
Proceedings of COLING 2012: Technical Papers, pages 2805–2820,
COLING 2012, Mumbai, December 2012.

A Latent Discriminative Model for Compositional Entailment
Relation Recognition Using Natural Logic

Yotaro Watanabe1 Junta Mizuno1 Eric N ichols1

Naoaki Okazaki1,2 Kentaro Inui1

(1) Graduate School of Information Sciences, Tohoku University
(2) Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency

{yotaro-w,junta-m,eric,okazaki,inui}@ecei.tohoku.ac.jp

ABSTRACT
Recognizing semantic relations between sentences, such as entailment and contradiction, is
a challenging task that requires detailed analysis of the interaction between diverse linguistic
phenomena. In this paper, we propose a latent discriminative model that unifies a statistical
framework and a theory of Natural Logic to capture complex interactions between linguistic
phenomena. The proposed approach jointly models alignments, their local semantic relations,
and a sentence-level semantic relation, and has hidden variables including alignment edits
between sentences and their semantic relations, only requires sentences pairs annotated with
sentence-level semantic relations as training data to learn appropriate alignments. In evalu-
ation on a dataset including diverse linguistic phenomena, our proposed method achieved a
competitive results on alignment prediction, and significant improvements on a sentence-level
semantic relation recognition task compared to an alignment supervised model. Our analysis
did not provide evidence that directly learning alignments and their labels using gold standard
alignments contributed to semantic relation recognition performance and instead suggests
that they can be detrimental to performance if used in a manner that prevents the learning of
globally optimal alignments.
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1 Introduction

Recognizing Textual Entailment (RTE) (Dagan et al., 2005) is the task of recognizing entailment
relations between a given text pair, Text T and Hypothesis H. RTE is useful for many information
access tasks that depend on natural language processing technologies, and a breakthrough
would lead to significant progress in information retrieval, document summarization, and
question answering, among other tasks.

The majority of approaches proposed in previous work recognize entailment relations between
a pair of texts by capturing lexical or structural correspondences. Methods include simple word
overlap-based measures (Jijkoun and de Rijke, 2005) as well as alignment of syntactic and
semantic dependencies (Sammons et al., 2009; Wang and Zhang, 2009). However, sentence-
level semantic relations are affected by various linguistic phenomena: not only lexical semantic
relations (synonyms, antonyms) but also monotonicity (e.g. downward-monotone caused by
scope of negation), implicative/factive expressions, quantifiers, etc. Thus similarity measures
are insufficient to capture these phenomena and their interactions.

Transformation-based approaches are one way to capture the affects of diverse linguistic
phenomena and their interactions, where a set of linguistic phenomena are decomposed into
units. By doing so it becomes possible to consider their effects on entailment independently. A
number of previous works explores transformation-based entailment relation recognition. The
approach of Stern et al. (2011) recognizes a sentence-level semantic relation through a proof
which represents a sequence of edits from T to H produced by applying various entailment
rules and the operations such as insertion, deletion, moving subtrees, etc. In addition, Heilman
and Smith (2010) proposed a tree edit model which selects a sequence of edits using Tree
Kernels, and Wang and Manning (2010) proposed a latent variable model which consider
possible alignments as hidden structures. However, these model do not sufficiently represent
interactions between linguistic phenomena such as factuality reversals caused by negation and
flipping of entailment direction under downward-monotone contexts. In order to realize precise
entailment relation recognition, we need to appropriately deal with semantic relations resulting
from the interaction between linguistic phenomena.

One of the most promising approaches to RTE is Natural Logic-based recognition (MacCartney
and Manning, 2008; MacCartney, 2009). This approach represents transformations from T to
H with a set of three types of alignment edits (substitution, insertion and deletion), and assigns
one of a set-theoretically defined semantic relations to each alignment edit. This approach is
based on the principle of compositionality, i.e. the sentence-level semantic relation is derived
by combining semantic relations of edits using pre-defined composition rules. By doing so, this
approach makes progress toward precise sentence-level entailment relation recognition that
considers linguistic phenomena and their interactions when assigning semantic relations.

However, several issues remain unexplored. While it is common for alignment inference methods
to require data annotated with alignments, it is a challenge to manually annotate alignments
in a consistent manner. Annotation of alignments with semantic relations from Natural Logic
is a greater challenge due to the complex nature of the semantic relations. In addition, even
alignments can be annotated consistently, there is no guarantee of their global optimality; that
is to say the alignments identified as correct by annotators may not necessarily contribute to
identifying the correct semantic relation between a pair of sentences. Identifying alignments
considering the full context of a sentence pair is a much more difficult annotation task. However,
even without manual alignment annotations, it may be possible to infer consistent and plausible
alignments by learning models that promote alignments which agree with annotations of correct
semantic relations between sentences. A unified model of alignment and semantic relation
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recognition between sentences is needed that learns the alignments which will generate the
correct semantic relation by considering the interaction between diverse linguistic phenomena.

In this paper, we propose a novel latent discriminative model that jointly handles predicting
alignment edits, classification of their semantic relations and entailment relation recognition
by providing a joint distribution of variables including alignment edits, their local semantic
relations and sentence-level semantic relations. Inspired by the Natural Logic-based approach
of (MacCartney et al., 2008), we incorporate the set of semantic relations and their composition
rules from Natural Logic into our proposed model. In addition, our model can be trained from
only sentence-level semantic relations to predict alignments and semantic relations that are
consistent with Natural Logic composition. To the best of our knowledge, our study is the first
work to propose a latent model for training a Natural Logic-based semantic relation recognition
system that does not require alignment annotations and that jointly predicts plausible alignments
and semantic relations between sentences, modeling a variety of linguistic phenomena and
their interactions in a compositional manner.

2 Natural Logic

The concept of Natural Logic, a logic over natural language, is originally proposed by Lakoff
(1970), and then van Benthem (1988, 1991) and Valencia (1991) explored monotonicity
calculus1 to explain entailment relations using Natural Logic. While they considered only
containment relations, MacCartney and Manning (2008) introduced an exclusion relation to
deal with entailment relations which involve different objects or concepts (e.g. Stimpy is a cat
|= Stimpy is not a poodle). In this section, we describe the theory of Natural Logic proposed by
(MacCartney and Manning, 2008; MacCartney, 2009).

The basic idea of MacCartney et al’s theory is that the semantic relation between sentences can
be derived from the semantic relations of edits (substitution, deletion and insertion) from T to
H. The fundamental assumption of the theory is compositionality: (some of) the entailments of
a compound expression are a function of the entailments of its parts. They defined the seven
types of semantic relations for edits: equivalence (a ≡ b if a = b), forward-entailment (a ⊏ b
if a ⊂ b), backward-entailment (a ⊐ b if b ⊃ a), negation (a ∧ b if a ∩ b = φ ∧ a ∪ b = U)2,
alternation (a | b if a ∩ b = φ ∧ a ∪ b 6= U), cover (a ∪ b 6= φ ∧ a ∪ b = U), and independence
(a # b otherwise).

Semantic relations provided by edits are projected onto other relations depending on their
contexts using projection rules. For example, in a scope of negation, forward-entailment
is projected onto backward-entailment (e.g soccer ⊏ sports, I didn’t play soccer. ⊐ I didn’t
play sports.). Other linguistic expressions such as logical connectives and quantifiers also
projects semantic relations. A semantic relation between sentences is derived by combining
the projected semantic relations of edits using composition rules. The rules are defined as
tuples of semantic relations. Let the seven types of relations be R , ri ∈ R , r j ∈ R , then
a compositional rule is represented by ri \ r j ⇒ r ⊆ R . Some compositional rule derive a
single relations (e.g. ≡ \ ⊏⇒ ⊏), and others derive more than one semantic relations (e.g.
| \ | ⇒⋃ {≡,⊏,⊐, |,#}). As semantic relation composition proceeded, semantic relations
tend to move toward # 3.

1 In an upward-monotone context, replacing a linguistic expression with a more general expression preserves truth.
On the other hand, in a downward-monotone context, replacing a linguistic expression with a more specific expression
preserves truth.

2U denotes a universe.
3Due to spacial limitations, we can not give all of the composition rules. For more details, see (MacCartney, 2009).
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3 A Latent Discriminative Model for Compositional Entailment Relation
Recognition

Given a text T and a hypothesis H, the task of RTE is to infer the correct semantic relation
between T and H. However, we attempt to learn not only the correct semantic relation between
T and H but also the characteristics of the alignments most likely to support that relation.

We assume that sentence-level semantic relations can be derived compositionally. Following the
framework of Natural Logic proposed by (MacCartney and Manning, 2008; MacCartney, 2009),
our proposed model assigns local semantic relations to edits which represent a transformation
from T to H. A valid set of edits represents an alignment between T and H. Each edit is
categorized as one of three types: substitution, deletion or insertion, and is given one of the
seven semantic relations defined in Natural Logic described in §2. A semantic relation between
T and H is derived from a set of semantic relations of alignment edits by using the projection
rules and the composition rules.

The proposed model learns appropriate alignments which are consistent with compositional
rules of Natural Logic from only sentence-level semantic relations, where appropriate alignments,
their semantic relations and their projections are represented using hidden variables. We use a
log-linear discriminative model with hidden variables to provide conditional joint probabilities
of alignments, their associated semantic relations, and their projections and a sentence-level
semantic relation.

3.1 Model

Our proposed model provides a conditional joint distribution of alignment edits, their semantic
relations, their projected relations and the final semantic relation between T and H as follows.

p(e, re , r P
e , r C |x ;λ) =

1

Z(x )
exp

 ∑
k

Ψk(e, re , r P
e , r C , x ;λ)

!
(1)

e = {ei} denotes the variables representing edits, and each edit ei = 〈ti , hi〉 consists of ti , a
subset of indices of units (e.g. words) in T , and hi , a subset of indices of units in H. An edit
corresponds to substitution if ti 6= φ and hi 6= φ, deletion if ti 6= φ and hi = φ, and insertion if
ti = φ and hi 6= φ. re represents the set of semantic relations for e, where rei

∈ re corresponds
to the semantic relation of ei . Since rei

is derived without considering its context, rei
can be

seen as the semantic relation between ti and hi . The variables r P
e represents a set of projected

semantic relations derived from re , taking into account their contexts. If an edit is under the
scope of negation, a quantifier or a conditional, then rei

is mapped to an appropriate semantic
relation rP

ei
based on that context. Therefore rP

ei
can be seen as the sentence-level semantic

relation between T and the sentence which can be obtained by applying the edit ei to T . The
variables r C denotes a set of semantic relations derived by combining r P

e , where each rC ∈ r C

corresponds to the result of composition of two semantic relations. Hereafter, we use rC
T as the

sentence-level semantic relation. Note that rC
T ∈ r C . Each variable r in re , r P

e and r C can have
seven types of semantic relations described previously. Ψk in equation (1) is a factor which
scores the plausibility of alignment edits, their semantic relations, etc.

Our proposed model uses the following four types of factors to score the plausible alignment
edits, their semantic relations and a sentence-level semantic relation.
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Alignment Factor ΨA(e, x ) is used to deal with (unlabeled) phrase alignment for entailment
relation recognition and is defined asΨA(e, x ) = λ· fA(e, x ). In order to provide good alignments,
it is necessary to capture the lexical similarity between words. The features used in this factor
are mainly (i) surface-based similarity between alignment units, (ii) semantic relatedness of
alignment units, which can be extracted from diverse lexical knowledge databases, and (iii) the
contextual information for an edit.

Alignment Semantic Relation Factor ΨS(e, re, x ) is introduced to provide plausibility of a
semantic relation re ∈ re for an alignment edit e ∈ e and is defined as ΨS = λ · fS(e, re, x ).
Each variable re has a distribution over the seven types of semantic relations defined in Natural
Logic. In order to classify semantic relations, not only surface-based similarities, but also lexical
semantic relations play an important role. In the NatLog system developed by (MacCartney,
2009), an implementation of an RTE system of Natural Logic, lexical resource-derived features
(e.g. WordNet, NomBank, etc.), string similarity features, and lexical category features are
used. For this factor, we exploit diverse lexical resources to provide informative features for
classifying semantic relations of edits.

Projection Factor ΨP(re, rP
e , x ) provides an appropriate projection from re to rP

e by consid-
ering the context of e, and is defined by ΨP(re, rP

e , x ) = λ · fP(re, rP
e , x ). This factor captures

the effects of monotonicity (e.g. upward, downward). Given re and its contexts, the semantic
relation of the projected variable rP

e is uniquely determined using the monotonicity rules of
(MacCartney, 2009).

Composition Factor ΨC(rC
i−1, rP

e , rC
i , x ) scores tuples of semantic relations, and is defined by

ΨCi
(rC

i−1, rP
e , rC

i , x ) = λ · f (rC
i−1, rP

e , rC
i , x ). In this factor, we use the composition rules used

in (MacCartney, 2009) with some modification. We set the derived semantic relations to
independence (#) for the rules which derive more than one semantic relations. Therefore,
as with ΨP , given two semantic relations rC

i−1 and rP
e , the joined relation of the variable rC

i is
uniquely determined.

An overview of the proposed model is shown in Figure 1. In this figure, we show the factor
graph constructed by our proposed model for a pair of sentences in Japanese. Our model is
divided by three layers: the alignment layer, the projection layer and the composition layer. First,
in the alignment layer, our proposed model scores possible alignments using ΨA and ΨS . For
alignment units, we use bunsetsu which is a reasonable unit for Japanese linguistic analysis.
A bunsetsu is a chunk-like unit that consists of one or more content words and zero or more
functional words. A set of possible alignments are obtained using an extended MANLI algorithm
(MacCartney et al., 2008).

Next, for each alignment obtained by the alignment algorithm, we construct a factor graph as
shown in Figure 1. The factor graph has variables for alignments, projected relations, joined
relations, and the factors defined previously. In the projection layer, semantic relations of
alignments are projected by ΨP , and finally a sentence-level semantic relation is obtained in the
composition layer using the projected relations and composition rules encoded in ΨC .

In inference, since variables related to ΨP and ΨC are uniquely determined if re is given, the
model derives the best alignments, their semantic relations, and a sentence-level semantic
relation simultaneously. In training, the parameters of the model are updated so as to derive
alignments and their semantic relations which derive the correct sentence-level semantic relation
based on the composition rules of Natural Logic.
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６月２９日の　  大飯原子力発電所の　再稼働に対する        抗議行動の　　 参加者に!

大飯原発再稼働の　抗議活動に　 参加した　  人は　 いないというのは　誤りである。 

国会議員が　含まれていた。 
⊏ ≡ ≡ ⊏

|∧

alignment
layer 

projection
layer 

composition
layer 

⊏ ≡ ≡ ⊏ | ∧

⊏

(On June 29)                 (against reactivation of Oi Nuclear Power Plant)                  (of the protest)         (The attendance)   

  (legislators)                (included) 

(for reactivation of Oi Plant)     (the protest)           (attended)     (people who)       (there were no)              (it is wrong that)  

semantic relation 

ΨA

ΨS

ΨP ΨP ΨP ΨP ΨP ΨP ΨP

ΨA

ΨA

ΨA ΨA ΨA
ΨA

ΨS

ΨS

ΨS

ΨS

ΨS ΨS

T: 

H: 

T: The attendance of the protest against reactivation of Oi Nuclear Power Plant on June 29 included legislators. 

H: It is wrong that there were no people who attended the protest for reactivating Oi Nuclear Power Plant.

⊏

⊏

≡⊏ ⊏ ⊏
|

|ΨC ΨC

Figure 1: An overview of the proposed model.

3.2 Features

The features used in the proposed model are listed in Table 3.2.

Because RTE datasets are small, it is difficult to incorporate lexical features directly into our
model as they may cause overfitting. Instead, we incorporate similarity metrics to model
lexicality. On the other hand, because function words are closed class and present in all texts,
we can directly use them as features.

While both ΨA and ΨS score the plausibility of alignments, the features used in their factors
are also different. ΨA considers not only lexical similarities but also contexts of edits. Let us
consider a simple sentence pair T: USA won the war but Japan lost the war. H: Japan won the
war. In this example, T and H share the same verb won but the word won in H should be
aligned to lose in T because they share the same subject (Japan). So, we introduce features that
capture predicate-argument structure-level contextual information: e.g. how many arguments
are shared by the two predicates (NUM_SHARED_ARGS)? On the other hand, ΨS pays more
attention to inferring the lexical semantic relations of edits. The features used in ΨP and ΨC
work as rules to infer sentence-level semantic relations.

3.3 Learning the Model

The parameters λ of the proposed model are trained from sentence-level semantic relations
via marginal-likelihood maximization Lλ =

∑
n log p(rC

T = ln|x n;λ). By applying this objective
function, we expect that the proposed model is trained so as to prefer alignment edits and
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Factor Edit Name Description

ΨA DEL, INS TYPE edit type of e
SIZE the number of bunsetsus in e
SAME_NOMINATIVE_IN_{T,H} 1 if e has a nominative argument and the other sentence

also contains a nominative argument and its lemmas are
the same.

SAME_CASE_IN_{T,H} 1 if e has an argument of some predicates and the other
sentence also contains an argument and its cases are the
same.

{T,H}_CONTAINS_{H,T}_LEMMA 1 if the head word of the bunsetsu in e is also contained in
the other sentence.

POS_SEQ POS sequence in e
HEADPOS head POS of e

ΨA SUB TYPE edit type of e
SIZE the number of bunsetsus in e
NUM_SHARED_ARGS the number of shared arguments if both t and h in e are

predicates
PARTICLE_SAME 1 if t and t have the same particle
JAPANESE_WORDNET Set relation type if e matches an entry in Japanese Word-

Net (Bond et al., 2009).
WIKIPEDIA_HYPERNYM-HYPONYM 1 if e matches an entry in (Sumida et al., 2008).
VERB_ENTAILMENT_REL 1 if an entry in the verb entailment relation dictionary

(Hashimoto et al., 2009) matches e
VERB_RELATION_REL 1 if an entry in the verb relation dictionary (Matsuyoshi

et al., 2008) matches e
PARENT_NUM_SHARED_ARGS the number of shared arguments of the parent of t and h

if t and h are arguments
BOTH_HAVE_A_ROLE 1 if each bunsetsu in e is an argument of a predicate.
BOTH_HAVE_THE_SAME_ROLE 1 if each bunsetsu in e has the same case.
HEAD_POS_SAME 1 if the POSs of the heads in e are the same
POS_SEQ_SAME 1 if the POS sequences of chunks in e are the same
EXACT_MATCH 1 if t and h are the same
UNIGRAM_COSINE return unigram cosine value if the cosine similarity of two

chunks in e is greater than the pre-defined threshold

ΨS DEL, INS SIZE number of bunsetsus in e
HEAD_LEMMA lemma of the head of bunsetsu in e
HEAD_WORD_CLASS Word class of the head of bunsetsu in e. The word class

information is extracted from the dictionary provided by
(Kazama et al., 2010)

NEGATION 1 if the bunsetsu contains a negation
ΨS SUB SIZE Pair of the number of bunsetsus in e

HEAD_POS_PAIR POS pair of the heads of bunsetsus in e
HEAD_LEMMA_SAME 1 if the lemmas of the heads in e are the same
POS_SEQ_SAME 1 if the POS sequences of chunks in e are the same
JAPANESE_WORDNET same as in ΨA
WIKIPEDIA_HYPERNYM-HYPONYM same as in ΨA
VERB_ENTAILMENT_REL same as in ΨA
VERB_RELATION_REL same as in ΨA

ΨP – MONOTONE_{UP/DOWN} the context of e is upward-monotone or downward-
monotone.

ΨC – COMPOSITION_RULE 1 if the tuple of semantic relations is included in a set of
defined compositional rules.

Table 1: Features used for the model.

their semantic relations which infer the correct sentence-level semantic relations based on the
composition rules of Natural Logic.

The partial differential of the objective function is

∂ L

∂ λk
=
∑

n

�
∂

∂ λk
log

∑
〈e,re〉∈E

∑

r :rC
T=l

exp

 ∑
k

Ψk(e, re , r P
e , r C , x )

!
− ∂

∂ λk
log Z(x )

�
(2)
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Algorithm 1 The alignment algorithm.
input
an example (xT , xH ), number of iterations I , max size of edits M ,
number of N-bests N , score difference δ, score function ΨA(e, x ) +ΨS(e, re , x )
initialize
e0← φ
∀xT ∈ xT e0← e0 ∪ e(xT , DEL,⊏)
∀xH ∈ xH e0← e0 ∪ e(xH , INS,⊐)
all alignments E ← e0
while (i ter < I) do

top alignments Etop
max score scorear gmax
repeat

get top alignment etop from E
if s(etop)> scorear gmax then

scorear gmax ← s(etop)
end if
Etop ←Etop ∪ etop

until scorear gmax − s(etop)>= δ
get successors Si = {es

i }i for ei ∈ Etop

E ← E⋃i Si
end while

return E

where edits e, their semantic relations re , projected semantic relations r P
e and joined relations

excluding the sentence-level semantic relation are all hidden variables. Given re , r P
e and r C can

be identified uniquely by using projection and composition rules. Since the objective function is
non-convex, estimated parameters can be local-optima.

In optimization, only the parameters in ΨA and ΨS are updated, and the parameters in ΨP and
ΨC are left to initial values. In order to update the parameters, we need to calculate marginal
probabilities of the alignments. However, unlike sequential or tree models, calculating exact
values of alignments is prohibitively difficult. We use only N-bests provided by the extended
MANLI algorithm to calculate an approximate partition function eZ(x ) instead of Z(x ), and
approximate marginal probabilities.

3.4 Inference of Alignments

Given two sentences, the problem of alignment inference in our model is predicting the

best edits and their semantic relations Ø〈e, re〉 = argmax〈e,re〉∈E
∑
〈ei ,rei

〉∈〈e,re〉ΨA(ei , x ;λ) +∑
〈ei ,rei

〉∈〈e,re〉ΨS(ei , rei
, x ;λ) where E is a set of all possible edits and their semantic relations

between two sentences. The original MANLI algorithm (MacCartney et al., 2008) only provides
the best edits, so we extend the algorithm so as to provide not only edits, but also their semantic
relations.

The extended version of MANLI is shown in Algorithm 1. Given two sentences, the algorithm
starts at an initial alignment e0 which consists of deletion edits of bunsetsus in T and insertion
edits of bunsetsu in H, and then searches for more good alignments by changing edits from
a pair of a deletion and an insertion edit to a substitution edit, or changing semantic labels.
The main differences between the original MANLI and our algorithm are: (1) alignments have
their semantic relations, (2) keeps a set of alignments ordered by scores provided by ΨA and
ΨS to provide N-bests. We omitted the annealing procedure which is included in the original
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MANLI because our algorithm need to keep an ordered set of alignments based on scores. If
we introduce a temperature value, we have to update all of the alignments in the set when the
value is changed. However this is computationally expensive.

3.5 The Order of Composition

The composition order of semantic relations defined in Natural Logic is non-commutative. Let us
consider joining an alternation (|) and a forward-entailment (⊏). The pair of semantic relations
frequently appear in contradiction examples. ⊏ joined with | yields |, on the other hand, |
joined with ⊏ yields

⋃{≡,∧ , |,∪, #}. The former way of composition derives the desired result,
however, the latter way derives an ambiguous result. We defined the order of composition so as
to keep joined semantic relations unambiguous as far as possible. Our proposed model at first
joins ≡ and ⊏, then |, then ∧, and ⊐ in the end 4.

4 Experiments

4.1 Data

We developed a dataset for semantic relation recognition which includes a diverse selection of
linguistic phenomena. Although there is an textual entailment recognition data set for Japanese
(RITE (Shima et al., 2011)), we do not consider it an appropriate target for evaluation and
instead construct our own dataset. Our motivation is as follows. Much of the progress made
in textual entailment recognition has been on a set of phenomena that can be handled with
methods of lexical and phrasal similarity, however, there are many other phenomena that have
not been addressed.

Sammons et al. (2010) make a case for more detailed analysis of the linguistic phenomena
important to textual entailment recognition so that their impact on existing approaches can be
properly measured. In that spirit, we investigated textual entailment recognition phenomena
and found that quantification, negation, and monotonicity require consideration of their seman-
tic structure and are beyond the scope of similarity-based methods. Constructing systematic
and robust models of handling these phenomena is the focus of this paper. It is reasonable to
target these phenomena next because many of the remaining problems for textual entailment
recognition require world knowledge and are thus problems of inference or AI. Existing datasets
for textual entailment recognition are insufficient for our purposes because the phenomena
they contain are too broad and they do not contain enough examples of the phenomena we are
targeting to draw meaningful conclusions.

We selected the categories based on FraCaS (Cooper et al., 1996), the corpus developed by
Bentivogli et al. (2010) and the categories discussed in (MacCartney, 2009): lexical semantic
relation (e.g. synonym, antonym, hypernym-hyponym relation), quantifiers, modifiers, negation,
coordination, relative clauses, apposition, temporal and numerical expressions, active/passive,
factive verbs and functional relations.

The statistics of the dataset is shown in Table 4.1. The distribution of the categories is not
balanced: the quantifier category accounts for approximately 30% of the total. One of our
interests is whether the model can automatically capture behaviour of functional expressions
such as quantifiers from sentence-level semantic relations. In order to conform this point, we
developed many examples for quantifiers.

4NatLog uses a different strategy from ours. The system at first joins semantic relations of deletion edits, then
substitution edits, next edits involve operators with non-default projectivity, and, finally, insertion edits.
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Category # Category # Category #
Quantifier 182 Coordination 27 Part-Whole 13
Numerical/Temporal 53 Argument Mismatch 26 Condition 8
Modifier 55 Negation + Lexical semantic Rel. 23 Apposition 7
Lexical semantic relation 44 Paraphrase 21 World Knowledge 3
Implicative/Factive 36 Predicate Mismatch 17 Other 37
Relation between entities/events 27 Coordination 27 Total 598

Table 2: Category statistics.

Category Example Sem. Rel.
Quantifier T: Almost all mammals have molars in the back of their rows of teeth. Forward-Ent.

H: There are mammals that do not have molars.
Paraphrase T: Not all smokers get cancer. Paraphrase

H: Even if you smoke, you might not get cancer.
Modifier T: There aren’t many students. Forward-Ent.

H: There aren’t many students who have had a heat stroke.
Lexical semantic rel. T: Japan got a bronze medal in Team Fencing. Contradiction

H: Japan hasn’t gotten a bronze medal in any sports.
Implicative/Factive T: Earthquake-proofing prevented the house’s collapse. Forward-Ent.

H: The house did not collapse.
Coordination T: Tokyo has a population of 13,000,000 and Miyagi has a population of 2,300,000. Contradiction

H: Tokyo has a population of 2,300,000.

Table 3: Some examples in the dataset (translated in English).

For each example, we annotated one of the four types of sentence-level semantic relations
(paraphrase, forward-entailment, contradiction and independence), and alignment edits and
their semantic relations in Natural Logic. In the dataset, the number of paraphrase examples
is 97, forward-entailment is 313, contradiction is 100, and independence is 88. Table 4.1
shows some examples in the dataset. The dataset was developed by one annotator, who is a
professionally trained linguist unaffiliated with this research project, and the set of annotated
semantic relations does not always provide the correct semantic relation. 55.2% of the gold
annotations derive correct sentence-level semantic relation (332 examples). The remaining
examples include inconsistencies between sentence-level semantic relations and semantic
relations of alignments, linguistic phenomena that the current model can not deal with (e.g.
syntactic transformation, some quantifiers), etc.

Whereas there are seven types of relations in Natural Logic, our annotation uses only four types
of relations. So in the experiments, we mapped contradiction to {∧, |} and other to {∪, #} in the
training and the testing phase.

4.2 Settings

In order to explore the effectiveness of the proposed model, we evaluated the following
approaches in the experiments.

Initial Weight Initial weights of the model are used for testing.

Resource-based Alignment Alignments are determined based on a surface-based similarity
measures and lexical resources. In this setting, a pair of two phrases is aligned if the
character-bigram cosine similarity is greater than a pre-defined threshold (we set it to
0.8), or the pair matches an entry in the lexical resources such as Japanese WordNet,
Hypernym-Hyponym relations, Verb Entailment Relations, and Verb Relation Dictionary.
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Semantic relations of alignment edits are determined as follows: ≡ if the pair of the
bunsetsus 〈b1, b2〉 is the same, similar or is synonym, | if the pair is antonym, ⊏ if b2
is the hypernym of b1 or b1 entails b2, ⊐ if b1 is the hypernym of b2 or b2 entails b1.
The bunsetsus not aligned by the similarity measure or the resources are converted to
deletion or insertion edits, and their semantic relations are set to ⊏ and ⊐ respectively
with exceptions described later.

Alignment Supervised The model is trained using gold alignments which have correct seman-
tic relations defined in Natural Logic. In this setting, sentence-level semantic relations are
not considered in training. As in the proposed model, we constructed the model using a
log-linear discriminative model, and the model was trained log-likelihood maximization of
gold alignments. The objective function used in training was Lλ =

∑
n log p(e, re |x n;λ).

Weakly Supervised (proposed) The model is trained by marginal likelihood maximization
over sentence-level semantic relations.

The dataset we used in the experiments include the examples whose correct sentence-level
semantic relations can not be derived from the pre-annotated semantic relations of alignment
edits. It seems that these are hard to derive correct sentence-level semantic relations from
the current possible edits. So, we conducted experiments on the examples whose correct
sentence-level semantic relations can be derived from the gold alignments (hereafter, we say
reachable).

For the factors ΨP and ΨC , we initialized the weights to 0.0 if the semantic relation tuple is
covered by our projection rules and composition rules, and −∞ otherwise. For the factors
ΨA and ΨS , we set initial weights to some features 5. In training of the model, we update
the parameters in ΨA and ΨS , and the parameters in ΨP and ΨC are left to the initial values.
Parameter updating was performed using stochastic gradient descent (SGD), and the number
of iterations was set to 2. Also, we applied L2 regularization. As for the alignment algorithm,
the number of iterations was set to 40, and the number of N-bests was set to 10. For each
edit type, we restricted the maximum size of units: only allows one-to-one for substitution,
allows at most three units for insertion and deletion edits. Also, we constrained the types
of semantic relations for each edit type. Substitution edits can have one of the five types of
semantic relations: ≡, ⊏, ⊐, ∧ and | with an exception. If the lemma sequences of the two
bunsetsus are the same, the edit can have only ≡. Deletion edits and insertion edits can have ⊏
and ⊐ respectively with exceptions. They can have | if the head of bunsetsu matches an entry in
the list of counter-factive expressions 6, and they can have ≡ if the head of bunsetsu matches an
entry in the list of less-informative expressions 7.

4.3 Evaluation Measures

We use the following measures in evaluation: (1) Alignment (Unlabeled): A predicted align-
ment is correct if there is a gold alignment which has the same span, but the semantic label is
not considered, (2) Alignment (Labeled): A predicted alignment is correct only if there is a
gold alignment which has the same span and their semantic relations are also the same, and
(3) Sem. Rel.: Accuracy of sentence-level semantic relations.

5For instance, the weights of the combination feature “NEGATION=0” and “JAPANESE_WORDNET=antonym” are
set to 1.0 if label is | and −1.0 otherwise

6A hand-crafted list which contains 13 entries.
7As with the list of counter-factive expressions, the list was hand-crafted, and contains 30 entries.
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Alignment (Unlabeled) Alignment (Labeled) Sem. Rel.
Prec. Rec. F1 Prec. Rec. F1 Acc.

Initial Weights 42.6 62.5 50.6 37.5 54.9 44.5 31.8
Resource-based Alignment 45.6 63.3 53.0 38.6 53.5 44.9 35.0
Weakly Supervised (proposed) 67.1 67.8 67.4 51.3 51.9 51.6 47.5
Alignment Supervised 68.0 68.8 68.4 54.9 55.5 55.2 43.7
Gold Alignment 100.0 100.0 100.0 100.0 100.0 100.0 55.2

reachable examples only
Initial Weights 45.6 65.5 53.8 41.7 59.9 49.2 38.5
Resource-based Alignment 48.4 66.7 56.1 42.6 58.8 49.4 37.7
Weakly Supervised (proposed) 72.4 73.1 72.7 59.2 59.8 59.5 60.2
Alignment Supervised 74.2 75.0 74.6 61.9 62.6 62.3 46.4

Table 4: Performance of alignment prediction and sentence-level semantic relation recognition.

4.4 Preprocessing

For each sentence, we conducted various forms of linguistic analysis: morphological analysis
using MeCab (Kudo et al., 2004), syntactic parsing using the Japanese dependency parser,
CaboCha (Kudo and Matsumoto, 2002) and predicate-argument structure analysis (Watanabe
et al., 2010) to provide a basis for alignment and semantic relation classification.

4.5 Results

Table 4 shows the experimental results of 10-fold cross validation for alignment prediction and
sentence level semantic relation recognition. We can see that while the proposed method is less
successful at reproducing gold standard alignments, it greatly outperforms Supervised Learning
for sentence-level semantic relation recognition8. We expected Supervised Learning to perform
best on reachable examples, which should have the most straightforward connection between
alignment semantic relation labels and sentence level semantic relations. Nevertheless, our
proposed method achieved the best performance on this dataset as well. These results support
our theory that gold standard alignment data is necessary for semantic relation recognition.
Indeed, alignment labels appear to degrade performance in several cases.

Table 5 shows the sentence-level performance for each semantic relation type. This breakdown
shows that the proposed method is particularly good at Contradiction and Forward-Entailment
relations, outperforming all other methods on all data sets. When considering reachable
examples only, it is also the top-performing method for Paraphrase detection as well. Resource-
based Alignment and Initial Weights both perform poorly, producing significantly worse results
than the supervised methods in every evaluation setting with the exception of Contradiction on
reachable examples only and Independence on both data sets.

The poor performance by Resource-based Alignment and Initial Weights is likely due to inac-
curate alignments, especially of functional expressions (e.g. sometimes - not always). Since
deletion and an insertion edits are assigned ⊏ and ⊐ respectively by default and joining them
yields independence (#), these methods over-produce Independence relations. Most of the
errors in Alignment Supervised are caused by lower precision for alternation (|). Since alterna-
tion relations can greatly impact the sentence-level semantic relation prediction, this severely
impacted the overall performance of the supervised model.

Table 6 shows the performances of semantic relation classification of alignments for each type.
As discussed before, supervised alignment is the most successful at recovering gold standard

8 We compared the sentence-level semantic relation recognition results of Weakly Supervised and Alignment
Supervised with the McNemar test, and the difference was statistically significant (p < 0.01).
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Paraphrase Forward-Entailment
Prec. Rec. F1 Prec. Rec. F1

Resource-based Alignment 67.4 29.9 41.4 73.6 28.4 41.0
Initial Weights 61.1 11.3 19.1 81.9 27.5 41.2
Weakly Supervised (proposed) 46.1 54.6 50.0 73.9 55.3 63.2
Alignment Supervised 60.5 47.4 53.2 72.7 39.9 51.6

Contradiction Independence
Resource-based Alignment 19.2 15.0 16.9 22.1 86.4 35.2
Initial Weights 41.4 12.0 18.6 18.6 92.1 31.0
Weakly Supervised (proposed) 25.0 43.0 31.6 33.3 17.1 22.6
Alignment Supervised 21.3 42.0 28.3 36.4 54.6 43.6

reachable examples only
Paraphrase Forward-Entailment

Resource-based Alignment 52.9 20.9 30.0 76.3 33.7 46.8
Initial Weights 60.0 20.9 31.0 85.7 34.9 49.6
Weakly Supervised (proposed) 59.5 51.2 55.0 62.3 85.5 72.1
Alignment Supervised 53.1 39.5 45.3 61.2 58.7 59.9

Contradiction Independence
Resource-based Alignment 29.8 20.6 24.4 23.2 89.8 36.8
Initial Weights 63.2 17.7 27.6 20.6 95.9 33.9
Weakly Supervised (proposed) 73.9 25.0 37.4 60.9 28.6 38.9
Alignment Supervised 19.0 26.5 22.1 62.1 36.7 46.2

Table 5: The details of the results of sentence-level entailment relation recognition.

Equivalence (≡) Forward-Entailment (⊏)
Prec. Rec. F1 Prec. Rec. F1

Resource Alignment 60.7 76.0 67.5 25.5 49.8 33.8
Initial Weights 69.0 76.2 72.4 22.8 53.3 31.9
Weakly Supervised 66.0 89.0 75.8 30.1 25.3 27.5
Alignment Supervised 70.0 89.5 78.6 35.2 29.3 32.0

Backward-Entailment (⊐) Alternation (|), Negation (∧)
Resource Alignment 11.8 47.0 18.1 68.4 14.3 23.7
Initial Weights 9.7 54.8 16.4 91.2 5.6 10.5
Weakly Supervised 27.1 13.9 18.3 28.7 15.4 20.0
Alignment Supervised 34.3 15.1 20.9 23.3 17.2 19.8

reachable examples only
Equivalence (≡) Forward-Entailment (⊏)

Prec. Rec. F1 Prec. Rec. F1
Resource Alignment 69.1 76.5 72.6 27.4 53.8 36.3
Initial Weights 75.3 76.9 76.1 25.2 57.0 35.0
Weakly Supervised 72.8 88.7 80.0 30.5 37.5 33.6
Alignment Supervised 76.8 89.5 82.7 35.1 38.0 36.5

Backward-Entailment (⊐) Alternation (|), Negation (∧)
Prec. Rec. F1 Prec. Rec. F1

Resource Alignment 8.3 52.5 14.3 70.6 19.1 30.0
Initial Weights 7.2 57.6 12.8 100.0 8.3 15.4
Weakly Supervised 25.0 11.9 16.1 83.3 7.9 14.5
Alignment Supervised 28.1 15.3 19.8 40.3 19.8 26.6

Table 6: The details of the performances of alignment prediction.

alignments and semantic relation labels. However, it is interesting to note that while Resource
Alignment performs competitively at alignment prediction (it rivals Alignment Supervised on
Forward-Entailment and outperforms all other methods on Alternation/Negation), it performs
drastically worse on sentence-level semantic relation recognition, sometimes with an f-score
that is more than 20 points lower than the best performing method. These results suggest
that it is important to jointly model alignment prediction and sentence-level semantic relation
recognition so that globally optimal alignments are promoted.
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5 Related Work
There are a number of existing works which explore the use of latent variable or structure
models for recognizing textual entailment. Chang et al. (2010) proposed a discriminative linear
model where alignments are treated as hidden structures, and the sentence-level semantic
relation is derived based on the best latent alignment structure. They formulated the problem of
predicting the best hidden structure as an Integer Linear Programming problem, where domain
knowledge is encoded as constraints. Wang and Manning (2010) proposed a latent variable
model where the model provides a conditional distribution of a sequence of edits, which can be
seen as a transformation-based approach. In the model, edits are treated as hidden variables
that populate a positive set and a negative set in the search space. Sentence-level semantic
relations are predicted based on the sum of the scores of edit sequences in the positive set and
the negative set.

The differences between our proposed model and theirs are that the number of semantic
relations and compositionality. Both Wang and Manning (2010) and Chang et al. (2010)
consider only entailment and non-entailment, while our proposed model identifies a rich set of
relations: paraphrase, forward entailment, backward entailment, contradiction, and independence.

Furthermore, as discussed in Section 2, our model exhibits compositionality by incorporating
Natural Logic at two different levels. First, it incorporates information about upward and
downward monotonicity into a projection layer, allow it to handle flips in entailment direction
caused by scope of negation that can influence the final sentence-level semantic relation. In
addition, it considers the result of combining projected semantic relations of alignment edits,
allowing it to handle complex interactions between linguistic phenomena in sentences. The
alignment models of Wang and Manning (2010) and Chang et al. (2010) do not consider the
interaction between alignments that we model with Natural Logic making it difficult for them
to classify examples that contain complex semantic structures.

Conclusion
In this paper, we proposed a novel latent variable model for compositional entailment relation
recognition. We gave the proposed model compositionality by incorporating a set of semantic
relations and their composition rules of Natural Logic. The model has ability to predict local
correspondences (alignments) between sentences, the semantic relations, and the sentence-level
semantic relation simultaneously. The model can be trained from only sentence-level semantic
relations by using marginal-likelihood maximization. In evaluation, our proposed method
outperformed a supervised alignment method on a sentence-level semantic relation recognition
task, and detailed analysis on that task and an alignment prediction task did not provide
evidence that gold standard alignment labels contributed to semantic relation recognition
performance and instead suggests that they can be detrimental to performance if used in a
manner that prevents the learning of globally optimal alignments.

A future research direction we are investigating is extending the model so as to deal with
structural transformations. The current model has a big drawback: the model assumes that all
of sentence-level semantic relations can be derived from only bunsetsu -level transformations.
We would like to explore how to incorporate transformation rules (used in e.g. (Stern et al.,
2011)) into the proposed model.
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