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Abstract

A fundamental goal of scientific research is
to learn about causal relationships. However,
despite its critical role in the life and so-
cial sciences, causality has not had the same
importance in Natural Language Processing
(NLP), which has traditionally placed more
emphasis on predictive tasks. This distinc-
tion is beginning to fade, with an emerging
area of interdisciplinary research at the con-
vergence of causal inference and language
processing. Still, research on causality in NLP
remains scattered across domains without uni-
fied definitions, benchmark datasets and clear
articulations of the challenges and opportuni-
ties in the application of causal inference to
the textual domain, with its unique proper-
ties. In this survey, we consolidate research
across academic areas and situate it in the
broader NLP landscape. We introduce the sta-
tistical challenge of estimating causal effects
with text, encompassing settings where text is
used as an outcome, treatment, or to address
confounding. In addition, we explore potential
uses of causal inference to improve the ro-
bustness, fairness, and interpretability of NLP
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models. We thus provide a unified overview
of causal inference for the NLP community.'

1 Introduction

The increasing effectiveness of NLP has created
exciting new opportunities for interdisciplinary
collaborations, bringing NLP techniques to a
wide range of external research disciplines (e.g.,
Roberts et al., 2014; Zhang et al., 2020; Ophir
et al., 2020) and incorporating new data and tasks
into mainstream NLP (e.g., Thomas et al., 2006;
Pryzant et al., 2018). In such interdisciplinary
collaborations, many of the most important re-
search questions relate to the inference of causal
relationships. For example, before recommending
a new drug therapy, clinicians want to know the
causal effect of the drug on disease progression.
Causal inference involves a question about a coun-
terfactual world created by taking an intervention:
What would a patient’s disease progression have
been if we had given them the drug? As we ex-
plain below, with observational data, the causal
effect is not equivalent to the correlation between
whether the drug is taken and the observed dis-
ease progression. There is now a vast literature
on techniques for making valid inferences using

'An online repository containing existing research on
causal inference and language processing is available
here: https://github.com/causaltext/causal
—-text-papers.
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traditional (non-text) datasets (e.g., Morgan and
Winship, 2015), but the application of these
techniques to natural language data raises new
fundamental challenges.

Conversely, in many classical NLP applica-
tions, the main goal is to make accurate predic-
tions: Any statistical correlation is admissible,
regardless of the underlying causal relationship.
However, as NLP systems are increasingly de-
ployed in challenging and high-stakes scenarios,
we cannot rely on the usual assumption that
training and test data are identically distributed,
and we may not be satisfied with uninterpretable
black-box predictors. For both of these problems,
causality offers a promising path forward: Domain
knowledge of the causal structure of the data gen-
erating process can suggest inductive biases that
lead to more robust predictors, and a causal view
of the predictor itself can offer new insights on its
inner workings.

The core claim of this survey paper is that
deepening the connection between causality and
NLP has the potential to advance the goals of both
social science and NLP researchers. We divide
the intersection of causality and NLP into two
areas: Estimating causal effects from text, and
using causal formalisms to make NLP methods
more reliable. We next illustrate this distinction.

Example 1. An online forum has allowed its users
to indicate their preferred gender in their profiles
with a female or male icon. They notice that
users who label themselves with the female icon
tend to receive fewer ‘‘likes’’ on their posts. To
better evaluate their policy of allowing gender
information in profiles, they ask: Does using the
female icon cause a decrease in popularity for
a post?

Ex. 1 addresses the causal effect of signaling
female gender (treatment) on the likes a post
receives (outcome) (see discussion on signaling
at Keith et al., 2020). The counterfactual question
is: If we could manipulate the gender icon of
a post, how many likes would the post have
received?

The observed correlation between the gender
icons and the number of ‘‘likes’’ generally does
not coincide with the causal effect: It might in-
stead be a spurious correlation, induced by other
variables, known as confounders, which are cor-
related with both the treatment and the outcome
(see Gururangan et al., 2018, for an early discus-

sion of spurious correlation in NLP). One possible
confounder is the topic of each post: Posts writ-
ten by users who have selected the female icon
may be about certain topics (e.g., child birth or
menstruation) more often, and those topics may
not receive as many likes from the audience of
the broader online platform. As we will see in
§ 2, due to confounding, estimating a causal effect
requires assumptions.

Example 1 highlights the setting where the text
encodes the relevant confounders of a causal ef-
fect. The text as a confounder setting is one of
many causal inferences we can make with text
data. The text data can also encode outcomes or
treatments of interest. For example, we may won-
der about how gender signal affects the sentiment
of the reply that a post receives (text as outcome),
or about how a writing style affects the ‘‘likes’” a
post receives (text as treatment).

NLP Helps Causal Inference. Causal inference
with text data involves several challenges that are
distinct from typical causal inference settings:
Text is high-dimensional, needs sophisticated
modeling to measure semantically meaningful fac-
tors like topic, and demands careful thought to
formalize the intervention that a causal question
corresponds to. The developments in NLP around
modeling language, from topic models (Blei
et al.,, 2003) to contextual embeddings (e.g.,
Devlin et al., 2019), offer promising ways to ex-
tract the information we need from text to estimate
causal effects. However, we need new assump-
tions to ensure that the use of NLP methods leads
to valid causal inferences. We discuss existing re-
search on estimating causal effects from text and
emphasize these challenges and opportunities in
§ 3.

Example 2. A medical research center wants to
build a classifier to detect clinical diagnoses from
the textual narratives of patient medical records.
The records are aggregated across multiple hos-
pital sites, which vary both in the frequency of the
target clinical condition and the writing style of
the narratives. When the classifier is applied to
records from sites that were not in the training
set, its accuracy decreases. Post-hoc analysis in-
dicates that it puts significant weight on seemingly
irrelevant features, such as formatting markers.

Like Ex. 1, Ex. 2 also involves a counter-
factual question: Does the classifier’s prediction
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change if we intervene to change the hospital
site, while holding the true clinical status fixed?
We want the classifier to rely on phrases that
express clinical facts, and not writing style. How-
ever, in the training data, the clinical condition
and the writing style are spuriously correlated,
due to the site acting as a confounding variable.
For example, a site might be more likely to en-
counter the target clinical condition due to its
location or speciality, and that site might also
employ distinctive textual features, such as boil-
erplate text at the beginning of each narrative. In
the training set, these features will be predictive
of the label, but they are unlikely to be useful in
deployment scenarios at new sites. In this ex-
ample, the hospital site acts like a confounder:
It creates a spurious correlation between some
features of the text and the prediction target.

Example 2 shows how the lack of robustness
can make NLP methods less trustworthy. A re-
lated problem is that NLP systems are often black
boxes, making it hard to understand how human-
interpretable features of the text lead to the ob-
served predictions. In this setting, we want to
know if some part of the text (e.g., some se-
quence of tokens) causes the output of an NLP
method (e.g., classification prediction).

Causal Models Can Help NLP. To address the
robustness and interpretability challenges posed
by NLP methods, we need new criteria to learn
models that go beyond exploiting correlations.
For example, we want predictors that are invari-
ant to certain changes that we make to text, such
as changing the format while holding fixed the
ground truth label. There is considerable promise
in using causality to develop new criteria in ser-
vice of building robust and interpretable NLP
methods. In contrast to the well-studied area of
causal inference with text, this area of causality
and NLP research is less well understood, though
well-motivated by recent empirical successes. In
84, we cover the existing research and review
the challenges and opportunities around using
causality to improve NLP.

This position paper follows a small body of
surveys that review the role of text data within
causal inference (Egami et al., 2018; Keith et al.,
2020). We take a broader view, separating the in-
tersection of causality and NLP into two distinct
lines of research on estimating causal effects in
which text is at least one causal variable (§3) and

using causal formalisms to improve robustness
and interpretability in NLP methods (§4). After
reading this paper, we envision that the reader
will have a broad understanding of: different types
of causal queries and the challenges they pre-
sent; the statistical and causal challenges that
are unique to working with text data and NLP
methods; and open problems in estimating effects
from text and applying causality to improve NLP
methods.

2 Background

Both focal problems of this survey (causal effect
estimation and causal formalisms for robust and
explainable prediction) involve causal inference.
The key ingredient to causal inference is defin-
ing counterfactuals based on an intervention of
interest. We will illustrate this idea with the
motivating examples from §1.

Example 1 involves online forum posts and
the number of likes Y that they receive. We
use a binary variable 7' to indicate whether a
post uses a ‘‘female icon’” (I' = 1) or a ‘‘male
icon”” (T' = 0). We view the post icon 7" as the
“‘treatment’’ in this example, but do not assume
that the treatment is randomly assigned (it may
be selected by the posts’ authors). The counterfac-
tual outcome Y (1) represents the number of
likes a post would have received had it used a
female icon. The counterfactual outcome Y (0) is
defined analogously.

The fundamental problem of causal inference
(Holland, 1986) is that we can never observe
Y(0) and Y(1) simultaneously for any unit
of analysis, the smallest unit about which one
wants to make counterfactual inquiries (e.g., a
post in Ex. 1). This problem is what makes
causal inference harder than statistical inference
and impossible without identification assumptions
(see §2.2).

Example 2 involves a trained classifier f(X)
that takes a textual clinical narrative X as input
and outputs a diagnosis prediction. The text X
is written based on the physician’s diagnosis Y,
and is also influenced by the writing style used
at the hospital Z. We want to intervene upon
the hospital Z while holding the label Y fixed.
The counterfactual narrative X (z) is the text we
would have observed had we set the hospital to
the value z while holding the diagnosis fixed. The
counterfactual prediction f(X(z)) is the output
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the trained classifier would have produced had we
given the counterfactual review X (z) as input.

2.1 Causal Estimands

An analyst begins by specifying target causal
quantities of interest, called causal estimands,
which typically involve counterfactuals. In Ex-
ample 1, one possible causal estimand is the
average treatment effect (ATE) (Rubin, 1974),

ATE = E[Y (1) — Y(0)] (1)

where the expectation is over the generative dis-
tribution of posts. The ATE can be interpreted as
the change in the number of likes a post would
have received, on average, had the post used a
female icon instead of a male icon.

Another possible causal effect of interest is
the conditional average treatment effect (CATE)
(Imbens and Rubin, 2015),

CATE = E[Y (1) — Y(0) | G] )

where G is a predefined subgroup of the pop-
ulation. For example, G could be all posts on
political topics. In this case, the CATE can be
interpreted as the change in the number of likes
a post on a political topic would have received,
on average, had the post used a male icon instead
of a female icon. CATEs are used to quantify
the heterogeneity of causal effects in different
population subgroups.

2.2 Identification Assumptions for
Causal Inference

We will focus on Example 1 and the ATE in
Equation (1) to explain the assumptions needed
for causal inference. Although we focus on the
ATE, related assumptions are needed in some
form for all causal estimands. Variables are the
same as those defined previously in this section.

Ignorability requires that the treatment assign-
ment be statistically independent of the counter-
factual outcomes,

T 1Y(a) Vae{0,1} 3)
Note that this assumption is not equivalent to
independence between the treatment assignment
and the observed outcome Y. For example, if
ignorability holds, Y I T would additionally
imply that the treatment has no effect.

Randomized treatment assignment guarantees
ignorability by design. For example, we can guar-
antee ignorability in Example 1 by flipping a coin
to select the icon for each post, and disallowing
post authors from changing it.

Without randomized treatment assignment, ig-
norability could be violated by confounders, var-
iables that influence both the treatment status and
potential outcomes. In Example 1, suppose that:
(i) the default post icon is male, (ii) only experi-
enced users change the icon for their posts based
on their gender, (iii) experienced users write posts
that receive relatively more likes. In this scenario,
the experience of post authors is a confounder:
Posts having female icons are more likely to be
written by experienced users, and thus receive
more likes. In the presence of confounders, causal
inference is only possible if we assume condi-
tional ignorability,

TL1Y()|X Vae{0,1} 4)

where X is a set of observed variables, condition-
ing on which ensures independence between the
treatment assignment and the potential outcomes.
In other words, we can assume that all confounders
are observed.

Positivity requires that the probability of receiv-
ing treatment is bounded away from O and 1 for
all values of the confounders X:

0<Pr(T=1|X=x)<1,Vx Q)

Intuitively, positivity requires that each unit under
study has the possibility of being treated and has
the possibility of being untreated. Randomized
treatment assignment can also guarantee positivity
by design.

Consistency requires that the outcome observed
for each unit under study at treatment level a €
{0, 1} is identical to the outcome we would have
observed had that unit been assigned to treatment
level a,

T=a<Y(@=Y VYaec{0,1} (6)

Consistency ensures that the potential outcomes
for each unit under study take on a single value
at each treatment level. Consistency will be vi-
olated if different unobservable *‘versions’” of
the treatment lead to different potential outcomes.
For example, if red and blue female icons had
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different effects on the number of likes received,
but icon color was not recorded. Consistency will
also be violated if the treatment assignment of
one unit affects the potential outcomes of another;
a phenomenon called interference (Rosenbaum,
2007). Randomized treatment assignment does not
guarantee consistency by design. For example, if
different icon colors affect the number of likes
but are not considered by the model, then a ran-
domized experiment will not solve the problem.
As Hernan (2016) discusses, consistency assump-
tions are a ‘‘matter of expert agreement’’ and,
while subjective, these assumptions are at least
made more transparent by causal formalisms.
These three assumptions enable identifying the
ATE defined in Equation (1), as formalized in
the following identification proof:
CEx[EY () | X]
Y EX[EY (a) | X.T = d]

(idi

Y EXEY | X,T = a]],¥a € {0,1}

E[Y (a)]

where equality (i) is due to iterated expectation,
equality (ii) follows from conditional ignorabil-
ity, and equality (iii) follows from consistency
and positivity, which ensures that the conditional
expectation E[Y | X, T' = a] is well defined. The
final expression can be computed from observ-
able quantities alone.

We refer to other background material to discuss
how to identify and estimate causal effects with
these assumptions in hand (Rubin, 2005; Pearl,
2009; Imbens and Rubin, 2015; Egami et al.,
2018; Keith et al., 2020).

2.3 Causal Graphical Models

Finding a set of variables X that ensure con-
ditional ignorability is challenging, and requires
making several carefully assessed assumptions
about the causal relationships in the domain un-
der study. Causal directed-acyclic graphs (DAGs)
(Pearl, 2009) enable formally encoding these as-
sumptions and deriving the set of variables X after
conditioning on which ignorability is satisfied.

In a causal DAG, an edge X — Y implies that
X may or may not cause Y. The absence of an
edge between X and Y implies that X does not
cause Y. Bi-directed dotted arrows between vari-
ables indicate that they are correlated potentially
through some unobserved variable.

Example 1 Example 2

g o @/ ()

Figure 1: Causal graphs for the motivating examples.
(Left) In Example 1, the post icon (7') is correlated
with attributes of the post (X), and both variables af-
fect the number of likes a post receives (Y). (Right)
In Example 2, the label (Y, i.e., diagnosis) and hospi-
tal site (Z) are correlated, and both affect the clini-
cal narrative (X). Predictions f(X) from the trained
classifier depend on X .

Figure 1 illustrates the causal DAGs we assume
for Example 1 and Example 2. Given a causal
DAG, causal dependencies between any pair of
variables can be derived using the d-separation
algorithm (Pearl, 1994). These dependencies can
then be used to assess whether conditional ignor-
ability holds for a given treatment, outcome, and
set of conditioning variables X. For example, in
the left DAG in Figure 1, the post icon 7" is not
independent of the number of likes Y unless we
condition on X. In the right DAG, the prediction
f(X) is not independent of the hospital Z even
after conditioning on the narrative X.

3 Estimating Causal Effects with Text

In §2, we described assumptions for causal in-
ference when the treatment, outcome, and con-
founders were directly measured. In this section,
we contribute a novel discussion about how
causal assumptions are complicated when vari-
ables necessary for a causal analysis are extracted
automatically from text. Addressing these open
challenges will require collaborations between
the NLP and causal estimation communities to
understand what are the requisite assumptions
to draw valid causal conclusions. We highlight
prior approaches and future challenges in settings
where the text is a confounder, the outcome, or
the treatment — but this discussion applies broadly
to many text-based causal problems.

To make these challenges clear, we will ex-
pand upon Example 1 by supposing that a hy-
pothetical online forum wants to understand and
reduce harassment on its platform. Many such
questions are causal: Do gendered icons influence
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the harassment users receive? Do longer suspen-
sions make users less likely to harass others? How
can a post be rewritten to avoid offending others?
In each case, using NLP to measure aspects of
language is integral to any causal analysis.

3.1 Causal Effects with Textual Confounders

Returning to Example 1, suppose the platform
worries that users with female icons are more
likely to receive harassment from other users.
Such a finding might significantly influence plans
for a new moderation strategy (Jhaver et al., 2018;
Rubin et al., 2020). We may be unable or un-
willing to randomize our treatment (the gender
signal) of the author’s icon), so the causal effect
of gender signal on harassment received might be
confounded by other variables. The topic of the
post may be an important confounder: some sub-
ject areas may be discussed by a larger proportion
of users with female icons, and more controversial
subjects may attract more harassment. The text of
the post provides evidence of the topic and thus
acts as a confounder (Roberts et al., 2020).

Previous Approaches. The main idea in this
setting is to use NLP methods to extract con-
founding aspects from text and then adjust for
those aspects in an estimation approach such as
propensity score matching. However, how and
when these methods violate causal assumptions
are still open questions. Keith et al. (2020) pro-
vide a recent overview of several such methods
and many potential threats to inference.

One set of methods apply unsupervised di-
mensionality reduction methods that reduce high-
dimensional text data to a low-dimensional set of
variables. Such methods include latent variable
models such as topic models, embedding meth-
ods, and auto-encoders. Roberts et al. (2020) and
Sridhar and Getoor (2019) have applied topic
models to extract confounding patterns from text
data, and performed an adjustment for these
inferred variables. Mozer et al. (2020) match
texts using distance metrics on the bag-of-words
representation.

A second set of methods adjust for confounders
from text with supervised NLP methods. Recently,
Veitch et al. (2020) adapted pre-trained language
models and supervised topic models with multi-
ple classification heads for binary treatment and
counterfactual outcomes. By learning a *‘suffi-
cient’”” embedding that obtained low classification

loss on the treatment and counterfactual outcomes,
they show that confounding properties could be
found within text data. Roberts et al. (2020) com-
bine these strategies with the topic model approach
in a text matching framework.

Challenges for Causal Assumptions with Text.
In settings without randomized treatments, NLP
methods that adjust for text confounding require a
particularly strong statement of conditional ignor-
ability (Equation 4): All aspects of confounding
must be measured by the model. Because we can-
not test this assumption, we should seek domain
expertise to justify it or understand the theoretical
and empirical consequences if it is violated.

When the text is a confounder, its high-
dimensionality makes positivity unlikely to hold
(D’ Amour et al., 2020). Even for approaches that
extract a low-dimensional representation of the
confounder from text, positivity is a concern.
For example, in Example 1, posts might con-
tain phrases that near-perfectly encode the chosen
gender-icon of the author. If the learned represen-
tation captures this information alongside other
confounding aspects, it would be nearly impos-
sible to imagine changing the gender icon while
holding the gendered text fixed.

3.2 Causal Effects on Textual Outcomes

Suppose platform moderators can choose to sus-
pend users who violate community guidelines for
either one day or one week, and we want to know
which option has the greatest effect at decreasing
the toxicity of the suspended user. If we could col-
lect them for each user’s post, ground-truth human
annotations of toxicity would be our ideal outcome
variable. We would then use those outcomes to
calculate the ATE, following the discussion in
§ 2. Our analysis of suspensions is complicated
if, instead of ground-truth labels for our toxicity
outcome, we rely on NLP methods to extract the
outcome from the text. A core challenge is to distill
the high-dimensional text into a low-dimensional
measure of toxicity.

Challenges for Causal Assumptions with Text.
We saw in § 2 that randomizing the treat-
ment assignment can ensure ignorability and pos-
itivity; but even with randomization, we require
more careful assessment to satisfy consistency.
Suppose we randomly assign suspension lengths
to users and then once those users return and
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continue to post, we use a clustering method to
discover toxic and non-toxic groupings among the
formerly suspended users. To estimate the causal
effect of suspension length, we rely on the trained
clustering model to infer our outcome variable.
Assuming that the suspension policy does in truth
have a causal effect on posting behavior, then be-
cause our clustering model depends on all posts in
its training data, it also depends on the treatment
assignments that influenced each post. Thus, when
we use the model to infer outcomes, each user’s
outcome depends on all other users’ treatments.
This violates the assumption of consistency—that
potential outcomes do not depend on the treatment
status of other units. This undermines the theoret-
ical basis for our causal estimate, and, in practice,
implies that different randomized treatment as-
signments could lead to different treatment ef-
fect estimates.

These issues can be addressed by developing
the measure on only a sample of the data and then
estimating the effect on a separate, held-out data
sample (Egami et al., 2018).

3.3 Causal Effects with Textual Treatments

As athird example, suppose we want to understand
what makes a post offensive. This might allow
the platform to provide automated suggestions
that encourage users to rephrase their post. Here,
we are interested in the causal effect of the text
itself on whether a reader reports it as offensive.
Theoretically, the counterfactual Y (¢) is defined
for any ¢, but could be limited to an exploration
of specific aspects of the text. For example, do
second-person pronouns make a post more likely
to be reported?

Previous Approaches. One approach to study-
ing the effects of text involves treatment discovery:
producing interpretable features of the text—such
as latent topics or lexical features like n-grams
(Pryzant et al., 2018)—that can be causally linked
to outcomes. For example, Fong and Grimmer
(2016) discovered features of candidate biogra-
phies that drove voter evaluations, Pryzant et al.
(2017) discovered writing styles in marketing
materials that are influential in increasing sales
figures, and Zhang et al. (2020) discovered con-
versational tendencies that lead to positive mental
health counseling sessions.

Another approach is to estimate the causal
effects of specific latent properties that are in-

tervened on during an experiment or extracted
from text for observational studies (Pryzant et al.,
2021; Wood-Doughty et al., 2018). For example,
Gerber et al. (2008) studied the effect of appeal-
ing to civic duty on voter turnout. In this setting,
factors are latent properties of the text for which
we need a measurement model.

Challenges for Causal Assumptions with Text.
Ensuring positivity and consistency remains a
challenge in this setting, but assessing conditional
ignorability is particularly tricky. Suppose the
treatment is the use of second-person pronouns,
but the relationship between this treatment and the
outcome is confounded by other properties of the
text (e.g., politeness). For conditional ignorability
to hold, we would need to extract from the text and
condition on all such confounders, which requires
assuming that we can disentangle the treatment
from many other aspects of the text (Pryzant
et al.,, 2021). Such concerns could be avoided
by randomly assigning texts to readers (Fong and
Grimmer, 2016, 2021), but that may be impracti-
cal. Even if we could randomize the assignment
of texts, we still have to assume that there is no
confounding due to latent properties of the reader,
such as their political ideology or their tastes.

3.4 Future Work

We next highlight key challenges and oppor-
tunities for NLP researchers to facilitate causal
inference from text.

Heterogeneous Effects. Texts are read and in-
terpreted differently by different people; NLP
researchers have studied this problem in the con-
text of heterogeneous perceptions of annotators
(Paun et al., 2018; Pavlick and Kwiatkowski,
2019). In the field of causal inference, the idea that
different subgroups experience different causal ef-
fects is formalized by a heterogeneous treatment
effect, and is studied using conditional average
treatment effects (Equation (2)) for different sub-
groups. It may also be of interest to discover
subgroups where the treatment has a strong effect
on an outcome of interest. For example, we may
want to identify text features that characterize
when a treatment such as a content moderation
policy is effective. Wager and Athey (2018) pro-
posed a flexible approach to estimating heteroge-
neous effects based on random forests. However,
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such approaches, which are developed with tabu-
lar data in mind, may be computationally infea-
sible for high-dimensional text data. There is an
opportunity to extend NLP methods to discover
text features that capture subgroups where the
causal effect varies.

Representation Learning. Causal inference
from text requires extracting low-dimensional
features from text. Depending on the setting,
the low-dimensional features are tasked with ex-
tracting confounding information, outcomes, or
treatments. The need to measure latent aspects
from text connects to the field of text representa-
tion learning (Le and Mikolov, 2014; Liu et al.,
2015; Liu and Lapata, 2018). The usual objective
of text representation learning approaches is to
model language. Adapting representation learning
for causal inference offers open challenges; for
example, we might augment the objective func-
tion to ensure that (i) positivity is satisfied, (ii)
confounding information is not discarded, or (iii)
noisily measured outcomes or treatments enable
accurate causal effect estimates.

Benchmarks. Benchmark datasets have pro-
pelled machine learning forward by creating
shared metrics by which predictive models can
be evaluated. There are currently no real-world
text-based causal estimation benchmarks due to
the fundamental problem of causal inference that
we can never obtain counterfactuals on an individ-
ual and observe the true causal effects. However,
as Keith et al. (2020) discuss, there has been
some progress in evaluating text-based estimation
methods on semi-synthetic datasets in which real
covariates are used to generate treatment and out-
comes (e.g., Veitch et al., 2020; Roberts et al.,
2020; Pryzant et al., 2021; Feder et al., 2021;
Weld et al., 2022). Wood-Doughty et al. (2021)
employed large-scale language models for con-
trolled synthetic generation of text on which
causal methods can be evaluated. An open prob-
lem is the degree to which methods that perform
well on synthetic data generalize to real-world
data.

Controllable Text Generation. When running
a randomized experiment or generating synthetic
data, researchers make decisions using the em-
pirical distribution of the data. If we are study-
ing whether a drug prevents headaches, it would

make sense to randomly assign a ‘reasonable’
dose—one that is large enough to plausibly be
effective but not so large as to be toxic. But when
the causal question involves natural language, do-
main knowledge might not provide a small set
of ‘reasonable’ texts. Instead, we might turn to
controllable text generation to sample texts that
fulfill some requirements (Kiddon et al., 2016).
Such methods have a long history in NLP; for
example, a conversational agent should be able to
answer a user’s question while being perceived
as polite (Niu and Bansal, 2018). In our text as
treatment example where we want to understand
which textual aspects make a text offensive, such
methods could enable an experiment allowing us
to randomly assign texts that differ on only a spe-
cific latent aspect. For example, we could change
the style of a text while holding its content fixed
(Logeswaran et al., 2018). Recent work has ex-
plored text generation from a causal perspective
(Hu and Li, 2021), but future work could develop
these methods for causal estimation.

4 Robust and Explainable Predictions
from Causality

Thus far we have focused on using NLP tools
for estimating causal effects in the presence of
text data. In this section, we consider using causal
reasoning to help solve traditional NLP tasks such
as understanding, manipulating, and generating
natural language.

At a first glance, NLP may appear to have lit-
tle need for causal ideas. The field has achieved
remarkable progress from the use of increasingly
high-capacity neural architectures to extract cor-
relations from large-scale datasets (Peters et al.,
2018; Devlin et al., 2019; Liu et al., 2019). These
architectures make no distinction between causes,
effects, and confounders, and they make no at-
tempt to identify causal relationships: A feature
may be a powerful predictor even if it has no direct
causal relationship with the desired output.

Yet correlational predictive models can be un-
trustworthy (Jacovi et al., 2021): They may latch
onto spurious correlations (‘‘shortcuts’’), leading
to errors in out-of-distribution (OOD) settings
(e.g., McCoy et al., 2019); they may exhibit un-
acceptable performance differences across groups
of users (e.g., Zhao et al., 2017); and their be-
havior may be too inscrutable to incorporate into
high-stakes decisions (Guidotti et al., 2018). Each
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of these shortcomings can potentially be addressed
by the causal perspective: Knowledge of the causal
relationship between observations and labels can
be used to formalize spurious correlations and mit-
igate their impact (§ 4.1); causality also provides
a language for specifying and reasoning about
fairness conditions (§ 4.2); and the task of ex-
plaining predictions may be naturally formulated
in terms of counterfactuals (§ 4.3). The applica-
tion of causality to these problems is still an active
area of research, which we attempt to facilitate
by highlighting previously implicit connections
among a diverse body of prior work.

4.1 Learning Robust Predictors

The NLP field has grown increasingly concerned
with spurious correlations (Gururangan et al.,
2018; McCoy et al., 2019, inter alia). From a
causal perspective, spurious correlations arise
when two conditions are met. First, there must
be some factor(s) Z that are informative (in the
training data) about both the features X and label
Y. Second, Y and Z must be dependent in the
training data in a way that is not guaranteed to
hold in general. A predictor f : X — Y will learn
to use parts of X that carry information about
Z (because Z is informative about Y'), which
can lead to errors if the relationship between Y
and Z changes when the predictor is deployed.?
This issue is illustrated by Example 2, where
the task is to predict a medical condition from the
text of patient records. The training set is drawn
from multiple hospitals which vary both in the
frequency of the target clinical condition (Y")
and the writing style of the narratives (represented
in X). A predictor trained on such data will use
textual features that carry information about the
hospital (Z), even when they are useless at pre-
dicting the diagnosis within any individual hospi-
tal. Spurious correlations also appear as artifacts
in benchmarks for tasks such as natural language

2From the perspective of earlier work on domain adap-
tation (Sggaard, 2013), spurious correlations can be viewed
as a special case of a more general phenomenon in which
feature-label relationships change across domains. For exam-
ple, the lexical feature boring might have a stronger negative
weight in reviews about books than about kitchen appliances,
but this is not a spurious correlation because there is a di-
rect causal relationship between this feature and the label.
Spurious correlations are a particularly important form of
distributional shift in practice because they can lead to in-
consistent predictions on pairs of examples that humans
view as identical.

inference, where negation words are correlated
with semantic contradictions in crowdsourced
training data but not in text that is produced under
more natural conditions (Gururangan et al., 2018;
Poliak et al., 2018).

Such observations have led to several proposals
for novel evaluation methodologies (Naik et al.,
2018; Ribeiro et al., 2020; Gardner et al., 2020)
to ensure that predictors are not ‘‘right for the
wrong reasons’’. These evaluations generally take
two forms: invariance tests, which assess whether
predictions are affected by perturbations that are
causally unrelated to the label, and sensitivity
tests, which apply perturbations that should in
some sense be the minimal change necessary to
flip the true label. Both types of test can be moti-
vated by a causal perspective. The purpose of an
invariance test is to determine whether the predic-
tor behaves differently on counterfactual inputs
X(Z = Z), where Z indicates a property that
an analyst believes should be causally irrelevant
to Y. A model whose predictions are invariant
across such counterfactuals can in some cases be
expected to perform better on test distributions
with a different relationship between Y and Z
(Veitch et al., 2021). Similarly, sensitivity tests
can be viewed as evaluations of counterfactuals
X (Y = g), in which the label Y is changed but
all other causal influences on X are held constant
(Kaushik et al., 2020). Features that are spuriously
correlated with Y will be identical in the factual
X and the counterfactual X (Y = ¢). A predictor
that relies solely on such spurious correlations
will be unable to correctly label both factual and
counterfactual instances.

A number of approaches have been proposed
for learning predictors that pass tests of sensi-
tivity and invariance. Many of th