external tools and resources mentioned in Section 4.2.3 for building
the temporal classifiers are used to extract features from each event pair. Additionally, we take the list
of causal signals from the annotation guidelines presented in Mirza et al. (2014) as the causal signal
list. Again we expand the list using the Paraphrase Database (Ganitkevitch et al., 2013), resulting in a
total of 200 signals. We also manually cluster some signals together, e.g. {therefore, thereby, hence,
consequently}, as we did for temporal signals.

8“The building [collapsed] + because of the [earthquake] s” vs “Because of the [earthquake] s the building [collapsed] "
s and T denote the source (cause) and target (effect) of the causal relation.

"For example, result in and result from have different senses affecting the causal direction, i.e. the causing event is the subject
of result in and the object of result from.
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Feature Set The implemented features are listed in Table 1. As shown in Figure 1, the event-event
labels added by the rule-based sieve and the reasoner in the temporal relation extraction module are also
used as features for the CLINK classifier.

6 Evaluation

The purpose of the evaluation is two-fold: (i) to evaluate the quality of extracted temporal and causal links
separately; and (ii) to investigate the interaction between temporal and causal relation extraction systems
in the integrated architecture.

6.1 Temporal and Causal Relation evaluation

We perform two evaluations, one following TempEval-3 and the other TimeBank-Dense evaluation
methodology.

Dataset For the evaluation of the temporal relation extraction module following TempEval-3, we use
the same training and test data released for the shared task,® i.e. TBAQ-cleaned (cleaned and improved
version of the TimeBank 1.2 and the AQUAINT corpora) and TempEval-3-platinum, respectively. The
TimeBank 1.2 corpus contains 183 documents coming from a variety of news report, specifically from the
ACE program and PropBank, while the AQUAINT corpus contains 73 news report documents and often
referred to as the Opinion corpus. The TempEval-3-platinum corpus, containing 20 news articles, was
annotated/reviewed by the TempEval-3 organizers.

The TimeBank-Dense corpus (Chambers et al., 2014) is created to address the sparsity issue in the
existing TimeML corpora. The resulting corpus contains 12,715 temporal relations over 36 documents
taken from TimeBank 1.2. For the TimeBank-Dense evaluation, we follow the experimental setup in
Chambers et al. (2014), in which the TimeBank-Dense corpus is split into a 22 document training set, a 5
document development set and a 9 document test set.”

To evaluate the causal relation extraction module, we use the Causal-TimeBank corpus!? (Mirza and
Tonelli, 2014a) for training. For TimeBank-Dense evaluation, the test set is a subset of TimeBank, so
we exclude the 9 test documents from Causal-TimeBank during training. For TempEval-3 evaluation,
we manually annotated 20 TempEval-3-platinum documents with causal links following the annotation
guidelines of the Causal-TimeBank.!! Causal relations are much sparser than temporal ones, and we
found only 26 CLINKSs.

Label Adjustment Since the set of TLINK types used in the TimeBank-Dense corpus is slightly different
from the one used in TempEval-3,!> we map the relation types of TLINKs labelled by the rule-based sieve
of CATENA (Section 4.2.1) as follows: (i) BEGINS, ENDED_BY — BEFORE, (ii) BEGUN_BY, ENDS —
AFTER, and (iii) DURING, IDENTITY — SIMULTANEOUS. The set of labels for the TLINK classifiers
(Section 4.2.3) is also adjusted accordingly following the labels in the TimeBank-Dense training data.

Evaluation Results In Table 2, we compare the performance of CATENA with the two best-performing
systems participating in the 7ask C of TempEval-3 (relation annotation given gold entities) and 7ask C
‘relation type only’ (relation annotation given gold entities and related pairs). We also compare the results
on the second task with the results of Laokulrat et al. (2015), who recently presented a state-of-the-art
system for relation classification based on timegraphs and stacked learning. In CATENA, Task C ‘relation
type only’ is performed by disabling the module for identifying temporal links described in Section 4.1.

The evaluation shows that CATENA is the best performing system in both tasks, even if in Task C
best precision and best recall are yielded by Bethard (2013) and Laokulrat et al. (2013), respectively.
The recall drop (from .613 to .595) in Task C is because we remove the timex-timex pairs from the final

8 Available at https://www.cs.york.ac.uk/semeval-2013/taskl/index.php\%3Fid=data.html.

° Available at http: //www.usna.edu/Users/cs/nchamber/caevo/.

10Available at http: //hlt-nlp. fbk.eu/technologies/causal-timebank.

" Available at https://github.com/paramitamirza/CATENA/data/.

12Some relation types are not used, and the VAGUE relation introduced in the first TempEval task (Verhagen et al., 2007) is
adopted to cope with ambiguous temporal relations, or to indicate pairs for which no clear temporal relation exists. The final set
of TLINK types in TimeBank-Dense includes: BEFORE, AFTER, INCLUDES, IS_INCLUDED, SIMULTANEOUS and VAGUE.
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TempEval-3 TimeBank-Dense

Task C Task C rel. type only T-T E-D E-T E-E Overall
System P R F1 P R F1 System F1 F1
CATENA 303 595 402 .626 .613 .619 | CATENA .780 518 .556 .487 511
Bethard (2013) 373 353 363 - - - CAEVO 712 553 494 494 507
Laokulrat et al. (2013) .152 .656 .247 @ .556 .574  .565
Laokulrat et al. (2015) - - - 576 579 578

Table 2: CATENA evaluated on Tempeval-3 data, compared with the two best participating systems
according to UzZaman et al. (2013) and the system by Laokulrat et al. (2015) (left). CATENA is also
compared with CAEVO on the TimeBank-Dense test set (right).

CATENA CAEVO
TempEval-3 . TimeBank-Dense TimeBank-Dense

Sieve P R F1 | P R F1 P R F1
Temporal Relation Identification

530 954 682 ¢ - - - - - -
Temporal Relation Type Classification
RB 908 127 223 727 .049 .092 - - -
RB + TR 921 163 278 : 713 076 .138 - - -
ML 610 575 592 © 484 471 478 | 458 202 280
RB + ML 616 595 .605 : 495 493 494 | 486 240 321
RB + TR + ML .626 .613 619 . 512 510 511 | 505 328 .398
RB + TR + ML + AllVague - - - - - - 508 506 .507
Causal Relation Extraction
RB 917 423 579 - - - - - -
ML 429 115 182 ¢ - - - - - -
RB + ML 737 538 622 1 - - - - - -

Table 3: Analysis of classifier performance per sieve. RB: rule-based sieve, ML: machine-learned sieve
and TR: temporal reasoner.

annotated documents in order to avoid a relevant decrease in precision, since only very few of such pairs
are annotated in the gold standard. The significant drop in precision shows the difficulty in matching
annotators’ decision to set TLINKS between entity pairs, although CATENA implements the instructions
they had to follow in the annotation guidelines.

We also report in Table 2 the performance of CATENA in the TimeBank-Dense evaluation and compare
it with CAEVO. We report only F1-score, since all possible links are labelled, yielding the same P and R
values. We achieve a small improvement in the overall Fl-score, i.e., .511 vs .507. If we consider the
different entity pairs, CATENA performs best on timex-timex and event-timex relations, while CAEVO
still achieves the best results on event-DCT and event-event pairs. One of the possible reasons for that is
the lack of rules in CATENA to classify VAGUE TLINKs between E-E pairs, a relation type present only in
TimeBank-Dense.

In order to measure the contribution of each component to the overall performance of CATENA, we
also evaluate the performance of each sieve both in the temporal and in the causal module. Results are
reported in Table 3, evaluated on both TempEval-3 and TimeBank-Dense test data. As expected, running
a transitive closure module after the temporal rule-based sieve (RB + TR) results in improving recall, but
the overall performance is still lacking (less than .30 F1-score).

Combining rule-based and machine-learned sieves (RB + ML) yields a slight improvement compared
with enabling only the machine-learned sieve in the system (ML). Introducing the temporal reasoner
module between the two sieves (RB + TR + ML) proves to be even more beneficial. This is especially
evident in the TimeBank-Dense evaluation. The same phenomena are also observed by CAEVO; Table 3
(right) shows the related numbers reported in Chambers et al. (2014). Note that in CAEVO, the machine-
learned sieves are not the last sieves, instead, the AllVague sieve is finally activated to label all remaining
unlabelled pairs as VAGUE.

For causal relation extraction, the combination of rule-based and machine-learned sieves (RB + ML)
achieves .622 Fl-score in TempEval-3 evaluation, with the ML component contributing to increase
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E-E pair Sentence TE3-gold TE-label CA-label = Post-editing

(es2,€44) The [incident] .., provoked an international [outcry] ... - SIMULTANEOUS CLINK BEFORE

(es2,ea5) The [incident] .., provoked an international outcry and - AFTER CLINK BEFORE
led to a major [deterioration] . in relations...

(€18, €19) ...the [inspections] ¢,, were directly linked to the new law - IS_INCLUDED CLINK-R AFTER
on NGOs and the targeted groups’ [compliance] ¢,, with it.

(e4, €6) A haze akin to volcanic fumes [cloaked] ., the capital, INCLUDES AFTER CLINK BEFORE

causing convulsive [coughing] ., and...

Table 4: Examples of E-E pairs in the TempEval-3-platinum dataset with gold annotated labels (TE3-gold),
labelled by the temporal module (TE-label) and causal module (CA-label) of CATENA. These examples
illustrate how TLINK post-editing using CLINK could improve the labelling quality.

the recall of the highly precise RB component. The low precision of the ML module is mostly due to
dependency parsing mistakes and issues in disambiguating signals such as from, as in “...passenger cars
in China was on track to hit [400 million] 1 by 2030, up from [90 million] s now.” Unfortunately, from
the total of 5 gold CLINKs in the 20 documents of the TimeBank-Dense test set, none is identified by

CATENA.

6.2 Interaction between Temporal and Causal Relations

As shown in Figure 1, E-E labels returned by the temporal reasoner are used by the CLINK classifier
as features, whose causal relations are then used to post-edit TLINK labels. We evaluate the impact of
the first step through an ablation test, by removing TLINK types from the features used by the CLINK
classifier. We only analyse the results of TempEval-3 evaluation, since there are no causal links recognized
in the TimeBank-Dense test corpus. Without TLINK types, the F1-score drops from .622 to .571, with
a significant recall drop from .538 to .462. This shows that temporal information is beneficial to the
classification of causal relations between events, especially in terms of recall.

As for the evaluation of TLINK post-editing using CLINKs, the system identifies 19 causal links in
the test set, which are passed to the temporal module. While 15 of them are already consistent with
BEFORE/AFTER labels, 3 would add new correct TLINKSs that are currently not annotated in the evaluation
corpus, and were wrongly labelled by the temporal module of CATENA, as shown in Table 4. The
fourth would add a BEFORE relation between cloaked and coughing in “A haze akin to volcanic fumes
[cloaked] s the capital, causing convulsive [coughing] 1 ...”. This relation is labelled as INCLUDES in the
gold standard, but we believe that BEFORE would be correct as well.

7 Conclusions

We presented CATENA, a hybrid system for the extraction and classification of temporal and causal
relations in text, which we make freely available to the research community. We adopt a sieve-based
architecture both for the temporal and the causal module, integrating rule-based and machine learning
components. The two modules were evaluated separately, showing that they achieve state-of-the-art
performance on different tasks. Furthermore, the interaction between temporal and causal components,
especially the benefits of passing information from one module to the other, was also analysed.

The system relies on the notion of events as defined in the TimeML standard, making it possible to
easily put temporal and causal information in relation. Although the interplay between causality and
temporality may seem obvious from a theoretical point of view, CATENA allows a systematic study
and a quantification of this phenomenon. The presented approach would probably have more impact if
implicit causality was also considered, which we did not take into account because it is not annotated in
the Causal-TimeBank corpus. However, we plan to investigate this issue in the near future.
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Appendix A Temporal Rule Set

tense aspect E-D label
PAST PERFECTIVE BEFORE
PRESENT PROGRESSIVE INCLUDES
PRESENT PERFECTIVE_PROGRESSIVE | INCLUDES
FUTURE * AFTER

Table 5: E-D label rules based on fense and aspect

tsense E-T label
TIMEPOINT (e.g. in, at, on) IS_INCLUDED
TIMEPRECEDING (e.g. before) BEFORE
TIMEFOLLOWING (e.g. after) AFTER
DURATION (e.g. during, throughout) | DURING
STARTTIME (e.g. from, since) BEGUN_BY
ENDTIME (e.g. until) ENDED_BY

of E. Table 6: E-T label rules based on the sense of
temporal preposition (tsense) introducing T.
dep ey verb info E-E label Example
LGS-PMOD * AFTER “...reaction [touched] ., off by the [collapse] ., of...”
LOC-PMOD * IS_INCLUDED “...enormous [surge] ¢, in coal [consumption] ., ...
OPRD-IM/OPRD  aspectual verb for initiation BEGINS “...situation [began] ., to [relax] , in...”
aspectual verb for culmination/termination ENDS “..we’d [stop] ¢, [bidding] c,.”
aspectual verb for continuation INCLUDES “...industry ’s growth [continues] ¢, to [slow] ¢,.”
general verb, aspect=PERFECTIVE_PROGRESSIVE | SIMULTANEOUS | “...have been [working] ., to [develop] ., quantum...”
general verb BEFORE “...consortium /attempted] ., to [block] ...

Table 7: E-E label rules based on dependency path (dep) and verb information of e; (e; verb info).

Appendix B Causal Rule Set

v dep, dep- dir E-E label
AFFECT *) OBJ CLINK
LINK (*) OBJ/ADV-PMOD/DIR-PMOD/AMOD-PMOD  CLINK CLINK
CLINK-R | CLINK-R
CAUSE/ENABLE/PREVENT *) OBJ/OPRD/OPRD-IM/ADV-PMOD CLINK
LGS-PMOD CLINK-R
CAUSE-/ENABLE-/PREVENT-AMBIGUOUS  (*) OPRD/OPRD-IM/ADV-PMOD CLINK

Table 8: Causal verb rules for E-E pairs based on causal verb (v) category, dependency paths between v
and ej/e9, and causal direction sense (dir). (*) denotes all possible dependency paths listed in Table 9.

Relation Path Example

between v and e; depl

ej is subject of v SBJ The Pope’s [visit] ., persuades ,, Cubans...

v is predicative complement of e; PRD-IM The [roundup] ., was to prevent , them...

v is modifier of e; (nominal) NMOD An [agreement] ., that permits ,, the Russian...
v is apposition of e; APPO ..., with the [crisis] ., triggered ,, by...

v is general adverbial of e; ADV The number [increased] .,, prompting ...

v is adverbial of purpose/reason of e; PRP-IM The major [allocated] ., funds to help ...
between v and e2 dep2

eg is object of v OBJ ...have provoked ,, widespread [violence] ..
es is logical subject of v (passive verb) LGS-PMOD ..triggered ,, by the [end] ., of the...

e is predicative complement of v (raising/control verb) gigg—IM :::ﬁﬁfié;::jpé;gzzsli{)e[zbie’;l:;j:”;zose.

es is general adverbial of v ADV-PMOD ...protect ,, them from unspecified [threats] .,.
e is adverbial of direction of v DIR-PMOD ..dlead to , a [surge] ., of inexpensive imports.
e is modifier of v (adjective or adverbial) AMOD-PMOD ...related to ,, [problems] ., under a contract.

Table 9: Dependency paths considered for setting a causal link between two events e; and es when a

causal verb v is present.
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Abstract

Because of the increasing popularity of social media, much information has been shared on the
internet, enabling social media users to understand various real world events. Particularly, social
media-based infectious disease surveillance has attracted increasing attention. In this work, we
specifically examine influenza: a common topic of communication on social media. The funda-
mental theory of this work is that several words, such as symptom words (fever, headache, etc.),
appear in advance of flu epidemic occurrence. Consequently, past word occurrence can contribute
to estimation of the number of current patients. To employ such forecasting words, one can first
estimate the optimal time lag for each word based on their cross correlation. Then one can build
a linear model consisting of word frequencies at different time points for nowcasting and for
forecasting influenza epidemics. Experimentally obtained results (using 7.7 million tweets of
August 2012 — January 2016), the proposed model achieved the best nowcasting performance to
date (correlation ratio 0.93) and practically sufficient forecasting performance (correlation ratio
0.91 in 1-week future prediction, and correlation ratio 0.77 in 3-weeks future prediction). This
report reveals the effectiveness of the word time shift to predict of future epidemics using Twitter.

1 Introduction

The increased use of social media platforms has led to wide sharing of personal information. Espe-
cially Twitter, a micro-blogging platform that enables users to communicate by updating their status
using 140 or fewer characters, has attracted great attention of researchers and service developers because
Twitter can be a valuable personal information resource. The feasibility of such approaches, known as
social sensors, has been demonstrated in various event detection systems such as earthquakes (Sakaki
et al., 2010), outbreaks of disease (Chew and Eysenbach, 2010), and stock market fluctuations (Bollen
et al., 2011). Among the applications mentioned above, this study particularly examines detection of
seasonal influenza epidemics because the influenza detection is a popular application of Twitter. To date,
more than 30 Twitter-based influenza detection and prediction systems have been developed worldwide
(Charles-Smith et al., 2015).

Although the detailed functions of these systems differ, they share the underlying assumption that the
flu spreading in the real world is immediately reflected to the tweets. Therefore, most systems have
simply aggregated counts of daily flu-related tweets to obtain the current patient status (Aramaki et al.,
2011; Collier et al., 2011; Chew and Eysenbach, 2010; Lampos and Cristianini, 2010; Culotta, 2013;
Paul et al., 2014). Their typical materials are presented as shown below.

o [ gotaflu ¥ [ can not go to school for the rest of the week
o [ was diagnosed with a high fever. Maybe flu :(

Although the former tweet is described by an actual influenza patient, the latter one merely expresses a
suspicion of flu. From a practical (clinical) perspective, these differences have great importance because

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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(a) “Fever.” (b) “Injection.”
Figure 1: Motivating examples: The time lag of the frequency of a word enables one to obtain a good
approximation to the number of patients. The blue line shows the word frequency. The green line shows
the word frequency shifted time lag days. The red line shows the number of patients.

the latter is noise that impedes precise influenza surveillance. Therefore, earlier studies (Aramaki et
al., 2011; Kanouchi et al., 2015; SUN et al., 2014) have devoted great efforts to removal of such noise
(suspicion, negation, news wired, and so on).

This study employs such noisy tweets. We assume that a word, “fever” presents a clue to an up-
coming influenza outbreak. Inferring that people are frequently afflicted by symptoms such as “fever”
and “headache” immediately before the onset and diagnosis of influenza, we designate such words as
forecasting words.

More concrete examples of forecasting words are presented in Figure 1a. The figure reveals that an
approximately 16-day time lag exists between the frequency of “fever” (blue line) and the number of
patients (red line). If this time lag was known in advance, one could obtain a good approximation of
the number of patients (red line) by a 16-day time shift operation (green line). Similarly, flu prevention
words such as “shor” and “injection” have previously been used to describe outbreaks.

e [ took a flu shot today *
o [ don’t wanna get a flu injection cuz it hurts me

In the latter case as shown in Figure 1b, we can find much longer time lag (55 days) between tweets
(frequency of “injection’) and the reality (number of patients).

Presuming that each word has its own time lag, then the problems to be solved are two-fold: (1)
estimating the optimal time lag for each forecasting word and (2) incorporating these time lags into the
model.

For the first problem, the suitable time lag for each word is measured by calculating the cross correla-
tion between the word frequency and the patient number. For the second problem, we construct a word
frequency matrix that consists of a shifted word frequency timeline (Sec. 3). Next, a linear model called
nowcasting model is constructed from the modified word matrix, for which the parameters are estimated
using several regularization models, Lasso and Elastic Net (Sec. 4).

Moreover, the nowcasting model can be extended easily to a predictive model called a forecasting
model. In the forecasting model (A f days future), only forecasting words that have more than n day
time lag are used (Sec. 5).

Nowcasting models can dramatically boost the current patient number estimation capability (correla-
tion ratio 0.93; +0.10 point). Forecasting models have demonstrated successful prediction performance
(the correlation ratio 0.91 in 1-week future prediction, and the correlation ratio 0.77 in 3-weeks future
prediction). This performance goes beyond the practical baseline (over 0.75 correlation).

Our contributions are summarized as presented below.

e We discover that forecasting words have a time lag between the virtual world (number of tweets in
Twitter) and the real world (number of patients).
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e We propose a method to build time-shifted features using cross correlation measures.

e We realize nowcasting model and its extended one, forecasting model, based on the time shift with
parameter estimation. This report is the first of the relevant literature describing a successful model
enabling the prediction of future epidemics over the practical baseline.

We make code and data publicly available. !

2 Dataset

2.1 Influenza Corpus

We collected 7.7 million influenza related tweets, starting from August 2012 to January 2016, via Twitter
API?. Then, we filtered noises (removed retweets including the word, RT, and tweets linked to other web
pages including the word, http from the collected tweet data). In the case of just counting influenza-
related tweets, we should only consider unique users to avoid to count more than ones the tweets of the
same patients. However, we didn’t filter out the users which posted influenza-related tweets multiple
times because we provide the different word for the different role even if these tweets were posted by the
same patients. For example, the word, “fever” for nowcasting, and the word, “injection” for forecasting.
To analyze a word, we applied a Japanese morphological parser JUMAN?) and obtained the stem forms.
As a result, 27,588 words were extracted. Then, we investigated the word frequency per day to build a
word matrix (days X words) as shown in Figure 2a.

2.2 IDSC report

In Japan, the Infectious Disease Surveillance Center (IDSC) announces the number of influenza patients
once a week during an influenza epidemic season (typically during November—May in Japan). In fact,
IDSC reports tend to delay around a week likewise the U.S. Centers for Disease Control and Prevention
(CDC) (Paul et al., 2014), but even if we consider such time delay, twitter stream attains the peak faster
than the real world.

To use the IDSC reports for evaluation, we divided the data into the following three periods:
2012/12/01-2013/05/31 (Season 1), 2013/12/01-2014/05/31 (Season 2), and 2014/12/01-2015/05/24
(Season 3). We prepared a buffer time (60 day maximum time shift) immediately preceding the experi-
mental periods to secure the time shift width.

3 Method

To estimate the current influenza epidemics (nowcast) and forecast the future ones, the number of in-
fluenza patients was derived from the following linear model.

g = mgt_ﬁ)& + azg_ﬁ)ﬁz +-F :E‘(‘t/Tlvl)B\V\

Therein, §*) shows the estimated number of influenza patients at time ¢, :rq(f) stands for the count of

a word v at time ¢, and B represents a weight estimated in the training phase, 7,, denotes a suitable time
shift parameter for word v decided in the training phase, and |V'| denotes the size of vocabulary.

This section first provides methods to explore the most suitable time shift width 7, for each word v
(Sec. 3.1). Then, the parameter estimation method is described (Sec. 3.2). Finally, the model of future
prediction based on the original model is explained (Sec. 3.3).

'http://sociocom. jp/~iso/forecastword

>The tweet data dropout during June—October in 2013 and during June—October in 2014, because the Twitter API specifica-
tions were changed in those periods.

Shttp://nlp.ist.i.kyoto-u.ac. jp/index.php?JUMAN
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Figure 2: Word matrix transformation. The Y -axis shows a timeline. The X-axis shows words with the
IDSC reports (right side).
3.1 Time Shift Estimation
The first problem to be solved is finding the optimal time shift width that achieves the best fit to the

target influenza timeline. Given the IDSC reports and wider range of tweets, Cross Correlation is used
to search for the most suitable time shift width for each word frequency as

(@77 =2 (0 —g)

M=

1

T
(@7 — 22 3 (y — )2
1 t=1

Txv Y (T) =

M=~

t

where 7 is a time shift parameter (time shift width)*. The cross correlation 7, y(7) measures the
similarity between (7 days) time shift variable x,, and objective y. In this study, :L"q(,th) is the count of
word v with time shift width 7 days earlier from ¢ and y = [y(l), cee y(T)]T is the number of patients

from the IDSC reports. It is formulated as 7, = argmax rx, y.

Next, we construct a matrix, X € N7*V_  where T stands for the timeline and V' represents the
vocabulary, according to the Algorithm 1.

Algorithm 1: Time-shifted word matrix for nowcasting.

Set the maximum shift parameter Tmax
forv — 1to|V]|do

for 7 < 0 to Tmax do

| Calculate Cross Correlation 74, 4 (7)
end
Ty = argmax Tz, y(7)
T€{0,..., Tmax }

Shift the word vector to maximize Cross Correlation %, [mg*”), xg,%”), e, :UE,TfT”)}
end
return Shifted Word Matrix X = [X1,...,Xv|]

The algorithm decides the optimal time shift width (7, y) based on the cross correlation for each
word. After time shifts for all words, a shifted word matrix X is constructed.

Figure 2a presents the initial (original) word matrix (7 = 0 for all words) of 50 words (randomly
selected). This matrix includes several low-correlated words, making several vertically irregular lines.
In contrast, the time shift operation arranges the irregular words to match the IDSC reports, producing a
beautiful horizontal line, as shown in Figure 2b.

3.2 Nowecasting

To construct the linear model (called nowcasting model), the parameter 3 is estimated as minimizing
the squared error. For this study, the vocabulary size |V| is of much larger order than sample size 7'

*The cross correlation is exactly the same as the Pearson’s correlation when 7 = 0.
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so that the ordinary least squares estimator is not unique. It heavily overfits the data. According to the
previous study’s manner, parameters with a penalty are estimated as shown below.

B = argma ly — X85 + P(8,))

In that equation, P(3, A) is the penalty term.

In the case of Pjqs50(3, A) = A||B||1, the regularization method called the Least Absolute Shrinkage
and Selection Operator (Lasso) is a well-known method for selecting and estimating the parameters
simultaneously (Tibshirani, 1994). In earlier studies, Lasso was employed to model influenza epidemics
by Lampos and Cristianini (2010). However, in the case of vocabulary size |V'|, which is much larger
order than sample size T, it has been observed empirically that the prediction performance of /1 -penalized
regression, the Lasso is dominated by the [o-penalized one.

Therefore, we employ the Elastic Net (Zou and Hastie, 2005), which combines the /;-penalty and
lo-penalty Pener = AMa||B]]1 + (1 — a)||B]]3), where « is called I; ratio. The Elastic Net was already
employed for nowcasting influenza-like illness rates using search query log, not Twitter (Lampos et
al., 2015). In the case of @ = 1, Elastic Net is exactly the same as Lasso and o« = 0, Ridge (l»
regularization). Similarly to Lasso, the Elastic Net simultaneously does automatic variable selection and
continuous shrinkage. It has a [-2 regularization advantage that selects groups of correlated variables.
Elastic Net, as the generalized method of Lasso and Ridge, estimates with equal or better performance
compared to both.

3.3 Forecasting

Our nowcasting model can be extended naturally to forecasting model. To predict the number of future
patients Af days after, we force to shift the word frequency at least Af days. To do so, a setting
of the nowcasting model in Algorithm 1 is just changed to 7, = Af, as shown in Algorithm 2. It
enables forecasting of future epidemics, demonstrating a widely applicable methodology of the proposed
approach.

Algorithm 2: Time-shifted word matrix for forecasting.

Set the maximum shift parameter Tmin, Tmax
for v — 1to|V|do
for 7 < Tmin t0 Tmax do
| Calculate Cross Correlation 74, (7)
end
Ty = argmax T,y (7)

TE {m ----- Tmax }

xq(}l—%u)?565}2—%,)7 ) mI(JT—%U)}

Shift the word vector to maximize Cross Correlation Xy «— |
end
return Shifted Word Matrix X = [X1,...,Xv|]

L)

4 Experiment 1: Nowcasting

To assess the nowcasting performance, we used the actual influenza reports provided by the Japanese
IDSC.

4.1 Comparable Methods

We compared four linear methods for nowcasting as shown below:
e Lasso: [j-regularization method (Tibshirani, 1994; Lampos and Cristianini, 2010),
e Lasso+: Lasso and time shift combined method,
e ENet: Elastic-Net, which combines /1 -, lo-regularization (Zou and Hastie, 2005),
e ENet+: Elastic-Net and time shift combined method.

All hyperparameters were tuned via five-fold cross validation in the training dataset.
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300000

Train Season 2 | Season3 | Season 1 | Season3 | Season 1 | Season 2 Ave.
Test Season 1 Season 2 Season 3
Lasso 0.854 0.916 0.768 0.894 0.770 0.753 0.826
Enet 0.900 0.927 0.809 0.914 0.792 0.805 0.858
Lasso+ 0.952 0.907 0.951 0.888 0.955 0.963 0.936
Enet+ 0.944 0.898 0.960 0.878 0.967 0.959 0.934

Table 1: Correlation between estimated values and the IDSC reports.
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Figure 3: Timelines of estimated values obtained using the four methods for nowcasting.
4.2 Dataset and Evaluation Metric

The detailed dataset is described in Sec. 2. To construct the time-shifted word matrix, we set Tmax = 60.
Our tweet corpus had a dropout period, so that we did not calculate the cross correlation with more than
a 60-day shift. We employed each season’s data as training data and others as test data.

The evaluation metric is based on correlation (Pearson correlation) between the estimated value and
the value of the IDSC reports.

4.3 Result

Results of modeling accuracy are presented in Table 1. Correlations of our baselines, Lasso and Enet,
were lower than those of previous studies. Results suggest that our dataset is more difficult than those
used in earlier studies.

In contrast, time-shifted models (Lasso+, Enet+)demonstrated about 0.1 point improvement than
their baseline models, indicating the contribution of time shift features.

It is noteworthy that Lasso type model and Enet type one did not differ so much. The whole trained
model chose [; ratio parameter that is nearly equal to 1, so that the Enet type model became almost
identical as Lasso type model.

Overestimation

Results showed that values in Figure 3a were overestimated in mid-May. One reason is that tweets
related to news such as “Scientists create hybrid flu that can go airborne™ were popular in social
media. Although tweets linked to web pages were removed during preprocessing, many tweets without
links to web pages were posted by many people worried about the news. An example of such tweets is
the following:

‘http://go.nature.com/29ATqc9
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e What? In an attempt to make a vaccine for bird flu and swine flu had created a new strain of
influenza virus? @ What are you doing? ® @ @

In addition, the model trained in Season 2 included the word “bird” as one feature. This word’s time
shift was 15 days. Consequently, this peak occurred.

In most cases, these kinds of outlier words are not selected through model selection, but preprocessing
will play an crucial role to prevent these kinds of outlier.

5 Experiment 2: Forecasting

We evaluate the forecasting performance described in Sec 3.3.

5.1 Comparable methods

Lasso and Enet have no features for predicting future values. Therefore, we use Lasso+ and Enet+
~(t) ()

for forecasting. Additionally, we employ the following baseline model of BaseLine: g = Yirain

for comparison with our proposed models.

5.2 Dataset and Evaluation Metric

To evaluate the forecasting performance, we used the same dataset and evaluation metric as Experiment
1, except that we set the minimum time shift 7,5, from 1 day to 30 days.

5.3 Result

Results of forecasting accuracy are presented in Figure 4. In both models, the accuracy was superior
to the baseline until around 3 weeks into the future. In addition, the accuracy for prediction one week
into the future was almost identical to that in the case of 7, = 0. That result might occur because the
accuracy about one week future was nearly the same as that for the current state. In addition, there were
many highly correlated features by shifting around 10 days into the future. Consequently, our model
demonstrated equivalent performance up to 10 days into the future.

Furthermore, the forecasting performance decreased dramatically along with the increase of Ty, as
shown in Figure 4e. We discuss that point further in Sec. 6.

Figure 5 presents timeline plots of examples. From Figure 5a to Figure 5d are shown the values
estimated by the forecasting models trained in Season 2 and tested in Season 1 for 7,i, € {7, 14, 21, 28}.
The estimated values showed a consistently similar shape to that of the IDSC report. In Figure 5c, the
same word, “bird”, occurred as described in Sec. 4.3. In contrast, the weight for “bird” decreased in
Figure 5d for that reason, the forecasting accuracy increased.

Then, from Figure 5e to Figure 5h show the values estimated by the forecasting models trained in
Season 3 and tested in Season 2 for the same 7p,;,. Our models overestimated before outbreaks and
underestimated after the peak of influenza epidemics. For 7, = 28, this phenomenon was widely
evident. We discuss that point further in Sec. 6.

6 Discussion

In general, the proposed approach (time shift operation) fitted the IDSC reports, demonstrating the basic
feasibility. However, exceptions were apparent, as for the model trained in Season 3. One reason is that
a gap exists in the suitable time shift widths between the train (Season 3) and the other (Seasons 1 and
2). Lasso+ model trained in Season 3 selected the words, “fever” with 75, = 16, “vaccination” with
Tvaccination = 99, “absent” with T, = 10, and others as features. These words have high correlations
only in Season 3, with poor correlation in other seasons. The most drastic example is “vaccination” with
Tvaccination> (over 0.849 correlation in Season 3). This word is adversely affected by other seasons (0.313
correlation in Season 1 and 0.04 correlation in Season 2). The reason for the lost correlation was that
Tvaccination 1N Season 3 differed from that of other seasons. This phenomenon suggests that “vaccination”
is just an annually cycling word. Neither the cycle of “vaccination” nor that of influenza is fixed, bringing
us different time lags.
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Figure 5: Timelines of values estimated using the two methods for forecasting and the IDSC reports in
each Typin.

This inconsistency of time shifts also affected the forecasting performance directly. As shown in
Figure 4e, the forecasting performance was decreased dramatically against the increase of 7p,in. In spite
of the word “shot” is the largest weighted feature in the case of Tryin = 21 and Train in Season 3, these
word correlations were 0.310 in Season 1 and 0.03 in Season 2. Consequently, it caused a considerable
decrease of the forecasting accuracy. In contrast, some words, such as “fever” and “symptom”, showed
consistently similar time shifts.

A technique to distinguish actual forecasting words such as “fever”, and noises (simple year cycle
words), “vaccination” is highly anticipated for use in the near future. If multiple-year training sets were
available, one could filter out such noisy words.

Although some room for improvement remains, the basic feasibility of the proposed approach has
been demonstrated. The time shift was effective for social media based surveillance. In addition, the
model enables prediction.

7 Related Work

To date, numerous web based surveillance systems have been proposed, targeting the common cold
(Kitagawa et al., 2015), drug side effects (Bian et al., 2012), cholera (Chunara et al., 2012), E. Coli (Diaz-
Aviles et al., 2012), problem drinking (MA et al., 2012), smoking (Prier et al., 2011), campylobacteriosis
(Chester et al., 2011), dengue fever (Gomide et al., 2011), and HIV/AIDS (Ku et al., 2010). Influenza
has especially drawn much attention from earlier studies (Ginsberg et al., 2009; Polgreen et al., 2009;
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Hulth et al., 2009; Corley et al., 2010) to current Twitter-based studies (Aramaki et al., 2011; Collier et
al., 2011; Chew and Eysenbach, 2010; Lampos and Cristianini, 2010; Culotta, 2013).

Because of great variance in data resources and evaluation manner (region, year, only winter or all
seasons), a precise comparison would be difficult and meaningless, Culotta (Culotta, 2013) and Ginsberg
(Ginsberg et al., 2009) are apparently better than the others in US (correlation ratios = 0.96 and 0.94, re-
spectively). Aramaki et al. (2011) achieved the best score for Japan (correlation ratio = 0.89). This study
also examined Twitter data in Japan, and achieved competitive results for nowcasting. Another aspect of
reviews of related studies is the manner of tweet counting. In earlier studies, a simple word counting, the
direct number of tweets, is considered an index of the degree of disease epidemics. However, such a sim-
ple method is adversely affected by the huge numbers of noisy tweets. Currently, counting approaches
of two types have been developed: (1) a classification approach (Kanouchi et al., 2015; SUN et al., 2014;
Aramaki et al., 2011) aimed at extracting only tweets including patient information, and (2) a regression
approach (Lamb et al., 2013; Culotta, 2010; Lampos and Cristianini, 2010; Paul and Dredze, 2011) that
handles multiple words to build a precise regression model.

The proposed study fundamentally belongs among regression approaches, which explore optimal
weight perimeters for each word. An important difference is that this study handles one more parame-
ter for each word: time shift (days). To handle many parameters, we first ascertain the best time shift
widths. Then we explore weight parameters using L1 or elastic net. It is noteworthy that this study does
not employ any classification method, engaging a room to improve by incorporation with classification
techniques.

8 Conclusions

This study proposed a novel social media based influenza surveillance system using forecasting words
that appear in Twitter usage before main epidemics occur. First, for each word, the optimal time lag
was explored, which maximized the cross correlation to influenza epidemics. Then, we shifted a matrix
consisting of word frequencies at different time points by each optimal time lag. Using the time-shifted
word matrix, this study produced and evaluated a nowcasting model and forecasting model designed to
predict the number of influenza patients. In the experimentally obtained results, the proposed model
achieved the best nowcasting performance to date (correlation ratio 0.93) and practically sufficient fore-
casting performance (correlation ratio 0.91 in the 1-week future prediction, and correlation ratio 0.77
in 3-week future prediction). This report is the first of the relevant literature describing a model that
enables prediction of future epidemics. Furthermore, the model has much room for potential application
to prediction of other events.
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Abstract

Semantic Textual Similarity (STS) is a foundational NLP task and can be used in a wide range
of tasks. To determine the STS of two texts, hundreds of different STS systems exist, however,
for an NLP system designer, it is hard to decide which system is the best one. To answer this
question, an intrinsic evaluation of the STS systems is conducted by comparing the output of
the system to human judgments on semantic similarity. The comparison is usually done using
Pearson correlation. In this work, we show that relying on intrinsic evaluations with Pearson cor-
relation can be misleading. In three common STS based tasks we could observe that the Pearson
correlation was especially ill-suited to detect the best STS system for the task and other evalu-
ation measures were much better suited. In this work we define how the validity of an intrinsic
evaluation can be assessed and compare different intrinsic evaluation methods. Understanding
of the properties of the targeted task is crucial and we propose a framework for conducting the
intrinsic evaluation which takes the properties of the targeted task into account.

1 Introduction

Semantic Textual Similarity (STS) is the foundational NLP task of determining the degree of semantic
similarity between two texts. Most STS systems compute the similarity score between two texts on
a fixed scale, for example a scale between 0 and 5, with O indicating the semantics are completely
independent and 5 indicating semantic equivalence. In recent years, the number and quality of systems
that rate the STS between texts have increased, as has the number of tasks where such systems are used.

Textual similarity is an active research field and was part of several shared tasks. In 2012, the pilot
Semantic Textual Similarity (STS) Task (Agirre et al., 2012) was established at the Semantic Evaluation
(SemEval) workshop. Further shared tasks on text similarity were part of SemEval 2013 (Agirre et al.,
2013), SemEval 2014 (Agirre et al., 2014), SemEval 2015 (Agirre et al., 2015), and SemEval 2016
(Agirre et al., 2016). For the latest shared task on semantic textual similarity at SemEval 2016, 43 teams
were submitting 119 different systems, depicting the large interest in this field.

STS is a foundational NLP technique, however, STS systems are seldom used for the sole purpose of
measuring the similarity of two texts. Often they are used in a larger context. Examples for such tasks
can be found in the field of Automatic Essay Grading (Attali et al., 2006), Plagiarism Detection (Potthast
et al., 2012), Automated Text Summarization (Barzilay and Elhadad, 1997), Question Answering (Lin
and Pantel, 2001), or Link Discovery (He, 2009). In this paper we call a task that heavily depends on the
output of an STS system an STS based task. These tasks are often strongly dependent on the quality of
the STS system they use, but they might apply further steps as well.

Given this large number of different STS systems, it is hard for an NLP system designer to decide
which STS system should be implemented and used for a specific task. As such tasks often strongly
depend on the quality of the STS system, the NLP system designer likes to use the most suitable system.
To support the NLP system designer in this decision, the quality of STS systems is most often compared
in an intrinsic evaluation. In the SemEval shared tasks on STS, the participating systems were asked to

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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return a continuously valued similarity score given two texts. Performance is assessed by computing the
Pearson correlation between machine assigned semantic similarity scores and human judgments (Agirre
et al., 2016). Systems with a high Pearson correlation coefficient are considered as “good” STS systems
and would often be the first choice for the system designer of an STS based task.

Usage of the Pearson correlation is common practice despite the fact that Agirre et al. (2013) state in
the discussion of the results of the SemEval 2013 task about STS: “Evaluation of STS is still an open
issue” and that beside the Pearson correlation ... other alternatives need to be considered, depending on
the requirements of the target application.” Up to our knowledge, no one published so far results whether
Pearson correlation is a good method to evaluate the performance of different STS systems.

There are two factors defining the quality of intrinsic evaluations: The used dataset with the human
judgments on similarity and the used evaluation measure to compare system outputs with the judgments.
In this work, we will concentrate on the used evaluation measure. We studied three STS based tasks with
different properties and evaluated 14 different STS systems. As the first task, we selected a classification
task on text reuse using the Wikipedia Rewrite Corpus (Clough and Stevenson, 2011), as the second task
a binary classification task of news article pairs on their relatedness, and as the third task one on detecting
a related news article in a large corpus.

In our three examined tasks, we noticed that the Pearson correlation was misleading and especially
ill-suited to predict the best STS system for the task. The performance of the STS systems in the intrinsic
evaluation using Pearson correlation had no resemblance to their performance in the three different STS
based tasks, i.e. for an NLP system designer the results of the intrinsic evaluation could be discarded.
Other evaluation measures were much better in predicting which STS systems will perform well. In
our experiments we could not observe that a single evaluation measure consistently produced the best
predictions. The requirements on the STS systems for different tasks are too distinct, that a single
evaluation measure could cope with all those. We thus claim that understanding the properties of the
task and mapping them to the desired properties of the evaluation measure is crucial when selecting a
measure for an intrinsic evaluation. Therefore, we propose in section 4 a new framework on the intrinsic
evaluation of STS systems by taking the requirements of the target task into account.

This publication is based on the thesis of Beyer (2015). Some details in this paper are ommited for
brevity and can be found online.!

2 Limitations of the Pearson Correlation and Alternative Evaluation Measures

Figure 1 depicts the output of four hypothetical STS systems in comparison to the gold standard derived
from human judgment. These four distributions, also known as Anscombe’s quartet, all have the same
Pearson correlation coefficient of 0.816. By comparing only the Pearson correlation, all systems would
be judged as equally good.

Pearson correlation is especially sensitive to non-linear relations, for example as depicted in the upper-
right scatter plot, and to outliers, as depicted in the bottom scatter plots. In the scatter plot in the down-left
corner, a single outlier is sufficient to disturb an otherwise perfect correlation. In the down-right corner
the opposite is the case, a single outlier is sufficient to produce a high correlation of 0.816 even though
there is no relationship between all other outputs and the human judgments. It is obvious that a human
would judge the quality of these four STS systems quite differently, even though all four systems achieve
the same Pearson correlation coefficient of 0.816.

2.1 Different STS Based Tasks Require Different Evaluation Measures

The usage of the Pearson correlation for the evaluation of STS systems has been questioned before.
Zesch (2010) lists the limitations that the Pearson correlation is sensitive to outliers, that it can only
measure a linear relationship, and that the two variables need to be approximately normally distributed.
To overcome these limitations, Zesch recommends to use Spearman’s rank correlation coefficient. The
Spearman’s rank correlation does not use the actual values to compute a correlation, but the ranking of

1https ://www.ukp.tu-darmstadt.de/publications/details/?no_cache=1l&tx_bibtex_
pil [pub_id]=TUD-CS-2015-12076
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Figure 1: Anscombe’s quartet with four different distributions. All distributions have a Pearson correla-
tion coefficient of 0.816. All four STS systems would therefore be considered equally good.

the values. It is therefore not sensitive to outliers, non-linear relationships, or non-normally distributed
data. However, most intrinsic evaluations of STS systems only report the Pearson correlation.

Depending on the STS based task, only some characteristics of the STS systems are important. For
plagiarism detection, documents are often pre-filtered using an STS system and only documents with a
score larger a certain threshold are passed for further inspection. For this task, only the decision whether
the score is above the threshold is of importance, less the precise value. For the task of finding the top
10 most similar documents in a corpus for a search query, it is important that the STS system works
well in distinguishing similar from dissimilar documents and is able to spot the most similar documents.
Working perfectly on dissimilar documents and achieving the gold standard ranking for those is far less
important than being able to find the few documents with high similarity. On the other hand, selecting
semantically different sentences is important in automatic text summarization, therefore the STS system
should work well to detect dissimilar text pairs.

It is unlikely that one evaluation measure can cope well with these different requirements. For Pearson
and Spearman’s rank correlation for example, all system outputs contribute equally, even though that for
several tasks only some scores are relevant, often pairs that are especially similar or especially dissimilar.
Using Pearson or Spearman’s rank correlation therefore bears the risk that systems working especially
well for the desired properties are missed. Hence, we study the following alternative evaluation measures
for the intrinsic evaluation:

e The normalized Cumulative Gain (nCG) can be used to evaluate the ranking quality of STS scores
(Jarvelin and Kekaildinen, 2000). Let m be the vector with the gold STS values ranked by the STS
system highest to lowest, i.e. at position 1 is the most similar pair according to the STS system and
m; is the human judgment of this pair. The Cumulative Gain at % is defined as CGy, = Z;“:l m;.
To normalize this value, it is divided by the so called ideal Cumulative Gain i{C'G, which is the
maximal value of C'G, for a perfect system. The normalized Cumulative Gain (nCG) is then defined

as nCGy = lCCGG’Z . Note that nC'G is always equal 1 when k is equal to the number of text pairs.

e The normalized Discounted Cumulative Gain (nDCG) applies a discount factor to the normalized
Cumulative Gain (Kekildinen, 2005). It makes the assumption that similar text pairs are more
important than less similar text pairs. An STS system which would score well with respect to the
nDCG measure is well suited to find the most similar pairs in a corpus while it would be less suited
to find the less similar, most distinct pairs. It is defined as nDCGy, = z%%%i with DCGy, =

&9



mi + Zf:g m;/logs(i) and i DC'GY, the ideal Discounted Cumulative Gain. We can compute the
nDCG either for all text pairs or up to some position making an especially strong emphasis on the
most similar pairs. Note: In case dissimilar pairs are more important for the targeted task, nC'G and
nDCG can simply be modified by reversing the order of vector 7.

e Accuracy is a common evaluation measure for many tasks. However, as the STS scores are con-
tinuously valued, it is unclear how to compute it. One option is to define arbitrary bins and check
whether the human judgments and the computed STS scores fall in the same bin. This requires that
the minimal and maximal value of the STS systems is known and that there is a linear relationship
between the STS scores and the human judgments. For the SemEval shared tasks, the systems were
supposed to produce an output between 0 and 5 identical to the scale for the human judgments.
In this work we set arbitrary borders at 1.5 and 3.5 with the intention to detect pairs with high
similarity, e.g. for plagiarism detection, or pairs with low similarity, e.g. for detecting distinct sen-
tences to be used in summarization. Accuracy!®” describes the accuracy for scores below 1.5, and
Accuracy™9" describes the accuracy for scores higher than 3.5.

e Besides accuracy, the Fj-score is a commonly used measure in several NLP tasks. Similar to
accuracy, we have the challenge to define meaningful bins. As before, we set arbitrary borders at
1.5 and 3.5. F{°* describes the Fy-score for low similarity pairs with a score below 1.5, and Fi”gh

describes the F-score for high similarity pairs with a score higher than 3.5.

Besides these evaluation measures, we define further measures by combining those using the harmonic
mean hmean(a,b) = 2ab/(a + b) and the unweighted macro average macro_avg(a,b) = (a + b)/2.
We also define the measure nDCG 4y Rank Which is the average of nDCG3, nDCGs, and nDCGq and
nCG 4ygRank Which is the average of nCGgs, nCGs, and nCG1g. These two measures only evaluate the
top 3, 5, and 10 most similar text pairs according to the STS systems.

2.2 Impact of the Evaluation Measure on the Ranking

The evaluation measure of the intrinsic evaluation of STS systems can have a huge impact on the ranking
of different STS systems. For the SemEval 2012 shared task on Semantic Textual Similarity (Agirre et
al., 2012), 88 different STS systems were submitted by the participants. The official evaluation measure
of this shared task used the Pearson correlation. We took the predicted STS scores and ranked the
systems according to the alternative evaluation measures described in section 2. The results are depicted
in Table 1. Using Spearman’s rank correlation instead of Pearson correlation changed the positions of
the STS systems on average by 6.6. The largest observed difference was 21 positions, i.e. a system
that performed quite well according to the Pearson correlation coefficient achieved a mediocre result
when the Spearman rank correlation coefficient is used. An even larger difference was observed when
comparing Pearson correlation to the other presented evaluation measure like nDCG. The ranking of
the STS systems according to the Pearson correlation was on average 19.0 positions different than the
ranking according to nDCG.

The results show that the used evaluation measure plays an important role in defining the ranking of
different STS systems in the intrinsic evaluation. A system which is assessed to be good using one eval-
uation measure, for example Pearson correlation, might perform badly according to another evaluation
measure, for example Spearman’s rank correlation.

3 Evaluation of the Predictiveness of Different Evaluation Measures

When the STS system is a crucial component of an STS based task, we expect that STS systems achieving
good results in an intrinsic evaluation should in general lead to better results in the task and STS systems
with weak results should in general lead to worse results for the STS based task. This allows us to define
how predictive an intrinsic evaluation is:

Given the ranking of STS systems in an intrinsic evaluation as well as the ranking of the systems
in an extrinsic evaluation, we say the intrinsic evaluation has high predictiveness when the
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Pearson 6.6 | 19.0 | 294 | 125 | 12.5
Spearman - 119.629.1|12.0| 152
nDCG,; - 20.6 | 21.1 | 20.8
nDCG gy Rank - 31.8 | 26.3
Accuracy - 14.3

Table 1: Mean Absolut Difference between ranks of submissions for the shared task on Semantic Textual
Similarity at SemEval 2012 using different evaluation measures.

ranking in the intrinsic evaluation is similar to the ranking in the extrinsic evaluation. We say
the predictiveness is low, when the ranking in the intrinsic evaluation is disconnected from the
ranking of the systems in the extrinsic evaluation.

In an ideal situation, the ranking of the STS systems in the intrinsic evaluation would be identical to
the ranking in the extrinsic evaluation. As we cannot expect this, we need to define an objective measure
on how similar these two rankings are. We can measure the resemblance of two rankings using the Mean
Absolute Difference (MAD), the Mean Squared Difference (MSD), or the Spearman’s rank correlation
coefficient p. Given the rankings IR of the n STS systems in the intrinsic evaluation and the rankings
FE'R in the extrinsic evaluation with I R; corresponding to the rank of the i-th STS system in the intrinsic
evaluation and E R; corresponding to the rank in the extrinsic evaluation, the values are defined as:

cov(/R,ER)

p(IR,ER) =
OIROER

1n
MSD(IR, ER) = ~ IR, — ER;)?
(IR,ER) n;m R;)
171
MAD(IR,ER) = = IR, — ER;
(IR,ER) n;l |

where cov(I R, E'R) is the covariance of the rankings and o, o g are the standard deviations of the
rank variables. An intrinsic evaluation with high predictiveness would have MAD and MSD values close
to 0 and a Spearman’s correlation p close to 1. We would consider an intrinsic evaluation of STS system
useful, when it scores well on MAD, MSD, and p values for a large range of STS based tasks.

3.1 Experiments

To assess the predictiveness of different evaluation measures presented in section 2, we chose three STS
based tasks and evaluated 14 different STS systems. We used the implementation for these systems from
the publically available framework DKPro Similarity?. For each STS system, we computed the score in
an intrinsic evaluation. For the intrinsic evaluation, we used the datasets provided for the SemEval 2012
task on Semantic Textual Similarity (Agirre et al., 2012). The intrinsic evaluation was performed for
16 different evaluation measures described in section 2. We then compared the ranking of the different
STS systems in the intrinsic evaluation with the ranking of those in the STS based task, which allows to
compute the predictiveness of the (intrinsic) evaluation measure.

As our first STS based task, we chose the task of text reuse detection. Clough and Stevenson (2011)
presented the Wikipedia Rewrite Corpus, a dataset with 95 documents, each containing an answer to one

https://dkpro.github.io/dkpro-similarity/
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of five questions about computer science. The answers employ different levels of reuse of a Wikipedia
article. The degree of reuse was split in one of four categories: near copy, light revision,
heavy revision, and non plagiarized. The performance for this task is evaluated by calcu-
lating the accuracy. To map the continuous output of the STS systems to the four categories, we used
the One Rule (OneR) classifier (Holte, 1993) with optimized bucket sizes as well as a logistic regression
classifier. The OneR classifier chooses a simple decision boundary for the different classes. Both have
been evaluated using 10-fold cross-validation and the classifier with the better result was chosen.

The second and third STS based task uses a newly created corpus compiled from the German newspa-
per DIE ZEIT and ZEIT Online’. For most of the articles, the authors added two links to related articles
that provide further information on the same news topic. The second task is a binary classification task
with the goal to identify whether two articles are related or not. The ground truth is the original choice
from the journalist. The OneR classifier was used to map the continuous STS score to the binary decision.
Results were evaluated using 10-fold cross-validation.

The third STS based task tries to detect the two articles that are related to the target article in a set of
articles from ZEIT Online. For the target article and each article in the set, we compute the STS score.
The article in the set with the highest STS score was selected. We compared if this article is one of the
related articles chosen by the author. Accuracy was computed for 100 randomly selected documents.

3.2 Results

We evaluated 14 different STS systems for the three presented tasks. For the first STS based task on text
reuse detection, the best STS system achieved an accuracy of 70%, while the worst achieved an accuracy
of 43%. For the second STS based task on deciding whether two news articles are related, the best STS
system achieved an accuracy of 77%, while the worst achieved an accuracy of 48%. And for the third
STS based task on finding the related article out of a set of articles, the best STS system achieved an
accuracy of 67%, while the worst achieved an accuracy of 6%.

We compared the performance of the different STS systems in the three tasks with their performance
in the intrinsic evaluation. We expect that the intrinsic evaluation allows us to distinguish between
well performing STS systems and bad performing STS systems. Table 2 shows the Spearman ranking
coefficient p(I R, ER) between the performance of the STS measures in the intrinsic evaluation versus
their performance on the STS based tasks. A coefficient close to 1 indicates that the ranking of the system
in the intrinsic evaluation was similar to its performance in the STS based task. The values for the two
other predictiveness indicators, Mean Absolute Difference and Mean Squared Difference can be found
are nearly identical to the Spearman rank coefficient. Thus, we omit them for brevity.

3.3 Discussion

In the three studied STS based tasks, there was no correlation between the performance of STS systems
on the intrinsic evaluation using Pearson or Spearman rank correlation and their performance in the STS
based tasks. In two cases, the correlation p(/ R, ER) between the intrinsic ranking /R and extrinsic
ranking 'R was even negative, indicating that STS systems that performed well in the intrinsic evalua-
tion performed especially poorly in STS based tasks. From an engineering perspective this raises serious
doubts about the value of an intrinsic evaluation that uses Pearson correlation.

Using other measures than Pearson correlation for the intrinsic evaluation however enabled a much
better prediction of the performance of the STS systems for the STS based task. A strong STS system
in such an intrinsic evaluation was also able to perform well in the STS based task. It is interesting to
note that other STS based tasks were especially good predictors, i.e. an STS system performing well in
task 1 was also performing well in task 2 and task 3, even though the characteristics of these tasks were
very distinct. In all three tasks, the same STS system achieved the best result. However, in none of the
performed intrinsic evaluations achieved this system the best place and was placed on 2nd to 6th place
depending on the used evaluation measure. The system that achieved the best place in various intrinsic

http://www.zeit.de
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Intrinsic Evaluation Measure pTask liank pTask Izlank pTask 132ank
nDCG 44 Rank 0.504 1 0.380 6 0.338 5
nCG AvgRank 0.504 1 0.380 6 0.338 5
Flow 0.497 3 0.717 2 0.611 2
nDCG 0.431 4 0.238 10 0.238 8
hmean(F{™, F1*9") 0427 | 5 0722 1 [o614 | 1
hmean(Pearson,F) 0.264 6 0.686 3 0.536 3
hmean(Spearman,F;) 0.163 7 0.594 4 0.439 4
macro_avg(Flow, Fl*m) 0053 8 [0422] 5 [0289 | 7
hmean(Pearson, nCG 4,4 Rank) -0.136 9 0.339 8 0.130 9
hmean(Spearman, nCG 44, Rank) -0.216 10 0.277 9 0.089 10
Accuracy®? -0.277 | 11 0.057 14 | -0.062 | 13
Pearson correlation -0.326 12 0.198 11 -0.031 11
Spearman’s rank correlation -0.343 13 0.172 12 | -0.040 12
hmean(Accuracy'”, Accuracy”9") 0370 | 14 [ 0031 | 15 |-0.113] 15
Accuracy”9" 0378 | 15 [ 0062 | 13 |-0.102 | 14
Flion 0524 | 16 |-0.123| 16 |-0283| 16
Task 1: Text reuse classification 0.70 0.82

Task 2: Binary classification of article pairs | 0.70 0.91

Task 3: Related article detection 0.82 0.91

Table 2: The Spearman rank correlation p(I R, FR) between the intrinsic ranking I R and the extrinsic
ranking 'R for the three evaluated STS based tasks: (1) Text reuse classification, (2) binary classification
of article pairs, and (3) related article detection. A p-coefficient close to 1 means a large correlation
between the performance in the intrinsic evaluation and the performance in the STS based task. The
Rank depicts the ranking, highest to lowest, of the p-coefficients for each task.

evaluations performed quite poorly for the STS based tasks only achieving the 6th, 9th, and 12th place,
respectively, out of 14 tested systems.

4 Proposal of an Evaluation Framework for Semantic Textual Similarity

On a well-designed and representative dataset, an STS system should show similar behavior in the in-
trinsic evaluation as it will show for real world data of STS based tasks. For example, in case the STS
system is well suited to find the most similar text pairs in the intrinsic evaluation set, then it will likely
also be suitable to find the most similar text pairs for other datasets. This STS system would then be
useful for tasks where finding the most similar text pairs is essential.

However, different STS based tasks have different requirements on STS systems and, therefore, dif-
ferent properties of STS systems are important. After studying the most common STS based tasks, we
propose the following three dimensions to classify the requirements of an STS based task:

e Cardinality describes how many texts are compared to how many others. It consists of two sub
categories /-7 and /:n. 1:1 in this context means that exactly one text is compared with exactly one
other text and only the result of this single comparison is of interest. /:n means that one text will be
compared with a whole set of other texts and the results of these comparisons will be used in some
way. The third option, m.n, would theoretically be possible, but no example of this was found.

o Set of Interest describes which of the elements of the result set will be used. It has three sub
categories: All, k-best, and Threshold. All in this context means that all results of all comparisons
will be used in some form. k-best describes the case where only the ”k* best results will be used in
some way. And Threshold is used when only results over a certain threshold will be used.
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e Information describes the type of information from the result set that is of interest. It has three
sub categories: Value, Rank, and Classification. The case where the actual value of the result of
a comparison is of interest falls in the category Value. Rank on the other hand is used if only the
rank of each comparison is used in some way. Classification means that a simple classification, for
example texts are similar or not, is used.

The first STS based task in section 3.1 on text reuse is an example for a task with cardinality /.1,
as one text, the answer, is compared to only one other text, the Wikipedia article. The STS score is
classified into one of four categories, hence, the Information of interest is Classification. Tasks of such
type can only tolerate minimal variety in the STS scores, i.e. texts of similar similarity should be mapped
to similar scores independent of other factors like text length etc. Otherwise, the classification into
categories doesn’t work well.

The third STS based task in section 3.1 on detecting the related articles in a set of articles is an example
for a task with cardinality /:n, set of interest k-best and information Rank. For this task, one document
is compared to a set of other documents and the user is interested in the most similar pair. STS systems
for this task should be good at ranking text pairs according to their similarity.

With the three dimensions 18 different combinations are possible. However, some of these combina-
tions can be disregarded because they are not plausible. For any combination that involves a Cardinality
of 1:1 only a Set of Interest of All is useful, because the result set contains only one result. In addi-
tion, the Information can’t be Rank. Overall, only nine combinations are plausible. All nine possible
combinations with examples of STS based tasks are described in detail in (Beyer, 2015).

For these nine plausible combinations, we propose in Table 3 an evaluation measure for the intrinsic
evaluation that should capture the requirements of the target task. The proposed evaluation measures
take similar characteristics into account that are required for the task. An NLP system designer could
use this framework to determine the requirements of his task. Instead of selecting the STS system with
the best Pearson correlation, the system designer would use the selected evaluation measure to run his
own ranking of the STS systems to spot potentially strong STS systems for his task. The reasoning for
the individual choices is given in (Beyer, 2015).

Requirements Proposed Evaluation Measure for Intrinsic Evaluation

(1:1, All, Classification) | harmonic mean of F-score for low and high similarity pairs

(1:1, All, Value) Pearson correlation

(1:n, All, Rank) nDCG or Spearman rank correlation

(1:n, All, Classification) | harmonic mean of F}-score for low and high similarity pairs

(1:n, All, Value) Pearson correlation

(1:n, k-best, Value) harmonic mean of nCGy, and Pearson correlation

(1:n, k-best, Rank) nDCGy,

(1:n, Threshold, Value) | harmonic mean of F}-score for low and high similarity pairs and Pear-
son correlation

(1:n, Threshold, Rank) | harmonic mean of Fj-score for low and high similarity pairs and Spear-
man rank correlation

Table 3: This Semantic Textual Similarity Framework proposes an evaluation measure for intrinsic eval-
uation based on the requirements of the target task.

An extensive evaluation of this framework is topic of our future research. The focus of this paper was
establishing the need of alternative evaluation measures besides Pearson correlation and how to assess
the quality of intrinsic evaluations. We encourage future work by others on this topic to find an intrinsic
evaluation that meets the diverse needs of STS based tasks.
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5 Conclusion and Future Work

In this paper we demonstrated the challenges of the intrinsic evaluation of STS systems. We introduced
the concept of predictiveness: An STS system performing well in an intrinsic evaluation should also
perform well for STS based tasks. This notion of predictiveness allows us to compare different evaluation
measures besides the commonly used Pearson correlation. For three studied tasks we could observe that
the predictiveness of an intrinsic evaluation with Pearson correlation is fairly low or even negative. We
presented other evaluation measures which had a much higher predictiveness, i.e. those methods could
predict much better which STS systems perform well in the STS based tasks. Based on this, we proposed
a framework how to evaluate STS scores that take the requirements of the target task into account.

For future intrinsic evaluations of STS systems we find it crucial that not only the Pearson correlation
is published, but additionally the STS scores generated by the systems can be downloaded. This allows
to compute other evaluation measures, for example Spearman’s ranking correlation, nDCG, or F-score.
It also allows NLP system designers to select an evaluation measure for the intrinsic evaluation that
captures the important characteristics needed by their target task.

In our experiments we could observe that the predictiveness of other extrinsic evaluations is high.
Systems performing well on the task of text reuse of English Wikipedia articles also did well for detecting
related articles on German news articles despite the fact of a different language, a different text genre
and a completely different task. An alternative evaluation method of STS systems could be to test those
on a broad range of different STS based tasks. The design of these STS based tasks must be standardized
and the impact of components or features besides the STS system should be reduced to a minimum.
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Abstract

Princeton WordNet is one of the most important resources for natural language processing, but
is only available for English. While it has been translated using the expand approach to many
other languages, this is an expensive manual process. Therefore it would be beneficial to have a
high-quality automatic translation approach that would support NLP techniques, which rely on
WordNet in new languages. The translation of wordnets is fundamentally complex because of the
need to translate all senses of a word including low frequency senses, which is very challenging
for current machine translation approaches. For this reason we leverage existing translations
of WordNet in other languages to identify contextual information for wordnet senses from a
large set of generic parallel corpora. We evaluate our approach using 10 translated wordnets for
European languages. Our experiment shows a significant improvement over translation without
any contextual information. Furthermore, we evaluate how the choice of pivot languages affects
performance of multilingual word sense disambiguation.

1 Introduction

Princeton WordNet (Fellbaum, 1998) is a manually created resource that has been used in many differ-
ent tasks and applications across linguistics and natural language processing. WordNet’s hierarchical
structure makes it a useful tool for many semantic applications and it also plays a vital role in modern
deep learning based NLP systems (Rychalska et al., 2016). However, Princeton WordNet is only avail-
able for English and huge efforts have been made to extend WordNet with multilingual information in
projects, such as EuroWordNet (Vossen, 1998), BalkaNet (Tufig et al., 2004) and MultiWordNet (Pianta
et al., 2002). However, most of the wordnet resources resulting from these efforts have fewer synsets
than the Princeton WordNet and there are still many languages for which a wordnet does not exist or is
not available to all potential users due to licensing restrictions, impacting applications in information re-
trieval, word sense disambiguation, sentiment analysis or knowledge management that rely on Princeton
WordNet.

Most wordnets in languages other than English have followed an extend approach (Vossen, 2005),
where the structure of Princeton WordNet is preserved and only the words in each synset are translated
and new synsets are added for concepts, which are not lexicalized in English. Since manual multilingual
translation and evaluation of wordnets using this approach is a very time consuming and expensive pro-
cess, we apply statistical machine translation (SMT) to automatically translate WordNet entries. While
an SMT system can only return the most frequent translation when given a term by itself, it has been
observed that SMT provides strong word sense disambiguation when the word is given in the context of
a sentence. As a motivating example, we consider the word vessel, which is a member of three synsets in
Princeton WordNet, whereby the most frequent translation, e.g., as given by Google Translate, is Schiff
in German and nave in Italian, corresponding to 160833! ‘a craft designed for water transportation’.
For the second sense, 165336 ‘a tube in which a body fluid circulates’, we assume that we know the

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
"We use the CILI identifiers for synsets (Bond et al., 2016)

97

Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 97-108, Osaka, Japan, December 11-17 2016.



German translation for this sense is Gefdf3. In our approach we look for sentences in a parallel corpus,
where the words vessel and Gefdf3 both occur and obtain a context such as ‘blood vessel’ that allows the
SMT system to translate this sense correctly. This alone is not sufficient as Geféf is also a translation of
160834 ‘an object used as a container’, however in Italian these two senses are distinct (vaso and re-
cipiente respectively), thus by using as many languages as possible we maximize our chances of finding
a well disambiguated context.

In this work, we propose an approach to select the most relevant sentences from a parallel corpus based
on the overlap with existing translations of WordNet in as many pivot languages as possible. The goal
is to identify sentences that share the same semantic information in respect to the synset of the WordNet
entry that we want to translate. This approach will allow us to provide a large multilingual WordNet in
more than 20 different European languages, which we call Polylingual WordNet.> We present multiple
evaluations of our approach and show that in general at least 4 languages should be used to assist in
the selection of contexts and that languages closely related to the target language should be used in
preference to more distant languages. We evaluated our approach on translating WordNet entries into
Italian, Slovene, Spanish and Italian, showing improvements between 5 and more than 10 BLEU points
compared to a generic translation approach. This approach has been used to expand wordnets for many
European languages as well as generate the first wordnet for Maltese.

2 Related Work

Princeton WordNet inspired many researchers to create similarly structured wordnets for other languages.
The EuroWordNet project (Vossen, 1998) linked wordnets in different languages through a socalled Inter-
Lingual-Index (ILI) into a single multilingual lexical resource. Via this index, the languages are aligned
between each other, which allows to go from a concept in one language to a concept with a similar
meaning in any of the other languages. Further multilingual extensions were generated by the BalkaNet
project (Tufis et al., 2004), focusing on the Balkan languages and MultiWordNet (Pianta et al., 2002),
aligning Italian concepts to English equivalents.

Due to the large interest in the multilingual extensions of the Princeton WordNet, several initiatives
started with the aim to unifying and making these wordnets easily accessible. The KYOTO project
(Fellbaum and Vossen, 2012) focused on the development of a language-independent module to which
all existing wordnets can be connected, which would allow a better cross-lingual machine processing of
lexical information. Recently this has been realized by a new Global WordNet Grid (Vossen et al., 2016)
that takes advantage of the Collaborative Inter-Lingual Index (CILI) (Bond et al., 2016). Since most
of the current non-English wordnets use the Princeton WordNet as a pivot resource, concepts, which
are not in this English lexical resource cannot not be realized or aligned to it. Therefore the authors
support the idea of a central platform of concepts, where new concepts may be added even if they are
not represented (yet) in the Princeton WordNet or even lexicalized in English (e.g., many languages have
distinct gendered role words, such as ‘male teacher’ and ‘female teacher’, but these meanings are not
distinguished in English).

Previous studies of generating non-English wordnets combined Wiktionary knowledge with existing
wordnets to extend them or to create new ones (de Melo and Weikum, 2009). Bond and Paik (2012) de-
scribe in their work the creation of the Open Multilingual Wordnet and its extension with other resources
(Bond and Foster, 2013). A different approach to expand English WordNet synsets with lexicalizations
in other languages was proposed in de Melo and Weikum (2012). The authors do not directly match
concepts in the two different language resources, but demonstrate an approach that learns how to deter-
mine the best translation for English synsets by taking bilingual dictionaries, structural information of the
English WordNet and corpus frequency information into account. With the growing amount of parallel
data, Kazakov and Shahid (2009) show an approach to acquire a set of synsets from parallel corpora. The
synsets are obtained by comparing aligned words in parallel corpora in several languages. Similarly, the
sloWNet for Slovene (FiSer, 2007) and Wolf for French (Sagot and Fiser, 2008) are constructed using a
multilingual corpus and word alignment techniques in combination with other existing lexical resources.

’The Polylingual WordNet is available at http://polylingwn.linguistic-lod.org/
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Since all these approaches use word alignment information, they are not able to generate any translation
equivalents for multi-word expressions (MWE). In contrast, our approach use an SMT system trained on
a large amount of parallel sentences, which allows us to align possible MWES, such as commercial loan
or take a breath, between source and target language. Furthermore, we engage the idea of identifying
relevant contextual information to support an SMT system translating short expressions, which showed
better performance compared to approaches without a context. Arcan et al. (2015) built small domain-
specific translation models for ontology translation from relevant sentence pairs that were identified in
a parallel corpus based on the ontology labels to be translated. With this approach they improve the
translation quality over the usage of large generic translation models. Since the generation of transla-
tion models can be computational expensive, Arcan et al. (2016) use large generic translation models to
translate ontology labels, which were placed into a disambiguated context. With this approach the au-
thors demonstrate translation quality improvement over commercial systems, like Microsoft Translator.
Different from this approach, which uses the hierarchical structure of the ontology for disambiguation,
we engage a large number of different languages to identify the relevant context.

Oliver and Climent (2012) present a method for WordNet construction and enlargement with the help
of sense tagged parallel corpora. Since parallel sense tagged data are not always available, they use
Google Translate to translate a manually sense tagged corpus. In addition they apply automatic sense
tagging of a manually translated parallel corpus, whereby they report worse performance compared to
the previous approach. We try to overcome this issue by engaging up to ten languages to improve the
performance of the automatic sense tagging. Similarly, BabelNet (Navigli and Ponzetto, 2012) aligns
the lexicographic knowledge from WordNet to the encyclopaedic knowledge of Wikipedia. This is done
by assigning WordNet synsets to Wikipedia entries, and making these relations multilingual through the
interlingual links. For languages, which do not have the corresponding Wikipedia entry, the authors
use Google Translate to translate English sentences containing the synset in the sense annotated corpus.
After that, the most frequent translation is included as a variant for the synset for the given language.

The use of parallel corpora has been previously exploited for word sense disambiguation, for example
to construct sense-tagged corpora in another language (Ng et al., 2003) or by using translations as a
method to discriminate senses (Ide et al., 2002). It has been shown that the combination of these tech-
niques can improve supervised word sense disambiguation (Chan et al., 2007). A similar approach to
the one proposed in this paper is that of Tufis et al. (2004), where they show that using the interlingual
index of WordNet with the help of parallel text can improve word sense disambiguation of a monolingual
approach and we generalize this result to generate wordnets for new languages.

3 Methodology

Our approach takes the advantage of the increasing amount of parallel corpora in combination with
wordnets in languages other than English for sense disambiguation, which will help us to improve au-
tomatic translations of English WordNet entries. We assume that we have a multilingual parallel corpus
consisting of sentences, z} in a language I, grouped into parallel translations:

i

X ={(zb,.. . 2"}

)

l

We also assume that we have a collection of wordnets consisting of a set of senses, w;;,

synsets, for each language:

grouped into

S={({wl},.... Wi}

We say that a context 2, in language [y (in our case this is always English), is disambiguated in n

1 b
languages for a word wé‘}C if:

Iy

ll l'n, . ll ln ln
Elw-kl,...,wjkn fWwi, €T AL AW € @

J

That is, a context is disambiguated in n languages for a word, if for each of its translations we have a
context in the parallel corpus that contains one of the known synset translations. Furthermore, we assume
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we have an SMT system that can translate any context in [y into our target language, I7, and produces a
phrase alignment such that we know which word in the output corresponds to the input word. We used
the following methods to choose contexts for the SMT system:

None The SMT system is given only the word wé(}C as a single sentence as input, thus the most frequent
translation is returned.

Random context A random x; € X, such that wéok € a:io, is chosen.

Disambiguated context The contexts are ordered by the number of languages that they are disam-
biguated in, and the context that is disambiguated in the maximal number of languages is chosen. If
there are multiple such languages, one context is chosen at random.

m Disambiguated contexts The contexts are ordered, as above, and the m top scoring contexts are
used, with ties broken at random. Each of these contexts is given to the SMT system and the most
frequent translation across these m contexts is used. The previous mode is the same as this when
m = 1.

t-best Translations The SMT system is configured to return the ¢ highest scoring translations, according
to its model, and we select the translation as the most frequent translation of the context among this
t-best list. In our experiments, we combined this with m disambiguations to give tm candidate
translations from which the candidate is chosen.

Target Side Lookup (TSL) We can also utilize the translation of our context into the target language xi-T
from the parallel corpus, however this cannot be applied directly as we do not know which word(s)
in azéT correspond to the input and previous work (Arcan et al., 2014) has shown that automatic
inference of this alignment (e.g., with GIZA++) can seriously affect performance. Instead we filter
contexts to those that generate a translation candidate, wff, such that wLT S a:iT, i.e., the machine
translation agrees with the gold-standard translation for this context.

4 Experimental Setting

This section gives an overview on the multilingual resources and the translation toolkit used in our
experiment. Furthermore, we give insights into SMT evaluation techniques, considering the translation
direction of the English WordNet entries into Italian, Slovene, Spanish and Croatian.

4.1 Wordnets for Sense Disambiguation in Parallel Corpora

Princeton WordNet is a large, publicly available lexical semantic database of English nouns, verbs, ad-
jectives and adverbs, grouped into synsets (= 117,000). We engage further wordnets in a variety of
languages, provided by the Open Multilingual Wordnet web page.> The individual wordnets have been
made by many projects and we use ten wordnets in different languages for our experiments, i.e, Croat-
ian (Oliver et al., 2015), Dutch (Postma et al., 2016), Finnish (Lindén and Carlson., 2010), French (Sagot
and Fiser, 2008), Italian (Toral et al., 2010), Polish (Maziarz et al., 2012), Portuguese (de Paiva and
Rademaker, 2012), Romanian (Tufis et al., 2008), Slovene (FiSer et al., 2012) and Spanish (Gonzalez-
Agirre et al., 2012) WordNet. Table 1 illustrates the size of the wordnets and their coverage compared to
the Princeton WordNet (last row).*

4.2 Statistical Machine Translation

Our approach is based on phrase-based SMT (Koehn et al., 2003), where we wish to find the best trans-
lation of a string, given by a log-linear model combining a set of features. The translation that max-
imizes the score of the log-linear model is obtained by searching all possible translations candidates.

*http://compling.hss.ntu.edu.sg/omw/

4Core refers to the percentage of synsets covered from the semi-automatically compiled list of 5000 "core" word senses in
Princeton WordNet.
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Language Synsets Words  Senses Core H Language Synsets Words Senses Core

Croatian 23,120 29,008 47,900 100% || Polish 33,826 45,387 52,378 54%
Dutch 30,177 43,077 60,259 67% || Portuguese 43,895 54,071 74,012 84%
Finnish 116,763 129,839 189,227 100% || Romanian 56,026 49,987 84,638 94%
French 59,091 55,373 102,671 92% || Slovene 42,583 40,233 70,947 86%
Italian 35,001 41,855 63,133 83% || Spanish 38,512 36,681 57,764 7T76%

Table 1: Statistics on used wordnets for sense disambiguation on parallel corpora.

Parallel Corpus Source Target Parallel || Parallel Corpus Source Target Parallel
(language pair) Words Words Sentences || (language pair) Words Words Sentences
English-Croatian’*> 165M 133M  16M || English-Polish? 36IM  296M  34M

English—Dutch? 426M 372M 37TM English—Portuguese? 391M 377M 33M
English—Finnish? 248M 165M  25M || English-Slovene!'?  166M 130M  13M
English—French? 730M 784M  52M || English-Spanish’?  391M 378M  37M
English-Italian!'2 ~ 273M 270M  22M || English-Romanian? 317M 302M  43M

Table 2: Statistics on parallel data for translation model training and word-sense disambiguation. (paral-
lel resources used for training the translation models' and/or word-sense disambiguation?)

The decoder, which is a search procedure, provides the most probable translation based on a statistical
translation model learned from the training data.

For our translation task, we use the statistical translation toolkit Moses (Koehn et al., 2007), where
word alignments, necessary for generating translation models, were built with the GIZA++ toolkit (Och
and Ney, 2003). The Kenlm toolkit (Heafield, 2011) was used to build a 5-gram language model.

4.3 Parallel Resources for SMT training and Word-Sense-Disambiguation

To ensure a broad lexical and domain coverage of our SMT system we merged the existing parallel cor-
pora for each language pair from the OPUS web page’ into one parallel data set, i.e., Europarl (Koehn,
2005), DGT - translation memories generated by the Directorate-General for Translation (Steinberger
et al., 2014), MultiUN corpus (Eisele and Chen, 2010), EMEA, KDE4, OpenOffice (Tiedemann, 2009),
OpenSubtitles2012 (Tiedemann, 2012). Similarly, we concatenate parallel corpora for identifying rele-
vant sentences containing WordNet entries, which are then translated into the targeted languages. Table 2
shows the number of parallel sentences used for the ten language pairs.

4.4 Translation Evaluation Metrics

The automatic translation evaluation is based on the correspondence between the SMT output and refer-
ence translation (gold standard). For the automatic evaluation we used the BLEU (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014) and chrF (Popovié, 2015) metrics. BLEU (Bilingual Evalua-
tion Understudy) is calculated for individual translated segments (n-grams) by comparing them with a
data set of reference translations.® The calculated scores, between 0 and 100 (perfect translation), are
averaged over the whole evaluation data set to reach an estimate of the translation’s overall quality. Con-
sidering the short length of the terms in WordNet, while we report scores based on the unigram overlap
(BLEU-1), this is in most cases only precision, so in addition we also report other metrics. METEOR
(Metric for Evaluation of Translation with Explicit ORdering) is based on the harmonic mean of pre-
cision and recall, whereby recall is weighted higher than precision. Along with exact word (or phrase)
matching it has additional features, i.e. stemming, paraphrasing and synonymy matching. In contrast to

Shttp://opus.lingfil.uu.se/index.php

Due to the possibility of including multiple references for evaluation within the BLUE metric, we use the set of target
words within a synset as our gold standard.
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types tokens

Num. Perc. | Num. Perc. Number Percentage
English-Italian 507 6.3 521 4.2 English-Italian 4239 40.35
English-Spanish 396 4.9 406 33 English-Spanish 4436 42.22
English-Slovene 633 7.9 656 53 English-Slovene 4523 43.04
English-Croatian 600 7.5 621 5.0 English-Croatian ~ 3986 37.94

Table 3: Number of Out-Of-Vocabulary words and Table 4: Statistics (actual number and per-
their percentage between translation models and Word-  centage) of identified context for the evalu-
Net senses. ated WordNet Senses.

BLEU, the metric produces good correlation with human judgement at the sentence or segment level.
chrF3 is a character n-gram metric, which has shown very good correlations with human judgements
on the WMT2015 shared metric task (Stanojevic¢ et al., 2015), especially when translating from English
into morphologically rich(er) languages. As there are multiple translations available for each sense in
the target wordnet we use all translations as multiple references for BLEU, for the other two metrics we
compare only to the most frequent member of the synset.

The approximate randomization approach in MultEval (Clark et al., 2011) is used to test whether
differences among system performances are statistically significant with a p-value < 0.05.

5 Evaluation

In this section we present the evaluation of the translated English WordNet words into Italian, Slovene,
Spanish and Croatian. We evaluate the quality of translations of the WordNet entries based on the pro-
vided contextual information as well as the impact on the number of languages and their effect on word-
sense disambiguation.

5.1 Translation Quality Evaluation Based on Contextual Information

Our main evaluation focuses on the importance of identifying relevant contexts for translation into Span-
ish, Italian, Slovene and Croatian. For a comparable evaluation we translated only senses within synsets,
which exist in all four targeted languages. Due to the large parallel corpora used to build the translation
models, only a small percentage of the used senses (10,507) could not be translated (Table 3). For this
evaluation, we required contexts to be disambiguated by at least five out of nine’ other languages. For
around 40% of these senses we could identify relevant context, which was used to guide the SMT to
translate the WordNet senses in the right domain (Table 4).

Table 5 illustrates the contribution of the provided contextual information, which supports the SMT
system in translating the WordNet entries into the correct sense. We observed that translating a WordNet
entry without any contextual information, which we consider as our baseline, provides better translations
than translating them within a random context, as the most frequent translation is more likely to be
correct than a random disambiguation. Once we identify one unambiguous sentence with a WordNet
entry to be translated, the translation quality significantly improves in terms of the BLEU metric for all
four targeted languages. Due to the large amount of parallel resources (between ~15 and ~50 Million
sentences) we provide further a set of ten disambiguated sentences to the SMT system and select the
most frequent translation of the targeted English WordNet entry. We observed, that the usage of most
frequent translation helps us to improve the translation quality for 1.1 (for Slovene) and 0.7 (for Croatian)
BLEU score points. In our last setting we provide the most frequent translation out of the set of ¢-best
possible translations provided by the SMT system, however this does not seem to increase the quality of
translation. Finally, in all settings we applied the target side lookup (TSL) procedure and found that it
improves the quality of translation in nearly all settings.

"The target language is not used to help for sense disambiguation.

102



English—Spanish English—Slovene
Context TSL BLEU-1 METEOR chrF | BLEU-1 METEOR chrF

None (baseline) / 65.8 33.0 64.0 494 21.2 56.3

Random  no 544 27.2 61.3 36.9 15.7 52.8

Random  yes 53.0 26.6 59.3 36.4 15.9 52.4

Disambiguated  no 66.2 324 65.7 52.9 22.8 57.5

Disambiguated  yes 67.8 335 64.6 56.0 247 58.1

10 disambiguated  no 65.9 32.2 65.5 54.0 23.5 57.9

10 disambiguated  yes 70.8 35.0 66.6 57.9 25.4 59.0

5-best 10 disambiguated  no 66.8 32.7 65.9 55.0 23.5 57.1

5-best 10 disambiguated  yes 68.8 33.8 64.7 57.1 28.4 59.6
English—1Italian English—Croatian

Context TSL BLEU-1 METEOR chrF | BLEU-1 METEOR chrF

None (baseline) / 62.5 28.4 59.6 51.1 23.8 60.7

Random  no 46.4 20.6 56.1 40.3 18.4 56.9

Random  yes 494 213 56.4 39.5 17.9 54.9

Disambiguated  no 61.5 26.6 61.7 55.1 24.7 60.0

Disambiguated  yes 66.1 27.8 61.6 57.8 26.5 60.8

10 disambiguated no 61.0 26.2 61.3 55.8 25.6 61.1

10 disambiguated  yes 68.0 28.6 62.7 61.4 28.3 63.2

5-best 10 disambiguated no 63.1 27.2 61.8 56.7 25.2 60.7

5-best 10 disambiguated  yes 67.1 28.2 61.6 58.7 27.1 61.5

Table 5: Evaluation of WordNet translations into Spanish, Slovene, Italian and Croatian with context-
aware techniques (TSL = Target Sentence Lookup; number of languages used for disambiguation = 5)

Error Analysis In order to investigate to what extent the automatically generated translations differ
from the existing entries in the target wordnets we manually inspected the WordNet translations. We
compare results where contextual information was used with the approach where WordNet entries were
translated in isolation, hence without context. For Slovene, the contextual information provided a correct
translation of the WordNet entry space (outer space/location outside the Earth’s atmosphere, 181724)
as vesolje, where the context-less translation approach produced the word prostor, in the meaning of
place, room or property. Similarly, translating medicine (medical science, 138643) without contextual
information provided a wrong translation as zdravilo (medication, drug, i56119), instead of the Slovene
equivalent medicina. For Italian, an evident mistake was observed when translating the word tip (gratuity,
1106560), where the translation of the word in isolation wrongly produced punta, meaning "the top
or extreme point of something" (182274). A correct translation in Italian supported by the contextual
information was provided as mancia. Further, union, in the meaning of trade union or brotherhood
(180384), sindacato in Italian, was wrongly translated into the most dominant meaning unione, with its
meaning of combination or cohesion. In Croatian, the word weed (1105476) as "any plant that crowds
out cultivated plants”, was wrongly translated into trava (drug street name, 157595), if translated in
isolation. The correct translation as korov was generated with the disambiguated contextual information.
For Spanish, town (i82504) was mistranslated into ciudad (city or large town), whereby the preferred
sense of the translation pueblo (small town) was generated by using the contextual information.

5.2 Impact of the Number of Languages for Sense Disambiguation

Even with a very large parallel corpus, as we increase the number of languages, in which we disambiguate
the sense, we find that for many senses we cannot find a context that is disambiguated in all languages.
Thus, we evaluate the impact of changing the number of languages used to disambiguate an English
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Figure 1: Impact of languages used for disambiguation and translation quality in terms of BLEU.

sentence. For this experiment we report the BLEU scores obtained by the best approach identified in
Section 5.1, i.e. 10 disambiguated contexts. For this evaluation we steadily increase the number of
languages that we require a sense to be disambiguated in. We compare these results to the baseline
setting, where WordNet entries are translated without any context. As the total number of senses that can
be translated decreases, the BLEU score for the baseline does not stay constant and in fact increases, as
the senses that our method can disambiguate in many languages are those that are more frequent and less
ambiguous. Nevertheless, the disambiguation outperforms the baseline if the context is disambiguated
in more than three languages (Figure 1).

For the Romance languages (Italian and Spanish), we outperform the baseline between 3 and 6 BLEU
points. The improvement is more evident for the Slavic languages (Slovene and Croatian), where the
differences can reach more than 10 BLEU points, if five or more languages are used. For all targeted
languages, the observed improvements are statistically significant (p<0.005).

5.3 Impact of Language Family for Sense Disambiguation

In addition to the evaluation based on disambiguated contextual information and number of different
languages, we were interested in how the similarity of languages affects the disambiguation. Firstly,
we focus on the translations of English, a Germanic language, into Slovene, which is a member of the
Slavic language family. We considered the cases, where the context is disambiguated in four languages,
but looked at two different sets of four languages. Firstly, a group where four languages are of the
same family, but different to the source and target language, using four Romance languages: French,
Spanish, Romanian and Portuguese. Secondly, we evaluate the sense disambiguation approach using two
Romance languages, French and Spanish, and two Slavic languages, Croatian and Polish. As illustrated
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Figure 2: Evaluation on impact of closely-related languages on sense disambiguation for translation
quality.

in Figure 2 (left part) the contextual disambiguation approach work significantly better if languages,
closely related to the target language — in our case Slovene — are used. In our scenario including the
Slavic languages to disambiguate the context yields to better translation quality compared to the usage
of only Romance languages.

Secondly, we evaluated our approach if a very distant language is used in the disambiguation, namely
Finnish, which is not part of the Indo-European family, the super-family of Romance, Germanic and
Slavic languages. We perform disambiguation using Polish and Finnish and compare the results when
Finnish is replaced with the Croatian language. The results in Figure 2 (right part) show that Finnish
has less disambiguation power than Croatian even though Croatian is similar to Polish. This is because
Croatian, even though it is not close to Spanish or Italian is still much closer than Finnish is.

This experiment showed that closely related languages contribute in the disambiguation approach,
which yields in our scenario to better translation quality. They also show that using a diverse selection
of highly distinct languages does not seem to be advantageous in disambiguating senses.

6 Conclusion and Future Work

We showed an automatic approach to increase the coverage of WordNet into different languages with
high-quality translations. By identifying disambiguated context, we demonstrate statistical significant
translation improvement for Spanish, Italian, Slovene and Croatian. We demonstrate the importance on
closely related languages used for the sense disambiguation approach, which will help us in our ongoing
work on generating translations of wordnets beyond the four targeted languages used in this work. This
method allows us to release high quality extensions of Princeton WordNet, expanding the coverage for
many languages, as well as creating wordnets for languages, where no wordnet has been created or the
wordnet is not available to all potential users due to licensing issues.

Acknowledgements

This publication has emanated from research supported in part by a research grant from Science Foun-
dation Ireland (SFI) under Grant Number SFI/12/RC/2289 (Insight) and the European Union supported
project MixedEmotions (H2020-644632).

105



References

Mihael Arcan, Marco Turchi, Sara Tonelli, and Paul Buitelaar. 2014. Enhancing statistical machine translation
with bilingual terminology in a CAT environment. In Proceedings of the 11th Conference of the Association for
Machine Translation in the Americas, Vancouver, Canada.

Mihael Arcan, Marco Turchi, and Paul Buitelaar. 2015. Knowledge portability with semantic expansion of on-
tology labels. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics,
Beijing, China, July.

Mihael Arcan, Mauro Dragoni, and Paul Buitelaar. 2016. Translating ontologies in real-world settings. In Pro-
ceedings of the 15th International Semantic Web Conference (ISWC-2016), Osaka, Japan.

Francis Bond and Ryan Foster. 2013. Linking and extending an open multilingual wordnet. In Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1352-1362, Sofia, Bulgaria, August. Association for Computational Linguistics.

Francis Bond and Kyonghee Paik. 2012. A survey of wordnets and their licenses. In Proceedings of the 6th Global
WordNet Conference (GWC 2012), Matsue, Japan. 64-71.

Francis Bond, Piek Vossen, John P. McCrae, and Christiane Fellbaum. 2016. CILI: the Collaborative Interlingual
Index. In Proceedings of the Global WordNet Conference 2016, Bucharest, Romania.

Yee Seng Chan, Hwee Tou Ng, and Zhi Zhong. 2007. NUS-PT: exploiting parallel texts for word sense dis-
ambiguation in the english all-words tasks. In Proceedings of the 4th International Workshop on Semantic
Evaluations, pages 253-256. Association for Computational Linguistics.

Jonathan Clark, Chris Dyer, Alon Lavie, and Noah Smith. 2011. Better Hypothesis Testing for Statistical Ma-
chine Translation: Controlling for Optimizer Instability . In Proceedings of the Association for Computational
Lingustics.

Gerard de Melo and Gerhard Weikum. 2009. Towards a universal wordnet by learning from combined evidence.
In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM 2009), pages
513-522, New York, NY, USA. ACM.

Gerard de Melo and Gerhard Weikum. 2012. Constructing and utilizing wordnets using statistical methods.
Language Resources and Evaluation, 46(2):287-311.

Valeria de Paiva and Alexandre Rademaker. 2012. Revisiting a Brazilian wordnet. In Proceedings of the 6th
Global WordNet Conference (GWC 2012), Matsue, Japan.

Michael Denkowski and Alon Lavie. 2014. Meteor universal: Language specific translation evaluation for any
target language. In Proceedings of the EACL 2014 Workshop on Statistical Machine Translation.

Andreas Eisele and Yu Chen. 2010. MultiUN: A multilingual corpus from United Nation documents. In Daniel
Tapias, Mike Rosner, Stelios Piperidis, Jan Odjik, Joseph Mariani, Bente Maegaard, Khalid Choukri, and Nico-
letta Calzolari (Conference Chair), editors, Proceedings of the Seventh conference on International Language
Resources and Evaluation, pages 2868-2872. European Language Resources Association (ELRA), 5.

Christiane Fellbaum and Piek Vossen. 2012. Challenges for a multilingual wordnet. Lang. Resour. Eval.,
46(2):313-326, June.

Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford Books.

Darja FiSer. 2007. Leveraging parallel corpora and existing wordnets for automatic construction of the Slovene
wordnet. In Language and Technology Conference, pages 359-368. Springer Berlin Heidelberg.

Darja FiSer, Jernej Novak, and Tomaz Erjavec. 2012. sloWNet 3.0: development, extension and cleaning. In
Proceedings of 6th International Global Wordnet Conference (GWC 2012), pages 113—117, Matsue, Japan. The
Global WordNet Association.

Aitor Gonzalez-Agirre, Egoitz Laparra, and German Rigau. 2012. Multilingual Central Repository version 3.0:
upgrading a very large lexical knowledge base. In Proceedings of the 6th Global WordNet Conference (GWC
2012), Matsue, Japan.

Kenneth Heafield. 2011. KenLM: faster and smaller language model queries. In Proceedings of the EMNLP 2011
Sixth Workshop on Statistical Machine Translation, pages 187-197, Edinburgh, Scotland, United Kingdom.

106



Nancy Ide, Tomaz Erjavec, and Dan Tufis. 2002. Sense discrimination with parallel corpora. In Proceedings of
the ACL-02 workshop on Word sense disambiguation: recent successes and future directions-Volume 8, pages
61-66. Association for Computational Linguistics.

Dimitar Kazakov and Ahmad R. Shahid. 2009. Unsupervised construction of a multilingual wordnet from parallel
corpora. In Proceedings of the Workshop on Natural Language Processing Methods and Corpora in Translation,
Lexicography, and Language Learning, MCTLLL ’09, pages 9—12, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1, pages 48—54. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke
Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondiej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual
Meeting of the ACL on Interactive Poster and Demonstration Sessions, Stroudsburg, PA, USA.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Conference Proceed-
ings: the tenth Machine Translation Summit. AAMT.

Krister Lindén and Lauri Carlson. 2010. Finnwordnet — wordnet pafinska via overséttning. LexicoNordica —
Nordic Journal of Lexicography, 17:119-140. In Swedish with an English abstract.

Marek Maziarz, Maciej Piasecki, and Stanistaw Szpakowicz. 2012. Approaching plWordNet 2.0. In Proceedings
of the 6th Global Wordnet Conference, Matsue, Japan.

Roberto Navigli and Simone Paolo Ponzetto. 2012. BabelNet: The automatic construction, evaluation and appli-
cation of a wide-coverage multilingual semantic network. Artif. Intell., 193:217-250, December.

Hwee Tou Ng, Bin Wang, and Yee Seng Chan. 2003. Exploiting parallel texts for word sense disambiguation:
An empirical study. In Proceedings of the 41st Annual Meeting on Association for Computational Linguistics-
Volume 1, pages 455-462. Association for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models.
Computational Linguistics, 29.

Antoni Oliver and Salvador Climent. 2012. Parallel corpora for wordnet construction: Machine translation vs.
automatic sense tagging. In Computational Linguistics and Intelligent Text Processing - 13th International
Conference, CICLing 2012, New Delhi, India, March 11-17, 2012, Proceedings, Part 11, pages 110-121.

Antoni Oliver, KreSimir gojat, and Matea Srebaci¢. 2015. Automatic expansion of Croatian Wordnet. In In
Proceedings of the 29th CALS international conference “Applied Linguistic Research and Methodology“, Zadar
(Croatia).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic evalu-
ation of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, ACL °02, pages 311-318.

Emanuele Pianta, Luisa Bentivogli, and Christian Girardi. 2002. MultiWordNet: developing an aligned multilin-
gual database. In Proceedings of the First International Conference on Global WordNet, January.

Maja Popovié. 2015. chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the Tenth
Workshop on Statistical Machine Translation, pages 392-395, Lisbon, Portugal, September. Association for
Computational Linguistics.

Marten Postma, Emiel van Miltenburg, Roxane Segers, Anneleen Schoen, and Piek Vossen. 2016. Open Dutch
WordNet. In Proceedings of the Eight Global Wordnet Conference, Bucharest, Romania.

Barbara Rychalska, Katarzyna Pakulska, Krystyna Chodorowska, Wojciech Walczak, and Piotr Andruszkiewicz.
2016. Samsung Poland NLP team at SemEval-2016 task 1: Necessity for methods to measure semantic simi-
larity. In Proceedings of the 10th International Workshop on Semantic Evaluation, pages 614—620.

Benoit Sagot and Darja Fiser. 2008. Building a free French wordnet from multilingual resources. In European

Language Resources Association (ELRA), editor, Proceedings of the Sixth International Language Resources
and Evaluation (LREC’08), Marrakech, Morocco.

107



Milo§ Stanojevi¢, Amir Kamran, Philipp Koehn, and Ondfej Bojar. 2015. Results of the WMT15 Metrics Shared
Task. In Proceedings of the 10th Workshop on Statistical Machine Translation (WMT-15), pages 256-273,
Lisbon, Portugal, September.

Ralf Steinberger, Mohamed Ebrahim, Alexandros Poulis, Manuel Carrasco-Benitez, Patrick Schliiter, Marek Przy-
byszewski, and Signe Gilbro. 2014. An overview of the European Union’s highly multilingual parallel corpora.
Language Resources and Evaluation, 48(4):679-707.

Jorg Tiedemann. 2009. News from OPUS — A Collection of Multilingual Parallel Corpora with Tools and Inter-
faces. In Advances in Natural Language Processing, volume V, chapter V, pages 237-248. Borovets, Bulgaria.

Jorg Tiedemann. 2012. Character-based pivot translations for under-resourced languages and domains. In Pro-
ceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics
(EACL), pages 141-151, Avignon, France, April.

Antonio Toral, Stefania Bracale, Monica Monachini, and Claudia Soria. 2010. Rejuvenating the italian wordnet:
upgrading, standardising, extending. In Proceedings of the 5th International Conference of the Global WordNet
Association (GWC-2010), Mumbai, India.

Dan Tufis, Dan Cristea, and Sofia Stamou. 2004. Balkanet: Aims, methods, results and perspectives. a general
overview. Romanian Journal of Information science and technology, 7(1-2):9—43.

Dan Tufis, Radu Ion, Luigi Bozianu, Alexandru Ceausu, and Dan Stefdnescu. 2008. Romanian WordNet: Current
state, new applications and prospects. In Proceedings of the 4th Global WordNet Association Conference, pages
441-452, Szeged.

Dan Tufig, Radu Ion, and Nancy Ide. 2004. Fine-grained word sense disambiguation based on parallel corpora,
word alignment, word clustering and aligned wordnets. In Proceedings of the 20th international conference on
Computational Linguistics, page 1312. Association for Computational Linguistics.

Piek Vossen, Francis Bond, and John P. McCrae. 2016. Toward a truly multilingual Global Wordnet Grid. In
Proceedings of the Global WordNet Conference (GWC2016), Bucharest, Romania.

Piek Vossen, editor. 1998. EuroWordNet: A Multilingual Database with Lexical Semantic Networks. Kluwer
Academic Publishers, Norwell, MA, USA.

Piek  Vossen. 2005. Building wordnets. http://www.globalwordnet.org/gwa/
BuildingWordnets.ppt.

108



A Correlational Encoder Decoder Architecture for Pivot Based Sequence

Generation
Amrita Saha Mitesh M. Khapra Sarath Chandar
IBM Research India L.I'T. Madras, India University of Montreal
amrsaha4@in.ibm.com khapra.mitesh@gmail.com anbilpas@iro.umontreal.ca
Janarthanan Rajendran Kyunghyun Cho
LLT. Madras, India New York University
rsdjjana@gmail.com cho.k.hyun@gmail.com
Abstract

Interlingua based Machine Translation (MT) aims to encode multiple languages into a common
linguistic representation and then decode sentences in multiple target languages from this repre-
sentation. In this work we explore this idea in the context of neural encoder decoder architectures,
albeit on a smaller scale and without MT as the end goal. Specifically, we consider the case of
three languages or modalities X, Z and Y wherein we are interested in generating sequences in
Y starting from information available in X. However, there is no parallel training data available
between X and Y but, training data is available between X & Z and Z & Y (as is often the
case in many real world applications). Z thus acts as a pivot/bridge. An obvious solution, which
is perhaps less elegant but works very well in practice is to train a two stage model which first
converts from X to Z and then from Z to Y. Instead we explore an interlingua inspired solu-
tion which jointly learns to do the following (i) encode X and Z to a common representation
and (ii) decode Y from this common representation. We evaluate our model on two tasks: (i)
bridge transliteration and (ii) bridge captioning. We report promising results in both these ap-
plications and believe that this is a right step towards truly interlingua inspired encoder decoder
architectures.

1 Introduction

Interlingua based MT (Nirenburg, 1994; Dorr et al., 2010) relies on the principle that every language
in the world can be mapped to a common linguistic representation. Further, given this representation,
it should be possible to decode a target sentence in any language. This implies that given n languages
we just need n decoders and n encoders to translate between these "Cs language pairs. Note that even
though we take inspiration from interlingua based MT, the focus of this work is not on MT. We believe
that this idea is not just limited to translation but could be applicable to any kind of conversion involving
multiple source and target languages and/or modalities (for example, transliteration, multilingual image
captioning, multilingual image Question Answering, efc.). Even though this idea has had limited success,
it is still fascinating and considered by many as the holy grail of multilingual multimodal processing.

It is interesting to consider the implications of this idea when viewed in the statistical context. For
example, current state of the art statistical systems for MT (Koehn et al., 2003; Chiang, 2005; Luong et
al., 2015b), transliteration (Finch et al., 2015; Shao et al., 2015; Nicolai et al., 2015), image captioning
(Vinyals et al., 2015b; Xu et al., 2015), efc. require parallel data between the source and target views
(where a view could be a language or some other modality like image). Thus, given n views, we require
"y parallel datasets to build systems to convert from any source view to any target view. Obviously, this
does not scale well in practice because it is hard to find parallel data between all *Cy views. For exam-
ple, publicly available parallel datasets for transliteration (Zhang et al., 2012) cater to < 20 languages.

Similarly, publicly available image caption datasets are available only for English! and German?.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

"http://mscoco.org/dataset/#download

http://www.statmt.org/wmt1l6/multimodal-task.html
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This problem of resource scarcity could be alleviated if we could learn only n statistical encoders
and n statistical decoders wherein (i) the encoded representation is common across languages and (ii)
the decoders can decode from this common representation (akin to interlingua based conversion). As a
small step in this direction, we consider a scaled down version of this generic "Cy conversion problem.
Specifically, we consider the case where we have three views X, Z, Y but parallel data is available only
between X Z and ZY (instead of all 2Cs parallel datasets). At test time, we are interested in generating
natural language sequences in Y starting from information available in X. We refer to this as the bridge
setup as the language Z here can be considered to be a bridge/pivot between X and Y.

An obvious solution to the above problem is to train a two-stage system which first converts from X
to Z and then from Z to Y. While this solution may work very well in practice (as our experiments
indeed suggest) it is perhaps less elegant and becomes tedious as the number of views increases. For
example, consider the case of converting from X to Z to R to Y. Instead, we suggest a neural network
based model which simultaneously learns the following (i) a common representation for X and Z and
(i1) decoding Y from this common representation. In other words, instead of training two independent
models using the datasets between X Z and ZY, the model jointly learns from the two datasets. The
resulting common representation learned for X and Z can be viewed as a vectorial analogue of the
linguistic representation sought by interlingua based approaches. Of course, by no means do we suggest
that this vectorial representation is a substitute for the rich linguistic representation but its easier to learn
from parallel data (as opposed to a linguistic representation which requires hand crafted resources).

Note that our work should not be confused with the recent work of (Firat et al., 2016), (Zoph and
Knight, 2016) and (Elliott et al., 2015). The last two works in fact require 3-way parallel data between
X, Z and Y and learn to decode sequences in Y given both X and Z. For example, at test time, (Elliott
et al., 2015) generate captions in German, given both (i) the image and (ii) its corresponding English
caption. This is indeed very different from the problem addressed in this paper. Similarly, even though
(Firat et al., 2016) learn a single encoder per language and a single decoder per language they do not
learn shared representations for multiple languages (only the attention mechanism is shared). Further, in
all their experiments they require parallel data between the two languages of interest. Specifically, they
do not consider the case of generating sentences in Y given a sentence in X when no parallel data is
available between X and Y.

We present an empirical comparison of jointly trained models which explicitly aim for shared en-
coder representations with two-stage architectures. We consider two downstream applications (i) bridge
transliteration and (ii) bridge caption generation. We use the standard NEWS 2012 dataset (Zhang et al.,
2012) for transliteration. We consider transliteration between 12 languages pairs (XY) using English
as the bridge (7). Bridge caption generation is a new task introduced in this paper where the aim is to
generate French captions for an image when no Image-French(XY") parallel data is available for training.
Instead training data is available between Image-English (X Z) and English-French (ZY"). In both these
tasks we report promising results. In fact, in our multilingual transliteration experiments we are able
to beat the strong two-stage baseline in many cases. These results show potential for further research in
interlingua inspired neural network architectures. We do acknowledge that a successful interlingua based
statistical solution requiring only n encoders and n decoders is a much harder task whereas our work is
only a small step in that direction.

2 Related Work

Encoder decoder based architectures for sequence to sequence generation were initially proposed in
(Cho et al., 2014; Sutskever et al., 2014) in the context of Machine Translation (MT) and have also been
successfully used for generating captions for images (Vinyals et al., 2015b). However, such sequence
to sequence models are often difficult to train as they aim to encode the entire source sequence using
a fixed encoder representation. Bahdanau et al. (2014) introduced attention based models wherein a
different representation is fed to the decoder at each time step by focusing the attention on different parts
of the input sequence. Such attention based models have been more successful than vanilla encoder-
decoder models and have been used successfully for MT (Bahdanau et al., 2014), parsing (Vinyals et
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al., 2015a), speech recognition (Chorowski et al., 2015), image captioning (Xu et al., 2015) among other
applications. All the above mentioned works focus only on the case when there is one source and one
target. The source can be image, text, or speech signal but the target is always a text sequence.

Encoder decoder models in a multi-source, single target setting have been explored by (Elliott et al.,
2015) and (Zoph and Knight, 2016). Specifically, Elliott et al. (2015) try to generate a German caption
from an image and its corresponding English caption. Similarly, Zoph and Knight (2016) focus on the
problem of generating English translations given the same sentence in both French and German. We
would like to highlight that both these models require three-way parallel data while we are focusing on
situations where such data is not available. Single source, multi-target and multi-source, single target
settings have been considered in (Luong et al., 2015a). Recent work by Firat et al. (2016) explores multi-
source to multi-target encoder decoder models in the context of MT. However, Firat et al. (2016) focus on
multi-task learning with a shared attention mechanism and the goal is to improve the MT performance
for a pair of languages for which parallel data is available. This is clearly different from the goal of
this paper which is to design encoder decoder models for a pair of languages where no parallel data is
available but data is available only between each of these languages and a bridge language.

Of course, in general the idea of pivot/bridge/interlingua based conversion is not new and has been
used previously in several non-neural network settings. For example (Khapra et al., 2010) use a bridge
language or pivot language to do machine transliteration. Similarly, (Wu and Wang, 2007; Zhu et al.,
2014) do pivot based machine translation. Lastly, we would also like to mention the work in interlingua
based Machine Translation (Nirenburg, 1994; Dorr et al., 2010) which is clearly the inspiration for this
work even though the focus of this work is not on MT.

The main theme explored in this paper is to learn a common representation for two views with the end
goal of generating a target sequence in a third view. The idea of learning common representations for
multiple views has been explored well in the past (Klementiev et al., 2012; Chandar et al., 2014; Hermann
and Blunsom, 2014; Chandar et al., 2016; Rajendran et al., 2015). For example, Andrew et al. (2013)
propose Deep CCA for learning a common representation for two views. (Chandar et al., 2014; Chandar
et al., 2016) propose correlational neural networks for common representation learning and Rajendran
et al. (2015) propose bridge correlational networks for multilingual multimodal representation learning.
From the point of view of representation learning, the work of Rajendran et al. (2015) is very similar
to our work except that it focuses only on representation learning and does not consider the end goal of
generating sequences in a target language.

3 Models

As mentioned earlier, one of the aims of this work is to compare a jointly trained model with a two stage
model. We first briefly describe such a two stage encoder decoder architecture and then describe our
model which is a correlation based jointly trained encoder decoder model.

3.1 A two stage encoder-decoder model

A two stage encoder-decoder is a straight-forward extension of sequence to sequence models (Cho et
al., 2014; Sutskever et al., 2014) to the bridge setup. Given parallel data between X Z and ZY, a two
stage model will learn a generative model for each of the pairs independently. For the purpose of this
work, the source can be an image or text but the target is always a natural language text. For encoding
an image, we simply take its feature representation obtained from one of the fully connected layers of a
convolutional neural network and pass it through a feed-forward layer. On the other hand, for encoding
the source text sequence, we use a recurrent neural network. The decoder is always a recurrent neural
network which generates the text sequence, one token at a time.

Let the two training sets be D1 = {x;, zl}fV:ll and Dy = {zi,yi}Zle where z; € X, y; € Y and
z; € Z. Given Dy, the first encoder learns to encode x; and decode the corresponding z; from this
encoded representation. The second encoder is trained independently of the first encoder and uses Ds
to encode z; € Z and decode the corresponding y; € Y from this encoded representation. These
independent training processes are indicated by the dotted arrows in Figure 1. At test time, the two
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Figure 1: Two stage encoder-decoder model. Dashed lines denote how the model is used during train-
ing time and solid line denotes the test time usage. We can see that two encoder-decoders are trained
independently but used jointly during testing.

stages are run sequentially. In other words, given x;, we first encode it and decode z; from it using
the first encoder-decoder model. This decoded z; is then fed to the second encoder-decoder model to
generate y;. This sequential test process is indicated by solid arrows in Figure 1.

While this two stage encoder-decoder model is a trivial extension of a single encoder-decoder model,
it serves as a very strong baseline as we will see later in the experiments section.

3.2 A correlation based joint encoder-decoder model

While the above model works well in practice, it becomes cumbersome when more views are involved
(for example, when converting from U to X to Y to Z). We desire a more elegant solution which could
scale even when more views are involved (although for the purpose of this work, we restrict ourselves to
3 views only). To this end, we propose a joint model which uses the parallel data D; (as defined above) to
learn one encoder each for X and Z such that the representations of x; and z; are correlated. In addition
and simultaneously the model uses Ds and learns to decode y; from z;. Note that this joint training has
the advantage that the encoder for Z benefits from instances in D; and Ds.

Having given an intuitive explanation of the model, we now formally define the objective functions
used during training. Given D; = {z;, zi};N:ll, the model tries to maximize the correlation between the
encoded representations of z; and z; defined as

Teorr(0) = =X corr(s(hx (X)), s(hz(Z))) (D

where hx is the representation computed by the encoder for X and hy is the representation computed
by the encoder for Z. As mentioned earlier, these encoders could be RNN encoders (in the case of text)
and simple feedforward encoders (in the case of images). s() is a standardization function which adjusts
the hidden representations hx and hy so that they have zero-mean and unit-variance. Further, A is a
scaling hyperparameter and corr is the correlation function defined as

N

s(hx (24))s(hz(z:))" 2)
i=1

We would like to emphasize that s() ensures that the representations already have zero mean and unit
variance and hence no separate standardization is required while computing the correlation. In addition
to the above loss function, given Dy = {z;, y; } Zle, the model minimizes the cross entropy loss

No L

Jee(0) = < D Plyklar); P(yelzie) = [ P, vk, 2c) 3)
=1 i=1

where L is the number of tokens in yy.

The dotted lines in Figure 2 show the joint training process where the model simultaneously learns to
compute correlated representations for x; and z; and decode y; from z;. The testing process is shown by
the solid lines wherein the model computes a hidden representation for x; and then decodes y; from it
directly without transitioning through z;.
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Figure 2: Correlated encoder-decoder model. Dashed lines denote how the model is used during training
time and solid line denotes the test time usage. We can see that during training, both the encoders are
trained to produce correlated representations and the decoder for Y is trained based on encoder Z. During
test time only encoder for X and decoder for Y are used.

While training, we alternately pick mini-batches from D; and D9 and use the corresponding objective
function. Means and variances for the representations computed by the two encoders are updated at the
end of every epoch based on the hidden representations of all instances in the training data. During
the first epoch we assume the mean and variance to be 0 and 1. Note that A rescales the value of the
correlation loss term so that it is in the same range as the value of the cross-entropy loss term.

4 Experiment 1: Bridge Transliteration

We consider the task of transliteration between two languages X and Y when no direct data is available
between them but parallel data is available between X & Z and Z & Y. In the following subsections we
describe the datasets used for our task, the hyperparameters considered for our experiments and results.

4.1 Datasets

We consider transliteration between 4 languages, viz., Hindi, Kannada, Tamil and Marathi resulting
in 4Cy = 12 language pairs. However, we do not use any direct parallel data between any of these
languages. Instead we use the standard datasets available between English and each of these languages
which were released as part of the NEWS 2012 shared task (Zhang et al., 2012). Just to be explicit, for
the task of transliterating from Hindi to Kannada, we construct D; from the English-Hindi dataset and
Dy from the English-Kannada dataset. The size of the training set (in words) for the four language pairs
English-Hindi, English-Kannada, English-Marathi and English-Tamil is 19918, 16556, 8500 and 16857
respectively and the validation and test set sizes (in words) are 500 and 1000 respectively. Fortunately,
the English portion of the test set was common across all these four language pairs, thus allowing us
to easily create test sets for all the 12 language pairs. For example, if h; is the transliteration of the
English word e; in the English-Hindi test set and k; is the transliteration of the same English word e; in
the English-Kannada test set then we add (h;, k;) as a transliteration pair in our Hindi-Kannada test set.
In this way, we created test sets containing 1000 words for all the 12 language pairs.

4.2 Hyperparameters

For the two stage encoder decoder model, we considered the following hyperparameters: embedding
size € {1024, 2048} for characters, rnn hidden unit size € {1024, 2048}, initial learning rate € {0.01,
0.001} and batch size € {32, 64}. The numbers in bracket indicate the distinct values that we considered
for each hyperparameter. Note that the embedding size and rnn size are always kept equal. All these
parameters were tuned independently for the two stages using their respective validation sets. For the
correlated encoder decoder model, in addition to the above hyperparameters we also had A € [0.1, 1.0]
as a hyperparameter. Here, we tuned the hyperparameters based on the performance on the validation set
available between ZY (since the correlated encoder decoder can also decode y; € Y from z; € Z). Note
that we do not use any parallel data between XY for tuning the hyperparameters because the general
assumption is that no parallel data is available between XY . We used Adam (Kingma and Ba, 2014) as
the optimizer for all our experiments.

113



Two Stage PBSMT Two Stage Encoder Decoder Correlational Encoder Decoder

¢ Ka Ta Ma ¢ Ka Ta Ma ¢ Ka Ta Ma
Src Src src
Hi 363 | 332 | 336 Hi 421 | 434 | 348 Hi 431 | 406 | 409
Ka 413 321 | 262 Ka 46.2 2.9 | 307 Ka 475 402 | 279
Ta 305 | 258 192 Ta 375 | 34.8 23.8 Ta 336 | 211 17.0
Ma 769 | 337 | 309 Ma 458 | 349 | 317 Ma 59.0 | 37.1 | 34.5

Table 1: Transliteration Accuracy on the 12 language pairs involving (Hindi, Kannada, Tamil, Marathi)
for the three comparative methods (Two Stage PBSMT, Two Stage Encoder Decoder and the proposed
Correlational Encoder Decoder model. An underlined number in this table signifies that for that specific
language pair the corresponding system is performing better than the Two Stage PBSMT model and the
best performing system for any of the language-pairs is represented in bold font

System ] Accuracy (%) of Sourf:e—Targel Pair

En-Hi En-Ka En-Ta En-Ma Hi-En Ka-En Ta-En Ma-En
PBSMT 51.7 453 50.0 30.2 51.1 47.9 414 35.0
Encoder-Decoder 61.6 53.7 57.7 38.0 57.3 54.5 46.2 31.1

Table 2: Transliteration accuracy of the PBSMT system and the Encoder-Decoder model on the 4 Indian
languages (Hindi, Kannada, Tamil, Marathi) when transliterated from English and to English

4.3 Results

We compare our model with the following systems:

1. Two Stage PBSMT: Here, we train two PBSMT (Koehn et al., 2003) based transliteration systems
using D; and Ds. This is an additional baseline to see how well an encoder decoder architecture compares
to a conventional PBSMT based system. We used Moses (Koehn et al., 2007) for building our PBSMT
systems. The decoder parameters were tuned using the validation sets. Language model was trained on
the target portion of the parallel corpus.

2. Two Stage Encoder Decoder: Here, we train two encoder decoder based transliteration systems using
D1 and D as described in Section 3.1.

Table 1 summarizes the accuracy (% of correct transliterations) of the three systems in the bridge
setup. We observe that in 6 out of the 12 language pairs our correlated model does better than the 2
stage encoder decoder model. Further, it does better than the two-stage PBSMT baseline in 11 out of the
12 language pairs. This is very encouraging especially because such 2-stage approaches are considered
to be very strong baselines for these tasks (Khapra et al., 2010). In general, the encoder decoder based
approaches do better than PBSMT based systems. This is indeed the case even when we compare the
performance of the PBSMT based system and the Encoder Decoder based system independently on the
two stages (Table 2).

5 Experiment 2: Bridge Captioning

We now introduce the task of bridge caption generation. The purpose of introducing this task is two-fold.
Firstly, we feel that it is important to put things in perspective and demonstrate that while interlingua
inspired encoder decoder architectures are a step in the right direction, much more work is needed when
dealing with different modalities in a bridge setup. Secondly, we think that this is an important task
which has not received any attention in the past. We would like to formally define and report some initial
baselines to motivate further research in this area. The formal task definition is as follows: Generate
captions for images in language L1 (say, French) when no parallel data is available between images and
L but parallel data is available between Image-Lo (D7) and between Li-Lo (D) where Lo is another
language (say, English). In the following subsection we describe the datasets used for this task, the
hyperparameters considered for our experiments and the results.

5.1 Datasets

Even though we do not have direct training data between Image-French, we need some test data to
evaluate our model. For this, we use the Image-French test set recently released by (Rajendran et al.,
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Systems BLEU-4 | BLEU-3 | BLEU-2 | BLEU-1 ROUGE-L CIDEr
Pseudo Im-Fr 15.5 24.2 37.4 56.5 38.3 41.2
Two Stage 16.6 25.7 39.0 58.3 39.5 49.1
Correlational Encoder Decoder 12.6 19.3 31.1 50.5 343 29.8

Table 3: Image Captioning performance in generating French caption for a given image for the three
methods: Pseudo Im-Fr, Two Stage and our Correlational Encoder Decoder based model.

2015). To create this data, they first merged the 80K images from the standard train split and 40K images
from the standard valid split of MSCOCO data. They then randomly split the merged 120K images into
train(118K), validation (1K) and test set (1K). They then collect French translations for all the 5 captions
for each image in the test set using crowdsourcing. CrowdFlower (https://make.crowdflower.
com) was used as the crowdsourcing platform and they solicited one French and one German translation
for each of the 5000 captions using native speakers. Note that (Rajendran et al., 2015) report results for
cross modal search and do not address the problem of crosslingual image captioning.

In our model, for D; we use the same train(118K), validation (1K) and test sets (1K) as defined in
(Rajendran et al., 2015) and explained above. Choosing Dy was a bit more tricky. Initially we consid-
ered the corpus released as part of WMT’12 (Callison-Burch et al., 2012) which contains roughly 44M
English-French parallel sentences from various sources including News, parliamentary proceedings, etc.
However, our initial small scale experiments showed that this does not work well because there is a clear
mismatch between the vocabulary of this corpus and the vocabulary that we need for generating captions.
Also the vocabulary is much larger (at least an order higher than what we need for image captioning)
and it thus hampers training. Further, the average length and structure of these sentences is also very
different from captions. Domain shift in MT is itself a challenging problem (not to mention the added
complexity in a multimodal bridge setup). It was unrealistic to expect our model to work in the presence
of these orthogonal complexities.

To isolate these issues and evaluate our model in a controlled environment, we needed a parallel corpus
which had very similar characteristics to that observed in captions. Since we did not have such a corpus
at our disposal we decided to follow (Rajendran et al., 2015) and use a pseudo parallel corpus between
English-French. Specifically, we take the English captions from the MSCOCO data and translate them
to French using the publicly available translation system provided by IBM (http://www.ibm.com/
smarterplanet/us/en/ibmwatson). Note that our model still does not see direct parallel data
between Image and French during training. We acknowledge that this is not the ideal thing to do but it
is good enough to do a proof-of-concept evaluation of our model and understand its potential. We, of
course, account for the liberty taken here by comparing with equally strong baselines as discussed later
in the results section.

5.2 Hyperparameters

Our model has the following hyperparameters: embedding size, batch size, hidden representation size,
A and learning rate. Based on experiments involving direct Image-to-English caption generation we
observed that the following parameters work well : embedding size = 512, batch size = 80, rnn hidden
unit size = 512, and learning rate = 4e-4 with Adam (Kingma and Ba, 2014) as the optimizer. We just
retained these hyperparameters and did not tune them again for the bridge setup. We tuned the value
of )\ by evaluating the correlation loss on the Image-English validation set. Again, we do not use any
Image-French data for tuning any hyperparameters.

5.3 Results

We now present the results of our experiments where we compare with the following strong baselines.
1. Two Stage : Here we use a Show & Tell model (Vinyals et al., 2015b) trained using D; to generate an
English caption for the image. We then translate this caption into French using IBM’s translation system
as described above.

2. Pseudo Im-Fr : Here we train an Image-to-French Show & Tell model (Vinyals et al., 2015b) by
pairing the images in the MSCOCO dataset with their pseudo French captions generated by translating
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MSCOCO Images

Correlational

Encoder Decoder

Un homme est

Un skateur est en

Une plaque avec

Une girafe est

Un bus de trans-

Un salon avec

surfer sur une | train de décoller | un sandwich et | debout dans la | port en commun | un canapé
vague dans | surunskateboard | un verre de biere | poussiere preés | dans une rue de | une table et un
I’océan d’une  arbores- | laville téléviseur

cence

g" Un homme cir- | Un homme cir- | Une plaque de | Une girafe de- | Un bus double | Un salon avec un
$ conscription une | conscription un | nourriture  sur | bout dans wun | sandwich au | canapé fauteuil et
& vague sur une | skateboard sur | une table avec un | champ avec | volant dune rue une télévision
planche de surf une rampe en | verre de vin des arbres en
bois arriereplan

Ll
E Un  internaute | Un jeune garcon | Une plaque de | Une girafe de- | Un bus ville faire | Un salon avec un
- dans une combi- | circonscription nourriture  sur | bout a coté d’un | baisser une rue | canapé , une ta-
& naison isother- | un  skateboard | une table en bois | autre girafe dans | dela ville ble et un canapé
mique est | dans un parc une zone
circonscription
une vague

Table 4: Example captions generated by the three methods on a sample set of MSCOCO test images

the English captions into French (using IBM’s translation system).

We observe that our model is unable to beat the two strong baselines described above but still comes
close to their performance. We believe this reinforces our belief in this line of research and hopefully
more powerful models (perhaps attention based) could eventually surpass these two baselines.

As a qualitative evaluation of our model, Table 4 shows the captions generated by our model. It
is exciting that even in a complex multimodal bridge setup the model is able to capture correlations
between Images and English sentences and further decode relevant French captions from a given image.

The code and datasets used for Experiment 1 and 2 would be made available on request.

6 Conclusion

In this paper, we considered the problem of pivot based sequence generation. Specifically, we are inter-
ested in generating sequences in a target language starting from information in a source view. However,
no direct training data is available between the source and target views but data is available between each
of these views and a pivot view. To this end, we take inspiration from interlingua based MT and pro-
pose a neural network based model which explicitly maximizes the correlation between the source and
pivot view and simultaneously learns to decode target sequences from this correlated representation. We
evaluate our model on the task of bridge transliteration and show that it outperforms a strong two-stage
baseline for many language pairs. Finally, we introduce a novel bridge caption generation task and report
promising initial results. We hope this new task will fuel further research in this area.

As future work, we would like to go beyond simple encoder decoder based correlational models. For
example, we would like to apply the idea of correlation to attention based encoder decoder models. The
ideas expressed here can also be applied to other tasks such as bridge translation, bridge Image QA, etc.
However, for these tasks, additional issues such as larger vocabulary sizes, complex sentence structures,
non-monotonic alignments between source and target language pairs need to be addressed. The model
proposed here is just a beginning and much more work is needed to cater to these complex tasks.
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Abstract

This paper studies cross-lingual transfer for dependency parsing, focusing on very low-resource
settings where delexicalized transfer is the only fully automatic option. We show how to boost
parsing performance by rewriting the source sentences so as to better match the linguistic regu-
larities of the target language. We contrast a data-driven approach with an approach relying on
linguistically motivated rules automatically extracted from the World Atlas of Language Struc-
tures. Our findings are backed up by experiments involving 40 languages. They show that both
approaches greatly outperform the baseline, the knowledge-driven method yielding the best accu-
racies, with average improvements of +2.9 UAS, and up to +90 UAS (absolute) on some frequent
PoS configurations.

1 Introduction

The need to automatically process an increasing number of languages has made obvious the extreme de-
pendency of standard development pipelines on in-domain, annotated resources that are required to train
efficient statistical models. However, for most languages, annotated corpora only exist for a restricted
number of domains, when they exist at all. In response to such low-resource scenario, four main strate-
gies have been considered. The first is to hire experts and handcraft these resources, possibly with the
help of active learning techniques: Garrette and Baldridge (2013) show that this strategy can be effec-
tive and probably cheaper than expected. An alternative is to use models learned on some resource-rich
source language(s) to process a low-resource target language; note that this is only possible once the
source and target data have been mapped into a shared representation space (Zeman and Resnik, 2008).
When source-target parallel corpora are available, a third approach projects annotations across languages
via alignment links (Yarowsky and Ngai, 2001; Hwa et al., 2005; Lacroix et al., 2016). A variant using
artificial parallel corpora, obtained via Machine Translation, is suggested and discussed by Tiedemann
et al. (2014).

In this work, we focus on the problem of learning dependency parsers for an under-resourced lan-
guage and consider the delexicalized transfer approach of Zeman and Resnik (2008), in which the
shared source-target representation is obtained by replacing all tokens by their PoS (assuming a common
tagset). Thanks to this language-independent representation, a model trained with annotated sentences
in a source language can be readily applied to parse sentences in any other language. Delexicalized tech-
niques are especially useful in very low-resource settings, in which existing parallel corpora are likely
to be too small or even non-existing. The development of cross-linguistically homogeneous and consis-
tent schemes for PoS labels (Petrov et al., 2012) and, more recently, for dependency trees (McDonald
et al., 2013) has been of great help to improve the applicability and effectiveness of delexicalized trans-
fer methods. We contend, however, that having a universal PoS inventory is only a first step towards
making the source and target languages more alike. In particular, these shared representations may hide
fundamental differences in word order between source and target languages. As explained in § 2, these

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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divergences introduce systematic biases in parsers: since many features rely on word linear sequence,
their distribution across languages varies in great proportions, preventing useful generalizations to be
effectively transferred cross-linguistically.

In the remaining sections, we study ways to improve the performance of delexicalized techniques by
making the source word sequence more similar to target sentences, prior to transferring information. Two
extensions are contrasted: a data-driven approach and a knowledge-driven approach (§ 3). The former
uses PoS-based statistical language models estimated on target data while the latter relies only on the
World Atlas of Language Structures (WALS) (Dryer and Haspelmath, 2013), which contains a series of
linguistic typological features documenting 2,679 languages. Experiments on 40 languages exhibiting
very different characteristics and covering several language families show that both methods outperform
standard delexicalized transfer by a wide margin (§ 4), with the knowledge-based approach having the
additional benefit to even dispense with the need of unlabeled target data and consequently to be readily
usable for more than thousand languages. Incidentally, our experiments thoroughly re-evaluates previous
proposals for improving baseline delexicalized transfer.

2 Motivations

2.1 Principles of Transition-Based Dependency Parsing

Transition-based dependency parsers (Nivre, 2008) are among the most popular methods for computing a
syntactic structure. For clarity, we illustrate our work on greedy ARCEAGER parsers which have achieved
state-of-the-art performance for many languages. However, our motivations hold regardless of the chosen
parsing system, and exploratory experiments with our methods have shown similar improvements with
other parsers (including graph-based parsers).

In an ARCEAGER parser, the parse tree is built incrementally while traversing the sentence from left
to right, by executing elementary actions that either move words in a buffer and a stack (via SHIFT
and REDUCE actions) or create dependency relationships between the word on top of the stack and the
leftmost word in the buffer (using the LEFT or RIGHT actions depending whether the head is in the buffer
or on the stack).

The actions performed during parsing are predicted by a feature-based classifier, a common choice
being the averaged perceptron of Collins and Roark (2004). It is custom to base the classifier decisions on
a limited window centered on the two tokens which could be moved or attached; the following features!
are typically extracted from these neighborhoods and combined together to yield feature tuples: top of
the stack (generally denoted sg) and deeper stack elements (s1, s2) to its left, head of the buffer (ng) and
additional tokens (n1, ng) on its right.

Transition-based parsers heavily rely on word order: for instance, as shown in Figure 1, in an ARCEA-
GER system, the dependency between two words will be predicted by two different actions depending
whether the head occurs before or after its dependent. More importantly, most features used in a de-
pendency parser (no matter the transition system) are sensitive to the word order, as they encode the
position of the word in the stack or in the buffer which, in turn, depends on the position of the word in

the sentence.”
- ¥__ \ - , - - ==
'Delicious, | dishes typical of Spain LEFT L) | dishes typical of Spain SHIFT 'dishes, | typical of Spain
T Tstack buffer — stack buffer — “stack ~ buffer
'dishes | typical of Spain 'dishes typical! | of Spain
“stack buffer RiGHT - ---7 stack buffer o

Figure 1: An order-sensitive sequence of transitions computing a dependency tree.

"For lexicalized parsers: the word forms and the PoS, for delexicalized: only the PoS.

2Graph-based parsing with standard feature templates is slightly less order-dependent, since the classification task and the
features of the candidate dependent and head are already abstracted from the linear sequence. However, many features, related
for instance to words located between these two tokens, remain sensitive to word order and our statement still holds.
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2.2 A Waste of Cross-Lingual Knowledge

Delexicalized transfer has proven to be an effective method to transfer parsers between languages (Ze-
man and Resnik, 2008; McDonald et al., 2013). However, while delexicalized transfer extracts use-
ful language-independent knowledge from training instances in the source language, we claim that this
knowledge is often not encoded in the right form to be effectively used to process target sentences, due
to divergences in word ordering.’

We illustrate this on delexicalized transfer from English to French. Let us assume that we have a
delexicalized English parser that is able to perfectly predict the dependency structure of the noun phrase
the following question and we use it to annotate the corresponding French phrase la question suivante
(literally, the question following*). Thanks to recent efforts in defining universal annotation schemes
for syntactic information, notably the Universal Dependencies (UD) project (Nivre et al., 2016), these
phrases can be represented in a unified manner by mapping word forms into the corresponding PoS,
yielding respectively DET ADJ NOUN and DET NOUN ADJ. As the English parser has learned that
‘DETs depend on NOUNs’ and that ‘ADJs depend on NOUNs’, the appropriate parse for the French
phrase should be obvious, as these rules apply cross-linguistically. PoS sequences thus seem to provide
an appropriate level of abstraction for cross-lingual transfer.

However, contrary to what this intuition suggests, the transfer of the ADJ-NOUN dependency of-
ten fails in practice. This is because the features underlying the high-level rules stated above are in
fact order-dependent. Indeed, when parsing the French phrase, the parser configuration will be mainly
described by the feature pair ‘sp=NOUN A ng=ADJ’ (as question appears before suivante, it will be
put on the stack first) while for the English phrase the relevant parser configuration would look like
‘so=ADJ A np=NOUN’. For lack of connecting these two situations, the parser has no way to predict the
correct attachment in French using only English training instances.

Experimentally,” and denoting UAS {gﬂ the percentage of C'; tokens depending on a (' token that
NoOUN

are correctly attached by the parser, while the English delexicalized model has a UAS [ ADJ ] of 91.1%
on English, it drops down to 50.8% for French. This decrease results directly from the word order
difference between French and English, as English adjectives are almost always preposed® while their
position in French is less deterministic: in the French UD, 28% of the adjectives occur before their head
noun and 72% after it. As a result, the UAS [ig}m] score on French actually decomposes as 96.8% for

UAS [Eg;ozed ADJ} and 34.5% for UAS [go(i?pﬁsed ADJ} .7 These observations highlight the impact of word

order on delexicalized transfer: attachment patterns are not robust to variations in word ordering. Note
that transfer from French to English is much more successful, with a UAS B\\Ig}m] of 80.5%. This is
because the source language (here French) contains a sufficiently large number of preposed adjectives,
which makes it possible to learn the patterns that are useful for English.

The discrepancies in word order can have an even more dramatic effect when transferring parsers
between languages in which adjectives have a fixed position. This, for instance, happens when the source
is Bulgarian (almost only preposed adjectives) and the target is Hebrew (only postposed): the resulting

UAS [R9UN] is as low as 28.7% (compared to an overall UAS of 60.1%). In the reverse direction, it

drops down t0 2.8% (UAS [NoUX,, | of 0.7%, UAS [NOUX . »y, | of 54.5%, with an overall UAS of
50.6%).

The impact of differences in word order on cross-lingual transfer is not limited to the attachment of
adjectives. Consider, for instance, the English phrase the neighbor’s car (DET NOUN PART NOUN) and

3The issues described in this section are at least partially solved by transfer with annotation projection but these techniques
require parallel data that are not always available.

*Keeping the original order (la suivante question) would be wrong in French.

>Qur experimental data and protocols are presented in Section 4.

®In the English UD corpus, 93% of the adjectives come before the noun they depend on.

"This observation is consistent with the English monolingual scores (93.2% for the UAS m‘e’[‘,}nﬂed ADJ] majority case, and
55.0% for the much rarer UAS [X008 .4 ani] Case).

8Source data quality cannot be the only cause of such poor results: when delexicalized models apply monolingually,
UAS [Xo] is 97.4% in Bulgarian and 88.4% in Hebrew.
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its French translation la voiture du voisin (DET NOUN ADP NOUN). After attaching function words,
all that remains for the parser to process is the bigram NOUN NOUN: while the English parser has
been trained to predict a left dependency (car being the head of neighbor), for French it must predict a
right dependency (voiture being the head of voisin). Here the discrepancy of genitives’ position across
languages does not involve unseen features, but still leads the model to predict a wrong dependency with
high confidence.

Our work aims at addressing such scenarios in which knowledge transfer is impeded by the word
order of the source language. While current state-of-the-art models learn that ‘an ADJ followed by a
NOUN depends on that NOUN’ and ‘the first NOUN depends on the second NOUN’, we would like them
to transfer more abstract patterns such as ‘ADJs depend on NOUNs’ and ‘genitives depend on NOUNS’,
leaving it up to the target side to decide which of both NOUNs plays the role of genitive.

3 Boosting Delexicalized Transfer

3.1 Reshaping Training Instances

In this work, we propose to preprocess the source data before they are used to train a delexicalized parser,
that will then be directly applied on target sentences. This preprocessing aims at making the source
word sequences more similar to target sentences, with the goal to make the cross-lingual knowledge
more accessible after transfer. The available information is the same before and after preprocessing (no
dependency is ever added), but is presented at training time in a form that should make it more useful at
test time.

In the following, we introduce two ways of generating such transformations, by removing or permuting
tokens. The first approach uses a language model estimated on target PoS sequences to find the most
similar word order between the source and target languages in a lattice containing local reorderings of
the source sentence. The second strategy relies on a data bank of linguistic typological features, the
WALS (Dryer and Haspelmath, 2013), to generate a series of heuristic transformation operations.

The problem of finding good reorderings of a source sentence is closely related to the problem of word
(p)reordering in Statistical Machine Translation (SMT) (Bisazza and Federico, 2016). However, where
preordering aims to find an optimal (for SMT) permutation of source words for each source sentence,
our objective is less ambitious, as we only intend to ‘fix’ a sufficiently large number of divergent patterns
between the source and target languages, so as to increase the effectiveness of transfer at the model level.

3.2 Optimally Reordering the Training Corpus with a Language Model

Our first resource-light approach consists of two steps. We first generate a small subset of possible
token permutations, compactly encoded in a finite-state graph. In our experiments, we consider all the
permutations licensed by the MJ-2 reordering scheme (Kumar and Byrne, 2005), which generates all
possible local permutations within a window of three words. Machine Translation experiments have
shown that the MJ-2 constraints capture lots of plausible reorderings (Dreyer et al., 2007). In the context
of cross-lingual transfer, its local nature allows to correct several important divergences in word order
(e.g. the adjective-noun divergence described in § 2.2), while keeping the size of the reordering lattice
polynomial with respect to the sentence length (Lopez, 2009).

The permutation lattice is then searched for a reordering that (a) corresponds to a high probability
target PoS sequence and (b) preserves the projectivity constraint. In practice, we first generate the lattice
of MJ-2 reorderings, score it with a language model estimated on the target PoS sequences, and extract
the 1,000-best sequences. After filtering non-projective trees, we retain the one-best sequence (if one
projective tree exists), or the original sequence otherwise. We expect the word order of this transformed
source to be very close to the word order of a typical target sentence. We then transform the gold
dependency tree according to this permutation and use it to train a target-adapted model.

This approach can be viewed as an extension of the data selection technique of Sggaard (2011) in
which the delexicalized model is trained only on the source examples that are the most relevant for the
target at hand. The similarity between the source and target languages is based on the similarity between
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their PoS sequences: experimentally, the author retains the 90% sentences with lowest perplexity ac-
cording to a target PoS language model (PoSLM). We add here an extra degree of freedom by allowing
changes in the word order of the source PoS sequence, rather than simply discarding sentences.

3.3 Adapting the Training Corpus with Rewrite Rules

Our second proposal takes advantage of the linguistic knowledge that is now available for many lan-
guages. We use here the WALS, which contains a series of linguistic features documenting 2,679 lan-
guages. Some of these features are of prime interest for our study, and express general properties related
to word order. In this work we focus on the following seven features that describe whether some PoS
classes exist in a language and their relative position (preposed or postposed to the noun, or no dominant
order): 37A (definite articles), 38A (indefinite articles), 85A (order of adposition and noun), 86A (order
of genitive and noun), 87A (order of adjective and noun), 88A (order of demonstrative and noun) and
89A (order of numeral and noun).’

We first extract the relevant features for each language considered in our study, quantify their value and
automatically transform them to relate to the raw PoS sequences found in our corpora. We extrapolate
the order of DET and NOUN from feature 88A and identify the genitives mentioned by feature 86A as
NOUNs or PROPNs depending on a NOUN. With an otherwise straightforward mapping, this results
in the following set of properties: no definite DET, no indefinite DET (including the affix cases), and
a precedence rate (denoted PR) of 0% (postposed), 50% (no dominant order) or 100% (preposed) for
ADPs (resp. genitives, ADJs, DETs, NUMs) depending on a NOUN.!?

The ‘No dominant order’ feature value of WALS provides very useful quantitative information: con-
trary to the PoSLLM-based approach, which puts hard constraints on each phenomenon by choosing a
reordering even when several choices would be almost equally likely, WALS features indicate when and
how to balance our transformed treebanks.

By comparing two languages based on their feature values, it is then possible to define actionable
transformation rules that remove or permute tokens and their associated subtrees. Table 1 lists the trans-
formation rules derived from each pair of features. We preferred smooth transformations (with mean
PR objectives and error margins) to prevent a full transformation of the corpus and a risk of informa-
tion losses if the child position is less deterministic than expected. For instance, in the case of transfer
from English (ADP-NOUN) to Japanese (NOUN-ADP) and according to the fourth transformation rule,
we target a precedence rate of ADPs to NOUNs between 45% and 55%. This means that during source
treebank traversal, while the precedence rate in previous sentences is above 55% (resp. below 45%), any
encountered ADP-NOUN (resp. NOUN-ADP) bigram holding a dependency is switched, along with their
dependents to preserve projectivity. According to first rule, for transfer to Czech (no definite article)
from any source, all definite articles are systematically removed from source data.

Source feature Target feature Transformation rule

any no DEF-DET  remove all definite DETs
any no IND-DET  remove all indefinite DETs
PR = 0% PR > 50%  switch subtrees to reach PR = 50% (with 5% error margin)
PR = 100% PR <50%  switch subtrees to reach PR = 50% (with 5% error margin)
PR = 50% PR =100%  switch subtrees to reach PR = 75% (with 5% error margin)
PR = 50% PR =0%  switch subtrees to reach PR = 25% (with 5% error margin)

Table 1: Transformation rules extracted from the comparison of the feature values of a language pair. All
other feature pairs result in a no-op.

For each sentence, we apply each rule on the whole sequence (and then iterate 3 times to capture recur-
“We do not consider here features (81A, 82A, etc.) describing the relative position of a head VERB and its dependents.

Their use would require us to condition our preprocessing patterns on labeled dependency relationship in the source, a task we
leave for future work.

For ADPs, and for resilience to annotation inconsistencies, we also include ADPs that are heads of NOUNSs.
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sive phenomena). Such heuristic rule application strategy is undoubtedly sensitive to the rule ordering,
but we have not yet investigated this aspect and simply apply rules according to the lexicographic order
of the child tag, breaking ties using word position.

In comparison to the PoSLM-based approach, the WALS-based approach suffers from a lack of ex-
haustivity regarding word order; by design, less phenomena will be captured. However, since the objec-
tive is not the best possible reordering but only more compatible PoS sequences, exhaustivity is probably
not a big issue. Besides, working with a discrete and reduced set of transformation operations gives us
a better control on the rewriting of dependencies. It also allows us to use extra operations such as word
deletion, a transformation that may be difficult to control in the approach described in § 3.2.

Altogether, this linguistically rich method presents a notable upside: since all the required information
is available in WALS, it is readily usable for more than thousand languages. Provided that PoS tags
can be generated for the target data to parse, no extra resource is required, while estimating a PoOSLM
requires a sufficiently large corpus of reliably PoS-tagged target data.

4 Experiments

4.1 Experimental Setup

We evaluate our proposals on the Universal Dependencies corpus!! (Nivre et al., 2016) and compare them
with three baselines: (a) standard delexicalized transfer, (b) the data point selection method of Sggaard
(2011) and (c) the weighted multi-source combination of Rosa and Zabokrtsky (2015), that weights
and combines the hypotheses of several delexicalized source models using K L, (Kullback-Leibler
divergence of coarse PoS trigram distributions) as a syntactic similarity metric between languages. We
also include the UAS of K L, multi-source combination built on top of our knowledge-based model.

In all our experiments, we consider 3-gram PoS language models estimated on the training sets of
UD. The KL,z metric is estimated on the same PoS sequences. From WALS, we extract and use
the 37A, 38A and 85A to 89A features. For some languages, this information was incomplete. We
completed missing features with a majority vote of the languages of same genus if available in the
database; otherwise (i.e. for ancient languages, all absent from WALS) we assumed that there were
separate article tokens and that there was no dominant order for word order features.

For each component of the algorithms, we use the universal PoS tagset and gold PoS tags. While this
scenario is probably unrealistic, it allows us to get a clearer picture of the net effect of a better syntactic
knowledge transfer, since possible sources of discrepancies between languages (e.g. more or less noisy
tag labels) have been removed. The parser is a greedy ARCEAGER transition-based parser trained with
a dynamic oracle (Goldberg and Nivre, 2012), an averaged perceptron classifier (Collins and Roark,
2004) and Zhang and Nivre (2011)’s feature templates (assuming fully delexicalized representations and
unlabeled arcs). We use the PanParser implementation (Aufrant and Wisniewski, 2016) and all the code
used in this work is available at https://perso.limsi.fr/aufrant/.

4.2 Results

Table 2 presents UAS results for the various transfer methods considered. As these experiments amount
to 6,320 evaluated parsers, we provide the results in a compacted form as follows. For each target
language, for mono-source transfer, we report the scores of the worst, median, best sources and the
average score (or average gain) over all sources.

Overall, both preprocessing techniques outperform the direct transfer method of Zeman and Resnik
(2008) as well as the selection strategy of Sggaard (2011). The WALS-based rewriting approach yields
higher improvements (+2.9 UAS on average) than the PoOSLM-based reordering strategy (+2.3 UAS on
average). Thanks to the variety and the large number of sources, the multi-source methods have here
much higher accuracies, often better than the best source; even in this setting, using WALS provides us
with a slight improvement over the baseline multi-source parser.

"'We consider the version 1.3 of the UD treebank. In order to present only fair sources, for languages where several treebanks

are available, we retain only the main treebank. This is the case for the following languages: cs, en, es, fi, grc, la, nl, pt, ru, sl
and sv.
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[ Mono-source 1 [ Multi-source ]
Target Delexicalized PoSLM selection PoSLM reordering WALS rewrite rules Delex. WALS

min  med max avg‘ min  med max Aavg‘ min  med max Aavg‘ min  med max  Aavg

ar 51 432 569 36.1 4.8 430 572 -02 | 189 451 572 +5.6 | 122 476 569 +5.7 57.3 57.8
bg 264 675 789 596 | 263 675 789 -0.1 | 355 651 744  +15 | 272 676 789 +1.8 79.6 79.0
ca 284 623 785 578 | 279 620 787 -0.1 | 335 60.8 755 -02 | 304 662 78.6 +1.9 79.2 79.1
cs 297 585 740 543|292 586 740 -0.0 | 37.1 584 688 +14 | 308 593 738 +1.4 74.0 73.8
cu 226 585 747 539|226 587 754 +00 | 382 602 700 +3.8 | 243 603 747 +1.6 74.7 74.7
da 280 645 753 582|275 638 753 -0.2 | 403 61.0 704 -0.0 | 28.6 646 745 +1.4 75.7 752
de 362 612 705 577|359 610 700 -0.2 | 454 61.1 693 +1.3 | 43.0 61.8 70.8 +1.5 68.7 68.7
el 290 510 678 495 | 289 505 682 -0.0 | 335 516 649 +04 | 298 516 67.6 +1.7 67.0 66.2
en 331 565 658 528 | 325 562 655 -02 | 384 57.0 638 +1.2 | 322 584 659 +1.2 65.7 66.0
es 300 639 785 589 | 293 644 785 -0.0 | 376 628 76.1 +0.3 | 315 666 784 +1.8 79.2 79.3
et 284 531 694 515|269 529 69.6 -02 | 363 57.0 679 +3.7 | 37.1 579 693 +4.4 69.4 69.3
eu 20.7 452 578 442 | 209 464 577 -0.1 | 243 546 64.1 +8.1 | 246 520 633 +5.7 55.7 60.9
fa 179 453 561 403 | 17.6 450 56.0 -0.1 | 26.7 463 568 +3.2 | 255 484 588 +5.2 61.4 63.3
fi 274 48.1 62.1 466 | 274 482 618 -0.0 | 324 502 588 +2.3 | 324 530 622 +3.7 62.1 62.2
fr 309 640 79.1 59.0 | 299 639 787 -02 | 350 614 768 +0.5 | 342 660 78.9 +1.8 79.8 79.5
ga 164 56.0 658 50.1 | 163 562 664 -0.1 | 266 562 64.6 +1.8 | 20.8 59.0 653 +2.3 67.4 67.2
gl 33.0 403 475 406 | 328 405 475 -0.1 | 32.1 43.0 482 +1.5 | 356 437 510 +2.6 46.7 46.6
got 264 58.0 727 543 | 264 575 734 -0.0 | 38.0 60.0 66.3 +3.1 | 282 589 739 +0.9 72.7 73.9
gre 325 539 573 507 | 298 539 578 -0.1 | 39.0 539 583 +1.1 | 324 539 578 +0.0 61.0 60.3
he 20.1 53.8 68.0 499 | 198 542 677 +0.1 | 30.2 541 63.6 +1.2 | 219 554 658 +1.6 712 68.7
hi 1.0 27.1 665 323 | 11.1 269 658 -0.1 | 220 375 616 +6.7 | 19.8 338 668 +5.4 37.1 44.2
hr 26.8 554 712 520 | 260 563 709 -02 | 357 563 669 +1.7 | 289 563 703 +1.5 73.9 73.0
hu 278 527 678 508 | 27.1 53.1 682 -0.0 | 404 563 654  +44 | 40.1 554 683 +3.4 63.0 64.4
id 174 492 701 488 | 182 49.0 703 +0.1 | 27.6 502 66.1 +1.5 | 23.1 538 69.6 +3.7 70.8 71.9
it 31.0 67.1 826 61.7 | 304 669 822 -0.1 | 38.1 67.0 80.7 +1.2 | 340 708 823 +2.2 83.2 82.9
ja 70 186 726 267 72 183 722  +0.1 | 157 329 70.6 +10.0 | 181 352 723 +114 63.3 63.5
kk 10.7 330 563 324 | 109 340 543 +0.2 | 179 352 526 +3.4 | 206 385 55.6 +4.9 539 54.6
la 144 499 641 47.1 | 143 50.0 635 +0.0 | 195 514 618 +1.9 | 21.1 533 633 +2.1 58.3 60.0
Iv 226 403 557 406 | 225 40.1 558 -02 | 28.7 426 51.0 +1.8 | 350 47.1 554 +5.5 50.2 57.3
nl 275 519 61.7 489 | 279 522 622  +0.1 | 324 493 56.8 24 | 284 524 604 +0.5 62.3 60.7
no 258 640 76.6 57.1 | 256 639 76.7 -0.1 | 372 585 69.2 -02 | 265 63.8 76.2 +1.3 76.6 76.5
pl 257 621 779 592 | 256 627 719 -0.1 | 36.0 656 76.2 +34 | 295 655 774 +2.4 78.0 71.6
pt 308 628 755 567 | 302 633 755 +0.0 | 357 60.0 735 -09 | 328 635 754 +1.4 75.5 75.7
ro 198 555 692 518 | 186 557 68.7 -0.1 | 31.7 585 677 +3.1 | 241 605 703 +4.0 71.8 72.0
ru 268 539 69.0 513|261 540 689 -00 | 346 551 679 +23 | 309 592 687 +4.2 71.0 70.4
sl 306 652 804 594 | 304 651 805 -00 | 41.8 648 774 427 | 305 649 804 +1.4 80.4 80.4
sV 294 627 755 569 | 294 623 755 -02 | 39.6 60.1 70.6 +0.5 | 304 639 749 +2.3 73.1 73.5
ta 9.1 363 663 368 9.1 356 664 -0.0 | 189 437 645 +6.2 | 19.0 41.1 658 +4.7 66.3 65.8
tr 141 353 670 388 | 147 354 670 -0.1 | 195 395 645 +2.0 | 21.5 408 678 +3.5 58.6 58.5
zh 156 325 431 317 | 158 325 430 +0.1 | 189 355 418 +2.3 | 20.1 36.6 44.1 +3.5 40.2 422

Avg 237 520 682 492|233 520 681 0.1 | 31.8 535 65.6 +23 ] 279 552 683 +29 || 669 | 674

Table 2: UAS of the various mono-source and multi-source transfer methods, on each UD target language
(using UD language codes).

The first line reads as follows: for delexicalized transfer to Arabic, the worst, median and best sources
yield UAS scores of 5.1, 43.2 and 56.9, and the average score over all 39 sources is 36.1, which the
WALS-based method improves by 5.7 points.

Our experiments also show that the selection baseline method does not perform as well on Universal
Dependencies (Nivre et al., 2016) as it did on the CoNLL 2006 Shared Task. Those differences can be
explained in two ways. First, we experiment with cleaner treebanks and benefit from the availability of
unified tagsets and annotation schemes. This is in contrast with previous experiments, which were using
a tagset mapping as a preprocessing step, making the net effect of data selection more difficult to single
out and evaluate precisely. Second, the data selection method was primarily intended for distantly related
languages, whereas the UD corpus now offers a wide language diversity and often a few good sources
for which data size reduction is only detrimental.

In general, our methods do not improve the best source but have a large effect on bad and average
sources, often turning them into competitive sources. This is particularly true with PoSLM reordering,
which improves the worst sources by 8.1 points and degrades the best ones by 2.6 points. By contrast,
the WALS-based method is more conservative and offers lower but more reliable improvements, which
in average proves successful.

Table 3 reports the average over some language families!? of the UAS of the baseline, reordered and
WALS-based mono-source models. It shows that accuracies of related sources are only marginally mod-

2While the considered ancient languages belong to some of those families, we chose to gather them into a separate category,
since they rely on the same WALS completion heuristic, instead of their actual typological features.
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Target language

Romance Germanic Slavic Finno-Ugric Semitic Ancient
g, Romance  67.1]|65.6[|67.2 60.4/60.4[61.7 63.1(|63.5[|63.0 46.4/50.852.5 54.1[|52.1[|52.9 56.7|[56.5/54.9
S Germanic  61.2(/63.5(65.8 65.9163.1]65.8 61.3]62.2]|63.2 57.2||58.6||58.5 41.2||48.2]|49.8 54.5||57.1||56.7
%D Slavic 63.561.7]]66.0  63.8]/60.5||64.3 72.6]|68.4]|71.8 53.2||57.0||58.4 54.7||53.6||56.8 59.0]|59.2|60.1
g Finno-Ugric  46.3]|51.9|52.3 57.1||56.2|57.6  53.8||58.6]|56.9 64.1]63.0]|64.2 30.0/|43.6]|41.5 50.8]|55.7]|56.1
§ Semitic 54.1||54.2||54.1 40.6]|48.2||51.1 42.5||54.6]|56.1 30.8||41.2||44.1 55.4]|55.6||54.8 53.7||55.9||54.4
“2  Ancient 56.1|149.2]|55.9  56.7||51.5]|56.1 60.9]|57.5]|60.6 52.2||54.9||56.0 51.1]|47.0||50.6 62.7|/60.0]62.6

Table 3: Delexicalized, PoOSLM-based reordered and WALS-based UAS aggregated over language family
pairs.

The first column reads as follows: the average UAS over all pairs of two Romance languages is 67.1
for mono-source delexicalized transfer; it is slightly improved (67.2) by the WALS-based method. Over
all pairs of a Germanic source and a Romance target, the average mono-source UAS raises from 61.2
(delexicalized baseline) to 63.5 (PoSLM-based reordering) and 65.8 (WALS-based rules).

ified when source sentences are transformed according to WALS, which could be expected as related
languages share most of their typological features. On the contrary, large gains are obtained for dis-
tantly related languages. Such languages are typically poor sources in direct delexicalized transfer due
to systematic labeling errors that mostly concern few frequent word classes (in correlation with their
typological features). We have found that such errors can often be corrected by transforming the source
sentences. With those errors handled, the now competitive sources can in turn contribute with valuable
knowledge in multi-source settings.

4.3 A Fine-grained Analysis

We have also investigated the improvements made over the baseline by our best method, the WALS-
based rewriting rules, by analyzing the gain in accuracy separately for various PoS. It appears that, in
most cases, improvements mostly concern PoS classes covered by the WALS features. For instance, the
issue mentioned in § 2.2 for the English-French pair is almost solved with source reordering: 90.4% of
the postposed ADJs are correctly predicted by the WALS-based method (34.5% in the baseline), without
any detrimental impact on the preposed ones. The same holds for the Hebrew-Bulgarian textbook case,
where the UAS [Eg}m] raises from 0.7% to 95.1%.

We observe similar behaviors across the board for all the classes targeted by transformations: transfer

from Czech to Danish had UAS [grggoﬁed NOUN] and UAS [JOUN 4 NOUN} scores of 2.8% and 78.4%, with

WALS-based preprocessing they are respectively 61.1% and 80.4%. In Finnish-Arabic, scores of 6.3%
and 30.9% on ADIJs and ADPs become 65.8% and 61.4%, etc. In whole, 21% of the considered language
pairs present very large gains (over +50 points) for at least one frequent tag pair (over 30 dependency
occurrences in test data).

Careful comparison of results for both PoSLM-based methods shows that reordering improves ADJs’
attachment for instance, when data selection does not. This can be explained in two ways. First, if
the source corpus contains a very limited number of preposed ADJs, even with perfect selection the
ADJs in final data cannot be mostly preposed. Second, data selection mostly targets sequences very
far from the target syntax: sentences that only disrespect a local preference of child position are less
fluent, and consequently have a lower rank, than their hypothetical counterpart with switched positions;
but they are not ungrammatical enough to be pushed into the 10% worst territory. On the other hand,
the data transformation approach is not restricted to preexisting n-grams, and it directly confronts the
given sequence with its counterpart to keep only the most fluent, thus acknowledging local preferences.
These key differences are confirmed experimentally on English-French data: PoSLLM-based reordering
lowers the precedence rate of ADJs to NOUNs from 93% to 60%, while the rate varies by less than 1%
in Sggaard (2011)’s approach, leaving the majority case adjectives still under-trained.

Finally, detailed analyses reveal that the PoSLM reordering approach has lower improvements than
the WALS-based one on easy reorderings such as the nearly deterministic Hebrew-Bulgarian adjectives
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(UAS [N9UN] of 93.2% with WALS, versus 86.1% with the POSLM). This suggests that the data-driven
technique still wastes part of the available knowledge: indeed, the use of a probabilistic model to rank
reorderings does not guarantee that any interesting reordering is in fact selected. Another advantage of
the knowledge-rich approach is that the distribution of local word orderings is easier to control, since it
explicitly regulates the balance between co-existing word orders. Indeed, when two structures are pos-
sible and fluent, the PoSLM-based method will always prefer the majority class. While the projectivity
requirement generally softens this hard constraint by discarding many reordering candidates, the effect
holds for instance on typologically close languages: during transfer from French (PR = 28% for ADJ-
NOUN) to Italian (PR = 32%), PoOSLM-based reorderings harden the preference down to PR = 16%,
and end up under-training the ADJ-NOUN minority class.

In spite of this, the PoOSLM reordering is still competitive, since it covers more diverse phenomena.
For instance, when transferring from English to Tamil, the UAS [XE’;{B] only raises from 31.4% to 35.0%
with the WALS-based method, but achieves a nice 91.2% with the PoSLM. Such improvements are
however less predictable and unexplained losses also occur, as for the UAS [{'%®] in Hungarian-Tamil
(98.5% for the baseline and WALS, 66.4% with POSLM reordering).

These results suggest that both approaches have their upsides and downsides, which remain to be
combined.

5 Related Work

The observation that cross-lingual transfer works better with typologically close or related languages
has been already made by many. Indeed, several works have already pointed out that unified annotation
schemes cannot compensate for syntactic divergences between source and target languages and that
reducing these divergences was likely to improve the performance of transfer.

When several sources are available, a natural approach is to give more weight to the instances observed
in related languages, where relatedness can be measured either based on linguistic description (Berg-
Kirkpatrick and Klein, 2010) or empirically (Cohen et al., 2011).

S@gaard (2011) follows similar intuitions but binarizes the weights to apply instance selection. Thus,
the delexicalized model is trained only on the source examples that are the most relevant for the target
at hand, using PoSLM perplexity as a relevance metric. Note that this strategy can be applied both in
mono-source and multi-source settings.

In Rosa and Zabokrtsky (2015)’s work, the syntactic similarity between languages is also based on the
similarity between their PoS sequences. They show how the K L,,,; measure can be used to improve
cross-lingual transfer either by selecting the best source language, or by weighting the source contribution
to the output in a multi-source setting.

Both multi-source combination and data selection follow the same intuition that any source sentence or
part of it can provide useful information on the syntax of the target language, even when the divergence
between the source and the target is large. Indeed, a language is subject to many influences throughout
its evolution and can borrow a phenomenon from a very distant language. This is for instance the case
of Romanian, which belongs to the Romance family but has also strong Slavic influences.

As a result, both works aim at extracting useful knowledge even from poor sources, and our proposal
can be viewed as an extension that pushes further this intuition, to a finer grain: Rosa and Zabokrtsky
(2015) reward good source languages, Sggaard (2011) rewards target-relevant sentences, and our method
rewards relevant local patterns, by performing a local reordering of target-irrelevant parse subtrees rather
than ignoring the whole sentence. This has the effect of using the knowledge embedded in these subtrees
as well as in the rest of the sentence more effectively. To see this, consider the case of transferring
an English parser to a language in which no verb is labeled as auxiliary.'?® In this case, the method of
(Sggaard, 2011) is likely to discard all the English sentences containing auxiliaries and the parser will
hardly see, in training, sentences involving passive constructions or past participles; by contrast, methods
based on data transformation would not remove the full sentence, but just the auxiliary — all the other
dependencies, e.g. the by-agent, can still contribute to learning.

BIn the UD treebank this is, for instance, the case for Greek, Latvian or Galician.
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Thus, in comparison to previous works favoring close word orders at the cost of discarding some
training examples or reducing source contribution, our method differs by improving cross-lingual transfer
without knowledge loss.

In another line of work, Naseem et al. (2012) also distinguish the knowledge ‘ADJs depend on NOUNs’
from the ordering of both tokens, and use WALS to predict the latter. However, where our methods
compensate for word order divergences at the data level, their work aims at abstracting the dependency
prediction from word order, by designing a new parsing algorithm from scratch: their parser decomposes
as a dependent selection component, shared among languages, and an ordering component that is specific
to the target language. Even though it does not provide full order abstraction, our approach has the double
advantage of wrapping any state-of-the-art parsing system, and allowing an extra degree of flexibility by
manipulating the data, e.g. to handle PoS classes existing in only one language.

6 Conclusion

The contribution of this work is twofold. First, we have updated earlier results on delexicalized cross-
lingual model transfer by reproducing them on the recent Universal Dependencies treebank. This collec-
tion of treebanks contains more languages than were previously available. Furthermore, the consistency
of annotation schemes makes the analysis of results more reliable and enables to draw firmer conclusions.
Second, based on a thorough analysis of the weaknesses of delexicalized transfer, we have proposed two
strategies that aim to compensate for word sequence biases when transferring models across languages:
a data-driven method using PoSLMs for reordering and a knowledge-based method exploiting heuristic
rewrite rules extracted from WALS. The latter method proved to be the most effective of the two, with the
additional benefit of being entirely resource-free and thus readily usable for the over thousand languages
whose word order is specified in WALS. For the frequent PoS classes targeted by this method, we were
able to obtain huge improvements, often 30 and up to 90 points.

A first natural continuation of this work will be to complete our repertoire of preprocessing rules
with article insertions, PoS substitutions and patterns involving verbs, which were not considered so far.
Another direction we would like to investigate is to contrast our techniques with annotation projection,
which is another way to compensate for word order biases in cross-lingual transfer: by analyzing the
pros and cons of each method we might find ways to combine them so that we can also use parallel
data when available. We finally also aim at generalizing our WALS approach to other order-dependent
tasks. Indeed, from a higher-level point of view, the aforementioned issues are not specific to dependency
parsing, but occur theoretically with all data-driven NLP methods: however general it is, the linguistic
knowledge is always only available as instantiated on a given word sequence and through the proxy of a
particular data.
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Abstract

Natural-language processing of historical documents is complicated by the abundance of variant
spellings and lack of annotated data. A common approach is to normalize the spelling of histori-
cal words to modern forms. We explore the suitability of a deep neural network architecture for
this task, particularly a deep bi-LSTM network applied on a character level. Our model compares
well to previously established normalization algorithms when evaluated on a diverse set of texts
from Early New High German. We show that multi-task learning with additional normalization
data can improve our model’s performance further.

1 Introduction

Interest in computational processing of historical documents is on the rise, as evidenced by the growing
field of digital humanities and the increasing number of digitally available resources of historical data.
Spelling normalization, i.e. the mapping of historical spelling variants to standardized/modernized forms,
is often employed as a pre-processing step to allow the utilization of existing tools for the respective
modern target language (Piotrowski, 2012).

Training data for supervised learning of spelling normalization is typically scarce in the historical
domain. Furthermore, dialectal influences and even individual preferences of an author can have a huge
impact on the spelling characteristics in a particular text, meaning that even training data from other
corpora of the same language and time period cannot always be reliably used.

Algorithms have often been developed with this fact in mind, e.g. by being based on some form
of phonetic, graphematic, or semantic similarity measure (Jurish, 2010; Bollmann, 2012; Amoia and
Martinez, 2013). On the other hand, neural networks — and particularly deep networks with several
hidden layers — are assumed to work best when trained on large amounts of data. It is therefore not clear
whether neural networks are a good choice for this particular domain.

We frame spelling normalization as a character-based sequence labeling task, and explore the suit-
ability of a deep bi-directional long short-term memory model (bi-LSTM) in this setting. By basing our
model on individual characters as input, along with performing some basic preprocessing (e.g., down-
casing all characters), we keep the vocabulary size small, which in turn reduces the model’s complexity
and the amount of data required to train it effectively. We show that this model outperforms both the ex-
isting normalization tool Norma (Bollmann, 2012) and a CRF-based tagger when evaluated on a diverse
dataset from Early New High German.

Furthermore, we experiment with a multi-task learning setup using auxiliary data that has similar, but
not identical spelling characteristics to the target text. We show that using bi-LSTMs with this multi-task
learning setup can improve normalization accuracy further, while Norma and CRF do not profit much
from the additional data in a traditional setup.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2 Datasets

We use a total of 44 texts from the Anselm corpus (Dipper and Schultz-Balluff, 2013) of Early New
High German.! The corpus is a collection of several manuscripts and prints of the same core text, a
religious treatise. Although the texts are semi-parallel and share some vocabulary, they were written
in different time periods (between the 14th and 16th century) as well as different dialectal regions, and
show quite diverse spelling characteristics. For example, the modern German word Frau ‘woman’ can
be spelled as fraw/vraw (Me), frawe (N2), frauwe (St), fratiwe (B2), frow (Stu), viowe (Ka), vorwe (Sa),
or vrouwe (B), among others.?

All texts in the Anselm corpus are manually annotated with gold-standard normalizations following
guidelines described in Krasselt et al. (2015). For our experiments, we excluded texts from the corpus
that are shorter than 4,000 tokens, as well as a few texts for which annotations were not yet available
at the time of writing (mostly Low German and Dutch versions). Nonetheless, the remaining 44 texts
are still quite short for machine-learning standards, ranging from about 4,200 to 13,200 tokens, with an
average length of 7,353 tokens.

For all texts, we removed tokens that consisted solely of punctuation characters. We also lowercase
all characters, since it helps keep the size of the vocabulary low, and uppercasing of words is usually not
very consistent in historical texts.

2.1 Conversion to labeled character sequences

Normalization is annotated on a word level; to reframe the problem as a character-based sequence label-
ing task, we need to align the historical wordforms and their normalizations on a character level. Ideally,
we would like these alignments to be linguistically plausible, i.e., characters that most likely correspond
to each other (e.g., historical j and modern i, as in jn — ihn ‘him’) should be aligned whenever possible.

The Levenshtein algorithm (Levenshtein, 1966) can be used to produce alignments that preferably
align identical characters, but is ambiguous when multiple alignments with the same Levenshtein dis-
tance exist. We therefore use iterated Levenshtein distance alignment (Wieling et al., 2009), which uses
pointwise mutual information on aligned segments to estimate statistical dependence, and favors align-
ments of characters that tend to cooccur often within the dataset. Since different texts can use the same
characters in different ways, we perform this iterated alignment separately for each text.

A difficulty of these alignments is that the two wordforms can be of different lengths. We introduce
a special epsilon label (¢) whenever a historical character is not aligned to any character in the normal-
ization. We cannot do that for the inverse case, since the historical characters are our units of annotation
and therefore need to be fixed, so we choose to perform a leftward merging of normalized characters
whenever they are not aligned to any character in the historical wordform. For the word-initial case, we
introduce a special “start of word” symbol (_). This symbol is prepended to each word during both train-
ing and testing, and is assigned the epsilon label during training when there is no word-initial insertion.

Here is an example of the final character sequence representation for the word pair vsfuret — ausfiihrt
‘(he) leads out’:

(1) _vsfu ret
ausfihret

A consequence of this approach is that our labels cannot only be characters, but also combinations of
characters (such as iih in the example above); our label set is therefore potentially unbounded. However,
we found that this is not much of a problem in practice, since these cases tend to be comparatively rare.

3 Model

Our model architecture consists of: (i) an embedding layer for the input characters; (i) a stack of bi-direc-
tional long short-term memory units (bi-LSTMs); and (iii) a final dense layer with a softmax activation to

"https://www.linguistics.rub.de/anselm/
2 Abbreviations in brackets refer to individual texts using the same internal IDs that are found in the Anselm corpus.
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Figure 1: Flow diagram of the bi-LSTM character sequence labeling model, unrolled for time, for the
word pair jn — ihn ‘him’.

generate a probability distribution over the output classes at each timestep. An illustration of the model
can be found in Figure 1.

The embedding layer maps one-hot input vectors (representing historical characters) to dense vectors.
We did not use pre-trained embeddings; the embeddings are initialized randomly and learned as part of
the regular network training process.

LSTMs (Hochreiter and Schmidhuber, 1997) are a form of recurrent neural network (RNN) designed
to better learn long-term dependencies, and have proven advantageous to plain RNNs on many tasks.
Bi-directional LSTMs read their input in both normal and reversed order, allowing the model to learn
from both left and right context at each input timestep. A stack of bi-LSTMs, or a deep bi-LSTM, is a
configuration of several bi-LSTM units so that the output of the ith unit is the input of the (z + 1)th unit.
In our model, we use a stack of three bi-LSTM layers.

The final dense layer is used to generate the output predictions, based on a linear transformation of the
bi-LSTM outputs for each timestep followed by a softmax activation. We train the model by minimizing
the cross-entropy loss across all output characters, and using backpropagation to update the weights in all
layers (including the embedding layer). During prediction, we generate output labels in a greedy fashion,
choosing the label with the highest probability for each timestep.

3.1 Multi-task learning setup

In multi-task learning (MTL), the performance of a model on a given task is improved by additionally
training it on one or more auxiliary tasks (Caruana, 1993). For our bi-LSTM model, this means that
all layers of the model are shared between the tasks apart from the final prediction layer, which is kept
separate for the main and auxiliary tasks. This way, errors in an auxiliary task that are backpropagated
through the network also affect the prediction of the main task, helping to regularize the network’s
weights and prevent overfitting.

Multi-task learning with (deep) neural network architectures was shown to be effective for a variety of
NLP tasks, such as part-of-speech tagging, chunking, named entity recognition (Collobert et al., 2011);
sentence compression (Klerke et al., 2016); or machine translation (Luong et al., 2016).

In our experiments, we regard spelling normalization within a target domain (i.e., a given historical
text) as our main task, while using normalization within related domains (i.e., texts from a similar time
period, but with distinct spelling characteristics) as our auxiliary task. During training, we alternate
between training on a random instance from the main and the auxiliary tasks.
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3.2 Hyperparameters

We set aside one of the texts (B) from the Anselm corpus for testing different hyperparameter configu-
rations. On this text, we achieved the best results with a dimensionality of 128 for the embedding and
bi-LSTM layers, using a dropout of 0.1, and training the model for 30 iterations. These settings were
subsequently used for all further experiments.

3.3 Other models used for comparison

For comparison, we also train and evaluate with the Norma tool described by Bollmann (2012), since it
was originally developed for the Anselm corpus and the implementation is publicly available.> However,
Norma actually consists of a combination of three different normalization methods, one of which is a
simple wordlist mapping of historical tokens to normalized forms. Since this wordlist mapping is con-
ceptually very simple and could easily be added to our (or any other) normalization method, we exclude
it for the comparison, and only use Norma’s remaining two algorithms (which we denote Norma™*).

Additionally, since we frame the problem as a sequence labeling task, we compare our results to
a simple sequence labeling model using conditional random fields (CRF). The CRF model gets the
same input/output sequences as our bi-LSTM model (cf. Sec. 2.1), and uses the two preceding and
following characters from the historical wordform as additional features. Implementation was done with
CRPFsuite (Okazaki, 2007) using the averaged perceptron algorithm for training.

4 Evaluation

We evaluate our model separately for each text in our dataset. From each text, we use 1,000 tokens as
our evaluation set, set aside another 1,000 tokens as a development set (which was not currently used),
and train on the remaining tokens (between 2,000 and 11,000, depending on the text). Both CRF and our
bi-LSTM model get their input as character sequences (as described in Sec. 2.1), while Norma requires
full words as input.

For the multi-task learning setup, we randomly sample from all Anselm texts and regard each text as
its own task. Effectively, we are learning a joint model over all Anselm texts with shared parameters
but distinct prediction layers, while viewing the text we are currently evaluating on as our main task and
the others as auxiliary tasks. The MTL setup is only applicable to our bi-LSTM model; however, since
the auxiliary task consists of spelling normalization with data from the same corpus (although with a
higher variety of different spelling characteristics compared to the target text), it is possible that the other
methods could also profit from this additional training data. We therefore also evaluate Norma and CRF
when the training sets have been augmented by 10,000 randomly sampled training examples from all
texts.

4.1 Word accuracy

Evaluation results in terms of word-level accuracy are presented in Table 1.

Columns “S” show results for the traditional setup without multi-task learning. The basic bi-LSTM
model performs better than Norma on 34 of the 44 texts. On average, there is an increase of 2.1 percent-
age points (pp), although the differences on individual texts vary wildly, from —2.9 pp (M5) to +9.6 pp
(M), giving a standard deviation of 2.7 pp. The CRF model, on the other hand, is almost always worse
than Norma, averaging a difference of —2.1 pp (£2.0). This indicates that the reformulation of the task
as character-based sequence labeling cannot alone be responsible for the bi-LSTM results, but the choice
of a neural network architecture is crucial, too.

Columns “S+A” present the results when using the augmented training set. For bi-LSTM, this is
the multi-task learning setup—using MTL improves the results by +0.7 pp (£2.8) on average, but
again there is a high variance within the individual scores. However, for the other methods, adding
the 10,000 randomly selected samples to the training set actually decreases the average accuracy, by
—0.4 pp for Norma and —2.0 pp for CRF. This is likely due to the fact that this additional training set
introduces a variety of spelling characteristics that are not found in the target text. While Norma and

*https://github.com/comphist/norma
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ID Region Tokens Norma™ CRF Bi-LSTM

S S+A S S+A S s+af
B East Central 4718 80.30% 77.80% 76.30% 72.80% 79.20% 81.70%
D3 East Central 5,704 80.50% 80.20% 77.20% 73.00% 80.10% 81.20%
H East Central 8,427 8270% 82.90% 78.60% 76.00% 85.00% 82.30%
B2 West Central 9,145 76.10% 77.60% 74.60% 71.70% 82.00% 79.60%

KA1492  West Central 7,332 77.50% 7440% 74.80% 68.40% 81.60%  80.50%
KJ1499 West Central 7,330  77.00% 72.90% 73.50% 68.40% 84.50%  79.20%
N1500 West Central 7272 76.70% 75.30% 72.710% 67.20%  79.00% 79.20%
N1509 West Central 7,418 78.10% 73.30% 74.30% 68.80% 80.80%  80.10%
N1514 West Central 7412 7830% 73.80% 72.20% 69.90% 79.00% 80.10%

St West Central 7,407 72.60% 73.80% 70.30% 68.70% 75.50%  75.20%
D4 Upper/Central 5,806  75.60% 75.60% 72.40% 70.90%  76.50%  76.60%
N4 Upper 8,593 7820% 78.10% 80.00% 78.40% 81.80% 83.40%
s1496/97  Upper 5,840  81.70% 83.40% 77.70% 76.90%  83.00% 84.10%
B3 East Upper 6,222 80.80% 80.60% 79.50% 79.10% 81.50% 83.20%
Hk East Upper 8,690 77.80% 79.30% 7820% 77.90% 80.90% 82.20%
M East Upper 8,700 7430% 7440% 72.80% 68.40% 83.90%  80.90%
M2 East Upper 8,729 7580% 76.00% 75.10% 72.40% 76.70%  80.20%
M3 East Upper 7,929  79.00% 79.70% 77.30% 74.10% 80.40%  79.60%
M5 East Upper 4,705 80.60% 80.70% 76.40% 7830% 77.70% 82.90%
M6 East Upper 4,632 7590% 7630% 73.710% 74.40%  75.20% 79.30%
M9 East Upper 4,739  8220% 81.50% 79.00% 76.90%  80.40%  83.60%
M10 East Upper 4,379  77.00% 78.60% 76.00% 75.80% 75.10% 81.30%
Me East Upper 4,560 79.70% 80.10% 76.90% 75.50%  80.30% 83.70%
Sb East Upper 7,218  78.00% 76.60% 75.70% 74.80% 80.00%  78.50%
T East Upper 8,678  76.710% 78.60% 73.40% 7220% 75.80% 79.00%
w East Upper 8217 7590% 7830% 78.20% 77.00% 81.40%  80.80%
We East Upper 6,661 83.10% 81.50% 78.60% 75.80% 81.50% 83.10%
Ba North Upper 5934  79.80% 81.20% 80.20% 78.70%  80.70%  82.80%
Ba2 North Upper 5953 81.40% 80.00% 78.10% 77.90% 82.50% 84.10%
M4 North Upper 8574 7690% 76.70% 75.70% 75.00% 79.40% 82.30%
M7 North Upper 4,638 79.40% 79.80% 75.60% 7420%  78.20% 82.10%
M8 North Upper 8275 7850% 77.00% 7820% 78.40% 81.10% 82.50%
n North Upper 9,191  79.60% 81.30% 81.90% 78.20% 84.40% 84.70%
N North Upper 13,285 7550% 76.30% 71.710% 68.90% 79.00%  76.90%
N2 North Upper 7,058 8220% 81.90% 80.30% 81.60% 84.30%  83.40%
N3 North Upper 4,192 79.10% 80.80% 76.40% 77.50% 77.60% 84.20%
Be West Upper 8203 7550% 76.40% 7530% 73.40% 78.80%  78.00%
Ka West Upper 12,641  73.80% 74.10% 75.40% 72.80%  80.10% 80.30%
SG West Upper 7,838  80.10% 79.90% 78.00% 76.80% 81.70%  80.90%
Sa West Upper 8,668 72.60% 73.50% 71.90% 71.40% 76.10% 76.50%
St2 West Upper 8834 7320% 73.40% 7320% 73.00% 78.20% 79.90%
Stu West Upper 8,686 77.710% 77.10% 76.50% 72.10% 79.40%  77.00%
Sa2 West Upper 8,011 77.50% 77.90% 73.50% 73.30% 79.50% 79.70%
Le Dutch 7,087  69.50% 60.30% 65.00% 55.80% 75.60%  67.50%
Average 7,353 77.83% 77.48% 75.73% 73.710% 79.90%  80.55%

Table 1: Word accuracy on the Anselm dataset, evaluated on the first 1,000 tokens; S = training set from
the same text, S+A = like S, but augmented with 10,000 tokens randomly sampled from the other texts;
T = Bi-LSTM (S+A) is the multi-task learning setup. Best results shown in bold.
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Figure 2: Word accuracy on the ‘B’ text for different sizes of the training set; left = train only on the
training set from ‘B’ (S); right = use augmented training set/multi-task learning (S+A).

CRF cannot handle this out-of-domain training data well, the MTL setup can actually profit from it in
many cases.

Table 1 also shows a rough classification of the dialectal regions from which the texts originate. There
is a slight trend for multi-task learning to be advantageous on texts from the East and North Upper
German regions, while for the Central and West Upper German texts, there are more instances of the
standard bi-LSTM model (S) being better than the MTL model (S+A). This could either be due to
linguistic properties of these dialectal regions, or due to the fact that East/North Upper German texts
make up the majority of the dataset, thereby also featuring more prominently in the “S+A” settings.

The latter hypothesis is supported by the case of the ‘Le’ text, which is the only Dutch text in the
sample (but which was nonetheless normalized to modern German in the corpus). Here, the “S+A” set-
tings of the experiments all show a dramatic decrease in accuracy (up to —9.2 pp), suggesting that it is
disadvantageous to augment the training set with samples that are too different from the target domain,
even for the MTL setup.

In general, however, one of the bi-LSTM models is always best; there is only one text (We) for which
Norma achieves an equal accuracy. This indicates that deep neural networks can be applied successfully
to the spelling normalization task even with a comparatively small amount of training data. Also, we
note that Norma always requires a lexical resource which it uses to filter results, while we do not.

4.2 Effect of training set size

In our evaluation, we use all but the first 2,000 tokens from a text for training (cf. the beginning of
Sec. 4). Consequently, the training sets for each text are of different sizes. We calculate Spearman’s rank
correlation coefficient (p) between the size of the training sets and the normalization accuracy for each
column in Table 1. We find no significant correlation for the CRF and bi-LSTM models (|p| < 0.25),
although there seems to be a moderate inverse correlation for the Norma results (p ~ —0.48 on Norma
“S”). The reasons for this are beyond the scope of this paper, though.

The question of how much training data is needed to effectively train a model is particularly relevant
for historical spelling normalization, since training data can be very sparse in this domain. We therefore
choose to evaluate each method in a scenario where we consider a single text, but vary the size of the
training set, to estimate how well they perform with fewer data.

Figure 2 shows the results for different training set sizes on the ‘B’ text. Not surprisingly, when
training on only 100 tokens, accuracy is bad (< 41%) for CRF and bi-LSTM. Norma, on the other hand,
already achieves 67.4% in this scenario. The biggest gains for all three methods can be seen for training
set sizes between 100 and 1,000 tokens—for larger set sizes, the gains become less, and all three methods
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are within close range of each other.

For the “S+A” scenario, all models have noticeably higher accuracy even with only 100 tokens from
the ‘B’ text. However, the increases for Norma and CRF are not as high as in the “S” scenario; this is
not surprising, since the total training set for these methods always contains at least 10,000 tokens (from
the auxiliary set), and it is only the proportion of tokens coming from the ‘B’ text that increases. The
bi-LSTM model with multi-task learning behaves differently, though: while it starts off as the weakest
model (on 100 tokens), it is the best model when training on 1,000 tokens or more.

These learning curves illustrate that the MTL setup is fundamentally different from adding the auxil-
iary data to the training set normally, as is the case with CRF and the Norma tool. They also show that
our bi-LSTM models can be better than or at least competitive with CRF/Norma for training set sizes as
low as 1,000 tokens.

4.3 Multi-task learning with grapheme-to-phoneme mappings

It is conceivable to use different tasks than historical spelling normalization as the auxiliary task in a
multi-task learning setup. In particular, we also experimented with grapheme-to-phoneme mapping as
the auxiliary task, since it can be seen as a similar form of character-based sequence transduction.

For our dataset, we used the German part of the CELEX lexical database (Baayen et al., 1995), par-
ticularly the database of phonetic transcriptions of German wordforms. The database contains a total
of 365,530 wordforms with transcriptions in DISC format, which assigns one character to each distinct
phonological segment (including affricates and diphthongs). For example, the word Jungfrau ‘virgin’
is represented as ’ JUN-£frB. We randomly sampled 4,000 tokens from this dataset for our experiment,
and used the same algorithm as for the historical data to convert these mappings to a character-based
sequence representation (cf. Sec. 2.1).

The evaluation, however, showed no real benefit of this MTL setup compared to the bi-LSTM model
without MTL. While accuracy increased for some texts by up to 2.6 pp, it decreased slightly for the
majority of texts, averaging to a —0.4 pp difference to the basic model.

5 Related Work

Various methods have been proposed to perform spelling normalization on historical texts; for an
overview, see Piotrowski (2012). Many approaches use edit distance calculations or some form of
character-level rewrite rules, but require either hand-crafting of the rules (Baron and Rayson, 2008)
or a lexical resource to filter their output (Bollmann, 2012; Porta et al., 2013).

A newer approach is the application of character-based statistical machine translation (Pettersson et al.,
2013; Sanchez-Martinez et al., 2013; Scherrer and Erjavec, 2013). In contrast to our sequence labeling
approach, these methods do not require a fixed character alignment between wordforms, but it is not
clear whether this is actually an advantage. To our knowledge, a comparative evaluation between these
methods and other approaches has not yet been done.

Azawi et al. (2013) present the only other approach we are aware of that applies neural networks to
normalization of historical data. They also use bi-directional LSTMs, but differ from our approach in the
way they perform alignment between historical and modern wordforms. More importantly, they evaluate
their model on a single dataset, the Luther bible, which has much more regular spelling than the texts in
the Anselm corpus and is also significantly longer: they use about 200,000 tokens for their training set.

6 Conclusion and Future Work

We presented an approach to historical spelling normalization using bi-directional long short-term mem-
ory networks and showed that it outperforms a CRF baseline and the Norma tool by Bollmann (2012)
for almost all of the texts in our dataset, a diverse corpus of Early New High German, despite using a
relatively low amount of training data (about 2,000 to 11,000 tokens) and not making use of a lexical
resource (like Norma does). We showed further that multi-task learning with additional normalization
data can improve accuracy with bi-LSTMs, while adding the same data to the training set of Norma and
CRF does not help on average, and can even be detrimental.
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Many improvements to this approach are conceivable. Character-based statistical machine translation
has been successfully applied to spelling normalization (cf. Sec. 5), but we are not aware of any ex-
periments with neural machine translation (Cho et al., 2014) on this domain. Using an encoder—decoder
architecture, e.g. similar to Sutskever et al. (2014), would remove the need for an explicit character align-
ment (cf. Sec. 2.1) but could also make the model more complex and potentially more difficult to train,
so it is unclear whether this would be an improvement to our approach.

With regard to multi-task learning, our results seem to indicate that for the auxiliary task, it is prefer-
able to use data with similar characteristics to the data in the main task. On the other hand, depending
on the language variety to be annotated, such data might not always be readily available. We would
therefore like to do further experiments with auxiliary data from different corpora or even different string
transduction tasks, to see if and under which conditions they can have a beneficial effect on the spelling
normalization task.
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Abstract

Deceptive opinion spam detection has attracted significant attention from both business and re-
search communities. Existing approaches are based on manual discrete features, which can
capture linguistic and psychological cues. However, such features fail to encode the semantic
meaning of a document from the discourse perspective, which limits the performance. In this
paper, we empirically explore a neural network model to learn document-level representation for
detecting deceptive opinion spam. In particular, given a document, the model learns sentence
representations with a convolutional neural network, which are combined using a gated recurrent
neural network with attention mechanism to model discourse information and yield a documen-
t vector. Finally, the document representation is used directly as features to identify deceptive
opinion spam. Experimental results on three domains (Hotel, Restaurant, and Doctor) show that
our proposed method outperforms state-of-the-art methods.

1 Introduction

Online reviews on products and services are extensively used by consumers and businesses for conduct-
ing decisive purchase, making product design and altering marketing strategies. As a result, deceptive
opinion spam (e.g. deceptive reviews) arouses increasing attention (Streitfeld, 2012). Opinion spam is
a type of review with fictitious opinions, deliberately written to sound authentic (Jindal and Liu, 2008;
Ott et al., 2011). It can be difficult for human readers to distinguish them from truthful reviews. In a test
by Ott et al. (2011), the average accuracy of three human judges is only 57.33%. It can be expensive
to detect opinion spam manually over large user-generated texts. Hence, machine learning methods for
automatically detecting deceptive opinion spam can be useful.

The objective of the task is to identify whether a given document is a spam or not. The majority
of existing approaches follow the seminal work of Jindal and Liu (2008), employing classifiers with
supervised learning. Most studies focus on designing effective features to enhance the classification
performance. Typical features represent linguistic and psychological cues, but fail to effectively represent
a document from the viewpoint of global discourse structures. For example, Ott et al. (2011) and Li et
al. (2014) represent documents with Unigram, POS and LIWC (Linguistic Inquiry and Word Count)
(Newman et al., 2003) features. Although such features give the strong performance, their sparsity
makes it difficult to capture non-local semantic information over a sentence or discourse.

Recently, neural network models have been used to learn semantic representations for NLP tasks (Le
and Mikolov, 2014; Tang et al., 2015), achieving highly competitive results. Potential advantages of
using neural networks for spam detection are three-fold. First, neural models use dense hidden layers for
automatic feature combinations, which can capture complex global semantic information that is difficult
to express using traditional discrete manual features. This can be useful in addressing the limitation of
discrete models mentioned above. Second, neural networks take distributed word embeddings as inputs,
which can be trained from a large-scale raw text, thus alleviating the sparsity of annotated data to some

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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Figure 1: Neural network model structure for deceptive opinion spam detection, red nodes represent
neural features, and blue nodes represent discrete features.

extent. Third, neural network models can be used to induce document representations from sentence
representations, leveraging sentence and discourse information.

In this paper, we empirically investigate the effectiveness of learning dense document representations
for opinion spam detection. In particular, we propose a three-stage neural network system, as shown in
Figure 1. In the first stage, a convolutional neural network is used to produce sentence representations
from word representations. Second, a bi-directional gated recurrent neural network with attention mech-
anism is used to construct a document representation from the sentence vectors. Finally, the document
representation is used as features to identify deceptive opinion spam. Such automatically induced dense
document representation is compared with traditional manually-designed features for the task.

We compare the proposed models on a standard benchmark (Li et al., 2014), which consists of data
from three domains (Hotel, Restaurant, and Doctor). Results on in-domain and cross-domain experi-
ments show that the dense neural features significantly outperforms the previous state-of-the-art meth-
ods, demonstrating the advantage of neural models in capturing semantic characteristics. In addition,
automatic neural features and manual discrete features are complementary sources of information, and a
combination leads to further improvements.

2 Related Work

2.1 Deceptive Opinion Spam Detection

Spam detection has been extensively investigated in the Web-page and E-mail domains (Gyongyi et al.,
2004; Ntoulas et al., 2006), while research has recently been extended to the customer review domain
(Ott et al., 2011; Mukherjee et al., 2013; Li et al., 2014). Various types of indicator features have
been investigated. For examples, Jindal and Liu (2008) trained models using features based on the
review content, the reviewer, and the product itself. Yoo and Gretzel (2009) gathered 40 truthful and 42
deceptive hotel reviews and manually compared the linguistic differences between them.

Ott et al. (2011) created a benchmark dataset by employing Turkers to write fake reviews. Their data
were adopted by a line of subsequent work (Ott et al., 2012; Feng et al., 2012; Feng and Hirst, 2013).
For example, Feng et al. (2012) looked into syntactic features from Context Free Grammar (CFG)
parse trees to improve the performance. Feng and Hirst (2013) built profiles of hotels from collections of
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reviews, measuring the compatibility of customer reviews to the hotel profile, and using it as a feature for
opinion spam detection. Recently, Li et al. (2014) created a wider-coverage benchmark, which comprises
of data from three domains (Hotel, Restaurant, and Doctor), and explored generalized approaches for
identifying online deceptive opinion spam. We adopt this dataset for our experiments due to its larger
size and coverage.

Existing methods use traditional discrete features, which can be sparse and fail to effectively encode
the semantic information from the overall discourse. In this paper, we propose to learn document-level
neural representation for better detecting deceptive opinion spam. To our knowledge, we are the first to
investigate deep learning for deceptive opinion spam detection.

There has been work that exploits features outside the review content itself. In addition to Jindal
and Liu (2008), Mukherjee et al. (2013) explored the features from customer’s behavior to identify
deception. Based on some truthful reviews and a lot of unlabeled reviews, Ren et al. (2014) proposed
a semi-supervised learning method, and built an accurate classifier to identify deceptive reviews. Kim
et al. (2015) introduced a frame-based semantic feature based on FrameNet. Experimental results show
that semantic frame features can improve the classification accuracy. We focus on the review content in
this paper, but their features can be used to extend our model.

2.2 Neural Network Models for Representation Learning

Neural network models have been exploited to learn dense feature representation for a variety of NLP
tasks (Collobert et al., 2011; Kalchbrenner et al., 2014; Ren et al., 2016b). Distributed word repre-
sentations (Mikolov et al., 2013) have been used as the basic building block by most models for NLP.
Numerous methods have been proposed to learn representations of phrases and larger text segments from
distributed word representations. For example, Le and Mikolov (2014) introduced paragraph vector to
learn document representations, extending to word embedding methods of Mikolov et al. (2013). Socher
et al. (2013) introduced a family of recursive neural networks to represent sentence-level semantic com-
position. Follow-up research includes recursive neural network with global feed backward mechanisms
(Paulus et al., 2014), deep recursive layers (Irsoy and Cardie, 2014), and adaptive composition functions
(Dong et al., 2014).

Convolutional neural networks have been widely used for semantic composition (Kalchbrenner et al.,
2014; Johnson and Zhang, 2014), automatically capturing n-gram information. Sequential models such
as recurrent neural network or long short-term memory (LSTM) (Li et al., 2015a; Tang et al., 2015)
have also been used for recurrent semantic composition. The attention mechanism was first proposed in
machine translation (Bahdanau et al., 2014). Further uses of the attention mechanism include parsing
(Vinyals et al., 2014), natural language question answering (Sukhbaatar et al., 2015; Kumar et al., 2015;
Hermann et al., 2015), and image question answering (Yang et al., 2015). We explore CNN and recur-
rent neural networks with attention mechanism to learn document representation for detecting deceptive
opinion spam, comparing their effect with bag-of-word and paragraph vector baselines.

3 Approach

The proposed neural network model learns real-valued dense vector representations for documents of
variable lengths, which is used as the feature to classify each document. Shown in Figure 1, it con-
sists of two main components, The first produces distributed vector sentence representations from word
representations, and the second gives dense vector document representations from the sentence vectors.
Structurally, the composition of words in forming sentences is similar to the composition of sentences
in forming documents, both tracking sequences of inputs with long range dependencies. Both CNN and
RNN are typically used for representing sequences in NLP, giving state-of-the-art accuracies in various
tasks. For example, for modeling sentences, CNN gives the best results for sentiment analysis (Johnson
and Zhang, 2014; Ren et al., 2016a), while LSTM gives the best results for question answering (Wang
and Nyberg, 2015). For modeling discourse structures, LSTM has been used more frequently (Li et al.,
2015b; Tang et al., 2015). We experimented with both CNN and RNN for both sentence and document
modeling, finding that the best development accuracies are obtained when CNN is used for sentence
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modeling and RNN is used for document modeling. Therefore, we choose this structure in Figure 1.
Note, however, that our main goal is to empirically study the effectiveness of neural features in contrast
to manual discrete features, rather than find a most accurate neural model variation for this task.

3.1 Sentence Model

We represent words using embeddings (Bengio et al., 2003), which are low-dimensional dense real-
valued vectors. For each word w, we use a look-up matrix F to obtain its embedding e(w) € R, where
E € RP*V is a model parameter, D is the word vector dimension size and V is the vocabulary size. E
can be randomly initialized from a uniform distribution (Socher et al., 2013), or pre-trained from a large
raw corpus (Mikolov et al., 2013).

As shown in the bottom of Figure 1, a convolutional neural network (CNN) (Kim, 2014; Kalchbren-
ner et al., 2014; Johnson and Zhang, 2014) is used to learn dense representations of a sentence. We
use three convolutional filters to capture the local semantics of n-grams of various granularities. For-
mally, denote a sentence consisting of n words as {w1, wa, .., w;, ..wy}. Each word w; is mapped to
the embedding representation e(w;) € RP. A convolutional filter is a list of linear layers with shared
parameters. Let D1, D2, D3 be the width of the three convolutional filters, respectively. We set D1 = 1,
Dy = 2 and D3 = 3 for representing unigrams, bigrams and trigrams, respectively. Taking Dy for
example, W5 and by are the shared parameters of linear layers for this filter. The input of a linear
layer is the concatenation of word embeddings in a fixed-length window size D5, which is denoted as
In; = [e(w;); e(wis1); ..; e(witpy—1)] € RP*P2. The output of a linear layer is calculated as

Hy; =Wy -1Is; + b, (D

where Wy € RloexPxD2 ] s the output size of the linear layer. We use an average pooling layer to
merge the varying number of outputs { Hs 1, Ha 2, .., Ha », } from the convolution layer into a vector with
fixed dimensions.

1 n
o= 2 @
=1
To incorporate nonlinearity, a activation function tanh is used to obtain the output Oz of this filter.
02 = tcmh(HQ) (3)

Similarly, we obtain the O; and Oj for the other two convolutional filters with width 1 and 3, respectively.
The outputs of three filters are lastly averaged to generate sentence representation.

3.2 Document Model

Given a document with m sentences, we use the sentence vectors si, So, .., S, obtained by the CNN
model as inputs, and learn document composition with a gated recurrent neural network (GRNN). Stan-
dard recurrent neural networks (RNN) map sentence vectors of variable lengths to a fixed-length vector,
by starting with an initial vector, and recurrently transforming the current sentence vector s; together
with the previous state vector h;_; into a new state vector h;. The transition function is typically a linear
layer followed by a non-linear activation function such as tanh

hy = tanh(Wr . [ht—l; St] + br,«), 4)

where W,. € Rlnx(Intloc) b, € R» 1, and l,. are dimensions of state vectors and sentence vectors,
respectively. Unfortunately, the standard RNN suffers the problem of vanishing gradients (Bengio et al.,
1994; Hochreiter and Schmidhuber, 1997). This makes it difficult to model long-distance correlation in a
sequence. We explore a gated recurrent neural network (GRNN) to address this, which is similar in spirit
to LSTM (Cho et al., 2014; Chung et al., 2015), but empirically runs faster. Specifically, the transition
function of the GRNN used in the work is calculated as follows

ir = sigmoid(W; - [he—1; s¢] + b;) ®)
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[t = sigmoid(Wy - [he—1; s¢] + by) (6)
gt = tanh(Wy - [he—1; $¢] + by) 0
ht = tanh(it © g¢ + fr © hi—1) ®)

where © stands for element-wise multiplication, 7; and f; represent the reset gate and update gate, respec-
tively. W5, Wy, b;, by adaptively select and remove history state vectors and input vectors for semantic
composition.

To better capture discourse relations, we apply the GRNN structure over sentence representation vec-
tors in the left-to-right and right-to-left directions, respectively, resulting in a forward state sequence
hi1, he, .., h, and a backward state sequence hln, h;lfl, - hll, respectively. For each sentence vector n-
ode s;, a combination of h; and h; is used as its bi-directional state vector. Here, if all bi-directional
state vectors are treated equally, the noisy or irrelevant part may degrade the classification performance.
Meanwhile, Vrij et al. (2009) and Ott et al. (2011) find that different topics have different importance
in deceptive opinion detection. For example, spatial information can usually be a strong indicator of
non-spam for hotel reviews. So we introduce a simple attention mechanism to consider the importance of
different state vectors. Specifically, for each sentence s; in one document d, which contains the sentences
vectors s1, S2, .., Sm, We integrate the weights into bi-directional state vector h; and h;. Specifically, we
use the context vector to measure the importance of the sentences. This yields

u; = tanh(Ws(h; @ h;) + bs), )]
o exp(u; Tuy)
S SRR o

The document vector d is represented as

d=">"Bi(hi ®hy), (1D

where ", 3; = 1, and @ is the vector concatenation function. The context vector us has been used
in previous memory networks (Kumar et al., 2015; Sukhbaatar et al., 2015), and it can been randomly
initialized and jointly learned during the training process.

3.3 The Classification Model

We use the document representation as features for identifying deceptive opinion spam. Specifically, a
linear layer is added to transform the document vector into a real-valued vector, whose length is class
number C. A softmax function is added to convert real vector to conditional probability for document
classification.

Our training objective is to minimize the cross-entropy loss over a set of training examples (x;, y;) |¢]\L1’
plus a [-regularization term,
N a(yi)
e\ A 9
L(9>——§;10geaw>+ea<n+2\\9|!, (12)
1=

where 6 is the set of model parameters.
We use online AdaGrad to minimize the training objective. At step ¢, the parameters are updated by:

(07

Gt.is
t 2
\/ dov=1 v i

where « is the initial learning rate, and g; ; is the gradient of the ith dimension at step .

We initialize all the matrix and vector parameters with uniform samples in
(=+/6/(r +¢),—+/6/(r +¢c)), where r and c are the numbers of rows and columns of the ma-
trixes, respectively. We learn word embeddings of 100-dimensions using the CBOW model of Mikolov

015 =011, — (13)
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Domain Turker | Employee | Customer
Hotel 800 280 800
Restaurant 200 120 400
Doctor 200 32 200

Table 1: Statistics dataset.

Method | Accuracy (%) | Macro-F1 (%) |
Average 73.0 73.9
CNN 75.9 774
RNN 63.2 64.8
GRNN 80.1 80.7
Bi-directional GRNN 83.6 83.4
Bi-directional GRNN (Attention) 84.1 83.9
[ Le and Mikolov (2014) [ 76.1 [ 77.6 ]

Table 2: Development results.

et al. (2013) from a large-scale Amazon reviews corpus !. During training, we use the average of
all the pre-trained embeddings vectors to initialize unknown words. We set the output length of the

convolutional filter as 50. The initial learning rate of Adagrad is set as 0.01.

4 Experiments

4.1 Experimental Setup

We use the dataset of Li et al. (2014), which consists of truthful and deceptive reviews in three domains,
namely Hotel, Restaurant and Doctor. For each domain, a set of Customer reviews are collected as
truthful reviews, and a set of deceptive reviews are collected from Turkers and Employees, respectively.
We follow Li et al. (2014) in designing the evaluation metrics. For the Hotel domain, we perform
both three-way (Customer/Employee/Turker) and two-way classification between Customer reviews and
Employeel/Turker reviews. This is because deceptive reviews from Employee and Turker can reflect
different levels of domain knowledge. For the Restaurant and Doctor domains, we perform only two-
way Customer/Turker classification because Employee reviews are relatively too few. Table 1 shows
the statistics of the dataset. For each experiment, we measure both the per-instance accuracy and the
macro-F1 score across different classes.

4.2 Development Experiments

To compare the effectiveness of various neural document models, we conduct a set of development
experiments using the mixed dataset of all three domains. Only Turker and Customer reviews are used,
and the total of 2600 reviews are split randomly into training/tuning/testing sets with a ratio of 80/10/10.
The tuning set is used for optimizing the hyper-parameters for each neural network structure.

We compare a set of methods for document modeling, which include a single averaging method,
tracking a document as a bag of sentences (Average), a CNN, a naive RNN, and our gated RNN in
single- and bi-directional method. In addition, we compare the bi-directional RNN without attention and
with attention being used.

Table 2 show the results. Without modeling discourse relations, the averaging method gives a baseline
accuracy of 73.0%. CNN gives better results by capturing relationships between local sentences. Though
modeling global sequential relations, RNN does not give better results compared with the averaging
baseline, and the main reason is vanishing gradients in its training. By using gates, the results of GRNN
is significantly better than both the baseline and the CNN document model. Both averaging and the bi-
directional extension further increased the accuracies. By introducing the attention mechanism into the
bi-directional GRNN, the best development result is 84.1%.

We also compare our methods with the paragraph vector model of Le and Mikolov (2014), which
builds a document representation without considering sentence vectors. It gives results comparable to

"http://snap.stanford.edu/data/web-Amazon.html
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[ Domain | Setting [ Method | Accuracy (%) | Macro-F1 (%) |

Lietal. 66.4 67.3
Customer/Employee/Turker | Neural/Logistic 78.9/66.5 74.7/67.6
Integrated 81.3 77.4
Hotel Liet al.. . 81.8 82.6
Customer/Turker Neural/Logistic 84.1/82.4 84.2/83.5
Integrated 86.1 86.0
Lietal. 79.9 80.9
Customer/Employee Neural/Logistic 84.8/79.4 82.4/80.6
Integrated 87.2 84.7
Lietal. 76.2 78.0
Employee/Turker Neural/Logistic 91.1/76.2 87.9/78.5
Integrated 92.8 90.4
Liet al. 81.7 82.2
Restaurant Customer/Turker Neural/Logistic 84.8/82.5 85.0/82.7
Integrated 87.1 87.0
Lietal. 74.5 73.5
Doctor Customer/Turker Neural/Logistic 75.3/74.4 73.4/72.9
Integrated 76.3 74.5

Table 3: In-domain results.

the CNN model, but much lower compared with the GRNN models, which leverage non-local discourse
structures.

4.3 In-Domain Results

We choose the best neural model, namely the bi-directional GRNN (Attention), according to the devel-
opment test results. A set of in-domain test are conducted according to Li et al. (2014)’s settings, in
order to compare the neural model with the state-of-the-art discrete model with SVM. In particular, all
results are reported by using ten-fold cross-validation. As mentioned in the introduction, Li et al. (2014)
use hand-crafted features that contain the word, POS and other linguistic clues.

The results are shown in Table 3, in the Li et al. rows and the left items of the Neural/Logistic rows,
respectively. For the Hotel domain, the neural model outperforms the discrete model of Li et al. (2014)
on both three-way Customer/Employeel/Turker classification and two-way classification tasks. While Li
et al. (2014)’s method gives about around 80% accuracies on Customer/Turker and Customer/Employee
classifications, which distinguish truthful and deceptive reviews. The accuracies drop to below 66.4%
when all the three classes are involved. In contrast, our method gives an accuracy of 78.9% for the
three-way task, demonstrating the power of the neural model in distinguishing deceptive reviews from
different types of authors. The contrast on the two-way Employee/Turker classification task is consistent.
This shows the power of the neural model in capturing subtle semantic features, which are difficult to
express using manual indicator features.

The results on the Restaurant domain is similar to those on the Hotel domain, where the neural model
significantly outperforms the discrete model. However, the neural model gives similar results compared
with the discrete model on the Doctor domain. One possible reason is that number of reviews in this
dataset is relatively lower, which leads to relatively lower accuracies by both models. The other reason is
a relatively high OOV rate, and 7.02% of the test words in the Doctor domain are out of the embedding
dictionary (in contrast to 3.25% in the Hotel domain and 3.43% in the Restaurant domain).

4.3.1 Analysis

In order to contrast the effect on discrete and neural features, we build a discrete model using logistic
regression with the same discrete feature as Li et al. (2014). The main advantage of using this model is
a direct comparison on features, because a logistic regression classifier is the same as the softmax output
layer of our neural network model in mathematic form. The only difference is that the logistic regression
method uses discrete features, while the neural model uses continuous features from the deep neural
network. The results of the logistic regression model are shown in the right items of the Neural/Logistic
rows in Table 3, which are slightly lower but comparable to Li et al. (2014)’s SVM results.
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Figure 2: Output probability comparisons.

Figure 2 shows the output probabilities of the Customer and Turker classes by both the neural and
the logistic discrete models, respectively. Results on the Hotel (Customer/Employee) and Hotel (Turk-
er/Employee) datasets are shown in Figure 2(a) and 2(b), respectively. The x-axis shows the probability
by the neural model and the y-axis shows the probability by the discrete model. Taking Figure 2(a) for
example, true Customer reviews in the test set are shown in black, where false reviews by Employee are
shown in red. As aresult, black dots on the top of the figure and red dots on the bottom show cases which
the discrete model predicted correctly, while black dots on the right and red dots on the left show cases
which the neural model predicted correctly.

As shown in the figure, most black dots are on the top-right of the figure and most red dots are on
the bottom-left, showing that both models are correct in most cases. However, the dots are relatively
more disperse in the x-axis, showing that the neural model is more confident in scoring the inputs. This
demonstrates the effectiveness of neural features. Observation in Figure 2(b) is similar. For the more
challenging task, the neural model shows large advantages.

Figure 2 also shows that the errors by using neural and discrete features can be complementary, which
suggests that integrating both types of features in a single model can further improve the results. We
make a feature integration by directly concatenating the discrete feature vector (the blue nodes in Figure
1) to the neural features vector before the softmax layer. The results of the combined model are shown in
the Integrated rows in Table 3. In all the test sets, the model gives significantly better results compared
with both the neural and logistic models?.

4.4 Cross-Domain Results

For the task of deceptive opinion spam detection, the sample numbers of the dataset are relatively small,
and the collection of labeled data is time-consuming and expensive. We investigate two important ques-
tions. First, it is interesting to know whether the relatively more richly annotated Hotel domain dataset
can be used to train effective deception detection models on the Restaurant or Doctor domain. Second,
we study the generalization ability of our neural model. We frame the problems as a domain adaptation
task, training a classifier on Hotel reviews, and evaluate the performance on the other domains. For
simplicity, we focus on two-way Customer/Turker classification.

The results are shown in Table 4. First, the classifiers trained on Hotel reviews apply well to the
Restaurant domain, which is reasonable due to the many shared properties among Restaurant and Hotel,
such as the environment and location. However, the performance on the Doctor domain is much worse,
largely due to the difference in vocabulary. Second, compared with the method of Li et al. (2014), our
neural model gives better performance. For the Doctor domain, both models trained on the Hotel domain
do not generalize well. Our neural model gives a higher F1 (66.3%) compared with the SVM classifier

’The p-value is below 10~ using t-test
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[ Domain [ Method [ Accuracy (%) | Macro-F1 (%) ]

Lietal. 78.5 77.8

Restaurant Neural 81.9 81.0
Integrated 83.7 82.6

Lietal. 55.0 61.7

Doctor Neural 56.1 66.3
Integrated 57.3 67.6

Table 4: Cross-domain results.

(61.7%), which shows some relative effectiveness of neural model. Similar to the in-domain results, the
integrated model outperforms both the discrete and neural models.

5 Conclusion

We investigated a gated recurrent neural network model with attention mechanism for deceptive opinion
spam detection. By capturing non-local discourse information over sentence vectors, the neural network
model outperforms a state-of-the-art discrete baseline, and also simple neural document models such as
paragraph vectors. Further experiments show that the accuracies can be improved by integrating discrete
and neural features.
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Abstract

Gaussian LDA integrates topic modeling with word embeddings by replacing discrete topic dis-
tribution over word types with multivariate Gaussian distribution on the embedding space. This
can take semantic information of words into account. However, the Euclidean similarity used in
Gaussian topics is not an optimal semantic measure for word embeddings. Acknowledgedly, the
cosine similarity better describes the semantic relatedness between word embeddings. To employ
the cosine measure and capture complex topic structure, we use von Mises-Fisher (vMF) mixture
models to represent topics, and then develop a novel mix-vMF topic model (MvTM). Using pub-
lic pre-trained word embeddings, we evaluate MvTM on three real-world data sets. Experimental
results show that our model can discover more coherent topics than the state-of-the-art baseline
models, and achieve competitive classification performance.

1 Introduction

Topic models such as latent Dirichlet allocation (LDA) (Blei et al., 2003) are hierarchical probabilistic
models of document collections. They can effectively uncover the main themes of corpora by using
latent topics learnt from observed collections (Blei, 2012), however, they neglect semantic information
of words. In topic modeling, a “topic” is a multinomial distribution over a fixed vocabulary, i.e., a
word type proportion. Because words are represented by unordered indexes, with statistical inference
algorithms, related words are grouped into topics mainly by using document-level word co-occurrence
information (Wang and McCallum, 2006), rather than semantics of words. That is why LDA often
outputs many low-quality topics, and views in (Das et al., 2015) even suggest that any such observation
of semantically coherent topics in topic models is, in some sense, accidental.

To mix with semantics of words, a recent Gaussian LDA (G-LDA) (Das et al., 2015) model integrates
topic modeling with word embeddings, which can effectively capture lexico-semantic regularities in
language from a large unlabeled corpus (Mikolov et al., 2013). This hot technique transforms words
into vectors (i.e., word vector). To model documents of word vectors, G-LDA replaces the discrete
topic distributions over word types with multivariate Gaussian distributions on the word embedding
space. Because words with similar semantic properties are closer to each other in the embedding space,
semantic information of words can be taken into consideration by using Gaussian distributions to describe
semantic centrality location of topics.

An issue of G-LDA is that the word weights in Gaussian topics are measured by the Euclidean simi-
larity between word embeddings. However, the Euclidean similarity is not an optimal semantic measure,
since most of word embedding algorithms use exponentiated cosine similarity as the link function (Li et
al., 2016a). The cosine similarity may be a better choice to describe the semantic relatedness between
word embeddings. Following this idea, in this paper we use von Mises-Fisher (vMF) distributions on
the embedding space to represent topics, replacing Gaussian topics in G-LDA. The vMF distribution
defines a probability density over vectors on a unit sphere, parameterized by mean p and concentration

This work is licensed under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings
footer are added by the organisers. License details: http://creativecommons.org/licenses/by/4.0/
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parameter «. Its density function for x € R,

z|| =1, ||u|]| = 1, kK > 01is given by:

p (@l k) = e (k) exp (k" z) (1)

where ¢, (k) is the normalization constant. Note that vMF concerns the cosine similarity defined by
uT'z. Tt is a better way to represent topics of word embeddings.

Another issue we face is that topics often contain many words that are far away from each other in
the embedding space. That is, the true distributions of topics often form two or more dominant clump-
s. However, a simple vMF distribution is unable to capture such structure. For example, the topic
(software, user, net, feedback, grade) contains some “dissimilar” words, such as net and grade'. In
this case, a simple vMF topic distribution can not simultaneously place high probabilities on these “dis-
similar” words.

To address the problem mentioned above, we further use mixtures of vMFs to describe topics, rather
than a single vMF. We then develop a novel mix-vMF topic model (MvTM). Mixtures of vMFs can
help us capture complex topic structure that forms more dominant clumps. In MvTM, we consider two
settings with respect to the topic, i.e., disjoint setting and overlapping setting. Naturally, in disjoint
settings all mixtures of vMFs use disjoint vMF bases; and in overlapping setting some mixtures of
vMFs share the same vMF bases. An advantages of the overlapping setting is that it can describe topic
correlation in some degree. We have conducted a number of experiments on three real-world data sets.
Experimental results show that our MvTM can discover more coherent topics than the state-of-the-art
baseline topic models, and achieve competitive performance on the classification task.

2 Model

In this section, we simply review LDA and G-LDA.

2.1 LDA

LDA (Blei et al., 2003) is a representative probabilistic topic model of document collections. In LDA,
the main themes of corpora are described by topics, where each topic is a multinomial distribution ¢
over a fixed vocabulary (i.e., a word type proportion). Each document is a multinomial distribution 6
over topics (i.e., a topic proportion). For simplification, distributions ¢ and 6 are designed to be sampled
from the conjugate Dirichlet priors parameterized by 3 and «, respectively. Suppose that D, K and V
denote the number of documents, topics and word types. The generative process of LDA is as follows:

1. For each topic k € {1,2,---, K}
(a) Sample a topic ¢ ~ Dir ((3)
2. For each document d € {1,2,---,D}

(a) Sample a topic proportion: 0y ~ Dir («)

(b) For each of the N; words embeddings
i. Sample a topic indicator zg, ~ Multinomial (64)
ii. Sample a word wqy, ~ Multinomial (¢, )

Reviewing the definition above, we note that a topic in LDA is a discrete distribution over observable
word types (i.e., word indexes). In this sense, LDA neglects semantic information of words and precludes
new word types to be added into topics.

2.2 G-LDA

G-LDA (Das et al., 2015) integrates topic modeling with word embeddings. This model replaces the
discrete topic distributions over word types with multivariate Gaussian distributions on an M-dimensional

!"This means that the cosine similarity between word embeddings of net and grade is small.
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embedding space, and concurrently replaces the Dirichlet priors with the conjugate Normal-Inverse-
Wishart (NIW) priors on Gaussian topics. Because word embeddings learnt from large unlabeled corpora
effectively capture semantic information of words (Bengio et al., 2003), G-LDA can handle, in some
sense, words” semantics and new word types. Let N (111, ¥,) be the Gaussian topic k with mean /1, and
covariance matrix X. The generative process of G-LDA is as follows:

1. For each topic k € {1,2,---, K}

(a) Sample a Gaussian topic N (pg, Xg) ~ NIW (uo, ko, Yo, 10)

2. For each document d € {1,2,---, D}

(a) Sample a topic proportion: 0y ~ Dir («)

(b) For each of the N; word embeddings
i. Sample a Gaussian topic indicator zg4, ~ Multinomial (64)
ii. Sample a word embedding wq, ~ N (Hzgs Xzy,)

3 MvIM

G-LDA defines Gaussian topics, which measure word weights in topics by the Euclidean similarity
between word embeddings. However, the Euclidean similarity is not an optimal semantic measure of
word embeddings. People often prefer the cosine similarity (Li et al., 2016a). To upgrade G-LDA, a
novel mix-vMF topic model (MvTM) is proposed, where we replace the Gaussian topic in G-LDA with
mixture of vMFs. In this work, we use mixture of vMFs with C mixture components (Banerjee et al.,
2005) described by:

C
P(l’|7T1:CaM1:Cyﬂ) = Zﬂ'cpc (x|l'LC)H) ()
c=1

where p. (z|fic, k) is the mixture vVMF component (i.e., base); 7. is the mixture weight and such that
ZCC:1 m. = 1. The design of MvTM has two advantages. First, the vMF distribution defines a probability
density over normalized vectors on a unit sphere. Reviewing Eq.1, it can be seen that vMF concerns the
cosine similarity. Second, using linear vVMF mixture model can help us capture complex topic structure,
which forms two or more dominant clumps.

Formally, MvTM models documents consisting of normalized word embeddings w in an M-
dimensional space, i.e., ||w| = 1 and w € RM. Suppose that there are K topics in total. We characterize
each topic k as a mixture of vVMFs with parameter Ay = {ﬂkh: o P /{k}. Besides the topic design,
again suppose that each document is a topic proportion §, drawn from a Dirichlet prior a. Let D and
Ny be the number of documents and the number of words in document d, respectively. The generative
process of MvTM is given by:

1. For each document d € {1,2,---, D}

(a) Sample a topic proportion: 0y ~ Dir («)

(b) For each of the N; word embeddings
i. Sample a vMF mixture topic indicator zg4, ~ Multinomial (64)
ii. Sample a word vector wgy, ~ vMF (A, )

In MvTM, the vMF bases of different topics can be either disjoint or overlapping. For disjoint MvTM
(abbr. MvTMy), the vMF bases of different topics are disjoint. In MvTMy, the total number of vVMF
bases is C' x K. For overlapping MvTM (abbr. MvTM,), vMF bases are allowed to be shared by different
topics. An advantage is that the overlapping setting can describe topic correlation in some degree. For
example, if two topics share a same vMF base and their corresponding mixture weights are close to each
other, they may be semantically correlated. In previous study, we have examined several overlapping
patterns, e.g., all topics share a same set of vMF bases. However, an issue is that such patterns often

153



output many twinborn topics. In this work, we use the following overlapping scheme: suppose that there
are G groups of K topics. In a group, each topic consists of C’ personal vMF bases, and all topics in this
group share P public vMF bases, where C’ + P = C. In this setting, the total number of vVMF bases is
G x (K' x C'" + P), and topics in a group G, use a same kg, i.e., kg = ki = -+ = K if k- - k' € G.
The intuition behind overlapping by topic groups is that only a small set of topics may be semantically
correlated. Besides, the personal vMF base design can effectively avoid the outputs of twinborn topics.

3.1 Inference

For MvTM, the topic proportions {Gd}gz? and the topic assignments {zdn}gz? ;L"ZINd are hidden vari-

ables; and the topics {vMF (Ak)} e 1 are model parameters. Given an observable document collection
W consisting of word embeddings, we wish to compute the posterior distribution over # and z, and to
estimate vMF (A).

Because the exact posterior distribution p(6, z|W, o, A) is intractable to be computed, we must resort
approximation inference algorithms. Due to the multinomial-Dirichlet design, the topic proportion 6
can be analytically integrated out. We then use hybrid variational-Gibbs (HVG) (Mimno et al., 2012)
to approximate a posterior over the topic assignment z: p(z|W, o, A). A variational distribution of the
following form is used:

D
=1 a(za) 3)
d=1

where q(z,) is a single distribution over the K V¢ possible topic configurations, rather than a product of
N, distributions. By using this variational distribution, we obtain an Evidence Lower BOund (ELBO) £
as follows :

log p(2[W, a, A) > L(z4, A) 2 Eg [log p(W, 2[a, A)] — E, [log (2)] “4)

We then develop an expectation maximization (EM) process to optimize this ELBO, where in the E-
step we maximize £ with respect to the variational distribution ¢(z), and in the M-step we maximize
L with respect to the model parameter A, holding ¢(z) fixed. Optimizing ¢(z) directly is expensive
because for each document d it needs to enumerate all V¢ possible topic configurations. We therefore
apply Monte-Carlo approximation to this ELBO L in Eq.4 by:

L(zq,A) 2 E, [logp(W zlo, A)] — Eq [log ¢(2)]

Z <logp (W, z b)\a A) —logq (z(b))) (5)

where {z(b) }:713 are samples drawn from ¢(z). Because the variational distributions ¢(z4) are indepen-
dent from each other, reviewing Eq.3, each document d drives a personal sampling process with respect
to q(za)-

In the E-step, for each document d we use Gibbs sampling to draw B samples from ¢(z;). This se-
quentially samples topic assignment to each word embedding from the posterior distribution conditioned
on all other variables and the data. The sampling equation is given by:

P(2an = K|z;" a0, A) o< (Ng" + ) x vMF (wgn|Ar) (6)

where Ny is the number of word embeddings assigned to topic k in document d; the superscript “-n” is
a quantity that excludes the word embedding wg,,. During per-document Gibbs sampling, we iteratively
run the MCMC chain a fixed number of times and save the last B samples.

In the M-step, we optimize A given all samples of z obtained in E-step. This is achieved by maximiz-
ing the following approximate ELBO £’:

1 B
e 5 Z (logp( O, A) + const) (7)
b=1
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For the disjoint setting, i.e., MvTMy, the optimization of £’ is equivalent to independently estimate A,
for each topic k. Due to space limit, we omit the derivation details (Gopal and Yang, 2014). Extracting
all N, word embeddings assigned to topic k, for each word embedding w; we compute its weights for all
C vMF bases by:

T OMF (Wi ks k)

weight;. = (8)
L M v MF (wil gy, )
and then update Ay, by:
N Rk\c
Ry = Zweightic X wi, T = Z H i
i=1 =1 'k
Ry, Ns weight; reM — 13
Hrle = € y o Tkle = Z Twa Kk = 1_77,2]c 9
HRk\c i=1 k k

For the overlapping setting, i.e., MVTM,, there are a few changes to the optimization of £’. In each
topic group G, the updates of 7 and p of personal vMF bases remain unchanged, whereas the mean p
of public vMF bases and « of this group are updated by:

& Sreg, Bre  Sweg, Ry rgM -1 0
Tg = Z N, Hklp = y Rg = 1 2 (10)
c=1 Zkegg k HZI@EQQ Rk\p — Ty

where 1, is the mean of the pth public vVMF base for topic k and note that p,, = pr, if k, k' e G,.
For clarity, the overall EM inference algorithm for MvTM is outlined in Algorithm 1.

Algorithm 1 Inference for MvTM
1: Initialize parameters.
2: Fort=1,2,---, Max_iter do
3: E-step

4: For document d=1 to D do

5: Gibbs sampling for B topic assignments zéb) using Eq.6
6: End for

7: M-step

8: For MvTMy, optimize A using Eq.8 and 9.

9: For MvTMj, optimize A using Eq.8, 9 and 10.
10: End for

3.2 Time Complexity

We first analyze the time complexities of E-step and M-step, and then present the overall time cost of
MvTM.

In the E-step, the main time cost is the topic assignment sampling of each word embedding over K
topics. Reviewing Eq.6, one sampling process needs to compute the probabilities of the current word
embedding, i.e., v MF (wa, |Ak), in all K topics, which requires O (K C' M) time. Fortunately, the topics
are fixed in the E-step, thus we only need to compute the value of v M F (w|Ay) for each word embedding
at the beginning of each EM sweep, and save them in the memory. This requires O(V KCM) time,
where V is the number of word embeddings. Consequently, the topic sampling process of MvIM is
equivalent to the sampling of Gibbs sampling LDA, requiring O(K) time. We present that the per-
iteration time complexity of E-step is given by O(VKCM + (Ny K), where ( is the iteration number
in per-document Gibbs sampling and Ny is the total number of word embeddings occurred in a corpus.
Recently, sparse sampling algorithms (Yao et al., 2009; Li et al., 2014) effectively accelerate the sampling
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Table 1: Summarization of data sets used in our experiments. Ny is the total number of word tokens;
Ny /D is the average document length; “label” denotes the number of pre-assigned classes.

Data set 1% D Ny Nvy/D | label
NG 18,127 | 18,768 | 1,946,487 104 20
NIPS 4,805 1,740 | 2,097,746 | 1,206 —
Wiki 7,702 | 44,819 | 6,851,615 153 —

of topic models. Inspired by (Li et al., 2016b), we employ the Alias method (Walker, 1977; Marsaglia
et al., 2004) to reduce the per-word sampling cost from O(K) to O(Ky), where K is the number of
instantiated topics in document d and commonly K; < K. The per-iteration time complexity of E-step
now is O(VKCM + (Ny Ky).

In the M-step, the time cost of MvIMy and that of MvTM,, are almost the same. We only present
the time complexity of MvTM,. Reviewing the M-step, we see that the most expensive updates include
Eq.8, the first and the fourth equations in Eq.9. They require O(VCM), O(VCM) and O(V C). Thus
we present that the (per-iteration) time complexity of M-step is O(VCM).

Overall, we see that in each EM sweep the E-step dominates the run-time, giving an approximate
total per-iteration time complexity O(V KCM + ( Ny Kj). Clearly, MVvTM is much efficient than Gibbs
sampling G-LDA (Das et al., 2015), because G-LDA needs to repeatedly compute the determinant and
inverse of the covariance matrix in Gaussian topics. For each word occurring, this spends O(M?) time,
even using Cholesky decomposition.

4 Experiment

In this section, we evaluate MvTM qualitatively and quantitatively.

4.1 Experimental Setting

Data set Three data sets were used in our experiments, including Newsgroup (NG), NIPS and
Wikipedia (Wiki). The NG data set is a collection of newsgroup documents, consisting of 20 class-
es. We will use NG to examine the classification performance of MvTM in Section 4.3. The NIPS data
set is a collection of papers in the NIPS conference. The processed versions of these two data sets were
downloaded from the open source of G-LDAZ. For the Wiki data set, we downloaded a number of doc-
uments from online English Wikipedia, and processed these documents using a standard vocabulary?.
The statistics of the three data sets are listed in Table 1.

Baseline model: In the experiments, we used two baseline models, including LDA* and G-LDA?. For
both baseline models, we use their open source codes publicly available on the net. A pre-trained 50-
dimensional word embeddings® were used. Especially for MvTM, we normalized the word embeddings.

4.2 Evaluation on Topics

We use the PMI score (Newman et al., 2010) to evaluate the quality of topics learnt by topic models.
This metric is based on the pointwise mutual information of a power-law reference corpus. For a topic k,
given T most probable words the PMI score is computed by:

1 . .
PMI (k) = —— Z logM (11)
where p (w;) and p (w;, w;) are the probabilities of occurring word w; and co-occurring word pattern
(ws, w;) estimated by the reference corpus, respectively. In the experiments, we use the Palmetto® tool

2https://github.com/rajarshd/Gaussian_LDA
3http://www.cs.princeton.edu/~mdhoffma/

*http://gibbslda.sourceforge.net/

3GloVe word embeddings available at http://nlp.stanford.edu/projects/glove/
Shttp://aksw.org/Projects/Palmetto.html
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Figure 1: PMI performance of 15 top words on NG, NIPS and Wiki.

Table 2: Random selected examples of top words learnt by baseline models and our MvTM on NG.

LDA G-LDA

president car treating space government  car disease space
government  cars writes nasa administration university food nasa
fbi engine medical gov support ohio treatment spacecraft
mr good cancer orbit state cars doctor earth
clinton oil doctor writes military carolina medical orbit
koresh mr doesn don leaders virginia eat level
children speed treatment moon groups harvard patients mars
people drive brain mission public speed cancer put
batf ford patients solar policy michigan drink asked
administration article drug water forces missouri course shuttle

MvTM, MvTM,
country car disease earth country wheel patients space
western cars treatment orbit government  door treatments earth
arab driver medical mars state gear therapy orbit
muslim bike patients light president car treatment mars
territory drivers infection space public pulling diabetes spacecraft
government  truck drugs orbiting policy inside diseases light
war vehicle diseases jupiter leaders wheels hiv surface
occupation driving brain solar administration front treating orbiting
eastern vehicles tests orbiter war stuck disease solar
occupied wheel treating spacecraft people rolled vaccine orbiter

to compute PMI scores of the top 15 words.

We train baseline models and our MvTM with 50 topics, and evaluate the average PMI score of all
topics. For MvTMy, the number of vMF bases is set to 2, i.e., C' = 2. For MvTM,,, topics are organized
into ten groups, where each group consists of five topics; and the numbers of personal vMF bases and
public VMF bases are set to 2 and 3, respectively’.

The experimental PMI results on three data sets are shown in Figure 1. It is clearly seen that MvTM
performs better than LDA and G-LDA. This implies that MvTM outputs more coherent topics. Some
examples of top topic words are listed in Table 2. Overall, we see that the topics of MvTM seem more
coherent than those of baseline models. The topics of LDA contain some noise words, e,g., “mr” and
“don”; and G-LDA contains some less relevant words, e.g., the second topic of G-LDA is incoherent.
In contrast, the topics of MVvTM are more precise and clean. Besides, for MvITM, we measure topic
correlation by computing the cosine between vMF weights of topics in the same group. Some topic pairs
with high cosine similarity scores, such as (patients, treatments, therapy, treatment, diabetes) and
(blood, skin, heart, stomach, breathing), seem semantically correlated.

"In previous experiments, we found that using mixtures of vMFs with 2 bases is able to better represent topics.
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Figure 2: Classification performance on NG: (a) original test documents and (b) test documents with
new words.

4.3 Evaluation on Classification

We compare the classification performance of MvTM with baseline topic models across NG. Two new
baselines are used, i.e., topical word embedding (TWE) (Liu et al., 2015) and infvoc (Zhai and Boyd-
Graber, 2013). For all models, we learn the topic proportions (K=50) as features of documents, and then
use the SVM classifier implemented by LibSVMS.

The results of original test documents are shown in Figure 2(a). Clearly, MvTM achieves better
performance than LDA, G-LDA and TWE. MvTM can handle absent words in training data. To examine
this ability, we compare MvTM with G-LDA and infvoc®, where the two also can handle unseen words.
We replace a number of words in test documents with synonyms by using WordNet as in (Das et al.,
2015). The classification results are shown in Figure 2(b). It can be seen that MvTM outperforms G-
LDA and infvoc. The results imply that MvTM works well even future documents containing new words.
This may be insignificant in practice.

5 Related Work

Some early works have attempted to combine topic modeling with embeddings. (Hu et al., 2012) pro-
posed a model to describe indexing representations for audio retrieval, which is similar with G-LDA.
Another work (Wan et al., 2012) jointly estimates parameters of a topic model and a neural network to
represent topics of images.

Recently, (Liu et al., 2015) proposed a straightforward TWE model. This model separately trains
a topic model and word embeddings on the same corpus, and then uses the average of embeddings
assigned to the same topic as the topic embedding. A limitation of TWE is that it lacks statistical
foundations. Another modification latent feature topic modeling (LFTM) (Nguyen et al., 2015) extends
LDA and Dirichlet multinomial mixture by incorporating word embeddings as latent features. However,
LFTM may be infeasible for large-scale data sets, since it, i.e., the code provided by its authors, is time-
consuming. A most recent nonparametric model (Batmanghelich et al., 2016) also uses vMF to describe
the topic over word embeddings, where a topic is represented by a single vMF on the embedding space.
By contrast, it may be less effective to capture complex topic structure.

6 Conclusion and Discussion

In this paper, we investigate how to improve topic modeling with word embeddings. A previous art G-
LDA defines Gaussian topics over word embeddings, however, the word weights of topics are measured
by the Euclidean similarity. To address this problem and further capture complex topic structure, we
use mixtures of vMFs to model topics, and then propose a novel MvTM algorithm. The vMF bases of
topics in MVTM can be either disjoint or overlapping, leading to two versions of MvTM. The overlapping
MvTM can describe topic correlation in some degree. In empirical evaluations, we use the per-trained
GloVe word embeddings, and then compare MvTM with LDA and G-LDA on three real-world data

8https://www.csie.ntu.edu.tw/~cjlin/libsvmm/
9For fair comparison, we train infvoc by a batch optimization procedure.
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sets. The experimental results indicate that compared to the state-of-the-art baseline models MvTM can
discover more coherent topics measured by PMI, and achieve competitive classification performance. In
the future, we are interested in supervised versions of MvTM, directly applying to basic document tasks
such as sentiment analysis.
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Abstract

This paper describes a Bayesian language model for predicting spontaneous utterances. People
sometimes say unexpected words, such as fillers or hesitations, that cause the miss-prediction of
words in normal N-gram models. Our proposed model considers mixtures of possible segmental
contexts, that is, a kind of context-word selection. It can reduce negative effects caused by un-
expected words because it represents conditional occurrence probabilities of a word as weighted
mixtures of possible segmental contexts. The tuning of mixture weights is the key issue in this ap-
proach as the segment patterns becomes numerous, thus we resolve it by using Bayesian model.
The generative process is achieved by combining the stick-breaking process and the process used
in the variable order Pitman-Yor language model. Experimental evaluations revealed that our
model outperformed contiguous N-gram models in terms of perplexity for noisy text including
hesitations.

1 Introduction

1.1 Background

Language models (LMs) are widely used for text analysis, word segmentation and word prediction in
automatic speech recognition (ASR). The basic LM is a conventional N-gram model that predicts a
word depending on the patterns of the previous N words (context). The probability of a word is usually
calculated by counting the words that match the context in text data as maximum likelihood estimation.
Therefore, the model easily predicts frequent words or set expressions but not rare words or phrases.

Various N-gram language models have been proposed to prevent the incorrect probability assignment
caused by the increase of the context length N. Since the number of combinations of N becomes O (V")
for vocabulary size V/, there are a lot of patterns that do not appear in training data (data sparseness). Us-
ing an N-gram model based on a Bayesian framework is a promising approach for data sparseness. Be-
cause it is based on a Bayesian framework, an LM based on hierarchical Pitman-Yor process (HPYLM)
has two main differences from previous language models (Teh, 2006), such as Witten-bell (WB) (Witten
and Bell, 1991) and Kneser-ney (KN) smoothing (Kneser and Ney, 1995): 1) a Bayesian model express-
ing conventional smoothing methods and 2) automatic tuning of parameters from data. Since HPYLM
is based on a Bayesian framework, we can integrate other probabilistic models theoretically for other
problems and apply optimization methods in accordance with a Bayesian framework. In contrast, other
smoothing methods has several parameters that need to be tuned manually.

Human utterances contain various fillers and hesitations (left in Fig. 1), and these cause the mis-
prediction of words because they rarely appear in the training data, that is, another type of sparsity. This
will affect 1) the word prediction accuracy in ASR and 2) the precision of word segmentation (Mochi-
hashi et al., 2009) or lexicon acquisition from speech signal (Elsner et al., 2013; Kamper et al., 2016;
Taniguchi et al., 2016), which are our main interest. Since such hesitations are usually not registered

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

161

Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers,
pages 161-170, Osaka, Japan, December 11-17 2016.



#
Human utterance 2) Influence on 1) Influence on ASR (OOV) Influence on word prediction
o " segmentation Phoneticsequence N-gram context m
t’s ine toda i 4 A ! st | . . T TTT Rare
Phoneticsequence B
Y Phonetvlcse iuence , ItsfdInAmtultudér It's fine lumm t00|| today
rtsfarniAimtuitvdér || 1 . sl | 2000 0——----- pattern
) ASR ——
Segmentation -l_ _____ Wellk
It's fme umm Its|faIn|Amtultudér It’s fine ummtoo today ths fmemoday
i to- today I ———— Anew word or filler? Force word-assignment Segmental context [ Miss-recognition
Flllers and hesitations >P055|b|l|ty of . of an unregistered vocabulary (insertion error)
undesirable segmentation \ y,

Our focus

Figure 1: Problem caused by unexpected and inserted words

to an ASR vocabulary (out-of-vocabulary; OOV), they are recognized as the most similar and likely
word in the vocabulary set in terms of pronunciation and context (middle-right in Fig.1). Moreover,
mis-recognized words may also affect the subsequent word prediction based on N-gram auto-regression.
Such mis-recognition is a kind of insertion error caused by fillers, hesitations and other noise signals,
such as coughs. For example, the hesitation “to-" is recognized as “too”, and the filler “umm” and hes-
itation “too” are used for the prediction of the next word if we use normal N-gram model (right upper
in Fig. 1). Note that hesitations are hard to eliminate by using only a filler-word list because their com-
plete patterns cannot be prepared in advance. As for word segmentation and lexicon acquisition, the
language model is trained from character/phoneme sequences or raw speech signal in an unsupervised
manner. The Bayesian nonparametrics is often applied to this problem because it enables us to control
the number of words/symbols dynamically according to the amount of data. Since the lexicon acquisi-
tion includes a kind of segmentation problem, fillers and hesitations may cause mis-segmentations. A
nonparametric generative model that can deal with hesitations and fillers will help to recognize words
sequence and segment words from phoneme sequence.

We propose using a Bayesian language model in which probability consists of a mixture of condi-
tioned probabilities of segmental contexts for the word prediction problem. Since the lexicon acquisition
from phonetic sequence or raw conversational speech signal is also our scope, Bayesian approach is nec-
essary in terms of scalability. Our model removes (ignores) some words, such as fillers and hesitations
in the ideal case, from the context in predicting words. For example, given the text “It’s fine umm too to-
day,” the probability p(today|It’s, fine, umm, too) is defined as a mixture of p(today|It’s, fine, umm, too),
p(today|fine, umm), p(today|It’s, fine) and so on (right lower Fig. 1). The risk of mis-prediction caused
by the unknown context is reduced by other differently conditioned probabilities. Since the given term
includes many patterns of segmental context, we constrain the pattern to one ‘“contiguous” segment.
That is, the probabilities of a discontiguous segment, such as p(today|It’s, umm), are not included in the
mixture. Since the generative process can be expressed by combining the stick-breaking process (Sethu-
raman, 1994) and the process used in the variable order Pitman-Yor language model (VPYLM) (Mochi-
hashi and Sumita, 2007), the parameters can be estimated by Gibbs sampling (Christopher Michael
Bishop, 2006) the same as they are for VPYLM.

1.2 Related Work on Mixture Models

The main differences between our work and previous studies are 1) assumed context patterns in the
mixture and their purpose (text-level or utterance-level), and 2) whether the model is Bayesian or not. Our
proposed model is one of various mixture language models and there are several language mixture models
that consider word dependency. Again, we stochastically ignore some contiguous words in the context
in accordance with the appearance of fillers, hesitations and noises (right in Fig. 1) at the utterance-level.
Since other LM models correspond to the process for text generation in our framework, we can embed
them in our process as mixture components if necessary. As shown in the right half of Fig. 2, our current
model is based on the mixture of VPYLM which is based on the mixture of HPYLM. Note that VPYLM
and HPYLM have no mechanism to select words in the context for prediction.

Previous studies used all combinations or syntactic structure of /N words in context, and their methods
are complex to deal with our filler/hesitation problems. The left half of Fig.2 shows a generalized lan-
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Figure 2: Language model structures: GLM (left), HPYLM/VPYLM (middle) and our model (right)

guage model (GLM) that mixes all probabilities of possible context patterns of /N-grams hierarchically
(Pickhardt et al., 2014). At each context depth, a word is skipped in the context (skip /N-gram (Goodman,
2001; Guthrie et al., 2006)), and the probability is smoothed by shallow contexts. The relative position
in the context remains, and the skipped word is denoted by the asterisk *. WB and KN use only the
contiguous contexts for smoothing as shown in the Figure. Wu and Matsumoto (2015) proposed a hier-
archical word sequence language model using directional information. The most frequently used word
in the sentence is selected for splitting a sentence into two substrings, and a binary-tree is constructed
by a recursive split. If a directional structure is assumed, the context patterns decrease in size and the
processing time is shortened.

Running a language model on a recurrent neural network (RNN) (Mikolov et al., 2010) is, of course,
a reasonable choice because of the good prediction performance for closed-vocabulary task. However,
a neural network LM usually does not include a generative process, so it is difficult to apply to unsu-
pervised training of a language model or lexicon acquisition from speech signals. In that sense, the LM
based on generative model is still important. Of course, the combination method of Bayesian model and
neural networks should be investigated for practical use.

Our work is the extension of VPYLM based on mixture of segmental contexts to deal with hesitations
and fillers. And our mixture pattern is designed for hesitation and fillers, and it is simpler than that of
others in terms of the number of context patterns.

2 Hierarchical Bayesian Language Model based on Pitman-Yor Process

This section explains the fundamental mechanism of a language model based on Bayesian nonparamet-
rics. HPYLM should predict words more accurately than KN-smoothing because KN-smoothing is an
approximation of this model.

2.1 Generative Model

The N-gram LM approximates the distribution over sentences wr, ..., w; using the conditional distri-

bution of each word w; given a context h consisting of only the previous N — 1 words 'w’}\f_ll =

{wt—b ---7wt—N+1}’

T

plwr, ...wi) = [ [ plwiwi?)). (1)
t

The trigram model (N = 3) is typically used. Since the number of parameters increases exponentially
as N becomes larger, the maximum-likelihood estimation severely overfits the training data. Therefore,
smoothing methods are required if vocabulary V' is large.

The probabilistic generative process of sentences based on HPY is explained by the Hierarchical Chi-
nese restaurant process (CRP). In the CRP, there are tree-structured restaurants with tables and customers
that are regarded as latent variables of words. When a customer enters the leaf restaurant h, which corre-
sponds to context, he/she sits down at an existing table or a new table depending on some probabilities.
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If he/she selects a new table, an agent of the customer recursively enters the parent restaurant b’ as a new
customer. Here, we represent the depth of h as |h|, and there is the relationship |h'| = |h|— 1. Given the
seating arrangement of customers s, the conditional probability of word w with the context h is defined
as follows

Chw — Aipthw  On + djp|ths

we|s, k'), (2)
Ch*"—e‘hl Ch*"_alh‘ p( t‘ )

p(we|s, h) =

where cp,, is the count of word w at context h, and cpy = ), Chy 1S its sum. tp,, is the number of table
at context h, and tp. is also its sum. 6|y, and d|p,| are the common parameters of h with the same depth
|h|. The distribution over the current word given the empty context ¢ is assumed to be uniform over the
vocabulary w of V' words. The variable order PYLM integrates out the context length (depth) NV, thus
we need not determine the length in advance.

The predictive probability of word w is approximated by averaging Eq. (2) over sampled seating ar-
rangement s, (n = 1,..., N).

1
plwlh) = > p(wlsn, h) (3)

2.2 Inference of Parameters

The latent variable s and other parameters d and 6 are obtained through simulations on the basis of Gibbs
sampling given training text w;(i = 1, ..., N¢yqin ). The procedure for sampling a customer is as follows:

1. Add all customers to the restaurants
2. Select a certain customer w;

3. Remove the customer from the restaurant. If a table becomes null, also remove the agent from the
parent restaurant recursively.

4. Add the customer to the leaf restaurant. He chooses a table with probabilities proportional to the
number of customers at each table. If the table is null, also add an agent to the parent restaurant
recursively. (Go back to Step 2).

The parameters are sampled using auxiliary variables from their posterior probability. Please see the
work of Teh (Teh, 2006) for the detailed sampling algorithm.

2.3 Problem of Contiguous Context Model

The N-gram model is modeled as a series of words, and has an advantage in expressing common phrases.
The Bayesian nonparametrics enables the N-gram model to tune the smoothing parameters automati-
cally. This improves the accuracy of predicting rare words in a large context.

Unexpected words degrade the prediction accuracy of the N-gram model. The unexpected words in-
clude noises, fillers, and hesitations in actual utterances. For example, the probability of p(sing|he, will)
is estimated reliably. However, the probability of p(sing|will, sh..), which includes a hesitation (“sh..”),
is estimated unreliably because the hesitation does not appear in the corpus. The patterns of insertion
location and bursty are also not determined in advance.

3 Bayesian Language Model based on Mixture of Segmental Contexts

This section explains the segmental context model for utterances. First, we explain the generative model
and then its parameter inference. Note that the aim of this model is to improve the accuracy of word
prediction under noisy context condition, not to detect fillers and hesitations.
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Figure 3: Process for segmental context model

3.1 Generative Model

We assume that the conditional distribution of each word w; given a context is a mixture of the segmental
N-gram context. The segmental [N-gram is a part of context w;_;, .., w;_;, which begins at w;_; and
ends at w;_;.

plwlwi) =" " plwlwlly, i, )p6,5) = > > plwlw!)p(jli)p(i) )

i g> i g>

If we consider the N — o0, the possible segmental patterns are also considered. Setting the start index
1 of N-gram appropriately can eliminate the influence of the sequential unexpected words for predicting
the next word. The word probability term p(w, ]wz._i) is determined by HPYLM.

The stick-breaking process (SBP) represents the generative process of Eq.(4) as the same way of
VPYLM (Mochihashi and Sumita, 2007). The process consists of two parts; 1) decide the start index ¢
of N-gram and then 2) decide the end index j of N-gram. Each index is determined probabilistically
using SBP (Fig. 3).

Step1 - Process for start index i: First, the customer walks along the tables (word) from the start, w;_1.
The customer stops at the ¢-th table with probability n;, and passes it with probability 1 — 7;. Therefore,
the probability that the customer stops at the i-th table is given by

i—1

pliln) = n: [ J(1 = m). ()

=1

This probability decreases exponentially. We assume that the prior of parameters 77 is Beta distribution

Beta(al, 51)

Step2 - Process for end index j: The end index j is also determined using the same process ¢. The
customer walks along the tables from the i-th table, and stops at or passes the j-th table with probability
¢j or 1 — (j, respectively.

j—1
p(ili-¢) = ¢ [T =) ©6)

=1

The prior of parameters ¢ is also assumed to be the Beta distribution Beta(az, O2).
In fact, the whole process can be considered to be the combination of VPYLM and the start index
determination process. We thus can describe the probability as

plwi|wi') = Z Pypy (wlwi ™ )p(i). (7

If we determine from which element, Pvpy(w]wt =1}, the word comes in step 1, the latter process is
the same as the VPYLM. In practice, we set a maximum length of context for parameter estimation.
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Table 1: Parameters of experiment

Artificial noisy data

Actual hesitation data

English Japanese Japanese
Target text War and Peace CSJ CSJ
Training 27876 sentences 110566 sentences 114372 sentences

479585 words 2828499 words

3084592 words

Test for clean

7134 sentences
199100 words

5128 sentences
88552 words

20440 sentences
184145 words

Test for noisy

5128 sentences 7134 sentences

2296 sentences

97373 words 218945 words 32342 words
Vocabulary size 10717 18357 19703
(a1, 1) [C)) (L, D
(a2, B2) (1,9 (1, 8)

3.2 Inference of Start Index

We assume that all words in training data w have the start index ¢; as a latent variable, and are estimated
stochastically by Gibbs sampling. The start index i; of the word w; is sampled given data w, seating
arrangement s, and start and end indexes of other words ¢_; and j_; as

iv ~ plig|w,s_,J 4, 1—) (8)

X p(wt|l_v—t7j—t7i)p(ithb—tas—tai—taj—t) (9)

where the notation —¢ means that the ¢-th element corresponding to 1wy is excluded. Here, the first term,
p(wy|w—_¢,J_4,1), is calculated using VPYLM because the start index 4, is given. The second term is a
prior probability to select the start index. It can be calculated in the same way used in the VPYLM:

a; + oq by, + 51

az+bz+a1+ﬁ1]£[1ak+bk+041+ﬁ1’

p(zt - l‘w—tvs—hi—t?jft) = (]0)

where «; and 31 are hyper-parameters of the Beta distribution. The a; and b; are the count of customers
who stopped at and those who passed table w;. This probability is assumed to depend only on w;, not
whole context h. Since the probability of the word corresponding to w; is not important for the prediction
is low, the effect of an unexpected word on this index is reduced.

Once the start index is set, we can also draw the end index j; and the seating arrangement s; through
VPYLM process. The j; is first drawn from its posterior distribution, and then seating s; is also drawn
from its posterior distribution. After sampling, the average word probability is used for prediction.

The computational cost of our model is proportional to O (V) while the cost of the generalized lan-
guage model is roughly proportional to O(2"). The enumeration of all combinations of words that
should be used is computationally heavy for models based on Bayesian nonparametrics when N be-
comes larger and we optimize parameters of the model. Moreover, the context pattern of the generalized
model is complex to deal with fillers and hesitations (insertion errors).

4 Experimental Evaluations

4.1 Experimental Setup

We used two kinds of text for evaluation: 1) artificial noisy text and 2) actual hesitation text (Japanese
only). The former is for the validation of our method with model-matched data, and the latter is for the
performance measurement with real utterances.

We used two languages English and Japanese text data for training and test dataset for the artificial
noisy text. The English text was “War and Peace” from project Gutenberg!, and the Japanese text was the
Corpus of Spontaneous Japanese (CSJ?), consists of transcriptions of Japanese speech. For the English

Uhttp://www.gutenberg.org/
Zhttps://www.ninjal.ac.jp/english/products/csj/
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text, we randomly selected 27,876 sentences from the entire of “War and Peace” for training data, and
used the remaining 5,128 sentences for test data. For Japanese text, we used 110,566 sentences in the
“non-core” set for training data and 7,134 sentences in the “core” set for test data. All hesitations and
fillers were eliminated from the Japanese corpus to make it formal text data 3. The utterances in the CSJ
that have 0.5-second short-pauses were separated into sub-utterances, and each sub-utterance was treated
as a sentence. The words that appeared more than once were selected for the vocabularies. The sizes of
vocabularies were 10,717 words for English text and 18,357 words for Japanese text. To simulate the
artificial noisy text, we added words randomly selected from vocabularies into the test data at a rate of
10 %. The OOVs in the test set were treated as a symbol, “<unk>".

The raw CSJ Japanese transcription text was used for the actual hesitation text. In this experiment,
hesitations and fillers in the training set are not eliminated. The utterances that have 0.2-second short-
pauses were separated into sub-utterance, and each sub-utterance was treated as a sentence. The 0.2-
second is selected to make a rate of hesitation in noisy text about 8.0%. The test transcription data (“‘core”
set) were divided into two categories: hesitation-included noisy text (2,296 sentences) and clean text
(20,440 sentences). The number of hesitations in the test dataset was 2649 (about 2649/32342 = 8.1%
). The hesitation-included noisy text included hesitations, so its vocabulary was 19,703. The out of
vocabulary (OOV) words in the hesitation test data were replaced by words randomly selected from
the vocabulary set that had a phoneme distance to the OOV word of less than 2. This is because such
OOV words including unknown hesitations are actually mis-recognized and assigned similar-sounding
words in the ASR vocabulary. Therefore, the vocabulary set was closed. Note that frequent fillers and
hesitations remained in both the test and training sets. These settings are listed in Tab. 1.

We compared our model with other models: WB, KN, Modified KN (MKN) (Chen and Goodman,
1999), HPYLM, and VPYLM. The hyper-parameters, a and 35 of the Beta distribution used in VPYLM
were set to 1 and 9 for the artificial data, and 1 and 8 for the actual hesitation data. Additionally, those
of the start index process, oy and (31, were set to 9 and 1 for the artificial data, and 1 and 1 for the actual
hesitation data. These parameters were selected to perform best for each test set to evaluate the limitation
of methods. For the English and Japanese text, /N was set to 3, 4, 6, 10. For the Japanese transcription,
it was set to 3, 6, 8, 10. The predictive probability was averaged over 30 seating arrangements after
90 iterations of Gibbs sampling. We also investigate the performance of RNN language model * as a
reference. We tried several parameter set of RNN, such as the number of hidden layers and classes, and
they are also tuned for each test set. Note that the main interest of our experiments is the performance
comparison among Bayesian methods.

Perplexity (PP) was used as the evaluation criterion.

PP = 27 Wtest), P(wieq() = — > logP(s), (I

where s is a sentence in the test data and Niegt is the number of words in the test dataset. The PP was
calculated under the assumption that each sentence was independent. Smaller PP values mean better
word prediction accuracy. The prediction of OOVs, which are denoted by “<unk>", in the artificial test
set is eliminated in calculating perplexity.

4.2 Results and Discussion
4.2.1 Artificial Noisy Data

The perplexity values for the two data sets and the four N-gram lengths can be seen in Tabs. 2 and 3 for
English and Japanese text, respectively. The clean text denotes the raw formatted text, and the noisy text
denotes the ones with randomly-added words. There is no noteworthy difference between the English
and Japanese text other than the range of PP.

The differences among methods for clean text data with /N = 3 are clear. Like in the results of previous
studies, HPYLM and MKN had the lowest PP, followed by VPYLM and WB. Our model had worse PP

3 All words were tagged by hand. The tags of fillers and hesitations were included.
*https://github.com/pyk/rmnlm-0.4b
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Table 2: Perplexity for English text Table 3: Perplexity for Japanese text

maximum context length N maximum context length N
Test dataset | Method 3 [ 4 ] 6 ] 10 Testdataset | Method 3 ] 4 1 6 ] 10
WB 167.9 | 163.8 | 163.2 | 163.2 WB 56.6 55.8 56.6 56.9
KN 152.7 | 150.9 | 157.9 | 157.8 KN 53.1 50.7 50.4 51.4
MKN 153.1 | 151.3 | 156.7 | 157.9 MKN 52.3 50.0 49.4 50.3
Clean text HPYLM | 155.0 | 151.6 | 151.5 | 151.6 Clean text HPYLM | 52.1 50.0 49.5 49.5
VPYLM | 156.0 | 153.3 | 153.2 | 153.2 VPYLM | 522 50.5 50.0 49.9
Ours 161.7 | 154.6 | 152.7 | 152.9 Ours 53.1 51.0 50.4 50.5
RNN 1354 RNN 46.1
WB 365.9 | 360.0 | 359.2 | 359.2 WB 180.7 | 178.9 | 180.4 | 181.0
KN 328.3 | 3224 | 331.2 | 3325 KN 174.0 | 166.1 | 163.4 | 165.0
MKN 321.4 | 316.5 | 328.2 | 331.8 MKN 164.4 | 158.3 | 156.3 | 159.3
Noisy text HPYLM | 326.0 | 321.8 | 321.5 | 321.6 Noisy text HPYLM | 160.9 | 156.9 | 156.1 | 156.0
VPYLM | 3274 | 324.0 | 324.1 | 324.2 VPYLM | 158.8 | 155.0 | 153.3 | 1524
Ours 322.4 | 309.5 | 306.0 | 306.0 Ours 147.0 | 1432 | 1432 | 1443
RNN 312.0 RNN 166.1

Table 4: Perplexity for Japanese Transcription

maximum context length N maximum context length N
Test dataset | Method 37 6 ] 8 10 Test dataset | Method 3 ] 6 ] 8 ] 10
WB 613 | 62.1 | 62.3 | 62.4 WB 102.4 | 1044 | 104.8 | 104.9
KN 57.6 | 55.5 | 56.1 | 56.4 KN 95.6 922 93.2 93.7
MKN 539 | 56.8 | 54.8 | 54.0 MKN 93.1 89.5 89.8 90.6

Clean text HPYLM | 56.3 | 54.5 | 54.5 | 54.5 Noisy text HPYLM | 91.3 89.0 89.1 89.0

VPYLM | 564 | 54.7 | 54.7 | 54.7 (hesitations) | VPYLM | 91.2 89.0 89.0 89.1
Ours 574 | 55.0 | 55.0 | 55.0 Ours 91.8 88.2 | 88.1 | 88.2
RNN 46.0 RNN 83.1

than MKN, HPYLM and VPYLM. Since our model stochastically ignores some contiguous words in the
context, the prediction accuracy for formatted text was worse than those of other methods. This can be
reduced by using more text data or an improved model discussed in the next subsection. Using a longer
context improved the PPs of HPYLM and our model. Therefore, a longer context is useful for word
prediction. The perplexity of RNN was smallest, and RNN outperformed others by 15 and 4 points for
English and Japanese text.

The ranking were different for the noisy text data. The relative performances of WB, KN, MKN,
HPYLM, and VPYLM were almost the same as those for the clean text, but our model had the lowest
PP. Its performance improved with the context length N = 6 or 10. The perplexity of RNN is also
higher than that of our model. This indicates that the segmental context mixture works as intended, i.e.
reducing the negative effect of unknown context. The improvement with a longer context means that
Bayesian smoothing works well.

4.2.2 Actual Hesitation Data

The perplexity values for the four N-gram lengths can be seen in Tab. 4 for clean sentences and hesitation
included sentences. The perplexity was much higher for all four models with the noisy text mainly due to
hesitations and substitution errors caused by OOVs. Therefore, the word-prediction for actual utterance
is more difficult than written text.

The relative performances were almost the same as those for artificial noisy data although the im-
provement of perplexity seems to be slight. That indicates that our model is effective for the actual
transcription. The differences of perplexity among models are smaller than with artificial noisy data due
to a) the difference in the hesitation-word ratio (about 8 %) , b) the appearance of patterns of fillers or
hesitations in the training text, and c) the substitution of hesitations to pre-defined vocabularies (closed
vocabulary set). The substitution suffers the estimation of true skip probability Eq. (6) and (9) of hesi-
tations and true vocabulary. This means that we need to handle hesitation problem in raw-level symbol
sequence, such as phoneme sequence. The reason the RNN outperformed our model might be due to the
closed vocabulary set in this experiment. On the other hand, the context information in RNN might be
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for prediction

Figure 4: Weakness of segmental context model

suffered from the contiguous noisy words that were caused by the combination of the noise word and
OOVs, “<unk>", in the artificial noisy data, and RNN degraded prediction accuracy for artificial noisy
data. This indicated that RNN is unfamiliar to open-vocabulary tasks, such as lexicon acquisition.

The model validation with these text-level experiments provides us important knowledge and signif-
icant results for the next-level research step. Our method will be more effective for the word/phoneme
segmentation problem because the substitution of hesitations to OOV's does not happen and we have to
handle raw hesitation symbols. For example, the hesitation “to-” will be treated as itself “to-” or a pho-
netic expression “t u:”, and the skip prior/posterior probability Eq. (6) and (9) of a hesitation symbol will
be estimated properly. Our model will provide criteria for which words or symbols should be skipped.
Therefore, the model integration of ours and the OOV-free model (Mochihashi et al., 2009) is required
to process actual conversational utterances.

4.2.3 Remaining Problem on Model

The main problem of our model is clear from these results: it completely ignores neighbor context
and does not use it for prediction, as illustrated in Figure 4. Since the neighbor words are usually
useful for prediction, ignoring such words will degrade perplexity, especially that of clean text. The
actual fillers/hesitations and mis-recognized words move from head to tail in the context in predicting
words sequentially. Therefore, if the unknown segment is away from the context root, we can use the
neighbor context without risk. For example, the probability p(hard|work, mum, too) should be a mixture
of p(hard|work, mum), p(hard|work, too), p(hard|too) and so on. The probability p(hard|work, too) is
not considered in our current model. By modeling this property, our model will perform the same as
HPYLM and VPYLM for clean text.

The future work also includes the fundamental modification of our model and the application to
word/phoneme segmentation problem of actual utterances. Since hesitation is often a part of phoneme
sequence of a word, it also depends on the currently or previously uttered word. A new generative process
modeling above properties is required to deal with conversational utterances.

5 Conclusion

We proposed a segmental context mixture model to reduce the prediction error caused by noises, fillers,
and hesitations in utterances, which rarely appear in the training text. Although hesitations or fillers will
appear for speech transcriptions, they vary according to a speaker and topic. The model’s probability
consists of a mixture of conditioned probabilities of part of context words. The generative process can be
expressed by combining the stick-breaking process and the process used in the variable order Pitman-Yor
Language model (VPYLM). Experimental results revealed our model had better perplexity for noisy text
than hierarchical PYLM, VPYLM, Witten-Bell and Kneser-ney smoothing.

The remaining challenges include building a more specific process for fillers and mis-recognitions for
the language model and evaluation using text obtained by automatic speech recognition. For recognized
text, we can use the re-scoring technique to apply our model. As mentioned in the discussion, our
model can be improved by considering the movement property of filler and hesitations. Since our further
interest is to acquire lexicons and meaning from conversational speech signals through spoken dialogue,
the impact of our model on word segmentation should be evaluated.
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Abstract

Named entity typing is the task of detecting the types of a named entity in context. For instance,
given “Eric is giving a presentation”, our goal is to infer that ‘Eric’ is a speaker or a presenter and
a person. Existing approaches to named entity typing cannot work with a growing type set and
fails to recognize entity mentions of unseen types. In this paper, we present a label embedding
method that incorporates prototypical and hierarchical information to learn pre-trained label em-
beddings. In addition, we adapt a zero-shot framework that can predict both seen and previously
unseen entity types. We perform evaluation on three benchmark datasets with two settings: 1)
few-shots recognition where all types are covered by the training set; and 2) zero-shot recog-
nition where fine-grained types are assumed absent from training set. Results show that prior
knowledge encoded using our label embedding methods can significantly boost the performance
of classification for both cases.

1 Introduction

Named entity typing (NET) is the task of inferring types of named entity mentions in text. NET is a
useful pre-processing step for many natural language processing (NLP) tasks, e.g., auto-categorization
and sentiment analysis. Named entity linking, for instance, can use NET to refine entity candidates of
a given mention (Ling and Weld, 2012). Besides, NET is capable of supporting applications based on a
deeper understanding of natural language, e.g., knowledge completion (Dong et al., 2014) and question
answering (Lin et al., 2012; Fader et al., 2014). Standard NET approaches or sometime known as named
entity recognition (Chinchor and Robinson, 1997; Tjong Kim Sang and De Meulder, 2003; Doddington
et al., 2004) are concerned with coarse-grained types (e.g, person, location, organization) that are flat
in structure. In comparison, fine-grained named entity typing (FNET) (Ling and Weld, 2012), which
has been studied as an extension of standard NET task, uses a tree-structured taxonomy including not
only coarse-grained types but also fine-grained types of named entities. For instance, given “[Intel] said
that over the past decade”, standard NET only classifies Intel as organization, whereas FNET further
classifies it as organization/corporation.

FNET is faced with two major challenges: growing type set and label noises. Since the type hierarchy
of entities is typically built from knowledge bases such as DBpedia, which is regularly updated with new
types (especially fine-grained types) and entities, it is natural to assume that the type hierarchy is growing
rather than fixed over time. However, current FNET systems are impeded from handling a growing type
set for that information learned from training set cannot be transferred to unseen types. Another problem
with FNET is that the weakly supervised tagging process used for automatically generating labeled
data inevitably introduces label noises. Current solutions rely on heuristic rules (Gillick et al., 2014) or
embedding method (Ren et al., 2016) to remove noises prior to training the multi-label classifier. In order
to address these two problems at the same time, we propose a simple yet effective method for learning
prototype-driven label embeddings that works for both seen and unseen types and is robust to the label

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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noises. Another contribution of this work is that we combine prototypical and hierarchical information
for learning label embeddings.

The remainder of this paper is organized as follows: Section 2 proposes a survey of prior works related
to FNET; Section 3 introduces the embedding-based FNET method and its zero-shot extension; Section 4
describes our label embedding method; Section 5 illustrates experiments and analysis for both few-shot
and zero-shot settings; finally, Section 6 concludes the paper and discusses future work.

2 Related Work

There is little related work specifically on zero-shot FNET but several research lines are considered
related to this work: fine-grained named entity recognition, prototype-driven learning, and multi-label
classification models based on embeddings. As FNET works with a much larger type set as compared
with standard NET, it becomes difficult to have a sufficient training set for every type when relying
on manual annotation. Instead, training data can be automatically generated from semi-structural data
such as Wikipedia pages (Ling and Weld, 2012). Consequently, a single supervised classifier (Ling and
Weld, 2012; Yogatama et al., 2015) or a series of classifiers (Yosef et al., 2012) are trained on this auto-
annotated training set. This auto-annotating practice has been followed by later works on FNET (Yosef
et al., 2012; Yogatama et al., 2015; Ren et al., 2016). However, since the automated tagging process is
not accurate all the time, a number of noisy labels are then propagated to supervised training and affect
the performance negatively.

The starting point of this work is the embedding method, WSABIE (Weston et al., 2011), adapted
by (Yogatama et al., 2015) to FNET. WSABIE maps input features and labels to a joint space, where
information is shared among correlated labels. However, the joint embedding method still suffers from
label noises which have negative impacts on the learning of joint embeddings. In addition, since the
labeled training set is the only source used for learning label embeddings, WSABIE cannot learn label
embeddings for unseen types. DeViSE (Frome et al., 2013) is proposed for annotating image with words
or phrases. As in such case, labels are natural words, e.g., fruit, that can be found in textual data, Skip-
gram word embeddings (Mikolov et al., 2013) learned from a large text corpus are directly used for
representing labels. In addition to label itself, prior works have also tried to learn label embeddings from
side information such as attributes (Akata et al., 2013), manually-written descriptions (Larochelle et al.,
2008), taxonomy of types (Weinberger and Chapelle, 2009; Akata et al., 2013; Akata et al., 2015), and
SO on.

Another related line of research is prototype-driven learning. (Haghighi and Klein, 2006) presented
a sequence labeling model using prototypes as features and has tested the model on NLP tasks such as
part-of-speech (POS) tagging. Prototype-based features (Guo et al., 2014) are then adapted for coarse-
grained named entity recognition task. Even though we select prototypes in the same way as (Guo et al.,
2014), we use prototypes in a very different manner: we consider prototypes as the basis for representing
labels, whereas prototypes are mainly used as additional features in prior works (Haghighi and Klein,
2006; Guo et al., 2014). In other words, prototypes are previously used on the input side, while we use
them on the label side.

3 Embedding Methods for FNET

In this section, we introduce the embedding method for FNET proposed by (Yogatama et al., 2015) and
its extension to zero-shot entity typing.

3.1 Joint Embedding Model

Each entity mention m is represented as a feature vector z € RY; and each label y € Y is a one-hot
vector, where Y is the set of true labels associated with x. Y denotes the set of false labels of the given
entity mention. The bi-linear scoring function for a given pair of x and y is defined as follows:

flz,y, W) =2’ Wy,
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where W € RM*N matrix with M the dimension of feature vector and N the number of types.

Instead of using a single compatibility matrix, WSABIE (Weston et al., 2011; Yogatama et al., 2015)
considers an alternate low-rank decomposition of W, i.e., W = AT B, in order to reduce the number of
parameters. WSABIE rewrites the scoring function as

f(xayaAv B) = ¢($,A) : H(va) = x/ATBya

which maps feature vector x and label vector y to a joint space. Note that it actually defines feature
embeddings and label embeddings as

¢(z,A): x — Ax,
0(y,B) : y — By,

where A € RP*M and B € RP*N are matrices corresponding to lookup tables of feature embed-
dings and label embeddings, respectively. The embedding matrices A and B are the only parameters to
be learned from supervised training process. In (Weston et al., 2011), the learning is formulated as a
learning-to-rank problem using weighted approximate-rank pairwise (WARP) loss,

> > L(rank(z,y)) max(1 — f(z,y, A, B) + f(2,y, A, B),0),
yeY y'ey

where the ranking function rank(z,y) = > v I(1 + f(2,y', A, B) > f(z,y, A, B)), and L(k) =
Zf 1 7 Which maps the ranking to a floating-point weight.

3.2 Zero-shot FNET Extension

A zero-shot extension of above WSABIE method can be done by introducing pre-trained label embed-
dings into the framework. The pre-trained label embeddings are learned from additional resources, e.g.,
text corpora, to encode semantic relation and dependency between labels. Similar to (Akata et al., 2013),
we use two different methods for incorporating pre-trained label embeddings. The first one is to fully
trust pre-trained label embeddings. Namely, we fix B as the pre-trained B and only learn A in an iterative
process. The second method is to use pre-trained label embedding as prior knowledge while adjusting
both A and B according to the labeled data, i.e., adding a regularizer to the WARP loss function,

> L(rank(z,y)) max(1 — f(z,y, A, B) + f(2,y', A, B),0) + \||B — B||%,
yeEY y' ey

where || - || is the Frobenius norm, and \ is the trade-off parameter.

4 Methods

4.1 Prototype-driven Label Embedding

Joint embedding methods such as WSABIE learn label embeddings from the whole training set including
noisy labeled instances resulting from weak supervision. It is inevitable that the resulting label embed-
dings are affected by noisy labels and fail to accurately capture the semantic correlation between types.
Another issue is that zero-shot frameworks such as DeViSE are not directly applicable to FNET as con-
ceptually complex types, e.g, GPE (Geo-political Entity) cannot be simply mapped to a single natural
word or phrase.

To address this issue, we propose a simple yet effective solution which is referred to as prototype-
driven label embedding (ProtoLE), and henceforth we use BP to denote the label embedding matrix
learned by ProtoLE. The first step is to learn a set of prototypes for each type in the type set. ProtoLE
does not fully rely on training data to generate label embeddings. Instead, it selects a subset of entity
mentions as the prototypes of each type. These prototypes are less ambiguous and noisy compared to the
rest of the full set.

173



Even though it is already far less labor-intensive to manually select prototypes than annotating entity
mentions one by one, we consider an alternative automated process using Normalized Point-wise Mutual
Information (NPMI) as the particular criterion for prototype selection. The NPMI between a label and
an entity mention is computed as:

PMI(y,m
NPMI(y,m) = W7

where NPMI(-, -) is the point-wise mutual information computed as follows:

PMI(y,m) = log Im7

where p(y), p(m) and p(y, m) are the probability of entity mention m, label y and their joint proba-
bility. For each label, NPMI is computed for all the entity mentions and only a list of top k£ mentions are
selected as prototypes. Note that NPMI is not applicable to unseen labels. In such case, it is necessary to
combine manual selection and NPMI.

Word embeddings methods such as Skip-gram model (Mikolov et al., 2013) are shown capable of
learning distributional semantics of words from unlabeled text corpora. To further avoid affected by la-
bel noises, we use pre-trained word embeddings as the source to compute prototype-driven label embed-
dings. For each label y;, we compute its label embedding as the average of pre-trained word embeddings
of the head words of prototypes, i.e.,

1 k
P §
Bi = E /Umik*7
j=1

where v,,,,, denotes the word embedding of kth word in the prototype list of label y;. In the case of
using phrase embeddings, the full strings of multi-word prototypes could be used directly.

4.2 Hierarchical Label Embedding

Another side information that is available for generating label embeddings is the label hierarchy. We
adapt the Hierarchical Label Embeddings (HLE) (Akata et al., 2013) to FNET task. Unlike (Akata et al.,
2013), which uses the WordNet hierarchy, FNET systems typically have direct access to predefined tree
hierarchy of type set. We denote the label embedding matrix resulting from label hierarchy as B Each
row in BH corresponds to a binary label embedding and has a dimension equal to the size of label set.
For each label, the sets Bg to 1 when y; is the parent of y; or i = j, and O to the remainder,

BH _ 1 ifi=jory; € Parent(y;) '
" 0 otherwise

HLE explicitly encodes the hierarchical dependency between labels by scoring a type y; given m using
not only y; but also its parent type Parent(y;). The underlying intuition is that recognition of a child
type should be also based on the recognition of its parent.
4.3 Prototype-driven Hierarchical Label Embedding

One shortcoming of HLE is that it is too sparse. A natural solution is combining HLE with ProtoLE,
which is denoted as Proto-HLE. Since B H e RN xN and B P ¢ RP*N | the combined embedding matrix
BHP can be obtained by simply multiplying BY by B, i.e.,

BHP — BPBHT_

Note that BF has the same shape as BP| and it is actually representing the child label as a linear
combination of the ProtoLE vectors of its parent and itself.
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4.4 Type Inference

Having computed the scoring function for each label given a feature vector of the mention, we conduct
type inference to refine the top k type candidates. In the setting of few-shots FNET, k is typically set to
the maximum depth of type hierarchy, while different values for £ may be used for a better prediction of
unseen labels in zero-shot typing. For top k type candidates, we greedily remove the labels that conflict
with others. However, unlike (Yogatama et al., 2015), we use a relative threshold ¢ to decide whether
the selected type should remain in the final results, which is more consistent with the margin-infused
objective function than a global threshold. Namely, a type candidate will be passed to type inference
only if the difference of score from the 1-best is less than a threshold.

S Experiments

5.1 Experiment Setup

Our method uses feature templates similar to what have been used by state-of-the-art FNET meth-
ods (Ling and Weld, 2012; Gillick et al., 2014; Yogatama et al., 2015; Xiang Ren, 2015). Table 1
illustrates the full set of feature templates used in this work. We evaluate the performance of our meth-
ods on three benchmark datasets that have been used for the FNET task: BBN dataset (Weischedel and
Brunstein, 2005), OntoNotes dataset (Weischedel et al., 2011) and Wikipedia dataset (Ling and Weld,
2012). (Xiang Ren, 2015) has pre-processed the training sets of BBN and OntoNotes using DBpedia
Spotlight!. Entity mentions in the training set are automatically linked to a named entity in Freebase and
assigned with the Freebase types of induced named entity. As shown in Table 2, BBN dataset contains
2.3K news articles of Wall Street Journal, which includes 109K entity mentions belonging to 47 types.
OntoNotes contains 13.1K news articles and 223.3K entity mentions belonging to 89 entity types. The
size of Wikipedia dataset is much larger than the other two with 2.69M entity mentions of 113 types
extracted from 780.5K Wikipedia articles. Each data set has a test set that is manually annotated for
purpose of evaluation. To tune parameters such as the type inference threshold ¢ and trade-off parameter
A, we randomly sample 10% instances from each testing set as the development sets and use the rest as
evaluation sets.

Feature Description Example

Tokens Unigram words in the mentions “White”, “House”

Head Head word of the mention “House”

Cluster Brown Cluster IDs of the head word “4_11117, .. ,“8_11111101~
POS Tag POS tag of the mention “NNP”

Character Lower-cased character trigrams in the head word | “hou”,“ous”,““use”

Word Shape | The word shape of words in the mention “Aa”,“Aa”

Context Unigram/bigram words in context of the mention | “Bennett”,“the”, “Bennett_the”
Dependency | Dependency relations involving the head word “gov_nn_director”

Table 1: Features extracted for context “William Bennet, the [ White House] drug-policy director....”

Dataset Types | Documents | Sentences | Mentions
LR
om0y KK
Wikipedia | " | 113 780K i'3145M 2'6639M

Table 2: Statistics of datasets

"http://github.com/dbpedia-spotlight/dbpedia-spotlight
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Figure 1: t-SNE visualization of the prototype-driven label embeddings for BBN dataset

Following prior works (Ling and Weld, 2012), we evaluate our methods and baseline systems using
both loose and strict metrics, i.e., Macro-F1, Micro-F1, and strict Accuracy (Acc.). Given the evaluation
set D, we denote Yy, as the ground truth types for entity mention m € D and }Afm as the predicted
labels. Strict accuracy (Acc) can be computed as:Acc= 5 >, ., 0(Y;, = Y,,), where o(-) is an

indicator function. Macro-F1 is based on Macro-Precision (Ma-P) and Micro-Recall (Ma-R), where Ma-
P= ﬁ Y meD %, and Ma-R= ﬁ Y meD % And Micro-F1 is based on Micro-Precision
YinNYim . Y NYm
Lmep [Ym¥m] |, and Mi-R= Zmgp Ym0¥n| v 5
2mep Ym meD Ym

(Mi-P) and Micro-Recall (Mi-R), where Mi-P=

5.2 Generating ProtoLE

Our ProtoLE embeddings use Continuous-Bag-of-Words (CBOW) word embedding model (Mikolov
et al., 2013) trained on Wikipedia dump using a window of 2 words to both directions. We use 300
dimensions for all embedding methods except HLE. Table 3 illustrates examples of prototypes learned
for types in BBN dataset. It can be observed that most of the top ranked mentions are correctly linked to
types, even though there are still some noises, e.g., north_american for /LOCATION/CONTINENT. It
also shows that prototypes of related types such as /LOCATION and /GPE are also semantically related.
Figurel visualizes the prototype-driven label embeddings for BBN dataset using -Distributed Stochastic
Neighbor Embedding (t-SNE)(Maaten and Hinton, 2008). It can be easily observed that semantic related
types are close to each other in the new space, which proves that prototype-driven label embeddings can
capture the semantic correlation between labels.

Figure 2 shows the Micro-F1 score of FNET with regard to the number of PMI prototypes used by
ProtoLE. It shows that the Micro-F1 score does not change significantly on BBN and Wikipedia dataset,
whereas using fewer prototypes per type (< 40) results in a drop of Micro-F1. Since the definitions
of several types, especially the coarse-grained types, are actually very general, it may introduce bias
into the label embeddings if using too few prototypes. We use K = 60 for all our experiments for that
it achieves decent performance on all three datasets. Our pre-trained label embeddings and manually-
selected prototypes (zero-shot typing) are available for download?.

?http://github.com/fnet-coling/ner—-zero/tree/master/label_embedding
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Type Prototypes

/LOCATION areas connaught earth lane brooklyn
/LOCATION/CONTINENT north_america europe africa north_american asia
/LOCATION/LAKE_SEA_OCEAN | big_bear lake_erie champ lake_geneva fujisawa
/LOCATION/RIVER hudson thompson mississippi_river james_river tana
/GPE soviet edisto canada china france

/GPE/STATE _PROVINCE california texas ohio arizona jersey

Table 3: Example prototypes learned by PMI for types in BBN dataset

Micro-F1
Micro-F1

74.8 —e— BBN

L L I L
o 20 40 60 80 100 0 20 40 60 80 100

Top K Top K

(a) BNN Dataset (b) OntoNotes Dataset

66/
65[

64

Micro-F1

63"
62
0 20 40 60 80 100
TopK

(c) OntoNotes Dataset

Figure 2: Performance changes on the development set with regard to the sizes of prototype list

5.3 Few-shots Fine-grained Entity Typing

In this section, we compare performances of FNET methods in the setting of few-shots FNET where the
training set covers all types. Methods compared in this section are trained using the entire type set. We
use evaluation metrics for our experiments: macro-F1, micro-F1 and accuracy. As in section 3.2, we
train our label embeddings in two different ways: 1) non-adaptive training where label embeddings are
fixed during training; and 2) adaptive training where label embeddings are also updated. Table 4 shows
the comparison with state-of-the-art FNET methods: FIGER(Ling and Weld, 2012), HYENA(Yosef et
al., 2012) and WSABIE (Yogatama et al., 2015). We make several findings from the results.

Firstly, embedding methods with WARP loss function consistently outperform non-embedding meth-
ods (i.e., FIGER and HYENA) on all three datasets. The performance gaps are huge for BBN and
OntoNotes, where the best embedding method achieves 10%-20% absolute improvement over the best
non-embedding method (FIGER). However, the gap is much smaller on Wikipedia dataset whose size is
significantly larger than the other two.

Secondly, non-adaptive embedding methods always outperform their adaptive versions except HLE
on Wikipedia dataset. Performance of adaptive label embeddings are all close to WSABIE, which
suggests that adaptive label embeddings might suffer from same label noise problem as WSABIE does.
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Thirdly, our ProtoLE and its combination with HLE consistently outperform both non-embedding and
embedding baselines. Using the prototype information and non-adaptive framework results in absolute
3%-5% improvement with both loose and strict evaluation metrics. Non-adaptive HLE performs poorer
than other embedding methods, which is most likely due to its sparsity in representing labels. However,
Proto-HLE performs very close to ProtoLE on BBN and Wiki, while it improves all three measures by
another absolute ~2.5% on OntoNotes .

BBN OntoNotes Wiki
Ma-F1 | Mi-F1 | Acc. | Ma-F1 | Mi-F1 | Acc. | Ma-F1 | Mi-F1 | Acc.
FIGER NA 67.28 | 60.70 | 46.92 | 58.77 | 52.37 | 38.01 | 68.28 | 64.71 | 47.37
HYENA NA 51.38 | 52.85 | 45.01 | 47.65 | 43.97 | 26.56 | 45.51 | 43.80 | 30.67
WSABIE NA 71.28 | 72.08 | 66.22 | 62.03 | 55.83 | 43.61 | 67.97 | 64.49 | 48.28

Method | Adapt

HLE Y 70.84 | 71.61 | 65.74 | 61.54 | 49.16 | 43.25 | 67.09 | 65.65 | 47.01

N 68.86 | 70.00 | 63.32 | 59.52 | 54.01 | 41.60 | 65.29 | 62.53 | 45.19

ProtoLE Y 72.67 | 73.54 | 67.58 | 60.90 | 54.68 | 42.82 | 66.96 | 65.78 | 49.18
N 75.78 | 76.50 | 70.43 | 6591 | 59.08 | 46.94 | 68.06 | 66.53 | 53.54

Proto-HLE Y 71.97 | 72.89 | 67.05 | 62.71 | 56.64 | 44.81 | 67.85 | 65.74 | 50.27
N 74.54 | 74.38 | 69.46 | 68.23 | 61.27 | 49.30 | 66.61 | 65.29 | 50.45

Table 4: Performance of FNET in a few-shots learning on 3 benchmark datasets

5.4 Zero-shot Fine-grained Entity Typing

In this section, we evaluate our method’s capability recognizing mentions of unseen fine-grained types.
We assume that the training set contains only coarse-grained types (i.e., Level-1), and Level-2 types
are unseen types to be removed from the training set. Table 5 shows the Micro-Precision for Level-1
and Level-2 types using top k type candidates for type inference. NPMI is computed for Level-1 types.
We manually build prototype lists for unseen types by choosing from a randomly sampled list of entity
mentions. Level-3 types are ignored for OntoNotes as Level-3 types never show in top-10 list produced
by all methods. As the prediction for coarse-grained types are the same with regard to k, we only list the
results using k = 3.

One interesting finding on all three datasets is that combining hierarchical and prototypical infor-
mation results in better classification of coarse-grained types. It suggests that embeddings of unseen
fine-grained types contains information complementary to the embeddings of coarse-grained types.
Since HLE actually produces random prediction on Level-2 types due to its sparse representation, HLE
perform poorly on Level-2 types.

Micro-Precision @k | Micro-Precision @k
Data Set Method Level 1 Level 2
3 3 5 10

ProtoLE 76.71 42.95 | 36.61 | 42.34
BBN HLE 70.44 13.08 | 13.16 | 12.82
Proto-HLE 76.89 42.35 | 35.18 | 30.16
ProtoLE 73.26 21.01 | 13.72 | 12.22

OntoNotes HLE 66.96 7.13 6.14 | 6.23

Proto-HLE 76.33 7.09 | 11.43 | 9.91
ProtoLE 65.52 12.50 | 21.28 | 17.91

Wiki HLE 65.13 0.00 | 8.82 | 8.99
Proto-HLE 67.41 20.01 | 31.25 | 24.24

Table 5: Performance of zero-shot entity typing
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ProtoLE outperforms HLE by 100%-300% in terms of Micro-Precision. However, again the combina-
tion of prototypes and hierarchy achieves similar or better results than ProtoLE on BBN and Wikipedia
dataset. The drop of precision of Proto-HLE on OntoNotes is likely due to a different nature of anno-
tation. It is more prevalent in test set of OntoNotes that one entity mention is annotated with multiple
Level-1 types, and the presence of fine-grained types are less constrained by the label hierarchy. In such
case, hierarchical constrains enforced by Proto-HLE might have negative impacts on type inference.

6 Conclusion

In this paper, we presented a prototype-driven label embedding method for fine-grained named entity
typing (FNET). It shows that our method outperforms state-of-the-art embedding-based FNET methods
in both few-shots and zero-shots settings. It also shows that combining prototype-driven label embed-
dings and type hierarchy can improve the prediction on coarse-grained types. In the near future, we plan
to integrate our method with other types of side information such as definition sentences as well as label
noise reduction framework (Ren et al., 2016) to further boost the robustness of FNET.
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Abstract

Languages with rich morphology often introduce sparsity in language processing tasks. While
morphological analyzers can reduce this sparsity by providing morpheme-level analyses for
words, they will often introduce ambiguity by returning multiple analyses for the same surface
form. The problem of disambiguating between these morphological parses is further compli-
cated by the fact that a correct parse for a word is not only dependent on the surface form
but also on other words in its context. In this paper, we present a language-agnostic approach
to morphological disambiguation. We address the problem of using context in morphological
disambiguation by presenting several LSTM-based neural architectures that encode long-range
surface-level and analysis-level contextual dependencies. We applied our approach to Turkish,
Russian, and Arabic to compare effectiveness across languages, matching state-of-the-art in two
of the three languages. Our results also demonstrate that while context plays a role in learning
how to disambiguate, the type and amount of context needed varies between languages based on
their morphological and syntactic properties.

1 Introduction

Morphologically rich languages introduce sparsity in language processing tasks, as different surface
variants over the same root are often taken as independent entities. Using a morphological analyzer
can decompose inflected words into known tags that encode syntactic and semantic information about
the word. However, finding the correct morphological parse is a non-trivial task. Functionally different
morphemes may have similar forms, and long strings of potentially ambiguous morphemes compound
the problem of ambiguity. As a result, analyzers for morphologically complex languages often return
several parses for the same surface word. Table 1, for example, shows the resulting candidate parses for
the surface form “alin” returned by Oflazer’s (1994) morphological analyzer for Turkish.

alint+NountA3sg+Pnont+Nom (forehead)
al+Adj"DB+Noun+Zero+A3sg+P2sg+Nom (your red)
al+Adj "DB+Noun+Zero+A3sg+Pnon+Gen (of red)
al+Verb+Pos+Imp+A2pl ((you) take)
al+Verb"DB+Verb+Pass+Pos+Imp+A2sg ((you) be taken)
alint+Verb+Pos+Imp+A2sg ((you) be offended)

Table 1: Possible morphological parses for surface form “alin”

The surrounding context of the word being disambiguated plays a major part in determining the role
of a word in a sentence and thus its correct morphological parse. For example, the surface form “evi”
in Turkish can be interpreted as either accusative or third-person singular possessive, as shown in Table
2 (Yildiz et al., 2016); this determination cannot reliably be made without further context. Moreover,
the disambiguation of a word can in turn disambiguate other words; if we have determined that “evi” is

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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accusative, we can infer that a transitive verb must follow and that other ambiguous forms in a sentence
are not accusative.

Sentence and translation Analysis of evi
Evi bulabildiniz mi? — Did | ev+Noun+3sg
you find the house? +Pnon+Acc
Evi gercekten giizelmis. — | ev+Noun+3sg
His/Her house is really +P3sg+Nom
beautiful

Table 2: Possible interpretations for “evi” based on context

The problem of disambiguating over the candidate morphological parses generated by a morphological
analyzer has been tackled in many languages and with different strategies. These systems primarily rely
on methods for capturing the structure of a target word and its candidate tag sequences (Yuret and Tiire,
2006; Habash and Rambow, 2005; Daybelge and Cicekli, 2007; Daoud, 2009) and/or the surrounding
context of a target word (Hakkani-Tiir et al., 2002; Smith et al., 2005; Sak et al., 2008; Lee et al.,
2011) to choose the best candidate analysis. Despite the breadth of work on this problem, there is little
work on disambiguation using neural network models. Based on previous work, it is not clear whether
neural models are able to disambiguate only using surface forms or how context plays a role in a neural
disambugation model. Models that disambiguate jointly over tokens incorporate more information about
the surrounding context of a word, but models that make decisions at the word level are often simpler to
train.

In this paper, we present a language-agnostic LSTM-based approach for morphological disambigua-
tion that takes into account both the structure of a word, including its candidate tag sequences, and the
surrounding context of a target word. We propose a neural architecture for generating vector embeddings
of the candidate analyses of a target word using character-based LSTMs to generate representations for
the stems and surface forms, as well as an LSTM over the tag sequences to embed analyses.

We then describe several model architectures that operate over these vector representations, differing
according to the window of context used and whether the context tokens have themselves been disam-
biguated. Because our architecture relies on character- and tag-level embeddings, the models can be
adapted into other languages and handle unknown words at test time. Experiments on Turkish, Russian,
and Arabic show that different languages benefit from different types and windows of context.

2 Models

The problem of morphological disambiguation involves selecting among a list of possible parses returned
by an analyzer. Given the output of a morphological analyzer for tokens in a sentence, we use several
LSTM architectures to predict the correct analysis for a word based on its context. These architectures
vary based on the amount and type of context taken into account when choosing the best analysis.

Our approach to disambiguation relies on two embeddings: vector representations for each possible
analysis for a word (expressed as matrix R), which encode the stem and all of the morpheme tags for each
analysis, and a vector embedding h of the relevant context of the target word. Using these embeddings,
we can define a compatibility function between the representation of each candidate analysis and the
representation of the context by taking the product of R and h. Taking the softmax of this compatibility
function will give us a probability distribution over possible parses given the relevant context.

p(y; = alx) = softmax(R,, x hy) @)

We describe a general architecture for embedding the possible parses of a target word, as well as the
different architectural and objective variants for different models of context.
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2.1 Analysis Embeddings

Given a morphological analysis of the form
stem; +tag;,1 +tag;2 + ... +tag;r

where stem; = (stem; 1, stem;a...stem; ) is the K character long stem of the i-th parse and each
tag; j is the j-th tag in the ¢-th parse (containing L tags), we use a bidirectional character-based LSTM to
embed the stem, and a separate bidirectional LSTM over tags to embed the morphemes. A bidirectional
LSTM creates a representation g, of an input sequence x = (x1, 2, ...,x7) by computing a forward
sequence ¢ and a reverse sequence g over the input sequence, concatenating the results of the two
sequences, and applying a rectified linear unit (ReLU) activation

Ge=f(®,gi-1) 2)
Ti = f(xe, Tes1) 3)
g =ReLU([¢'r, 7 0)) 4)

where f(x,y) is the output of an LSTM unit with inputs x and y.

d 0 v ib}z +Noun +A3sg +Pnon +Nom ~DB +Adj +With
@%@% @O—O—Oﬂ@—@
) ]

Figure 1: Neural architecture for analysis embedding

Thus, we create a representation of the stem by taking the characters of (stem; 1, stem; 2, ..., stem; k')
as the input sequence for a “stem” LSTM and a representation of the tags by taking
(tagii,tagiz, ..., tag; 1) as the input sequence for a separate “tag” LSTM. We then add these two repre-
sentations and apply a tanh nonlinearity to create an embedding, r;, for the ¢-th potential analysis a of
the word (Figure 1).

ry = tanh(gstemi + gtagi) (5)

These vectors of parse options r; are concatenated to form matrix R for a word with NV analyses, where
each row in the matrix corresponds to a possible parse for a given word.

R = [r;72; .5 rN] (6)

As a baseline model, we use matrix R without leveraging any of the surrounding context of the target
word. To obtain the probability distribution of the possible parses from R, we take the softmax of the
product of R and a learned parameter vector h. We then take the analysis a with the highest probability
as the predicted analysis for the word.

p(y = alz;) = softmax(R;, X h) (7

2.2 Surface Model

One method of integrating the context around a target word for morphological disambiguation is to
leverage the surface forms of the words surrounding the target word. To capture the surface-level context
of a target word, we first use another bidirectional character LSTM to embed the surface forms of each
word zx; surrounding the current target word, creating a vector representation for each surrounding word.

183



We then use the embeddings for the relevant context words to the left of the target word as input to a left-
to-right LSTM and the embeddings of the relevant context words to the right as input to a right-to-left
LSTM over words to create vectors representing the left (¢'¢) and right (¢ ;) contexts of the target word
at position t.

E)t = f(xu ?t—l) (®)
Cy = fla, Crp) &)

We add the left and right context vectors, then apply a tanh non-linearity to get h; representing the
surrounding surface context of the target word at position ¢.

h; = tanh(?t + ?t) (10)

To combine this surface context representation with the possible parse embeddings matrix R, we take

a softmax over the product of R and h; to return a probability distribution over possible parses given
surface-level context.

p(yr = alr) = softmax(R,, x hy) (11)

We compare two models that leverage the surface context of a word. The full context model uses all
the words to the left of the target word and all the words to the right of the target word to build context
vector hy (Figure 2). The local context model uses a one word window to the left and right of its target
word to build context vector h;.

Milli Savunma dovizli askerlik konusunda ¢6zim arayisina girdi

Figure 2: Neural architecture for full surface context embedding

2.3 Left-To-Right Analysis

A further question regarding the use of context in morphological disambiguation is whether the contex-
tual tokens themselves need to be disambiguated, or whether their surface forms alone suffice to guide
further disambiguation. For example, in a language like Russian with subject-verb agreement, having
disambiguated a word as being third-person singular in the nominative case can help us predict that the
verb should have third-person agreement.

To explore this question, we also consider models that take previously-disambiguated tokens as con-
text. A simple way of leveraging information about the parses of surrounding words is to disambiguate
the words in the sentence sequentially and use the previously selected parses to inform our decision at
the current position. We use an LSTM over the selected parses of previously disambiguated words to
create my, a representation of the decisions that were made up until position ¢. To build m;, we take
the representation of chosen parse 7 from R,,, and feed it into the LSTM encoding the sequence of
previously chosen parses.

my = f(7F,me_1) (12)

Then, when choosing the next parse at position ¢ 4 1, we also add m; to the stem and morpheme

representations gﬁzgnz and gf(z]li and apply a tanh nonlinearity when creating parse embeddings rﬁ“.

ritt = tanh(glf,. + giay, + M) (13)
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Ry = [ri—i_l t+1’ 7"5\-71_1] (14)

Intuitively, the goal of this operation is to learn interactions between the previous parses and each can-
didate parse at the current position. We can then calculate a probability distribution over the candidates
given both surface context and the previous parses in a manner similar to the process in Section 2.2.

p(yt = a‘x7y17y27 ey yt—l) = SOftHlaX(th X ht) (15)

When decoding, we use a greedy approach to select the parse to add to the previous parse LSTM.
Thus, our objective is to predict the output sequence

y = argmax;cy, Hp(z]t!l”, Y1, Y2y ees Z?t—l) (16)
i=1

2.4 Conditional Random Field Joint Decoding

Locally normalized models suffer from the label bias problem (Andor et al., 2016), meaning that they
have little to no ability to revise previous decisions. Conditional Random Fields (CRFs) have been shown
to be effective at modeling sequences in tasks like part of speech tagging and named entity recognition
(Lample et al., 2016). In this approach, we attempt to find the best sequence of parses that takes the
entire sentence into account.

The CRF model is built on top of our full-context surface model, using the same process for embedding
the parses and the surface context. Rather than taking the softmax over the combined representation of
the surface context vector and the parse matrix, we use the product directly as a vector u; of emission
scores between each word z; and its possible parses.

u =Ry, xh (17

To model the transition scores between the j-th parse of word at position p and the i-th analysis of the

previous word, we concatenate the embeddings of the two analyses and input the resulting vector to a

feed-forward layer to give a transition score between the two parses, v(7; =1 1“;)

V(Tf Lr ]) = tanh(Wipans[r f l’rﬁ) (18)

We can then produce a trellis of possible parses for each word and their transitions to use for picking the
best parse sequence for a given sentence x of length N. We score sequences using the function

N
=> V(yi1,yi) +uf (19)
=1

To find the best parse sequence, we predict the output sequence
7= argmax ey, S(z,7) (20)

We learned the parameters of the CRF as part of our neural architecture, then decode using the Viterbi
algorithm to compute the best analysis sequence.

3 Experimental Setup

To demonstrate the language-agnostic nature of our disambiguation model, we applied our approach to
Turkish, Russian, and Arabic, three morphologically-complex but typologically-distinct languages with
well-established morphological analyzers (Oflazer, 1994; Korobov, 2015; Maamouri et al., 2010).
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Turkish Russian Arabic
Ambiguous All Ambiguous All Ambiguous All

Training 332,457 783,209 830,055 1,815,414 253,058 318,821
Development 16,327 38,744 22,344 49,773 13,915 17,387
Annotated Test 379 946 16,340 50,083 14,231 18,021
Generated Test 18,022 42,000 - - - -

Table 3: Token counts for data sets

3.1 Turkish

We used the same dataset for Turkish as in Sak et al. (2007) and Yildiz et al. (2016). The datasets were
extracted from a corpus of approximately 1 million words of semi-automatically disambiguated Turkish
(Yuret and Tiire, 2006), which were split into training, development, and test sets. To limit the effect of
noise from using semi-automatically disambiguated data in our training and evaluation, we also evaluated
over the small test set of human disambiguated tokens in context that was provided with the data.

Preliminary analysis of the training set found that the average number of parses per word was 1.60
(std=1.304, max=24) for all tokens and 2.81 (std=1.208) for only ambiguous tokens. The average length
of a Turkish sentence within our training set was 16 tokens (std=20.231).

3.2 Russian

Data for Russian was extracted from OpenCorpora, a freely available treebank for Russian (Bocharov
et al.,, 2011). OpenCorpora provides a large corpus of approximately 1.7 million tokens, as well as
a strict, manually disambiguated subset of approximately 50,000 tokens. Due to the relatively small
amount of manually disambiguated data for training, we used the parse scores returned by the pymorphy?2
morphological analyzer (Korobov, 2015) to semi-automatically disambiguate the full corpus, sampling
the “gold” parse based on its parse score. One previous work in Russian morphology (Muzychka et al.,
2014) used the SynTagRus dataset. However, this dataset used a different tagset than the pymorphy2
analyzer (Oflazer, 1994), which is based on OpenCorpora data.

The average number of parses per word in the training set was 3.10 (std=5.329, max=69) for all tokens
and 5.81 (std=6.961) for only ambiguous tokens. The average length of a Russian sentence within our
training set was 19.87 tokens (std=22.974).

We took the manually disambiguated data as our test set and randomly split the remaining data from
the full corpus into a training set and development set.

3.3 Arabic

Data for Arabic was extracted from the Arabic Penn Treebank (ATB) part 3 version 3.2 (catalog num-
ber LDC2010T08) (Maamouri et al., 2004), a corpus containing approximately 370,000 annotated to-
kens. Analyses for the tokens were generated using the Buckwalter Morphological Analyzer Version
1.0 (Buckwalter, 2002), with human annotators selecting the correct parse. Previous approaches used
different versions and subsets of the ATB. Here, we used a comparable subset to previous work, split
into training, development, and test sets.

Each token had 9.11 possible parses (std=8.5932, max=86) on average, with each ambiguous token
having 11.31 possible parses (std=8.301). The average length of a sentence was 26.13 (std=30.78) tokens.

3.4 Training

We considered each sentence to be a minibatch for training. The objective function used for training
was the total cross-entropy loss between the selected parse and the correct parse for every token in the
sentence. Stochastic gradient descent and backpropagation were used to adjust the parameters for our
model. To prevent overfitting on the training set, we used validation-based early-stopping, saving the
model parameters based on a periodic accuracy evaluation step over the development set. All LSTMs in
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our models were trained with a single hidden layer. We used a hidden dimension size of 100 for the tag,
stem, and surface form LSTMs and 200 for the context and previous parse LSTMs.

4 Discussion

4.1 Results

In all cases, using some contextual information improved accuracy over the no-context baseline, but
there is noticeable variation between languages regarding what kinds of context were most valuable. We
report accuracy over ambiguous tokens, as well as all tokens for sake of comparison with other systems.

Ambiguous Tokens All Tokens
Annotated Test Generated Test | Annotated Test Generated Test
No Context 88.65 90.72 95.45 96.08
Local Context 89.18 92.65 95.67 96.90
Full Context 91.03 93.46 96.41 97.24
Left-to-Right 90.50 93.42 96.19 97.23
CRF 90.24 93.06 96.09 97.07

Table 4: Disambiguation results for Turkish

Table 4 shows the performance of all models in Turkish on a hand-annotated test set, as well as the
generated test set. We see that each of the models with some form of context is able to beat the no
context baseline. The best-performing model on both the generated and annotated datasets is the full
surface context model, followed closely by the left-to-right and CRF models. This shows that some form
of long-range contextual information is useful for disambiguation for Turkish. Our full context model
is comparable to the previous state of the art of 96.28% on annotated test and 96.80% on generated test
established in Sak et al. (2007).

As we will see below, of the languages considered here, Turkish is the only one in which the full
surface context model approached (and slightly exceeded) other models, which may stem from the ty-
pological character of Turkish. Turkish is a strongly head-final subject-object-verb (SOV) language, and
so the best disambiguating evidence for a token often follows it. For example, in disambiguating “evi”
(cf. Table 2), the best evidence for its case (nominative or accusative) will lie in whether a transitive
or intransitive verb follows, and in a verb-final language the verb can follow at some distance from its
arguments. Meanwhile, as seen in Section 3.1, Turkish is the least ambiguous of these languages (with
a mean of 1.60 parses per word compared to 3.10 for Russian and 9.11 for Arabic), so surface context
is not much less informative than disambiguated context. In other words, Turkish combines the greatest
need for full context with higher relative informativeness of the surface context.

Ambiguous Tokens | All Tokens
No Context 64.97 88.58
Local Context 71.56 90.72
Full Context 69.49 90.05
Left-to-Right 68.55 89.75
CRF 72.78 91.13

Table 5: Disambiguation results for Russian

The results for Russian are detailed in Table 5. Again, each of the contextual models perform much
better than the no context baseline. However, we see an interesting pattern when comparing the four
contextual models; unlike in Turkish, the CRF model performs the best. Many words in Russian are
required to agree in gender, case, and number to their heads. We argue that a model that takes the parse
information of neighboring words into account is more suited to capturing agreement than one that only
uses the surface form information. The CRF model over parse sequences would be able to capture this
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phenomenon, whereas the left-to-right decoding model, which also operates over neighboring parses,
may fail due to making locally but not globally optimal decisions near the beginning of the sentence.

Muzychka et al. (2014) reported an accuracy of 91.06% in their CRF-based disambiguation model. In
comparison, our neural CRF-based model achieves a similar accuracy of 91.13%.

Ambiguous Tokens | All Tokens
No Context 72.22 78.06
Local Context 80.10 84.29
Full Context 86.45 88.95
Left-to-Right 89.30 91.27

Table 6: Disambiguation results for Arabic

We see a different pattern in Table 6 for Arabic. Like in Turkish and Russian, there is a large gap
between the no context baseline and the local context model. The left-to-right model performs the best
on Arabic. Habash et al. (2005) report an accuracy of 96.2% on all parses, while Smith et al. (2005)
achieves an accuracy of 95.4% on different subsets of the ATB.

We can also note that surface-context models performed relatively poorly in Arabic. This is likely
because of the greater ambiguity of Arabic (9.11 parses per word), which stems in part from the absence
of vowels in Arabic writing. Manual inspection of the Arabic output suggested that the surface-context
models were frequently making the same mistakes as the no-context model (Table 7), which did not tend
to occur in the Turkish output. So, in contrast to the Turkish systems, in which having only surface
context was as good as having disambiguated context, in the Arabic systems having only surface context
was more similar to having no context at all, emphasizing the need for disambiguated context in more
highly ambiguous languages.!

Input: ... dwl kvyrp HAIAt SEbp wnsbp Alnmw mtdnyp ...
Gold: SaFob_1+ADJ+NSUFF_FEM_SG+CASE_INDEF_ACC v/
No Context: SaEob_1+ADJ+NSUFF_FEM_SG+CASE_INDEF_GEN
Low Context: SaEob_1+ADJ+NSUFF_FEM_SG+CASE_INDEF_NOM
Full Context: SakEob_1+ADJ+NSUFF_FEM_SG+CASE_INDEF_GEN
Left-to-Right: SaEob_1+ADJ+NSUFF_FEM_SG+CASE_INDEF_ACC v~

Input: ... bAIAntSAr kmA nHyy AIAntfADp fy fisTyn mlyn An ...

Gold: {inotifADap,l+DET+NOUN+NSUFF,FEM,SG+CASE,DEFACC v’
No Context: {inotifADap,l +DET+NOUN+NSUFF_FEM_SG+CASE_DEF_GEN
Low Context: {inotifADap,Z +DET+NOUN+NSUFF_FEM_SG+CASE_DEF_GEN
Full Context:  {inotifADap_1+DET+NOUN+NSUFF_FEM SG+CASE DEF_GEN
Left-to-Right: {inotifADap,l +DET+NOUN+NSUFF_FEM_SG+CASE_DEF_ACC v~

Table 7: Example outputs for Arabic for targets “SEbp” and “A1Ant fADp”

Within our experiments, context clearly does play a role in learning to disambiguate possible morpho-
logical analyses. The type and extent of the context needed, however, appears to vary based on features of
the language, such as the word order or the degree of morphological ambiguity. This raises the possibil-
ity of a future system that can choose the best disambiguation context based on a language’s typological
properties.

"Following this hypothesis, we would expect the CRF architecture to perform well on Arabic. However, the much higher
ratio of parses-per-word in Arabic made our neural CRF model computationally impractical.
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4.2 Future Work

As mentioned in Section 2.4, a disadvantage of using greedy decoding with our left-to-right analysis
model is the label-bias problem. Because decisions depend on the previously selected parses, an incorrect
decision made early on can propagate through the sentence. Thus, a natural extension to the left-to-right
model is to use beam search for decoding instead of our greedy approach. The advantage of using beam
search is that it allows the model to explore multiple previous parse paths. This partially gives the model
the ability to recover from making a decision that appears locally optimal in the short-term but leads to
greater losses in the long-term.

Another model of context inspired by recent advances in machine translation (Bahdanau et al., 2015)
and caption generation (Xu et al., 2015) is using an attentional mechanism to define the important context
for a target word. For the full surface context model, rather than using separate LSTMs over the left and
right contexts of the word, an attentional context model can learn to attend to different parts of the
surrounding context of a target word based on its sentence position and candidate parse representations.
This model will potentially allow us to capture longer-range surface dependencies without decay.

5 Related Work

A common early approach to morphological disambiguation is to rely purely on hand-crafted rules to
select the correct parse out of a set of candidate analyses (Daybelge and Cicekli, 2007; Daoud, 2009).
These rule-based methods primarily try to capture the relationship between a target word and its candi-
date analyses. Other approaches used a blend of rules and statistical methods. For example, Oflazer and
Tiir (1996) used a set of linguistically motivated rules and corpus-dependent statistics to either choose
or delete possible parses in Turkish. The model also learned rules based on unambiguous words that
appear in unambiguous contexts within the corpus. Similarly, Haji¢ et al. (2007) built upon the same
type of deletion disambiguation, using the output from a choose-delete rule-based system to first reduce
the number of possible parses before running a statistical part of speech tagger in Czech.

Yuret and Tiire (2006) used the Greedy Prepend Algorithm to learn rules for Turkish disambiguation.
For every tag in their dataset, a decision list of patterns was created to determine whether the tag is
contained in the best analysis. A heuristic search that added new attributes to patterns already in the
decision list was used to generate more candidate patterns for a tag.

Other statistical approaches to morphological disambiguation tried to directly model the context of a
target word. Hakkani-Tiir et al. (2002) proposed a statistical approach for Turkish disambiguation using
a language model trained on disambiguated data. They trained trigram language models under different
root and inflectional group independence assumptions and used the resulting language models to select
the best candidate parses. Smith et al. (2005) used a conditional random field to learn to disambiguate
over sentence by modeling local contexts. Sak et al. (2007) and (2008) used the perceptron algorithm on
a set of 23 handcrafted features, including bigrams and trigrams at the word and inflectional group level.

There is relatively little work on designing neural models specifically for morphological disambigua-
tion. Yildiz et al. (2016) proposed a convolutional architecture that creates a representation for the
surface form of a word from a root and a set of morpheme features. They then trained their model to
predict the correct analysis of a word given the ground truth annotations for the previous words within
a window of the target. Their model was able to achieve an accuracy of 84% over ambiguous tokens in
Turkish. In contrast, our proposed model uses long short-term memory (LSTM)-based architectures to
capture longer range dependencies between a target word and its surrounding context. Additionally, we
consider the context of a target word at both the surface-form and analysis level, providing additional
information to our models.

6 Conclusion

In this paper, we present several LSTM-based neural network architecture for disambiguating morpho-
logical parses using varying amounts of surrounding context. We demonstrate using these architectures
that the type and amount of context needed for disambiguation varies between languages based on the
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linguistic features of a particular language. For a language like Turkish, where most of the morphologi-
cal information is apparent based on the surrounding context, a model that uses the surface context can
capture long-range information to make disambiguation decisions. Other languages, where the surface
representation is less informative, such as Arabic, greatly benefit from using representations of the sur-
rounding parse candidates in addition to the surface forms of the surrounding words. We also show that,
while this system is language agnostic and can be applied to typologically different languages, the best
architecture for a language depends on its morphological and syntactic properties.

Acknowledgements

This work was sponsored in part by the Defense Advanced Research Projects Agency Information In-
novation Office (120) Program under the Low Resource Languages for Emergent Incidents (LORELEI)
program issued by DARPA/I20 under Contract No. HR0011-15-C-0114. We would like to thank Gra-
ham Neubig, Yulia Tsvetkov, Michael Miller Yoder, and the anonymous reviewers for their helpful com-
ments and feedback.

References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov,
and Michael Collins. 2016. Globally normalized transition-based neural networks. ArXiv preprint.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to
align and translate. Proceedings of the International Conference on Learning Representations.

Victor Bocharov, Svetlana Bichineva, Dmitry Granovsky, Natalia Ostapuk, and Maria Stepanova. 2011. Quality
assurance tools in the OpenCorpora project. In Computational Linguistics and Intelligent Technology: Proceed-
ing of the International Conference Dialog, pages 10—17.

Tim Buckwalter. 2002. Buckwalter { Arabic} morphological analyzer version 1.0.

Daoud Daoud. 2009. Synchronized morphological and syntactic disambiguation for Arabic. Advances in Compu-
tational Linguistics, pages 73-86.

Turhan Daybelge and Ilyas Cicekli. 2007. A rule-based morphological disambiguator for Turkish. In Proceedings
of Recent Advances in Natural Language Processing, pages 145-149.

Nizar Habash and Owen Rambow. 2005. Arabic tokenization, part-of-speech tagging and morphological disam-
biguation in one fell swoop. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 573-580.

Jan Haji¢, Jan Votrubec, Pavel Krbec, Pavel Kvéton, et al. 2007. The best of two worlds: Cooperation of statis-
tical and rule-based taggers for czech. In Proceedings of the Workshop on Balto-Slavonic Natural Language
Processing: Information Extraction and Enabling Technologies, pages 67-74.

Dilek Z. Hakkani-Tiir, Kemal Oflazer, and Gokhan Tiir. 2002. Statistical morphological disambiguation for
agglutinative languages. Computers and the Humanities, (4):381-410.

Mikhail Korobov. 2015. Morphological Analyzer and Generator for Russian and Ukrainian Languages. pages
320-332.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition. Proceedings of the main conference on Human Language Technol-
ogy Conference of the North American Chapter of the Association of Computational Linguistics.

John Lee, Jason Naradowsky, and David A. Smith. 2011. A discriminative model for joint morphological disam-
biguation and dependency parsing. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 885-894.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. 2004. The Penn Arabic Treebank: Building
a Large-Scale Annotated Arabic Corpus. In NEMLAR conference on Arabic language resources and tools, pages
466-467.

190



Mohamed Maamouri, Dave Graff, Basma Bouziri, Sondos Krouna, Ann Bies, and Seth Kulick. 2010. Standard
Arabic morphological analyzer (SAMA) version 3.1. Linguistic Data Consortium, Catalog No.: LDC2010LO01.

S Muzychka, A Romanenko, and I Piontkovskaja. 2014. Conditional random field for morphological disambigua-
tion in russian. In Conference Dialog-2014, Bekasovo.

Kemal Oflazer and Gokhan Tiir. 1996. Combining hand-crafted rules and unsupervised learning in constraint-
based morphological disambiguation. Proceedings of the ACL-SIGDAT Conference on Empirical Methods in
Natural Language Processing.

Kemal Oflazer. 1994. Two-level description of Turkish morphology. Literary and linguistic computing, (2):137-
148.

Hagim Sak, Tunga Giingor, and Murat Saraglar. 2007. Morphological disambiguation of Turkish text with percep-
tron algorithm. pages 107-118.

Hagim Sak, Tunga Giing6r, and Murat Saraclar. 2008. Turkish language resources: Morphological parser, mor-
phological disambiguator and web corpus. pages 417-427.

Noah A. Smith, David A. Smith, and Roy W. Tromble. 2005. Context-based morphological disambiguation with
random fields. In Proceedings of the conference on Human Language Technology and Empirical Methods in
Natural Language Processing, pages 475-482.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and Yoshua Bengio.
2015. Show, attend and tell: Neural image caption generation with visual attention. Infernational Conference
on Machine Learning.

Eray Yildiz, Caglar Tirkaz, H. Bahadir Sahin, Mustafa Tolga Eren, and Ozan Sonmez. 2016. A Morphology-
Aware Network for Morphological Disambiguation. Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence.

Deniz Yuret and Ferhan Tiire. 2006. Learning morphological disambiguation rules for Turkish. In Proceedings
of the main conference on Human Language Technology Conference of the North American Chapter of the
Association of Computational Linguistics, pages 328-334.

191



Asynchronous Parallel Learning for Neural Networks and Structured
Models with Dense Features

Xu Sun
*MOE Key Laboratory of Computational Linguistics, Peking University
1School of Electronics Engineering and Computer Science, Peking University
xusun@pku.edu.cn

Abstract

Existing asynchronous parallel learning methods are only for the sparse feature models, and they
face new challenges for the dense feature models like neural networks (e.g., LSTM, RNN). The
problem for dense features is that asynchronous parallel learning brings gradient errors derived
from overwrite actions. We show that gradient errors are very common and inevitable. Never-
theless, our theoretical analysis shows that the learning process with gradient errors can still be
convergent towards the optimum of objective functions for many practical applications. Thus,
we propose a simple method AsynGrad for asynchronous parallel learning with gradient error.
Base on various dense feature models (LSTM, dense-CRF) and various NLP tasks, experiments
show that AsynGrad achieves substantial improvement on training speed, and without any loss
on accuracy.

1 Introduction

Stochastic learning methods can accelerate the training speed compared with traditional batch training
methods. A widely used stochastic learning method is the stochastic gradient descent method (SGD)
(Bertsekas, 1999; Bottou and Bousquet, 2008; Shalev-Shwartz and Srebro, 2008; Sun et al., 2012; Sun
et al., 2014). For large-scale datasets, the SGD training methods can be much faster than batch training
methods. For further improve the training speed over multi-core machines and clusters, a variety of
asynchronous (lock-free) parallel learning methods has been developed based on stochastic learning
(Niu et al., 2011; Mcmahan and Streeter, 2014). Those asynchronous methods have shown to be more
efficient than the synchronous (locked) parallel learning versions (Langford et al., 2009; Gimpel et al.,
2010). Other related work on parallel stochastic learning also includes (Zinkevich et al., 2010; Dekel et
al., 2012; Recht and Re, 2013; Dean et al., 2012).

Existing asynchronous parallel learning methods are mainly for the sparse feature models, and feature
sparseness is a major assumption for those parallel learning methods (Niu et al., 2011; Mcmahan and
Streeter, 2014). For example, Niu et al. (2011) proposed an interesting asynchronous parallel learning
method HogWild for strict sparse machine learning problems with sparse separable cost functions (e.g.,
sparse SVM, low-rank matrix completion). Niu et al. (2011) stated that the key idea that underlies their
lock-free approach is that the targeted machine learning problems are sparse. More recently, Mcmahan
and Streeter (2014) proposed a delay-tolerant asynchronous parallel learning method, which is an ex-
tension of the method of Niu et al. (2011). This asynchronous parallel learning method proposed by
Mcmahan and Streeter (2014) also strictly requires the sparseness of the features.

The situation is different for the dense feature models like neural networks (e.g., LSTM, RNN). Since
the existing asynchronous parallel learning methods are strictly for sparse feature models, it is no longer
reasonable to apply those methods for the dense feature models like neural networks. To our knowledge,
there is very limited study on developing asynchronous parallel learning methods for neural networks.
In most cases only synchronous versions of parallel learning are applied to neural networks, such as

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: Illustrations of the simple case (left), the gradient delay case (middle), and the gradient error
case (right) based on stochastic parallel learning. G means the gradient-computing action. R means the
read action of shared memory. W means the write action.

GPU-based and mini-batch-based parallel learning methods. For GPU-based parallel learning, a matrix
is computed in a synchronously parallelized way by using GPU units. For mini-batch-based parallel
learning, the gradient of a mini-batch of samples are calculated in a synchronously parallelized way as
well.

The major problem for applying asynchronous parallel learning to dense feature models is from the
gradient errors. We show that gradient errors are very common and inevitable in applying asynchronous
parallel learning to dense feature models. Suppose a dense feature model with 10 features/parameters,
and we apply asynchronous (lock-free) parallel learning. When one thread is computing gradient, it
needs to read the parameters from the shared memory. It is possible that 5 parameters are overwritten by
another thread, which makes the computed gradient wrong. Not only there can be read-overwrite errors,
but also there can be write-overwrite errors, as shown in Figure 1 (right).

Figure 1 illustrates the simple case (left), the gradient delay case (middle), and the gradient error
case (right) for stochastic parallel learning. The simple case is normally from the synchronous parallel
learning setting. The gradient delay case is considered for asynchronous parallel learning over sparse
feature models (Niu et al., 2011; Mcmahan and Streeter, 2014). Essentially, the gradient delay problem
is a simplification of the asynchronous parallel learning problem, and the simplification is from the
feature sparseness. For the dense feature models like neural networks, it is unreasonable to use this
simplification, and it goes to the gradient error case. As we can see from Figure 1 (right), there are
both read-overwrite and write-overwrite problems between the two threads, and this created the gradient
error. The gradient error problem is more complex than the gradient delay problem, and it requires new
analysis and solutions. We will give more detailed analysis in Section 2.

Although the gradient error problem is more complex, it does not mean that the asynchronous parallel
learning is doomed for the dense feature models. We give theoretical analysis to show that the learning
process with the gradient error problem can still achieve the optimum given certain conditions, and those
conditions are usually valid for the final convergence region of real-world applications.

Based on the analysis, we propose a simple asynchronous parallel learning method for dense feature
models including neural networks and other structured models, and it works well in real-world NLP
tasks in spite of gradient errors. Base on various dense feature models (LSTM, dense-CRF) and various
NLP tasks, experiments show that our method achieves substantial improvement on training speed, and
without any loss on accuracy.

2 AsynGrad: Asynchronous Parallel Learning with Gradient Error

As we can see from Figure 1, the gradient delay case is mostly considered for sparse feature models (Niu
etal., 2011; Mcmahan and Streeter, 2014). Here the read and write of parameters for each sample is fast
because the only a very small portion of the features are used for each sample. In this case, the read and
write actions are considered being almost atomic actions, and the major concern goes to the “delay” of
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Algorithm 1 AsynGrad: Asynchronous Parallel Learning with Gradient Error

Input: model weights w, training set S of m samples

Run £ threads in parallel with share memory, and procedure of each thread is as follows:

repeat
Get a sample 2z uniformly at random from .S
Get the update term s, (w), which is computed as V f,(w) but usually contains error
Update w such that w — w — s, (w)

until Convergence

return w

the gradients (Niu et al., 2011; Mcmahan and Streeter, 2014). In Figure 1 (middle), thread-1’s gradient
is delayed by thread-2, because the former is expected to write to the memory before thread-2’s write
action. The HogWild method (Niu et al., 2011) and the delay-tolerant method (Mcmahan and Streeter,
2014) mainly cast/simplify the asynchronous parallel learning problem as the gradient delay problem,
and they give solutions accordingly — they show that asynchronous parallel learning can achieve the
optimum when dealing with the gradient delay problem.

The gradient delay problem is a simplification of the asynchronous parallel learning problem, and the
simplification is from the feature sparseness. For the dense feature models like neural networks, it is
no longer reasonable to use the simplification. The major problem for applying asynchronous parallel
learning to dense feature models is the gradient errors.

As shown in Figure 1 (right), for dense feature models the read action is together with the gradient-
computing action. When the feature is dense, it is not efficient to read all the parameters into a thread
before computing the gradient. Also, when the feature is dense, the write action is no longer a fast action.
As we can see from Figure 1 (right), there are both read-overwrite and write-overwrite problems, which
create gradient errors. The gradient error problem is more complex than the gradient delay problem, and
it requires new analysis and solutions.

2.1 AsynGrad Algorithm

Let f(w) be the objective function of dense feature model and w € WV is the weight vector. Recall that
the SGD update with learning rate y has a form like this:

Wiyl < Wy _'vazt('wt) (D

where t represents a time stamp, and V f,(w;) is the stochastic estimation of the gradient based on z,
which is randomly drawn from the training set S.

Then, we assume a shared memory machine with multiple processors, and a vector of variables w in
the shared memory is accessible to all processors. Each processor can read and update w.

Based on the multicore computing machine, the proposed method creates k parallel threads, and w is
shared among the k threads. For each thread, it gets a sample z uniformly at random from the training
set S. Then, it tries to compute the update term s, (w) as follows:

8z(w) 7 V[ (w) 2

where <~ means the s,(w) is computed as the gradient V f,(w) in a single thread, but the shared
weights w may be partially or completely overwritten by other threads when computing the gradient,
which leads to gradient errors of V f,(w). Hence, s,(w) is an approximation of the gradient V f,(w)
with potential errors.

Then, the thread updates the shared weights w based on the update term s, (w), such that

w—w — 78z (w) 3)
For each thread, it repeats this process until it reaches convergence — later we will show that this

process can reach convergence by given certain conditions.
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To summarize, the proposed parallel learning algorithm called AsynGrad is shown in Algorithm 1.

Although the implementation of AsynGrad is simple, the method AsynGrad itself is not that straight-
forward, because people may think it is wrong to use a method like AsynGrad. There is not much existing
theoretical analysis and empirical evidence supporting the design of AsynGrad. In this paper, we show
that it is actually reasonable and promising to use a method like AsynGrad. We give theoretical justifica-
tion of the convergence of AsynGrad based on certain conditions, and we show experimental results that
AsynGrad indeed works well in practice.

2.2 Theoretical Analysis of AsynGrad

Although AsynGrad does the weight update in parallel from different threads, from the viewpoint of w it
simply receives a sequence of gradient updates (but with potential errors, which is the major difference
from non-parallel SGD learning). In other words, the AsynGrad learning problem can be casted as a
traditional SGD learning problem, and the only difference compared with traditional SGD is that the
gradients are with errors. To state our convergence analysis results, we need several assumptions.

We assume f is strongly convex with modulus c, that is, Vw,w’ € W,

f) 2 fw) + @' - w)"Vfw) + I~ | o)

where || - || means 2-norm || - ||2 by default in this work. For some dense feature models like dense-CRF,
this assumption is suitable for the objective function. For some other dense feature models like neural
networks, this assumption is a bit too strong because we know that the objective function of neural
networks is non-convex. Nevertheless, even when the objective function is non-convex, the assumption
usually holds within the final convergence region because the cost function is locally convex in many
practical applications.

We also assume Lipschitz continuous differentiability of V f with the constant ¢, that is, Vw,w’ € W,

IVf(w') = V)] < qllw —wl] 5)
Also, let the norm of s, (w) is bounded by x € R*:
lsz(w)]| < & (6)
Moreover, it is reasonable to assume
ye <1 (7)

because even the ordinary gradient descent methods will diverge if yc > 1 (Niu et al., 2011).
Based on the conditions, we show that AsynGrad converges closely towards the minimum (optimum)
w”* of f(w) with a small distance expressed by ¢, and the convergence rate is given as follows.

Theorem 1 (AsynGrad convergence and convergence rate). With the conditions (4), (5), (6), (7), lete > 0
be a target distance of convergence (i.e., the closeness of the convergence point to the real optimum). Let
T denote the bound to describe the severeness of gradient errors, such that

[V f(w) - s()]' (w—-w") <7 ®)

where w is the weight vector during AsynGrad training, and s(w) is expected s,(w) over z such that
s(w) = E,[s,(w)]. Let y be a learning rate as

ce — 27q
- 1 9
K Bar? ©

where we can set 3 as any value as far as 3 > 1. Let t be the number of updates as follows

¢ Bqr?log (qag/¢)
— c(ce —271q)

(10)
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Table 1: Some major experimental results on dense-CRF. Time means time cost per iteration.

Method POS-Tag Chunking MSR-WordSeg
Acc (%) | Time (s) | F-score (%) | Time (s) | F-score (%) | Time (s)
SGD 97.18 466.08 94.55 1.92 97.13 64.94
AsynGrad(10-thread) 97.18 108.38 94.59 0.25 97.15 8.11
AsynGrad(10-thread)+SR | 97.35 25.99 94.60 0.21 97.22 6.59

where = means ceil-rounding of a real value to an integer, and aq is the initial distance such that ag =
llwo —w*||%. Then, after t updates of w, AsynGrad converges towards the optimum such that E[f (w;) —
f(w*)] < e, as far as the gradient errors are bounded such that

T< o (1n)
2q

The proof is in Section 4.

This theorem shows that AsynGrad is also convergent towards the optimum of the objective function,
as far as the gradient errors are bounded such that Eq.(11) holds. For real-world applications, those
assumptions and conditions usually hold at the final convergence region. In the final convergence region,
w is not far away from the optimum w*, and both ||V f(w)|| and ||s(w)|| are supposed to be small. Thus,
[V f(w) — s(w)]” (w — w*) is supposed to be small. This makes the bound 7 to be small, which makes
Eq.(11) valid in the final convergence region.

Moreover, the convergence rate is given in the theorem — AsynGrad is guaranteed to converge with ¢
updates, and the value of ¢ is given by Eq.(10).

The theoretical analysis can be concluded as follows. First, it shows that AsynGrad is convergent with
gradient errors by given certain assumptions and conditions. Second, those assumptions and conditions
are usually valid in the final convergence region of practical applications. Third, the convergence speed
is given.

3 Experiments

We conduct experiments on natural language processing tasks as follows. Experiments are performed on
a computer based on Intel(R) Xeon(R) 3.0GHz CPU of 12 cores, and with 128G memory.

Part-of-Speech Tagging (POS-Tag): We use the standard benchmark dataset in prior work (Collins,
2002), which is derived from PennTreeBank corpus and uses sections 0 to 18 of the Wall Street Journal
(WSJ) for training (38,219 samples), and sections 22-24 for testing (5,462 samples). The evaluation
metric is per-word accuracy.

Text Chunking (Chunking): The phrase chunking data is extracted from the data of the CoNLL-
2000 shallow-parsing shared task (Sang and Buchholz, 2000; Sun et al., 2008). The training set consists
of 8,936 sentences, and the test set consists of 2,012 sentences. The evaluation metric for this task is
balanced F-score.

Word Segmentation (WordSeg). For the LSTM model, we use the social media word segmentation
data (Weibo-WordSeg) provided by the NLPCC 2016 Shared Task.The training set contains around 60%
of the data set, with 12,081 sentences. The test set contains around 40% of the data set, with 8,055 sen-
tences. However, this data set is relatively new and we do not have good feature templates to implement
the dense-CRF model. To deal with this problem, we use the MSR word segmentation data set (MSR-
WordSeg) for the experiments on dense-CRF. The MSR-WordSeg data set is provided by SIGHAN-2004
contest (Gao et al., 2007). There are 86,918 training samples and 3,985 test samples. For this data set,
we have standard feature templates, which are similar to (Sun et al., 2014). The evaluation metric is
balanced F-score.

3.1 Experiments on Dense-CRF (Moderately Dense Case)

The dense-CRF is a moderately dense version of CRF by adding rich edge features, which usually has
much better accuracy than traditional CRF for NLP tasks (Sun et al., 2012; Sun et al., 2014). For
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Figure 2: Experimental results on dense-CRF. For the 1st row, 1 to 10 denote the 10 threads of AsynGrad.
For the 2nd row, AsynGrad denotes AsynGrad with 10 threads.

traditional implementation of CRF, usually the edges features contain only tag transitions with the form
(yi—1,v:). In dense-CRF, we incorporate local tokens of 2 into the edge features, which is called rich
edge features (Sun et al., 2012; Sun et al., 2014). For example, a rich edge feature can be (x;, y;—1, ¥;)
oreven (r;—1, i, ¥Yi—1,Yi). A simple way to automatically create massive rich edge features is to extend
each node feature (x,y;) to the rich edge feature (x,y;_1,¥;), where = means the tokens of a local
window. Usually a naive way to do this will cause feature explosion. However, it is easy to solve
this problem — only extend high frequency node features (e.g., frequency larger than 10) to rich edge
features. In many real-world tasks we find this type of dense-CRF works much better than traditional
CREF, and without feature explosion problem even for tasks with many tags (e.g., the POS tagging task).

The standard SGD learning method (Bertsekas, 1999; Bottou and Bousquet, 2008; Shalev-Shwartz
and Srebro, 2008) is chosen as the baseline. Based on tuning, the initial learning rate of SGD is set as
0.02, 0.05, 0.1 for the POS-Tag, Chunking, and MSR-WordSeg tasks, respectively. To control overfitting,
we use the Lo regularizer, i.e., a Gaussian prior. The Lo regularization strength (i.e., the term ) is set as
1, 0.5, 1 for the three tasks, respectively.

The experimental results are shown in Figure 2. The 1st row shows the percentage of gradient errors
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Figure 3: Experimental results on LSTM. For the 1st row, 1 to 10 denote the 10 threads of AsynGrad.
For the 2nd row, AsynGrad denotes AsynGrad with 10 threads.

Table 2: Some major experimental results on LSTM. Time means time cost per iteration.

Method POS-Tag Chunking Weibo-WordSeg
Acc (%) | Time (s) | F-score (%) | Time (s) | F-score (%) | Time (s)
Adam 96.40 2972.13 95.40 1750.68 91.79 2198.45
AsynGrad(10-thread) | 96.77 793.40 95.45 465.95 91.93 607.22

among total gradients. For example, if a thread used 100 gradients and 5 gradients are with errors in this
iteration, its gradient error rate is 5%. As we can see, the gradient errors are not rare in asynchronous
parallel learning.

The 2nd row shows the accuracy/F-score curves. As we can see, when facing the gradient errors, the
proposed asynchronous parallel learning method AsynGrad has no loss at all on the accuracy/F-score,
compared with traditional SGD (single thread).

The 3rd row shows the speed acceleration of AsynGrad, compared with synchronous parallel learning
method (Langford et al., 2009). As we can see, when adding more threads for parallel learning, AsynGrad
achieves substantially better acceleration on the training speed than the synchronous parallel learning
method.

The 4th row shows the accuracy/F-score curves by combining AsynGrad with structure regularization
(SR) (Sun, 2014). SR is a simple method to prevent overfitting by splitting samples into mini-samples,
thus it reduces the complexity and sparsity of structures (Sun, 2014). As we can see, AsynGrad can
easily combine with SR to improve the accuracy/F-score on those tasks.

Some major experimental results are summarized in Table 1.
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3.2 Experiments on LSTM (Completely Dense Case)

Recently, long short term memory networks (LSTM) has widely applied to many tasks (Chen et al., 2015;
Hammerton, 2003; Cho et al., 2014). In this work, we use the bi-directional long short term memory
network (Bi-LSTM) as the implementation of LSTM, which has better accuracy than single-directional
LSTM in many practical tasks. The LSTM recurrent cell is controlled by three “gates”, namely input
gate, forget gate and output gate.

Adaptive learning versions of SGD are popular to train large neural networks, including the Adam
learning method (Kingma and Ba, 2014), the RMSProp learning method (Tieleman and Hinton, 2012),
and so on. The experiments on LSTM are based on the Adam learning method, with the hyper parameters
as follows: 31 = o = 0.95, ¢ = 1 x 1074 (Kingma and Ba, 2014). The input/hidden dimension is
170, 280, and 220 for the POS-Tag, Chunking, and Weibo-WordSeg tasks, respectively. For the tasks
with LSTM, we find there is almost no difference on the results by adding Ly regularization or not.
Hence, we do not add L5 regularization for LSTM. All weight matrices, except for bias vectors and word
embeddings, are diagonal matrices and randomly initialized by normal distribution.

The experimental results are shown in Figure 3. The 1st row shows the percentage of gradient errors
among total gradients. As we can see, for neural networks like LSTM, the gradient errors are very
common (the rate is over 90%) in asynchronous parallel learning. The gradient error rate is much higher
than the dense-CRF case, this is because the LSTM is a much more dense model compared with dense-
CREF. In fact, LSTM can be seen as a completely dense model because there is totally no sparse feature
existing.

The 2nd row shows the accuracy/F-score curves. As we can see, when facing the intensive gradient
errors which are over 90% on very dense models like LSTM, AsynGrad has no loss at all on accuracy/F-
score.

The 3rd row shows the speed acceleration of AsynGrad, compared with synchronous parallel learning
method (Langford et al., 2009). As we can see, when adding more threads for parallel learning, AsynGrad
achieves substantially better acceleration on the training speed than the synchronous version.

The experiments shows that AsynGrad can substantially accelerate the training speed of LSTM, and
without any loss on accuracy. Some major experimental results are summarized in Table 2.

4 Proof

Here we give the proof of Theorem 1. First, the recursion formula is derived. Then, the bounds are
derived.

4.1 Recursion Formula

By subtracting w* from both sides and taking norms for (1), we have

lwerr —w*|* = |lwy — sz, (we) — w?[]?

; : (12)
= |[w; — w*[|> = 2y(w; —w*) s, (W) + 77|85, (w,)]|?
Taking expectations and let a; = E||lw; — w*||?, we have
arp1 = ap — 20E[(w, — w*) 85, ()] + B8z, (we)][?]
(based on (6) )
< a; — 29E[(w; — w*)T's,, (w;)] + K2 13
(since the random draw of z; is independent of w;)
= a; — 20E[(w; — w*) By, (85, (wy))] + 7K
= a; — 29E[(w; — w*)"s(w,)] + 77K
We define
6(w) = Vf(w) — s(w) (14)
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and insert it into (4), it goes to

') = fw) + @' —w)[sw) + dw)] + 5w —w]]?
= () + W' —w) s(w) + [ [w’ —wl]* + @ - w)"5(w)
By setting w’ = w*, we further have
Slhw —w* | = (w — ") 5(w)

Combining (13) and (16), we have
arpr < ap — 29E [ flwn — '~ (w, — ") o(wy)] + 4%
= (1 - ey)ar + 29E[(w; —w") " d(wy)] + 7K
Considering (8) and (14), it goes to
arp1 < (1= ey)ag + 297 + 77K
We can find a steady state a, by the formula a., = (1 — ¢)as + 277 + v2k2, which gives

27 + k2
oo = ———
c

Defining the function A(x) = (1 — ¢y)z + 2y7 + v*x2, based on (18) we have

a1 < A(ay)
(Taylor expansion of A(-) based on a., with V2A(-) being 0)
= A(aso) + VA(aoo)(ar — o)
= A(aso) + (1 — e7)(at — ax)
= aoo + (1 — ) (ar — aco)

Thus, we have a;+1 — aoo < (1 — ¢y)(a; — ano), and unwrapping it goes to
a; < (1 —cy)(ap — o) + aoo

4.2 Bounds
Since V f(w) is Lipschitz according to (5), we have

fw) < ) + Vi) (w—w') + 1w —w'|

Setting w’ = w*, it goes to f(w) — f(w*) < %||w — w*||%, such that
E[f (w) — fw)] < JElwe —w°|]* = Ja
In order to have E[f(w;) — f(w*)] < ¢, it is required that £a; < e, that is

ap < —

Combining (21) and (22), it is required that

2¢
(1—cy)" (a0 — o) + oo < B
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To meet this requirement, it is sufficient to set the learning rate - such that both terms on the left side are
less than g. For the requirement of the second term ao, < g, recalling (19), it goes to v < “;{#. Thus,
introducing a real value § > 1, we can set -y as

_ce—21q

Fan? i

Note that, to make this formula meaningful, it is required that ce — 27¢ > 0. Thus, it is required that

which is solved by the condition of (11).

On the other hand, we analyze the requirement of the first term that (1 — ¢y)%(ap — aeo) < o Since
ag — aoo < ayg, it holds by requiring (1 — ¢y)tag < o> which goes to
log -
qa0
—_— 25
~ log(1—¢v) 2
Since log (1 — ¢y) < —cy given (7), and that log m%o is a negative term, we have
log (F%o - log (F%o
log(1—cy) = —cvy
Thus, (25) holds by requiring
=y cy
Combining (24) and (26), the problem can be addressed as far as
;> Bar?log (qao/€)
~  c(ce —279q)
Thus, setting t = Bar*1og (490/€) (.o olve the problem. This completes the proof. 0

c(ce—21q)

5 Conclusions

In this paper we show that gradient errors are very common and inevitable in dense feature models.
Nevertheless, we show that the learning process with the gradient error problem can still approach the
optimum in many practical applications. We propose a simple method AsynGrad for asynchronous
stochastic parallel learning with gradient error. We show that AsynGrad works well for dense feature
models like neural networks and dense-CREF, in spite of gradient errors. Base on various NLP tasks, our
experiments show that AsynGrad can substantially accelerate the training speed of LSTM and dense-
CREF, and without any loss on accuracy.
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Abstract

In this paper, we empirically explore the effects of various kinds of skip connections in stacked
bidirectional LSTMs for sequential tagging. We investigate three kinds of skip connections con-
necting to LSTM cells: (a) skip connections to the gates, (b) skip connections to the internal
states and (c) skip connections to the cell outputs. We present comprehensive experiments show-
ing that skip connections to cell outputs outperform the remaining two. Furthermore, we observe
that using gated identity functions as skip mappings works pretty well. Based on this novel skip
connections, we successfully train deep stacked bidirectional LSTM models and obtain state-of-
the-art results on CCG supertagging and comparable results on POS tagging.

1 Introduction

In natural language processing, sequential tagging mainly refers to the tasks of assigning discrete labels
to each token in a sequence. Typical examples include part-of-speech (POS) tagging and combinatory
category grammar (CCG) supertagging. A regular feature of sequential tagging is that the input tokens
in a sequence cannot be assumed to be independent since the same token in different contexts can be
assigned to different tags. Therefore, the classifier should have memories to remember the contexts to
make a correct prediction.

Bidirectional LSTMs (Graves and Schmidhuber, 2005) become dominant in sequential tagging prob-
lems due to the superior performance (Wang et al., 2015; Vaswani et al., 2016; Lample et al., 2016).
The horizontal hierarchy of LSTMs with bidirectional processing can remember the long-range depen-
dencies without affecting the short-term storage. Although the models have a deep horizontal hierarchy
(the depth is the same as the sequence length), the vertical hierarchy is often shallow, which may not be
efficient at representing each token. Stacked LSTMs are deep in both directions, but become harder to
train due to the feed-forward structure of stacked layers.

Skip connections (or shortcut connections) enable unimpeded information flow by adding direct con-
nections across different layers (Raiko et al., 2012; Graves, 2013; Hermans and Schrauwen, 2013). How-
ever, there is a lack of exploration and analyzing various kinds of skip connections in stacked LSTMs.
There are two issues to handle skip connections in stacked LSTMs: One is where to add the skip con-
nections, the other is what kind of skip connections should be used to pass the information. To answer
the first question, we empirically analyze three positions of LSTM blocks to receive the previous layer’s
output. For the second one, we present an identity mapping to receive the previous layer’s outputs. Fur-
thermore, following the gate design of LSTM (Hochreiter and Schmidhuber, 1997; Gers et al., 2000)
and highway networks (Srivastava et al., 2015a; Srivastava et al., 2015b), we observe that adding a
multiplicative gate to the identity function will help to improve performance.

In this paper, we present a neural architecture for sequential tagging. The input of the network are
token representations. We concatenate word embeddings to character embeddings to represent the word
and morphemes. A deep stacked bidirectional LSTM with well-designed skip connections is then used

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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to extract the features needed for classification from the inputs. The output layer uses softmax function
to output the tag distribution for each token.

Our main contribution is that we empirically evaluated the effects of various kinds of skip connections
within stacked LSTMs. We present comprehensive experiments on the supertagging task showing that
skip connections to the cell outputs using identity function multiplied with an exclusive gate can help to
improve the network performance. Our model is evaluated on two sequential tagging tasks, obtaining
state-of-the-art results on CCG supertagging and comparable results on POS tagging.

2 Related Work

Skip connections have been widely used for training deep neural networks. For recurrent neural net-
works, Schmidhuber (1992); El Hihi and Bengio (1995) introduced deep RNNs by stacking hidden
layers on top of each other. Raiko et al. (2012); Graves (2013); Hermans and Schrauwen (2013) pro-
posed the use of skip connections in stacked RNNs. However, the researchers have paid less attention to
the analyzing of various kinds of skip connections, which is our focus in this paper.

The works closely related to ours are Srivastava et al. (2015b), He et al. (2015), Kalchbrenner et al.
(2015), Yao et al. (2015), Zhang et al. (2016), and Zilly et al. (2016). These works are all based on
the design of extra connections between different layers. Srivastava et al. (2015b) and He et al. (2015)
mainly focus on feed-forward neural network, using well-designed skip connections across different
layers to make the information pass more easily. The Grid LSTM proposed by Kalchbrenner et al.
(2015) extends the one dimensional LSTMs to many dimensional LSTMs, which provides a more general
framework to construct deep LSTM:s.

Yao et al. (2015) and Zhang et al. (2016) propose highway LSTMs by introducing gated direct
connections between internal states in adjacent layers and do not use skip connections, while we propose
gated skip connections across cell outputs. Zilly et al. (2016) introduce recurrent highway networks
(RHN) which use a single recurrent layer to make RNN deep in a vertical direction, in contrast to our
stacked models.

3 Recurrent Neural Networks for Sequential Tagging

Consider a recurrent neural network applied to sequential tagging: Given a sequence x = (x1,...,Z7),
the RNN computes the hidden state h = (hq, ..., hy) and the output y = (y1, ..., yr) by iterating the
following equations:

ht = f(zt, hi—1;0n) ()
Yyt = g(ht; 6o) 2
where t € {1,...,T} represents the time. x; represents the input at time ¢, h;—1 and h; are the previous

and the current hidden state, respectively. f and g are the transition function and the output function,
respectively. 05, and 6, are network parameters.
We use a negative log-likelihood cost to evaluate the performance, which can be written as:

1 N
C= N;Iogytn 3)

where t" € N is the true target for sample n, and y;» is the ¢-th output in the softmax layer given the
inputs z".
The core idea of Long Short-Term Memory networks is to replace (1) with the following equation:

et = flae, hi—1) + -1 “4)

where c; is the internal state of the memory cell, which is designed to store the information for much
longer time. Besides this, LSTM uses gates to avoid weight update conflicts.
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Standard LSTMs process sequences in temporal order, which will ignore future context. Bidirectional
LSTMs solve this problem by combining both the forward and the backward processing of the input
sequences using two separate recurrent hidden layers:

hi = LSTM(T, hu—1, &-1) 5)

hy = LSTM(7, he_1, &1) 6)
—

yr = g(he, hy) 7

where LSTM(-) is the LSTM computation. 7; and Z; are the forward and the backward input sequence,
respectively. The output of the two hidden layers Ez and <h_t in a birectional LSTM are connected to the
output layer.

Stacked RNN is one type of deep RNNs, which refers to the hidden layers are stacked on top of each
other, each feeding up to the layer above:

he = f'(hy ™" i) ®)
where 1! is the t-th hidden state of the I-th layer.

4 Various kinds of Skip Connections

Skip connections in simple RNNs are trivial since there is only one position to connect to the hidden
units. But for stacked LSTMs, the skip connections need to be carefully treated to train the network
successfully. In this section, we analyze and compare various types of skip connections. At first, we
give a detailed definition of stacked LSTMs, which can help us to describe skip connections. Then we
start our construction of skip connections in stacked LSTMs. At last, we formulate various kinds of skip
connections.

Stacked LSTMs without skip connections can be defined as:

(1 sigm

L | sigm W(¢1> G=fody+ii0s) ©)
0% iigl;l R, hl = ol ® tanh(c})
s} an

During forward pass, LSTM needs to calculate ¢} and A, which is the cell’s internal state and the cell
outputs state, respectively. To get cl, sé needs to be computed to store the current input. Then this result
is multiplied by the input gate i!, which decides when to keep or override information in memory cell c}.
The cell is designed to store the previous information ci_l, which can be reset by a forget gate f/. The
new cell state is then obtained by adding the result to the current input. The cell outputs /! are computed
by multiplying the activated cell state by the output gate o}, which learns when to access memory cell
and when to block it. “sigm” and “tanh” are the sigmoid and tanh activation function, respectively.
W' € R4*2n is the weight matrix needs to be learned.

The hidden units in stacked LSTMs have two forms. One is the hidden units in the same layer
{n},t € 1,...,T}, which are connected through an LSTM. The other is the hidden units at the same
time step {h,lf,l € 1,..., L}, which are connected through a feed-forward network. LSTM can keep
the short-term memory for a long time, thus the error signals can be easily passed through {1,...,7'}.
However, when the number of stacked layers is large, the feed-forward network will suffer the gradient
vanishing/exploding problems, which make the gradients hard to pass through {1, ..., L}.

The core idea of LSTM is to use an identity function to make the constant error carrosel. He et al.
(2015) also use an identity mapping to train a very deep convolution neural network with improved
performance. All these inspired us to use an identity function for the skip connections. Rather, the gates
of LSTM are essential parts to avoid weight update conflicts, which are also invoked by skip connections.
Following highway gating, we use a gate multiplied with identity mapping to avoid the conflicts.

Skip connections are cross-layer connections, which means that the output of layer /-2 is not only
connected to the layer [—1, but also connected to layer [. For stacked LSTMs, hi_z can be connected to
the gates, the internal states, and the cell outputs in layer ’s LSTM blocks. We formalize these below:
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Skip connections to the gates. We can connect hi_Q to the gates through an identity mapping:

i sigm

hl—l
4 | = | sam =
sk tanh I/f/

where I' € R4"*" is the identity mapping.

Skip connections to the internal states. Another kind of skip connections is to connect hfo to the
cell’s internal state ci:
d=flod +ilosi4+n>2 (11)
hl = ol ® tanh(c!) (12)
Skip connections to the cell outputs. We can also connect hi_z to cell outputs:
I opl o~ 1l
Ct—ft ®Ct—1+lt®5t (13)
hl = ol ® tanh(cl) 4+ hl 2 (14)
Skip connections using gates. Consider the case of skip connections to the cell outputs. The cell
outputs grow linearly during the presentation of network depth, which makes the hl’s derivative vanish

and hard to convergence. Inspired by the introduction of LSTM gates, we add a gate to control the skip
connections through retrieving or blocking them:

iy sigm
l .
sigm _ I gl o 1 1
. igm W ! a=lOq 1+ Os (15)
% S18 nl I I I 12
gl sigm t—1 hy = o, ® tanh(c}) + g; © hy
sl tanh

where gé is the gate which can be used to access the skipped output hi_Q or block it. When g,lt equals
0, no skipped output can be passed through skip connections, which is equivalent to traditional stacked
LSTMs. Otherwise, it behaves like a feed-forward LSTM using gated identity connections. Here we
omit the case of adding gates to skip connections to the internal state, which is similar to the above case.

Skip connections in bidirectional LSTM. Using skip connections in bidirectional LSTM is similar
to the one used in LSTM, with a bidirectional processing:

Y P A TG LT
Ct:f®ct71+i®st Ct:f®0t71+i®8t
il - . 2 - a9
ht =0 otanh(cl) + 7 © b2 hi =0 ®tanh(c) + g @ bl 2
5 Neural Architecture for Sequential Tagging
Sequential tagging can be formulated as P(t|w; ), where w = [wy, ..., wr] indicates the 7" words in a
sentence, and t = [t1, ..., tp| indicates the corresponding 7" tags. In this section we introduce an neural

architecture for P(-), which includes an input layer, a stacked hidden layers and an output layer. Since
the stacked hidden layers have already been introduced, we only introduce the input and the output layer
here.

5.1 Network Inputs

Network inputs are the representation of each token in a sequence. There are many kinds of token repre-
sentations, such as using a single word embedding, using a local window approach, or a combination of
word and character-level representation. Here our inputs contain the concatenation of word representa-
tions, character representations, and capitalization representations.
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Word representations. All words in the vocabulary share a common look-up table, which is ini-
tialized with random initializations or pre-trained embeddings. Each word in a sentence can be mapped
to an embedding vector w;. The whole sentence is then represented by a matrix with columns vector
[w1,wa, ..., wr]. We use a context window of size d surrounding with a word w; to get its context
information. Following Wu et al. (2016), we add logistic gates to each token in the context window.
The word representation is computed as w; = [thLd /2| Wi—|d/2]5 - -+ T4 |d/2) Wit |d/2 J], where r; =
[rt_Ld/QJ, e Tt+Ld/2J] € R%is a logistic gate to filter the unnecessary contexts, Wi |d/2]s - -+ Wit |d/2]
is the word embeddings in the local window.

Character representations. Prefix and suffix information about words are important features in
sequential tagging. Inspired by Fonseca et al. (2015) et al, which uses a character prefix and suffix with
length from 1 to 5 for part-of-speech tagging, we concatenate character embeddings in a word to get
the character-level representation. Concretely, given a word w consisting of a sequence of characters
[c1,c¢2,...,q,], where [, is the length of the word and L(-) is the look-up table for characters. We
concatenate the leftmost most 5 character embeddings L(c1), ..., L(cs) with its rightmost 5 character
embeddings L(c;,—4),-..,L(c;,,). When a word is less than five characters, we pad the remaining
characters with the same special symbol.

Capitalization representations. We lowercase the words to decrease the size of word vocabulary
to reduce sparsity, but we need an extra capitalization embeddings to store the capitalization features,
which represent whether or not a word is capitalized.

5.2 Network Outputs

For sequential tagging, we use a softmax activation function g(-) in the output layer:

ye = g(W™[hy; he)) (17)

where v, is a probability distribution over all possible tags. y(t) = % is the k-th dimension of

y¢, which corresponds to the k-th tags in the tag set. W is the hidden-to-output weight.

6 Experiments

6.1 Combinatory Category Grammar Supertagging

Combinatory Category Grammar (CCG) supertagging is a sequential tagging problem in natural lan-
guage processing. The task is to assign supertags to each word in a sentence. In CCG the supertags
stand for the lexical categories, which are composed of the basic categories such as N, N P and PP, and
complex categories, which are the combination of the basic categories based on a set of rules. Detailed
explanations of CCG refers to (Steedman, 2000; Steedman and Baldridge, 2011).

The training set of this task only contains 39604 sentences, which is too small to train a deep model,
and may cause over-parametrization. But we choose it since it has been already proved that a bidirec-
tional recurrent net fits the task by many authors (Lewis et al., 2016; Vaswani et al., 2016).

6.1.1 Dataset and Pre-processing

Our experiments are performed on CCGBank (Hockenmaier and Steedman, 2007), which is a translation
from Penn Treebank (Marcus et al., 1993) to CCG with a coverage 99.4%. We follow the standard
splits, using sections 02-21 for training, section 00 for development and section 23 for the test. We use
a full category set containing 1285 tags. All digits are mapped into the same digit ‘9’, and all words are
lowercased.

6.1.2 Network Configuration

Initialization. There are two types of weights in our experiments: recurrent and non-recurrent
weights. For non-recurrent weights, we initialize word embeddings with the pre-trained 200-dimensional
GolVe vectors (Pennington et al., 2014). Other weights are initialized with the Gaussian distribution
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Model | Dev | Test

Clark and Curran (2007) 91.5 | 92.0
Lewis et al. (2014) 91.3 |91.6
Lewis et al. (2016) 94.1 | 94.3
Xu et al. (2015) 93.1 ]93.0
Xu et al. (2016) 93.49 | 93.52
Vaswani et al. (2016) 94.24 | 94.5
7-layers + skip output + gating 94.51 | 94.67
7-layers + skip output + gating (no char) 94.33 | 94.45
7-layers + skip output + gating (no dropout) | 94.06 | 94.0
9-layers + skip output + gating 94.55 | 94.69

Table 1: 1-best supertagging accuracy on CCGbank. “skip output” refers to the skip connections to the
cell output, “gating” refers to adding a gate to the identity function, “no char” refers to the models that
do not use the character-level information, “no dropout” refers to models that do not use dropout.

N (0, \/ﬁ) scaled by a factor of 0.1, where fan-in is the number of units in the input layer. For recur-
rent weight matrices, following Saxe et al. (2013) we initialize with random orthogonal matrices through
SVD to avoid unstable gradients. Orthogonal initialization for recurrent weights is important in our ex-
periments, which takes about 2% relative performance enhancement than other methods such as Xavier

initialization (Glorot and Bengio, 2010).

Hyperparameters. For the word representations, we use a small window size of 3 for the convolu-
tional layer. The dimension of the word representation after the convolutional operation is 600. The size
of character embedding and capitalization embeddings are set to 5. The number of cells of the stacked
bidirectional LSTM is set to 512. We also tried 400 cells or 600 cells and found this number did not
impact performance so much. All stacked hidden layers have the same number of cells. The output layer
has 1286 neurons, which equals to the number of tags in the training set with a RARE symbol.

Training. We train the networks using the back-propagation algorithm, using stochastic gradient
descent (SGD) algorithm with an equal learning rate 0.02 for all layers. We also tried other optimization
methods, such as momentum (Plaut and others, 1986), Adadelta (Zeiler, 2012), or Adam (Kingma and
Ba, 2014), but none of them perform as well as SGD. Gradient clipping is not used. We use on-line
learning in our experiments, which means the parameters will be updated on every training sequences,
one at a time. We trained the 7-layer network for roughly 2 to 3 days on one NVIDIA TITAN X GPU
using Theano ' (Team et al., 2016).

Regularization. Dropout (Srivastava et al., 2014) is the only regularizer in our model to avoid over-
fitting. Other regularization methods such as weight decay and batch normalization do not work in our
experiments. We add a binary dropout mask to the local context windows on the embedding layer, with
a drop rate p of 0.25. We also apply dropout to the output of the first hidden layer and the last hidden
layer, with a 0.5 drop rate. At test time, weights are scaled with a factor 1 — p.

6.1.3 Results

Table 1 shows the comparisons with other models for supertagging. The comparisons do not include any
externally labeled data and POS labels. We use stacked bidirectional LSTMs with gated skip connections
for the comparisons, and report the highest 1-best supertagging accuracy on the development set for final
testing. Our model presents state-of-the-art results compared to the existing systems. The character-level
information (+ 3% relative accuracy) and dropout (+ 8% relative accuracy) are necessary to improve the
performance.

"http://deeplearning.net/software/theano/
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6.1.4 Experiments on Skip Connections

We experiment with a 7-layer model on CCGbank to compare different kinds of skip connections intro-
duced in Section 4. Our analysis mainly focuses on the identity function and the gating mechanism. The
comparisons (Table 2) are summarized as follows:

No skip connections. When the number of stacked layers is large, the performance will degrade
without skip connections. The accuracy in a 7-layer stacked model without skip connections is 93.94%
(Table 2), which is lower than the one using skip connections.

Various kinds of skip connections. We experiment with the gated identity connections between
internal states introduced in Zhang et al.(2016), but the network performs not good (Table 2, 93.14%). We
also implement the method proposed in Zilly et al. (2016), which we use a single bidirectional RNH layer
with a recurrent depth of 3 with a slightly modification®. Skip connections to the cell outputs with identity
function and multiplicative gating achieves the highest accuracy (Table 2, 94.51%) on the development
set. We also observe that skip to the internal states without gate get a slightly better performance (Table
2, 94.33%) than the one with gate (94.24%) on the development set. Here we recommend to set the
forget bias to O to get a better development accuracy.

Identity mapping. We use the sigmoid function to the previous outputs to break the identity link,
in which we replace g; ® hi™! in Eq. (15) with g; ® o(h\™1), where o(z) = H% The result of
the sigmoid function is 94.02% (Table 2), which is poor than the identity function. We can infer that
the identity function is more suitable than other scaled functions such as sigmoid or tanh to transmit
information.

Exclusive gating. Following the gating mechanism adopted in highway networks, we consider
adding a gate g; to make a flexible control to the skip connections. Our gating function is g/ =
a(nghfg_l +U, ;hi_Q). Gated identity connections are essential to achieving state-of-the-art result on
CCGbank.

Case \ Variant \ Dev \ Test
H-LSTM, Zhang et al.(2016) | - 93.14 | 93.52
RHN, Zilly et al. (2016) L = 3, with output gates 94.28 | 94.24
no skip connections - 93.94 | 94.26
to the gates, Eq. (10) - 939 |94.22
. no gate, Eq. (11) 94.33 | 94.63
to the internals with gate 94.24 | 94.52
no gate, Eq. (14) 93.89 | 93.98
with gate, by = 5, Eq. (15) 94.23 | 94.81
to the outputs with gate, by = 0, Eq. (15) 94.51 | 94.67

sigmoid mapping: g; © o(h!™1) | 94.02 | 94.18

Table 2: Accuracy on CCGbank using 7-layer stacked bidirectional LSTMs, with different types of skip
connections. by is the bias of the forget gate.

6.1.5 Experiments on Number of Layers

Table 3 compares the effect of the depth in the stacked models. We can observe that the performance
is getting better with the increased number of layers. But when the number of layers exceeds 9, the
performance will be hurt. In the experiments, we found that the number of stacked layers between 7 and
9 are the best choice using skip connections. Notice that we do not use layer-wise pretraining (Bengio et
al., 2007; Simonyan and Zisserman, 2014), which is an important technique in training deep networks.

2QOur original implementation of Zilly et a. (2016) with a recurrent depth of 3 fails to converge. The reason might be due to
the explosion of s% under addition. To avoid this, we replace s}, with o; * tanh(s% ) in the last recurrent step.
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Further improvements might be obtained with this method to build a deeper network with improved
performance.

#Layers \ Dev \ Test

3 94.21 | 94.35
5 94.51 | 94.57
7 94.51 | 94.67
9 94.55 | 94.7

11 94.43 | 94.65

Table 3: Accuracy on CCGbank using gated identity connections to cell outputs, with different number
of stacked layers.

6.2 Part-of-speech Tagging

Part-of-speech tagging is another sequential tagging task, which is to assign POS tags to each word in a
sentence. It is very similar to the supertagging task. Therefore, these two tasks can be solved in a unified
architecture. For POS tagging, we use the same network configurations as supertagging, except the word
vocabulary size and the tag set size. We conduct experiments on the Wall Street Journal of the Penn
Treebank dataset, adopting the standard splits (sections 0-18 for the train, sections 19-21 for validation
and sections 22-24 for testing).

Model Test
S@gaard (2011) 97.5
Ling et al. (2015) 97.36
Wang et al. (2015) 97.78
Vaswani et al. (2016) 97.4
7-layers + skip output + gating | 97.45
9-layers + skip output + gating | 97.45

Table 4: Accuracy for POS tagging on WSJ.

Although the POS tagging result presented in Table 4 is slightly below the state-of-the-art, we neither
do any parameter tunings nor change the network architectures, just use the one getting the best devel-
opment accuracy on the supertagging task. This proves the generalization of the model and avoids heavy
work of model re-designing.

7 Conclusions

This paper investigates various kinds of skip connections in stacked bidirectional LSTM models. We
present a deep stacked network (7 or 9 layers) that can be easily trained and get improved accuracy on
CCQG supertagging and POS tagging. Our experiments show that skip connections to the cell outputs
with the gated identity function performs the best. Our explorations could easily be applied to other
sequential processing problems, which can be modelled with RNN architectures.
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Abstract

Summarization aims to represent source documents by a shortened passage. Existing methods
focus on the extraction of key information, but often neglect coherence. Hence the generated
summaries suffer from a lack of readability. To address this problem, we have developed a
graph-based method by exploring the links between text to produce coherent summaries. Our
approach involves finding a sequence of sentences that best represent the key information in a
coherent way. In contrast to the previous methods that focus only on salience, the proposed
method addresses both coherence and informativeness based on textual linkages. We conduct
experiments on the DUC2004 summarization task data set. A performance comparison reveals
that the summaries generated by the proposed system achieve comparable results in terms of the
ROUGE metric, and show improvements in readability by human evaluation.

1 Introduction

Automatic summarization is extremely useful in this age of information overload. It provides readers
with easier access to information without the labour of reading the source text. According to the number
of documents dealt with, summarization falls into two categories: single document summarization and
multi-document summarization. While they both aim to represent the source text using a shorten passage,
the latter deals with a set of documents sharing the same topic. Based on the method adopted, existing
approaches to summarization can be divided into two kinds: abstraction based or extraction based. The
difference lies in the sentences they use to generate summaries: the former selects sentences (clauses,
or other text units, hereafter we refer to all of them as sentences.) from source documents and the latter
generates new sentences. Most existing summarization systems are extraction-based because abstraction-
based methods require the use of natural language generation technology, which is still a growing field.
This paper, without exception, also employs extraction-based methods and we focus on multi-documents
summarization.

Currently the extraction-based methods face some major challenges. One is informativeness, which
means we need to maintain the important information of source documents in summaries. This is the
focus of almost all research on summarization. Another challenge is presentation, namely that the ex-
tracted text should be well presented, i.e., it should contain little redundancy and be coherent so as to be
readily understandable. Previous work has addressed the problem of redundancy, and some successful
solutions like Maximum Marginal Relevance (MMR) (Carbonell and Goldstein, 1998) have been pro-
posed and widely adopted (e.g., (Li and Li, 2013)), but very few try to deal with coherence. Therefore
the generated summaries generally suffer as regards readability and are very difficult to use for practical
applications. In the report of the TAC 2011 summarization task (Owczarzak and Dang, 2011), it is stated
that “in general, automatic summaries are better than baselines!, except Readability.” Such a statement
suggests, as for summarization, coherence should be treated with the same as salience and redundancy.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/
!The baseline they used is the lead paragraph method and summaries are evaluated by human and ROUGE (Recall-Oriented
Understudy for Gisting Evaluation (Lin, 2004)).
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Existing work addresses coherence in summarization from different aspects. One kind of method em-
ploys reordering after selecting sentences, and the drawback is evident: coherence is considered after
sentence selection. Another kind of widely adopted method takes discourse relations into consideration
when selecting sentences, as discourse relations are believed to be essential for maintaining textual co-
herence. Hirao et al. (2013) formulated single document summarization as to extract a sub tree from
the complete discourse tree and thus preserve the relations between extracted document units to form
a readable text. Wang et al. (2015) extended it to multi-document summarization by regarding a docu-
ment set as one document and developed a model which combined discourse parsing and summarization
together. Christensen et al. (2013) proposed a graph-based model to bypass the tree constraints. They
employed rich textual features to build a discourse relation graph for source documents with the aim of
representing the relations between sentences (both inter and intra-document relations). Christensen et al.
(2013) reported ROUGE scores lower than some baselines. This is because that, they claim, ROUGE is
salience-focused and fails to notice the improvement in coherence. In a further human evaluation, they
reported improvements in readability.

These discourse-based methods without exception have discourse analysis as a prerequisite. As we all
know, discourse analysis is still under development thus preventing the expected improvement. Further-
more, languages other than English do not enjoy plenty of ready-to-use discourse analysis tools. This
also limits the usage of these discourse-based methods.

Is it possible to consider coherence in summarization without discourse analysis? Before answering
this question, we need to find out what is the key to coherence in text. According to the centering theory
(Grosz et al., 1995; Walker et al., 1998), the coherence of text is to a large extent maintained by entities
and the relations between them. This indicates that discourse analysis is not a must to preserve coherence;
we can directly take advantages of entities and their relations to generate coherence text.

Based on this point, we design a novel graph-based model for multi-document summarization that
eliminates the effort of conducting discourse relation analysis (inter or intra document) and generates
informative and readable summaries. We formulate the document set as a graph whose nodes corresponds
to sentences. These nodes are connected with each other according to the entities they contains and the
relations between their containing entities. Each path in the graph represents a piece of text and is
evaluated using a novel scoring function that considers informativeness and coherence. To extract a
summary is to find a path in the graph with the highest score. This is a weighted longest path problem.
We further present a variant of the proposed model based on local coherence and explore decoding
algorithms for both of them.

Experiments are conducted on the Document Understanding Conference (DUC) 2004 multi-document
summarization task data set. As ROUGE cannot fully capture our improvement in coherence which is one
of the key contributions of this work, we also conduct a human evaluation. Results show that we obtain
summaries comparative with state-of-the-art systems in terms of ROUGE metrics and get improvements
in readability in human evaluations.

This work provides a method of generating high quality summaries without the effort of discourse
analysis. The proposed method can be easily extended to other languages without much efforts. It also
provides inspiration as regards other tasks that require computers to generate coherent text. The rest of
the papers is organized as follows: Section 2 presents the centering theory and a coherence model based
on entities. Section 3 presents our model. Section 4 describes the experiments and results. Section 5
presents some previous work and Section 6 concludes this paper.

2 Centering Theory and Coherence Modelling

The centering theory (Grosz et al., 1995) as a popular theory on discourse analysis, serves as the basis
of some coherence evaluation methods (Barzilay and Lapata, 2008; Burstein et al., 2010; Li and Hovy,
2014; Li and Jurafsky, 2016) and enables us to measure the coherence score of any given text with-
out discourse parsing solely based on the reappearance of entities. Entities here refer to noun/pronoun
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word/phrases 2.

According to the centering theory, we have the following assumptions:
1. Text that contains successive mentions of the same entities would be more coherent.

2. The main entities that are focused on tend to play an important grammatical role, such as the subject
or object of the sentences.

Therefore the key to the coherence of a text lies in what entities it contains and how their roles change.
The coherence of a generated text can be evaluated accordingly.

Barzilay and Lapata (2008) presented such a model. The key is to represent text as an entity grid.
Assume text 7" contains n sentences {51, Ss..., Sy, } and m entities. rf represents the grammatical role of
Entity ey, in Sentence S;. Four kinds of roles are used, i.e., “subj”, “obj”, “others” and “absent”. “Others”
indicates that the entity is present, but is neither the subject nor the object. Then the grammatical roles of

e in text T’ can be expressed as a sequence: {r¥, 75, ..., r*}. For each entity in 7T, such a chain showing

T
how the entity’s grammatical roles change in 7" is extracted. Thus text 7" can be represented as an n * m
matrix M (T') where n is the number of sentences and m is the number of entities in 7, and M (T');;
corresponds to the grammatical roles of Entity j in Sentence i. M (T) is referred to as the Entity Grid of
T (Barzilay and Lapata, 2008).

To calculate the coherence score of 7', Barzilay and Lapata (2008) used M (T") as a feature vector.
They calculated the transition probability for |{s(subj), o(bj), x(others), —(absent)}?| = 16 transition
patterns from M (7T") without distinguishing between entities, to form a vector f(7") for 7', and a weight
vector w was then learnt from training data so that w x f(7") can be used as the coherence score for 7.

This kind of method has been adopted in many studies (Filippova and Strube, 2007; Barzilay and
Lapata, 2008; Burstein et al., 2010). In particular, Filatova and Hatzivassiloglou (2004) extends entity
grids to model semantical relations between entities, which provides a possible further improvement for
our models.

3 Modeling Summarization

The above model can only be used to measure coherence but summarization is much complex as it
involves not only coherence bust also informativeness and redundancy. We design a much more sophis-
ticated models leveraging entities.

Two models are presented below. Both of them are based on entities and consider coherence as well
as informativeness. The first one is based on global coherence and the second one local coherence.
The global coherence consider the full sequence when evaluating coherence and the local coherence is
calculated based on relations between adjacent sentences. Intuitively, global coherence is better than
local coherence, but considering the full sequence increases the time complexity. The model based on
local coherence, on the other hand, reduces the time complexity and enables us to obtain an exact solution
efficiently.

3.1 Problem Set-up

Assume we have K documents with n sentences in total. Note that we are dealing with multi-document
summarization, and we do not distinguish between inter-document and intra-document relations. We
construct a graph with n nodes, each of which corresponds to one sentence. Weighted directed edges are
used to connect these nodes together. To each node, we assign a cost score, which is the number of words
the corresponding sentence contains. To each path in the directed graph, we assign a gain score. The gain
score is a comprehensive evaluation of the informativeness and coherence of the sequence of sentences
represented by the path. The problem of extracting a good summary becomes the problem of extracting
the best path. Note that it is an asymmetric graph. Gain scores for A - B — C'and C — B — A are
different. The direction determines the positions of corresponding sentences in the generated text.

In some previous work on summarization (Takamura and Okumura, 2009; Hirao et al., 2013), concepts are used to measure

informativeness. Concepts can be used to refer any non functional words, including adjectives, adverbs. All the entities can be
regarded as concepts, but some concept words (non-nominal words) are not entities. Entity is a subset of Concept.
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One more thing to consider is the redundancy. Instead of formulating redundancy explicitly, we re-
move edges connecting similar sentences to turn the complete graph into an incomplete graph. This
ensures that similar sentences do not occupy adjacent positions in the generated summaries and thus
reduce redundancy. The similarities of sentence pairs are based on word overlaps and we keep d% of all
the edges.

Note that for temporal text removing edges can also help us maintain the temporal relations between
sentences, though we do not explore this point here.

3.2 Summarization Considering Global > Coherence

To extract a summary is to find such a sequence of sentences Seq that maximizes Score(Seq).

m

Score(Seq) = Z apFy,
k=1
F, = Hpek rF.1), Si, Sit1 € Seq (1

s.t. Z length(S;) < threshold
S;eSeq

“ 13

ay is the weight of Entity eg. r is the state of Entity ej, in Sentence S;. Here we use four states:
7, “obj”, “present” and “absent” respectively. It is also possible to

P e A

07, “x , which represent sub]
use more or fewer states.
De, (%) is the transition probability between two states for ej. For each document set, the transition

LR I3

probabilities for each entity is estimated using pe, (ab) = M #ep(a)er(b) marks the times
that Entity e; presents as grammatical role a in the precedlng sentence and as grammatical role b in
the following one. n — K denotes the total number of adjacent sentence pairs in a document set with
K documents and n sentences. F}, is the coherence score contributed by e, in the extracted sequence
Seq. Fy, is based on the transitions of e, between adjacent sentences in Seq. We use Score(Seq) which
considers salience, coherence and redundancy as an index as to how suitable the extracted sentence
sequence Seq is as a summary. This model is a weighted longest path problem with a fixed length.

This is an NP-hard problem. Due to the time cost, we adopt the simple randomized algorithm as shown
in Algorithm 1 to obtain an approximated solution. Other decoding algorithms like greedy algorithms

Algorithm 1 A randomized algorithm for the weighted longest path problem
Initialization:
Set U «— all the sentences in the current doc set
Set S «— EmptySet
Queue Q «+— EmptySet
repeat
randomly select sentence s € U&s ¢ Q;
if length(s) + >, length(s;) <= threshold, s; € () then
push s to the rear of )
else
push @ into .S, Queue Q) «—— EmptySet
end if
until 10K times
return argmazqF(T),Q € S

can also be employed. But none of them are capable of obtaining an exact solution. Below we present
another model considering local coherence.

3“Global” means the model considers coherence according to the whole text.
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Figure 1: A Complete Graph with Dummy Start and End Nodes

3.3 Summarization Considering Local Coherence

The above model considers global coherence which is calculated according to the whole text. The model
presented below is directly based on local coherence and enables us to obtain an exact solution. We want
to maximize Score(Seq):

Score(Seq) = Z (« Z ar + (1 — a)gain; i11))

S;€Seq exES;

s.t. Z length(S;) < threshold
Si€Seq

2

This formulation contains two parts. » encs; i implies the weight of Sentence \5;, which is the sum
of its containing entities” weights. gain; ;1 1) is the gain score for Edge(S;, S;+1). « manipulates the
impacts of the two parts.

gain(S;, Sit1) = Z Dey, (rfrfﬂ) 3)
er€S; U Sz'.i,-l

As is stated, rf is the state of Entity e in Sentence S;.

For the convenience of decoding, we turn the above model to an integer linear programming (ILP)
problem. We add two dummy nodes, called Start and End Node. All paths start from Start and end
with E'nd. The costs of both Start and End are 0. The gains of edges connected with Start or End are
0. Note that although here we present a full connected graph for simplicity, in reality we deleted several
edges to reduce redundancy. Following such a setting, an arbitrary path in the old graph (the one without
dummy Start and End nodes) can be represented as a path from Start to End. We write the Start node
as Node 0 and the End node as Node ¢. Then we formulate the problem of the weighted longest path as
follows:

mazrimizea Z( Z ag)zi + (1 — ) Zgaini,jyij

i er€S; i,J
subject to

1), costiz; < threshold

> i Yoi = 1 (4)
Zi yir = 1
2
>

W N

Yij +Yoj — (i Yji +yje) = 0,V
Yij +yoj — ;5 =0,V

6)z; € 0,1}, i

Tyij € {0,1}, Vi, j

Ut

)
)
)
4)
)
)
)

Equations 2 and 3 are used to ensure we have only one start and one end node. Equation 4 ensures
that the in degree equals the out degree for all nodes. Equation 5 ensures that the in degree is either O or
1 and equals z, for all nodes. z; = 1 indicates that S; is selected for the summary. x; = 0 means .5; is
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not contained in the summary. y;; = 1 means S; and S; are selected and placed as adjacent sentences in
the summary. cost; is the number of words in 5; (Iength of S;).

We resolve this ILP problem using the dual simplex method provided by IBM CPLEX optimizer
which is a powerful optimization software package. CPLEX provides both a primal simplex method and
a dual simplex method for ILP problems. Here we adopt the latter.

4

4 Experiments & Analysis

4.1 Experiment

Experiments are conducted on the data set of the DUC2004 Summarization Task, which is a multi-
document summarization task. 50 document clusters, each of which consists of 10 documents, are given.
One summary is to be generated for each cluster. The target length is up to 100 words. Weights of entities
are learnt by logistic regression as is adopted by Takamura and Okumura (2009) °. For entities that are
not contained in DUC2003, we assign tf-based weights to them as Barzilay and Lapata (2008) did.

For the evaluation we firstly use the generally acknowledged metric for summarization: ROUGE met-
ric. It essentially calculates n-gram overlaps between automatically generated summaries and human
written (the gold standard) summaries. A high level of overlap indicates a high level of shared informa-
tion between the two summaries. Among others, we focus on ROUGE-1 in the discussion of the result,
because ROUGE-1 has proved to have a strong correlation with human annotation (Lin, 2004).

Some necessary preprocessing includes stemming, removing stop-words and simple simplification. In
previous work, there is usually no co-reference resolution and different words are regarded as different
entities. Here we use Stanford CoreNLP toolkit (Manning et al., 2014) to deal with the co-reference
problem. The Stanford CoreNLP toolkit contains a ready-to-use entity identification tool and a co-
reference resolution tool. The co-reference resolution is not a must, though preferred if reliable tools are
available.

After the co-reference resolution, different forms of the same entities are replaced by their unified
forms. For each document set, we need to estimate the transition probabilities for each entity according
to the documents contained in the cluster as stated above.

Parameters are tuned using the DUC2003 dataset. d is the threshold of redundancy. We keep d
percent of all edges and d varies from 10 to 100 with an interval of 10. We tune the parameter using the
randomized algorithm and evaluate the results using ROUGE-1 Recall. In the following experiments, we
set d = 80, which means we keep 80% of the sentences.

As for the model presented in Section 3.3, we need to tune . Using the same data, we try o from O to
1 with an interval of 0.1 and eventually choose o = 0.4.

4.2 Evaluation & Discussion

We compare our models with state-of-the-art multi-document summarization systems using ROUGE and
human evaluation. The former aims to evaluate informativeness and the latter targets readability.

ROUGE Evaluation MCKP is the maximum coverage methods proposed by Takamura and Okumura
(2009). Lin is a model that uses a class of submodular functions (Lin and Bilmes, 2011). Christ is
a graph based model proposed by Christensen et al. (2013). DPP is the determinantal point processes
model Borodin (2009) and ICSI is another model based on maximum coverage Gillick et al. (2008).
The results of DPP and ICSI comes from the repository presented in Hong et al. (2014). M1 is our
model described in Section 3.1. M2 is the model described in Section 3.3, which is resolved using an
ILP method. MEAD Radev et al. (2004a) is a baseline that employs ranking algorithms to generate
multi-document summaries.

The results are shown in Table 1. As we can see, our system (M1 and M2) produces comparable results
to the state-of-the-art systems. With the MCKP method, all content words are used as concepts. But in

*http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/

3This method was first proposed by Yih et al. (2007) and then improved by Takamura and Okumura (2009). Here we follow
the same steps with Takamura and Okumura (2009).

218



our systems, only nouns and pronouns are regarded as entities. There are fewer nouns and pronouns than
content words. This has a negative impact on the evaluation of information coverage. But according
to the experiment results, our approach still obtain satisfying results based on these entities. It proves
that even with much simpler feature settings of just nouns and pronouns, the proposed model generates
summaries with good coverage of the important information in source documents. We have addressed
that ROUGE is merely an index of informativeness and cannot evaluate our improvements in readability
as has been proved by Christ, another coherence-focused model (Christensen et al., 2013). So we also
conduct a human evaluation.

Human Evaluation As some of the systems mentioned in Table 1 are not accessible, in this work
we compare summaries produced by some typical systems: M2 (the best proposed system evaluated by
ROUGE), MCKP (one of the state-of-the-art salience-focused methods) and humans (the gold standard).

We asked four professional annotators (who are not the authors of this paper and have rich experience
in annotating various NLP tasks and are fluent in English) to assign a score to each summary regarding
its readability. We randomly selected 48 summaries (16+16+16) from the three systems, and asked them
to assign a readability score to each document without reading the source documents (summarization is
useful because we do not need to read source documents). The score is an integer between 1 (very poor)
and 5 (very good).

The average scores for the 3 systems are Human = 4.3; M2 = 3.5; MCK P = 3.1. Significance
testing (significance level o = 0.05) shows that the summaries generated by the proposed method show
improvements in readability compared with previous salience-focused work.

Type SysName | ROUGE-1(R)
Simple Ranking MEAD 339
. MCKP .385
Maximum Coverage 1CSI 384
Point Process DPP .398
Sub Modular Lin 394
Christ 373
Discourse-based M1 383
M2 .390

Table 1: ROUGE Results on DUC2004

In our model, we assume the states of entities can be formulated as Markov chains. Although sophis-
ticated models can be employed, such assumptions help simplify the model and they are proved to be
of use. Also we can use more or fewer grammatical roles for entities. We tried using just two kinds of
roles: presence and absence, and the performance we obtained was unsatisfying.

5 Related Work

A summary is much shorter than the original documents but still needs to provide readers with sufficient
information. Hence the summarization systems need to identify important information and keep as much
of it as possible. Most existing research follows such a guideline and takes salience as its sole focus.

Salience-focused systems cannot guarantee the readability of the generated text as they fail to take
coherence into consideration. Sentence reordering, as a post processing task has began to develop. Ap-
parently, it cannot make up for the flaws of salience-focused systems because it is simply a reorganization
of sentences. Besides, it also faces problems when dealing with temporal text (Yan et al., 2011; Ge et al.,
2015). A better solution is to consider coherence when selecting sentences. Such comprehensive models
have been proposed. Most of them are discourse driven and sacrifice informativeness for coherence. In
this sense, our model is novel in dealing with coherence without discourse analysis.
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5.1 Salience-Focused Method

As stated, the summarization systems need to identify the important information and keep as much of it
in the generated summaries as possible. One straightforward method is Maximum Marginal Relevance
(Carbonell and Goldstein, 1998) (MMR). It is a greedy method, and is proposed to select sentences that
are most relevant but not too similar to the already selected ones. It tries to keep a balance between
relevance and redundancy. MMR is also widely employed to avoid redundancy in summarization sys-
tems. Among existing research, one popular kind is the ranking method (e.g., Textrank (Mihalcea and
Tarau, 2004), Lexrank (Erkan and Radev, 2004) and its variants (Wan et al., 2007; Wang et al., 2012)),
which construct a graph between text units and use ranking algorithms to select top sentences to build
summaries. Another kind is the optimization method. Our work is one of this kind. It formulates
summarization as finding a subset that optimizes certain objective functions without violating certain
constraints. To find such an optimal subset is a combinatorial optimization problem, which is an NP hard
problem and hence cannot be solved in linear time (McDonald, 2007).

Recently, maximum coverage methods have been proposed and yield good results (Gillick et al., 2009;
Gillick and Favre, 2009; Takamura and Okumura, 2009). Maximum coverage methods formulate sum-
marization as a maximum knapsack problem (MKMC). In MKMC methods, the meanings of sentences
are believed to be made up by concepts, which usually refer to content words. And summarization
involves extracting a subset of sentences that covers as many important concepts as possible without
violating the length constraint. It is usually formulated as an integer linear problem. And some algo-
rithms are proposed for obtaining approximated solutions (Takamura and Okumura, 2009; Gillick et al.,
2009). Lin and Bilmes (2011) design a class of submodular functions for document summarization.
The functions they use combine two parts, encouraging the summary to be representative of the cor-
pus, and rewarding diversity separately. Other methods that have been applied to summarization include
centroid-based methods (Radev et al., 2004b; Saggion and Gaizauskas, 2004), and minimum dominating
set methods (Shen and Li, 2010). All these methods suffer in coherence.

5.2 Coherence-Focused Method

Sentence reordering methods are developed to correct the salience-focused models. Sentence reordering
tries to generate a more coherent text by reordering its contents. Rich semantic and syntactic features
are used to find a better permutation for input sentences (Barzilay et al., 2001; Bollegala et al., 2010;
Okazaki et al., 2004).

The drawback to sentence reordering is obvious. The preceding sentence selection focuses solely on
informativeness and totally neglects coherence. Thus it prevents the improvements expected from per-
mutation. This is confirmed by the fact that the above methods all reports limited improvement. A con-
sideration of coherence during sentence selection leads to new methods, and these are mainly discourse
driven models. Some of the summarization methods encode discourse analysis results in feature presen-
tations together with other frequency based features for sentence selection/compression. The problem is
that these discourse based features usually play secondary roles, because the models all try to improve
information coverage, which are evaluated by ROUGE. And ROUGE, as is commonly known, is not
sensitive to coherence.

Some others work directly on discourse analysis results, and they usually try to derive a passage
from a given parse tree. The problem of summarization is regarded as finding a text I" so that T' =
arg max F'(T'|T'r) for a given tree T'r. Here F' is the objective function. Early representative work of this
kind includes that of Marcu (1998) and that of Daumé III and Marcu (2002). Recently, Hirao et al. (2013)
has viewed summarization as a knapsack problem on trees, and uses an integer linear problem (ILP) to
formulate it. A sub tree that maximizes some objective function and obeys some given constraints is
extracted from the original parse tree as the summary.

Discourse tree based methods cannot be extended to multi-document summarization. Christensen et
al. (2013) propose a graph model that bypasses the tree constraints. They build a graph to represent
discourse relations between sentences and then extract summaries accordingly.

Recently the neural network based discourse analysis (Li et al., 2014; Ji and Eisenstein, 2014) provides
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us with an alternative way of conducting discourse analysis without traditional feature engineering. It
can be used in our future work of modelling coherence using semantic relations.

6 Conclusion

Previous summarization methods have usually focused on salience and neglected coherence. This work
proposed a novel summarization system that combines coherence with salience. By taking entities and
links between them into consideration, our weighted longest path model successfully improves the qual-
ity of summaries. The proposed model does not require discourse analysis and hence can be applied to
languages which do not enjoy plenty of ready-to-use discourse analysis tools.

In this paper only syntactic linkages are used for modelling coherence. In the future, we can take
advantage of the semantic relations between entities to evaluate coherence and to further improve our
system.
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