
Proceedings of the 4th Workshop on Computational Typology and Multilingual NLP (SIGTYP 2022), pages 63 - 69
July 14, 2022 ©2022 Association for Computational Linguistics

Bayesian Phylogenetic Cognate Prediction

Gerhard Jäger
University of Tübingen

Seminar für Sprachwissenschaft
gerhard.jaeger@uni-tuebingen.de

Abstract

In Jäger (2019) a computational framework was
defined to start from parallel word lists of re-
lated languages and infer the corresponding
vocabulary of the shared proto-language. The
SIGTYP 2022 Shared Task is closely related.
The main difference is that what is to be recon-
structed is not the proto-form but an unknown
word from an extant language. The system de-
scribed here is a re-implementation of the tools
used in the mentioned paper, adapted to the
current task.

1 Introduction

In Jäger (2019) I presented a pilot study of a com-
putational historical linguistics workflow. Starting
from parallel word lists (taken from Wichmann
et al. 2016) of 29 Romance languages and dialects,
covering 40 core concepts, it produced reconstruc-
tions of the Proto-Romance words for the same
concepts.

The intermediate steps of this workflow are

1. for each concept, cluster the corresponding
sound strings into cognate classes,

2. infer a posterior distribution of phylogenies
of the covered doculects using Bayesian infer-
ence,

3. apply Bayesian inference to identify the max-
imum a posteriori cognate class at the root
of the tree for each concept (ancestral state
reconstruction, ASR),

4. apply multiple sequence alignment (MSA) to
the words of each cognate class,

5. apply ASR to each alignment column of the
MSAs of the cognate classes identified in step
3; gaps are treated as regular characters, and

6. concatenate the reconstructions and removing
gaps.

The result turned out to be an imperfect but
reasonable approximations of the attested Latin
wordlist.

The SIGTYP 2022 Shared Task on the Prediction
of Cognate Reflexes (https://github.com/
sigtyp/ST2022, List et al. 2022) is very sim-
ilar in nature. The system described here is an
adaptation of Jäger’s (2019) workflow to this task.

2 Data

The authors of the Shared Task made parallel word
lists for 20 language families available. For details
of the provinence of the data and the pre-processing
steps performed, see List et al. (2022). Each dataset
comprises between four and 19 related languages,
and between 500 and ca. 10,000 words. Words are
classified according to cognate classes, which are
based either on expert judgments or are inferred
via automatic cognate detection. No information
about the meanings of the words are available for
training or inference. All words are transcribed in
IPA and tokenized.

The data are arranged in a table with cog-
nate classes as rows and languages as columns.
In Table 1, a small part from the dataset
kesslersignificance (based on Kessler
2001) is shown for illustration.

Each dataset was split into a training set and a
test set. The proportion of test data was varied be-
tween 10%, 20%, 30%, 40% and 50%, leading to
a total of 50 datasets, each consisting of a training
and a test set. For the test data, one word per row
was masked, using each attested word for masking
in turn. The task is to predict the masked words
from the other cognates in the same row.

Table 2 contains an example row from such a
test set. The task is to infer the French word which
is cognate to Albanian piski, English fIS, German
fiS and Latin piski. In a separate file which is only
to be used for evaluation, the correct solution — pS
in this case — is given.
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COGID Albanian English French German Latin
920 h A r t k œ r h e r ts @ n k o r d
1083 h O r n k O r n h o r n k o r n u:
1150 S k u r t @ r S O r t k u r t k u r ts

Table 1: Example training data

COGID Albanian English French German Latin
353-3 p e S k f I S ? f i S p i s k i

Table 2: Example test data

For each of the 50 datasets, a system can be
trained using the complete training set. For predic-
tion, the trained system only “sees” one row of the
test data and has to predict the masked word.

3 Methods

This task differs from the one described in (Jäger,
2019) mainly by the fact that not some ancestral
word form has to be inferred but a word from an ex-
tant language. For the particular inference methods
used, this difference is actually inessential, since
it is based on a time-reversible model of language
change.

The first step of the workflow by Jäger (2019),
identifying cognate classes, has already been per-
formed here. This led to the following workflow:

1. Train a pair-hidden Markov model (pHMM;
see Durbin et al. 1989) for pairwise string
alignment.1

2. Infer a preliminary phylogenetic tree via UP-
GMA (Sokal and Michener, 1958).

3. Perform MSA per cognate class using the T-
Coffee algorithm (Notredame et al., 2000).

4. Join all MSA matrices and use this as char-
acter matrix for Bayesian phylogenetic infer-
ence.2

1In Jäger (2019), pairwise string alignment was performed
using the Needleman-Wunsch algorithm (Needleman and
Wunsch, 1970) with parameters trained on the entire ASJP
database (Wichmann et al., 2016). Since the rules of the
Shared Task precludes the use or external data for parameter
training, I opted for a method here were parameters can be
estimated from scratch using only the licit training data.

2In Jäger (2019) phylogenetic inference was performed
using cognate data, but since the Shared Task does not make
information about the meaning of the words available, this
was not possible here.

5. Infer the posterior distribution of the muta-
tion rate of symbols within the columns of the
MSAs.

6. Apply MSA to the non-masked entries in the
test row using the model trained in steps 1 and
2.

7. Find the maximum a-posteriori state for each
MSA column for the masked entry, using the
posterior distributions inferred in steps 4 and
5 as priors. Concatenate the states inferred in
the previous step and remove gap symbols.

Each of these steps will be briefly explained in
the following subsections.

3.1 Training a Pair-Hidden Markov Model
A pair-Hidden Markov Model (pHMM) is a Hidden
Markov model with two parallel output tapes. In
each state, the model may emit a symbol on the
first, the second or on both tapes. The architecture
used here is taken from Durbin et al. (1989) and
schematically displayed in Figure 1.
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Figure 1: Pair Hidden Markov Model

The state M is the match state, where the model
simultaneously emits one symbol on each tape. In
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state X only a symbol to the first tape is emitted,
and likewise for state Y and the second tape. When
the model reaches the end state (where no symbol
is emitted), each tape contains a symbol sequence.
The joint probability of this sequence and the simul-
taneous sequence of hidden states is determined by
the product of the transition and emission probabil-
ities used.

Crucially, the sequence of hidden states of one
pass of the model determines a pairwise alignment
of the strings produced. M identifies a match col-
umn, X a column with a gap in the second string,
and Y a gap in the first string. If the parameters
of the model are known, the maximum likelihood
alignment between two strings can be found using
the Viterbi algorithm.3

It is assumed that the alphabet from which the
words are constructed are known in advance. The
parameters of the model are the transition probabil-
ities δ, ϵ and τ , and the emission probabilities for
each state. For state M, this is a probability distri-
bution over pairs of symbols from the alphabet. I
assume the emission probabilites for states X and
Y to be identical; both are a probability distribution
over the alphabet.

Given a training set of pairs of strings, parame-
ters of the model can be estimated using the Baum-
Welch algorithm, an incarnation of the EM algo-
rithm. If values for all parameters of the model are
given, the frequency of all transitions and all emis-
sions for a given set of string pairs are estimated
(expectation step). The conditional relative frequen-
cies for each transition and emission are then used
as new parameter values (maximization step). This
procedure is repeated many times, starting from an
arbitrary initial state.

In the system described here, the pHMM was
initialized with transition probabilities δ = τ =
0.25, ϵ = 0.375. The initial emission probabilities
at the gap states X and Y are uniform distributions.
The emission probabilities in the match state M are

p(a, b) ∝ 1 if a ̸= b

p(a, a) ∝ |alphabet|+ 1

These choices are motivated by the idea that
Viterbi alignment in the initial state should approx-
imate Levenshtein alignment.

3This inference step amounts to a notational variant of the
Needleman-Wunsch algorithm, cf. Needleman and Wunsch
(1970).

For training and MSA, all training strings (and
later test strings) were converted into the ASJP al-
phabet (Brown et al., 2008), which comprises just
41 sound classes, to keep the number of parame-
ters to be estimated manageable.4 The conversion
was performed using the software package LingPy
(List and Forkel, 2021). Training word pairs, i.e.,
all pairs of cognate words from the training set,
were arranged in random order and split into mini-
batches of size 20. An EM step was performed for
each mini-batch. This procedure was repeated for
two epochs over all mini-batches.

3.2 UPGMA Tree

As preparation for multiple sequence alignment, a
guide tree over the languages is required. For this
purpose, the pairwise normalized Levenshtein dis-
tance (i.e., the edit distance divided by the length of
the longer string) was computed between any pair
of cognate words. The distance between two lan-
guages was then computed as the average word dis-
tance between any two cognate words from these
languages.

The resulting pairwise language distances were
used as input for the UPGMA algorithm to infer
a language tree. E.g., for the dataset kesslersignif-
icance with 10% test data, the resulting tree has
the topology ((Latin, (French, Albanian)), (English,
German)).

This topology is evidently not perfect (Albanian
having the wrong location), but the next step, while
requiring a guide tree, is not very sensitive to the
specific tree topology.

3.3 Multiple Sequence Alignment

The alignment method described in Subsection 3.1
above is only capable of performing pairwise se-
quence alignment. Modifying it to multiple strings
would require to increase the number of states, and
concommittantly computation time, exponentially
in the number of sequences. The T-Coffee method
of multiple sequence alignment (Notredame et al.,
2000) represents a compromise combining good
results with computational efficiency.

To compute an MSA for a group of words, first
all pairs of words are aligned pairwise. For this
step, I used Viterbi alignment with the pHMM pa-
rameters described in Subsection 3.1. During the
next step of T-Coffee, all threefold alignments are

4Here and elsewhere, symbols indicating morpheme
boundaries were ignored.
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computed simply by combining two pairwise align-
ments from the previous step. The alignment scores
between any pair of symbol tokens are obtained by
counting all threefold alignments where these sym-
bols occur in the first and last column, weighted
by the Hamming similarity between the entire first
and last row.

Using these scores, progressive alignment (Feng
and Doolittle, 1987) is performed using a guide
tree.

To continue the example mentioned above, the
MSA covering the first row of Table 1 comes out
as in Table 3.

Albanian - - - - - -
English h o r t - -
French k E r - - -
German h e r C I n
Latin k o r d - -

Table 3: Example MSA

3.4 Bayesian Phylogenetic Inference
The MSAs for the training data thus obtained were
used to perform more sophisticated, Bayesian phy-
logenetic inference. For this purpose each symbol
in the MSA is replaced by the corresponding Dol-
gopolsky class (Dolgopolsky, 1986). This conver-
sion was performed using LingPy (List and Forkel,
2021) as well.

For each alignment column, the symbols in this
column are conveived of as states of a continuous
time Markov process. The specific type of Markov
process used is due to Jukes and Cantor (1969).

Let a phylogeny — i.e., a tree with branch
lengths — over the languages in question be given.
It is assumed that the types of symbols within an
alignment colum are the states of a continuous time
Markov process. A complete model is one where
each node is assigned exactly one state. For the leaf
nodes, these are the entries of the MSA column.
Let u and l be the states at the top and at the bottom
of a branch of the phylogenetic tree, and let t be
the length of the branch.

The likelihood of this branch is

P (l|u) =





1
n + n−1

n e−rt if u = l

1
n − 1

ne
−rt else,

where n is the number of distinct symbols occur-
ring in the MSA column. The rate r is a model
paramter and is always positive.

The total likelihood of an assignment of states
to the nodes of the tree is the product of all branch
likelihood, times the likelihood of the state at the
root. For this I assumed a uniform distribution.

The marginal likelhood of the states at the leaves,
given a phylogeny T and rate r is the sum of the
likelihoods of all assignments of states to non-leaf
nodes. The likelihood of a complete character ma-
trix, given a phylogeny and an assignment of a rate
value for each character (i.e., MSA column), is the
product of the likelihoods of the individual char-
acters. When a character state for a language is
unknown — either because it is a gap in the MSA,
or the language does not have a reflex for the corre-
sponding cognate class — the marginal likelihood
is computed as the sum of the likelihoods for all
possible character states.

Given suitable priors for the phylogeny and the
rates, the posterior distribution over trees can be
estimated via Bayesian inference for the collection
of MSAs as data.

This step was carried out using the software Mr-
Bayes (Ronquist and Huelsenbeck, 2003). Rates
were allowed to vary between characters, but are
drawn from a discretized Gamma distribution with
equal mean and variance. The mean of this hyper-
prior distribution is drawn from a standard expo-
nential distribution. A uniform prior distribution
over tree topologies was assumed, paired with a
standard exponential prior distribution over the tree
age and a uniform prior distribution over the branch
lengths.

The posterior tree distribution for the running
example is visualized in Figure 2 (produced with
the software densitree, Bouckaert and Heled 2014).
It can be seen that there is considerable uncertainty
regarding the position of French and Albanian in
the tree, as well as regarding the height of the tree.

3.5 Inferring Mutation Rates

While I used Dolgopolsky sound classes for phylo-
genetic inference, cognate inference has to operate
on IPA characters. For this purpose, I used the
posterior tree distribution from the previous step as
prior distribution. Data are MSAs of IPA strings.
For the running example, this looks as in Table 4.
(Note that the MSA is computed on the basis of
ASJP strings, and ASJP symbols are replaced by
the corresponding IPA symbols afterwards.)

As a further deviation from the previous step,
gaps (indicated by “-”) are treated as normal char-
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French Albanian Latin EnglishGerman

Figure 2: Posterior tree distribution

Albanian . . . . . .
English h A r t - -
French k œ r - - -
German h e r ts @ n
Latin k o r d - -

Table 4: Example MSA with IPA characters

acter states, while missing data (indicated by “.”)
are marginalized out.

For this step I assumed a constant rate over all
characters. Inference was performed using the
Julia package MCPhylo.jl (Wahle 2021; https:
//juliapackages.com/p/mcphylo), lead-
ing to a sample from the posterior distribution over
rates.

3.6 Multiple Sequence Alignment of Test Data

For cognate prediction, the attested entries of the
cognate class in question are aligned using the pro-
cedure and the model described in Subsection 3.3.
If the test data contain symbols not occurring in the
training data, their emission probabilities are set
to the minimal emission probability of any symbol
from the training data, and emission probabilities
are re-normalized in the trained pHMM.

For the running example, the MSA is shown in

Table 5. The entries for French (shown in boldface)

Albanian p e S k -
English f I S - -
French p i S k –
German f i S - -
Latin p i s k i

Table 5: MSA for cognate prediction

are unknown and have to be inferred in the final
step.

3.7 Cognate Prediction

Missing-value imputation is done column-wise. Us-
ing the posterior distribution over trees and rates de-
scribed in Subsections 3.4 and 3.5, for each slot the
posterior probability distribution over the symbols
occurring elsewhere in the column was computed.
This was practically implemented by separately
computing the posterior probabilities for all candi-
date symbols separately and normalizing them.

As prediction, the symbol with the highest pos-
terior probability was chosen. The final cognate
prediction is the result of removing all gap symbols
— piSk in the example.

4 Discussion

Let me close with a brief reflection on what kind of
information this system extracts from the training
set to perform cognate prediction. There are mainly
two patterns the system pays attention to. The first
is the regularity of sound correspondences which
are encapsulated in the emission probabilites of the
trained pHMM, especially its M state. The system
does not pay attention to the specific languages
the words to be aligned come from, so it is un-
aware of language-specific sound correspondences.
Therefore the prediction step does not make use of
specific sound laws in any way.

Second, the system employs phylogenetic infor-
mation. This amounts to a weighing of the impor-
tance of the cognates from other languages when
deciding on the choice of the missing value impu-
tation.

Also, since the missing value imputation is per-
formed column-wise for the alignment matrix, no
syntagmatic information is being used. It is not
checked which candidate predictions are phono-
tactically or morphologically most similar to the
training words from the same languages.
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In future research, it is worth considering to ex-
tend the system towards the usage of language-
specific sound correspondences and syntagmatic
information.

Supplementary Material

The source code and instructions how to
run the system are publicly available at
https://github.com/gerhardJaeger/
gerhardSigtyp2022 (also archived on Zen-
odo under the doi 10.5281/zenodo.6559085). Most
of the workflow was implemented in the Julia
language (https://julialang.org/), a
relatively new language combining the convenient
syntax and interactive functionality of languages
such as Python with execution speed of optimized
code close to C or Java. Essential Julia packages
used are Johannes Wahle’s MCPhylo.jl (which
is based on Brian J. Smith’ Mamba.jl package;
https://mambajl.readthedocs.io/
en/latest/) for phylogenetic Bayesian infer-
ence and my own package SequenceAlignment.jl
(https://github.com/gerhardJaeger/
SequenceAlignment.jl, v0.9.1) for se-
quence alignment.

For conversions between different sound class
systems, the Python package LingPy (List and
Forkel, 2021) was used. Besides MCPhylo.jl, I
used MrBayes (Ronquist and Huelsenbeck, 2003)
for phylogenetic inference. Postprocessing of the
output of MrBayes was done with the R package
ape (Paradis et al., 2004).
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