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Abstract

Though recently there have been an increased
interest in how pre-trained language models en-
code different linguistic features, there is still
a lack of systematic comparison between lan-
guages with different morphology and syntax.
In this paper, using BERT as an example of a
pre-trained model, we compare how three typo-
logically different languages (English, Korean,
and Russian) encode morphology and syntax
features across different layers. In particular,
we contrast languages which differ in a partic-
ular aspect, such as flexibility of word order,
head directionality, morphological type, pres-
ence of grammatical gender, and morphological
richness, across four different tasks.

1 Introduction

Transformers (Vaswani et al., 2017) and especially
pre-trained language models based on them, such
as BERT (Devlin et al., 2019), had a revolutionary
impact on the field of Natural Language Processing
(NLP), allowing to achieve new heights in classifi-
cation, retrieval, text understanding, and generation
tasks. However, though major progress was made
in adapting Transformers to different downstream
tasks, they largely remain black-box models, es-
pecially from the linguistic point of view. In par-
ticular, though we know that they roughly follow
the same pipeline as human-made natural language
processing (NLP) systems when encoding the fea-
tures (the lower layers of a Transformer encode
part-of-speech information, the middle layers per-
form syntax parsing, while the top layers enable
such tasks as coreference resolution) (Tenney et al.,
2019), it is still unclear if there is a systematic
relation between the type of morphological, syntac-
tical and discourse features encoded and particular
layers of Transformer-based models. More impor-
tantly, though there have been some attempts to
examine this for languages other than English (see,
for example, a study by de Vries et al. (2020) for

Dutch), we still do not know if there is a consis-
tency between models for different languages in
encoding such features, especially if the languages
in question are typologically different. Thus it is
important to analyse how Transformers encode dif-
ferent linguistic features for dissimilar languages,
as it would help us to better understand how they
work and ultimately allow to improve their perfor-
mance in such tasks as translation or multi-lingual
information retrieval and summarisation.

In this study, we compare how Transformers en-
code particular linguistic features for the following
languages: English, Russian, and Korean. The
choice of languages are motivated linguistically:
English, Russian and Korean are morphologically
very distant languages (analytical, fusional and ag-
glutinative respectively) which are also different
in term of syntax such as word order. To exam-
ine Transformers encodings more systematically,
we conduct a series of pairwise comparisons of
languages which contrast in a particular linguistic
feature, similarly to how it is performed in the-
oretical linguistics. In particular, using targeted
manipulation of inputs to produce a binary correct-
ness classification or a masked token prediction
task, we examine the following research questions:

1. How sensitive are the encoders and their par-
ticular layers to correct word orders in lan-
guages with fixed and free word order?

2. Does the encoding of word order depend on
the morphological type of the language (ag-
glutinative vs inflected) and on its head direc-
tionality (head-initial vs head-final)?

3. How well is long-distance agreement encoded
for languages with rich and poor morphology
and agreement patterns?

4. Are gender biases encoded more strongly in
languages with agreement in gender?
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In the following sections we describe our experi-
ments for these tasks and present our findings.

2 Sensitivity to word order in languages
with fixed vs free word order

In this section we compare the ability of a BERT-
based classification model to detect the corruption
of word order in languages with fixed vs free word
order. We hypothesise that as languages with free
word order allow for more permutations in terms
of token positions in the sentences, it would be
more difficult for the model to detect word order
corruption.

2.1 Fixed and free word order

We use English as an example of a fixed word
order language and Russian as a free word order
language as they are related languages which
typologically differ in one aspect: while in Russian
the grammatical and syntactical meaning is mostly
expressed through morphological means such
as suffixes and particles which allows the words
to be relatively unconstrained in terms of their
position in the sentence, in English due to limited
morphology the grammatical and syntactical
meaning is linked to the position of a word in a
sentence and thus the word order is fixed. For
example, to show that the word "apples" is an
object rather than a subject, it should occupy the
position after the predicate (verb) in English:

Emma ate apples.
Subject Verb Object

On the other hand, in Russian the word “apples”
can potentially occupy both the position before
and after the verb without changing the meaning1:

Эмма ела яблоки
Emma ate apples.
Subject Verb Object (normal word order)

Яблоки ела Эмма.
Apples ate Emma.
Object Verb Subject
(inverted word order, more focus on “Emma”)

Despite this flexibility, the word order in Russian
is not random or arbitrary: there is still a strong
tendency for constituents (such as noun phrases
and predicates) to occupy a particular position, and

1Though, as we explain in Section 3, there is a strong
preference for the position after the verb.

the movement of words across the constituent bor-
ders is very limited. However, as there is still more
word movement allowed compared to English, we
postulate that it would be more difficult to automat-
ically detect ungrammatical word order changes in
Russian than in English.

2.2 Dataset

For the experiments in this section we use UMC
0.1, a Czech-Russian-English corpus of news
articles automatically aligned at sentence level
(Klyueva and Bojar, 2008). We chose to use a
parallel corpus for this task to ensure that the diffi-
culty of classification is not affected by the syntac-
tic complexity or the length of the sentences. We
use the train/test data split provided by the authors
of the corpus. For both the train and test data we
remove the pairs where either the English or Rus-
sian sentence contains less than two tokens, since
otherwise it is impossible to swap tokens. We also
remove pairs where either of the sentences has over
100 tokens, as the task’s difficulty would increase
in case of very long inputs. The statistics of the
resulting dataset are provided in Table 1.

2.2.1 Model and experiments
The bigram shift (BShift) probing task introduced
by Conneau et al. (2018) allows to check the capa-
bility of a model to distinguish between sentences
with correct and incorrect word orders. Specifically,
it is a binary classifier which has to distinguish be-
tween intact sentences and sentences where some
two random adjacent tokens were swapped. For
this task, we randomly sample half of the sentences
in the training and test datasets and corrupt the
token order in them at a random position.

We use BERT-Base Cased (Devlin et al., 2019)2

as a pre-trained model for English and RuBERT
(Kuratov and Arkhipov, 2019)3, which was initial-
ized with the multilingual version of BERT-Base
and trained on the Russian Wikipedia and news,
for Russian. We choose these particular models
as the most closely matching in terms of their ar-
chitecture and parameters (12-layer, 768-hidden,
12-heads for both models, 110M parameters for
BERT-Base Cased and 180M Parameters for Ru-
BERT). Unlike most studies which use the uncased
version of BERT, we choose the cased one, as only

2https://huggingface.co/
bert-base-cased

3https://huggingface.co/DeepPavlov/
rubert-base-cased
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cased models are available for Russian.
To ensure that the classification results reflect

the performance of the pre-trained model itself on
the task, we add a only single linear layer on top
of the pre-trained model, freeze the BERT layers,
and train the model only for 1 epoch. For the train-
ing optimization we use Adam (Kingma and Ba,
2014) with the learning rate of 2e-5. As usual for
the classification tasks, we use the embedding of
the first token [CLS] as the input to the linear layer.
However, to explore how well the word order in-
formation is encoded in the different layers of the
pre-trained model, we do this not only for the last
layer, but for all layers in the pre-trained model.

2.3 Results

The results of the BShift classification tasks for all
layers of BERT-Base Cased and RuBERT models
are shown in Table 2. We report classification ac-
curacy averaged over 5 runs with various random
seeds. For all layers, the difference between the
accuracy of the models was statistically significant,
while the variation among the different runs was
minimal, which shows that there is a visible dif-
ference in the ability of the Russian and English
models to encode the correct word order.

In particular, though at lower layers the Russian
model underperforms in terms of accuracy, it per-
forms better than the English one at middle and
higher layers. The English model also achieves
its maximum performance at an earlier layer (5)
than the Russian one (11). Both of these phenom-
ena can be largely explained by the fact that the
models’ layers follow the so-called classic NLP
pipeline (Tenney et al., 2019), where the lower lay-
ers specialize in lower-level language features such
as parts of speech and other morphological infor-
mation, the middle layers are responsible for more
complex syntactic relations, while the higher layers
deal with even more high-level language phenom-
ena such as anaphora and coreference. Therefore,
we might conclude that though it takes more lay-
ers for the Russian model to encode more complex
morphology and syntax relations which are neces-
sary to detect if the word order was corrupted, once
it does that, it performs better on the task since
the morphology of the inflected language binds the
words together by the means of suffixes showing
their gender, number, aspect, or tense. Thus, in con-
trast to our expectations, the free word order is not
that free, as moving a word arbitrarily has a high

probability of breaking such rich morphological
and syntactical ties.

Train Test
EN RU EN RU

Sentences 85663 2753
Tokens 1798267 1599786 49642 44006

Table 1: Dataset statistics for the English vs Russian
BShift task.

EN RU

Layer 1 0.786 0.903
Layer 2 0.902 0.867
Layer 3 0.893 0.824
Layer 4 0.926 0.855
Layer 5 0.931 0.937
Layer 6 0.903 0.944
Layer 7 0.895 0.945
Layer 8 0.893 0.935
Layer 9 0.875 0.935
Layer 10 0.869 0.944
Layer 11 0.873 0.948
Layer 12 0.863 0.911

Table 2: The accuracy of detecting word order corrup-
tion for the languages with fixed and free word order.

3 Sensitivity to word order corruption in
agglutinative and inflected languages
with different head directionality

In this section we compare the ability of pre-trained
models to recognize word order corruption in such
languages as Russian and Korean. We originally
chose to analyse these languages as they differ in
terms of head directionality (Haider, 2015) (see
below) while both having a free word order. We
hypothesized that since the attention mechanism in
Transformer models (Vaswani et al., 2017) is able
to capture the context to the both sides of a focus
token, the performance on the word order corrup-
tion task should be comparable between these two
languages. However, our experiments showed that
some other aspects of these languages are affect-
ing the task, namely the type of their morphology
(inflected for Russian vs agglutinative for Korean).

3.1 Head directionality
Head directionality refers to the position of a head
(main) word in a phrase relative to its subordinate
word (Haider, 2015), and languages can be roughly
categorized into head-initial and head-final. In
head-initial languages such as Russian the verb
(predicate) normally precedes the object (VO
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word order), while in head-final languages such
as Korean they follow the object (OV word order)
(Lehmann, 1973)4:

Эмма ела яблоки.
Emma ate apples.
Subject Verb Object

엠마는 사과를 먹었다

Emma apples ate.
Subject Object Verb

As head directionality essentially refers to the
expected position of subordinates relative to head
words, it affects the importance of right-hand and
left-hand context of a focus (head) word in repre-
senting the input text. However, as the attention
mechanism (Vaswani et al., 2017) allows to capture
both the right-hand and left-hand context equally
well, we hypothesised that there should not be a
remarkable difference in word corruption detec-
tion between these two languages, i.e. neither VO
nor OV syntax should make it more difficult for a
direction-agnostic model.

3.2 Inflection vs agglutination

Both Korean and Russian are morphologically rich
synthetical languages, that is, grammatical mean-
ing is expressed by adding a diverse variety of mor-
phemes to the lexical root. However, while in Rus-
sian morphemes expressing tense, aspect, gender,
person, number etc are fused together and one suf-
fix can thus carry several grammatical meanings,
in Korean morphemes can be stacked on top of
each other in various combinations. For example,
while in Russian the verb иду ("I am going") is
a fusion of a stem ид- and a morpheme у which
simultaneously signifies present tense, inperfect as-
pect, single number, and 1st person, in Korean the
verb 가고있어요 with the same meaning can be
split into a stem가 and a stack of morphemes: 고
(continuous aspect),있어 (present tense),요 (po-
liteness marker). Such difference in morphology
is reflected in approaches to tokenization: while
in Russian texts are normally tokenized by space,
i.e. each token represents a lexical item together
with its grammatical meanings, in Korean words
are usually split into stems and particles, each rep-
resenting a distinct lexical or grammatical meaning.

4As both languages are relatively free in their word order,
VO structures are possible in Korean while OV structures are
legal in Russian, but such word order is inverted or emphatic.

Thus, in this experiment we also compare how the
tokenization before word order corruption affects
the model’s ability to recognize the latter.

3.3 Dataset

For this task, similar to Section 2, we use a parallel
corpus of Russian and Korean sentences, this time
based on TED talk subtitles5. We apply the same
preprocessing steps, and randomly sample 10% of
the sentences to create the training/test split. The
statistics of the dataset are presented in Table 3.

3.4 Model and experiments

For this set of experiments we use the same Ru-
BERT model for Russian as in Section 2; for Ko-
rean we use a similar BERT-Kor-base model6. We
follow the same method for corrupting the word
order, training and evaluation as in Section 2. How-
ever, for this task we restrict BShift to VO chunks
for Russian and OV chunks for Korean. To do that,
we apply part-of-speech tagging using morpholog-
ical analysers for Russian (Korobov, 2015)7 and
Korean8, and then restrict the application of BShift
only to spans with a verb and the following (for
Russian) or preceding (for Korean) noun.

We also experiment with two types of tokeniza-
tion for BShift in Korean. For the first experiment,
we tokenize the text using Kkma parser8 and then
swap the resulting tokens which can be lexical
stems or grammatical particles; for the second one,
we apply the usual whitespace tokenization and
thus swap the whole words with grammatical par-
ticles attached to them. The reason for such setup
is that we intend to compare the effect of swap-
ping the entire lexical units vs swapping subunits,
potentially including grammatical ones.

3.5 Results and discussion

Table 4 reports the accuracy of detecting the sen-
tences which underwent BShift in Korean and Rus-
sian. For Korean, we report the results for two ap-
proaches to word order corruption described above.

The most striking finding is probably an almost
perfect accuracy even at the lowest layers achieved
by the Korean model with the native (morphology-
based) tokenization, where morphological parti-
cals/subunits could potentially be switched. This

5https://github.com/ajinkyakulkarni14/TED-Multilingual-
Parallel-Corpus

6https://huggingface.co/kykim/bert-kor-base
7https://pypi.org/project/pymorphy2/
8https://konlpy.org/en/v0.4.4/api/konlpy.tag
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Train Test
KO1 KO2 RU KO1 KO2 RU

Sentences 299769 33308
Tokens 7477635 3597639 4283921 826887 397301 473650

Table 3: Dataset statistics for the Korean vs Russian BShift task. KO1 refers to BShift using morphology-based
tokenization; KO2 refers to BShift based on whitespace tokenizer.

shows that the order of particles that are attached
to the stem is strongly encoded even at the low-
est layers of the model, i.e. the pre-trained model
is aware of agglutination and learned the correct
slots for suffixes with a particular meaning. On the
other hand, compared to the Korean model with the
native tokenization, the performance of the model
where the BShift occurred after whitespace tok-
enization is considerably lower and worsens even
more at higher levels. This shows that whitespace
tokenization makes it much harder to recognize
word swaps, as in that case the whole word moves
together with its suffixes and thus the basic mor-
phology is preserved.

Interestingly, the performance of the Russian
model and the Korean model with whitespace-
based corruption is very similar at the lowest (mor-
phology) layers, which supports our claim that the
attention mechanism is agnostic to head directional-
ity at lower levels and can recognize incorrect word
order equally well for both OV and VO languages.
However, at higher layers, with more syntactic in-
formation taken into account, it becomes easier for
the Russian model to recognize corruption, while
the performance of the Korean model falls signifi-
cantly.

Another thing to note is that the accuracy of
classification for the Russian model is higher here
than reported in Section 2, and the best results are
achieved at lower RuBERT layers. This can be
explained by the fact that we restricted possible
movements to one type of structure, so the task
is inherently easier and potentially requires less
information about the syntactic structure; another
reason for such discrepancy can simply be a much
larger training dataset available for this task. Thus,
though these experiments provide some intuition
into the abilities of the models to encode word order
information and detect different types of word order
shift, more rigorous experiments across different
datasets and with more exact and diverse chunking
strategies are in order.

KO1 KO2 RU

Layer 1 0.988 0.940 0.948
Layer 2 0.989 0.928 0.928
Layer 3 0.995 0.942 0.886
Layer 4 0.996 0.921 0.899
Layer 5 0.994 0.896 0.981
Layer 6 0.991 0.895 0.983
Layer 7 0.990 0.902 0.982
Layer 8 0.987 0.888 0.977
Layer 9 0.985 0.863 0.976

Layer 10 0.989 0.844 0.979
Layer 11 0.990 0.888 0.979
Layer 12 0.990 0.875 0.921

Table 4: The accuracy of word order corruption for
an agglutinative SOV language vs inflected SVO lan-
guage. KO1 refers to BShift using morphology-based
tokenization; KO2 refers to BShift based on whitespace
tokenization.

4 Long-distance agreement in
morphologically rich and poor
languages

In this task we test the ability of attention-based
models to encode long-distance agreement, in par-
ticular the agreement in number (plural vs singular).
We choose this task as it tests the model’s ability to
encode hierarchical syntactic structure, for exam-
ple to determine the number of a verb based on the
form of the noun related to it in the syntactic tree,
rather than on the form of the closest noun.

4.1 Long-distance agreement

Agreement refers to a linguistic phenomenon
where the grammatical form of one word depends
on the form of another word. While in English
agreement is restricted only to nouns and verbs
in the present tense, in Russian nouns agree with
verbs in all tenses and also with adjectives and
some pronouns. Though in Russian words agree
in several different grammatical aspects such as
gender, person, case, and number, in this task
we focus only on the number agreement as it is
the only agreement type present in English. In
particular, we focus on long-distance agreement,
which occurs when a head word (cue) that
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determines the form of a dependent (target) is
separated from it by intervening words (context).
As such agreement requires the model to consider
not only the nearby context but often far removed
tokens that are nevertheless closely connected with
the cue in terms of their position in the syntactic
tree, it should be able to encode at least some
hierarchical syntactic structure. We hypothesise
that a higher performance can be achieved on
this task for Russian, since the majority of parts
of speech are marked for number there. Thus it
is highly likely that there are some words in the
context between the cue and target words that
provide some clues for the correct long-distance
agreement. Consider the following example:

Выросли любимые мамой розы
Have grown loved by mom roses
pl verb pl adj sing noun pl noun

In this sentence, the words выросли (have
grown) and розы (roses) should both have the plu-
ral form as they agree in number, but there is a
noun in singular (mom) between them which can
potentially interfere with the ability of the model to
assign the correct plural number. However, unlike
English, in Russian there is another word in the
context between the cue and the target (любимые,
loved) which has plural number and thus allows to
infer the correct form.

4.2 Dataset

For this task we use the long-distance agreement
test set created by Gulordava et al. (2018)9. We
choose this dataset rather than a more popular
agreement dataset by Linzen et al. (2016) as in
addition to regular sentences with long-distance
agreement the authors generate nonce sentences
which retain the same syntactic structure but have
no meaning. They do so by replacing all content
words in a sentence by random words with the same
grammatical properties; 9 nonce sentences are gen-
erated for each normal sentence in this manner. Gu-
lordava et al. (2018) do so in attempt to disentangle
the abilities of the model to capture syntactic and
semantic information, as they notice that models
tend to rely on semantic and lexical features such
as frequency of co-occurance when resolving long-
distance relationships. Thus, in the example above
the model can choose the plural form of "have
grown" for "roses" not because it learned to ab-

9https://github.com/facebookresearch/colorlessgreenRNNs

stract such features as number and detect the long-
distance relationships, but simply because "have
grown" occurs more frequently around "roses" than
"has grown" in the corpus it was trained on. To see
how much of the performance on the task is due
to such effect, the nonce sentences contain random
words which are unlikely to frequently co-occur.
Overall, the dataset contains 41 original vs 369
generated sentences for English and 442 original
vs 3978 generated sentences for Russian.

4.3 Model and experiments

For this set of experiments we use BERT-Base
Cased and RuBERT models introduced above, and
BERT-Base Uncased model in addition to them.
We compare the cased and uncased variants of the
model to estimate the effect of capitalization on the
encoding and detection of long-distance agreement.

We adapt the evaluation protocol proposed by
Goldberg (2019) for our task. Namely, we cast it as
a masked token prediction task where we replace
the word which form we are trying to predict by
[MASK]. To predict the token, we use a masked
language model which is essentially a BERT model
with a feed-forward network projecting onto the
vocabulary. Then for each masked token we com-
pare the probability of the word in the correct form
(plural or singular) with the probability of the in-
correct form (opposite in number). We consider
the prediction to be correct if the probability of the
expected token is strictly higher than then probabil-
ity of the alternative form. As in the tasks above,
we perform the experiments for all layers of the
pre-trained models.

4.4 Results and discussion

EN uncased EN cased RU cased
orig. gen. orig. gen. orig. gen.

L 1 0.683 0.477 0.683 0.423 0.464 0.471
L 2 0.659 0.477 0.756 0.439 0.489 0.481
L 3 0.707 0.485 0.707 0.472 0.502 0.485
L 4 0.707 0.458 0.659 0.496 0.500 0.501
L 5 0.659 0.466 0.683 0.520 0.523 0.518
L 6 0.732 0.499 0.757 0.537 0.539 0.543
L 7 0.805 0.623 0.780 0.602 0.559 0.538
L 8 0.780 0.612 0.854 0.664 0.520 0.515
L 9 0.878 0.737 0.951 0.734 0.568 0.531

L 10 0.927 0.770 0.976 0.797 0.586 0.558
L 11 0.951 0.816 0.976 0.824 0.618 0.569
L 12 0.951 0.810 0.976 0.821 0.991 0.919

Table 5: The accuracy of long-distance agreement.

Table 5 shows the accuracy of grammatical form
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prediction related to long-distance agreement for
both semantically correct and nonce sentences.
First, we can observe a clear gap in performance
between the original and generated (nonce) test
sets for all three models, which shows that the abil-
ity to assign the correct number is largely due to
the co-occurrence and frequency effects rather than
recognizing syntactic structure. However, it can be
noticed that as the number of layers grow, the gap
in accuracy for normal and nonce sentences dimin-
ishes, which means that at higher layers the models
do learn to abstract from the lexical information
and encode long-distance syntactic relations even
when they cannot rely on co-occurrence.

When comparing the three models, it can be
observed that, as expected, the Russian model per-
forms better at the last layer than both English ones,
which shows that rich morphology helps to encode
long-distance relationships. Interestingly, the cased
variant of BERT-Base had a higher accuracy than
the uncased one, especially at some intermediate
layers, which can mean that capitalization helps to
encode morphological and syntactic relationships.
Another thing to note is a remarkable difference
in the progression of accuracy across layers be-
tween the Russian and English models: while in
BERT-Base Cased and Uncased there is a consis-
tent improvement with moving to higher layers,
in RuBERT the accuracy grows very slowly at all
but the last layer, where there is a huge jump in
performance. It can be explained by the fact that
due to complex morphology of the Russian lan-
guage it takes more layers to encode some lower-
level morphology and syntactic features before the
model is ready to handle long-distance agreement.
Lastly, compared to lower-level morphology tasks
in Sections 2 and 3, where the performance actually
downgraded at the last layer, here the last layers
are important, especially for Russian.

5 Gender bias encoding in languages with
and without gender marking

Though gender bias is a wide-known issue affect-
ing such down-stream tasks as machine translation
or text generation, it has been mostly studied only
through such phenomena as co-reference and pro-
noun resolution (Rudinger et al., 2018). In this task
we aim to explore if the gender bias is more promi-
nent in languages such as Russian where nouns,
adjectives and verbs can be marked for gender, i.e.
have masculine, neutral or feminine gender. We hy-

pothesise that the gender bias would be even more
pronounced in such languages.

5.1 Dataset
For this task we construct the test set using the
dataset provided by Stanovsky et al. (2019)10 as
a starting point. In particular, we extract the men-
tions of professions (triggers) and the relevant sen-
tences from their English dataset and modify them
as follows:

• We remove triggers that have a strong fem-
inine gender (i.e. feminine ending) since
they can only be used with feminine forms
of words according to grammar rules. For
example, referring to a nurse (медсестра)
as "her" is the only correct way in Russian
as the feminine ending of the word requires
such agreement. Therefore, agreement with
such words is due to grammatical conventions
rather than bias. For the same reason, we re-
move triggers which can be translated both in
a masculine and feminine form, as that would
pre-determine the agreement.11 As the result
we selected 30 triggers (see Appendix A).

• We simplify the sentences so that there is only
one trigger and it is referred to unambiguously.
We do this to ensure that any discrepancy in
gender usage is due to the model attending to
the trigger noun rather than other nouns.

• For English we mask the pronoun referring
to the trigger to test the assumed gender of
co-reference resolution.

• For Russian, we modify the sentence to create
three variants: with a masked pronoun, as in
English, with a masked adjective referring to
the trigger, and with a masked verb referring
to it, to compare the degree of bias for these
parts of speech. While doing so we ensure
that other words in the sentence do not reveal
the assumed gender; for instance, we change
the past tense verbs (marked for gender) into
their present tense forms (which are the same
for both genders). On the other hand, we try
to ensure that the masked word is predicted in
a form marked for gender, such as past tense,
by adding adverbs such as "yesterday".

10https://github.com/gabrielStanovsky/
11Some of nouns can have both neutral-style masculine

forms and derogative feminine forms; we included them as
we expect neutral forms also to be used for women.
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5.2 Model and experiments
We use the same approach to evaluation as in Sec-
tion 4, but here instead of comparing probabili-
ties of two tokens we extract the list of 50 most
prominent candidates and compare the probabili-
ties assigned to the top tokens with masculine and
feminine gender. If either a masculine or feminine
form did not occur in the list of top 50 tokens, we
record its probability as 0. We examine both the
percentage of cases where either masculine or femi-
nine genders were the winning ones (winning rate),
and the average probabilities assigned to masculine
and feminine forms.

5.3 Results and discussion
Table 6 shows the winning rate and the average
probability for masculine and feminine forms ap-
pearing in the pronoun, verb or adjective slot.

Winning rate Avg. prob.
M F M F

EN pronouns 50% 50% 0.268 0.296
RU pronouns 93% 7% 0.460 0.03

RU verbs 100% 0% 0.299 0.047
RU adjectives 100% 0% 0.091 0

Table 6: Winning rate of one gender over the other and
average probabilities for genders in particular position.

As it can be seen from the table, in Russian there
is a large skew towards masculine forms for all anal-
ysed parts of speech, while in English the gender
labels for pronouns were distributed almost equally.
It does not in any way imply the absence of bias:
we observed the well-known phenomenon of as-
signing the masculine gender to both "manly" pro-
fessions such as mechanic or guard and high-status
jobs such as CEO, manager or lawyer, while the
feminine gender was mainly assigned either to as-
sisting roles such as clerk or secretary or to creative
professions such as editor or designer. However,
in Russian even such professions as hairdresser or
assistant, which are more likely to be marked as
feminine in English, had a higher probability of
masculine forms than that of feminine ones. This
is even more so for verbs and adjectives, all of
which had masculine forms. Thus we can con-
clude that the strong gender bias in Russian which
we observed is rather a grammatical phenomenon
than encoded connotations of professions of partic-
ular type, as in English. In particular, though the
words we studied are gender-neutral in terms of
their applicability to people of both genders, gram-

matically they have a masculine form, and unlike
native speakers who would choose feminine forms
when referring to female professionals, the model
is unable to do that and selects the most probable
form based on the grammatical form only.

6 Conclusions and future work

In this study we used linguistic probes and masked
language models to explore several aspects of mor-
phology and syntax representation in Transformer-
based models. In particular, we examined the abil-
ity of the model and its particular layers to encode
the correct word order in languages with contrast-
ing morphology and syntax, their ability to capture
hierarchical structure represented by long-distance
agreement, and the degree of bias encoding in lan-
guages with and without gender morphology. In
doing so, we once again showed that the number
of layers in the model roughly corresponds to the
complexity of the encoded features, but also dis-
covered that languages differ in layers where such
encoding happens.

One of the most important takeaways of
analysing the pre-trained models’ performance
layer by layer is that the best accuracy is not neces-
sarily achieved at the last layer, which leads us to
question the practice of using the complete model
for all downstream tasks. Therefore, a potential
extension of this work would be to explore the per-
formance of such tasks as classification or genera-
tion when using only some layers of the pre-trained
model. Another observation is that in general the
Russian model needed more layers to achieve its
optimal performance, while both Korean and En-
glish ones showed their best results at much earlier
layers. It can be explained by more complicated
morphology and syntax of Russian language which
potentially can require more layers to be properly
encoded. Thus it leads to a question whether adding
more layers to pre-trained models for inflected lan-
guages with rich morphology and syntax (for ex-
ample, Spanish or German) can help to improve
performance of downstream tasks. That said, one
of the limitation of the present study is that we fo-
cused only on one type of Transformer-based mod-
els and compared only two languages at a time; to
ensure the general applicability of our experiments,
they should be expanded to more languages with
similar typological characteristics to those analysed
above, and to attention-based models with different
training approaches.
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A Selected triggers

For the gender bias experiments we selected the
following English names of professions and their
direct translations into Russian:

English: developer, mechanic, clerk, mover, an-
alyst, assistant, salesperson, librarian, lawyer, hair-
dresser, cook, teacher, physician, baker, farmer,
CEO, manager, guard, editor, auditor, secretary,
designer, supervisor, cashier, driver, construction
worker, counselor, carpenter, janitor

Russian: разработчик, механик, клерк,
грузчик, аналитик, ассистент, продавец, биб-
лиотекарь, адвокат, парикмахер, повар, учи-
тель, врач, пекарь, фермер, CEO, менеджер,
охранник, редактор, аудитор, секретарь, ди-
зайнер, супервизор, кассир, водитель, строи-
тель, психолог, плотник, дворник
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