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Abstract

Spoken dialog systems are slowly becoming
and integral part of the human experience due
to their various advantages over textual inter-
faces. Spoken language understanding (SLU)
systems are fundamental building blocks of
spoken dialog systems. But creating SLU sys-
tems for low resourced languages is still a chal-
lenge. In a large number of low resourced lan-
guage, we don’t have access to enough data
to build automatic speech recognition (ASR)
technologies, which are fundamental to any
SLU system. Also, ASR based SLU systems
do not generalize to unwritten languages. In
this paper, we present a series of experiments
to explore extremely low-resourced settings
where we perform intent classification with
systems trained on as low as one data-point
per intent and with only one speaker in the
dataset. We also work in a low-resourced set-
ting where we do not use language specific
ASR systems to transcribe input speech, which
compounds the challenge of building SLU sys-
tems to simulate a true low-resourced setting.
We test our system on Belgian Dutch (Flem-
ish) and English and find that using phonetic
transcriptions to make intent classification sys-
tems in such low-resourced setting performs
significantly better than using speech features.
Specifically, when using a phonetic transcrip-
tion based system over a feature based system,
we see average improvements of 12.37% and
13.08% for binary and four-class classification
problems respectively, when averaged over 49
different experimental settings.

1 Introduction

Spoken Language Understanding (SLU) systems
form an integral part of any spoken dialog system.
A traditional SLU pipeline is made up of two mod-
ules (Figure 1) - a speech to text module which
converts input audio into textual transcripts, and
a natural language understanding (NLU) module
which aims to understand the semantic content in

the user utterance from the textual transcripts (Tur
and De Mori, 2011; Lugosch et al., 2019). The
conventional two-module SLU pipeline is prone to
making speech recognition errors which propagate
through the system. To minimize these errors, a
lot of recent research has been focused on creating
end-to-end spoken language understanding (E2E-
SLU) systems (Qian et al., 2017; Serdyuk et al.,
2018).

Building E2E-SLU systems requires an even
larger amount of task-specific annotated data when
compared to the two-module split SLU pipelines
(Lugosch et al., 2019; Bastianelli et al., 2020; Wu
et al., 2020). While high resourced languages like
English are moving towards E2E-SLU, the chal-
lenges presented by low resourced languages are
very different. Low resourced languages operate in
a regime where we have access to only tens or hun-
dreds of labelled utterances, which are not enough
to build robust E2E-SLU systems. Creating robust
automatic speech recognition (ASR) systems for
low resourced languages is itself a challenge as
these require large amounts of manual annotation.
For many low resourced languages, we might not
even have ASR technologies. Creating ASR tech-
nologies for unwritten languages or languages that
have only a few hundred or a few thousand speak-
ers alive is not even a viable option. But can we
create spoken dialog systems for such languages?

‘Low-resourced-ness’ of a particular language is
a very broad term often used loosely to describe var-
ious types of inadequacies when creating language
technologies. It affects creating speech technolo-
gies in mainly two ways. For the purpose of this pa-
per, we explicitly define and differentiate between
these two scenarios. The first scenario is what we
call language-specific low-resourced-ness, where
we do not have enough resources to create robust,
language specific speech recognition technologies.
Speech recognition systems are fundamental to cre-
ating various kinds of speech technologies includ-
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Figure 1: A traditional spoken language understanding system consisting of a speech-to-text system followed by a
natural language understanding module.

ing dialog systems, speech emotion recognition
systems, keyword spotting systems, speaker recog-
nition and diarization systems. When creating di-
alog systems, ASR systems allow us to convert
input speech to text, after which text based lan-
guage models like BERT (Devlin et al., 2018) can
be used to understand the content of speech and
build NLU modules. This allows us to create SLU
systems with smaller amounts of task-specific an-
notated data. But in settings where we do not have
access to speech recognition systems, it becomes
important to have enough annotated task-specific
data to compensate for the lack of ASR systems
and text-based language models. This introduces
the second source of ‘low-resourced-ness’, which
we call task-specific low-resourced-ness - where
we do not have enough annotated data for a particu-
lar task. Two challenges occur in this scenario - one
where we do not have enough speakers to create a
task-sepcific speech corpus, and another where we
do not have enough recordings per speaker. Not
having enough annotated data for a particular task,
when combined with lack of speech recognition
technologies compounds the problem of creating
speech technologies for such languages. We work
in this compounded low-resource setting, where
we assume language specific and task-specific low-
resourced-ness.

In this paper, we present a series of experiments
to empirically re-create language-specific and task-
specific low-resourced-ness scenarios and work in
the compounded setting where we tackle both chal-
lenges at the same time. As we assume language
specific low-resourced-ness, we work in a setting
where we don’t have access to language specific
ASR systems. One way to tackle this setting is to
use an ASR system built for a higher resourced
language and use the transcriptions generated to
perform downstream tasks as used in (Buddhika
et al., 2018; Karunanayake et al., 2019b,a). It was
later shown in (Gupta et al., 2021; Yadav et al.,
2021) that using language and speaker indepen-
dent systems trained on many languages to ex-

tract speech features works much better than using
ASR systems built for a different language, as a
different language usually contains a different set
of phonemes with a different phone to phoneme
set mapping. When this setting is compounded
by task-specific low-resourced-ness, we are at an
extremely low resourced setting where each data
point becomes valuable. To simulate this setting,
we pose an I-class intent classification problem
(I = 2, 4) where we have a varying number speak-
ers (S) available for recording training data. Each
speaker provides only k-utterances per intent for
training. In this k-shot setting, we evaluate our sys-
tem in a granular manner for very small values of
S and k. Specifically, we evaluate our system for
S = 1, 2, 3, 4, 5, 6, 7 number of speakers, where
each speaker records k = 1, 2, 3, 4, 5, 6, 7 utter-
ances per intent. We evaluate our SLU system on
robust test sets containing hundreds of utterances
collected from multiple speakers which are not
present in the training set.

We find that using language independent or mul-
tilingual speech recognition systems performs sig-
nificantly better in such low-resourced settings.
Furthermore, what works even better is to generate
a language independent symbolic representation
of input speech and create NLU systems for this
symbolic representation. This hints that creating
SLU systems for even extremely low-resourced
settings is likely trace conventional SLU pipelines
where we represent input speech symbolically in
the form of text and then build NLU blocks on
top of this. The symbolic representation of speech
used here is the phonetic transcription. We find
that using a phonetic transcription based system
is significantly better than using speech features
for classification for low-resourced settings. We
see average improvements of 12.37% and 13.08%
for binary and four-class classification problems
respectively, when averaged over 49 different ex-
perimental settings, for Belgian Dutch (Flemish)
language.
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2 Related Work

English has been the most widely studied language
for creating SLU systems. Various datasets have
been released to aid this development (Hemphill
et al., 1990; Saade et al., 2018; Lugosch et al., 2019;
Bastianelli et al., 2020). There have been many
previous works on creating SLU systems in a two-
module split fashion (Gorin et al., 1997; Mesnil
et al., 2014). A typical SLU pipeline, as shown in
Figure 1, consists of an ASR system that converts
input speech to text and an NLU module that pro-
cesses the input text to understand the user query.
As with any system composed of multiple modules,
errors that occur in one part of the system propa-
gate through the system. To prevent this, a large
amount of recent work has been focused on creat-
ing E2E-SLU systems (Qian et al., 2017; Serdyuk
et al., 2018; Chen et al., 2018). The caveat with
making such systems to work is that they require
an even larger amount of task-specific annotated
data, which is usually not a luxury available to
low-resourced languages.

Apart from English, there are many other spo-
ken dialog datasets available for various languages
including French (Devillers et al., 2004; Saade
et al., 2018), Dutch (Tessema et al., 2013; Ons
et al., 2014; Renkens et al., 2014), Chinese Man-
darin (Zhu et al., 2019; Guo et al., 2021), Sinhala
and Tamil (Karunanayake et al., 2019b), and cross-
lingual SLU datasets exist for English, Spanish
and Thai (Schuster et al., 2019). In this paper, we
work with two languages - Belgian Dutch (Flemish)
(Tessema et al., 2013; Ons et al., 2014; Renkens
et al., 2014) and English (Lugosch et al., 2019).

One of the major bottlenecks in creating SLU
systems for low-resourced languages is the creation
of ASR systems in such low data scenario. This
scenario is what we refer to as a language-specific
low-resourced setting. Previous works have tried to
use English-based ASR systems for languages like
Tamil and Sinhala. In these sytems, input speech
in Sinhala/Tamil is converted into English script
using an English speech recognition system that
is then processed by an NLU system (Buddhika
et al., 2018; Karunanayake et al., 2019b,a). We
use a similar idea as baseline and use Wav2Vec
(Schneider et al., 2019; Baevski et al., 2020) to
extract speech features for Flemish. Wav2Vec is a
self-supervised speech recognition system trained
on large amounts of unlabelled speech data which
boasts to learn superior language representations

for English. In this work, we use Wav2Vec 2.0
(Baevski et al., 2020) to extract speech features.

A series of recent works (Gupta et al., 2020b,a,
2021; Yadav et al., 2021) replace the ASR module
in the SLU pipeline by a universal phone recog-
nition system called Allosaurus (Li et al., 2020).
Allosaurus is a universal phonetic transcription
system that creates language and speaker indepen-
dent representations of input speech. Allosaurus
is trained to recognize and transcribe input speech
into a series of phones contained in the utterance,
providing superior representations of input audio
which can also be used for languages linguistically
distant from high resourced languages like English.
(Yadav et al., 2021) show that using embeddings
generated from Allosaurus to encode speech con-
tent outperforms previous state-of-the-art methods
for Sinhala and Tamil by large margins, while main-
taining high performance on high resourced lan-
guages like English (99.08% classification accu-
racy for a 31-class intent classification problem).
But the performance drops as the dataset size de-
creases and is not optimal for the task-specific low
resourced settings that we are dealing with in this
paper. To tackle this, we convert input speech into
phonetic transcriptions using Allosaurus as pro-
posed in (Gupta et al., 2020a) for our compounded
low resourced setting.

In our paper, we explore a novel and rather un-
explored language-specific low-resourced setting
compounded with task-specific low-resourced-ness.
Our aim it to push the limits and demonstrate
performance of using existing technologies in ex-
tremely low resourced settings, where each data
point becomes crucial.

3 Dataset

In our paper, we work with two languages - Bel-
gian Dutch (Flemish) and English. We use two
popular SLU datasets for our experiments - the
Fluent Speech Commands (FSC) dataset (Lugosch
et al., 2019) for the English language and the Grabo
dataset (Tessema et al., 2013; Ons et al., 2014;
Renkens et al., 2014) for Flemish.

The primary reason behind the choice of the
datasets was that each utterance in the two datasets
had clear speaker identities associated with each
utterance. Our aim is to test true low resourced set-
tings where getting speaker recordings is extremely
hard. Intent recognition datasets in other languages
like French (Devillers et al., 2004; Saade et al.,
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Figure 2: A generic SLU system for language-specific low-resourced setting where we do not have access to speech
recognition technologies.

Dataset Number of
Intents

Chosen Intents Speakers in
Validation Set

Utterances in
Validation Set

Speakers in
Test Set

Utterances
in Test Set

FSC (English) 2 ‘bring newspaper’, ‘activate
washroom lights’

10 194 10 232

FSC (English) 4 ‘bring newspaper’, ‘activate
washroom lights’, ‘change

language to German’, ‘decrease
volume’

10 519 10 634

Grabo (Flemish) 2 approach’, ‘lift’ 2 106 2 108
Grabo (Flemish) 4 approach’, ‘lift’, ‘point’, ‘grab’ 2 212 2 216

Table 1: Validation and Test Set statistics for chosen intents for the FSC and Grabo dataset.

2018), Chinese Mandarin (Zhu et al., 2019; Guo
et al., 2021), Sinhala and Tamil (Karunanayake
et al., 2019b) do not maintain speaker identities
and hence were not suitable for our work. Main-
taining a mapping of (anonymized) speaker iden-
tities allowed us to create validation and test sets
with no speaker overlap with the training set. This
allows us to do the most robust evaluation of our
systems. Moreover, these datasets also allow us to
create large test sets such that the results are robust
enough to evaluate the system performance and yet
have no overlapping speakers with the training set.
We choose Flemish as our low-resourced language
since Flemish is not used to train Allosaurus or
Wav2Vec 2.0.

FSC is a large and well maintained SLU dataset
for the English language. The dataset contains 19
hours of speech data collected from 97 different
speakers. The dataset contains commands suitable
for a smart home system. An example command
would be asking the system to ‘change language to
Chinese’ or to ‘turn off the lights in the kitchen’.
Each utterance has a clear, anonymized speaker
identity associated with it. This allows us to cre-
ate large validation and test sets with no speakers
overlap with the training set. The intents chosen
for our experiments and the corresponding number
of samples in the validation and test sets are shown
in Table 1.

The Grabo dataset contains 11 speakers and is
much smaller than FSC. The dataset consists of
commands given to a robot such as ‘moving right’
or ‘drive backwards fast’. We use speaker IDs 2-

8 to create the training set, speakers 9 and 10 for
the validation set, and speakers 11 and 12 for the
test set. Thus there is no speaker overlap between
the training, validation and test sets. The chosen
intents and the validation and test set statistics are
shown in Table 1.

4 System and Model

To simulate a language-specific low-resourced set-
ting, we do not use a language specific ASR sys-
tem. We tackle this challenge by exploring two
experimental settings. First we use a generic SLU
pipeline as shown in Figure 2. The first step in
this pipeline is to extract speech features. We use
Wav2Vec 2.0 to extract speech features for Flem-
ish, which represents using a speech recognition
system built for a different language. Then, we use
the SLU system proposed in (Gupta et al., 2020a)
as shown in Figure 3. It replaces a language spe-
cific ASR system with Allosaurus (Li et al., 2020),
which is a universal phonetic transcription system.
We use Allosaurus to convert input speech to pho-
netic transcriptions. We then build an NLU system
from these phonetic transcriptions to perform intent
recognition.

The model used in this work is very similar to the
model used in (Gupta et al., 2020a) which is a char-
acter level model built for a sequence of phones
generated by Allosaurus. The model creates its
own embeddings using the annotated task-specific
dataset and uses Convolutional Neural Networks
(CNN) (LeCun et al., 1998) to extract contextual
information from phonetic input, and a Long-Short
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Figure 3: Phonetic transcription based SLU system as proposed in (Gupta et al., 2020a).

Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) network to make utterance level decision
and account for sequential information. This model
achieved state-of-the-art intent classification per-
formance for low-resourced languages like Tamil
and Sinhala when used without language specific
ASR. We keep the model used across experiments
constant to identify difference in performance oc-
curring due to difference in feature extraction meth-
ods.

We reduce the model size to account for the
scarcity of data. We use a 256-dimensional embed-
ding layer with just one CNN layer of kernel size 3
and one or two LSTM layers of hidden dimension
256 depending on the dataset size. For the case
of the generic SLU, the embeddings are removed
and input feature dimension is dependent on the
features extracted. For Wav2Vec 2.0, the feature di-
mensions are 768. A detailed description of model
architecture is provided in the appendix A. Batch
normalization (Ioffe and Szegedy, 2015) layer is
removed because there are scenarios where we are
working with a training set of as low as 2 samples,
which are not enough to learn batch statistics and
give unstable performance.

5 Experiments

In this paper, we try to emulate a real world low-
resourced data collection scenario. A challenging
aspect of building SLU systems for low resourced
languages is having access to language specific
ASR systems. To tackle this, we experiment with
two alternatives. We first use a speech recognition
systems created for a higher resourced language
(English) to extract speech features and use those
features for intent recognition on Flemish data (Sec-
tion 5.1). Then, we create an intent recognition
system using a phonetic transcription generated
by Allosaurus (Section 5.2). The input audio is
converted to language independent phonetic tran-
scriptions, and intent classification is done using
the phonetic transcriptions generated.

Data collection is expensive and difficult, even
more so in extremely low resourced languages.

For example, Canadian Indigenious languages like
Inuktitut or Siksika have only a few thousand living
speakers. Native speakers of such languages are
hard to catch hold of for data collection process.
This makes every data point collected crucial. This
task-specific low-resourced setting compounds the
difficulty in making speech technologies for low-
resourced languages.

We pose two I-class intent classification prob-
lems, where I = 2, 4. The columns of each of the
Tables 2-9 in the following sections show results for
different values of k, where k is the number of utter-
ances recorded by a speaker per intent. This means
that if k = 3, each speaker provided 3 recordings
for each intent, which amounts to a total of 3 ∗ I
recordings per speaker. In general, each speaker
records k ∗ I audios, where k is the number of au-
dios recorded by a speaker per intent, and I is the
number of intents. The rows for each of the tables
represent the number of speakers (S) involved in
creating the dataset. The total training dataset size
is S ∗ k ∗ I . All data points in all the following
tables represent an average classification accuracy
over 3 different random selections of dataset and
training the model from scratch on top of it.

5.1 Experiments with Wav2Vec Features

First, we use Wav2Vec 2.0 (Baevski et al., 2020)
to extract representations of input speech and use
those to perform intent classification on Flemish
data. The results for the binary classification set-
ting are shown in Table 2 and for the four-class
classification setting is shown in Table 3.

One obvious trend to notice here is that increas-
ing the number of total training samples in general
increases the accuracy of the models. This trend
is consistently seen in the four-class classification
results ( Table 3). We also notice a saturation in per-
formance on increasing the number of utterances
per speaker. This usually occurs around k = 4, 5.
For each value of S, we see that adding number of
recordings for the same speaker increases the per-
formance significantly, but the rate of this increase
starts to reduce when we have 4− 5 utterances per
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 72.53 74.69 69.44 72.83 74.07 74.38 74.07
S = 2 69.75 74.69 67.90 63.27 78.70 67.59 69.13
S = 3 68.20 76.85 82.40 80.86 76.85 74.38 72.83
S = 4 78.39 64.50 69.13 71.60 75.92 76.85 75.30
S = 5 70.98 74.07 75.92 78.39 82.09 78.70 76.23
S = 6 79.62 75.61 87.03 83.95 84.56 83.33 93.82
S = 7 75.00 76.85 89.19 85.49 91.66 91.97 94.44

Table 2: Two class classification results for the Grabo
dataset with 768 dimensional features from Wav2Vec
2.0.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 35.49 37.03 37.19 37.80 39.96 40.12 42.28
S = 2 39.19 45.21 45.21 45.83 48.76 49.69 53.08
S = 3 41.82 47.83 53.70 61.57 55.55 63.88 67.59
S = 4 49.22 45.06 51.23 52.93 60.80 65.27 64.50
S = 5 44.59 53.39 56.32 66.04 64.96 70.83 66.82
S = 6 48.14 52.77 58.64 71.91 74.07 74.69 75.30
S = 7 52.77 56.66 67.12 72.83 79.62 80.09 76.69

Table 3: Four class classification results for the Grabo
datasetwith 768 dimensional features from Wav2Vec
2.0.

speaker.

5.2 Experiments with Phonetic
Transcriptions using Allosaurus

The performance in the compounded low-resourced
intent classification setting using Wav2Vec features
as seen in the previous was encouraging. In this sec-
tion, we use Allosaurus to generate phonetic tran-
scriptions of user audio, using the pipeline shown
in Figure 3. We then build intent classification
systems on top of these phonetic transcriptions.
The results for the binary classification setting are
shown in Table 4 and for the four-class classifica-
tion setting in Table 5.

We consistently see better classification perfor-
mances for almost all experiments when using pho-
netic transcriptions. We see an average improve-
ment of 12.37% for the binary classification prob-
lem and 13.08% for the four-class classification
problem, when averaged over 49 different experi-
ments performed in each I-class classification prob-
lem. Each experiment represents a accuracy av-
eraged over 3 different random selections of the
dataset. Note that the test sets in all the experiments
for the binary classification problem are exactly the
same with no speaker overlap with the training or
the validation set, irrespective of the size of the
training set. The same is true for the four-class
classification problem.

For the binary classification in Flemish, we see
that the improvement in performance when using

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 75.30 81.17 73.45 79.93 76.23 82.40 78.39
S = 2 84.87 85.49 93.82 89.81 87.65 91.35 89.50
S = 3 79.94 95.37 87.65 92.90 90.12 94.75 92.59
S = 4 83.33 90.74 93.20 95.06 88.58 95.37 92.28
S = 5 86.11 92.59 92.90 91.35 96.29 94.75 97.83
S = 6 91.04 91.97 92.28 94.13 96.91 91.97 92.28
S = 7 85.80 90.74 90.74 90.43 94.44 91.66 95.06

Table 4: Two class classification results for the
GRABO (Flemish) dataset using phonetic transcrip-
tions.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 47.83 50.61 50.92 53.85 50.77 52.31 50.00
S = 2 56.48 64.50 66.82 65.89 67.74 72.22 68.82
S = 3 59.87 63.58 68.36 69.90 69.75 72.22 70.52
S = 4 63.88 64.19 68.36 67.43 72.22 71.75 73.76
S = 5 64.66 67.28 69.44 74.84 72.22 77.31 76.69
S = 6 66.51 69.59 77.93 77.46 79.62 80.55 82.56
S = 7 68.51 80.55 81.01 82.09 85.33 85.64 88.73

Table 5: Four class classification results for the
GRABO (Flemish) dataset using phonetic transcrip-
tions.

phonetic transcription becomes more significant
as the dataset size reduces. This can be observed
when we look at the first 3 columns of Table 4 when
compared to Table 2. For example, when S = 7
and k ∈ [5, 7], the performance of the Wav2Vec
system is comparable to the phonetic transcription
based system. In all other experiments, the pho-
netic transcription based system outperforms the
Wav2Vec feature based system. Table 4 also shows
that using just 2-3 speakers are enough to learn
generalizable speaker independent features when
using Allosaurus phonetic transcription, which al-
lows the classification performance on the test set
to be in the 90’s. A similar performance requires 6-
7 speakers when using Wav2Vec features as shown
in Table 2. This can be seen if we look at a system
developed with 3 speakers recording 4 utterances
each using phonetic transcriptions in Table 4, it
is comparable to a 7 speaker system where each
speaker records 7 utterances per intent when using
Wav2Vec features (Table 2) . We attribute this ef-
fect to Allosaurus that creates speaker independent
embeddings of input audio. These embeddings
when projected to the space of a universal set of
phones is more robust to speaker variations.

The performance improvement observed for
Flemish when using phonetic transcriptions gets
amplified in the four-class classification problem.
We see significant improvements when using pho-
netic transcriptions for all experiments. We see an
average improvement of 13.08% over the 49 exper-
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 72.84 82.32 84.48 86.20 79.45 83.90 86.78
S = 2 84.05 89.79 91.23 86.20 94.10 94.10 95.11
S = 3 77.29 87.78 93.82 95.40 98.27 96.55 97.98
S = 4 84.33 89.51 93.10 94.97 98.41 98.85 98.13
S = 5 86.20 89.65 95.25 97.27 98.13 98.70 98.27
S = 6 86.06 95.25 96.55 98.56 98.70 97.70 99.13
S = 7 96.69 95.97 96.26 98.70 99.13 98.85 98.85

Table 6: Two class classification results for the FSC
(English) Dataset using speech features extracted from
Wav2Vec 2.0.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 38.53 42.79 50.36 58.41 59.20 56.15 62.19
S = 2 46.58 53.73 62.56 64.30 75.23 77.97 84.01
S = 3 48.63 58.25 75.44 85.80 81.65 81.80 92.74
S = 4 51.84 76.39 77.70 87.22 89.53 94.00 96.89
S = 5 77.86 81.59 86.33 91.48 95.58 96.79 96.31
S = 6 72.02 90.37 81.75 95.58 95.58 95.58 97.05
S = 7 65.87 85.06 92.32 94.21 95.26 97.21 94.79

Table 7: Four class classification results for the FSC
(English) Dataset using speech features extracted from
Wav2Vec 2.0.

iments when using phonetic transcriptions. This
improvement is large when the amount of data is
small which we can check by comparing the first
three columns of Tables 3 and 5. If we calculate the
improvement when S ≤ 3 and k ≤ 3, which we
call the 3×3 matrix of the tables, we get an average
improvement of 16.25% over the 9 experimental
settings. But we also see significant improvement
when the amount of data is larger. For example,
phonetic transcription based system performs sig-
nificant better for 7 speakers and 7 recording per
speaker when compared to the Wav2Vec features
based system. Thus, as the task complexity in-
creases, we see that using phonetic transcriptions
is a significantly better option when compared to
features from speech-to-text systems created for a
different language.

The pipeline proposed in Figure 3 is analo-
gous to the traditional SLU pipline as shown in
1. High resourced languages allows the use of
ASR systems which project speech, which is a
very long sequence of high dimensional input
into a much shorter, 1-dimensional sequence of
characters. Thus, ASR systems try to give a
1-dimensional symbolic representation to input
speech. This sequence of characters is usually
grouped into words or sub-words, which we re-
fer to as tokens in general, and are then projected
back into a higher dimensional space as word-
embeddings, encoding meaning and context. This
is usually done using pre-trained models like BERT

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 91.98 93.27 95.56 95.27 95.85 96.71 96.56
S = 2 95.13 97.99 97.99 98.56 98.56 98.14 97.28
S = 3 95.85 98.28 97.85 97.65 99.14 99.71 99.28
S = 4 97.28 98.42 98.14 98.88 98.99 98.85 98.71
S = 5 98.56 97.56 98.99 98.71 99.28 98.85 99.28
S = 6 96.71 97.85 98.42 98.56 98.56 98.71 99.58
S = 7 97.42 99.57 99.42 99.71 99.85 99.57 99.42

Table 8: Two class classification results for the FSC
(English) using phonetic transcriptions.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 61.06 62.06 62.79 70.59 69.75 72.29 72.21
S = 2 65.04 63.99 72.05 77.18 80.06 78.64 81.84
S = 3 67.13 74.72 75.35 77.91 83.72 85.55 85.29
S = 4 68.60 79.74 77.18 84.66 84.51 88.54 87.75
S = 5 72.05 79.59 80.58 87.85 88.27 91.57 92.67
S = 6 70.80 82.20 83.41 90.16 89.84 91.05 92.83
S = 7 75.56 80.48 86.65 89.48 91.10 90.99 93.98

Table 9: Four class classification results for the FSC
(English) dataset using phonetic transcriptions.

(Devlin et al., 2018), where the different layers of
the model encode and understand various possible
meanings and contexts in which a token can be
used (Tenney et al., 2019). Thus, these pre-trained
models can be seen as functions that map an input
token into vectors that encode all possible ways
the token has been used in the dataset the model is
trained on.

The projection by ASR systems into a lower
dimensional space of characters causes loss of in-
formation and results in errors which is not always
compensated by the re-projection of words into the
space of word-embeddings, which is why recent
research in high resourced languages is moving
towards creating E2E models. But this process
of projecting high-dimensional and long speech
input into a much smaller transcription of sym-
bols, and then re-projecting into the space of word-
embeddings encoding meaning and context allows
us to create SLU systems with a very small amount
of annotated task-specific data.

Our experiments show that the analogous pro-
cess of projecting down speech into a symbolic
transcription of phones and then re-projecting the
symbols into a vector space of symbolic embed-
dings created from the phonetic transcription data
performs significantly better than using high dimen-
sional feature representations of input speech, as
done with Wav2Vec in section 5.1. The large size
of Wav2Vec vectors (768) requires a larger amount
of task-specific data to infer content and meaning
of input utterances when compared to using pho-
netic transcription. Using phonetic transcriptions
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also allow us to create our own vector spaces of
symbolic embeddings which are very specific to
our dataset and encode the meaning and context
in which each phone has been used for the partic-
ular task. This is why the pipeline that uses pho-
netic transcriptions outperforms Wav2Vec based
embeddings. (Yadav et al., 2021) show that this is
true even when Allosaurus embeddings are com-
pared to phonetic transcriptions generated by Al-
losaurus. As the amount of available data decreases,
intent classification systems built using phonetic
transcriptions begin to outperform systems based
on Allosaurus embeddings, thus showing that pro-
jecting input speech into phonetic transcriptions is
the most exhaustive way to use the scarce amount
of labelled data in the compounded low-resourced
settings.

We verify this by performing the same set of
experiment on the English dataset (FSC). We first
use Wav2Vec features to extract input speech. The
binary classification, the results are shown in Table
6 and for the four-class classification problem, the
results are shown in Table 7. Note that Wav2Vec
is specifically trained on large amounts of English
speech data and thus the features extracted from
Wav2Vec are likely to perform much better for
English than they worked for Flemish. This experi-
mental setting is thus not a language-specific low-
resourced setting anymore, and only a task-specific
low-resourced setting. We then create an intent
classification system using phonetic transcriptions,
as shown in Table 8 and 9. We see an average
improvement of 5.42% for the binary classifica-
tion problem and 2.09% for the four-class classi-
fication problem, when averaged over 49 experi-
ments. These improvements are amplified when
we compare the 3× 3 matrices (when S ≤ 3 and
k ≤ 3, ) for the two classification problems be-
tween Wav2Vec based and phonetic transcription
based methods. We find an average improvement
of 11.14% for the binary classification problem and
an average improvement of 14.15% for the four-
class classification problem, when averaged over
9 experiments. This shows that a phonetic tran-
scription based SLU pipeline outperforms a speech
feature-based pipeline in the low-resourced sce-
narios, especially when we lack language specific
speech recognition technologies.

6 Conclusion

In this paper, we provide a series of experiments
to empirically recreate a real-world, low-resourced,
SLU system building scenario. We work in
the compounded setting of language-specific low-
resourced-ness and task-specific low-resourced-
ness. The challenge posed by a language-specific
low-resourced setting is the absence speech recog-
nition technologies. We bypass this in two ways -
firstly, we use a speech recognition system built for
a different higher resourced language. Secondly,
we use a universal phone recognition system to
convert input speech to phonetic transcriptions. To
simulate the task-specific low-resource scenario,
we present intent classification results at a gran-
ularity where we see the effects of changing the
number of speakers and the utterances recorded
by each speaker. We simulate these settings for
Belgian Dutch (Flemish) and English.

We find that using Allosaurus, a universal
phone recognition system that creates language
and speaker independent representations of in-
put speech, performs better than using Wav2Vec
for Flemish dataset. When using Allosaurus, we
convert input speech into phonetic transcriptions
and use these transcriptions to build NLU mod-
els. We find that using phonetic transcription based
model performs better than using Wav2Vec fea-
tures. For Flemish, we see an average improvement
of 12.37% for a binary classification problem and
an average improvement of 13.08% for a four-class
classification over using Wav2Vec features, when
averaged over 49 different experimental settings.
All results are calculated on a large test set con-
taining hundreds of utterances that has no speaker
overlap with the training or validation set. Also,
we find that as the dataset size decreases, phonetic
transcription based method consistently outperform
Wav2Vec feature based methods. Phonetic tran-
scription based models also need fewer speakers to
generalize to a test set with no speaker overlap.

Finally, we recommend converting input speech
into phonetic transcriptions as an intermediate step
for creating SLU systems in such low resourced
settings. Doing such conversion allows us to create
a task-specific embedding space that uses the small
annotated dataset most efficiently.

Disclaimer. This paper was prepared for infor-
mational purposes by the Artificial Intelligence Re-
search group of JPMorgan Chase Co and its af-
filiates (“JP Morgan”), and is not a product of the
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Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, ac-
curacy or reliability of the information contained
herein. This document is not intended as invest-
ment research or investment advice, or a recom-
mendation, offer or solicitation for the purchase
or sale of any security, financial instrument, finan-
cial product or service, or to be used in any way
for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such so-
licitation under such jurisdiction or to such person
would be unlawful.
© 2022 JPMorgan Chase Co. All rights reserved.
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A Implementation Details

All models are trained using the NVIDIA GeForce
GTX 1070 GPU using python3.7. The training is
very quick due to the small dataset sizes, with each
epoch taking 1-2 seconds. For each experiment, a
validation set identical to the test set was used. For
the FSC dataset, the validation set had 10 speakers
with no speaker overlap with the training or the test
set. Similarly for the GRABO dataset, the valida-
tion set had 2 speakers that were not present in the
training or the test set. Each experiment in Tables
2-9 was repeated 3 times with a different training
set and the average accuracy has been reported.

As mentioned in section 4, we use a
CNN+LSTM architecture, as proposed in (Gupta
et al., 2020a). We performed a grid search over
various parameters of the architecture. The best
performing models varied slightly for each experi-
ment. The exact model parameters for the results
reported in Tables 2-9 are shown in Table 10. For
larger amounts of utterances recorded per speaker,
we found better results with 2 LSTM layers instead
of one.
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Model Parameters Value
Embedding Size 256
CNN kernel size 3

No. of CNN filters 256
No. of LSTM layers 1 ( or 2)
LSTM hidden size 256

Batch Normalization False

Table 10: Model Parameters
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