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Abstract

Domain adaptation methods often exploit
domain-transferable input features, a.k.a. piv-
ots. The task of Aspect and Opinion Term Ex-
traction presents a special challenge for domain
transfer: while opinion terms largely trans-
fer across domains, aspects change drastically
from one domain to another (e.g. from restau-
rants to laptops). In this paper, we investigate
and establish empirically a prior conjecture,
which suggests that the linguistic relations con-
necting opinion terms to their aspects transfer
well across domains and therefore can be lever-
aged for cross-domain aspect term extraction.
We present several analyses supporting this con-
jecture, via experiments with four linguistic
dependency formalisms to represent relation
patterns. Subsequently, we present an aspect
term extraction method that drives models to
consider opinion–aspect relations via explicit
multitask objectives. This method provides
significant performance gains, even on top of
a prior state-of-the-art linguistically-informed
model, which are shown in analysis to stem
from the relational pivoting signal.

1 Introduction

Sentiment Analysis is one of the most widely
used applications of natural language processing.
A common fine grained formulation of the task,
termed Aspect Based Sentiment Analysis, matches
the terms in the text expressing opinions to corre-
sponding aspects. For example, in the restaurant
review in Figure 1, great, calm and quiet are opin-
ion terms (OTs) referring to the aspect term (AT)
ambience.

Following the SemEval shared tasks (Pontiki
et al., 2014, 2015), the preliminary task of AT and
OT extraction has attracted significant research at-
tention (Wang and Pan, 2020; Pereg et al., 2020, in-
ter alia), especially for its domain adaptation setup,
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Figure 1: An OT (yellow) to AT (blue) path-pattern
(green), defined on top of Universal Dependencies
(UD), occurring in sentences from the Devices (top)
and Restaurants (bottom) domains.

where a model trained on one domain is tested on
another, unseen domain. Considering each prod-
uct or service as a "domain", domain adaptation is
crucial for making models of this task widely ap-
plicable. Yet performance on cross-domain aspect
term extraction is still low, reflecting that it poses
a special challenge to common domain adaptation
paradigms.

In most domain adaptation settings, some fea-
tures of the input are domain specific, while oth-
ers — also known as pivot features (Blitzer et al.,
2006) — do transfer into unseen domains. Hence,
cross-domain generalization concerns focusing the
model’s learning on the latter. However, aspect
terms across domains share little direct common-
alities. Essentially, their common denominator is
being the target topic referred to by opinion terms.
For this reason, prior works suggested using hand-
crafted syntactic rules (Hu and Liu, 2004; Ding
et al., 2017), or alternatively, injecting a full syntac-
tic analysis into the model (Wang and Pan, 2018;
Pereg et al., 2020), aiming to capture the transfer-
able relation-based properties of aspects.

Our first contribution is establishing the rela-
tional pivoting approach for cross-domain AT ex-
traction on quantitative, data driven analysis (§3).
We utilize four different linguistic formalisms (i.e.,

104



syntactic and semantic dependencies) to charac-
terize OT–AT relations, and empirically confirm
their domain transferability and importance for the
task. Following, we propose an auxiliary multi-task
learning method with specialized relation-focused
tasks, designed to teach the model to focally cap-
ture these relations during OT and AT extraction
training (§4). Our method improves cross-domain
AT extraction performance when applied over both
vanilla BERT (Devlin et al., 2019) and the state-
of-the-art SA-EXAL (Pereg et al., 2020) models.
We conclude with a quantitative analysis of model
predictions, ascribing observed performance gains
to enhanced relational pivoting.1

2 Background

Following the SemEval Aspect Based Sentiment
Analysis shared tasks (Pontiki et al., 2014, 2015),
recent works have formulated the OT and AT extrac-
tion task: given an opinionated text, identify the
spans denoting OTs and ATs. We adopt the bench-
mark dataset that was used by recent works (Wang
and Pan, 2020; Pereg et al., 2020), which consists
of three customer-review domains — (R)estaurants,
(L)aptops and digital (D)evices — and was aggre-
gated from the SemEval tasks jointly with several
published resources (Hu and Liu, 2004; Wang et al.,
2016). While promising AT extraction performance
has been demonstrated for in-domain settings (Li
et al., 2018; Augustyniak et al., 2019), it does not
scale to unseen domains, where state-of-the-art
models exhibited small incremental improvements
and struggle to surpass F1 scores of 40–55 (for the
different domain pairs).

Previous works have conjectured that aspect and
opinion terms maintain frequent syntactic relations
between them. Subsequently, Hu and Liu (2004),
followed by Qiu et al. (2011), crafted a handful
of simple syntactic patterns for in-domain AT ex-
traction based on OTs. Motivated by the hypoth-
esized domain transferability of syntactic OT–AT
relations, Ding et al. (2017) employed pseudo la-
beling of AT based on the aforementioned patterns,
which was used as auxiliary supervision for domain
adaptation setup. We, however, extract our patterns
from the data rather than manually crafting them.

In a related line of work, syntax was leveraged
more broadly for the same relational pivoting mo-

1Our code for all experiments and analyses can be
found here: https://github.com/IntelLabs/
nlp-architect/tree/libert-path-amtl/nlp_
architect/models/libert

Aspects Opinions
D → R 7.3 78.6
D → L 42.3 83.2
R → D 12.2 59.1
R → L 11 61.4
L → D 41.3 65.4
L → R 9.1 68.3
Mean 20.5 69.3

Table 1: Cross-Domain lexical term overlap — how
many term instances from target domain occur at least
once in source domain (percentage).

tivation. Wang and Pan (2018) and Wang and Pan
(2020) encoded dependency relations with a re-
cursive neural network using multitask learning,
where the latter also applied domain-invariant ad-
versarial learning. Most recently, the Syntacti-
cally Aware Extended Attention Layer model (SA-
EXAL) (Pereg et al., 2020) improved cross-domain
OT and AT extraction by augmenting BERT with
an additional self-attention head that attends solely
to the syntactic head of each token.

3 Motivating Data Analysis

The Relational Pivoting hypothesis is jointly en-
tailed from two observations: (1) Opinion terms
are similar across domains. (2) The relationships
between corresponding OT–AT pairs have com-
mon, domain transferable linguistic characteristics.
Taken together, these suggest that OT–AT linguistic
relations are informative pivot features for trans-
ferring aspect extraction across domains. In the
following subsections, we show several analyses
supporting the above observations and hypothesis.

3.1 Opinions vs. Aspects Domain Variability

We first measure the degree to which OTs and ATs
are shared across domains, by computing cross-
domain lexical overlap. Table 1 shows the percent-
age of term instances in the target domain occurring
at least once in the source domain. Overall, unlike
aspect terms, opinion terms have significant over-
lap across domains. For example, the terms great,
good, best, better and nice all occur in the top-10
common OTs in each of the three domains, jointly
covering 22%, 20% and 14% of OTs in the Restau-
rants, Devices and Laptops domains, respectively.

In sharp contrast, there is only one aspect (price)
occurring in the top 50 common ATs at all three
domains. This is in sync with model experiments
— both in-house and as reported by Wang and Pan
(2020) — showing a drastic performance drop for
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cross-domain AT extraction, from lower 70s in-
domain to around 45 F1, while exhibiting a “rea-
sonable” drop in OT extraction, from lower 80s to
around 70 F1.

3.2 OT–AT Path Patterns

Next, we measure the degree to which linguistic
relations connecting OT–AT pairs are shared across
domains. To this end, we capture OT–AT linguistic
relations using their path pattern in a dependency
graph, i.e., the ordered list of the dependency rela-
tion labels occurring throughout the shortest (undi-
rected) path between the terms (Figure 1).2

We investigate and compare four linguistic for-
malisms: Spacy’s syntactic dependencies3, Univer-
sal Dependencies (UD), and two formalisms from
Semantic Dependency Parsing (Oepen et al., 2015)
— DELPH-IN MRS (DM) and Prague Semantic De-
pendencies (PSD).4 We parsed all the sentences in
the benchmark dataset with state-of-the-art parsers
— SpaCy 2.0, UDPipe5, and HIT-SCIR (Che et al.,
2019) for DM and PSD. Importantly, since corre-
spondences between ATs and OTs are not anno-
tated in the benchmark dataset, we first heuristi-
cally define which (OT, AT) pairs would be consid-
ered related. Following a preliminary analysis, we
selected for each formalism all pairs whose short-
est path length is ≤ 2. This yields 9K–10K pairs
which cover 60%–70% of the ATs across the differ-
ent formalisms. These pairs and their path patterns
constitute the data for the analyses below, as well
as for training relation-focused auxiliary tasks (§4).

We find that between 94%–97% of the patterns
in one domain are covered by another domain
(More details in Appendix A). This confirm the
prior presupposition that the linguistic structure of
OT–AT relations is fairly domain invariant, and put
forward path-patterns as promising features for do-
main transfer. In section 3.4 we further analyze the
variability across different domain transfer settings.

2We maintain edge direction by appending a directionality
marker to each edge label. In case of multi-word terms, we
take the token pair across the terms having the shortest path.

3https://spacy.io/
4We also experimented with three application-oriented UD

extensions: Enhanced UD, Enhanced UD++ (Schuster and
Manning, 2016), and pyBART (Tiktinsky et al., 2020). These
formalisms introduced more label variability compared with
UD, but also shortened OT–AT paths and performed slightly
better in the multitask experiments. However, we omit these
for presentation convenience.

5https://ufal.mff.cuni.cz/udpipe

Figure 2: Relative cumulative frequency distribution of
path patterns — Restaurants domain, UD formalism.

In-Domain Cross-Domain
k = 10 All k = 10 All

P R F1 P R F1 P R F1 P R F1
UD 41 32 35 22 54 31 40 30 34 22 52 30
DM 46 34 39 31 46 37 46 34 38 31 45 36

Table 2: Results of deterministically applying the top k
common path patterns (in source domain) on gold OTs
for extracting ATs. Evaluation is macro-averaged over
the 3 in-domain or 6 cross-domain settings.

3.3 Deterministic Relational Pivoting

To quantify the estimated potential of relation-
based pivoting, we analyze a deterministic method
for extracting ATs via gold OTs based on path pat-
terns, similar to prior rule-based methods (Hu and
Liu, 2004; Qiu et al., 2011), and assess how well
such an approach transfer across domains. Given
predicted linguistic parses, we select the top k com-
mon OT-to-AT path patterns and apply them on
every OT, where traversal destination tokens are
selected as ATs. To illustrate, given the UD pattern
OT CONJ←−−−* NSUBJ−−−→AT, the OTs quiet and calm would
both yield ambience as an AT (Figure 1, bottom).
Notably, this analysis is only a rough upper-bound
estimate; it is limited to identifying single-word
ATs (70% of all ATs) which furthermore relates to
an OT in a strictly known pattern, whereas models
may generalize over some of these limitations.

Averaged results (across domain settings) are
shown in Table 2 for varying k sizes (see Appendix
B for a breakdown by domain pairs). Overall,
pattern-based AT extraction can bring averaged
F1 score up to 39 (DM), and recall up to 54 (UD).
Crucially, there is hardly any drop in cross-domain
settings relative to in-domain, affirming that pat-
terns from a different source domain are as infor-
mative as in-domain patterns for opinion based AT
extraction, consistent with observed pattern stabil-
ity (§3.2). These findings suggest that driving a
model to encode OT–AT relations should enhance
domain adaptation.
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3.4 Analysis of Domain Differences

It is illuminating to examine the differences be-
tween domains with respect to the path-pattern vari-
ability and transferability. In order to assess the
linguistic diversity of OT–AT relations within each
domain, we plot the relative cumulative pattern dis-
tribution for each linguistic formalism, visualizing
how many OT–AT pairs (%) are covered by how
many different patterns (See Figure 2 for a repre-
sentative, and Appendix Figure 3 for the complete
set of figures). The general picture is that the vast
majority of OT–AT pairs exhibit a few dozens of
path patterns, albeit most pairs are covered by a
few high-frequency patterns.

Specifically, we observe that the Laptops domain
is the most diverse and slowly-accumulating, while
the opposite is true for the Restaurants domain. We
conjecture that the linguistic variability of OT–AT
relations inside a domain affects its transferabil-
ity. High variability makes the domain harder to
transfer to, as many relation patterns were not seen
during training on the source domain. At the same
time, it might make it a good choice for the source
domain, acquainting the model with a rich set of re-
lational linguistic constructions to generalize from.

Obviously, the within-domain variability is not
the most prominent factor affecting domain trans-
fer; rather, it interacts with the similarity of the
domain pairs, both on the pivot features (here: OT–
AT relations) and on the non-pivot features (here:
the lexical and semantic profile of ATs and OTs).
To have a better handle on cross-domain similar-
ity of OT–AT relations that accounts for pattern
frequency in each domain, we compute the Jensen-
Shannon Distance between path-pattern probabil-
ity distributions (Table 6 in Appendix A), where
smaller distance indicates greater similarity. While
the Devices and Laptops domains are the most sim-
ilar to each other, the Restaurants and Laptops
domains are least similar.

By and large, this is inline both with results of
the deterministic pivoting analysis (Section 3.3)
broken down by domain pairs (Table 7 in Appendix
B), and, to a smaller degree, with performance
gains of our relation-focused multitask learning
experiments (Section 5).

4 Multi-task Learning Method

To propagate the relational pivoting signal into an
OT and AT extraction model, we apply auxiliary
multitask learning (AMTL). We experimented with

R ↔ L R ↔ D L ↔ D Mean
Spacy 0.62 0.60 0.58 0.60
UD 0.60 0.59 0.56 0.58
DM 0.50 0.50 0.50 0.50
PSD 0.60 0.56 0.58 0.58
Mean 0.58 0.56 0.55 0.57

Table 3: Jensen-Shannon Distances between pattern
probabilities in different domains. Lower distance in-
dicates similarity between the frequency signature of
patterns in a domain pair.

two auxiliary tasks for steering the model to en-
code OT–AT relationship information during train-
ing. Given an OT from an OT–AT pair of the
collected auxiliary training data (§3.2), the model
learns to: (1) predict its counterpart AT (ASP);
and (2) predict the path-pattern connecting them
on the dependency graph (PATT).6 The ASP task
should foreground the implicit representation of
OT–AT relations, whereas PATT injects explicit,
linguistically-oriented relation information.

Prior multitask learning approaches for enrich-
ing models with syntax (Strubell et al., 2018; Wang
and Pan, 2018, 2020) have pushed them to encode a
full syntactic analysis, possibly including irrelevant
information. In contrast, our auxiliary tasks form a
“partial parsing” objective, specialized in the rele-
vant terms and their multifarious relations. We use
both vanilla BERT (Devlin et al., 2019) and state-
of-the-art SA-EXAL (Pereg et al., 2020) as base
models, where the latter may imply whether our
relation-focused signal is subsumed by SA-EXAL’s
awareness to the full syntactic parse (§2).

Implementation details We follow the experi-
mental setup of (Pereg et al., 2020) and formulate
OT and AT extraction as a single BIO-tagging task.
One-layer classifiers are applied on top of either
bert-base-uncased or SA-EXAL encoders,
both for the main task and for the auxiliary tasks.
Let Z = {z1, z2, . . . , zn} be the contextualized
representations of the input sequence produced by
the encoder, and op be the OT index from an ex-
tracted OT–AT pair. The auxiliary classifiers are
defined as follows:

PATT(Z, op) = softmax(zopWP + UP )

ASP(Z, op) = softmax(o1, . . . , on)

oi = (zopW
A + UA) · zi

where WP ∈ Rd×m, UP ∈ Rm, WA ∈ Rd×d,
6The SA-EXAL model was amended to generalize over

the graph structures (rather than trees) produced by semantic
formalisms (Appendix E).
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Model ( + AMTL task — Formalism) L→ R D→ R R→ L D→ L R→ D L→ D Mean
BERT 47.2 (4.0) 51.6 (2.1) 44.5 (3.1) 46.7 (1.7) 38.3 (2.4) 42.6 (0.6) 45.16
BERT + ASP — DM 53.5 (3.3) 52.0 (2.1) 45.7 (2.4) 45.9 (2.3) 38.8 (1.5) 42.8 (1.0) 46.45
BERT + ASP — Spacy 49.8 (3.2) 51.6 (1.5) 46.2 (2.5) 45.2 (2.5) 39.4 (1.6) 42.5 (1.0) 45.77
BERT + PATT — DM 46.3 (4.7) 50.9 (2.6) 42.9 (3.4) 46.2 (2.4) 38.0 (1.9) 42.1 (1.0) 44.40
BERT + PATT — Spacy 50.1 (3.0) 51.6 (2.0) 43.1 (2.2) 46.6 (2.5) 37.8 (1.6) 42.0 (0.9) 45.20
SA-EXAL — DM 48.7 (5.8) 53.8 (2.8) 46.0 (3.1) 47.7 (1.8) 40.7 (1.3) 41.9 (0.6) 46.48
SA-EXAL — Spacy 47.9 (3.1) 54.1 (1.9) 45.4 (3.3) 47.1 (1.1) 40.7 (1.7) 42.1 (1.4) 46.24
SA-EXAL + ASP — DM 54.1 (2.3) 51.6 (2.0) 45.6 (2.9) 45.8 (4.1) 39.2 (1.9) 41.8 (0.9) 46.37
SA-EXAL + ASP — Spacy 54.0 (3.1) 52.6 (1.9) 47.1 (3.0) 46.9 (2.4) 39.1 (2.7) 42.2 (0.6) 47.00
SA-EXAL + PATT — DM 52.8 (4.3) 54.3 (1.8) 47.5 (1.9) 47.7 (2.2) 40.3 (1.5) 41.6 (0.8) 47.37
SA-EXAL + PATT — Spacy 51.2 (3.4) 53.3 (2.3) 46.5 (2.3) 46.6 (1.8) 39.5 (1.2) 41.5 (0.9) 46.42

Table 4: Cross-domain AT-extraction for different models and linguistic formalisms, evaluated by mean F1 score
(and standard deviation). Each column (e.g. L→ R) stands for a cross-domain transfer (e.g. Laptops to Restaurants),
where the best BERT and SA-EXAL results are highlighted in bold.

UA ∈ Rd are model parameters, · stands for dot
product, d is the hidden vector size and m is the
size of the output pattern vocabulary. m is set by
taking all the patterns whose frequency in training
data (i.e., source domain) is ≥ 3, while mapping
other patterns to a fixed UNK symbol.

5 Results and Analysis

Following Pereg et al. (2020), we run each model
on 3 random data splits and 3 different random
seeds, presenting the mean F1 (and standard de-
viation) of the 9 runs. Detailed results are shown
in Table 4,7 omitting the UD and PSD formalisms
— which perform virtually on par with the other
formalisms — for space considerations.8

For BERT, training for ASP consistently im-
proves the mean F1 score, by up to 1.3 points (DM),
bringing BERT’s performance to be on par with the
state-of-the-art SA-EXAL model. Improvements
over the SA-EXAL baseline is generally smaller,
yet some settings improve by 0.5–1 mean F1 points.
Best performance is attained using SA-EXAL +
PATT with semantic formalisms, indicating that
pattern-focused signal is complementary to generic
syntax enrichment methods.

Performance Analysis The overlap between
model predictions and the deterministic relational
pivoting method (§3.3) indicates to what extent
the model utilizes relational pivot features. Given
model predictions, we define pivot-∆R as the recall

7Our reported baseline figures are slightly different than
those reported by Pereg et al. (2020), as we could not fully
reproduce their hyperparameter settings, e.g. random seeds.
Aiming for a controlled experiment concerning only the
AMTL improvements over baselines, we have not optimized
the random seeds for any condition.

8Results for models trained with both ASP and PATT were
also omitted due to their lower performance.

improvement a model gains by unifying its true pre-
dicted ATs with those of the deterministic method
(at k = 10).9 Greater pivot-∆R indicates greater
discrepancy from the potential scope of pattern-
based coverage, hinting that the model incorporates
less relational pivot features. Taking DM as the for-
malism, we find that for the vanilla BERT model,
average pivot-∆R across 6 domain transfers is 16.5
recall points, with 22.6 for the Laptops to Restau-
rants transfer (L→ R). This implies that relational
features have a significant potential for enhancing
its cross-domain coverage, especially on L→ R,
where we indeed observe the most profound model
improvements using our relation-focused tasks. In
comparison, BERT + ASP (DM) has an averaged
pivot-∆R of 14, with 15.7 on L→ R (See Appendix
E for more details). This drop confirms that the
AMTL objective pushes the model to cover more
OT-related ATs using relational pivoting.

6 Conclusion

We establish an opinion-based cross-domain AT
extraction approach, by analyzing the domain in-
variance of linguistic OT–AT path pattern. We
consequently propose a relation-focused multitask
learning method, and demonstrate that it enhances
models results by utilizing relational features.
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Appendices

A Cross-domain overlap in path patterns

In Table 5, we present the percentage of target
domain path patterns occurring at least once in the
source domain. To account for pattern frequency in
each domain, we also compute the Jensen-Shannon
Distance between pattern probability distributions
(Table 6). Overall, DM has the best cross-domain
pattern overlap, while the Devices and Laptops
domains are slightly more similar to each other.
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R → L R → D L → R L → D D → R D → L
Spacy 89.9 87.4 97.5 96.8 95.3 93
UD 93.4 94 96.7 95.9 95.7 93.1
DM 97.8 97.9 97.9 97 97.3 97.1
PSD 93.8 95.5 95.3 96.8 93.2 90.4

Table 5: Cross-domain pattern overlap — how many
AT–OT paths in target domain share a pattern with paths
in source domain (percentage).

R ↔ L R ↔ D L ↔ D Mean
Spacy 0.62 0.60 0.58 0.60
UD 0.60 0.59 0.56 0.58
DM 0.50 0.50 0.50 0.50
PSD 0.60 0.56 0.58 0.58
Mean 0.58 0.56 0.55 0.57

Table 6: Jensen-Shannon Distances between pattern
probabilities in different domains. Lower distance in-
dicates similarity between the frequency signature of
patterns in a domain pair.

B Deterministic relation pivoting per
domain pair

In Section 3.3 we describe a deterministic domain-
transfer AT extraction method based on gold opin-
ion terms and top k most frequent OT–AT path
patterns in source domain. Results per domain pair
are shown in Table 7 for k = 10, which approxi-
mately optimizes recall-precision trade-off.

Noticeably, the method is less effective for the
Laptops target domain. This finding aligns with
its wider pattern diversity, as mentioned in Section
3.4 and illustrated in Figure 3, but should also be
attributed to it having relatively fewer OT–AT pairs
that exceed our path-length ≤ 2 criterion. In DM,
for example, the ratio of the number of selected
OT–AT pairs to the total number of aspect terms
is 0.93 for Restaurants, 0.77 for Devices, but only
0.67 for the Laptops domain. Altogether, our inves-
tigation suggests that the domains vary in linguistic
complexity, reflected in richer and longer path pat-
terns for truly corresponding OT–AT pairs in some
domains (e.g. Laptops) compared to others (e.g.
Restaurants). Relational pivoting might be more
contributive to the latter, as also demonstrated by
the multitask experiments (§5).

C Pattern distribution for different
linguistic formalisms

As mentioned in Section 3.4, we plot the relative
cumulative pattern distribution for each domain
and formalism, visualizing the number of different
patterns vs. OT–AT pairs coverage (%) (Figure 3).

Referring to differences between linguistic for-

malisms, we find the cumulative distributions of
DM and PSD more “dense”. In DM, for exam-
ple, the most frequent common pattern (simply
OT ARG1−−−→AT) covers 55% of the paths. This im-
plies that semantic formalisms, designed for ab-
stracting out surface realization details, strengthen
the commonalities across different sentences, thus
might have greater potential for relational pivoting.
This conjecture is also backed by the deterministic
pivoting analysis (§3.3). However, we did not find
a significant advantage for semantic vs. syntactic
formalisms in model experiments (See §5).

D SA-EXAL for semantic graphs

As mentioned in Section 2, the SA-EXAL model
augments BERT with a specialized, 13th attention
head, incorporating the syntactic parse directly into
the model attention mechanism. In the original
paper, SA-EXAL was fed with syntactic depen-
dency trees, where each token has a syntactic head
token to which it should attend. The learned atten-
tion matrix A ∈ Rn×n is multiplied element-wise
by a matrix representation of the syntactic parse
P , where each row is a one-hot vector stating the
token to which to attend.

However, semantic dependency formalisms,
such as PSD and DM, produce bi-lexical directed
acyclic graphs, in which a word can have zero
“heads” (for semantically vacuous words, e.g. copu-
lar verbs) or multiple “heads” (i.e. outgoing edges).
We modify the SA-EXAL model such that in-
stead of one-hot rows, P can have all-one rows
(no heads) or multiple-ones rows (multiple heads).
Consequently, for tokens with no heads the network
is learning the attention without external interfer-
ence, whereas for tokens with multiple heads, the
attention mass is distributed between the heads.

E Correlating pivot-∆R and model
improvement

In Section 5 we define the pivot-∆R measure for
model predictions, which quantifies how much can
model predictions be improved with pattern-based
relational pivoting. We observe that pivot-∆R is
higher for the baseline models compared to the cor-
responding models enhanced by our AMTL objec-
tives (specifically the Asp objective). Nonetheless,
this reduction in pivot-∆R seem to correlate with
model’s improvement along the transfer settings. In
Figure 4 we illustrate this for the BERT and BERT
+ ASP (DM) models. Observed Spearman’s ρ over
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R→ L R→ D L→ R L→ D D→ R D→ L
Spacy P: 0.32 R: 0.22 F1: 0.26 P: 0.61 R: 0.29 F1: 0.4 P: 0.49 R: 0.37 F1: 0.42 P: 0.58 R: 0.33 F1: 0.42 P: 0.54 R: 0.37 F1: 0.44 P: 0.3 R: 0.24 F1: 0.27
UD P: 0.26 R: 0.23 F1: 0.24 P: 0.46 R: 0.29 F1: 0.36 P: 0.44 R: 0.39 F1: 0.41 P: 0.47 R: 0.3 F1: 0.36 P: 0.49 R: 0.37 F1: 0.43 P: 0.26 R: 0.23 F1: 0.24
DM P: 0.29 R: 0.25 F1: 0.27 P: 0.6 R: 0.34 F1: 0.44 P: 0.52 R: 0.4 F1: 0.45 P: 0.6 R: 0.37 F1: 0.46 P: 0.47 R: 0.39 F1: 0.43 P: 0.26 R: 0.26 F1: 0.26
PSD P: 0.22 R: 0.26 F1: 0.24 P: 0.41 R: 0.34 F1: 0.37 P: 0.35 R: 0.4 F1: 0.38 P: 0.41 R: 0.35 F1: 0.38 P: 0.3 R: 0.4 F1: 0.34 P: 0.19 R: 0.27 F1: 0.22

Table 7: Results of deterministic relational pivoting per DA settings (K=10).

Figure 3: Relative cumulative frequency distributions of path patterns for each domain in all formalisms, showing
how many different patterns (X axis) cover what percentage of OT–AT pairs (Y axis).

the 6 transfer settings is 0.83 (though obviously
this small sample cannot be tested for statistical
significance). This examination of model predic-
tions entails that the improvement we observe in
model performance is indeed attributed to instances
that exhibit a relation pattern present in the source
domain.
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Figure 4: Relation between reduction in pivot-∆R from BERT to BERT + ASP and the corresponding improvement
in model performance. Results are provided for DM dependencies.
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