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Preface

We are glad to pen the first few words for the proceedings of SIGDIAL 2022, the 23rd Annual Meeting of
the Special Interest Group on Discourse and Dialogue. The SIGDIAL conference is a premier publication
venue for research in discourse and dialogue. This year the conference is organized as a hybrid event with
both in-person and remote participation on September 7-9, 2022, at Heriot-Watt University, Edinburgh,
Scotland, and is hosted by the Interaction Lab and the National Robotarium.

The SIGDIAL 2022 program features 3 keynote talks, 6 sessions of in-person paper presentations,
including the special session on Natural Language in Human-Robot Interaction (NLiHRI), 2 in-person
mixed demo and poster sessions, and 5 remote presentation sessions. The 2022 Young Researchers’
Roundtable on Spoken Dialog Systems (YRRSDS 2022) is also being held as a satellite event, just
before SIGDIAL, on September 5-6.

SIGDIAL received 140 submissions this year, comprising 79 long papers, 49 short papers, and 12 demo
descriptions. We had 14 Senior Program Committee (SPC) members who were each responsible for
9-11 papers, leading the discussion process and also contributing with meta-reviews. Each submission
was assigned to an SPC member and received at least three reviews. Decisions carefully considered
the original reviews, meta-reviews, and discussions among reviewers facilitated by the SPCs. We are
immensely grateful to the members of the Program Committee and Senior Program Committee for their
efforts in providing excellent, thoughtful reviews of the large number of submissions. Their contributions
have been essential to selecting the accepted papers and providing a high-quality technical program for
the conference. We have aimed to develop a broad, varied program spanning the many positively-rated
papers identified by the review process. We therefore accepted 64 papers in total: 37 long papers (47%),
19 short papers (39%), and 8 demo descriptions, for an overall acceptance rate of 45.7%. The topics to
be presented demonstrate the current breadth of research in discourse and dialogue.

In organizing this hybrid in-person/ remote conference, we have tried to maintain as much of the spirit of
a fully in-person conference as possible, allowing opportunities for questions and discussion. Recordings
for all remote papers and demos will be made available, and will be played to the audience in the
conference auditorium, with an opportunity for authors to answer questions live online. We have also
set up slack channels for online discussions. Long remote papers will each be presented as a seven-
minute pre-recorded talk followed by three minutes of live Q&A, and short/demo remote papers will be
presented as a four-minute pre-recorded talk followed by three minutes of live Q&A. A conference of
this scale requires the energy, guidance, and contributions of many parties, and we would like to take this
opportunity to thank and acknowledge them all.

We thank our three keynote speakers, Yun-Nung (Vivian) Chen (National Taiwan University), Angeliki
Lazaridou (DeepMind), and Giuseppe Carenini (University of British Columbia), for their inspiring talks
on "Robustness, Scalability, and Practicality of Conversational AI”, "On opportunities and challenges
on communicating using Large Language Models”, and "Unlimited discourse structures in the era of
distant supervision, pre-trained language models and autoencoders”. We also thank the organizers of the
special session: "Natural Language in Human-Robot Interaction (NLiHRI)”. We are grateful for their
coordination with the main conference.

SIGDIAL 2022 is made possible by the dedication and hard work of our community, and we are indebted
to many. The conference would not have been possible without the advice and support of the SIGDIAL
board, particularly Gabriel Skantze and Milica Gasic. The hybrid nature of the conference inevitably
increases the workload for the organizers, and so special thanks go to Daniel Herndndez Garcia for his
tireless effort in managing the website with timely updates, and to the team handling various online
aspects of participation: Angus Addlesee, Arash Ashrafzadeh, Bhathiya Hemanthage, Selina Meyer, and
Nikolas Vitsakis. Many thanks also go to Tanvi Dinkar, Amit Parekh, and Weronika Sieinska for their
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support with local arrangements.

We would also like to thank the sponsorship chair David Vandyke, who has been our SIGDIAL
ambassador to industry year after year. He continues to bring to the conference an impressive panel
of conference sponsors. We thank David for his dedicated effort. We gratefully acknowledge the support
of our sponsors: LivePerson (Platinum), Apple (Gold), Alana (Gold), Toshiba Research Europe (Silver),
and Furhat Robotics (Bronze). In addition, we thank Malihe Alikhani, the publication chair, and Ondfe;j
Dusek, the mentoring chair for their dedicated service.

Finally, it is our great pleasure to welcome you physically and remotely to the conference. We hope that
you will have an enjoyable and productive experience, and leave with fond memories of SIGDIAL 2022.
With our best wishes for a successful conference.

Failte gu Alba !
Oliver Lemon, General Chair

Junyi Jessy Li, Dilek Hakkani-Tur, Program Co-Chairs
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Shahla Farzana and Natalie Parde

EDU-AP: Elementary Discourse Unit based Argument Parser
Sougata Saha, Souvik Das and Rohini Srihari

Using Transition Duration to Improve Turn-taking in Conversational Agents
Charles Threlkeld, Muhammad Umair and JP de Ruiter
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Wednesday September 7, 2022 (continued)
DG2: Data Augmentation Through Document Grounded Dialogue Generation
Qingyang Wu, Song Feng, Derek Chen, Sachindra Joshi, Luis Lastras and Zhou Yu
17:00-18:00 Remote Session 2

When can I Speak? Predicting initiation points for spoken dialogue agents
Siyan Li, Ashwin Paranjape and Christopher Manning

Using Interaction Style Dimensions to Characterize Spoken Dialog Corpora

Nigel Ward

Multi-Domain Dialogue State Tracking with Top-K Slot Self Attention
Longfei Yang, Jiyi Li, Sheng Li and Takahiro Shinozaki

Building a Knowledge-Based Dialogue System with Text Infilling
Qiang Xue, Tetsuya Takiguchi and Yasuo Ariki

D&D: When to Say What and How: Adapting the Elaborateness and Indirectness
of Spoken Dialogue Systems
Juliana Miehle, Wolfgang Minker, Stefan Ultes

D&D: Cognitive and social delays in the initiation of conversational repair
Julia Beret Mertens and J. P. de Ruiter

D&D: Referential Communication Between Friends and Strangers in the Wild
Kris Liu, Trevor D’ Arcey, Marilyn Walker, Jean Fox Tree
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Wednesday September 7, 2022 (continued)

18:00

Drinks Reception

Thursday September 8, 2022

09:00-10:00

10:00-10:30

10:30-12:10

Keynote 2: On opportunities and challenges on communicating using Large Lan-
guage Models
Angeliki Lazaridou

Break

Oral Session 3: “Generation”

Generating Meaningful Topic Descriptions with Sentence Embeddings and LDA
Javier Miguel Sastre Martinez, Sean Gorman, Aisling Nugent and Anandita Pal

How Well Do You Know Your Audience? Toward Socially-aware Question Genera-
tion
Ian Stewart and Rada Mihalcea

GenTUS: Simulating User Behaviour and Language in Task-oriented Dialogues
with Generative Transformers

Hsien-chin Lin, Christian Geishauser, Shutong Feng, Nurul Lubis, Carel van Niek-
erk, Michael Heck and Milica Gasic

AARGH! End-to-end Retrieval-Generation for Task-Oriented Dialog
Tom4s Nekvinda and Ondfej DuSek
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Thursday September 8, 2022 (continued)

12:10-13:00

13:00-14:40

14:40-15:00

15:00-16:00

Lunch

Oral Session 4: “Deep dives into dialogue systems”

A Systematic Evaluation of Response Selection for Open Domain Dialogue
Behnam Hedayatnia, Di Jin, Yang Liu and Dilek Hakkani-Tur

Inferring Ranked Dialog Flows from Human-to-Human Conversations
Javier Miguel Sastre Martinez and Aisling Nugent

Structured Dialogue Discourse Parsing
Ta-Chung Chi and alexander rudnicky

"Do you follow me?": A Survey of Recent Approaches in Dialogue State Tracking
Léo Jacqgmin, Lina M. Rojas Barahona and Benoit Favre

Break

Remote Session 3

MultiwOZ 2.4: A Multi-Domain Task-Oriented Dialogue Dataset with Essential
Annotation Corrections to Improve State Tracking Evaluation
Fanghua Ye, Jarana Manotumruksa and Emine Yilmaz

The Duration of a Turn Cannot be Used to Predict When It Ends
Charles Threlkeld and JP de Ruiter

Getting Better Dialogue Context for Knowledge Identification by Leveraging
Document-level Topic Shift
Nhat Tran and Diane Litman

Neural Generation Meets Real People: Building a Social, Informative Open-
Domain Dialogue Agent

Ethan A. Chi, Ashwin Paranjape, Abigail See, Caleb Chiam, Trenton Chang, Kath-
leen Kenealy, Swee Kiat Lim, Amelia Hardy, Chetanya Rastogi, Haojun Li, Alexan-
der Iyabor, Yutong He, Hari Sowrirajan, Peng Qi, Kaushik Ram Sadagopan, Nguyet
Minh Phu, Dilara Soylu, Jillian Tang, Avanika Narayan, Giovanni Campagna and
Christopher Manning

XX



Thursday September 8, 2022 (continued)

16:00-17:00

DeepCon: An End-to-End Multilingual Toolkit for Automatic Minuting of Multi-
Party Dialogues
Aakash Bhatnagar, Nidhir Bhavsar and Muskaan Singh

ICM : Intent and Conversational Mining from Conversation Logs
Sayantan Mitra, Roshni Ramnani, Sumit Ranjan and Shubhashis Sengupta

Remote Session 4

Entity-based De-noising Modeling for Controllable Dialogue Summarization
Zhengyuan Liu and Nancy Chen

iEval: Interactive Evaluation Framework for Open-Domain Empathetic Chatbots
Ekaterina Svikhnushina, Anastasiia Filippova and Pearl Pu

Unsupervised Domain Adaptation on Question-Answering System with Conversa-
tion Data
Amalia Adiba, Takeshi Homma and Yasuhiro Sogawa

UniDU: Towards A Unified Generative Dialogue Understanding Framework
Zhi Chen, Lu Chen, Bei Chen, Libo Qin, Yuncong Liu, Su Zhu, Jian-Guang LOU
and Kai Yu

Advancing Semi-Supervised Task Oriented Dialog Systems by JSA Learning of Dis-

crete Latent Variable Models
Yucheng Cai, Hong Liu, Zhijian Ou, Yi Huang and Junlan Feng

XX1



Thursday September 8, 2022 (continued)

17:00-18:00 Remote Session 5

Redwood: Using Collision Detection to Grow a Large-Scale Intent Classification
Dataset
Stefan Larson and Kevin Leach

Dialogue Evaluation with Offline Reinforcement Learning
Nurul Lubis, Christian Geishauser, Hsien-chin Lin, Carel van Niekerk, Michael
Heck, Shutong Feng and Milica Gasic

Disruptive Talk Detection in Multi-Party Dialogue within Collaborative Learning
Environments with a Regularized User-Aware Network

Kyungjin Park, Hyunwoo Sohn, Wookhee Min, Bradford Mott, Krista Glazewski,
Cindy E. Hmelo-Silver and James Lester

Generating Discourse Connectives with Pre-trained Language Models: Condition-
ing on Discourse Relations Helps Reconstruct the PDTB

Symon Stevens-Guille, Aleksandre Maskharashvili, Xintong Li and Michael White
Toward Self-Learning End-to-End Task-oriented Dialog Systems

Xiaoying ZHANG, Baolin Peng, Jianfeng Gao and Helen Meng

19:30 Banquet

Friday September 9, 2022

09:00-10:00 Keynote 3: Unlimited discourse structures in the era of distant supervision, pre-
trained language models and autoencoders
Guiseppe Carenini
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Friday September 9, 2022 (continued)

10:00-10:15

10:15-11:30

11:30-11:40

11:40-12:55

Break

Oral Session 5: “Dynamics and Methods I”

Combining Structured and Unstructured Knowledge in an Interactive Search Dia-
logue System

Svetlana Stoyanchev, Suraj Pandey, Simon Keizer, Norbert Braunschweiler and
Rama Sanand Doddipatla

How Much Does Prosody Help Turn-taking? Investigations using Voice Activity
Projection Models
Erik Ekstedt and Gabriel Skantze

What makes you change your mind? An empirical investigation in online group

decision-making conversations
Georgi Karadzhov, Tom Stafford and Andreas Vlachos

Break

Oral Session 6: ‘“Dynamics and Methods IT”’

Dialogue Term Extraction using Transfer Learning and Topological Data Analysis
Renato Vukovic, Michael Heck, Benjamin Ruppik, Carel van Niekerk, Marcus Zi-
browius and Milica Gasic

Evaluating N-best Calibration of Natural Language Understanding for Dialogue
Systems

Ranim Khojah, Alexander Berman and Staffan Larsson

LAD: Language Models as Data for Zero-Shot Dialog
Shikib Mehri, Yasemin Altun and Maxine Eskenazi
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Friday September 9, 2022 (continued)

12:55-13:45 Lunch

13:45-14:45 Poster + Demo Session 2:

Improving Bot Response Contradiction Detection via Utterance Rewriting
Di Jin, Sijia Liu, Yang Liu and Dilek Hakkani-Tur

Comparison of Lexical Alignment with a Teachable Robot in Human-Robot and
Human-Human-Robot Interactions

Yuya Asano, Diane Litman, Mingzhi Yu, Nikki Lobczowski, Timothy Nokes-
Malach, Adriana Kovashka and Erin Walker

TREND: Trigger-Enhanced Relation-Extraction Network for Dialogues
Po-Wei Lin, Shang-Yu Su and Yun-Nung Chen

User Satisfaction Modeling with Domain Adaptation in Task-oriented Dialogue Sys-
tems
Yan Pan, Mingyang Ma, Bernhard Pflugfelder and Georg Groh

N-best Response-based Analysis of Contradiction-awareness in Neural Response
Generation Models

Shiki Sato, Reina Akama, Hiroki Ouchi, Ryoko Tokuhisa, Jun Suzuki and Kentaro
Inui

A Visually-Aware Conversational Robot Receptionist
Nancie Gunson, Daniel Hernandez Garcia, Weronika Sieiriska, Angus Addlesee,
Christian Dondrup, Oliver Lemon, Jose L. Part and Yanchao Yu

Demonstrating EMMA: Embodied MultiModal Agent for Language-guided Action
Execution in 3D Simulated Environments

Alessandro Suglia, Bhathiya Hemanthage, Malvina Nikandrou, George Panta-
zopoulos, Amit Parekh, Arash Eshghi, Claudio Greco, loannis Konstas, Oliver
Lemon and Verena Rieser

GRILLBot: A multi-modal conversational agent for complex real-world tasks
Carlos Gemmell, Federico Rossetto, Iain Mackie, Paul Owoicho, Sophie Fischer

and Jeff Dalton

A System For Robot Concept Learning Through Situated Dialogue
Benjamin Kane, Felix Gervits, Matthias Scheutz and Matthew Marge
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14:45 SIGDIAL BUSINESS MEETING

15:15 CLOSING and BEST PAPER AWARDS
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Keynote Abstracts

Keynote 1 - Robustness, Scalability, and Practicality of Conversational Al
Yun-Nung (Vivian) Chen
National Taiwan University

Abstract

Even conversational systems have attracted a lot of attention recently, there are many remaining
challenges to be resolved. This talk presents three different dimensions for improvement: 1) Robustness
— how to deal with speech recognition errors for better language understanding performance, 2)
Scalability — how to better utilize the limited data, and 3) Practicality — how to naturally perform
recommendation in a conversational manner. All directions enhance the usefulness of conversational
systems, showing the potential of guiding future research areas

Biography

Yun-Nung (Vivian) Chen is currently an associate professor in the Department of Computer Science
Information Engineering at National Taiwan University. She earned her Ph.D. degree from Carnegie
Mellon University, where her research interests focus on spoken dialogue systems and natural language
processing. She was recognized as the Taiwan Outstanding Young Women in Science and received
Google Faculty Research Awards, Amazon AWS Machine Learning Research Awards, MOST Young
Scholar Fellowship, and FAOS Young Scholar Innovation Award. Her team was selected to participate
in the first Alexa Prize TaskBot Challenge in 2021. Prior to joining National Taiwan University, she
worked in the Deep Learning Technology Center at Microsoft Research Redmond.
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Keynote 2 - On opportunities and challenges on communicating using Large Language
Models

Angeliki Lazaridou

DeepMind

Abstract

From science fiction to Turing’s seminal work on Al, language and communication have been among the
central components of intelligent agents. Towards that dream, the new-generation of large language
models (LLMs) have recently given rise to a new set of impressive capabilities, from generating
human-like text to engaging in simple, few-turn conversations. So, how close do LLMs bring us to
being able to interact with such intelligent agents during our lifetime? In this talk, I will review key
recent developments on LLMs by the community and I will discuss these in the context of advancing
communication research. At the same time, I will also highlight challenges of current models in
producing goal-driven, safe and factual dialogues. Capitalizing on their strengths and addressing their
weaknesses might allow us to unlock LLMs full potential in responsibly interacting with us, humans,
about different aspects of our lives.

Biography

Angeliki Lazaridou is a Staff Research Scientist at DeepMind. She received a PhD in Brain and Cognitive
Sciences from the University of Trento. Her PhD initially focused on developing neural network models
and techniques for teaching agents language in grounded environments. However, one day in late 2015,
while walking towards the lab she realized that interaction and communication should play a key role in
this learning . This was the beginning of her work in deep learning and multi-agent communication. In
the following years, she looked at this fascinating problem from many different angles: how to make this
learning more realistic or how to extend findings from cooperative to self-agents and even how to make
this communication resemble more natural language. Currently, she spends most of her time thinking
and working on how to best make language models be in sync with the complex and ever-evolving world.
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Keynote 3 - Unlimited discourse structures in the era of distant supervision, pre-trained
language models and autoencoders

Giuseppe Carenini

University of British Columbia

Abstract

Historically, discourse processing relies on human annotated corpora that are very small and lack
diversity, often leading to overfitting, poor performance in domain transfer, and minimal success of
modern deep-learning solutions. So, wouldn’t it be great if we could generate an unlimited amount
of discourse structures for both monologues and dialogues, across genres, without involving human
annotation? In this talk, I will present some preliminary results on possible strategies to achieve this goal:
by either leveraging natural text annotations (like sentiment and summaries), by extracting discourse
information from pre-trained and fine-tuned language models, or by inducing discourse trees from task-
agnostic autoencoding learning objectives. Besides the many remaining challenges and open issues,
I will discuss the potential of these novel approaches not only to boost the performance of discourse
parsers (NLU) and text planners (NLG), but also lead to more explanatory and useful data-driven theories
of discourse.

Biography

Giuseppe Carenini is a Professor in Computer Science and Director of the Master in Data Science at
UBC (Vancouver, Canada). His work on natural language processing and information visualization to
support decision making has been published in over 140 peer-reviewed papers (including best paper at
UMAP-14 and ACM-TiiS-14). Dr. Carenini was the area chair for many conferences including recently
for ACL’21 in “Natural language Generation”, as well as Senior Area Chair for NAACL'21 in “Discourse
and Pragmatics”. Dr. Carenini was also the Program Co-Chair for IUI 2015 and for SigDial 2016. In
2011, he published a co-authored book on “Methods for Mining and Summarizing Text Conversations”.
In his work, Dr. Carenini has also extensively collaborated with industrial partners, including Microsoft
and IBM. He was awarded a Google Research Award in 2007 and a Yahoo Faculty Research Award in
2016.
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Post-processing Networks: Method for Optimizing Pipeline Task-oriented
Dialogue Systems using Reinforcement Learning

Atsumoto Ohashi

Abstract

Many studies have proposed methods for op-
timizing the dialogue performance of an en-
tire pipeline task-oriented dialogue system by
jointly training modules in the system using re-
inforcement learning. However, these methods
are limited in that they can only be applied to
modules implemented using trainable neural-
based methods. To solve this problem, we pro-
pose a method for optimizing a pipeline system
composed of modules implemented with arbi-
trary methods for dialogue performance. With
our method, neural-based components called
post-processing networks (PPNs) are installed
inside such a system to post-process the output
of each module. All PPNs are updated to im-
prove the overall dialogue performance of the
system by using reinforcement learning, not
necessitating each module to be differentiable.
Through dialogue simulation and human evalu-
ation on the MultiwWwOZ dataset, we show that
our method can improve the dialogue perfor-
mance of pipeline systems consisting of various
modules'.

1 Introduction

Task-oriented dialogue systems can be classified
into two categories: pipeline systems, in which
multiple modules take on a sequential structure,
and neural-based end-to-end systems (Chen et al.,
2017; Gao et al., 2018; Zhang et al., 2020b).

A typical pipeline system consists of four mod-
ules (Zhang et al., 2020b): natural language under-
standing (NLU), dialogue state tracking (DST), Pol-
icy, and natural language generation (NLG). Each
module can be implemented individually using var-
ious methods (e.g., rule-based and neural-based)
(Ultes et al., 2017; Zhu et al., 2020). In a pipeline
system, the inputs and outputs of each module are
explicit, making it easy for humans to interpret.

'Our code is publicly available at https://github.

com/nu-dialogue/post—-processing-networks

Ryuichiro Higashinaka
Graduate School of Informatics, Nagoya University
ohashi.atsumoto.cO@s.mail.nagoya-u.ac.jp
higashinaka@i.nagoya-u.ac.jp
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NLU » DST NLG Reward

» Policy

(a) Diagram of conventional method. Modules are fine-tuned
using RL.

[ nuu H pew o pst H peN o potiey H PeN | NLG | Rewara

(b) Diagram of proposed method. Each PPN that post-
processes output of each module is optimized using RL.

Figure 1: Comparison of conventional and proposed
methods

However, since each module is processed sequen-
tially, errors in the preceding module can easily
propagate to the following ones, and the perfor-
mance of the entire system cannot be optimized
(Tseng et al., 2021). This results in low dialogue
performance of the entire system (Takanobu et al.,
2020).

In contrast, neural-based methods can optimize
entire neural-based end-to-end systems, which al-
lows for less error propagation than pipeline sys-
tems and high dialogue performance (Dinan et al.,
2019; Gunasekara et al., 2020). The drawback of
these methods is the large amount of annotation
data required to train systems (Zhao and Eskenazi,
2016). Compared with pipeline systems, neural-
based end-to-end systems are also less interpretable
and more difficult to adjust or add functions.

To marry the benefits of both pipeline and end-
to-end systems, methods (Liu et al., 2018; Mehri
et al., 2019; Lee et al., 2021; Lin et al., 2021) have
been proposed for optimizing an entire pipeline
system in an end-to-end fashion by using reinforce-
ment learning (RL) (Figure 1(a)). These methods
are powerful because they jointly train and fine-
tune neural-based implementations of the modules,
such as NLU, Policy, and NLG, by using RL. How-
ever, these methods may not always be applicable
because there may be situations in which modules
can only be implemented with rules or the modules’
internals cannot be accessed, such as with a Web

Proceedings of the SIGdial 2022 Conference, pages 1-13
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APL.

With this background, we propose a method for
optimizing an entire pipeline system composed of
modules implemented in arbitrary methods. We
specifically focus on modules that output fixed
sets of classes (i.e., NLU, DST, and Policy) and
install neural-based components (post-processing
networks; PPNs) in the system to post-process the
outputs of these modules, as shown in Figure 1(b).
Each PPN modifies the output of each module by
adding or removing information as necessary to
facilitate connections to subsequent modules, re-
sulting in a better flow of the entire pipeline. To
enable the appropriate post-processing for the en-
tire system, each PPN uses the states of all modules
in the system when executing post-processing. The
post-processing of each PPN is optimized using RL
so that the system can improve its dialogue perfor-
mance, e.g., task success. A major advantage of
our method is that each module does not need to
be trainable since PPN are trained instead.

To evaluate the effectiveness of our method, we
applied PPNs to pipeline systems consisting of
modules implemented with various methods (e.g.,
rule-based and neural-based) on the basis of the
MultiWOZ dataset (Budzianowski et al., 2018) and
conducted experiments by using dialogue simula-
tion and human participants. The contributions of
this study are as follows.

* We propose a method of improving the dia-
logue performance of a pipeline task-oriented
dialogue system by post-processing outputs of
modules. Focusing on NLU, DST, and Policy,
our method can be applied to various pipeline
systems because PPNs do not depend on the
implementation method of each module or a
combination of modules.

* Dialogue simulation experiments have shown
that our method can improve the dialogue per-
formance of pipeline systems consisting of
various combinations of modules. Additional
analysis and human evaluation experiments
also verified the effectiveness of the proposed
method.

2 Related Work

Our study is related to optimizing an entire dia-
logue system with a modular architecture. Wen
et al. (2017) proposed a method for implement-
ing all the functions of NLU, DST, Policy, and

2

NLG modules by using neural networks, enabling
the entire system to be trained. Lei et al. (2018)
incorporated both a decoder for generating belief
states (i.e., DST module) and a response-generation
decoder (i.e., NLG module) into a sequence-to-
sequence model (Sutskever et al., 2014). Zhang
et al. (2020a) also proposed a method for jointly
optimizing a system that includes three decoders
that respectively execute the functions of DST, Pol-
icy, and NLG. Liang et al. (2020) extended the
method of Lei et al. (2018) by jointly optimiz-
ing four decoders that generate user dialogue acts
(DAs), belief states, system DAs, and system re-
sponses. However, these systems are trained in a
supervised manner and require large amounts of
data (Liu et al., 2017).

Our study is related to improving the dialogue
performance of a pipeline system by using RL.
Zhao and Eskenazi (2016) and Li et al. (2017)
implemented DST and Policy in a neural model
and used the Deep Q Network (Mnih et al., 2013)
algorithm to optimize the system to achieve ro-
bustness against errors that occur in interactions.
Liu et al. (2018) proposed a Policy-learning op-
timization method for real users by combining
supervised learning, imitation learning, and RL.
Mebhri et al. (2019) proposed a method for training
a response-generation model by using RL while
using the hidden states of the learned NLU, Pol-
icy, and NLG. Methods have been proposed (Lee
et al., 2021; Lin et al., 2021) for building a pipeline
system with individually trained modules and fine-
tuning specific modules by using RL, which signifi-
cantly improved the performance of the overall sys-
tem. These methods are powerful because they can
fine-tune a system directly through RL. However,
they can only be applied to systems consisting of
specific differentiable modules implemented using
neural-based methods, not to systems consisting
of non-differentiable modules. Our method is in-
dependent of the module-implementation method,
trainability of each module in pipeline systems, and
combination of modules.

3 Proposed Method

We developed our method to improve the dialogue
performance of an entire pipeline system by op-
timizing the output of each module through post-
processing. Post-processing means modifying the
output by adding or removing information from
the actual output of the module. With our method,
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Figure 2: Architecture of our proposed method. Output of each module is post-processed by subsequent PPN. Each
PPN has InAdapter to convert output label o of module into multi-binary vector v, MLP to post-process multi-binary
vector into v’ on basis of v and state sy of all modules, and OutAdapter to restore v’ to output label o'.

Output 0 Output o’

Intent Value Copy original values Intent Value
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Figure 3: Procedure in which InAdapter converts output
label o into vector v and OutAdapter restores vector v’
into output label o’ by using output vocabulary (in this
case, output labels are DAs of NLU). Value information,
which cannot be encoded in v, is copied directly from o
when creating o’.

each PPN needs to execute post-processing appro-
priate for all modules so that the entire system can
improve overall dialogue performance. With this in
mind, each PPN post-processes the target module’s
output while using the latest states of all modules
in the system. Basically, each module’s state is the
latest output of each module. However, if a module
can provide information that represents its state in
more detail than the module’s output, the PPN also
uses that information (see Section 3.1). Figure 2
shows the architecture of PPNs applied to a pipeline
system consisting of Module, ..., Module,,.

3.1 Post-processing Algorithm

The following equations describe the steps in which
PPN; post-processes the output o} of Module; at
turn ¢, as in Figure 2.

ol st = Module;(of ;) (1)
vl = InAdapter,(o}) ()
san = [sieasisizeas, )
v = MLP;([v]; siy)) 4)
o = OutAdapter;(v}) ®)

As in a general pipeline system, Module; first re-
ceives the output of' ; of the preceding Module; 1
and outputs o! as the result of its processing (Eq.
(1)) (e.g., for the NLU module, it receives the user’s
utterance as input and outputs the user’s DAs). At
the same time, Module; outputs its additional in-
formation s! obtained in the processing, which is
related to the state of Module; (Eq. (1)). Basi-
cally, sﬁ is the same as og. However, if Module;
can provide more detailed information about its
state obtained in the processing (e.g., for the NLU
module, it typically outputs confidence scores of
predicted user’s DAs), Module; outputs that infor-

mation as sf.

Next, 0;? is input to PPN;. In PPN;, InAdapter;
creates a multi-binary vector v}, which is a vec-
tor representation of o} (Eq. (2)). The left half
of Figure 3 shows a concrete example of an In-
Adapter converting a module output into a multi-
binary vector. The InAdapter; is created by hand-
crafted rules using the output vocabulary set of
Module;. At the same time as creating v/, SZH =
[st;...; sk sij&; ...; 8t=1], which is a concatenation
of the latest states of Moduleq, ..., Module,,, are
also created (Eq. (3)). Note that s~! is used for
states of Module; 1, ..., Module,, because modules
after Module; have not produced their states in turn
t.

The v! and s, created thus far are combined
and input to multi-layer perceptron (MLP) MLP;,
which outputs a multi-binary vector vgt (Eq. (4)).
The dimensions of v/’ are the same as the vocab-
ulary size of Module;. At this point, the changes
in the original vectors v* and v become the re-
sult of post-processing. That is, the dimension, the
value in v} of which is 1 and value in v}" of which
is 0, is the information deleted by MLP;, and the
reverse is the information added by MLP;. Finally,
OutAdapter; converts v/’ into o', the output label
representation of Module;. Some of the value in-
formation is directly copied from of when creating



o! since these values are not given by v/’. If there

is no need to fill in the value, it is left empty. The
right half of Figure 3 shows a concrete example
of an OutAdapter converting a multi-binary vector
into a label representation of a module’s vocabu-
lary. As with InAdapter;, OutAdapter; is created
by hand-crafted rules using the output vocabulary
set of Module;.

At runtime, in the initial turn, the states of some
modules that have never processed yet are initial-
ized with zero vector (i.e., s° = 0). In the subse-
quent turn ¢, as mentioned above, PPN; uses the
preceding modules’ states [s!, ..., s!] and the suc-
ceeding modules’ states [s/ 1, ..., s, 1.

With our method, the MLPs of all PPNs are op-
timized jointly by using RL via interaction with
users (see Section 3.3). To apply PPNs to a system,
we only need the vocabulary set of each module to
implement an InAdapter and OutAdapter for con-
version. Therefore, our method can be applied to
both differentiable and non-differentiable imple-
mentations of the modules. Since we want first to
verify the idea of PPNs, we only used MLPs and
focused on NLU, DST, and Policy in this study.
Once the verification is complete, we aim to apply
PPNs to more complex modules, such as NLG.

3.2 Pre-training with Imitation Learning

It is not easy to optimize an MLP from scratch by
using RL. Many studies have shown that model per-
formance can be improved by imitation learning,
which is a scheme for learning to imitate the behav-
ior of experts before RL is conducted (Argall et al.,
2009; Rajeswaran et al., 2017). We considered
the actual output o; of Module; to be the behavior
of the expert for PPN; and conducted supervised
learning so that PPN; copies o before RL. This
should allow each PPN to focus only on “how to
modify the module’s output 0” during RL.

With our method, a pipeline system consisting
of Moduley,..., Module,, first executes dialogue ses-
sions for sampling training data. In each dialogue,
we sample the [say, v] of each module for all turns.
At this stage, no PPNs execute post-processing,
and no MLPs are used. When training MLPs by
imitation learning, supervised learning is carried
out using the sampled data. We train all MLPs to
execute a multi-labeling task in which the input
is [v; san] and the output label is v. Binary cross-
entropy is used to update the MLP to minimize the
difference between v and v' = MLP([v; say)).

3.3 Optimization with Reinforcement
Learning

The goal with PPNs is to improve dialogue per-
formance (e.g., task success) by each PPN post-
processing the output of each module. Therefore,
the MLP of each PPN needs to be optimized us-
ing RL for maximizing the rewards related to dia-
logue performance. We use proximal policy opti-
mization (PPO) (Schulman et al., 2017) as the RL
algorithm, which is a stable and straightforward
policy-gradient-based RL algorithm.

The following steps show the learning algorithm
of a PPN for each iteration:

Step. 1 The pipeline system with PPNs interacts
with a user. Each PPN post-processes and
samples the s, ), v, v'*, and reward r* of each
MLP in turn ¢. The sampled (s, v*, v", rt)
are added to the post-processing history
(called trajectory) of each PPN. As an rf, we
give the same value to all PPNs. These tri-
als are repeated until the trajectory reaches a
predetermined size (called horizon).

Step. 2 The PPN to be updated in this iteration
is selected on the basis of the PPN-selection
strategy, which is a rule for selecting PPNs to
be updated in each iteration. We have three
strategies described in the next paragraph.

Step. 3 The MLPs of the PPNs selected in Step. 2
are updated using the PPO algorithm. Each
MLP is updated for multiple epochs using the
trajectory sampled in Step. 1 as training data.

Since it is not apparent which modules’ PPN
should be updated and in what order, we prepared
the following three PPN-selection strategies: ALL
(select all PPN in every iteration), RANDOM (ran-
domly select one or more PPNs in each iteration),
and ROTATION (select one PPN at each iteration in
order). In the following experiments, we examined
which strategy is the best.

4 Experiments

To confirm the effectiveness of our method, we
applied PPNs to several different pipeline systems
and evaluated dialogue performance using dialogue
simulation. We also carried out a human evalua-
tion.



4.1 Dataset

We evaluated PPNs using modules and a user simu-
lator implemented using the MultiwOZ dataset
(Budzianowski et al., 2018), which is a task-
oriented dialogue dataset between a clerk and
tourist at an information center. MultiwOZ con-
tains 10,438 dialogues; one to three domains (seven
domains in total in the dataset) appear simultane-
ously in each dialogue.

4.2 Platform and User Simulator

ConvLab-22 (Zhu et al., 2020) is a platform for
multi-domain dialogue systems, which provides
pre-implemented models of each module in the
pipeline system and tools for end-to-end evaluation
of the dialogue system.

We used the user simulator implemented in
ConvLab-2. The simulator interacts with the di-
alogue system in natural language on the basis of
the user goal given for each dialogue session. The
simulator consists of a BERT (Devlin et al., 2019)-
based NLU (Chen et al., 2019), an agenda-based
Policy (Schatzmann et al., 2007), and a template-
based NLG. The agenda-based Policy models a
user’s behavior in MultiWwOZ by using a stack-like
agenda created using hand-crafted rules. A user
goal for each dialogue is randomly generated: the
domains are randomly selected from one to three
domains (out of all seven domains) on the basis
of the domains’ frequency in MultiWOZ; the slots
are also randomly selected on the basis of the slots’
frequency in MultiwOZ.

4.3 Evaluation Metrics

In evaluating each dialogue, we used the number
of turns® (Turn) to measure the efficiency of com-
pleting each dialogue; the smaller the Turn is, the
better the system performance. We also measured
whether the system responds to the requested slot
by the user without excess or deficiency (Inform
F1) and whether the entity presented by the system
met the condition of the user goal (Match Rate).
We also used Task Success as a result of Match
Rate and Inform Recall being equal to 1 within 20
turns. The above four metrics are the major ones
for dialogue evaluation and have been used in many
studies using ConvLab-2 (Li et al., 2020; Takanobu
et al., 2020; Hou et al., 2021).

https://github.com/thu-coai/ConvLab-2
3One user utterance and its system response form one turn.

4.4 Implementation

4.4.1 System Configurations

To select the modules that make up a pipeline sys-
tem, we referred to Takanobu et al. (2020), who
developed and evaluated various combinations of
modules using ConvLab-2. For the models of each
module (NLU, DST, Policy, and NLG), we in-
cluded both classical rule-based and recent neural-
based models. Note that, since this study focused
on whether PPN can be used to optimize pipeline
systems consisting of non-trainable modules, we
did not update modules even if the modules may
be trainable. Each of the models* we prepared are
as follows.

NLU Weused BERT NLU (Chen et al., 2019) for
the NLU module. This model estimates DAs by tag-
ging which domain-intent-slot each token in a user
utterance represents by using a pre-trained BERT
(Devlin et al., 2019). The InAdapter/OutAdapter
are created using the DA set defined in BERT NLU
(see Figure 3 for an illustration of an InAdapter-
processing example by using a DA set). We used
the estimated probabilities of each DA as BERT
NLU’s state s.

DST We used two models for the DST module:
Rule DST (Zhu et al., 2020) and TRADE (Wu
et al., 2019). Rule DST updates the dialogue state
consisting of belief state, database search results,
current user DAs, and previous system DAs at each
turn by directly using the DAs estimated by the
NLU. On the contrary, TRADE is a neural-based
model that directly extracts slot-value pairs and
generates belief states using the dialogue history as
input. For DST modules, a belief state is subject
to post-processing. Therefore, we created an In-
Adapter/OutAdapter on the basis of the slot types
defined in the belief state on ConvLab-2. As states
of Rule DST and TRADE, an entire dialogue state
is converted into a multi-binary vector by using a
vectorizer implemented in ConvLab-2.

Policy We used four models for the Policy mod-
ule: Rule Policy (Zhu et al., 2020), MLE Pol-
icy, PPO Policy (Schulman et al., 2017), and
LaRL Policy (Zhao et al., 2019). Rule Policy is a
model based on hand-crafted rules. MLE Policy
is a model trained on state-action pairs in Multi-
WOZ using supervised learning. PPO Policy is

*For models, we used the best ones provided by ConvLab-
2 as of October 20, 2021



Module Models ls|  |v]
NLU BERT 175 175
DST Rule, TRADE 340 24

Policy Rule, MLE, PPO 209 209
LaRL 0 0
NLG Template, SC-LSTM 0 0

Table 1: Dimensions |s| of state s output from each
module and |v| of vector v processed by PPN of each
module. Number of output vocabularies defined for
each module and |v| are equal.

a fine-tuned model based on MLE Policy using
the PPO RL algorithm. Unlike the other Policy
models, LaRL Policy is an LSTM-based model
trained to directly generate system utterances in-
stead of system DAs by using RL.. We created an
InAdapter/OutAdapter using the DA set defined in
each model. For states of MLE Policy and PPO Pol-
icy, we used the estimated probability of each DA.
For Rule Policy’s state, we used a binary vector
representation of DAs. Since the output of LaRL
is a natural language, it was not subject to post-
processing in this study.

NLG We used two models for the NLG module:
Template NLG and SC-LSTM (Wen et al., 2015).
Template NLG creates system responses by insert-
ing values into templates of utterances manually
created in advance for each DA. SC-LSTM is an
LSTM-based model that generates utterances on
the basis of DAs. For the same reason as for LaRL
Policy, we did not implement PPNs for Template
NLG and SC-LSTM in these experiments.

Table 1 shows the dimensions of each module’s
state s described above and the number of dimen-
sions of the multi-binary vector o of each PPN (i.e.,
the vocabulary of each module). Note that for the
DST modules, the dimensions of s and v are dif-
ferent. This is because s is a vector representation
of a dialogue state, which includes a belief state,
database search results, user’s DAs, etc., and v is a
vector representation of a belief state only.

4.4.2 Training

Throughout all experiments, the data used for imita-
tion learning of each pipeline system was sampled
by simulating 10,000 turns, corresponding to ap-
proximately 1,000 dialogue sessions. In RL for
each system, we trained 200 iterations, where one
iteration consists of approximately 100 dialogue
sessions. Following Takanobu et al. (2019), we
gave a reward of —1 for each turn, and when the

PPN-selection

Success Inform Match Turn

strategy
ALL 64.2 71.9 76.6 9.20
RANDOM 66.1 71.5 78.7 8.61
ROTATION 60.4 70.5 73.2 9.10

Table 2: Performance after PPN training with each PPN-
selection strategy

task was a success, we gave the maximum number
of turns x 2 at the end of the dialogue session, i.e.,
40 in our case. See Section A.1 of the appendix for
more training details.

To test each system, we ran 1,000 dialogues us-
ing a system that achieved the best Task Success
during the RL training. Throughout all experi-
ments, we trained with five different random seeds
and reported the average of their scores as the final
performance.

4.5 Experimental Procedure

We conducted four experiments. The first exper-
iment was conducted to determine which of the
PPN-selection strategies (see Section 3.3) is appro-
priate. We used a combination of BERT NLU, Rule
DST, MLE Policy, and Template NLG as the sys-
tem configuration. The reasons for using this com-
bination are that (1) the Task Success of a system
composed of this module combination is around
50%. Therefore, it would be easy to understand the
impact of the PPNs, and (2) MLE Policy is used as
the initial weight in many RL methods (Takanobu
et al., 2019; Li et al., 2020), making it a reasonable
starting point for RL. The second experiment was
conducted to verify whether the PPNs work for any
combination of modules; we combined some of the
modules described in Section 4.4.1 to build pipeline
systems and applied PPNs. The third experiment
was conducted to investigate the contribution of the
PPN of each module and s 4y to the overall perfor-
mance of the system. The final experiment was a
human evaluation; we examined whether the pro-
posed method is effective not only for a simulator
but also for humans.

4.6 Comparison of
Post-processing-network-selection
Strategies

Figure 4 shows the learning process in the three
PPN-selection strategies. Task Success and Inform
F1 at 50 iterations show that ALL reached the high-
est score about 100 iterations earlier than RAN-
DOM and ROTATION. This is a reasonable result
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Model Combination
System NLU DST Policy NLG w/ PPN | Task Success Inform F1 Match Rate Turn
84.1 87.4 90.2 5.92
SYS-RUL | BERT Rule Rule Template v 34.0 36.3 92.4 633
433 62.4 27.8 9.03
SYS-MLE | BERT Rule MLE  Template v 66.1 7.5 787 8.61
54.9 65.5 55.2 8.41
SYS-PPO | BERT Rule PPO Template v 68.8 721 778 8.37
38.3 57.5 56.7 13.53
SYS-SCL | BERT Rule Rule SC-LSTM v 44.2 7 7.8 11.04
19.0 45.6 36.4 12.08
SYS-TRA TRADE Rule Template v 18.8 492 316 1214
21.6 449 27.6 13.24
SYS-LAR | BERT Rule LaRL v 23.9 50.9 34.1 12.77

Table 3: Combination of models for each pipeline system and scores before and after applying PPNs to each system.
‘w/ PPN’ indicates whether PPNs are applied to the system. Scores that have been improved using PPNs are in bold.

since the number of updates for each MLP in ALL
was up to four times that for the other strategies.
However, it was unstable after 50 iterations, and
the scores of Task Success, Inform F1, and Turn all
worsened as the learning process progressed. This
is probably because the gradients of each MLP
were calculated simultaneously in the PPO update
algorithm, which caused each MLP to update in a
different gradient direction, making it difficult for
each MLP to coordinate with one another.

Although the learning speed of ROTATION and
RANDOM was slow, all metrics consistently im-
proved. Turn and Inform F1 also showed stable im-
provements compared with ALL. For RANDOM
and ROTATION, each MLP computed its gradient
after the other MLPs computed and updated their
gradients one by one, which probably prevented
significant discrepancies among MLPs and stabi-
lized learning.

Table 2 shows the final performance of each strat-
egy. RANDOM outperformed ALL in all the final
scores, and ROTATION was inferior to ALL in
Task Success, Inform F1, and Match Rate. Since
the learning was stable and the final performance
was generally better than the other strategies, we

decided to use RANDOM in the following experi-
ments.

4.7 Comparison of Model Combinations

We built six pipeline systems with different model
combinations. Table 3 summarizes the compari-
son of the scores when PPNs were applied to each
system. For a fair comparison, systems without
PPNs were also evaluated on the average scores’
of 1,000 dialogues conducted with five different
random seeds.

Table 3 shows that Task Success improved for
most of the systems. In addition, all systems im-
proved in Inform F1 or Match Rate. These results
indicate that post-processing with PPNs can im-
prove the dialogue performance of a pipeline sys-
tem without touching the module internals. How-
ever, neither Task Success nor Turn improved for
SYS-RUL and SYS-TRA. The common feature
of these two systems is that they use Rule Policy
and Template NLG. These modules are carefully
designed by hand and originally have high accu-

3 Although we used the latest models implemented in
ConvLab-2, we could not reproduce the scores reported
in https://github.com/thu-coai/ConvLab-2#
end-to-end-performance-on-multiwoz



System w/ san Success Inform Match Turn System Success Turn Und. App. Sat.
SYS-MLE 433 62.4 27.8  9.03 SYS-MLE 39.0 11.0 293 312 246
+PPNxLUu 59.6 73.1 65.8 9.59 +PPNxLU 53.7 11.1 3.10 337 293
+PPNpst 46.7 65.1 36.7 941 +PPNpgst 60.0 104 330 343 3.28"
+PPNpolicy 59.9 67.3 67.9 9.20 +PPNpoiicy  62.5° 820" 293 3.03 3.00
+PPNan 59.7 68.0 69.9 9.84 +PPNau 57.5 9.00 283 3.00 295
+PPNnNLU v 62.2 72.1 64.0 9.36

+PPNpsT v 479 66.1 402 9.21 Table 5: Results of human evaluation for each system
+PPNpoiicy v 65.8 67.6 76.9  8.56 configuration. Asterisks indicate statistically significant
+PPNan v 661 715 787 86l differences (p < 0.05) over SYS-MLE.

+Fine-tuned Policy 71.9 74.3 804  7.88

Table 4: Impact analysis of PPNs. Subscripts (i.e., NLU,
DST, Policy, and All) indicate that PPN was applied
to that one specific module or all modules. ‘w/ say’
indicates whether saj;; was used. Row of Fine-tuned
Policy shows scores when SYS-MLE’s Policy was fine-
tuned using RL.

racy, leading to little room for improvement in this
configuration.

In general, there were large differences in per-
formance among the systems regardless of whether
PPN was used. As mentioned above, this is due
to the performance differences among the modules
comprising the systems. For example, SYS-RUL
is considered to have significantly higher perfor-
mance than the other systems due to the use of
elaborately designed rules and templates.

4.8 Impact of Post-processing Networks

We investigated the impact of each module’s PPN
and saj. We used SYS-MLE as a base configura-
tion for this experiment since its performance was
most improved with our method (see Table 3); we
considered it appropriate to measure the impact of
PPNs. In Table 4, the results of applying PPNs to
only one of the NLU, DST, and Policy are shown,
as well as the results of applying PPNs without
using say. The system performance consistently
improved when only a single module’s PPN was ap-
plied. In particular, +PPNpg;c, achieved the best
performance (Task Success improved by more than
20%), indicating that the PPN of Policy contributed
the most to dialogue performance. When sy was
not used, most of the scores decreased. This indi-
cates that each PPN can execute post-processing
more appropriately by using the states of all mod-
ules in the system.

To confirm the degree of performance improve-
ment achieved with the PPNs, the method of fine-
tuning the modules by using RL was used as the
upper bound of post-processing. Only the Policy
module was fine-tuned, as is common with conven-
tional methods (Liu et al., 2018; Lin et al., 2021).

The bottom row of Table 4 shows the results when
the Policy of SYS-MLE was fine-tuned by PPO
(Schulman et al., 2017) (see Section A.2 of the
appendix for training details). The difference be-
tween +PPN aj and +Fine-tuned Policy is small
with 5.8%. This is a promising result considering
that our proposed method does not touch on the
internal architecture of Policy.

4.9 Human Evaluation

Five systems (SYS-MLE and four systems with
our proposed method, i.e., + PPNy, +PPNpgr,
+PPNpglicy, and +PPNyy) in Table 4 were used
for the human evaluation. Not that s, was used
in all four systems. About forty Amazon Mechani-
cal Turk (AMT) crowd workers were recruited to
interact with each of the five systems and judged
on Task Success. As in the simulation experiments
(see Section 4.2), user goals were randomly gener-
ated for each dialogue. After the interaction, the
workers also evaluated the system’s ability to under-
stand the language (Und.), accuracy of the system’s
responses (App.), and overall satisfaction with the
interaction (Sat.) on a 5-point Likert scale. See
Section B of the appendix for the procedures taken
by the workers.

Table 5 shows the results. All four systems
with our proposed method performed better than
SYS-MLE, which is similar to the result in Table
4. Wilcoxon rank-sum tests were conducted us-
ing the top score in each evaluation metric and
the score of SYS-MLE, and statistically significant
differences were confirmed for Task Success and
Turn in +PPNpgjic, and interaction satisfaction
in +PPNpgr. In contrast, there were no signifi-
cant differences in scores for language understand-
ing and responses’ appropriateness. This is proba-
bly because RL was conducted with rewards that
only relied on Task Success and Turn. The perfor-
mance of +PPNyry did not improve as much as
in Table 4. A possible reason is the overfitting of
+PPNyr,u with the user simulator. The same over-



fitting might have occurred in the NLU’s PPN in
+PPN aj1, which resulted in a smaller improvement
in scores of +PPN 4.

We also investigated how PPNs executed post-
processing by analyzing the actual dialogue logs
collected in this experiment. A specific case study
is described in Section C of the appendix. Gener-
ally, in the dialogue of +PPNpgj;cy, we observed
that PPNp,ic, added necessary DAs when the
original Policy failed to output them.

5 Conclusions and Future Work

We proposed a method for optimizing pipeline
dialogue systems with post-processing networks
(PPNs). Through dialogue simulation and human
evaluation experiments on the MultiWOZ dataset,
we showed that the proposed method is effective
for a pipeline system consisting of modules with
various models.

For future work, we plan to design more sophis-
ticated rewards in RL such as module-specific re-
wards. We also plan to extend PPNs to handle
natural language generation by implementing them
using Transformer-based models. We are also con-
sidering to apply PPNs to modules dealing with
speech recognition and multi-modal processing.
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A Training Details

A.1 Training Post-processing Networks

Model All MLPs of the PPNs for all modules
are implemented in three layers: one input layer,
one hidden layer, and one output layer, and the
dimensionality of the hidden layer is 128 for all
layers. The number of dimensions of the input and
output layers are |o| + |san| and |o;|, respectively.
The activation functions are all ReLUs.

Imitation Learning The sampled data of 10,000
turns were split as training : validation = 8 : 2.
All MLPs were trained on a batch size of 32 for 20
epochs using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of le-3. The weights at
the epoch with the highest accuracy for validation
were used for the following RL.

Reinforcement Learning The hyperparameters
shown in Table 6 were determined with reference
to the implementation of PPO in ConvLab-2. We
used Generalized Advantage Estimation (Schul-
man et al., 2015). Referring to Engstrom et al.
(2020), the learning rate was annealed linearly in
accordance with the current iteration. The compu-
tational resource used was a single NVIDIA Tesla
V100 SXM2 GPU with 32GB RAM. In training,
the trajectory was sampled in parallel by eight pro-
cesses, and it took 5 to 17 hours, depending on the
system, to complete the training of 200 iterations.

A.2 Fine-tuning of Policy

The MLE Policy of SYS-MLE in Section 4.8 was
fine-tuned with PPO using the same user simula-
tor used for training PPNs. The hyperparameters
used for training were the same as those used in
ConvLab-2, as shown in Table 6. To evaluate the
fine-tuned Policy, training and testing (consisting
of 1,000 dialogue sessions) were conducted with
five random seeds.

Hyperparameters PPN  Fine-tuned Policy
Number of iterations 200 200
Batch size 1024 1024
Epoch 5 5
Mini batch size 32 32
Discount factor ~y 0.99 0.99
GAE factor A 0.95 0.95
. policy net RMSprop

Optimizer value net Adam Adam

. policy net ) le-4
Learning rate value net le-4 565

Table 6: Hyperparameter settings in PPO
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B Details of Human Evaluation

Referring to Takanobu et al. (2020), we designed
the following experimental procedure. First, each
worker is presented with an instruction for a ran-
domly generated user goal. Next, the user interacts
with one of the five systems in Table 5 for up to 20
turns. Workers determine whether the interaction
succeeded or failed within 20 turns; after 20 turns,
the interaction is automatically marked as failed.
To ensure the quality of the workers, several qualifi-
cations were set; the eligible workers should (1) re-
side in an English-speaking country, (2) have a task
accomplishment number on AMT greater than 10,
(3) have a task-approval rate greater than 90%, and
(4) correctly answer all the common sense ques-
tions (total of five questions) we designed. The
time limit for the task was 10 minutes, and the re-
ward was $1.7. To account for workers who may
cancel the task amid the dialogue session, more
than 40 workers were recruited for each system. At
the end, 41 workers for SYS-MLE and +PPNytp,u
and 40 workers for +PPNpgt, +PPNpiicy, and
+PPN ) participated in the experiment.

C Case Study

Tables 7 and 8 show the user goal and exam-
ple of a dialogue session between a worker and
+PPNpyjicy, respectively, in the human evaluation
experiment. Table 8 also includes the outputs of the
system’s Policy and the post-processing result of
PPNs. In S1, the original MLE Policy did not gen-
erate any DAs. At this time, PPNpgjicy generated
additional DAs informing the user that “free park-
ing is available at the hotel found in the database”
and asked if there was anything else the user needs.
In S2, the user requested a reservation, but MLE
Policy could not make the reservation. In contrast,
PPNpyjicy successfully made the reservation and
provided a booking reference number.

Domain Task Slot
Info firea = West
Parking = Yes
Hotel Day = Sunday
Book Time = 11:00
People = 1
] Area = West
Fail Info Food = Mediterranean
Area = West
Restaurant  Info Food = Thai
Postcode
Reqt Address

Table 7: User goal used in Table 8



Ul  Ineed ahotel in the west with free parking for 7 people on saturday for 3 nights

S1 Policy outputs:

System response: It offers free parking . Is there anything else I can help you with today ?

U2  canibook a room for 7 people for 3 nights on Saturday

S2  Policy outputs: reqmore-general-none

System response: Here is the booking information : Booking was successful . Reference number is : 00000017. You
are welcome . Is there anything else I can help you with today ?

U3  Ineed a mediterranean restaurant in the west

S3  Policy outputs: NoOffer-Restaurant-Area-west, NoOffer-Restaurant-Food-Mediterranean, NoOffer-Restaurant,
Request-Restaurant-Food

PPNPOlicy outputs: Inform-Taxi-Car-ford, NoOffer-Restaurant-Food-Mediterranean, NoOffer-Restaurant, Request-
Restaurant-Food

System response: A ford is booked for you . There are no mediterranean restaurants unfortunately . No , I ' m sorry .
The search did n't pull up any matches . What type of food would you like ?

U4  Ineed a thai restaurant in the west

S4  Policy outputs: Inform-Restaurant-Name-sala thong, Inform-Restaurant-Area-west, Inform-Restaurant-Food-thai,
Inform-Restaurant-Price-expensive, Inform-Booking

PPNy, outputs: Inform-Restaurant-Name-sala thong, Inform-Restaurant-Area-west, Inform-Restaurant-Food-thai,
Inform-Restaurant-Price-expensive, Inform-Hotel-Internet-yes, Inform-Booking

System response: How does the sala thong sound ? It is in the west area . That is a thai restaurant . They are
expensive. The place provides free wifi . Would you like for me to try and make a reservation ?

U5 Yes

S5  Policy outputs: Inform-Booking, Request-Booking-Day, Request-Booking-People, Request-Booking-Time,
reqmore-general

PPNy, outputs: Inform-Hospital-Phone-01223216297, Inform-Booking, Request-Booking-Day, Request-
Booking-People, Request-Booking-Time, reqmore-general

System response: The phone is 01223216297 . Would you like me to book it ? What day would you like that
reservation ? How many people will be with you ? What time would you like me to make your reservation ? You are
welcome . Is there anything else I can help you with today ?

U6  yes. what is the address?

S6  Policy outputs: Request-Booking-Day, Request-Booking-Time, reqmore-general

PPNPOlicy outputs: Inform-Hotel-Addr-144 thornton road, Inform-Hotel-Post-cb30nd, Book-Booking-Ref-00000017,
Request-Booking-Day, Request-Booking-People, reqmore-general

System response: They are located at 144 thornton road. The postal code for that hotel is cb30nd . Here is the
booking information : Booking was successful . Reference number is : 00000017. What day would you like your
booking for ? How many people will be with you ? Is there anything else I can help you with today ?

U7 No

S7 Policy outputs: reqmore-general

System response: Did you need any further assistance today ?

U8  Success

Table 8: Example of dialogue history between worker and +PPNpiicy in human evaluation experiment. DAs
appropriately added by PPNp;., are in blue, and those inappropriately added are in red.
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Abstract

Retraining modern deep learning systems can
lead to variations in model performance even
when trained using the same data and hyper-
parameters by simply using different random
seeds. This phenomenon is known as model
churn or model jitter. This issue is often ex-
acerbated in real world settings, where noise
may be introduced in the data collection pro-
cess. In this work we tackle the problem of
stable retraining with a novel focus on struc-
tured prediction for conversational semantic
parsing. We first quantify the model churn by
introducing metrics for agreement between pre-
dictions across multiple re-trainings. Next, we
devise realistic scenarios for noise injection and
demonstrate the effectiveness of various churn
reduction techniques such as ensembling and
distillation. Lastly, we discuss practical trade-
offs between such techniques and show that
co-distillation provides a sweet spot in terms of
churn reduction with only a modest increase in
resource usage.

1 Introduction

Deep learning systems can perform inconsistently
across multiple runs, even when trained on the
same data with the same hyper-parameters. De-
ployment in real-world environments presents a
challenge, where constantly changing production
systems require frequent re-training of models. For
a conversational semantic parsing system such as
Google Assistant or Amazon Alexa, where the
goal is to convert users’ commands into executable
forms, this erratic behavior can have some unfor-
tunate practical consequences. Some examples
include irreproducibility, which limits the ability
to make meaningful comparisons between exper-
iments (Dodge et al., 2019, 2020), bias, which
creates credibility issues if systems consistently
struggle with members of a certain class (D’ Amour
et al., 2020), and user frustration, which can arise
due to unpredictable interactions over time.

14

Query will i need snow tires to drive the sierra
nevada mountains this afternoon?
Model Run 1 in:get_weather [sl:weather_attribute

[
snow tires | [sl:location sierra mountains
] [sl:date_time this afternoon ] ]

Model Run 2 [in:get_info_road_condition
[sl:road_condition snow  tires |
[sl:location  sierra  mountains |
[sl:date_time this afternoon ] |

Table 1: An example from the TOPv2 dataset (Chen
et al., 2020a) where two model runs re-trained on the
same data with the same hyper-parameters make differ-
ent predictions. Only the first matches the gold target,
but the second has an incorrect intent and slot.

The root cause of widely divergent behavior is
underspecification (D’ Amour et al., 2020), where
there are many equivalent but distinct solutions to
a problem. Non-determinism in model training
(e.g. different data orders or weight initializations)
can lead to finding local minima that obtain the
same measurements on a held-out test set but make
different predictions (also known as model churn).

Even in an academic setting, controlling for
all non-determinism is unrealistic - Table 1 pro-
vides an example of churn from the TOPv2
dataset (Chen et al., 2020a). In this case, re-training
the same model twice with the same data and hyper-
parameters results in two different predictions for
the given query. While at the token level the slots
and arguments overlap, the intents are different,
resulting in a drastically different user experience.
In this scenario, the dataset is static and yet we
still observe model churn. In a real-world setting,
the dataset may be constantly changing and noisy,
necessitating frequent re-training. The goal, then,
is to maintain consistency even in this scenario.

We thus conduct experiments to evaluate and re-
duce churn across multiple model re-training runs.
Our contributions are as follows:

1. We extend the notion of model churn to struc-
tured prediction. To this end, we introduce
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new metrics for agreement and exact match
agreement (Section 3).

We show that techniques such as ensem-
bling (Dietterich, 2000) and distillation/co-
distillation (Hinton et al., 2015; Kim and Rush,
2016; Anil et al., 2018), described in Sec-
tion 4, reduce churn on the TOP (Gupta et al.,
2018), TOPv2 (Chen et al., 2020a), MTOP
(Li et al., 2021), and SNIPS (Coucke et al.,
2018) datasets (Section 6).

We explore the effects of model churn in “real-
world” environments, conducting experiments
with a smaller model and two types of simu-
lated noise (random and systematic)1 to rep-
resent various sources of error (Sections 5
and 6).

We make practical recommendations based
on resource usage (number of parameters) in
addition to accuracy and agreement and ob-
serve that co-distillation with label smoothing
provides the best tradeoff (Section 7).

To the best of our knowledge, we are the first to
study model churn for the structured prediction task
of spoken language understanding (SLU).

2 Background and Related Work

The problem of model churn (Milani Fard et al.,
2016), defined as the difference in predictions ob-
served across runs when re-training models, has tra-
ditionally been studied for classification tasks. In
contrast with previous work, we study the problem
of model churn for structured prediction, specif-
ically for SLU. Shamir and Coviello (2020) in-
troduced “anti-distillation” to increase diversity in
ensemble predictions and Shamir et al. (2020) in-
troduced the smooth-relu activation function; how-
ever, in our initial experiments we did not find
significant improvement using these methods when
applied to structured prediction. Other work has
explored forms of smoothing to reduce churn, ei-
ther by computing soft labels using the nearest
neighbors (Bahri and Jiang, 2021) or by weight-
ing the loss term of individual examples using the
predicted probabilities from a teacher model (Jiang
et al., 2022). As these methods were developed for

'Datasets can be found at https://github.com/
google/stable-retraining-conversational-—
agents
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classification, we leave the task of adapting them
to structured prediction for future work.

Other research has focused on related problems
such as reproducibility (McCoy et al., 2020) and
calibration (Guo et al., 2017; Mosbach et al., 2021).
Nie et al. (2020) argue that this phenomenon is
due to underlying task complexity and annotator
disagreement. D’Amour et al. (2020) claim that
reproducibility is primarily due to underspecifica-
tion, where there are many distinct solutions to the
same problem. While these problems are related
to churn, both reproducibility and calibration met-
rics are computed relative to a target, rather than
accounting for agreement across re-training runs.

It has been well known that ensembling increases
reproducibility and model calibration (Hansen and
Salamon, 1990; Lakshminarayanan et al., 2017).
Since ensembles increase inference times, distilla-
tion (Hinton et al., 2015) is commonly used to train
a student model with similar inference resource us-
age. Reich et al. (2020) show that ensemble distil-
lation improves calibration for machine translation
and named entitity recognition. For our distilla-
tion baselines, we follow the recipe by Chen et al.
(2020b). For co-distillation, we follow the recipe
developed by Anil et al. (2018). In our work, we
look at the aforementioned approaches and com-
pare them in terms of resource usage, churn re-
duction, and effectiveness on the task of conversa-
tional semantic parsing (Gupta et al., 2018; Cheng
et al., 2020; Damonte et al., 2019; Aghajanyan
et al., 2020; Lialin et al., 2020).

3 Task Definition and Evaluation

We follow recent work (Rongali et al., 2020) and
treat conversational semantic parsing as sequence
generation using auto-regressive neural models.
The goal is to make a structured prediction given a
user command such as the example in Table 1. For
structured prediction, the task of churn reduction is,
given an input, to predict the exact same sequence
across multiple re-training runs. A re-training run
refers to the model parameters that result from dif-
ferent random weight initialization and data order
but the same data and hyper-parameters.

Our aim is to reduce churn across runs while
maintaining high accuracy on the gold labels. Thus,
we report exact match accuracy (EM) with the
mean over /N runs. While our goal is not to obtain
the state of the art, we do want to show which meth-
ods reduce churn without a loss in performance.



To measure churn, we need a way to compare
predictions across runs, independent of the gold la-
bels. While previous work (Shamir et al., 2020) has
used metrics such as prediction difference (similar
to Hamming distance), the focus was on classifi-
cation tasks only, making it necessary to compute
an alternative measure. Metrics such as edit dis-
tance or multiple sequence alignment would be
appropriate for sequence generation tasks such as
machine translation or paraphrasing, where churn
across output may differ locally by only a few to-
kens. Comparatively, the meaning of these met-
rics is unclear for structured prediction tasks such
as semantic parsing. For example, computing a
token-level distance between a prediction such as
“[in:unsupported ]” and “[in:get_event [sl:date_time
this weekend ] ]” would not be a useful measure.
Thus, we report sequence-level model agreement
(AGR) across N runs, where each example has a
score of 1 if all IV runs agree on the exact same
predicted sequence and O otherwise. However, it is
possible for all runs to agree but make an incorrect
prediction; the goal ultimately is to consistently
make correct predictions. Consequently, we further
extend this metric to include the case where the pre-
dictions from all /V runs agree and the predictions
match the target. We refer to this metric as exact
match agreement (EM@N).

4 Methods for Churn Reduction

For our experiments, we explore three techniques
which have been effective on related problems such
as model calibration: ensembling, which com-
bines the predictions of multiple models, distil-
lation, which pre-trains a feacher model and uses
its predictions to train a student, and co-distillation,
which trains two or more peer models in parallel
and allows each model to learn from the predictions
of the other. Figure 1 displays these techniques.

4.1 Ensembling

We create ensembles by uniformly averaging the
probabilities of each model to obtain a point esti-
mate. As our semantic parser is an auto-regressive
sequence-to-sequence model, at every timestep we
create the ensemble distribution over the vocabu-
lary from a mixture of K distributions, as in Reich
et al. (2020):
K

1
Ezpk@t‘yo-nyt—l:X)
k=1
(1)

P(Yelyo---yi—1, X)
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During inference, the next token at each timestep
is determined as usual by taking the argmaxz (in
the case of a greedy decoding approach) or using
an algorithm such as beam search.

4.2 Distillation

As ensembling increases model size, distillation
(Hinton et al., 2015) was introduced to compress
the knowledge of an ensemble into a single model.
With distillation, a feacher model® provides a fixed
distribution used to train a student. The distillation
loss from the teacher can be combined with a loss
over the target distribution given by gold labels:

Lstudent = Lnrr(0, D)+ AxLxp(pe,q,D) (2)

where D is the training dataset, £y, is negative
log-likelihood loss, and Lk p is knowledge distil-
lation loss. While Ly p may be any dissimilar-
ity measure, we use cross-entropy loss between
teacher probabilities ¢ and student probabilities py.

For a sequence generation task, computing the
exact probabilities (Y| X) and p(Y| X) for a given
X is intractable as it would require a computation
over the space of all possible Y. One way to ad-
dress this problem is with sequence-level distilla-
tion (Kim and Rush, 2016), which approximates
these probabilities with M samples. However, in
practice, increasing training time by a factor of M
is often infeasible. Instead, we perform token-level
distillation, computing token probabilities ¢; and
p; at each timestep.

The teacher probability g; of a token 7 is com-
puted using the “softmax” of its logit z;,> adjusted
by a temperature T"

= _cap(a/T)
TS eanlz/T)

While 7" usually is set to 1, the temperature can
be used to control the entropy of the distribution,
where a high temperature increases uniformity. As
the temperature approaches 0, the probability mass
is increasingly concentrated on a single token, even-
tually becoming equivalent to the argmazx (a tech-
nique known as hard distillation). Otherwise, the
method is referred to as soft distillation.

One challenge for distillation is computing the
sequence of targets prior to time ¢. One possibility
is to perform inference with a method such as beam

3)

Zwhich is not required to be an ensemble
3When distilling from an ensemble, we average the proba-
bilities as in Equation 1 and convert them back to logits.
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Figure 1: Overview of churn-reducing methods. Dashed and dotted lines indicate the training and inference
stages. Rounded rectangular boxes represent seq2seq models with 4- or 12-layer BERT encoders. Ensembling and

distillation techniques are applied to the decoder.

search to obtain model predictions. Alternatively,
we can use teacher-forcing (Williams and Zipser,
1989; Reich et al., 2020) and condition on true
targets through time ¢ — 1. For soft distillation,
using model predictions would require expensive
pre-computation and storage of logits or slower
training by performing inference at every timestep.
However, for hard distillation, only teacher labels
are required, making it possible to pre-compute
teacher predictions in a single training set pass.

4.3 Co-Distillation

In contrast to distillation, which requires sequen-
tial training of the teacher and student, Anil et al.
(2018) introduced co-distillation, which involves
training multiple peer models in parallel. While dis-
tillation as an abstract idea only requires logits as a
signal, and thus the teacher may be a different ar-
chitecture or even a different dataset, co-distillation
has a few distinct features. First, the peer models
share an architecture and training data so that the
models can be trained online in parallel. Second,
the distillation loss is used before the models have
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converged. Co-distillation loss is computed as:

K
£peers == Z ﬁNLL(eka D)+
k=1

> X« Lip(pe,. 4 D)
J#k

“

where each of K models is trained with negative
log likelihood loss (£ 1) on training data as well
as distillation loss (L p) on the predictions of all
other models.

The main advantage of co-distillation is that in-
ference time is equivalent to a single model as only
one of the peers is needed. Training time and mem-
ory usage are implementation and resource depen-
dent; however the worst case is a K-times increase
and may be reduced by, e.g. model parallelism or
asynchronous updates (Anil et al., 2018).

S Experiment Setup
5.1 Datasets

We showcase the problem of model churn on 4
conversational semantic parsing datasets. The TOP



Dataset Train Test

TOP 31,279 9,042
TOPv2 124,597 38,785
MTOP 15,667 4,386
SNIPS 13,784 700

Table 2: Data statistics (# of utterances).

dataset (Gupta et al., 2018) consists of queries with
hierarchical semantic parses in 2 domains. The
TOPv2 (Chen et al., 2020a) and MTOP (Li et al.,
2021) datasets expand to 6 more domains with both
linear and nested intents and 5 more languages, re-
spectively.* Table 1 gives an example of the data
format shared across all 3 datasets. We further eval-
uate on SNIPS (Coucke et al., 2018), another popu-
lar semantic parsing dataset with utterances from
7 domains (including AddToPlaylist, BookRestau-
rant, GetWeather, and PlayMusic). Data statistics
are shown in Table 2.

5.2 Noise Injection

We hypothesize that distillation combined with
noise reduces churn without a loss in performance.
On the one hand, adding noise is a common ap-
proach to improving model stability and robustness
(Szegedy et al., 2016; Miiller et al., 2019). On the
other hand, real-world environments often unin-
tentionally contain noise (due to labels collected
from multiple sources, e.g., annotators, users, or
distant supervision) and models should be resilient
to unexpected changes. We explore both scenar-
10s, reporting the results of experiments for label
smoothing (Szegedy et al., 2016) for the former
and random and systematic noise for the latter.

Label Smoothing Label smoothing is a widely-
used technique for calibration of deep learning
models, especially for distillation (Miiller et al.,
2019). Label smoothing can also be thought of as
a noise injection method. This technique is applied
by using a weighted average of the one-hot label at
a specific timestep and a uniform distribution over
all labels. Specifically, at time step ¢, we compute
anew “soft” target:

5
Iz &)

(1—a)d;+a
where ¢ ; is the one-hot label if present, « is a pa-
rameter that controls the percentage of smoothing,
and L is the set of all labels. We follow the rec-
ommendations of (Miiller et al., 2019) in applying

* Although our work is limited to English only.
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label smoothing only to student models. We set
a = 0.1 to match the random/systematic noise set-
tings and hold constant the amount of noise across
all experiments.

Random Noise To simulate noise that may occur
in a real-world scenario, we create an artificial ran-
dom noise dataset by randomly swapping 10% of
labels from a weighted distribution. To construct
this dataset, we first find all labels with the prefix
“[in:” (intents) and compute their probabilities in
training. Then, we randomly sample a replacement
intent from this distribution. We repeat this process
for slots (“[sL:”).

Systematic Noise High-quality labeled data for
SLU systems may be difficult to come by in large
quantities. Conversational agents are therefore of-
ten trained using “distant-labeled” data from an
earlier iteration. This process inevitably results in
noisy data, as no SLU system will obtain 100% on
all unseen examples. To simulate this distant su-
pervision, we construct a systematic noise dataset.
We train a baseline with a 4-layer BERT encoder
(see Section 5.3) on 90% of each training set and
label the remaining 10%. However, in order to
obtain labels that are both (a) systematic and (b)
incorrect, we select the prediction at the second
beam position rather than the first.’

5.3 Implementation details

Baselines The pointer generator network of Ron-
gali et al. (2020) obtained competitive performance
on the TOP datasets using pre-trained encoders. We
obtain similar results upon re-implementing this
work as a baseline. As our goal is to reduce churn
in a realistic environment, we use a ‘“production-
sized” encoder — the 4-layer BERT model of Turc
et al. (2019) with 4 heads and 256 dimensions — to
reflect what can reasonably be served to users at
a robust query-per-second rate. We selected this
model to evaluate distillation from a larger model
of the same type, 12-layer BERT-base (Devlin et al.,
2019), which differs only by the number of pa-
rameters. The 4-layer BERT was distilled from
BERT-base and obtained only a small decrease on
benchmark datasets compared to larger models.

3In practice, this results in less than 10% of the training
data being incorrect. However, on all datasets used in these
experiments, the percentage of correct predictions at the sec-
ond beam position is less than 5%, thus ensuring that at least
9.5% of the training data is noisy.



TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 80.65 (70.29) 7548 83.88(73.12) 78.15 79.31(69.04) 73.64 86.90(77.12) 80.29
Ensemble 84.60 (78.55) 86.18 86.42(80.38) 88.17 84.59(78.52) 84.39 87.69 (80.58) 84.60
SD (ensemble)  81.20 (70.80) 76.16 84.00(73.47) 78.75 79.29 (67.40) 71.38 87.29(79.71) 83.45
SD (BERT-12) 80.93 (71.14) 76.80 84.12(73.87) 79.02 79.23 (68.71) 73.23 87.34(78.27) 80.86
HD (BERT-12) 80.72 (70.01) 75.03 83.84(72.57) 77.37 78.96 (68.61) 73.07 87.44(80.86) 84.75
Co-distillation ~ 81.43 (73.56) 80.41 84.21(76.10) 82.99 79.45(69.73) 74.87 87.50 (80.86) 84.75

(a) Original dataset (label smoothing with o« = 0.1).

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 77.02 (65.81) 71.58 82.60(71.03) 7596 68.12(45.88) 49.12 78.41(57.12) 58.85
Ensemble 78.67 (72.21) 80.55 83.78 (76.53) 83.89 72.37(58.78) 65.24 82.27 (67.23) 70.50
SD (ensemble)  79.44 (68.53) 73.78 83.22(72.40) 77.71 67.75(44.51) 47.23 77.89 (56.69) 58.99
SD (BERT-12) 77.11(65.47) 71.51 82.73(70.25) 74.65 66.67(41.00) 43.62 78.11(56.69) 58.85
HD (BERT-12) 77.33(59.83) 63.14 82.40(68.85) 72.76 67.99 (42.84) 4451 77.89(56.69) 58.99
Co-distillation ~ 80.21 (72.04) 78.86 83.18 (73.09) 78.85 73.50 (58.43) 62.22 82.00(66.33) 68.92

(b) 10% random noise.

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 78.15(61.36) 65.11 81.80(67.20) 70.86 74.72(57.09) 60.81 81.17(58.42) 60.43
Ensemble 79.87 (68.78) 74.52 83.40(73.60) 79.75 77.59(68.55) 75.80 84.50(71.22) 74.53
SD (ensemble)  79.85 (67.46) 72.36 83.04 (71.50) 76.60 74.84 (57.91) 61.99 81.96(60.72) 63.02
SD (BERT-12)  79.28 (66.83) 71.70 81.84(67.47) 71.10 7497 (57.16) 61.01 81.67(59.71) 62.45
HD (BERT-12)  79.12 (65.93) 70.37 81.36(65.33) 68.47 74.51(56.72) 60.37 80.23 (56.26) 58.71
Co-distillation ~ 80.83 (72.14) 7845 81.97(70.12) 7591 75.03(58.16) 61.49 83.66 (68.78) 72.23

(¢c) 10% systematic noise.

Table 3: Model performance (over N = 10 runs) when trained on datasets with varying degrees of noise. All student
models use 4-layer BERT. BERT-4/12: 4/12-layer BERT. Ensemble: 4-layer ensemble. SD: soft distillation. HD:
hard distillation. EM: exact match (mean over 10 runs). EM @ 10: EM if all 10 models are correct. AGR: model

agreement. Bold: best non-ensemble.

Experiments For our experiments, we explore
different settings for ensembling and distillation.
For both our ensemble and ensemble distillation,
we use 4-layer BERT models with K = 3. We
use soft distillation and obtain teacher probabilities
with teacher forcing and Equation 1. While dis-
tilling from an ensemble may increase agreement
by preventing the student from assigning too much
probability to a single token and becoming over-
confident, we also explore soft distillation from a
12-layer teacher. We hypothesize that the 12-layer
model would have higher EM but lower AGR than
the 4-layer ensemble and this setup allows us to ex-
plore any tradeoff between these measurements. In
addition, we consider hard distillation from a 12-
layer model. For this setting, we use beam search
inference with a beam width of 3 to obtain predic-
tions, so that we can compare to teacher forcing for
soft distillation. We perform offline inference with
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the 12-layer model on the entire training set and
use both the teacher-labeled data and the gold data
for every example. Finally, we use co-distillation
with K = 20 and A\ = 1. We distill from model pre-
dictions using weights updated at every timestep.

Hyperparameters To reduce non-determinism,
we use a single set of hyper-parameters for the 3
TOP datasets and all experiments. For SNIPS, we
select a single set of hyper-parameters by tuning the
baseline on 10% of the training data. Appendix B
lists all hyper-parameters.

6 Results

We test the effectiveness of the methods described
in Section 4 over N = 10 runs. We compile re-
sults in Table 3a for models trained on the original
datasets with label smoothing. We also report re-

%as recommended by Anil et al. (2018).



sults for the 10% random/systematic noise setting
(Tables 3b and 3c) as we assume this represents a
“real-world” scenario where labels are 90% correct.

Ensemble superior at the cost of much increased
computational cost First, ensemble sets a high
bar in almost all settings regardless of artificial
noise. While impressive, this approach requires
significantly more computation at inference time
and is sometimes deemed infeasible to deploy when
accounting for resource usage (see Table 8).

Co-distillation best among distillation-based
methods regardless of noise For label smooth-
ing (Table 3a) and the random/systematic noise
settings (Tables 3b and 3c), co-distillation clearly
and consistently outperforms the baseline in EM,
EM @10, and AGR. We also find that soft dis-
tillation from the ensemble occasionally obtains
the best performance (TOPv2 with systematic
noise) but more frequently performs worse than
the baseline (MTOP/SNIPS with random noise).
On the other hand, soft/hard distillation perform
merely on-par with the baseline or worse. Sur-
prisingly, in the 10% random/systematic noise set-
ting, co-distillation not only narrows the gap for
EM@10/AGR compared to the ensemble, but also
occasionally outperforms the ensemble in EM for
TOP/MTOP and TOP, respectively, which may be
due to increased robustness to noise during training,
rather than only during inference in the ensemble.

6.1 Effect of Task Difficulty

Table 4 shows the performance of the baseline mod-
els as we increase the task difficulty by reducing
the model size or increasing noise in the data. As
expected, EM decreases as the task becomes more
difficult. However, AGR decreases more rapidly be-
cause with lower EM the model has more degrees
of freedom to find solutions. These results also
show that EM alone is not enough to measure re-
producibility and validate the use of EM @ 10/AGR.

6.2 Effect of Label Smoothing

To better understand the effect of label smooth-
ing, we conduct a study of TOPv2 for the base-
line and co-distillation models (Table 5)”. On the
base dataset in the baseline setting (BERT-4), label
smoothing provides little to no benefit in all met-
rics. However, we observe a dramatic improvement
for co-distillation with label smoothing vs without

"see Appendix D for the full results
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Model and Setting EM(@10) AGR
BERT-12 (0% random noise)  85.68 (76.11)  81.30
BERT-4 (0% random noise) 83.74 (73.18)  78.15
BERT-4 (10% random noise) ~ 82.60 (71.03)  75.96
BERT-4 (25% random noise)  81.34 (69.04) 73.73
BERT-4 (50% random noise)  76.83 (62.87) 67.28

Table 4: Effect of Task Difficulty on TOPv2, varying
baseline model size (4/12-layer BERT) and random
noise. EM(@10): exact match (with all 10 runs cor-
rect). AGR: model agreement. Bold: best performance.

Model and Setting EM(@10) AGR
BERT-4 (o = 0) 83.74 (73.18) 78.47
BERT4 (o = 0.1) 83.89 (73.12) 78.15
CD (a=0) 84.01 (73.96) 79.49
CD (a=0.1) 84.21 (76.10)  82.99
BERT-4 (o« = 0, 10% rand.) 82.60 (71.03) 75.96
BERT-4 (o = 0.1, 10% rand.) 82.38 (71.11) 76.24
CD (a = 0, 10% rand.) 83.18 (73.09) 78.85
CD (a = 0.1, 10% rand.) 82.60 (73.06) 79.33
BERT-4 (a = 0, 10% sys.) 81.80 (67.20) 70.86
BERT-4 (o = 0.1, 10% sys.) 83.02(72.27) 171.74
CD (o = 0, 10% sys.) 81.97 (70.12) 75.91
CD (a = 0.1, 10% sys.) 83.19 (73.96)  80.50

Table 5: Effects of Label Smoothing on TOPv2. BERT-
4: baseline. CD: co-distillation. «: label smoothing wt.
EM(@10): exact match (with all 10 runs correct) AGR:
model agreement Bold: best performance.

in EM@10 (+2.14) and AGR (+3.5). On the other
hand, on the dataset with 10% random noise, we
do not observe any benefit with label smoothing for
either the baseline or co-distillation, perhaps due to
the noise already in the data. Finally, on the dataset
with 10% systematic noise, we observe that label
smoothing dramatically improves results for both
the baseline - EM @10 (+5.07) and AGR (+6.88)
- and co-distillation - EM@10 (+2.84) and AGR
(+4.59). Overall, in the most realistic scenarios
(“clean” or distant-labeled data), we find that co-
distillation can be effectively combined with label
smoothing. This result is in contrast to Miiller et al.
(2019), who found that training a teacher with label
smoothing is not effective. When both models are
teachers, it is clear that label smoothing helps.

7 Discussion

Qualitative Analysis To further understand what
queries cause the model to churn, we analyze cases
where multiple runs disagree. To keep the analysis
simple we compare the baseline with co-distillation
in Table 6 (additional examples in Appendix C).



Query play new matchbox 20

Model Run 1 [in:play_music [sl:music_artist_name
matchbox 20 ]]

Model Run 2 [in:play_music  [sl:music_track_title
matchbox 20 ]]

Query repeat closer

Model Run 1 [in:replay_music [sl:music_track_title
closer |]

Model Run 2 [in:loop_music ]

Table 6: Churn examples from TOPv2 fixed by co-
distillation. Model predictions are from the baseline.
In both cases, only Model Run 1 matches the target, but
Model Run 2 has an incorrect intent or slot.

The first row shows that the baseline model runs
are confused by semantically similar slots — mu-
sic_artist_name vs. music_track_title. The sec-
ond row demonstrates baseline confusion between
the intents loop_music vs. replay_music. In both
cases the co-distilled models agree across all train-
ing runs. Due to the semantic similarity of the
slots/intents, we can attribute this churn to under-
specification (D’ Amour et al., 2020), which is re-
duced by co-distillation.

We also explore the relation between agreement
and the length of the structured output sequences.
Figure 2 plots the number of models in agree-
ment against the number of intents and slots. In
making a structured prediction during inference,
as length increases the model has more freedom
to select incorrect tokens and therefore churn in-
creases. Co-distillation increases agreement for
longer sequences, but ensembling is especially ro-
bust. Table 7 reports the average target and pre-
diction length where all N models disagree. Sur-
prisingly, we observe that the models over-generate
compared to the target; however, the difference is
reduced with co-distillation/ensembling.

10 ]
B Baseline

Co Distillation
BN Ensemble

Number of models which agree

2 6 10 14
Number of intents and slots

Figure 2: Agreement across trained models for various
methods vs prediction complexity.

Method Target  Prediction
Baseline 3.66 391
Co-distillation 3.77 3.82
4 layer ensemble  3.56 3.70

Table 7: Average # of slots and intents for cases where
all N models disagree. When there is churn the model
over-generates (i.e. prediction length > target length).

Practical considerations We roughly compare
the methods along the resource usage dimension in
Table 8. As resource usage may be implementation
or architecture dependent, we report the number
of parameters, which correlates strongly with train-
ing/inference time and memory. While ensembling
is the strongest approach, it also comes with the
most expensive inference. Although wall-clock in-
ference time may be the same as the base model due
to parallelization, computing power and memory
scales by a factor of K. Further, while distillation
methods have the same inference time due to sim-
ilar sized outputs, they have different costs w.r.t.
training the teacher.® For ensemble distillation, the
teacher models can be trained in parallel, but still
have Kz storage requirements. For large-model
distillation, in practice our 12-layer teacher has
about P = 9 times the number of parameters as the
baseline. In both cases, the student must be trained
sequentially. Overall, co-distillation performs con-
sistently well across different datasets and noise
settings in terms of EM and model agreement while
striking a balance between computational cost and
performance, rendering it an attractive approach
for goal-oriented conversational semantic parsing.

Method Training (actual)  Inference (actual)
Baseline T T
Ensemble Pl =3z P =3x

P +x=4x T
P+ x=10x €T
P =2z T

Ens. distillation
Large distillation
Co-distillation

Table 8: Overview of resource usage by number of
parameters (relative to 4-layer baseline with x =~14
million parameters). FP./;;.: Number of ensem-
ble/teacher/peer parameters. * denotes parallelism.

8 Conclusion

Our experiments showed that there exists substan-
tial churn across runs when re-training models on
the same conversational semantic parsing datasets.
We showed that for “production-sized” models, co-

8Hard/soft distillation have equal number of parameters.



distillation with label smoothing increases agree-
ment without loss of accuracy. Furthermore, on
noisy data simulating a real-world environment,
the improvement is even more drastic. When we
account for resource usage along with accuracy,
we provide strong evidence that co-distillation pro-
vides the sweet spot compared to methods like
hard/soft distillation and ensembling.

In future work, we plan to explore how other
modeling decisions can increase or decrease model
churn. In this work, we limited our focus to BERT
encoders with different number of layers. Other
questions to explore include whether the choice
of pre-training technique affects churn or whether
pre-trained encoder-decoders show the same ef-
fects. Finally, we will examine whether alternative
decoding algorithms, such as non-autoregressive
approaches (Babu et al., 2021; Oh et al., 2022), can
reduce churn.
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A Ethics

The TOP and SNIPS datasets used in this experi-
ments are intended for research purposes only. We
verified that the datasets do not contain personally
identifiable information. The risks of dual use for
task-oriented conversational semantic parsers are
low as we are not performing open-ended genera-
tion; however, the models are likely to overfit to
certain demographic groups and underperform on
others.

B Hyper-parameter Search and Settings

We run our experiments on the TPU v2 available
through Google Cloud.’

We use the same hyper-parameters for all 3 TOP
datasets and SNIPS, except for SNIPS we use a
different number of training steps and learning
rate. The hyper-parameters were selected using
the Google Cloud black box optimizer (Golovin
et al., 2017). We tuned the parameters using 64
re-runs over the settings described in Table 9. For
SNIPS, we held out 10% of the training data for
tuning the training steps (100000) and learning
rate (0.000031) and trained the final models on
100% of the training data with the selected hyper-
parameters. For distillation experiments we ad-
justed the learning rate to 1e — 5 and the batch size
to 128 to prevent overfitting.

We train all models (including teacher and stu-
dent) for 300000 steps on the TOP datasets and
100000 on SNIPS. We use the Adam optimizer with
weight decay (Loshchilov and Hutter, 2017) and
the relu activation function. To follow the pointer
generator approach of Rongali et al. (2020), we
embed the output vocabulary in 128-dimensional
vectors and project the BERT embeddings from

*https://cloud.google.com/tpu
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the input to 128 dimensions as well. For our trans-
former decoder (Vaswani et al., 2017), we use 2
heads and 2 layers (see Table 9) with 256 dimen-
sions for the attention and feed forward layers. We
also use a maximum output length of 51. We use
dropout on the input wordpiece embeddings, af-
ter the contextual BERT embeddings, and on the
output embeddings before the softmax layer.

Hyper-parameter Range/Set Selected Value
Learning rate [2e — 5,2e — 4] 4e-5
Decoder Heads {2,4,8} 2
Decoder Layers {2,4,8} 4
Batch Size {128,256} 256
Dropout [0.01,0.1] 0.0316

Table 9: Tuned Hyper-parameters and their Possible
Values

C Additional Examples

Table 10 provides additional examples where en-
sembling fixes errors still present in co-distilled
models. In these cases, the co-distilled models
over-generate (the phenomenon indicated in Table
7) whereas the lengths of the ensemble predictions
are correctly calibrated to the target lengths.

D Additional Results

We present the full set of results from Table 5 in
Table 11. The results in Table 11a provide strong
evidence that co-distillation with label smoothing
(Table 11b) is clearly preferable. When we examine
the full set of datasets and methods combined with
label smoothing in the random/systematic noise
setting, we also see that soft distillation from an en-
semble performs well. However, in some cases soft
ensemble distillation performs worse than the base-
line; swapping occasionally slightly better perfor-
mance for occasionally much worse performance
would not be an acceptable tradeoff in most cases.
Co-distillation is more stable in terms of consis-
tently outperforming the baseline. Furthermore,
co-distillation requires fewer resources and can be
trained in parallel.



Query Ground Truth Model predictions
play new matchbox 20 [in:play_music  [sl:music_artist_name [in:play_music [sl:music_track_title matchbox
matchbox 20 ]] 2071
[in:play_music [sl:music_artist_name match-
box 20 1]

repeat closer [in:replay_music

closer ]]

[sl:music_track_title [in:replay_music [sl:music_track_title closer ]]

[in:loop_music ]

Churn examples fixed by co-distillation. Model predictions are from the baseline model

show me alarms for to- [in:get_alarm [sl:date_time for tomorrow
MOITow 1]

[in:get_alarm [sl:alarm_name
[sl:date_time for tomorrow ]]]]
[in:get_alarm [sl:date_time for tomorrow ]]

[in:get_time

take out my wednesday [in:delete_alarm [sl:alarm_name

alarm.

[in:delete_alarm [sl:alarm_name [in:get_time
[sl:date_time wednesday ]]]]

[in:get_time [sl:date_time wednesday ]]]] [in:silence_alarm [sl:alarm_name [in:get_time

[sl:date_time wednesday ]]]]

Churn examples further fixed by ensembling. Model predictions from the co-distilled model

Table 10: Qualitative comparison on TOPv2 of the types of errors fixed by co-distillation and ensembling.

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 81.51(72.14) 77.85 83.74(73.18) 78.47 80.13(68.71) 72.54 86.83(75.25) 78.42
Ensemble 84.60 (78.55) 86.18 86.42(80.38) 88.17 84.59(78.52) 84.39 87.69 (80.58) 84.60
SD (ensemble)  81.36 (71.63) 77.25 83.73(72.62) 77.72 79.50(68.11) 71.97 86.80(75.11) 77.84
SD (BERT-12)  81.31 (71.16) 76.43 83.51(72.13) 77.10 79.87 (67.36) 70.76  86.37 (73.96) 76.69
HD (BERT-12) 81.33 (70.91) 75.92 83.56 (72.15) 76.99 79.66 (67.09) 70.39 86.93 (77.12) 80.29
Co-distillation ~ 81.31 (72.04) 77.98 84.01(73.96) 79.49 79.55(68.48) 7295 87.39(79.28) 82.59

(a) Original dataset (no noise)

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 77.90 (64.28) 68.76 82.39(71.11) 76.24 70.01 (44.97) 46.63 76.59 (51.08) 52.95
Ensemble 78.67 (72.21)  80.55 83.78 (76.53) 83.89 72.37(58.78) 65.24 82.27(67.23) 70.50
SD (ensemble)  80.14 (70.59) 76.45 83.51(74.31) 80.46 71.14(48.89) 51.27 80.96 (61.01) 63.17
SD (BERT-12)  78.71 (66.96) 72.05 82.71(70.75) 75.50 69.83 (45.26) 47.09 78.59 (53.09) 55.54
HD (BERT-12) 77.71 (64.77) 69.54 81.11(60.39) 63.08 69.63 (44.78) 46.52 76.70 (47.34) 48.92
Co-distillation ~ 78.91 (68.42) 74.54 82.60(73.07) 79.34 73.74 (57.64) 61.22 82.50(68.35) 71.80

(b) 10% random noise and label smoothing with o = 0.1.

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 79.66 (65.28) 70.17 83.03(72.27) 77.74 74.58 (58.50) 62.86 84.19 (68.20) 70.94
Ensemble 79.87 (68.78) 74.52 83.40(73.60) 79.75 77.59 (68.55) 75.80 84.50(71.22) 74.53
SD (ensemble)  81.02 (71.71) 77.87 83.85(74.46) 80.68 74.97 (58.87) 63.30 82.24(57.12) 59.14
SD (BERT-12)  80.75(71.22) 77.15 83.25(73.19) 78.97 75.01(59.28) 63.30 82.59(63.02) 65.90
HD (BERT-12) 79.49 (64.51) 69.10 82.93(72.27) 77.94 75.21(57.11) 60.51 81.57(59.71) 62.88
Co-distillation ~ 80.84 (73.61) 81.27 83.19(73.96) 80.50 76.98 (63.64) 68.09 85.49 (72.09) 76.26

(c) 10% systematic noise and label smoothing with o = 0.1.

Table 11: Model performance (over N = 10 runs) when trained on datasets with varying degrees of noise. All
student models use 4-layer BERT. BERT-4/12: 4/12-layer BERT. Ensemble: 4-layer ensemble. SD: soft distillation.
HD: hard distillation. EM: exact match (mean over 10 runs). EM@10: EM if all 10 models are correct. AGR:
model agreement. Bold: best non-ensemble.
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Abstract

While rich, open-domain textual data are gen-
erally available and may include interesting
phenomena (humor, sarcasm, empathy, etc.)
most are designed for language processing
tasks, and are usually in a non-conversational
format. In this work, we take a step towards au-
tomatically generating conversational data us-
ing Generative Conversational Networks, aim-
ing to benefit from the breadth of available lan-
guage and knowledge data, and train open do-
main social conversational agents. We eval-
uate our approach on conversations with and
without knowledge on the Topical Chat dataset
using automatic metrics and human evaluators.
Our results show that for conversations with-
out knowledge grounding, GCN can general-
ize from the seed data, producing novel con-
versations that are less relevant but more en-
gaging and for knowledge-grounded conversa-
tions, it can produce more knowledge-focused,
fluent, and engaging conversations. Specifi-
cally, we show that for open-domain conversa-
tions with 10% of seed data, our approach per-
forms close to the baseline that uses 100% of
the data, while for knowledge-grounded con-
versations, it achieves the same using only 1%
of the data, on human ratings of engagingness,
fluency, and relevance.

1 Introduction

Conversational Artificial Intelligence has pro-
gressed a lot in the recent past, partly due to ad-
vances in large pre-trained language models (PLM)
and partly due to commercial conversational agents
(Alexa, Siri, Cortana, Google Assistant, and others).
It is evident, however, that many challenges still
remain, such as handling idioms, humour, express-
ing empathy, processing unstructured knowledge,
and so on. One big factor for this is the lack of
large and rich conversational data that include these
complex aspects of human communication. While
the research community is making great efforts in
collecting such data (e.g. empathetic dialogues

Alexandros Papangelis
{papangea, seokhwk, hakkanit}@amazon.com
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(Rashkin et al., 2019), persuasion (Wang et al.,
2019), and others), these are still small compared
to the amount of data needed to train deep neural
networks. Furthermore, these expensive data col-
lections usually target a single phenomenon at a
time, and hence do not necessarily scale to the rich-
ness of human conversations. Another challenge
for real world applications is privacy, preventing
the use of much of the publicly available conversa-
tional data.

In this work, we take a first step into automati-
cally generating conversational data from unstruc-
tured textual knowledge (e.g. web sources) using
Generative Conversational Networks (GCN) (Pa-
pangelis et al., 2021). GCN is a meta-learning
method initially proposed for intent detection and
slot tagging; we extend that approach and demon-
strate that we can learn how to generate responses
grounded in unstructured knowledge. Specifically,
GCN learns how to generate labelled, diverse, and
targeted data that are optimised with Reinforce-
ment Learning (RL). This is achieved by using a
generator model that produces new data which is
used to train a separate learner model. The per-
formance of the learner model is used as a reward
signal to train the generator, so that over time the
quality of the generated data increases. This re-
ward signal can allow us to guide the data gen-
eration towards dimensions of interest, for exam-
ple, knowledge-grounded, empathetic, or polite
dialogues and can be derived from automatic met-
rics or human feedback if the system is deployed.
In our case, the generator produces open-domain
dialogues and the learner is a conversational agent
that is trained on that data. Selecting an appropri-
ate reward signal can be difficult, since we want to
generate good quality dialogues that do not exist
in the training data, but dialogue evaluation is a
challenging open problem. We therefore investi-
gate a combination of multiple metrics that capture
different aspects: BLEU (Papineni et al., 2002)
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and ROUGE (Lin, 2004) to ensure some similarity
with the reference data, BERTScore (Zhang et al.,
2020a)' to encourage good quality dialogues, and
Knowledge F1? (Shuster et al., 2021) to encour-
age knowledge integration. It should be noted that
while the focus in this work is knowledge ground-
ing in open-domain response generation, our ap-
proach is extensible to other conversational phe-
nomena with appropriate reward signals.

Our main contributions are: a) we generate
knowledge-grounded conversational data from un-
structured textual knowledge (e.g. the kind of
knowledge available on the web); b) we improve re-
sponse generation quality over a baseline that uses
fine-tuning on seed data, eliminating the need for
additional human-human data collection; and ¢) we
demonstrate improved performance on knowledge-
grounded response generation on Topical Chat, as
measured by KF1 and human evaluations.

2 Related Work

Language Data Augmentation Approaches.
There are a lot of recent works on data augmen-
tation, but most of them are geared towards individ-
ual language processing tasks rather than training
complete conversational agents. Due to lack of
space we only mention the ones that are most rele-
vant to our work.

PROTODA (Kumar et al., 2021) uses prototyp-
ical networks to augment data for intent classifi-
cation while GenSF (Mehri and Eskenazi, 2021)
uses DialoGPT (Zhang et al., 2020b) for zero-shot
slot tagging; DINO (Schick and Schiitze, 2021)
uses PLM to generate data for semantic textual
similarity; Campagna et al. (2020) focus on zero-
shot dialogue state tracking and use an abstract
dialogue model to generate data. SOLOIST (Peng
et al., 2021) uses a PLM fine-tuned on large di-
alogue corpora and is designed for transactional
(goal-oriented) dialogues. Mohapatra et al. (2020)
use PLM to train user simulators from crowd-
generated conversations and their instructions. Lin
et al. (2021a) train domain-independent user sim-
ulators for transactional dialogues. Chang et al.
(2021) augment data for Data-To-Text NLG by
generating text in two steps: replacing values with
alternatives and using GPT-2 to produce surface

'Data driven evaluation metrics tend to favor dialogues
similar to the ones used during their training and we found
that we cannot solely rely on such metrics.

2KF1 measures the token level F1 score between a knowl-
edge piece and an utterance.
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text. They then do automatic labelling and enforce
cycle-consistency (make sure text can be generated
from data and vice versa). Stahlberg and Kumar
(2021) focus on data generation for Grammatical
Error Correction and propose a method that can
generate an erroneous sentence given a correct sen-
tence and an error tag. Chen and Yu (2021) use
data augmentation to improve out of scope (OOS)
detection models. Specifically, they extract utter-
ances from a different dataset than the one they
are targeting that can be labelled as OOS and then
do some smart filtering to select good candidates.
Kim et al. (2021) propose NeuralWOZ, a frame-
work to generate dialogue state tracking data given
goal descriptions and API calls. NeuralWOZ has
a data generator and a data labeler that annotates
the data. GCN does not need a separate labeler
model and has the added option of being continu-
ally trained with RL. PromDA (Wang et al., 2022b)
is a soft-prompt learning method for low-resource
NLP tasks, that addresses the problem of overfit-
ting (memorizing) when fine-tuning a PLM with a
very small number of examples. The authors gen-
erate data for sequence classification and labelling.
However, this approach is not tested on full dia-
logues which require significantly more context in
the input. Bayer et al. (2022) propose a three step
method, where they first fine-tune a PLM and then
generate new data-points by adjusting the temper-
ature of the generation. They then filter the gener-
ated data by putting a threshold on embedding simi-
larity with respect to the target class centroid. GCN
uses RL to guide the generation process, alleviating
the need for explicit post-processing. Wang et al.
(2022a) present a data augmentation approach for
aspect-based sentiment analysis that can generate
data along two dimensions: aspects and polarity.
The resulting data are then used in a contrastive
learning setting to train a sentiment classifier. Sim-
ilarly to other approaches, it is not clear how it
would perform in knowledge-grounded dialogue
generation, with large inputs (context and available
knowledge). For a more comprehensive review of
data augmentation for language tasks, please see
(Feng et al., 2021; Li et al., 2021; Sahin, 2022).

Regarding data augmentation for conversational
agents, one of the most prominent methods is User
Simulation (Schatzmann et al., 2007; Asri et al.,
2016; Liu and Lane, 2018; Papangelis et al., 2019;
Lin et al., 2021b; Shah et al., 2018, e.g.). These ap-
proaches, however, have been designed to work
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Figure 1: The architecture of our approach using Generative Conversational Networks for knowledge-grounded dialogues. The
generator is first fine-tuned with seed data and produces an augmented dataset and those data are used to train a learner. The
performance of the learner on a held-out validation set (along with auxiliary metrics) is used as a reward to update the generator.

with well-structured databases whereas we are
concerned with grounding open-domain conversa-
tional responses in unstructured knowledge. DG?
(Wu et al., 2021) focuses on data augmentation
for document-grounded dialogues, using Doc2Dial
(Feng et al., 2020). The authors use an agent bot
and a user bot to conduct simulated conversations
and generate data. However, unlike GCN, the bots
are not continually updated and may not gener-
alise well to produce novel content. The code was
not available for a direct comparison on our dataset,
however, in the few-shot learning experiments, they
demonstrate good performance with as little as 25%
of the data (869 Doc2Dial dialogues), whereas we
demonstrate competitive performance by only us-
ing 1% of the training data (86 Topical Chat dia-
logues).

Few-Shot Approaches. Another line of related
work is based on few-/zero-shot transfer learning
for dialogue tasks. Again due to space we only
mention the most relevant works. Earlier studies
have focused on improving the generalizability of
natural language understanding problems such as
intent classification (Chen et al., 2016) and slot
filling (Bapna et al., 2017; Shah et al., 2019) for un-
seen labels or domains. Then, focus was placed on
other dialogue problems including dialogue state
tracking (Wu et al., 2019; Rastogi et al., 2020),
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next action prediction (Mosig et al., 2020), and
natural language generation (NLG) (Peng et al.,
2020). Bapna et al. (2017) and Shah et al. (2019)
utilized slot descriptions for improving the zero-
shot slot filling performance. Rastogi et al. (2020)
used slot, intent, and task-specific API descrip-
tions for schema-guided dialogue state tracking.
Mosig et al. (2020) based on a structural schema in
graph representations instead of textual descrip-
tions for zero-shot action prediction and NLG.
Peng et al. (2020) pre-trained on massive text data
followed by dialog act labeled dialogue utterances.
Madotto et al. (2020) used a large-scale pre-trained
language model as a few-shot learner with task-
specific prompting. All the methods presented
above, however, are geared towards specific tasks
and are not shown to generalize to open-domain
social or knowledge-grounded conversation.

3 Notation

We conduct experiments under two settings: con-
versations without explicit knowledge-grounding
(we call them open-domain) and knowledge-
grounded conversations.



3.1 Open-domain conversations

We define a multi-turn conversation as a list
of utterances: Uy, Us, ..., Uy where U; is the
utterance at turn ¢, and N is the number of turns
in the conversation. Each utterance is composed
of words wy, ..., wys, where M is the number of
words in the utterance. Conversational agents are
given a subset of the dialog context, for example
the ¢ most recent turns Un_;—_1, ..., Uy—1 and
generate the response Uy.

3.2 Knowledge-grounded conversations

To formulate knowledge-grounded responses, con-
versational systems need two steps (sometimes
taken jointly): knowledge selection and response
generation (Dinan et al., 2019). The conversational
agent should therefore first select relevant knowl-
edge pieces from the sources provided with respect
to the current dialog context and then generate a
response that incorporates the selected knowledge.
A knowledge piece in our case is defined as a fact
consisting of one or more sentences (see Table 8
for some examples). To select a knowledge re-
trieval method, we conducted preliminary experi-
ments comparing TF-IDF, BM25, and BERTScore
and we saw that the more sophisticated parsing
and dense retrieval methods did not outperform
TF-IDF. We therefore represent conversation con-
text and knowledge using TF-IDF vectors and uti-
lize TF-IDF-based retrieval over documents as our
knowledge selection mechanism. We select the
most relevant knowledge using cosine similarity
with the context C' = Un_¢_1, ..., Un_1:
kn = argmax{cos(tc, tx)} (1)
k
where ¢ is the TF-IDF vector corresponding to
the context and ¢ is the vector corresponding to
knowledge piece k. Knowledge-grounded conver-
sational agents are given not only the dialog context
C but also the selected knowledge % (or multiple
pieces of knowledge as in our case) and are asked
to generate a response Uy that incorporates k.

4 Generative Conversational Networks

GCN (Papangelis et al., 2021) (Figure 1) consist
of two models in a meta-learning architecture: a
data generator and a learner. The generator creates
a labeled dataset that is used to train a new learner
(a conversational agent in our case) in a supervised
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fashion. The learner is then evaluated on an exter-
nal validation set and its performance is used as a
proxy for the quality of the dataset. This quality
measure is used as a reward in a RL setup that trains
the generator. Over time, the generator learns to
create data of better and better quality, with respect
to the learner’s task, leading the learner to perform
well. To avoid overfitting the validation set, we
can limit the number of meta-iterations or include
domain-independent performance metrics, such as
fluency, perplexity, or even human feedback. When
deployed, the generator is directly optimized on
the test set (i.e. real interactions). Both models
can be pre-trained with seed data, if available, and
paired with reward estimation, GCN can be used
for continuous learning from user feedback. This
approach has been proven to work well for intent
detection and slot tagging in goal-oriented conver-
sations (Papangelis et al., 2021) and we here apply
it to train social conversational agents. Different
from Generative Adversarial Networks (Goodfel-
low et al., 2014)? where the model tries to mimic
the data, GCN models are guided by an external re-
ward signal - that does not need to be differentiable
- and can therefore generalize better. Depending
on the optimization criteria, we can set the direc-
tion towards which the models will go, for example
more polite conversations, more technical terminol-
ogy, different dialect, knowledge grounding, and
even directions that are not easily quantifiable (e.g.
engagingness ratings from humans).

For open-domain conversations, as a proof of
concept, we conduct few-shot experiments using
10% of the data and for knowledge-grounded con-
versations which is the main focus of this work, we
use 1%, 5%, and 10% of the data; we call these
the seed data (Dg..q). At the beginning of train-
ing, we sample Dg..q from the data D, fine-tune
the generator on Dgeeq (see G.train(Dsgeeq), line
4 in Algorithm 1), and then start the outer loop
meta-iterations. Along with the training data, we
sample the corresponding percentage of validation
data D,,q;. Once the training is complete, we spawn
anew learner, train it on the seed and synthetic data,
and evaluate it on Dy.s; which has been unseen so
far. As described earlier, each meta-iteration has
four phases: data generation, learner fine-tuning,
learner evaluation, and generator update. Algo-
rithm 1 summarizes the process.

3 A direct comparison with GAN approaches is out of scope
for this work and we leave it for the future.



4.1 Data generation

In the first phase of the process, the generator G
is given some dialog context sampled from D.qq
and, in the knowledge-grounded condition, top-
m retrieved knowledge pieces k from the TFIDF
retriever. Specifically, we give the last two turns as
context and the top-3 matching knowledge pieces,
and ask the generator to predict the next system
response. At each turn ¢, the context C; is used to
retrieve relevant knowledge k; that is then used as
input to the generator which produces the next turn
response Uj;:

Ui

G(Ci, ks)

" )
= U {sample( Py (w|wn—1, ..., wo, ¢, ki) }
w=0

where Pr ;s is the probability of the underlying
language model generating each word w of the
response U;, and sample is the method we use to
sample from the PLM, (greedy, nucleus, etc). This
way, the generator produces a synthetic dataset
D gynin of size L, where each datapoint is a triplet
of context C;, knowledge k;, and response U;:

Dgynin = {(Ci, ki, Us),i =1,.., L}y (3)
In essence, to create Dy y¢p, instead of taking the
human response from the data as a target, we use
the generated response U as a target and feed that
along with C' and £ to fine-tune the learner.

4.2 Learner fine-tuning and evaluation

Since the learner’s task is knowledge-grounded dia-
logue, it does not have access to the TFIDF retriever
and, as £ may contain multiple relevant knowledge
pieces, it will learn to perform its own implicit
knowledge selection, not knowing what the exact
knowledge piece used to produce U was.

At every iteration, we create a new learner
(based on a pre-trained model) and fine-tune it on
Dgeceq U Dgynin (see line 10 in Algorithm 1). The
knowledge-grounded learners are trained using a
combination of cross entropy loss and knowledge
retrieval score, specifically, Knowledge F1 (KF1)
(Shuster et al., 2021) which measures the F1 score
between the produced utterance and the selected
knowledge piece. The trained learner is then evalu-
ated (see line 11 in Algorithm 1) and a numerical
reward is computed by combining several metrics.
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Algorithm 1 GCN training procedure.

1: procedure TRAIN(Dseeq, Dyais Diest, €)

2 Initialize Generator G

3 if Dg..q then

4 G.train(Dgeeq)

5: end if

6 Performance, ¢t < O

7 while Performance,,,ciq < 1 — € do

8 D gynin < G.generate()

9: Sample and initialize new Learner [
10: l.train(Dgeeq U Dyynin)
11: Performance, ., < [.evaluate(D ;)
12: > Performance, e, € [0, 1]
13: G.update(Performance,¢sq )
14: end while
15: Dgynin < G.generate()
16: Sample and initialize new final Learner L
17: L.train(Dgeeq U Dgynin)
18: L.evaluate(Dy,st) > or other evaluator

19: end procedure

4.3 Generator update

Following (Ziegler et al., 2019) and (Papangelis
et al., 2021), we use Proximal Policy Optimization
(PPO) (Schulman et al., 2017) with the following
modified reward R to train the generator using the
learner’s validation performance r:

Guic)

R(CU) =r(CU) = Blog oy

“)

where C represents the context including the knowl-
edge if applicable, U represents the model’s re-
sponse, and (3 is a constant that prevents G from di-
verging too much from a reference generator G .

In the open-domain condition, the generator
uses multiple losses to calculate »: BLEU (Pap-
ineni et al., 2002), ROUGE-L (Lin, 2004), and
BERTScore (Zhang et al., 2020a) which measure
the similarity of the learner-produced utterance and
the utterance in the data (Dgeeq O Dgynin). We
evaluate each learner on the validation set D,
and compute the above metrics using the human
responses in D, as references. The weighted
sum of the NLG metrics comprises the reward for
the generator training. The weights were deter-
mined via grid search: 0.1, 0.01, 0.95, for BLEU,
ROUGE-L and BERTScore, respectively. In the
knowledge-grounded condition, we use a combi-
nation of BLEU-1 and KF1 (with weights 0.75 for



BLEU-1 and 0.25 for KF1) as we found via grid
search that it produced better results.

After the meta-iterations are finished, we pick
the best performing generator checkpoint (mea-
sured by the learners’ performance on D, at
each meta-iteration) and create a final synthetic
set D final_synth, thatis 5 times the size of the seed.
We then create a new learner as our final learner
(i.e. the conversational agent) and fine-tune it on
Dgeeq U D finai_syntn (lines 15-18 in Algorithm 1).
If D inai_syntn is of good quality, we should expect
the final learner to outperform the baseline, as it is
trained with more data. The results presented next
are all computed on the final learners, trained for
3 epochs, evaluated on D4, and averaged over 3
runs (as are our baselines).

5 Experiments

To evaluate GCN as a data augmentation method
for conversations with and without knowledge, we
conduct few-shot experiments on Topical Chat (TC)
(Gopalakrishnan et al., 2019). TC is a set of human-
human conversations, without explicitly defined
roles for each participant, collected over Amazon
Mechanical Turk. Each participant had access to a
set of facts or articles with some conversations be-
ing symmetric (participants had access to the same
knowledge) and some being asymmetric. All ex-
periments were conducted on 2 Tesla V100 GPUs
with 32GB memory each.
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To quantify the effect of data augmentation and RL
in both conditions, we train BART (Lewis et al.,
2020) or BlenderBot-small (BBs)* (Roller et al.,
2021) models for no-knowledge and knowledge-
grounded conversations respectively, under the fol-
lowing conditions:

Model ablations

¢ Baseline (BART/BBs): In this condition, we
train BART or BBs on the seed data. This
will give us a lower bound on performance
(if the augmented data is good, it should help
performance).

Data augmentation without RL (GCN-
RL): In this condition, we pre-train a
DialoGPT-small’ (Zhang et al., 2020b) gener-
ator with the seed data, and use that to gener-
ate 5x more data. We then use the seed and

490M parameters
5117M parameters
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generated data to train a final BART or BBs
(learner) model depending on the task.

e Data augmentation with RL (GCN+RL):
In this condition, we take the GCN-RL gen-
erator and iteratively update it using RL, as
described in section 4. This is the full GCN
framework. At the end of the meta-iterations,
we take the best-performing generator and use
it to create 5x more data. We use the seed and
generated data to train a final BART or BBs
model.

* Generator direct evaluation (G+RL gener-
ator): For the knowledge-grounded condition,
in addition to the above three models, we eval-
uate the generator by having it directly inter-
act with humans instead of generating data to
train a learner.

5.2 Open-domain conversations

For the open-domain conversations, we sample
10% of TC as seed for GCN and use DialoGPT-
small and BART as initial models for the generator
and the learner, respectively. We compare the per-
formance of the GCN learner and 3 baselines using
automated metrics, and also conduct human evalu-
ations. Our baselines are: BART trained with the
same seed data (BART 10%), BART trained with
the entire training set (BART 100%), and a GCN
learner trained on seed and synthetic data but with-
out updating the generator via RL (GCN-RL). Last,
we also compare against the human responses that
appear in the data (“Data” in Tables 1 and 3).

5.3 Knowledge-grounded conversations

For knowledge grounded conversations, we sample
1%, 5%, and 10% of TC as seed data for GCN.
Again we use DialoGPT-small as a generator but
we use BBs as our learner. We compare the per-
formance of GCN against similar baselines to the
open-domain condition: BBs trained on the seed or
the entire data, GCN without RL, human responses
from the data, and we also evaluate the genera-
tors themselves if we were to use them directly
as conversational agents (GRL generator). Even
though KF1 is the metric of choice in related work
on knowledge-grounded conversations, we did not
find works that report KF1 for TC.



Model BLEU Rouge(1/2/LL) BScore | Engaging. Fluency Relevance Overall
Data - - - 3.85 4.55 3.77 4.06
BART (100%) || 3.1 20.3/6.1/17.8  0.861 3.80 4.58 3.68 4.02
BART (10%) || 2.0 18.5/4.2/16.0  0.858 3.63 4.50 3.62 3.92
GCN-RL 1.1 15.0/2.1/12.6  0.850 3.70 4.47 3.47 3.88
GCN+RL 1.3 15.8/2.7/13.6  0.851 3.79 4.49 3.58 3.96

Table 1: Automatic and human evaluation results. Human evaluators rate responses on a scale of 1 to 5. BScore stands for
BERTScore. Bold indicates statistically significant difference (t-test assuming unequal variance). BART (100%) and BART
(10%) are BART trained on 100% and 10% of the data, GCN-RL is GCN without RL, and GCN+RL is GCN with RL training.

1% data 5% data 10% data
Model PPL KF1 BL-4|PPL KF1 BL-4|PPL KF1 BL-4
BBs 23.39 0.10 0.07 |23.52 0.17 0.09 |21.69 0.17 0.09
GCN-RL | 2647 0.15 0.08 | 2454 0.18 0.09 | 23.11 0.18 0.09
GCN+RL | 27.11 0.20 0.08 | 2460 0.25 0.14 |23.67 0.28 0.10

Table 2: Results of automated evaluation on knowledge-grounded conversations. All models try to maximize KF1, and the
baseline is the same model as the GCN learners (BBs: BlenderBot-small, 90M parameters).

Model Eng. Flu Rel. Avg
Data 3.74 398 3.57 3.76
BBs (100%) 3.69  3.99 3.57 3.5
BBs (1%) 3.64 3.86 342  3.64
G-RL generator | 3.47 3.35 323 335
G-RL learner 358 3.85 348 3.64
G+RL generator | 3.37  3.27 340 335
G+RL learner 3.73  3.97 348 3.73
Wins Percentage

Combinations Base G-RL G+RL Tie
BBs VS G-RL 40.0 443 - 15.7
BBs VS G+RL | 44.7 - 47.7 7.6
All 3 models 293 257 45.0 -

Table 3: Human evaluation results (top) for knowledge-
grounded conversations. Human evaluators rate responses
with the same conversation context on a scale of 1 to 5. In
a different evaluation (bottom), they were asked to choose
the best response from two options. BBs: BlenderBot-small
(90M), G-RL: GCN without RL, G+RL: GCN with RL.

6 Results

6.1 Automatic evaluation

We report perplexity (PPL), BLEU-4 (Papineni
et al., 2002) with the “method 7 smoothing func-
tion from (Chen and Cherry, 2014) as it has higher
correlation with human ratings, and KF1. We cal-
culate these metrics on the TC “frequent” test set,
(Tables 1 and 2). In the open-domain condition, we
see that BART 10% outperforms GCN agents on all
automated metrics. In knowledge-grounded conver-
sations, we see that GCN+RL is able to incorporate
more knowledge as evidenced by the higher KF1.
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6.2 Human evaluation

Due to the intrinsic one-to-many property of con-
versation, reference-based metrics may not corre-
late with human ratings; our generated conversa-
tion may be appropriate for the dialogue context
but different from the reference responses. For this
reason, we also conduct human evaluation (follow-
ing sub-section). Human evaluators rate the output
of the GCN learner, the baselines, and the ground
truth. Specifically, they rate how engaging, fluent,
and relevant each response is, on a scale from 1 to
5. We generate 1,000 samples for each condition
using the same context and make sure we have 3
ratings per sample per condition. Tables 1 (right)
and 3 show the results of the evaluation, where we
see that in the open-domain condition, the GCN
learner produces engaging but less relevant con-
versations. This is likely because the model in-
serts facts or other output that is not entirely rel-
evant, but is perceived as more engaging (e.g. in-
formation on a somewhat relevant subject, fun fact,
etc.). Consistent with prior work, (Papangelis et al.,
2021), this shows that GCN can generalize from
the data. When it comes to knowledge-grounded
conversations, where GCN is explicitly trained to
optimize KF1 (among other metrics), then rele-
vance is indeed higher than the baseline. Overall,
averaging the three metrics, GCN+RL outperforms
BART 10% and is close to BART 100%’s perfor-
mance. All models are outperformed by the human
responses, which may be due to the size of our
models or the number of training iterations.



Iterations | PP KF1 BL-4
1 30.8 0.146 0.179
2 31.1 0.147 0.182
3 30.7 0.146 0.186
5 30.8 0.163 0.190
10 27.1 0.238 0.085

Table 4: Performance of GCN+RL for varying number
of meta-iterations. Here, we generate 3x the seed data
and use 1% of TC.

Data Mult. | PPL  KF1 BL-4
1 26.5 0.201 0.082
2 274 0213 0.084
3 28.6  0.17 0.083
5 222 025 0.154
10 229 027 0.106

Table 5: Performance of GCN+RL for varying size of
generated data (as a multiplier of the seed). Here, we
do 5 meta-iterations and use 1% of TC.

For knowledge-grounded conversations (Table 3)
we see that GCN+RL produces more engaging and
fluent conversations and overall outperforms both
baselines while again being close to BBs trained on
all the data. In pair-wise comparisons, GCN+RL
is generally preferred more than the other models.
Overall, for the GCN conditions, given that we
generate 5x the seed data, the total amount of data
is about 6% of the size of TC and our results show
that the generated data is indeed of high quality,
since the same model (BlenderBot-small) using the
generated data performs close to the one that uses
100% of the human-human data and close to the
data itself. It should be noted that GCN achieves
this performance using small models (in the order
of 100M parameters each).

In Figure 2 in the appendix, we show the Ama-
zon Mechanical Turk setup that we used during our
human evaluations.

6.3 Generated data diversity

In this section we further analyze the performance
of GCN, specifically its performance with respect
to the number of meta-iterations (Table 4) and the
amount of generated data (Table 5). In Table 4,
we see that KF1 increases as we have more meta-
iterations, meaning that the generator actually leads
the learner to learn to produce more knowledgable
responses. BLEU naturally drops as these more
knowledgable responses may not appear in the data.
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Data % | BBs GCN-RL GCN+RL
1% 8.1% 17.4% 25.1%
5% 8.5% 12.1% 24.5%
10% 5.9% 9.2% 13.6%

Table 6: Out-Of-Vocabulary (OOV) rates for various
seed percentages.

We observe similar trends in Table 5, where we vary
the amount of synthetic generated data (as a multi-
plier of the size of the seed data). Regarding data
diversity, Table 6 presents out of vocabulary rates
for all three conditions when using 1%, 5%, and
10% of the data as seed. Higher rates mean more
diversity but may also mean that the generated data
is farther from the seed data. Paired with the results
in Tables 1-3, however, we can see that GCN+RL
produces more diverse data that are still in-domain
and useful.

6.4 Examples

In Table 7, we provide example responses for con-
versations without knowledge grounding, and in
Table 8 we show example responses for knowledge-
grounded conversations. We see that in both cases
GCN+RL tries to insert knowledge or fun facts
and that appear to be received well by the human
judges. However, since there are no knowledge-
grounding abilities, the model hallucinates and
this is what likely drives relevance ratings down.
In the knowledge-grounded example, we see that
GCN+RL can use the knowledge pieces more ef-
fectively than the other models.

7 Conclusion

We presented a meta-learning method based on
GCN to generate conversational data grounded on
unstructured textual knowledge such as what can be
found on the web. We show that given a small seed
(1% of TC or 86 examples) our approach can gener-
ate high quality data that can be used to train a com-
petitive conversational agent able to do knowledge
selection and grounding. Lower reference-based
metric scores (Table 1, left and Table 2) indicate
that our method generates diverse data. Based on
the good scores in the human evaluation (Table 1,
right and Table 3), we see that the generated data
is also useful for the task at hand, a result in line
with the results on intent detection and slot tagging
in (Papangelis et al., 2021). As future work, we
are conducting thorough analyses and evaluations



Context

Hello, do you watch football?

Hi, yes. I love football! I did not realize the season lasted 17 weeks!

Yeah pretty long. I guess with 32 teams playing it takes that much time

Did you see they only rest one weekend during the season?

That is crazy, so much work goes in there. Did you know U of Towa painted their visitor locker
room pink?

Oh yes,that is so funny. they really want to intimidate the other team, but is more like a joke

Wow, what an idea. Did you know bowlers used to make more than football players in the 60s
Responses

Baseline

that’s a good point. i wonder how many of the top bowlers make twice as much as top football stars.
do you have a favorite

GCN-RL | that’s a good point. i’m not a big fan of football, but i do like to watch it.
do you like football?
GCN+RL | ididn’t know that, that’s interesting. did you know there are more than 30 million players in the nfl?

i wonder how many of those players are still playing?

Table 7: Example responses for open-domain conversations. The models here are not trained to optimize knowl-
edgable responses and therefore may hallucinate. This may be the reason for lower relevance scores for GCN+RL
(Table 1); however, GCN+RL’s tendency to provide fun facts is what may be leading to more engaging responses.

Context

Did you know that the University of Iowa’s locker room is painted pink? I wonder why?

I think I did hear something about that. I imagine it is an attempt to psych the other team out.

So, it would be in the visiting team’s locker room but not their own?
Retrieved Knowledge (subset)

the University of Iowa’s locker room for visiting football teams is completely painted pink in the
1960’s top bowlers made twice as much as top football stars

Football is a family of team sports that involve, to varying degrees, kicking a ball [...]

in 39 out of 50 states, the highest paid state employee is either a college football or basketball coach.
Responses

Baseline

i think it would be in the visiting team’s locker room. i don’t know why they would want to psych
the other team out

GCN-RL

that’s interesting. i’ve never heard that before. do you have a favorite team?

GCN+RL

i’m not too familiar with iowa’s locker room for visiting football teams, but i do know that they’re
the highest paid employees in the state of iowa. do you know why they are paid so much?

Table 8: Example responses for knowledge-grounded conversations. In this setting, models are trained to optimize
knowledgable responses which explains in part why GCN+RL is preferred in human judgements (Table 3).

of the generated data, exploring more model archi-
tectures, and are working on more conversational
phenomena.
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Instructions

This HIT asks you to read conversations
between a user and an agent and score
the relevance of different agent responses
on a scale of 1 - 5. Relevance means how
well the response is relevant and coherent
to the dialog context. A score of 1 means
that the response is irrelevant to the dialog
context. A score of 5 means that the
response is contextually relevant to the
dialog context.

Please complete the task by taking the
following steps:

Read the conversation.

. Read the final responses spoken
by different agents.

Examine how much each response

w N

Conversation

User: Do you enjoy playing or watching any sports?

Agent: | sometimes watch sports. What about you?

User: | recently started getting familiar with football

Agent: Itis an interesting sports but | know little about it.

User: | myself only have a passing familiarity

Agent: | have heard that the NFL has no rule against female players; women would be allowed if they met the league's eligibility requirements.

User: Probably the requirements disqualify them anyway though

Agent: True. An average NFL game only has 11 minutes of live gameplay. The women might be able to handle some positions in such a short amount of acctivity.

User: Even in the short time frame it can be a very dangerous activity

Agent: True. Probably be safer as cheerleaders. | think it's wrong that New Orleans Saints cheerleaders can't eat in the same restaurant as any NFL player. If they are already dining at a
restaurant and an NFL player comes in after, the cheerleaders are required to leave.

User: | mean it should just be whoever came later if they want to even keep that backward rule

Agent: True. First is first. NFL uses tracking chips in players shoulder pads to record a player’s moves on the field. They could use those chips to know where the players are before going
to a restaurant.

User: | guess. Kind of makes you question what they use the data for

R

is relevant to the
. Select the relevance score for each
response.
. Click the submit button.

IS

o

P
T
Agent i'm not a huge fan of the nfl, but i do watch a lot of football. do you like football? i think it's one of my favorite
0 sports. did you know there is a football team that plays for the national football association of america? they're the 1: very irelevant @ 5: very relevant

" highest paid nfl player in the world. i wonder if that is true? lol. anyway, have a great day!
Agent i .
1:9 that's a great point. do you like football? ‘1 :very irrelevant @ 5: very relevant
2’*99"‘ that's a good point. i'm not sure why they didn't use a bible at the swearingingin. it * m1 very inelevant. 5: very relevant

did you know that the nfl uses tracking chips embedded i players shoulder pads to record a players move on the

/;:gent field. teddy roosevelt and john quincy adams are the only two presidents that did not use a bible at their D1 very irelevant @

swearingin ceremonies. to live it, through sports in a very authentic way, makes so much sense to me " and a S: very relevant
tough sport town, baptisms and bible studies fuel many of the eagles'stars) for chopra, son of beuser: )

AA:QE"‘ that's a good point. i wonder why they didn't use a bible at the ceremony? 1: very irrelevant @ 5: very relevant
did you know that the nfl uses tracking chips in players shoulder pads to record players move on the field. teddy

Agent 00Sevelt and john quincy adams are the only two presidents that did ot use a bible at their swearingin

25 ceremonies. to live it, through sports in a very authentic way, makes so much sense to me * i dowanttoknow [ |1: very irrelevant @ 5: very relevant

why we are here, where we're going; trying to find that deeper purpose. i've never heard of that one. what is it
about?
Agent i'm not sure if it's true, but i do know that there are a lot of people who don't use the bible in their swearinging. i
6: wonder how many times they use it. do you like to read? LJ
i'm not sure, but i do know that the nfl uses tracking chips embedded in players shoulder pads to record a player
Agent every move on the field. that's pretty cool. i wonder if they do that in other sports as well? lol. did you know teddy h
7 roosevelt and quincy adams were the only two presidents who didn't use a bible at their swearingin ceremonies? LJ
that seems like a lot more than i thought. do you have a favorite president?

1: very inelevan(.

o

: very relevant

: very irrelevant @

o

: very relevant

Figure 2: Our human evaluation setup.

A Limitations and Risks

Given that GCN relies on Reinforcement Learning,
it may be difficult to tune for more complex appli-
cations. Also, due to its meta-learning nature it can
be computationally expensive, although we show it
here working with small versions of each model.

As with any machine learning approach - espe-
cially ones that rely on PLMs - there are inher-
ent risks as to the language that will be produced,
which may be biased in many ways. Our approach
works with any machine learning model and there-
fore inherits the risks of the models used. Rein-
forcement Learning can also play a role in learning
biased models if we are not careful.

B Amazon Mechanical Turk Setup

In Figure 2 we show a screenshot of our Amazon
Mechanical Turk setup for human evaluation.
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Abstract

Over the last several years, end-to-end neu-
ral conversational agents have vastly improved
their ability to carry unrestricted, open-domain
conversations with humans. However, these
models are often trained on large datasets from
the Internet and, as a result, may learn undesir-
able behaviours from this data, such as toxic or
otherwise harmful language. Thus, researchers
must wrestle with how and when to release
these models. In this paper, we survey recent
and related work to highlight tensions between
values, potential positive impact, and potential
harms. We also provide a framework to support
practitioners in deciding whether and how to
release these models, following the tenets of
value-sensitive design.

1 Introduction

The social impact of natural language processing
and its applications has received increasing atten-
tion within the NLP community (e.g. Hovy and
Spruit, 2016) with Large Language Models (LLMs)
as one of the recent primary targets (e.g. Bender
et al., 2021; Bommasani et al., 2021; Weidinger
et al., 2021). This paper examines what consid-
erations are salient when designing and releasing
conversational AI (ConvAl) models. We focus
on neural conversational response generation mod-
els that are trained on open-domain dialog data
and lack a domain-specific task formulation, but
instead are designed to freely and engagingly con-
verse about a wide variety of topics. These models
are typically trained in the popular encoder-decoder
paradigm, which was first introduced for this task
by Vinyals and Le (2015); Shang et al. (2015); Ser-
ban et al. (2016). We call conversational models
trained in this paradigm end-fo-end (E2E) systems
because they learn a hidden mapping between in-
put and output without an interim semantic repre-
sentation. An important benefit of E2E ConvAl
models trained in this paradigm is that they can be

Gavin Abercrombie
Heriot-Watt University

39

Shannon Spruit
Independent Ethics Advisor
Populytics, Netherlands

Verena Rieser
Heriot-Watt University
Alana Al

Y-Lan Boureau
FAIR, Meta

adapted to new domains or taught new skills just
by fine-tuning a pre-trained model on datasets of
interest (e.g. Roller et al., 2020; Smith et al., 2020;
Solaimon and Dennison, 2021). Releasing these
pre-trained models thus allows different groups of
researchers to build on the work of others, which
can increase reproducibility and progress. Unfor-
tunately, releasing a model can also have harmful
impacts.

We discuss a subset of ethical challenges related
to the release and deployment of these models,
which we summarise under the term “safety,” and
highlight tensions between potential harms and ben-
efits resulting from such releases. This is particu-
larly salient in light of recently proposed Al regu-
lation in the European Union (European Commis-
sion, 2021). While several recent efforts have been
made to describe and mitigate unsafe behaviour of
conversational models (e.g. Dinan et al., 2019; Xu
et al., 2021; Ouyang et al., 2022; Thoppilan et al.,
2022; Perez et al., 2022; Dinan et al., 2022), this
work aims to provide a framework to help practi-
tioners think through the conflicts and tensions that
arise when designing a conversational model and
deciding whether or not to release it, and how.

Releasing models “safely” is particularly chal-
lenging for the research community. The concept
of “safe language” varies from culture to culture
and person to person. It may shift over time as lan-
guage evolves and significant cultural or personal
events provide new context for the usage of that lan-
guage. In addition, the downstream consequences
may not be fully known a priori, and may not even
be felt for years to come. This is particularly true
for large interactive E2E models, where the space
of possible generated replies is both extremely vast
and highly dependent on context, and can there-
fore not be exhaustively explored before release.
Researchers are then left with the task of trying to
arbitrate between uncertain, changing, and conflict-
ing values when making decisions about creating
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and releasing these models.

We propose ways to conceptualise the interac-
tion of values at play in conversational models (sec-
tion 3). Based on that understanding, we present
a conceptual analytical framework to guide re-
searchers and practitioners towards making better-
informed decisions about model release (section
4). We aim to move away from a notion of safety
that is based on ‘“the absence of risk” to a more
resilience-based notion of safety that is focused on
the ability of sociotechnical systems (i.e., users, de-
velopers, and technology combined) to anticipate
new threats and value changes.

2 Safety problems and mitigations in E2E
conversational AI models

We first illustrate some possible sources of safety
concerns for ConvAl models through concrete ex-
amples grounded in references to existing work —
pointing out similarities and differences in issues
shared with LLMs. We mainly distinguish ConvAI
and generative LLMs by their usage: We refer to
ConvAl models if they are used interactively and
take an active role as the interlocutor in a dialogue,
whereas we refer to LLMs if models are mainly
used to generate text, e.g., via text completion or
via prompting.

2.1 Training models

While we focus mainly on model release, many of
our considerations also apply to earlier stages of
training a model, particularly as early choices can
have downstream effects that impact elements of
the cost-benefit analyses of the researchers. For
example, for LLMs and ConvAl systems alike, the
type of data used during training might influence
what populations could benefit from or be harmed
by release of a model (Bender et al., 2021). In addi-
tion, training large neural networks on vast amounts
of data, leading to high energy consumption and
environmental costs (Strubell et al., 2019; Bender
et al., 2021). Furthermore, the data used to train
models can be insufficiently protected, leading to
the leakage of sensitive information through model
generations and privacy breaches as happened re-
cently with commercial chatbot Lee-Luda (Jang,
2021). Similar privacy problems are observed for
LLMs (e.g. Nasr et al., 2019; Shokri et al., 2017;
Carlini et al., 2019, 2020).
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2.2 Offensive content

Once trained, a conversational generative model
can give rise to safety sensitive situations, by di-
rectly generating toxic or otherwise harmful con-
tent, by agreeing with offensive statements uttered
by the conversation partner (Dinan et al., 2022), or
by responding defensively or dismissively when
provided with corrective feedback by the conversa-
tion partner (Ung et al., 2021). While the first case
is shared with LLMs, the latter two are unique to
ConvAl systems. Generating this type of content
can cause harm to users, and poses a reputational
risk to the organisation releasing the model, for
instance when the bot voices undesirable or con-
troversial opinions, e.g., Tay’s anti-semitic stances
(Miller et al., 2017).

The boundaries of what is offensive or not are
both subjective and culturally dependent. This
makes it especially important to consider what com-
munity norms are applicable when deploying a
model (Jurgens et al., 2019; Sap et al., 2019; Kir-
itchenko and Nejadgholi, 2020; Liang et al., 2022),
and whether the use of labels might not be a risk in
itself (Thylstrup and Waseem, 2020).

Many existing mitigations rely on the ability
to detect problematic content — often centred on
content written by humans on social media plat-
forms, such as Twitter (e.g. Waseem and Hovy,
2016; Wang et al., 2020; Zampieri et al., 2019,
2020; Zhang et al., 2020), Facebook (Glavas et al.,
2020; Zampieri et al., 2020), or Reddit (Han and
Tsvetkov, 2020; Zampieri et al., 2020). However,
of course, conversational systems may not necessar-
ily have the same patterns as social media content
(Cercas Curry et al., 2021). Existing work on con-
versational systems often relies on identification of
keywords (Ram et al., 2017; Cercas Curry et al.,
2018; Fulda et al., 2018; Khatri et al., 2018; Paran-
jape et al., 2020), or uses human labels such as flag-
ging of a post to train classifiers (Larionov et al.,
2018; Cercas Curry et al., 2018). These first-pass
classifiers can then be augmented adversarially as
done in Dinan et al. (2019); Xu et al. (2020).

In addition, work on building safer LLMs ex-
plores fine-tuning on curated data (Solaimon and
Dennison, 2021) or directly controlling the gen-
erations of the model (Dathathri et al., 2019;
Liu et al., 2021; Schick et al., 2021; Xu et al,,
2020). Conditioning generations on certain types
of context, such as personas of diverse historically
marginalised demographics, has also been shown



to decrease the generation of harmful responses
(Sheng et al., 2021).

2.3 Mitigating the risks of mitigations

LLMs and ConvAl models often rely on a clas-
sifier to detect and mitigate unsafe model out-
puts. However, these classifiers themselves can
have issues with bias, e.g., by learning undesir-
able correlations that tie toxicity to identity terms
(Dixon et al., 2018; Nozza et al., 2021, 2022), or
language varieties, such as African American En-
glish (Liu et al., 2019; Sap et al., 2019). Possible
mitigations include using race and dialect prim-
ing (Sap et al., 2019), using adversarial training
techniques (Xia et al., 2020), adding fairness con-
straints (Gencoglu, 2020), or relabeling data used
during training (Zhou et al., 2021).

2.4 Interacting with users

There are some additional challenges which are
unique to ConvAl system arising from the direct
interaction with users. This includes the possibil-
ity of an involuntary anthropomorphic relationship
arising between a conversational model and a hu-
man interacting with it (Abercrombie et al., 2021),
and the fact that model generations are inherently
dependent on the unknown inputs of a conversation
partner who will be repeatedly interacting with the
systems and steering them in unpredictable direc-
tions. Some users have been observed to behave in
an adversarial way, as happened for instance with
Tay (Miller et al., 2017).

Another empirical pattern is that user utterances
in their conversations with chatbots are often abu-
sive (Cercas Curry and Rieser, 2018; Cercas Curry
et al., 2021). Thus, the safety implications of the
system needs to be considered within the expected
conversational context, including adversarial in-
puts. For example, publicly available chatbots have
been shown to agree with sexist or racist utterances
(Lee et al., 2019b). Automatically detecting un-
safe user utterances is still a challenge, both for
system directed abuse (Cercas Curry et al., 2021)
and general toxic statements (Xu et al., 2020). A
recent report by UNESCO points out that the in-
ability to respond appropriately to system-directed
abuse may reinforce negative gender stereotypes
(West et al., 2019), especially paired with their
anthropomorphic and feminised design cues (cf.
Abercrombie et al. (2021)).

The possibility of adversarial interaction and,
more generally, the unpredictability of a system
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used far outside the training distribution, make it
particularly important to not exclusively rely on
mitigations such as cleaning up training data to
avoid exposing the system to offensive content, as it
has been shown to still leave models prone to gener-
ating toxic content in response to specific prompts
(Gehman et al., 2020) or inadequate responses to
abuse from users (Cercas Curry and Rieser, 2018).

2.5 Use in unsafe applications

Conversational and language models can also prove
unsafe if they are used for medical advice or emer-
gency situations (self-harm, crime, natural disas-
ters, etc) (e.g. Palanica et al., 2019; Bickmore et al.,
2018). Conversational systems designed for dis-
cussing health issues tend to not be generative mod-
els and use expert-produced rather than generic
data (e.g. Brixey et al., 2017; Fadhil and AbuRa’ed,
2019; Vaira et al., 2018; Pereira and Diaz, 2019).

A mitigation avenue for E2E ConvAl models is
to recognise topics that do not lend themselves to
automated conversation, and steer the conversation
away from them (Dinan et al., 2022). When using
such mitigations, considerations for release might
then usefully include how effective the context de-
tection is, and the costs of false negatives (i.e., fail-
ing to steer away from an unsafe context), false
positives (i.e., refusing to talk about safe topics),
and lost opportunity to provide safe benefits, e.g.,
safe general medical advice such as that generally
offered on public health websites.

3 Tensions between values, potential
positive impact, and potential harm

After highlighting some existing barriers to the
creation of safe ConvAl (as well as possible mitiga-
tions), we lay out some important tensions between
values, positive impact and potential harm. These
considerations establish a foundational understand-
ing of the system, after which we can consider
release decisions (discussed in section 4).

There is a growing understanding that comput-
ing systems encode values, and will do so whether
or not the parties involved in designing and releas-
ing the system are explicitly aware of those values
(Friedman et al., 2008; van de Poel, 2018). Reflect-
ing more deliberately on values throughout model
development can help surface potential problems
and opportunities early on, identify what informa-

'For a recent, taxonomy of harms and risks from LLMs,
see Weidinger et al. (2021).



tion might be important to communicate as part of
a model release, and allow practitioners and down-
stream users to make better-informed decisions.
We use the broad definition of values employed
in Friedman et al. (2008): “what a person or group
of people consider important in life.” With this def-
inition, values extend beyond the use of the term
akin to moral tenets, to the more general things of
value. Examples relevant to conversational agents
could be: getting or providing education, compan-
ionship, or comfort, preserving privacy, widening
access to more populations through automation —
or trust, friendship, accessibility, and universality.
Throughout this section, we employ the scenario
of a hypothetical companion: a potential chatbot
that leverages the constant availability and scalabil-
ity of automated systems to provide companionship
to people who feel lonely. However, it could raise
privacy and consent concerns, e.g., if the conver-
sations are recorded for subsequent improvement
of the model without informing the user. Deeper
concerns would be that the system might displace
human companionship in a way that creates an un-
healthy reliance on a bot, a decreased motivation
to engage with humans, and a lower tolerance to
the limited availability and patience of humans.

3.1 How values conflict

Determining how to best arbitrate between different
values requires the consideration of multiple types
of conflicts. For example:

Conflicts between values. Some values can be
in direct conflict: for example, lowering privacy
protections to harvest more detailed intimate con-
versation data to train a powerful artificial “close
friend” system pits privacy against relieving lone-
liness. These conflicts require deciding on a value
trade-off. But even values that are not directly in
conflict can require trade-offs, through competition
for limited resources and prioritisation of certain
goals or values: the resources invested to uphold
a given value might have instead enabled a better
implementation of another value. Thus, opportu-
nity costs (Palmer and Raftery, 1999) need to be
considered along with absolute costs.

Conlflicts arising from distributional dispari-
ties. Besides values in a local setting (i.e., for a sin-
gle stakeholder, at a single point in time), another
source of conflict arises from disparities between
stakeholders: who bears the costs and who reaps
the rewards? This raises issues of distributional
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justice (Bojer, 2005). In intertemporal conflicts,
the same person may pay a cost and reap a benefit
at different points in time. For example, a user
electing to contribute their private information now
to enable systems they expect to benefit from later.

Arbitrating conflicts. For conflict within an in-
dividual stakeholder, the individual should theoret-
ically be able to arbitrate the decision themselves,
given relevant information. However, that arbitra-
tion would still be subject to ordinary cognitive
and motivational biases. These include favouring
instant gratification (Ainslie, 2001), and resorting
to frugal heuristics to make faster decisions (Kah-
neman, 2011). Thus, practitioners need to grapple
with additional tensions between prioritising users’
autonomy (i.e., letting people choose, even if they
are likely to choose something they will regret) or
users’ satisfaction with outcomes of their choices
(i.e., protecting people from temptations). In the
example of a companion chatbot, one could imag-
ine a system that always tells people what they
most want to hear, even if it reinforces unhealthy
addictive patterns: would this require regulation
like a drug, or would people best be left as the sole
autonomous judges of how they want to use such
a system? Clever defaults and nudges can help
resolve this kind of tension, making it easier for
people to choose what may ultimately be better for
them (Thaler and Sunstein, 2009).

If costs and benefits allocate to different stake-
holder groups, things become even more complex.
Values are then compared in terms of the distri-
bution of costs and benefits among stakeholders.
For example, the value of fairness demands that
distributions not be overly skewed. Utilitarian and
rights-based approaches favour different trade-offs
between increasing the benefits of a system for a
large majority of people at the cost of harming a
few, and emphasising preservation of the rights
of as many people as possible (Velasquez et al.,
2015). If a companion conversational system pro-
vides a great amount of comfort to millions of peo-
ple, but harms a handful, different ethical systems
will weigh the good and the bad in different ways
and reach dissimilar conclusions. Next, we discuss
what processes can achieve a particular desired bal-
ance of values and costs, regardless of what that
desired balance is.



3.2 Additional Challenges

There are two additional challenges when aim-
ing to balance values: First, human judgements
of risks, costs, and benefits can vary considerably
across groups. These include cognitive heuristics
— such as the fact that people tend to have trou-
ble comprehending large numbers and have more
of a response to representative narratives (Slovic,
2010) — but also population biases in risk estima-
tion, where white men are often outliers in how
they (under)estimate risks (Finucane et al., 2000;
Flynn et al., 1994). This discrepancy makes it espe-
cially important to pay attention to the demographic
make-up of the sample of stakeholders providing
a risk estimate. Other related issues is the asym-
metry between perception of costs and benefits,
where Baumeister et al. (2001) find “bad [events]
to be stronger than good in a disappointingly relent-
less pattern," and that “bad events wear off more
slowly than good events." This effect is especially
pronounced in algorithmic systems, where people
apply higher standards than in their interaction with
other humans (Dietvorst et al., 2015). These find-
ings mean that the balance between costs and bene-
fits needs to be strongly tilted towards benefits to
appeal to humans subjectively.

The other challenge stems from the inherent un-
certainty and change in safety related concepts.
Early estimates of costs and benefits are often
plagued by uncertainty. This includes uncertainty
about future use (malicious misuse or unintended
use, broader or smaller adoption than planned, etc.),
and uncertainty about interaction with an evolv-
ing society and other innovations. Beyond uncer-
tainty, van de Poel (2018) draws attention to value
change and its sources, from the emergence of new
values in society to changes in how different val-
ues are weighed. As advocated in van de Poel
(2018), systems should be designed with a focus on
adaptability, robustness, and flexibility. In practical
terms for conversational models, this entails the use
of rapidly adaptable techniques (e.g., fine-tuning,
inference-time control, etc.). It also highlights the
importance of continually questioning assumptions
on what evaluation methods measure and investing
in methods that can evolve from ongoing feedback.

3.3 Value-sensitive design

Value-sensitive design (Friedman et al., 2008) in-
corporates human values throughout the design
process. It adopts an iterative process of concep-
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tual exploration, i.e., thinking about relevant val-
ues and how they manifest, about who the stake-
holders are, and what the tradeoffs between val-
ues ought to be); empirical investigations, includ-
ing surveys, interviews, empirical quantitative be-
havioural measurements, and experimental manip-
ulations; and technical investigation, i.e., eval-
uating how a given technology supports or hin-
ders specific values. Friedman et al. (2017) survey
several techniques to help practitioners implement
value-sensitive design, such as the “value dams
and flows" heuristic (Miller et al., 2007). Value
dams remove parts of the possible universe that
incur strong opposition from even a small fraction
of people. In contrast, value flows attempt to find
areas where many people find value. An exam-
ple of value dams would be thresholds on some
features, as a way to translate values into design
requirements (Van de Poel, 2013). This process
is reminiscent of the machine learning practice of
constrained optimisation, which combines satisfic-
ing constraints and maximising objectives. Van de
Poel (2013) reviews how to operationalise values
into design requirements.

4 A Framework for Researchers to
Deliberate Model Release

The topic of when and how to release LLMs de-
signed by research groups has been of increasing in-
terest to the community (e.g. Solaiman et al., 2019;
Crootof, 2019; Ovadya and Whittlestone, 2019;
Partnership on Al, 2020; Partnership on Al , 2021;
Liang et al., 2022). The case is similar for con-
versational models, with safety issues in particular
posited as a reason for withholding the release of
such models. For example, in a blog post about the
ConvAl model Meena (Adiwardana et al., 2020)
the authors cite safety challenges as a reason for
not releasing the model.?

Within the broader context of value-sensitive
design, and absent responsible release norms in
the field (Ovadya and Whittlestone, 2019; Liang
et al., 2022), we propose the following elements of
a framework to aid researchers in deliberating safer
release, and guidance to support learning during
and after release.

We ground our discussion in two relevant, theo-
retical case studies:

https://ai.googleblog.com/2020/01/
towards—-conversational-agent-that-can.
html accessed 10th May 2022.



* Case 1 — Open-sourcing a model: Researchers
train a several billion parameter Transformer
encoder-decoder model on (primarily) English-
language conversational data from the internet.
They publish a peer-reviewed paper on this
model. The researchers seek to open-source the
weights of their model such that other researchers
in the academic community can reproduce and
build off of this work.

* Case 2 — Releasing a research demo of a model:
The researchers from Case I would additionally
like to release a small scale demo of their model
through a chat interface on a website. Creating
such a demo would allow non-expert stakehold-
ers to interact with the model and gain a better
sense of its abilities and limitations.

4.1 Intended use

Explicitly surfacing the intended use of the released
model is a simple, but important, initial step. By
stating their intentions early in the research, and
re-evaluating at stages later in the process, the re-
searchers can track whether their intentions have
meaningfully drifted. In accordance with other ele-
ments of this framework, researchers can inquire:
Is the intended use expected to have “positive im-
pact,” and what does that mean in the context of
this model? To whom will these benefits accrue?
Lastly, is releasing the model in the intended fash-
ion necessary to fulfil the intended use?

At this stage, researchers might further consider
uses that do not fall within their conception of the
intended use. Explicitly deliberating on this might
bring to the fore vulnerabilities and possible ethical
tensions that could inform the release policies.

In Case 1, for example, the researchers’ inten-
tion may be to advance the state of the art in the
field and allow other researchers to reproduce and
build off of their work (Dodge et al., 2019). Out-
side of the intended use, however, the researchers
might imagine that — depending on the manner of
the release — a user could build a product utilising
the released model, resulting in unintended or pre-
viously unforeseen consequences. The researchers
may then adopt a release policy designed to limit
such an unintended use case. In Case 2, there are
many possible intended uses for releasing such a
demo. A primary intention might be to further re-
search on human-bot communication by collecting
data (with clear consent and privacy terms) to better
understand the functioning and limitations of the
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model. Alternatively, it may be to simply increase
awareness of the abilities and limitations of current
neural models among the general public.

4.2 Audience

The consequences of a model being released be-
yond the research group depend largely on both the
intended and unintended audiences of the release,
as well as the policies that support and guardrail
the research release (subsection 4.6). For conver-
sational Al, the language(s) the model was trained
on, the demographic composition and size of the
intended audience, and the intended audience’s fa-
miliarity with concepts and limitations of machine
learning and NLP are all important considerations.
Policies (subsection 4.6) may be designed to mini-
mize access outside of the intended audience of the
release where possible, so as to limit the potential
harms of use outside the model’s designed scope.
In both Case I and Case 2, the model in question
is trained primarily on English-language data, and
so we might expect the audience to be primarily
composed of English speakers, perhaps even those
of a particular cultural community or dialect. This
consideration is important both for user compre-
hension and due to the fact that different languages
have different ways of expressing and responding
to the same concept, like politeness, and different
cultures might vary in their evaluation of the same
concept. For example, Japanese requires the consid-
eration of the social hierarchy and relations when
expressing politeness (Gao, 2005), whereas English
can achieve the same effect by adding individual
words like “please.” Arabic-speaking cultures, on
the other hand, might find this use awkward, if not
rude, in conversations among close friends (Kadar
and Mills, 2011; Madaan et al., 2020).
Furthermore, in Case 1, the size of the audience
may be hard to gauge a priori. On the other hand,
in Case 2, the researchers/designers would have
strict control over the size of the audience. Re-
sulting policy decisions (section 4.6) will differ if
the audience is on the scale of tens, hundreds, or
millions of people interacting with this technology.
Lastly, in Case 1, access to the model may re-
quire deep technical knowledge of the program-
ming language the model was implemented in, and
as such, the audience would likely (although not
definitely) be limited to folks with a working knowl-
edge of machine learning and NLP, while in Case
2 a more general audience may be able to access



the model. This is important, as a general audience
may have different expectations and a different un-
derstanding of the limitations of systems (Bianchi
and Hovy, 2021). If the targeted audience is the
general public, a policy for releasing such a model
might explicitly include a means for transparently
communicating scope and expectations.

4.3 Envision Impact

The process of envisioning impact — including both
potential harms and benefits — is not straightfor-
ward, as documented by Ovadya and Whittlestone
(2019), Prunkl et al. (2021), Partnership on Al
(2020), and Partnership on AI (2021), among oth-
ers, and it may not always be possible to estimate
impact. The goal is to get ahead of potential harms
in order to direct tests, mitigation efforts, and de-
sign appropriate policies for mitigation and protec-
tion, however there must be caution against basing
release decisions solely on envisioned harms rather
than overall impact (subsection 3.2). This is the
conceptual exploration of value sensitive design
(subsection 3.3), similar in concept to the NeurIPS
broader impact statement (NeurIPS, 2020). It bene-
fits from consulting relevant community or domain
experts (subsection 4.5). Again, considering the au-
dience of the release matters here, e.g., considering
to whom the benefits of the model will accrue and
whether it might work less well for (or even harm)
some members of the audience/community.

To begin, researchers from Case I and Case 2
might conduct a review of previous, similar domain
research and the resulting impacts: If the research
incrementally improves upon previous work, could
the impacts be presumed similar to those of previ-
ous work? If not, how might those differences lead
to divergent impacts (positive and negative)? Per-
haps the model exhibits some issues described in
section 2. Beyond these, it may be helpful to think
outside the box, even constructing a fictional case
study (CITP and UHCYV) or thought experiment,
such as asking: How would a science fiction author
turn your research into a dystopian story? (Part-
nership on Al , 2021). Ovadya and Whittlestone
(2019) recommend bringing in wider viewpoints
(subsection 4.5), such as subject matter experts, for
increased understanding of the risk landscape.

4.4 Impact Investigation

After the conceptual exploration of impacts, at-
tempting to measure the expected impact can pro-
vide quantitative grounding. This means conduct-
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ing a technical investigation, evaluating how the
model supports or hinders the prioritised values.
We reiterate that it is not always possible to ac-
curately estimate impact, nevertheless, such em-
pirical analyses may guide next steps or appropri-
ate policies. Investigating benefits may be more
application-dependent than investigating harms, so
we encourage researchers to think through this for
their own particular use cases.

The authors in Case I and Case 2 may estimate
the frequency with which and the circumstances
under which their model behaves inappropriately
using human evaluators or automatic tooling, such
as the toolkit provided by Dinan et al. (2022) to
detect safety issues, for example. In Case 2, the au-
thors may undergo a “dogfooding” process for their
demo with a smaller audience that roughly matches
the composition of their intended audience.

4.5 Wider Viewpoints

Input from community or domain experts relevant
to the model application is highly recommended
throughout the model development process, and
indeed throughout this framework — from envision-
ing potential harms, to feedback for the purpose of
model improvement — but particularly so in release
deliberation to better understand the risk landscape
and mitigation strategies (Martin Jr et al., 2020;
Ovadya and Whittlestone, 2019; Bruckman, 2020).
Researchers could further consider the burgeoning
literature on participatory Al methodologies (e.g.
Martin Jr et al., 2020; Lee et al., 2019a).

In Case 1, the researchers may seek feedback
and discussions with researchers or potential users
outside of their immediate institution, community,
or more formal engagements through employment
or a workshop on related topics. Researchers could
reach out to stakeholder and advocacy groups for
input, where possible. In Case 2, researchers might
consider an explicit “dogfooding” step to gather
feedback from users, as described in subsection 4.4,
and expert representatives of social groups.

4.6 Policies

An important aspect of release is whether it is pos-
sible to design an effective guard-railing policy to
both bolster/maintain the positive outcomes while
mitigating any potential negative consequences.
For Case 1, in which a model is open-sourced
to the research community, policies might include
restrictive licensing or release by request only. If re-
leased only by request, then researchers who wish



to access the model would be required to contact
the model owners. This method upholds the re-
searchers values’ of reproducibility while poten-
tially limiting unintended uses, but incurs a pos-
sibly high maintenance cost if many researchers
send in requests with detailed plans of use which
would need to be examined and adjudicated. If
multiple model versions exist which might be ex-
pected to have differing impacts, the researchers
might consider adopting a staged release policy, as
in Solaiman et al. (2019). This would allow further
time and information to aid in technical investi-
gations prior to releasing the version expected to
have highest impact. Such a policy would be most
effective if users had ample opportunity to provide
feedback throughout the release stages.

For Case 2, releasing a small demo of a model on
a chat interface, the researchers may limit access to
the demo to a small group of people above a certain
age. This could be enforced through password
protection and cutting off access to the demo after a
certain number of unique users have interacted with
the model. Further, access might be revoked under
certain circumstances, €.g., in case new potential
for harm is detected and the model needs to be
corrected, or abusive access by certain users.

4.7 Transparency

Striving for transparency can help researchers and
model users reason through whether their use case
is appropriate and worth the risk of engaging
with the model (Diakopoulos, 2016). Consider
the methodology laid down for Model Cards by
Mitchell et al. (2019) to clarify the intended use
cases of machine learning models and minimise
their usages that fall outside of these parameters.

For Case 1, when open-sourcing the model, the
authors may consider releasing it with a model
card, following the content recommendations from
Mitchell et al. (2019). In such a model card they
might additionally report the outcome of any inves-
tigation into potential harms or benefits.

In Case 2, for a small-scale demo, a full model
card with abundant technical details may not be ef-
fective (see discussion in subsection 3.2), however,
the researchers might consider providing some
easily-digestible model information — such as the
institution responsible for the model, its intended
use, any potential harms and policies in place to
limit those harms, means for reporting or redress in
case of error or harm, or other relevant details. In
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order to sustain the value of informed consent, the
researchers might carefully craft the information
such that the user is informed that they are interact-
ing with an artificial conversational system, which
may be unclear due to the anthropomorphic design
cues from these models (Abercrombie et al., 2021).

4.8 Feedback to Model Improvement

Learning systems can produce unexpected out-
comes, and thus unforeseen harms. Particularly
as the environment (e.g., the world) in which the
model is operating changes. Researchers can gain
a better grasp on these with accessible and reliable
mechanisms to capture unexpected outcomes and
changes (e.g., a reporting form for the user to sub-
mit). Upon gathering feedback, researchers can
then use this information to improve the model in
future iterations, or consider how to design their
model to be adaptable to changes in values.

In Case 1, for example, it may be hard to control
or refer to the impact of open-sourcing the model.
However, the researchers might consider providing
access and encouraging reports of safety issues to
a well-monitored GitHub Issues page. In Case 2,
the researchers should consider how to design the
demo UI to empower users to report problems.

Provided meaningful feedback about safety is-
sues with the model in Case I and Case 2, the
researchers might release an updated version of the
model, particularly if the model is designed in a
way that makes it able to adapt easily to feedback.

5 Conclusion

Besides the overall challenges posed by large lan-
guage models, conversational models present spe-
cific issues. They are inherently dependent on the
unknown inputs of the users who will be repeat-
edly interacting with the systems and steering them
in combinatorially unpredictable directions. The
costs and benefits of releasing a model can thus
be hard to determine, especially when they only
appear after cascades of uncertain consequences
at different time scales. Reckoning with these is-
sues requires weighing conflicting, uncertain, and
changing values. To aid in this challenging process,
we provided a framework to support preparing for
and learning from model release, following princi-
ples of value-sensitive design. We illustrate each
of our proposed steps with concrete, hypothetical
scenarios to help practitioners in their reflection.
While this is a theoretical paper, informed by



an interdisciplinary collaboration, we believe in
the value of publishing it through an applied con-
ference since this will maximise the chances of
reaching our target audience.
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Abstract

Prior work has demonstrated that data augmen-
tation is useful for improving dialogue state
tracking. However, there are many types of
user utterances, while the prior method only
considered the simplest one for augmentation,
raising the concern about poor generalization
capability. In order to better cover diverse di-
alogue acts and control the generation qual-
ity, this paper proposes controllable user dia-
logue act augmentation (CUDA-DST) to aug-
ment user utterances with diverse behaviors.
With the augmented data, different state track-
ers gain improvement and show better robust-
ness, achieving the state-of-the-art performance
on MultiwOZ 2.1.!

1 Introduction

Dialogue state tracking (DST) serves as a back-
bone of task-oriented dialogue systems (Chen et al.,
2017), where it aims at keeping track of user in-
tents and associated information in a conversation.
The dialogue states encapsulate the required infor-
mation for the subsequent dialogue components.
Hence, an accurate DST module is crucial for a di-
alogue system to perform successful conversations.

Recently, we have seen tremendous improve-
ment on DST, mainly due to the curation of large
datasets (Budzianowski et al., 2018; Eric et al.,
2020; Rastogi et al., 2020) and many advanced
models. They can be broadly categorized into 3
types: span prediction, question answering, and
generation-based models. The question answer-
ing models define natural language questions for
each slot to query the model for the correspond-
ing values (Gao et al., 2020; Li et al., 2021). Wu
et al. (2019) proposed TRADE to perform zero-
shot transfer between multiple domains via slot-
value embeddings and a state generator. Sim-
pleTOD (Hosseini-Asl et al., 2020) combines all

*Equal contribution.

"The source code is available at https://github.
com/MiulLab/CUDA-DST.
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components in a task-oriented dialogue system
with a pre-trained language model. Recently,
TripPy (Heck et al., 2020) categorizes value predic-
tion into 7 types, and designs different prediction
strategies for them. This paper focuses on general-
ized augmentation covering all categories.

Another research line leverages data augmen-
tation techniques to improve performance (Song
et al., 2021; Yin et al., 2020; Summerville et al.,
2020; Kim et al., 2021). Most prior work used
simple augmentation techniques such as word in-
sertion and state value substitution. With recent
advances in pre-trained language models (Devlin
et al., 2019; Radford et al., 2019; Raffel et al.,
2020), generation-based augmentation has been
proposed (Kim et al., 2021; Li et al., 2020). These
methods have demonstrated impressive improve-
ment and zero-shot adaptability (Yoo et al., 2020;
Campagna et al., 2020), while our work focuses on
data augmentation with in-domain data.

The closest work is CoCo (Li et al., 2020), a
framework that generates user utterances given aug-
mented dialogue states. The examples are shown
in Figure 1, where the main differences between
CoCo and ours are that 1) CoCo only augments
user utterances in slot and value levels, but dialogue
acts and domains are fixed, making augmented data
limited. Our method can augment reasonable user
utterances with diverse dialogue acts and domain
switching scenarios. 2) Boolean slots and referred
slots are not handled by CoCo due to its higher com-
plexity, while our approach can handle all types of
values for better generalization.

This paper proposes CUDA-DST (Controllable
User Dialogue Act augmentation), a generalized
framework of generation-based augmentation for
improving DST. Our contribution is 2-fold:

* We present CUDA which generates diverse
user utterances via controllable user dialogue
acts augmentation.

* Our augmented data helps most DST mod-

Proceedings of the SIGdial 2022 Conference, pages 53—-61
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Turn 1

[User]: I need to find a restaurant in the center.

Turn 2

Recommendation { restaurant-name=pho bistro, restaurant-area=center }
[User]: No, it needs to serve British food and I'd like a reservation for 18:00.

{Confirm=FaIse, Inform{ restaurant-area=center, restaurant-food=British, restaurant-time=18:00 } ]

VS-Turn 2

[VS]: No, it needs to serve Chinese food and I'd like a reservation for 17:00.

\Confirm:False, Inform{ restaurant-area=center, restaurant-food=Chinese, restaurant-time=17:00 } \

CoCo-Turn 2

[CoCo]: No, it should serve Chinese food and | need to book a table for 2 people.

| Confirm=False, Inform{ restaurant-area=center, restaurant-food=Chinese, restaurant-people=2 } |

CUDA-Turn 2

[CUDA]: Thank you, can you also find me a hotel with parking near the restaurant?

\:Confirm=True, Inform{ restaurant-area=center, restaurant-name=pho bistro, hotel-area=center, hotel-parking=yes } \
h Ty v

Confirm

Domain Change Coreference Boolean

Figure 1: Augmented user utterances with the associated user dialogue acts and states from three methods.

els improve their performance. Specifically,
CUDA-augmented TripPy model achieves the
state-of-the-art result on MultiwOZ 2.1.

2 Controllable User Dialogue Act
Augmentation (CUDA)

The goal of our method is to augment more and
diverse user utterances that fit the dialogue context,
and then the augmented data can help DST models
learn better. More formally, given a system utter-
ance U;”" in the turn ¢ and dialogue history H;_;
before this turn, our approach focuses on augment-
ing a user dialogue act and state, Ay, and generating
the corresponding user utterance Utusr. Note that
each user utterance can be augmented.

To achieve this goal, we propose CUDA with
three components illustrated in Figure 2: 1) a user
dialogue act generation process for producing A,
2) a user utterance generator for producing Utusr,
and 3) a state match filtering process.

2.1 User Dialogue Act Generation

Considering that a user dialogue act represents the
core meaning of the user’s behavior (Goo and Chen,
2018; Yu and Yu, 2021), we focus on simulating
reasonable user dialogue acts given the system con-
text for data augmentation. After analyzing task-
oriented user utterances, user behaviors contain the
following user dialogue acts:

1. Confirm: The system provides recommen-
dation to the user, and the user confirms if
accepting the recommended item.

Reply: The system asks for a user-desired
value of the slots, and the user replies the cor-
responding value.
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3. Inform: The user directly informs the desired
slot values to the system.

Heck et al. (2020) designed their dialogue state
tracker that tackle utterances with different dia-
logue acts in different ways and achieved good
performance, implying that different dialogue acts
contain diverse behaviors in the interactions. To
augment more diverse user utterances, we intro-
duce a random process for each user dialogue act.
Unlike the prior work CoCo that did not generate
utterance whose dialogue act different from the
original one, our design is capable of simulating di-
verse behaviors for better augmentation illustrated
in Figure 2.

Confirm When the system provides recommen-
dations, our augmented user behavior has a prob-
ability of P.onfirm to accept the recommended val-
ues. When the user confirms the recommenda-
tion, the suggested slot values are added to the aug-
mented user dialogue state Ay as shown in Figure 1.
In the example, the augmented user dialogue act
is to confirm the suggested restaurant, and then
includes it in the state (restaurant-name=pho
bistro, restaurant-area=center).

Reply When the system requests a constraint for
a specific slot, e.g. “which area do you prefer?”,
the user has a probability of Pply to give the value
of the requested slot. Piepy may not be 1, because
users sometimes revise their previous requests with-
out providing the asked information.

Inform In anytime of the conversation, the user
can provide the desired slot values to convey his/her
preference. As shown in the original user utterance
of Figure 1, the user rejects the recommendation



System Turn USys System { User Dialogue Act Generation

Recommend

Confirm ( Peopfirm)

_ I recommend Pho Bistro, a
popular restaurant in the center. | System [Confirm=True |
Request . :
System Act . Reply ( Preply)
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Recommendation{ y! Inform

Coreference Augmentation (Pcoref)

Turn-Level Dialogue Act & State A,
Confirm=True
Inform{
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—
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hotel-parking=yes } )

User Utterance Generation
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Figure 2: The overview of the proposed CUDA augmentation process.

and then directly informs the additional constraints
(food and time). The number of additional in-
formed values is randomly chosen, and then the
slots and values are randomly sampled from the
pre-defined ontology and dictionary. Note that
the confirmed and replied information cannot be
changed during additional informing. Considering
that a user may change the domain within the dia-
logue, our algorithm allows the user to change the
domain with a probability of Pyomain, and then the
informed slots and values need to be sampled from
the new domain’s dictionary. The new domain is
selected randomly from all the other domains.

Coreference Augmentation In the generated
user dialogue act and state, all informed slot values
are from the pre-defined dictionary. However, it
is natural for a user to refer the previously men-
tioned information, e.g., “I am looking for a taxi
that can arrive by the time of my reservation”. To
further enhance the capability of handling coref-
erence, our algorithm has a probability of Peger
to switch the slot value from the generated user
dialogue state. Since not all slots can be referred,
we define a coreference list containing all referable
slots and the corresponding referring phrases, e.g.,
“the same area as” listed in Appendix A.

With the generated user dialogue acts and the
system action, we form the corresponding turn-
level dialogue act and state based on the confirmed
suggestions and referred slot values as shown in
the green block of Figure 2.

2.2 User Utterence Generation

To generate the user utterance associated with the
augmented user dialogue act and state, we adopt a
pre-trained TS5 (Raffel et al., 2020) and fine-tune it
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on the MultiWOZ dataset by a language modeling
objective formulated below:

ny
== loam(Uiy U
k=1

usr

usr
t,<k»

U, Hi1, Ay),
where denotes the k-th token in the user ut-
terance, Ht_l represents the all dialogue history

before turn ¢, and Ay is the user dialogue act and

state in the {-th turn. With the trained generator,

we can generate the augmented user utterance by

inputting the augmented user dialogue act and state

Ay as shown in the green block of Figure 2. In

decoding, we apply beam search so that we can

augment diverse utterances for improving DST.

2.3 State Match Filtering

To make sure the generated user utterance well
reflects its dialogue state, we propose two modules
to check the state matching: a slot appearance
classifier and a value consistency filter, where the
former checks if the given slots are included and
the latter focuses on ensuring the value consistency
between dialogue states and user utterances.

Slot Appearance Following Li et al., we employ
a BERT-based multi-label classification model to
predict whether a slot appears in the given ¢-th turn.
The augmented user utterances are eliminated if
they do not contain all slots in the user dialogue
state predicted by the model.

Value Consistency The slot values can be cat-
egorized into: 1) span-based, 2) boolean, and 3)
dontcare values. It is naive to check if the span-
based values are mentioned in the utterances, but
boolean and dontcare values cannot be easily iden-
tified. To handle the slots with boolean and dont-
care values, we propose two slot-gate classifiers



Dataset CUDA MultiwOZ
Span 100.00 64.61
Confirm (True) 5.27 5.84
Confirm (False) 0.44 0.32
Dontcare 0.67 2.46
Coreference 8.15 3.70
Multi-domain 13.10 24.48
#Turns 54,855 69,673

Table 1: Slot distribution in user utterances (%).

motivated by Heck et al. (2020). Each boolean
slot, e.g. internet or parking, is assigned to one
of the classes in Chpoo = {none, dontcare, yes, no},
while other slots are assigned to one of the classes
in Cspan = {none,dontcare,value}, where value
indicates the span-based value. Then for all slots
classified as span-based value, we check if all asso-
ciated values are mentioned in the generated utter-
ance. In addition, we use the coreference keywords,
e.g., same area, to handle the coreference cases.
We apply BERT (Devlin et al., 2019) to encode the
t-th turn in a dialogue as:

RS = BERT([CLS|@U™® @ [SEP]|®
U™ & [SEP)),

where R?LS denotes the output of the [CLS] token,
which can be considered as the summation of the
turn ¢. We then obtain the probability of the value
types as

bool _ SOftmaX(W;DOOI . RtCLS + b?ool) € R4,

ps,t
for each boolean slots, and

= softmax(WWsPan . RELS | pspan) ¢ R3

pzf)tan

for each span-based slots. Our multi-task BERT-
based slot-gate classifier is trained with the cross
entropy loss.

The neural-based filters are trained on the orig-
inal MultiWOZ data, and the prediction perfor-
mance in terms of slots (for both appearance and
value consistency) is 92.9% in F1 evaluated on the
development set. In our CUDA framework, we
apply the trained filters to ensure the quality of the
augmented user utterances as shown in Figure 2.

3 Experiments

To evaluate if our augmented data is beneficial for
improving DST models, we perform three popu-
lar trackers, TRADE (Wu et al., 2019), Simple-
TOD (Hosseini-Asl et al., 2020), and TripPy (Heck
et al., 2020), on MultiwOZ 2.1 (Eric et al., 2020).
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MultiwOZ TripPy TRADE SimpleTOD
Original 57.72 44.08 49.19
S 59.48 43.76 50.50
CoCo 60.46 43.53 50.25
CUDA 61280  44.86" 50.14
CUDA (-coref)  62.93 42.98 49.64

Table 2: Joint goal accuracy on MultiWOZ 2.1 (%). t
indicates the significant improvement over all baselines
with p < 0.05.

3.1 Experimental Setting

Our CUDA generator is trained on the training set
of MultiwWOZ 2.3 (Han et al., 2020) due to its ad-
ditional coreference labels. Note that all dialogues
are the same as MultiWwOZ 2.1. We then generate
the augmented dataset for the training set of Multi-
WOZ 2.1 for fair comparison with the prior work.
The predifined slot-value dictionary is taken from
CoCo’s out-of-domain dictionary and the defined
coreference list is shown in Appendix A.

In user dialogue act generation, the parame-
ters are set as (P confirm Preplya P domain P coref) =
(0.7,0.9,0.8,0.6), which can be flexibly adjusted
to simulate different user behaviors. We report the
distribution of slot types in our augmented data and
the original MultiwOZ data in Table 1, where it
can be found that our augmented slots cover diverse
slot types and the distribution is reasonably similar
to the original MultiWOZ. Different from the prior
work, CoCo, which only tackled the span-based
slots, our augmented data may better reflect the
natural conversational interactions. Additionally,
we perform CUDA with Per = 0 to check the
impact of coreference augmentation.

We train three DST models on the augmented
data and evaluate the results using joint goal ac-
curacy. The compared augmentation baselines in-
clude value substitution (VS) and CoCo (Li et al.,
2020) with the same setting.

3.2 Effectiveness of CUDA-Augmented Data

Table 2 shows that CUDA significantly improves
TripPy and TRADE results by 3.6% and 0.8% re-
spectively on MultiWwOZ, and even outperforms the
prior work CoCo. In addition, our CUDA augmen-
tation process has 78% success rate, while CoCo
only has 57%, demonstrating the efficiency of our
augmentation method and the great data utility. In-
terestingly, CUDA without coreference achieves
slightly better performance for TripPy while the
performance of TRADE and SimpleTOD degrade,



CoCo+(rare) TripPy TRADE SimpleTOD
Original 28.38 16.65 19.20
\D) 39.42 16.42 26.26
CUDA 48.83 17.79 29.32
CUDA (-coref)  48.67 16.80 28.66
CoCo 56.50 18.01 30.60

Table 3: Joint goal accuracy on CoCo+ (rare) (%).

achieving the new state-of-the-art performance on
MultiWOZ 2.1. The probable reason is that TripPy
already handles coreference very well via its refer
classification module, so augmenting coreference
cases may not help it a lot. In contrast, other gener-
ative models (TRADE and SimpleTOD) can ben-
efit more from our augmented coreference cases.
Another reason may be the small distribution of
coreference slots in MultiwOZ shown as Table 1,
implying that augmented data with too many coref-
erence slots does not align well with the original
distribution and hurts the performance.

3.3 Robustness to Rare Cases

We also evaluate our models on CoCo+ (rare)?, a
test set generated by CoCo’s algorithm (Li et al.,
2020), to examine model robustness under rare sce-
narios. Table 3 presents the results on CoCo+ (rare),
which focuses rare cases for validating the model’s
robustness. It is clear that the model trained on
our augmented data shows better generalization
compared with the one trained on the original Mul-
tiwOZ data, demonstrating the effectiveness on
improving robustness of DST models. The per-
formance of CoCo is listed as reference, because
comparing with its self-generated data is unfair.

3.4 Slot Performance Analysis

To further investigate the efficacy for each slot type,
Figure 3 presents its performance gain on TripPy.
Comparing with CoCo, CUDA improves more on
informed, refer, and dontcare slots. It implies that
CUDA augments diverse user dialogue acts for
helping informed and refer, and the proposed slot-
gate can better ensure value consistency for improv-
ing dontcare slots, even though they are rare cases
in MultiWOZ. Our model can also keep the same
performance for frequent span slots, demonstrat-
ing great generalization capability across diverse
slot types from our controllable augmentation. The
qualitative study can be found in Appendix B.

2CoCo+ (rare) applies CoCo and value substitution (VS)
with a rare slot-combination dictionary.
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Figure 3: Performance gain across slots on TripPy.

4 Conclusion

We introduce a generalized data augmentation
method for DST by utterance generation with con-
trollable user dialogue act augmentation. Experi-
ments show that our approach improves results of
multiple state trackers and achieves state-of-the-
art performance on MultiwOZ 2.1. Further study
demonstrates that trackers’ robustness and gener-
alization capabilities can be improved by diverse
generation covering different user behaviors.
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A Reproducibility

Our CUDA generator is trained on the training set
of MultiwOZ 2.3 (Han et al., 2020) due to its ad-
ditional coreference labels. Note that all dialogues
are the same as MultiWwOZ 2.1. We then generate
the augmented dataset using CUDA for the train-
ing set of MultiWOZ 2.1 for fair comparison with
the prior work. The predifined slot-value dictio-
nary is taken from CoCo’s out-of-domain dictio-
nary shown in Table 4 and the defined coreference
list is shown in Table 5.

B Qualitative Study

The augmented data samples are shown in Figure 4.
It can be found that the augmented user utterances
can fluently switch the domain and include asso-
ciated slot values that are aligned well with the
dialogue states.
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Slot Name

| Possible Values

hotel-internet’

[‘yes’, ‘no’, ‘dontcare’]

hotel-type [‘hotel’, ‘guesthouse’]

hotel—pm’la'ngJr [‘yes’, ‘no’, ‘dontcare’]

hotel-price [‘moderate’, ‘cheap’, ‘expensive’]

hotel-day [‘march 11th’, ‘march 12th’, ‘march 13th’, ‘march 14th’, ‘march 15th’, ‘march 16th’, ‘march 17th’,
‘march 18th’, ‘march 19th’, ‘march 20th’]

hotel-people [©20°, 217, 227, 237, 247, 257, 26°, ‘277, 28’, 29’]

hotel-stay [©20°, 217, 227, 237, 247, 25°, 26°, ‘277, 28’, 29’]

hotel-area [‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]

hotel-stars

[0°, ‘1", 2", “3’, *4’, °5’, “dontcare’]

hotel-name

[‘moody moon’, ‘four seasons hotel’, ‘knights inn’, ‘travelodge’, ‘jack summer inn’, ‘paradise point
resort’]

restaurant-area

[‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]

restaurant-food

[‘asian fusion’, ‘burger’, ‘pasta’, ‘ramen’, ‘taiwanese’, ‘dontcare’]

restaurant-price

[‘moderate’, ‘cheap’, ‘expensive’, ‘dontcare’]

restaurant-name

[‘buddha bowls’, ‘pizza my heart’, ‘pho bistro’, ‘sushiya express’, ‘rockfire grill’, ‘itsuki restaurant’]

restaurant-day

[‘monday’, ‘tuesday’, ‘wednesday’, ‘thursday’, ‘friday’, ‘saturday’, ‘sunday’]

restaurant-people

[20°, 21°, 227, *23°, 24°, *25°, “26°, 27°, ‘28’, 29°]

restaurant-time

[‘19:01°, “18:06°, ‘17:11°, ‘19:16°, “18:21°, *17:26°, “19:31°, ‘18:36’, ‘17:41°, 19:46°, ‘18:51", ‘17:56’,
“7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, “7:17 pm’, ‘6:17 pm’, ‘5:27 pm’, ‘7:32 pm’, ‘6:37 pm’, ‘5:42 pm’,
“7:47 pm’, ‘6:52 pm’, ‘5:57 pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25
am’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]

restaurant-food [‘asian fusion’, ‘burger’, ‘pasta’, ‘ramen’, ‘taiwanese’, ‘dontcare’]

taxi-arrive [‘17:26°, “19:31°, “18:36°, ‘17:41°, ‘19:46°, *18:51°, ‘17:56°, *7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, ‘7:17 pm’,
‘6:17 pm’, ‘5:27 pm’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]

taxi-leave [19:01°, “18:06°, “17:11°, *19:16°, “18:21°, *7:32 pm’, ‘6:37 pm’, ‘5:42 pm’, ‘7:47 pm’, ‘6:52 pm’, ‘5:57

pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25 am’]

taxi-depart

[‘moody moon’, ‘four seasons hotel’, ‘knights inn’, ‘travelodge’, ‘jack summer inn’, ‘paradise point
resort’]

taxi-dest

[‘buddha bowls’, ‘pizza my heart’, ‘pho bistro’, ‘sushiya express’, ‘rockfire grill’, ‘itsuki restaurant’]

train-arrive

[17:26°, “19:31°, “18:36°, ‘17:41°, *19:46°, “18:51°, *17:56°, *7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, “7:17 pm’,
‘6:17 pm’, ‘5:27 pm’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]

train-leave

[19:01°, “18:06°, “17:11°, “19:16°, “18:21°, *7:32 pm’, ‘6:37 pm’, ‘5:42 pm’, ‘7:47 pm’, ‘6:52 pm’, ‘5:57
pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25 am’]

train-depart

[‘gilroy’, ‘san martin’, ‘morgan hill’, ‘blossom hill’, ‘college park’, ‘santa clara’, ‘lawrence’, ‘sunnyvale’]

train-dest [‘mountain view’, ‘san antonio’, ‘palo alto’, ‘menlo park’, ‘hayward park’, ‘san mateo’, ‘broadway’,
‘san bruno’]
train-day [‘march 11th’, ‘march 12th’, ‘march 13th’, ‘march 14th’, ‘march 15th’, ‘march 16th’, ‘march 17th’,

‘march 18th’, ‘march 19th’, ‘march 20th’]

train-people

[20°, 21°, 227, *23°, 24°, 25°, 267, 27°, “28’, 29°]

attraction-area

[‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]

attraction-name

[‘grand canyon’, ‘golden gate bridge’, ‘niagara falls’, ‘kennedy space center’, ‘pike place market’, ‘las
vegas strip’]

attraction-type

[‘historical landmark’, ‘aquaria’, ‘beach’, ‘castle’, ‘art gallery’, ‘dontcare’]

Table 4: The pre-defined slot-value dictionary, where } indicates a binary slot.
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Slot Name

Referred Slot Name | Referred Key Value

hotel-price

restaurant-price

[‘same’, ‘same price’, ‘same price range’]

train-day

[‘same’, ‘same day’]

hotel-da < — 5
Y restaurant-day [‘same’, ‘same day’]
train-people ‘same’, ‘same group’, ‘same party’
hotel-people peop [‘ — & p’ : P y,]
restaurant-people [‘same’, ‘same group’, ‘same party’]
restaurant-area [‘same’, ‘same area’, ‘same part’, ‘near the restaurant’]
hotel-area

attraction-area

[‘same’, ‘same area’, ‘same part’, ‘near the attraction’]

restaurant-area

hotel-area

[‘same’, ‘same area’, ‘same part’, ‘near the hotel’]

attraction-area

[‘same’, ‘same area’, ‘same part’, ‘near the attraction’]

restaurant-price

hotel-price

[‘same’, ‘same price’, ‘same price range’]

restarant-day train-day [‘same’, ‘same day’]
hotel-day [‘same’, ‘same day’]
restaurant-people train-people [‘same’, ‘same group’, ‘same party’]
hotel-people [‘same’, ‘same group’, ‘same party’]
hotel-name [‘the hotel’]

taxi-depart restaurant-name [‘the restaurant’]
attraction-name [ ‘the attraction’ ]
hotel-name [“the hotel’]

taxi-dest restaurant-name [‘the restaurant’]

attraction-name

[‘the attraction’]

taxi-arrive

restaurant-time

[ ‘the time of my reservation’, ‘the time of my booking’]

train-day

restaurant-day

[‘same’, ‘same day’]

attraction-area

hotel-day [‘same’, ‘same day’]
. restaurant-people ‘same’, ‘same group’, ‘same party’
train-people peop [‘ — EOUp. < P y,]
hotel-people [‘same’, ‘same group’, ‘same party’]
hotel-area [‘same’, ‘same area’, ‘same part’, ‘near the hotel’]

restaurant-area

[‘same’, ‘same area’, ‘same part’, ‘near the restaurant’]

Table 5: The coreference list. The slots that is not referable will not be displayed in the above table.

Example
Confirm
Coref
Domain

Example
Confirm
Domain

Example
Reply
Binary

Example
Dontcare

Example
Confirm
Coref
Domain

Dialogues

CUDA Turn label

[sys]:Byard Art is near where you will be eating. The
entrance fee is free.

[cuda]:Thank you. Can you help me find a train that
leaves after 19:16 on the same day as the restaurant?

[sys]:I suggest the broughton house gallery. Is there
anything else I could help you with ?

[cuda]:Yes, I'm looking for an expensive restaurant.
I 'd like to make a reservation for Saturday.

[sys]:There are five hotels that meet your
requirements. Is there a certain part of town you are
looking in ?

[cuda]:Yes, I 'd like to stay in the east, and I need
it to have free wifi. I 'll need it for 24 people.

[sys]: No. I am sorry. there isn’t. something else
perhaps?

[cuda]:How about an art gallery? I don't care what
area it is in.

[sys]: Okay , we have the cambridge university
botanic gardens in the centre of town . Will that
work for you ?

[cuda]:Yes, I need a taxi to get me to itsuki
restaurant by the time of my reservation.

attraction-name: Byard Art
train-leaveat: 19:16
train-day: monday

attraction-name: the broughton house gallery
restaurant-book day: saturday
restaurant-pricerange: expensive

hotel-area: east
hotel-internet: yes
hotel-book people: 24

attraction-type: art gallery
attraction-area: dontcare

attraction-area: centre

attraction-name: cambridge university botanic gardens
taxi-destination: itsuki restaurant

taxi-arriveby: 15:45

Figure 4: The CUDA-generated examples. The red tags indicate the strategies implemented by CUDA.
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Abstract

Corpora of argumentative discourse are com-
monly analyzed in terms of argumentative units,
consisting of claims and premises. Both argu-
ment detection and classification are complex
discourse processing tasks. Our paper intro-
duces a semantic classification of arguments
that can help to facilitate argument detection.
We report on our experiences with corpus anno-
tations using a function-based classification of
arguments and a procedure for operationalizing
the scheme by using semantic templates.

1 Introduction

The corpus-based analysis of argumentative texts
is a widely used discourse processing task needed
both for an in-depth understanding of this basic
discourse type, and in the field of argument mining.
We here present an annotation scheme that has been
developed as part of a project for gaining detailed
insight into the linguistic features of arguments.
These features can be used for machine learning
as well as for the task of argument detection in the
study of discourse and discourse processing.

In contrast to other approaches in the field, our
method aims at the identification and classifica-
tion of arguments, and not at the analysis of an
overall argumentation structure (cf., for example,
Peldszus et al. 2016). We argue that the annota-
tion scheme will facilitate the annotation process in
many applications of argument detection, enabling
both researchers and annotators to zoom into lin-
guistic characteristics that pertain to a specific class
of arguments rather than to the notion of ‘argument’
as a whole. The approach therefore reduces some
of the vagueness of the category of ‘argument’ and
adds to the transparency of annotators’ decisions.

Arguments are used for different purposes, aim-
ing to persuade an addressee to believe, evaluate,
or do something (see e.g. Eggs 2008; Stede and
Schneider 2019). We use this functional versatility
of arguments as a starting point for our annotation
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scheme. More precisely, we propose a systematic
testing procedure during which annotators use a set
of linguistic templates on a given text passage to
determine whether it is an argument or not, and,
if so, which argumentative function it has. We are
currently developing and evaluating this approach
with a corpus of COVID-19-related news opinion
texts from The New York Times.

This paper is structured as follows. In section 2,
we introduce the general idea of a function-based
argument classification and briefly describe our
corpus. In section 3, we present and evaluate our
initial, rather ad hoc annotation efforts. In section 4,
we introduce our function-based annotation scheme
and report on our progress in terms of workflow
and inter-annotator agreements. In section 5, we
summarize our insights and provide an outlook.

2 Background

2.1 Arguments and argument categories

Theories of discourse generally claim that argu-
ments do not have a particular linguistic form, but
appear in all sorts of linguistic structures (e.g.,
Smith 2003; Virtanen 2010; Dorgeloh and Wan-
ner 2010). Accordingly, the annotation of argu-
ments in corpora is still a challenge because “a
substantial amount of knowledge needed for the
correct recognition of the argumentation, its com-
posing elements and their relationships is not ex-
plicitly present in the text” (Moens 2018, 1; see
also Lawrence and Reed 2020). Resulting from this
difficulty, argument detection schemes so far often
avoid cross-topic transfer (e.g., Nguyen and Lit-
man 2015; Liebeck et al. 2016), but schemes for
more heterogeneous corpora also exist (e.g., Stab
et al. 2018; Cabrio and Villata 2018; Ein-Dor et al.
2020). Such work from argument mining typically
relies on recurrent patterns identified by the NLP
model used, but does not imply a systematic, truly
topic-independent classification of arguments.
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Argumentative discourse is characterized by pre-
senting a central, disputed issue, the major claim,
which the author argues for or against (Stab and
Gurevych 2017). That is, they aim to persuade
an addressee to believe and/or evaluate and/or do
something, and they provide a number of argu-
ments to this end (van Eemeren and Grootendorst
2004; Stede and Schneider 2019). This variability
of what an argument is ultimately intended to do
is often commented on in existing approaches, for
example as an argument being either the expression
of (positive or negative) stance, or of a policy or
action to be taken (e.g., Hidey et al. 2017; Ein-Dor
et al. 2020).

We suggest that this functional complexity of
argumentation is exactly what is needed for the
aim of developing a topic-independent classifica-
tion scheme that can be applied to arguments as
a whole. In the annotation scheme we developed,
we distinguish between epistemic, ethical and de-
ontic arguments, as first proposed by Eggs (2008;
see Stede and Schneider 2019 for a summary in
English). The three types are illustrated in Table 1.

Table 1: Argument categories

polarity  epistemic  ethical deontic
positive X is true xisgood dox
negative xisfalse  xisbad don’t do x

In addition to an argument being understood by
its function, the most common definition is that it
has two components, the claim and the premise.
The claim is typically described as a controversial
statement which provides the topic of the argument,
and its premise is then a statement which provides
evidence or expresses reasoning that either sup-
ports or attacks the claim (Stab et al. 2018). The
link between a claim and its premise can thus be
conceptualized as a directed argumentative relation,
with a premise as the source and a (major) claim as
its target (Stab and Gurevych 2014b). Each argu-
ment classified by our annotation scheme needs to
have these two components expressed in the text.

2.2 Corpus compilation

Our corpus is currently being developed at Hein-
rich-Heine-University Diisseldorf (‘HHU’) as part
of a collaborative project of both linguists and
computer scientists working on argumentative dis-
course. So far, it consists of 25 COVID-19-related
news opinion texts from The New York Times
(29,466 words), and it will be consecutively ex-
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panded as the annotations progress. The corpus is
designed to provide us with an inventory of argu-
ments, divided into components and categorized by
function and polarity. This inventory will first be
used for linguistic analysis and, at a later stage, for
an experiment with human subjects on argument-
specific discourse relations, as well as for machine
learning experiments.

3 The initial annotation process

Our first set of annotations (‘set 1) was created
before the introduction of our annotation scheme.
Four annotators were instructed to apply a basic,
simplified notion of ‘argument,” consisting of a
claim that is either supported or attacked. Practical
issues of claim detection and annotation (e.g. size
of the discourse unit, treatment of quotes within the
texts) were discussed at regular meetings, leading
the group from an initial, very thorough exemplary
discussion of three texts (subset 1-1, 3,653 words)
to an annotation of another ten texts in one hit (sub-
set 1-2, 11,646 words). Annotations were created
in the INCEpTION tool (Klie et al. 2018), hosted
on a HHU server.

As the annotation task is not only a coding
but also a unitizing task, we measure the inter-
annotator agreement using Krippendorff’s unitiz-
ing alpha (Krippendorff et al., 2016). This mea-
sure works with an arbitrary number of annotators
(where not all have to annotate all texts) and de-
termines the degree of observed disagreement in
relation to the expected disagreement (assuming
random annotations). Values range from -1 to 1,
with values around zero representing random an-
notations, positive values representing more agree-
ment among the annotators, and negative values
representing more disagreement than expected by
chance. The results for both subsets are displayed
in Table 2.! We counted whether the annotators
identified a given text passage as a premise, as a
claim, or not as an argument component at all.

While subset 1-1 showed promising inter-anno-
tator agreement scores, subset 1-2 comes with dis-
appointing scores. The good values for subset 1-1
are likely the result of the initial, intensive discus-
sion between and with the annotators, producing
biased annotations. Comparing this to the weaker
values for subset 1-2, it seems obvious that the an-

!The ID numbering starts at 10 because the very first anno-
tations did not turn out to be suitable for our purposes, which
is why the first nine texts were excluded from the corpus.



Table 2: Inter-annotator agreement (‘iaa’) of set 1 for
annotating premise vs. claim vs. nothing, by text (Krip-
pendorff’s unitizing alpha, Krippendorff et al. 2016)

subset id  1iaa # of annotators
1-1 10 0.2713 3
1-1 11 0.4078 3
1-1 12 0.2646 3
1-2 13 0.1932 3
1-2 14 -0.0268 3
1-2 15 0.3851 3
1-2 16 0.3002 3
1-2 17 0.0123 3
1-2 18  0.1705 3
1-2 19  0.0941 3
1-2 20 0.3853 3
1-2 21 0.1891 3
1-2 22 0.0681 3

notators need more precise guidelines than what
was provided in this second annotation round. This
is supported by the fact that introducing a sys-
tematic annotation scheme has also been shown
to improve inter-annotator agreement in previous
projects involving argument annotation (see Stab
and Gurevych 2014a). Therefore, our logical next
step was to introduce such a scheme, as described
in the next section.

4 Introducing an annotation scheme

Our updated annotation process is divided into
three major steps (see the similar approaches in e.g.
Stab and Gurevych 2014a; Peldszus et al. 2016):

1. Identify the major claim: The annotator reads

the full text in order to understand the overall

argumentation, and annotates or formulates

the major claim.

Identify claims and premises: The annotator

identifies claims and premises according to a

set of criteria, and labels them by semantic

category.

. Review and submit: The annotator goes
through the whole text again to finalize their
annotation, and submits their annotated text.

We here focus on step two, the identification
of claims and premises. Specifically, we describe
the approach we apply to identify arguments by
systematically categorizing them semantically. For
further information on steps one and three see our
annotation guidelines (Kawaletz et al. in prep).

In order for a pair of text passages to be included
in our database as an argument, it must meet the
following criteria:

1. x is a controversial statement (the claim)
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2. x is supported or attacked by y (the premise)
3. x supports, attacks or repeats the major claim
4. x is an epistemic, ethical or deontic claim

The first two criteria represent the standard defi-
nition of claim and premise (see above), while the
third one guarantees that our resulting database has
a homogeneous subject matter (in order to facili-
tate future experiments involving cross-topic trans-
fer). The final criterion, which distinguishes our ap-
proach from other, existing ones, is the obligatory
assignment of the claim to one of three semantic
categories.

In order to test a pair of text passages for these
criteria, annotators insert them into linguistic tem-
plates (see Kawaletz et al. in prep for details). For
the final, semantic criterion, these templates take
the form °x, [___]y’ as presented in Table 3. These
templates make use of the connectors and (for sup-
port relations) and but (for attack relations), of sen-
tential negation (e.g. not true negating true), lexi-
cal negation (e.g. false negating true), lexical cues
(e.g. approve/disapprove for ethical claims), and
indication of stress by means of italics to increase
grammatical acceptability. All templates may be
adapted by the annotator to fit a given syntactic
context.

The application of these templates is exemplified
in (1). There, we see a claim (bold print) and a
premise (underlined) from our corpus, inserted in
the template which tests for a supported, positive,
deontic claim (represented in Table 3 by and do this
because). By inserting the two text passages into
this template, both the argumentative function and
the relation between claim and premise are made
explicit.

(1) a. [M]asking should be mandated and

enforced.

b. And this should be done because [i]t’s
not just about your individual risk toler-
ance, but about keeping everyone safe.

By systematically applying such templates, our
annotation process is now based on principled lin-
guistic judgments rather than on ad hoc decisions.
At the point of writing this paper, we have ap-
plied our annotation scheme to 12 texts (14,167
words), with promising results: Annotators have
reported that applying the provided patterns and
being obliged to think about a given text passage
in functional terms facilitates argument identifi-
cation from the start. Thus, by specifying the in-



Table 3: Templates testing for claim categories

claim category

positive claim

negative claim

and this is false because
and this is not the case because

but this is not false because
but this is the case because

and this is bad because

and I find this bad because
and I disapprove because
and what is bad about this is

epistemic
support and this is true because
and this is the case because
attack but this is not true because
but this is not the case because
ethical
support and this is good because
and I find this good because
and I approve because
and what is good about this is
attack but this is bad because
but what is bad about this is
deontic
support and do this because
attack but don’t do this because

but this is good because
but what is good about this is

and don’t do this because

but do do this because

ternal, semantic structure of the category claim
thoroughly, its separation from premises as well as
non-argument units becomes clearer. Furthermore,
discussions about the status of text passages as ar-
gumentative discourse units go more smoothly.

These impressions are backed up by a clear trend
toward increasing inter-annotator agreements, as
illustrated in Figure 1. In set 2, annotators reached
an agreement of up to a rounded 0.6 (as compared
to 0.4 for set 1), with no negative values. How-
ever, this difference does not come out as signifi-
cant, as is shown by an unpaired t-test comparing
set 1 (M =0.208831, SD = 0.143289) and set 2
(M = 0.315300, SD = 0.190852); t(23) = 1.5857,
p = 0.1265. The fact that we have not been able to
support our intuition statistically is likely due to
the small sample size and is currently being tested
on more texts as the project progresses.

Introducing the argument categories has not only
had beneficial effects, however. The annotators
have also reported that actually deciding on one
functional label is often difficult, due to ambigui-
ties in the text. Interestingly, this sentiment is not
reflected in the inter-annotator agreements for set
2: As shown in Table 4, for any given text the dif-
ference between the more basic decision (premise
vs. claim vs. nothing) and the more complex deci-
sion on a specific claim label (premise vs. epistemic
claim vs. ethical claim vs. deontic claim vs. noth-
ing) is negligible. A paired t-test reveals that there
is indeed no significant difference between the two
(p/c/@: M = 0.315300, SD = 0.190852; ep/et/d/@D:
M = 0.316033, SD = 0.188318; t(11) = 0.2020,
p =0.8436).

65

0.60
0.55 +
0.50
0.45 —
0.40
0.35
0.30
0.25 +
0.20
0.15
0.10
0.05 —

1
1
:
0.00 X

-0.05 T T 1
set 1 set2

iaa

_
1

Figure 1: Inter-annotator agreement (‘iaa’) of sets 1 and
2 for annotating premise vs. claim vs. nothing (Krippen-
dorff’s unitizing alpha, Krippendorff et al. 2016)

Table 4: Inter-annotator agreement (‘iaa’) of set 2
by text (Krippendorff’s unitizing alpha, Krippendorff
et al. 2016), comparing premise vs. claim vs. nothing
(‘p/c/@’) and premise vs. epistemic claim vs. ethical
claim vs. deontic claim vs. nothing (‘p/ep/et/d/@’).

subset id  iaa iaa # of
(p/c/D)  (pleplet/d/@)  annotators
2-1 23 0.1811 0.181 4
2-1 24 0.2809 0.2657 4
2-2 25 0.0951 0.113 3
2-2 26 0.2516  0.2798 3
2-2 27  0.5906 0.5953 3
2-2 28 0.2496 0.2391 3
2-2 29  0.0446 0.0428 3
2-2 30 0.2638 0.2623 3
2-2 31  0.5531 0.5525 3
2-2 32 0.2046  0.2027 3
2-2 33 0.5982 0.5829 3
2-2 34 04704 04753 3




Apart from further improvements in inter-
annotator agreement, we presume that applying
a semantic classification of arguments is likely to
reduce false positives in manual annotation as well.
The text passage in (2), for example, was wrongly
classified as an argument by one of three annotators
during initial annotation. Applying the templates
from Table 3, however, shows that the passage does
not fit in either of the twelve categories, as ex-
emplified in (2) with the pattern and this is true
because for the category positive, epistemic, sup-
ported claim.

(2) a. The U.S. Supreme Court threatens to

get into the action, too.

b. In May, four conservative justices [...]
dissented from an order in South Bay
United Pentecostal Church v. New-
som allowing California’s COVID-19-
related restrictions to remain in place
for gatherings at places of worship.
2" The U.S. Supreme Court threatens to
get into the action, too.

# And this is true because, [i]n May,
four conservative justices [...] dis-
sented from an order in South Bay
United Pentecostal Church v. New-
som allowing California’s COVID-19-
related restrictions to remain in place
for gatherings at places of worship.

In this example, (2a) is a controversial statement
and thus a valid candidate for a claim, but (2b)
does not support (nor attack) it. Rather, it specifies
more exactly what happened, as can be shown by
applying another one of our templates, namely ‘X.
What happened is that y.’:

(2”) a. The U.S. Supreme Court threatens to

get into the action, too.

b. What happened is that, [iJn May, four
conservative justices [...] dissented
from an order in South Bay United Pen-
tecostal Church v. Newsom allowing
California’s COVID-19-related restric-
tions to remain in place for gatherings

at places of worship.

As these examples, contrasting with (1) above, il-
lustrate, the point of the semantic classification and
of the corresponding paraphrases is to enable an-
notators in the early stage of argument detection to
make informed, well-founded decisions. Previous
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work with semantic types left the initial argument
detection to experts and applied a semantic classi-
fication separately (see Hidey et al. 2017), while
our approach aims at an improved identification of
arguments, which then become available for thor-
ough linguistic investigation.

5 Conclusion and outlook

In this paper, we have sketched an annotation
scheme which builds on a function-based classi-
fication of arguments. By systematically applying
an array of linguistic templates to pairs of text pas-
sages, the annotation process is streamlined and fa-
cilitated. A first trend for improved inter-annotator
agreements, however, has yet to be statistically con-
firmed. In the long run, we expect significant im-
provements in annotator recall as well as a less
labor-intensive creation of a gold standard (i.e., the
curation of the annotated texts by an expert linguist
annotator).

In order to further improve our results in terms
of inter-annotator agreement and annotator recall,
we are currently refining our work flow: For the
third set of annotations, we have restricted our cor-
pus to editorials, a more homogeneous subgenre
of newspaper opinion pieces, and we are limiting
text length to between 40 and 70 sentences in or-
der to avoid too much variation in how the texts
deal with argumentation in general. In addition, all
annotators are actively involved in the text selec-
tion process, pre-assessing and potentially rejecting
each text according to a growing catalogue of crite-
ria (e.g. too anecdotal, too many direct quotes).

In the future, apart from the methodological ben-
efits of applying a semantically-grounded anno-
tation scheme, ultimately we will also be able to
investigate the semantic types per se. Possible re-
search questions are, for example, which linguistic
features annotators and/or machines use to catego-
rize arguments, and how our classification scheme
relates to others (e.g. Hidey et al. 2017 on interpre-
tation, evaluation, and agreement/disagreement).
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Abstract

Depression is a serious mental illness that im-
pacts the way people communicate, especially
through their emotions, and, allegedly, the way
they interact with others. This work examines
depression signals in dialogs, a less studied
setting that suffers from data sparsity. We hy-
pothesize that depression and emotion can in-
form each other, and we propose to explore
the influence of dialog structure through topic
and dialog act prediction. We investigate a
Multi-Task Learning (MTL) approach, where
all tasks mentioned above are learned jointly
with dialog-tailored hierarchical modeling. We
experiment on the DAIC and DailyDialog cor-
pora — both contain dialogs in English — and
show important improvements over state-of-
the-art on depression detection (at best 70.6%
F,), which demonstrates the correlation of de-
pression with emotion and dialog organization
and the power of MTL to leverage information
from different sources.

1 Introduction

Depression is a serious mental disorder that affects
around 5% of adults worldwide.! It comes with
multiple causes and symptoms, leading to major
disability, but is often hard to diagnose, with about
half the cases not detected by primary care physi-
cians (Cepoiu et al., 2008). Automated detection
of depression, sometimes associated to other men-
tal health disorders, has been the topic of several
studies recently, with a particular focus on social
media data and online forums (Coppersmith et al.,
2015; Benton et al., 2017; Guntuku et al., 2017;
Yates et al., 2017; Song et al., 2018; Akhtar et al.,
2019; Rissola et al., 2021). The ultimate goal of
such system would be to complement expert assess-
ments, but such empirical studies are also valuable
to better understand how communication is affected
by health disorders. In this paper, we propose to

"https://www.who.int/news-room/
fact-sheets/detail/depression
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investigate depression detection within dialogs, a
scenario less studied but more similar to the in-
terviews with clinicians, which allegedly involves
dialog features and also allows to examine how
interaction is affected.

However, depression detection suffers from data
sparsity. In fact, using social media data was a
way to tackle this issue, including considering data
generated by self-diagnosed users — a method that
leads to potentially noisy data and comes with eth-
ical issues (Chancellor et al., 2019). We rather
examine a dataset of 189 clinical interviews, the
DAIC-WOZ (Gratch et al., 2014), collected by ex-
perts to support the diagnosis of distress condi-
tions. Participants are identified as depressive or
not, and if so they receive a severity score. A line
of work proposed to overcome data scarcity by
leveraging varied modalities, e.g., using audio as in
Al Hanai et al. (2018). Previous approaches were
solely based on textual information relied on hi-
erarchical contextual attention networks on word
and sentence-level representations (Mallol-Ragolta
et al., 2019), or Multi-Task Learning (MTL) but
limited to combing identification and severity pre-
diction (Qureshi et al., 2019; Dinkel et al., 2019),
possibly with emotion (Qureshi et al., 2020).

Inspired by the latter approaches, we also pro-
pose relying on the MTL framework to help our
model leverage information from different sources.
We exploit three auxiliary tasks: emotion classifica-
tion — naturally tied to mental health states —, and
dialog act and topic classification, hoping the shal-
low information about the dialog structure could
further enhance the performance. Our architecture
is classic, based on hard-parameter sharing (Ruder,
2017), simpler than the shared-private architecture
in (Qureshi et al., 2020) but has shown effective. In
order to take into account dialog organization, we
advocate for a dialog-tailored hierarchical architec-
ture with some tasks performed at the speech turn
level and others at the document level.

Proceedings of the SIGdial 2022 Conference, pages 68—75
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Our contributions are: (i) An empirical study
on depression detection in dialogs, leveraging the
power of multi-task learning to deal with data spar-
sity; (ii) An extension of previous work in examin-
ing the effects of depression on dialog structure via
shallow markers, i.e., dialog acts and topics, as a
first step; (iii) State-of-the-art results on depression
detection in DAIC test set with 70.6% in F; at best.

2 Related work

Within multi-task learning (MTL), a model has
to learn shared representations to generalize the
target task better. It improves the performance
over single-task learning (STL) by leveraging com-
monalities or correlations between tasks. Recent
years have witnessed a series of successful applica-
tions in various NLP tasks, as in Collobert and We-
ston (2008); Segaard and Goldberg (2016); Ruder
(2017); Ruder et al. (2019), which demonstrate the
effectiveness of MTL in learning information from
different but related sources. It also tackles the data
sparsity issue and reduces the risk of overfitting
(Mishra et al., 2017; Benton et al., 2017; Bingel
and Se¢gaard, 2017).

Joshi et al. (2019) demonstrated the benefit of
MTL for specific pairs of close health prediction
tasks on tweets. Benton et al. (2017) used MTL on
social media data and achieved important improve-
ments in predicting several mental health signals,
including suicide risks, depression, and anxiety, to-
gether with gender prediction. With a focus on de-
pression detection, the shared task AVEC in 2016
(Valstar et al., 2016) has brought out a series of
multi-modal studies using vocal and visual features
on the DAIC-WOZ dataset (Gratch et al., 2014).
Some of which also explored text-level features:
Williamson et al. (2016) used Gaussian Staircase
Model with semantic content features and reported
a SOTA score on the validation set. Al Hanai et al.
(2018) and Haque et al. (2018) learned sentence em-
beddings with an LSTM network. However, their
results on textual features are lower than SOTA
by a large margin. Dinkel et al. (2019) compared
different word and sentence embeddings and var-
ious pooling strategies. Their best model is mean
pooling with ELMo embeddings. Qureshi et al.
(2019, 2020) proposed MTL approaches in adding
emotion intensity and depression severity (i.e., a
regression problem) prediction to the main classifi-
cation task. They, however, found that the emotion-
unaware model obtained the best result. They used
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a monologue corpus for the emotion task, a domain
bias that possibly harms the performance. On the
contrary, we hypothesize that emotional informa-
tion would benefit depression detection. Mallol-
Ragolta et al. (2019) used a hierarchical contex-
tual attention network with static word embeddings
within a single-task setting and then combined rep-
resentations at the word and sentence levels. They
reported at best 63% in F;. Recently, Xezonaki
et al. (2020) presented even better results, 70% in
F1, by augmenting the attention network with a con-
ditioning mechanism based on effective external
lexicons and incorporating the summary associated
with each interview. We instead rely on MTL in
this work, where incorporating external sources is
more direct.

None of the previous studies investigated po-
tential links between depression and dialog struc-
ture. We note that Cerisara et al. (2018) explored
MTL with sentiment® and dialog act prediction
on Mastodon (a Twitter-like dataset), where both
annotations are available, and found a positive cor-
relation. To the best of our knowledge, we are the
first to tackle depression detection in dialog tran-
scriptions with the MTL approach and explore joint
learning techniques with tasks related to the dialog
structure.

3 Model Architecture

One condition generally assumed for success
within MTL, at least in NLP, is that the primary
and auxiliary tasks should be related (Ruder, 2017).
The emotion-related task is thus a natural choice
since it is linked to mental states. We hypothesize
that depressive disorder can also affect how people
interact with others during conversations. We thus
take a first step toward linking dialog structure and
depression by examining shallow signals: dialog
acts and topics. In addition, since the information
comes at different levels, we propose hierarchical
modeling, from speech turns to documents.

Baseline Model: Our basic model is a two-level
recurrent network, similar to the one in Cerisara
et al. (2018). The input words are mapped to vec-
tors using word embeddings from scratch. The first
level (turn-level) takes the embeddings into a bi-

Sentiment and emotion are closely related with differ-
ent function and/or granularity, cf. Munezero et al. (2014).
Cerisara et al. (2018) use three labels for sentiment: positive,
negative, neutral. In this paper, we use seven emotional labels:
anger, disgust, fear, happiness, sadness, surprise, neutral.
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Figure 1: Multi-task fully shared hierarchical structure.
Light blue is for DAIC dataset and depression task;
orange is for DailyDialog and three auxiliary tasks.

LSTM network to obtain one vector for each turn.
The second level (dialog-level) takes a sequence of
turns into an RNN network, and the output is finally
passed into a linear layer for depression prediction.

MTL Model: The MTL architecture is com-
posed of shared hidden layers and task-specific
output layers (see Fig. 1) and corresponds to the
hard parameter sharing approach (Caruana, 1993,
1997; Ruder, 2017). Since some auxiliary tasks
are annotated at the speech-turn level (i.e., emo-
tion, dialog act) while others document level (i.e.,
depression, topic), our architecture is hierarchical
and arranges task-specific output layers (MLP) at
two levels. Sentence level emotion and dialog act
information can be learned in the turn-level LSTM
network and transferred upwards to help depression
and topic prediction. On the other hand, higher-
level information can be backpropagated to update
the network at the lower level. The loss is simply
the sum of the losses for each task. Regarding the
MTL setting, we set equal weight for each task as
the standard choice.

4 Datasets

DAIC-WQOZ: This dataset is a subset of the
DAIC corpus (Gratch et al., 2014).3 Tt contains
189 sessions (one session is one dialog with avg.
250 speech turns) of two-party interviews between
participants and Ellie — an animated virtual inter-
viewer controlled by two humans. Table 1 gives
the partition of train (107), development (35), and
test (47) sets. Originally, patients are associated

3https://dcapswoz.ict.usc.edu
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Train Dev Test
Depressed 77 23 33
Non Depressed 30 12 14
Total 107 35 47

Table 1: Number of sessions (dialogs) in DAIC-WOZ.

with a score related to the Patient Health Question-
naire (PHQ-9): a patient is considered depressive
if PHQ-9 > 10 (Kroenke and Spitzer, 2002).

DailyDialog: This dataset (Li et al., 2017) con-
tains 13, 118 two-party dialogs (with averaged 7.9
speech turns per dialog) for English learners,* cov-
ering various topics from ordinary life to finance.
Three expert-annotated information are provided:
7 emotions (Ekman, 1999), 4 coarse-grain dialog
acts, and 10 topics. We select this corpus due to its
large size, two-level annotations and high quality.
The train set contains > 87k turns for emotions and
dialog acts and > 11k dialogs for topics. Detailed
statistics are given in Appendix A.

5 Experimental setup

Baselines: We compare our MTL results with:
(1) Majority class where the model predicts all pos-
itive; (2) Baseline single-task model (see Sec. 3);
(3) State-of-the-art results on test set reported by
Mallol-Ragolta et al. (2019) and Xezonaki et al.
(2020). We do not compare to (Williamson et al.,
2016; Haque et al., 2018; Al Hanai et al., 2018;
Dinkel et al., 2019; Qureshi et al., 2020) who only
report on the development set.

Evaluation Metrics: For depression classifica-
tion we follow Dinkel et al. (2019) and report accu-
racy, macro-Fy, precision, and recall. For emotion
analysis, we follow Cerisara et al. (2018) and report
macro-Fj.

Implementation Details: We implement our
model with AllenNLP library (Gardner et al., 2018).
We use the original separation of train, validation,
and test sets for both corpora.

The model is trained for a maximum of 100
epochs with early stopping. For STL as well as for
MTL scenario, we optimize on macro-F; metric
for depression classification. We use cross-entropy
loss. The batch size is 4 for DailyDialog and 1
for DAIC (within the limit of GPU VRAM). We

*http://yanran.li/dailydialog



use the tokenizer from spaCy Library (Honnibal
et al., 2020) and construct the word embeddings
by default with a dimension of 128. The turn
level has one hidden layer and 128 output neu-
rons. We tune document RNN layers in {1,2,3}
and hidden size in {128,256,512}. Model pa-
rameters are optimized using Adam (Kingma and
Ba, 2014) with le — 3 learning rate. Dropout
rate is set to 0.1 for both furn and document en-
coders. The source code is available at https:
//github.com/chuyuanli/MTL4Depr.

6 Results and Discussion

6.1 Depression Detection Results on DAIC

Results using MTL hierarchical structure are shown
in Table 2, which are compared to majority vote and
SOTA models (at the top). Our baseline model is a
single-task naive hierarchical model which obtains
similar results (Fq 44) as the baseline model (NHN)
in Mallol-Ragolta et al. (2019) (F; 45).

Using the multi-task architecture, we get im-
provements when adding each task separately. We
see more than a +11.5% increase in F; when
adding emotion (‘+Emo’) or topic (‘+Top’) classi-
fication task and, at best, +16.9% with dialog acts
(‘+Diag’). This demonstrates the relevance of each
task to the primary problem of depression detection,
especially the interest of dialog acts. When adding
topics, we observe a small drop in accuracy com-
pared to STL while the F; is better, meaning that
the prediction for minority class (non-depressive)
improves. Interestingly, in terms of accuracy, the
tasks at different levels (depression ‘+Emo’ and de-
pression ‘+Diag’) seem to help more. We deduce
that they help build a better local representation
(speech turns) before the global representation.

When jointly learning all four tasks — combin-
ing depression detection with three auxiliary tasks
(‘+Emo+Diag+Top’) —, all metrics improve. We
obtain our best system with an improvement of
+26.7% in F; compared to STL baseline, outper-
forming the state-of-the-art with a +7.6% increase
compared to the best system in Mallol-Ragolta et al.
(2019) and about +0.5% compared to Xezonaki
et al. (2020). Depressed people tend to express
specific emotions; it is thus natural to think that
emotion is beneficial for the main task. These re-
sults indicate that both emotion and dialog structure
help as they provide complementary information,
paving the way for new research directions with
more fine-grained modeling of dialog structure for

F; Prec. Rec. Acc.

BSL Majority vote 41.3 351 50.0 70.2
State-of-the-art

NHN? (Mallol-Ragolta et al., 2019) 45 - 50
HCAN?® (Mallol-Ragolta et al., 2019) 63 - 66
HAN+L’ (Xezonaki et al., 2020) 70 - 70

Ours

STL Depression 439 445 475 63.8
MTL +Emo 55,5  56.2 61.6 70.2
MTL +Top 55.6 559 56.8 59.6
MTL +Diag 60.8 60.6 61.4 66.0

MTL +Emo+Diag+Top 70.6* 70.1 71.5% 745

Table 2: Depression detection results on DAIC. STL:
single-task using DAIC only; MTL: multi-task using
DAIC and adding classification for Emotion (+Emo),
Topic (+Top), Dialog Act (+Diag) from DailyDialog.
*Significantly better than SOTA performance with p-
value < 0.05.

tasks in conversational scenarios.

6.2 Analysis

Performance on Auxiliary Tasks: To better un-
derstand our model, we look at the performance of
emotion, dialog act, and topic auxiliary tasks. Di-
rectly comparing the results of our MTL approach
(‘+Emo+Diag+Top’) with a STL architecture for
each task, however, seems unfair. The optimized
objective and structural complexity are different:
the former is optimized on the depression detec-
tion task on two levels, while the latter is tuned
on the target auxiliary task with either speech turn
(emotion and dialog act) or full dialog (topic). Un-
surprisingly, the results show that the MTL system
underperforms the basic STL structure for dialog
acts and topics, with at best 67.8 in F1 (MTL) vs.
68.8 (STL) for dialog acts, and 52.0 (MTL) vs.
52.4 (STL) for topic classification.

For emotion, on the other hand, our best MTL
system obtains 40.0 in F; compared to 38.3 for
the STL baseline, showing the mutual benefit of
both tasks. Even though the score is lower than the
SOTA for emotion classification (51.0 F; in Qin
et al. (2021))8, we believe that refining our model
for this task could lead to further improvements
in depression detection. In addition, we observe
that our MTL approach is particularly beneficial
for negative and rare emotion classes, with anger,

>Naive hierarchical network (baseline).

®Hierarchical contextual attention network.

"Hierarchical attention network with LIWC lexicon.

8Precision: in Qin et al. (2021) authors report results on
sentiment classification. It is yet unclear how they convert
emotion annotation (7 labels) to sentiment (3 labels).



High-level DA # %  Sub-cat. # %

. o Emo 1,054 13%
Question 7,907 53% Non-emo 6853 S7%
Backchannel 3,231 22% - - -
Comment 3,074 20% - - -
Opening 611 4% - - -
Other 171 1% - - -

Table 3: High-level dialog act distribution of Ellie in
DAIC-WOZ. # and % represent the number and percent-
age of Ellie’s utterances, respectively.

disgust and sadness gaining resp. 5%, 6% and
1% in F;. Finally, we conduct a manual inspec-
tion of the types of utterances (mostly questions)
from Ellie, and classify them into high-level dia-
log acts: Backchannel, Comment, Opening, Other,
Question.” We find that around 13% of the ut-
terances are emotion-related, for instance “things
which make you mad / you feel guilty about, last
time feel really happy”, etc., and that mentions of
topics related to happiness or regret appear in al-
most all the interviews. Dialog act distribution is
shown in Table 3. We release our annotation to the
community for future studies.

Effectiveness of Hierarchical Structure: To ex-
amine the effectiveness of hierarchical structure,
we conduct ablation studies on the full multi-
learning setting (‘+Emo+Diag+Top’). For dialog
RNN level, we use topic information; for turn
level, we test either emotion or dialog act. The
results are shown in Table 4. Unsurprisingly, both
ablated models (‘+Emo+Top’ and ‘+Diag+Top’)
underperform the full model, with F; scores de-
creasing ~ 6% each. Without dialog act, all met-
rics drop, showing the importance of this informa-
tion for dialog structure. Without emotion, recall
drops dramatically while accuracy and precision
increase, indicating that the model ‘+Diag+Top’
predicts more positive classes but fails in negative
ones, which could result in too many false positives
in real-life scenarios. On the other hand, when
comparing hierarchical models (‘+Emo+Top’,
‘+Diag+Top’, ‘+Emo+Diag+Top’) with single-level
models (‘+Emo’, ‘+Top’, ‘+Diag’), we see consid-
erable improvements in all metrics, and this holds
for all auxiliary tasks. We can thus confirm the
advantage of hierarchical structure for model per-
formance.

°Backchannel refers to phatic expressions such as yeah,

hum mm. Here we use different dialog acts from those in
DailyDialog.
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F; Prec. Rec. Acc.
MTL  +Emo+Diag+Top 70.6 70.1 715 74.5
MTL  +Emo+Top 64.4 644 64.4 70.2
MTL  +Diag+Top 63.7 781 62.8 76.6

Table 4: Ablation study on hierarchical structure.

7 Conclusion

In this paper, we demonstrate the correlation be-
tween depression and emotion and show the rel-
evance of features linked to dialog structures via
shallow markers: dialog acts and topics. In the near
future, we intend to investigate more refined mod-
eling of dialog structures, possibly relying on dis-
course parsing (Shi and Huang, 2019). We would
also like to explore depression severity classifica-
tion as an extension to binary classification, possi-
bly through a cascading structure: first, detect de-
pression and then classify the severity. We intend
to refine our work and report on cross-validation
splits of the data to test the stability of the model, an
issue even more crucial when dealing with sparse
data with possibly representativeness problem. A
further step will be to investigate the generalization
of our model to other mental health disorders.
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Ethical Considerations

The goal of such systems is not to replace human
healthcare providers. All these systems may be
used only in support to human decision. The prin-
ciple of leaving the decision to the machine would
imply major risks for decision making in the health
field, a mistake that in high-stakes healthcare set-



tings could prove detrimental or even dangerous.
Another issue is the representativeness of the
data. Currently, it is very complex to access pa-
tients in order to have more examples. The insti-
tutional complexity leads researchers to systemati-
cally use the same data set, creating a bias between
the representation of the pathology, in particular for
mental ones whose expression can take very varied
forms. This also implies defining a variation in
relation to a normative use of language that comes
with a strong risk in this type of approach.
Moreover, we carefully select the dialog corpora
used in this paper to control for potential biases
and personal information leakage. We only work
with interview transcription, with no audio or visual
information. For the text part, all the participant’s
name have been marked out with pseudo-ID.
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A Aucxiliary Tasks Class Distribution in
DailyDialog

Table 5, Table 6, and Table 7 show the number and
percentage of emotion, dialog act, topic for each
subset, resp.

. Train Dev Test

Emotion

# % # % # %
0-no emotion 72,143  82.8 7,108 88.1 6,321 81.7
1-anger 827 0.9 s 1.0 118 1.5
2-disgust 303 0.3 3 0.04 47 0.6
3-fear 146 0.2 11 0.1 17 0.2
4-happiness 11,182  12.8 684 8.5 1019 13.2
5-sadness 969 1.1 79 1.0 102 1.3
6-surprise 1,600 1.8 107 1.3 116 1.5

Utt. Total 87,170 100.0 8,069 100.0 7,740 100.0

Table 5: Emotion distribution in train, dev. and test sets.

Dialog Act Train Dev Test
# % # % # %
1-inform 39,873  45.7 3,125  38.7 3,534 45.7

2-question 24,974 286 2,244 278 2,210 28.6
3-directive 12,242 163 1,775 22.0 1,278 16.5
4-commissive 8,081  9.23 925 11.5 718 9.3

Utt. Total 87,170 100.0 8,069 100.0 7,740 100.0

Table 6: Dialog act distribution in train, dev. and test
sets.

. Train Dev Test

Topic

# % # % # %
1-ordinary life 2,975 26.8 418  41.8 252 25.2
2-school life 453 4.1 0 0 34 3.4
3-culture & education 50 0 0 0.0 5 0.5
4-attitude & emotion 616 5.5 1 0.0 50 0.5
S-relationship 3,879 349 129 129 384 384
6-tourism 860 7.7 124 124 79 7.9
7-health 205 1.8 41 4.1 21 2.1
8-work 1,574  14.2 215 21.5 135 1.4
9-politics 105 0.9 13 1.3 13 1.3
10-finance 399 3.6 59 5.9 27 2.7

Total 11,118 100.0 1,000 100.0 1,000 100.0

Table 7: Topic distribution in train, dev. and test sets.
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Abstract

A number of cues, both linguistic and non-
linguistic, have been found to mark discourse
structure in conversation. This paper investi-
gates the role of laughter, one of the most en-
countered non-verbal vocalizations in human
communication, in the signalling of turn bound-
aries. We employ a corpus of informal dyadic
conversations to determine the likelihood of
laughter at the end of speaker turns and to estab-
lish the potential role of laughter in discourse
organization. Our results show that, on average,
about 10% of the turns are marked by laughter,
but also that the marking is subject to individ-
ual variation, as well as effects of other factors,
such as the type of relationship between speak-
ers. More importantly, we find that turn ends
are twice more likely than transition relevance
places to be marked by laughter, suggesting
that, indeed, laughter plays a role in marking
discourse structure.

1 Introduction

Despite the spontaneous nature of human commu-
nication, turn-taking between conversational part-
ners occurs rather smoothly (Sacks et al., 1978),
with interlocutors negotiating control of the floor
through the marking of so-called transition rele-
vance places (points in the conversation where a
speaker change may occur) by means of various
cues. A significant amount of work has been dedi-
cated on investigating the acoustic characteristics
involved in speaker-turn marking (e.g., Wichmann
and Caspers, 2001; Gravano and Hirschberg, 2009;
Niebuhr et al., 2013; Zellers, 2017). Yet, discourse
structure has been shown to be signalled by a com-
bination of different features (Duncan, 1972), both
linguistic (e.g., lexical, syntactic, semantic) and
non-linguistic. The latter type includes body move-
ments and gestures, such as posture shifts (Cassell
etal.,2001) and gaze (Jokinen et al., 2013), but also
non-verbal vocalizations, in the form of breathing
sounds (Wtodarczak and Heldner, 2016).
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We examine here one of the most commonly en-
countered non-verbal vocalizations in spontaneous
interaction, laughter. It plays various roles in hu-
man communication (Trouvain and Truong, 2017),
including social and communicative (Glenn and
Holt, 2013) as well as linguistic roles (Mazzoc-
coni et al., 2020). Evidence from conversational
analysis suggests a possible role of laughter in dis-
course structure, as a cue marking the edges of
speaker-turns (Gavioli, 1995; Ikeda and Bysouth,
2013; Madden et al., 2002). Most of this evidence
is of qualitative nature, but there are also quantita-
tive findings that offer additional support for this
hypothesis. Norris and Drummond (1998) found
that about 30% of total produced laughter occurred
with the beginning and end of discourse structures,
in materials based on tasks eliciting laughter. In
a distributional analysis of laughter in task-based
dyadic interactions, Ludusan et al. (2020) reported
that turns for which laughter occurred at turn-initial
or turn-final represented up to 50% of all turns
containing laughter, in the three studied languages
(French, German and Mandarin Chinese). Turns
marked by laughter at their edges made up between
13% and 20% of total turns in the same materials
(Ludusan and Wagner, 2022). Also the fact that
laughter entrainment effects have been found at the
turn-level in conversation (Ludusan and Wagner,
2022), represents further indication of the potential
role of laughter in marking turns.

The aforementioned studies, however, presented
only descriptive statistics of laughter events co-
occurring with turn edges, without showing a re-
lationship between laughter and discourse struc-
ture. Thus, we aim to establish in this study the
possible role of laughter in marking turn bound-
aries, by comparing laughter at speaker turn versus
at transition relevance places and by determining
whether turn-holds or turn-changes are more likely
to be marked by laughter. Moreover, as some of
these studies used materials from tasks that elicited
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Speaker A

schon dreihundert Meter | tief aber |LAU | d* schwer zum Ankern dann | aber dh in der
change
cont | hold | cont Iholdl hold
Speaker B | . " " .
breathing | ach so ok | | LAU | breathing |breathing
hrt LAU <breathingIN> <breathingOUT>

breathingINI hrt ] hrt

LAU <breathingIN> <breathingOUT>

Figure 1: Conversation fragment from the GRASS corpus illustrating the discourse structure annotation. For each
speaker (A and B), it shows the waveform of the recording, its orthographic transcription, the turn-level annotations
(in blue), and the level of potential transition relevance places (in green). The laughter produced by the speakers is

marked with LAU.

laughter and since laughter patterns in everyday
conversations might differ from those produced in
such tasks, we employ here informal conversations
between friends/family members. We also evaluate
the role of message-external factors, namely rela-
tion type between interlocutors and the gender com-
position of the dyad, as previous work has shown
that they may play a role in the overall production
of laughter (Smoski and Bachorowski, 2003).

2 Materials

The Graz Corpus of Read and Spontaneous Speech
(GRASS) contains about 30 hours of Austrian
German read and conversational speech, collected
from 38 Austrian speakers (19 females, 19 males)
(Schuppler et al., 2014). The conversational speech
component contains speech from 19 pairs of speak-
ers who had known each other for at least sev-
eral years, and who were either friends, family-
members, colleagues or couples, with a similar
number of mixed-gender and same-gender dyads.
These speaker pairs were recorded for one hour
each, without interruption, in order to encourage a
fluent, casual conversation. There were no restric-
tions in terms of topic or speaking behaviour, lead-
ing to the use of casual, partly dialectal pronuncia-
tion, frequent occurrence of overlapping speech, as
well as laughter (laughs and speech-laughs) (Schup-
pler et al., 2017). This resulted in a wide variety of
conversation topics, such as discussions about fam-
ily or about public figures, travelling, relationship
problems, or work-related issues.

The conversational speech component of
GRASS is currently being manually annotated for
discourse structure. As manual annotations are
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highly time consuming, in combination with lim-
ited resources, the manual annotation of the entire
GRASS corpus is not possible. In order to capture
as many different speakers and as many different
communicative stages as possible, from each one-
hour conversation, 5 minutes were annotated either
from its beginning, its middle, or its end. So far, 14
dyads (5 f-m, 4 f-f, 5 m-m) were annotated, result-
ing in a total of 70 minutes of recordings available
for this study.

Two independent discourse structure levels were
annotated (cf., conversation example shown in Fig-
ure 1): one for turn management (based on inter-
pausal units), further called turn-level (the blue
tier in Figure 1), and one for potential transition
relevance places (further called TRP-level), which
were defined in terms of points of potential syn-
tactic completion (the green tier in Figure 1). The
turn-level labels were based on the four categories
proposed in Zellers (2017): hold (the same speaker
continues talking), change (a new speaker takes the
floor), question (the speaker transfers the turn to an-
other speaker), and Hearer Response Tokens (HRT,
backchannel-like tokens, Sikveland, 2012). Three
additional turn labels captured incomplete struc-
tures before pauses: incomplete-hold (the speaker
makes a pause at a point of “maximum grammat-
ical control”, Schegloff, 1998: 241, and then con-
tinues speaking), trail-off (a syntactically incom-
plete speaker change, cf. Walker, 2012), and self-
interruption (in the case of turn competition, one
speaker interrupts themselves to cede the turn to
the other speaker). The annotation at the TRP-
level is more fine-grained, having the categories
proposed by Zellers (2017) and six additional la-



bels. For further details on the different labels used
for annotating the TRP-level, we refer the reader
to Schuppler and Kelterer (2021). All annotations
were created while listening to the recordings and
were not based on the orthographic transcription
alone. Thus, for example, the token “ja” (yes) may
be assigned the label HRT in one instance, where
it was produced with the function of a backchannel
(i.e., no interruption of the turn of the interlocutor),
or the label change in another instance, where it
was produced with a question-like intonation fol-
lowed by a turn of the interlocutor.

In order to guarantee a high annotation quality,
the same process was applied to both discourse
structure levels: First, the conversations were an-
notated by one trained annotator, self-corrected
at a later point in time and then corrected by an-
other, second annotator. In order to estimate the
inter-rater agreement for the two discourse struc-
ture annotation levels, we evaluated a set of 878
word tokens from 3 different conversations. The
Cohen’s kappa on whether a TRP was placed at a
word boundary or not was k = 0.96. The agree-
ment between the two turn-level labels change and
hold (the only two categories we discriminated be-
tween in this study) was x = 0.83. Thus, both
levels of discourse annotations used for this study
showed a very high inter-annotator agreement.

3 Methods

Based on the annotations of GRASS, we deter-
mined the units (both at the turn- and at the TRP-
level) which were marked by laughter at their end.
For this, the speaker having the floor or their in-
terlocutor should have produced laughter either at
the end of the unit, overlapping with the end of the
unit, or immediately following (within one second)
the unit. If the interlocutor produced the laughter,
they should not have produced any other speech
between the end of the unit marked by laughter and
the start of the laughter instance. For the labelling
process, other non-verbal vocalizations, such as in-
or out-breaths and coughs, were not considered as
being speech. All units were labelled for the exis-
tence of laughter in the analysis, except for the HRT
tokens, which do not represent an actual conversa-
tional turns. Although not included in the analysis,
HRT were taken into account for the labelling of
turn-units: If a speaker turn-end overlapped or was
followed by an HRT of the conversational partner
containing laughter, the turn was labelled as be-
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Level Total Analysed Laughter
Turn 1874 1313 125
TRP 3772 3071 64

Table 1: The number of units considered in this study.
For each analysis level (turn/TRP), the total number of
units, the number of analysed units (non-HRT), and the
units marked by laughter are shown.

ing marked with laughter. Statistics about the total
number of units in our data, the ones analysed here
(non-HRT) and the units marked with laughter can
be found in Table 1.

We then counted, for each speaker and each level,
the number of units signalled by laughter and the
number of units not signalled by laughter. These
counts, representing together the odds of units hav-
ing laughter (number of successes and failures),
were used as dependent variable in a mixed effects
logistic model, to determine whether a significant
difference exists between the marking of two levels.
The unit-level (turn/TRP) was employed as predic-
tor in the model and the speaker was introduced
as a random intercept. Three logistic models were
then fitted on the data consisting of the turn-level
counts, in order to determine the effect of several
message-external factors on the signalling of turns
with laughter. We considered the dyad identity
(ranging between 1 and 14), its gender composition
(f-f, f-m or m-m) or the relation between the con-
versational partners (colleagues, couples, family
or friends), as the independent variables in those
models. Finally, we checked whether turn-marking
with laughter occurs more often for turn-change
or for turn-hold. For this, we deemed all turns la-
belled as incomplete-hold and hold to represent
a turn-hold and the remaining labels to represent
a turn-change. We then tested the probability of
having a turn-change marked by laughter, out of
the total number of turns marked by laughter, by
means of a binomial test. The R (R Core Team,
2019) software was used for all statistical analy-
ses, with the mixed effects model being fitted by
means of the ImerTest package (Kuznetsova et al.,
2017), based on the lme4 package (Bates et al.,
2015) functionalities.

4 Results

First, we examined the likelihood of laughter in
marking turns. Figure 2 illustrates the proportion
of speaker turns followed by laughter, out of the



total number of turns produced by each speaker.
Speakers were grouped based on the dyad they
were part of and each speaker is represented by a
point. On average, across dyads, 10.6% of all turns
are marked by laughter (represented by a solid hori-
zontal line), but there is significant variation across
speakers (from a minimum of 0% for speaker B
in dyad 3 to a maximum of 43.8% for speaker A
in dyad 11). We checked whether the marking
of turns by the various dyads differs significantly
from mean value, by means of a logistic regression
model with the dyad ID as predictor and employing
a sum to zero contrast. Only three dyads (3, 11 and
13) showed significant differences from the overall
mean.

Then, with regards to the effect of message-
external factors on the laughter-marking of turns,
we examined the purposely built logistic models,
having either the relation between speakers or the
gender composition of the dyads as independent
variable. Logistic models estimate the effect of
the predictors on the log odds ratio of success vs.
failure (here, the probability of a turn to be marked
vs. not be marked by laughter). Higher odds in-
dicate a higher probability of turns being marked
by laughter. For the relation status, the highest
odds were seen for the dyads made up of couples
(the intercept of the model, £ —1.998), fol-
lowed by family (3 = —0.301, p = .270), friends
(8 = —0.460, p = .051), and the lowest odds for
colleagues (8 = —0.725, p = 0.008). Regard-
ing the gender composition, the highest odds were
observed for the female-female dyads (intercept,
B = —2.187), with similar odds for mixed gender
dyads (8 = —0.025, p = .913) and lower odds for
all-male dyads (8 = —0.551, p = .028). The dif-
ference between mixed-gender and all-male dyads
was also found significant (p = .018).

Next, we estimated whether there is an effect
of the discourse level where laughter is used for
marking the structure (turn/TRP). Employing the
mixed effects model described in the Methods sec-
tion, we obtained a significant effect of the level
(p = 1.3e7), with the odds of a laughter-marked
structure increasing by 107% (95% confidence in-
terval: [0.54, 1.78]) at the turn-level compared to
at the TRP-level. While the intercept of the model
showed that the probability of a TRP to be sig-
nalled by laughter is about 4%, it increases more
than twice in the case of turn boundaries.

Finaly, we looked in more detail at which types
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Figure 2: The proportion of turns marked by laugh-
ter, out of the total number of turns produced by each
speaker. The results are illustrated on a per-dyad basis,
with each dyad being represented by two data points,
one for each dyad member. Each speaker is coded by a
colour, representing their gender, and a shape, encoding
their relation with the interlocutor. The horizontal line
represents the average proportion across all dyads.

of turns were more likely marked by laughter. The
conducted binomial test showed a significant prefer-
ence for turn-changes (p = .007), with a probabil-
ity of 0.62 (95% confidence interval [0.53, 0.71].!

5 Discussion

Based on our data from casual conversations be-
tween family members or friends, we have found
that turn boundaries tend to be signalled by laugh-
ter, on average in 10% of the cases. This represents
a lower value than those reported by Ludusan and
Wagner (2022), in which between 13% and 20%
of turns were marked by laughter, across the three
studied languages. Moreover, in the latter case,
backchannels were counted as turns, thus a higher
proportion of turns might be marked by laughter if
one were not to consider backchannels, as in our
case. These differences may well reflect the differ-
ent data elicitation methods. The data employed by
Ludusan and Wagner (2022) consisted of record-
ings in which a significant amount of laughter was
expected, due to the nature of the considered task
(coming up with an idea for a film script based on
an embarrassing moment). This emphasizes the
role of the type of data employed in the investiga-
tion: In a context consisting of casual conversations
between individuals that are close to each other, a
lower proportions of turns are signalled by laughter.
The observed laughter-marking behaviour seems to

"The fact that turns signalled by partner laughter were
included in the analysis did not bias these results, as there

was a higher proportion of turn-holds (0.40) than turn-changes
(0.18) marked by partner laughter, in our data.



be consistent in our data, with 11 out of the total 14
dyads showing no significant difference from the
mean.

For both investigated message-external factors,
the relation type between the conversational part-
ners and the gender mix of the dyad, we observed
significant effects on the laughter-marking of turns.
Couples exhibited higher odds of turns marked
with laughter than family members, friends and
colleagues, although only the difference between
couples and colleagues was found to be significant.
Previous work looking at the effect of interlocutors’
relation on laughter production (e.g. Smoski and
Bachorowski, 2003; Jansen et al., 2021) considered
two cases: familiar/unfamiliar, and the results were
mixed, either showing a significant effect (Smoski
and Bachorowski, 2003), or a lack of it (Jansen
et al., 2021). Looking at the marking of turn edges
by laughter, Ludusan and Wagner (2022) found no
effect of familiarity (defined as the number of years
the speaker knew each other). However, we em-
ployed here a definition based on the relationship
between speakers, which may be more appropriate.
With respect to the gender mix, we saw no differ-
ence between all-female and mixed-gender dyads,
but significantly lower odds for all-male dyads com-
pared to the other two groups. Our results partially
align with work reporting more laughter in mixed-
gender dyads composed of friends (Smoski and Ba-
chorowski, 2003) (although a different behaviour
may be seen for mixed-gender dyads composed
of strangers Grammer and Eibl-Eibesfeldt, 1990;
Smoski and Bachorowski, 2003). The observed dif-
ferences may stem from the types of laughter con-
sidered in each study (laughter at turn boundaries
here, all laughter instances in previous studies).

How does the marking of turns by means of
laughter compare to the signalling of turns by other
cues? Niebuhr et al. (2013) observed differences
in speech reduction phenomena between turn-final
and turn-internal positions of up to more than four
times, while Cassell et al. (2001) found that pos-
ture shifts at turn boundaries were five times more
likely than turn-internal. We have seen here that
laughter turns are twice more likely to be signalled
by laughter, than transition relevance places. While
laughter may seem, therefore, a weaker cue to the
marking of turns, one must take into account that
we compared here turn-final laughter with laughter
produced only at TRPs (not any turn-internal posi-
tion). When comparing turn-final with phrase-final
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positions, also Niebuhr et al. (2013) showed that the
difference in likelihood between these two levels is
lower than between turn-final and any turn-internal
location.

Among the types of considered turn-units, we
observed a higher probability of turn-changes than
turn-holds being marked with laughter. This find-
ing indicates that laughter is one of the cues that
speakers employ to signal the end of their turn or
the taking of the floor from their interlocutor. While
the current study did not examine the characteris-
tics of the various turn-final laughter instances, it
might be that giving/taking the turn may use differ-
ent types of laughter (laughs vs. speech-laughs,
snorts vs. grunts, etc) or laughs with different
acoustic properties (voiced vs. unvoiced, etc.). Fur-
ther investigations in this direction would be nec-
essary to better understand the role of laughter in
turn-taking. Moreover, studies on larger datasets as
well as on other languages are welcome, in order
to test the generalizability of these findings.

6 Conclusions

We investigated the role of laughter in the mark-
ing of speaker turns in a corpus of informal con-
versations between family members and friends.
Besides establishing the frequency of occurrence
of laughter at turn-ends, in a dataset not composed
of task-based interactions, we also showed that
laughter is twice more likely to occur at the end of
turn-units than at TRPs. Next, we found that the
probability of laughter-marked turn-changes was
higher than for turn-holds, suggesting a possible
role of laughter as a cue signalling turn-change. Fi-
nally, our study revealed that this laughter function
is modulated by message-external factors, such as
the nature of the relationship between speakers and
the dyad gender composition. These results repre-
sent one step further in understanding the various
functions that non-verbal phenomena and laughter,
in particular, play in human communication.
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Abstract

Despite considerable advances in open-domain
neural dialogue systems, their evaluation re-
mains a bottleneck. Several automated metrics
have been proposed to evaluate these systems,
however, they mostly focus on a single notion
of quality, or, when they do combine several
sub-metrics, they are computationally expen-
sive. This paper attempts to solve the latter:
QualityAdapt leverages the Adapter frame-
work for the task of Dialogue Quality Estima-
tion. Using well defined semi-supervised tasks,
we train Adapters for different subqualities
and score generated responses with Adapter-
Fusion. This compositionality provides an easy
to adapt metric to the task at hand that incor-
porates multiple subqualities. It also reduces
computational costs as individual predictions
of all subqualities are obtained in a single for-
ward pass. This approach achieves compara-
ble results to state-of-the-art metrics on several
datasets, whilst keeping the previously men-
tioned advantages.

1 Introduction

Open-domain neural dialogue systems have in-
creasingly drawn attention in Natural Language
Generation (NLG). These systems, colloquially
known as Chatbots, take advantage of large-scale
training of complex models, making them increas-
ingly more humanlike (Zhang et al., 2020; Adiwar-
dana et al., 2020a; Roller et al., 2021). A crucial
step in the development of a dialogue system is its
evaluation. The community has identified multiple
characteristics of what constitutes a high-quality
dialogue. These include comprehensible, fluent,
empathetic, relevant and interesting, among others.
The precise definition is often challenging to define
and is application dependent.

The current trend is to train models to evaluate
responses under various aspects. These learning-
based metrics either (1) map overall quality to a

* Corresponding author
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single defined aspect such as Sensibleness (is the re-
sponse adequate given the context) or (2) leverage
several individual models to cover a wider range
of quality aspects (subqualities). Both have their
drawbacks: in the first approach, the use of a single
notion of quality limits the overall understanding
of model performance and consequently its appli-
cability to other domains; in the second approach,
the need to individually train several models is both
time and resource consuming, possibly duplicating
model parameters that could be shared, such as
feature representations.

This paper proposes QualityAdapt', an auto-
matic dialogue quality estimation framework that
leverages the Adapter paradigm (Houlsby et al.,
2019a) to train individual Adapters on different di-
alogue subqualities. Then, AdapterFusion (Pfeiffer
et al., 2021) combines the knowledge of the indi-
vidual Adapters for the downstream task of overall
quality estimation. This allows for a system that
is both extensible (by including different subquali-
ties) and less resource-intensive (by sharing most
of the pretrained model parameters). Experimental
results show that QualityAdapt achieves compa-
rable correlations with human judgements when
compared to other state-of-the-art metrics.

2 Background

2.1 Automatic Quality Estimation Metrics

Word-overlap metrics, such as BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005), are a popular choice to evaluate dialogues
as they are used to evaluate machine translation
and summarization models and are easy to employ.
These metrics assume valid responses have signif-
icant word-overlap with the ground truth. How-
ever, this is not a valid assumption: there are many
equally good responses for a single utterance. As

"Model parameters and codebase are available at:
github.com/johndmendonca/qualityadapt.
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such, the correlation with human judgements is
very low for these metrics (Liu et al., 2016), and
they cannot be used to evaluate models in an online
setting, where a gold-response is not available.

Earlier learned metrics such as ADEM (Lowe
et al., 2017) and RUBER (Tao et al., 2018) ex-
plicitly predict human annotations by initialising
pretrained RNN response generators. In both cases,
a reference response is used to score the candidate
response. As such, these metrics still suffer the
same issues as word-overlap metrics.

More recently, open-domain automatic dialogue
quality estimation has concentrated on reference-
free methods. Most metrics focus on evaluating a
single notion of quality such as Engagement (Ghaz-
arian et al., 2020), Sensibleness (Dziri et al., 2019;
Huang et al., 2020) or Human-likeness (Gao et al.,
2020). Metrics such as USR (Mehri and Eske-
nazi, 2020b), USL-H (Phy et al., 2020) and Deep
AM-FM (Zhang et al., 2021b) combine predictions
of individual sub-metrics obtained from Language
Models.

2.2 Adapters

Adapters in NLP (Houlsby et al., 2019b) have been
introduced as an alternative to the full model fine-
tuning strategy. They consist of a small set of addi-
tional trainable parameters added between layers
of a pretrained network. These consist of feed-
forward layers with normalizations, residual con-
nections, and projection layers. The weights are
trained during fine-tuning for a given task, while
the pretrained parameters of the large model are
kept frozen. This strategy allows for parameter
sharing by training different task and language spe-
cific Adapters using the same model. Furthermore,
previous work has shown that Adapters achieve
comparable performance to full fine-tuning (Pfeif-
fer et al., 2020a, 2021), despite the primary focus
being geared towards parameter efficiency.
AdapterFusion (Pfeiffer et al., 2021) proposes
improving downstream task results by transferring
task specific knowledge obtained from training
Adapters on supporting tasks. The architecture
takes inspiration from the attention mechanism
(Vaswani et al., 2017), and consists of learnable
weights Query, Key, and Value: the Query con-
sists of the pretrained transformer weights; the Key
and Value take as input the output of the respective
Adapters. The dot product of the query with all
the keys is passed into a softmax function, which
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learns to weight the Adapters with respect to the
context. Therefore, the goal is to learn a parameter-
ized mixer of the available trained Adapters.

3  QualityAdapt

QualityAdapt trains individual Adapters for each
subquality and composes them using AdapterFu-
sion for the task of overall quality estimation. In
both the subquality and overall quality tasks, it
returns a score that is obtained by combining a
transformer encoder with a regression head on top.
During inference, individual subquality predictions
can be obtained in a single forward pass by paral-
lelising their respective heads.

Encoder In our experiments, RoOBERTa-large
(Liu et al., 2019) is used to encode the context-
response pair. In the tokenization step, we add for
each utterance a token representative of the speaker.
This added information lets the network identify
the response’s speaker, which in turn allows it to
pay more attention to utterances from this speaker
in the context if needed.

Compositionality Training AdapterFusion for
the downstream task of overall quality estimation is
a supervised task. As such, quality annotated data
in terms of overall quality is required. However,
the amount of annotations required for the Fusion
training step is much smaller when compared to
fully fine-tuning a Language Model with this data.
As a proof of concept, we composed two Adapters
in this paper: U-Adapter, for Understandability,
and S-Adapter for Sensibleness.

U-Adapter An understandable response is one
that can be understood without context. Such re-
sponses may contain minor typos that do not hin-
der the comprehension of the response. Mehri
and Eskenazi (2020b) evaluates this sub-metric by
calculating the likelihood of the response using a
Masked Language Modelling (MLM) metric. In
this paper, we follow the approach used by Phy et al.
(2020) and initially proposed by Sinha et al. (2020).
A model is trained to differentiate between positive
samples and synthetic negative samples. Positive
samples are perturbed by randomly applying one
of the following: (i) no perturbation, (ii) punctu-
ation removal, (iii) stop-word removal. Negative
samples are generated by randomly applying one
of the following rules: (i) word reorder (shuffling
the ordering of the words); (ii) word-drop; and (iii)
word-repeat (randomly repeating words).



S-Adapter A sensible response is one that takes
into account its preceding context. The task of
predicting sensibleness can be considered a binary
Next Sentence Prediction (NSP) task, distinguish-
ing a positive example (the subsequent utterance)
from a semantically negative one (a random ut-
terance from a response pool obtained from the
dataset). Many dialogue quality estimation metrics
leverage the NSP task when training their models
for quality estimation (Zhao et al., 2020; Zhang
et al., 2021a; Phy et al., 2020; Mehri and Eskenazi,
2020b).

4 [Experiments

4.1 Datasets

Different data sources are used in the experiments:

Training — DailyDialog (Li et al., 2017) is used
for the self-supervised training and evaluation of
the S and U Adapters. Additionally, the Fusion
module is trained using the annotated split by Zhao
et al. (2020) (denoted as DD-Z).

Evalution — The evaluation of the subqualities
is done on the data annotated by Phy et al. (2020)
(denoted as DD-P). QualityAdapt’s extensibility is
also evaluated on different overall quality annotated
datasets:

* TopicalChat (Gopalakrishnan et al., 2019) and
PersonaChat (Zhang et al., 2018), which were
annotated by Mehri and Eskenazi (2020b) and
denoted in this work as USR-TC and USR-PC,
respectively;

e DSTC6 (Hori and Hori, 2017);

e FED (Mehri and Eskenazi, 2020a).

A more detailed overview of these datasets can
be found in Appendix A.

4.2 Baselines

USR (Mehri and Eskenazi, 2020b) leverages sev-
eral Language Models to measure dialogue prop-
erties. These include: Fluency, measured using
masked language modelling (MLM) objectives;
Relevance, using a dialog retrieval model and Uses
Knowledge, measured using a fact-to-response se-
lection model. Overall quality prediction is ob-
tained using a Linear Regression model.
RoBERTa-eval (Zhao et al., 2020) proposes an
evaluator that produces an encoding vector given a
context and a response, and then calculates its score
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via an MLP with a sigmoid function. The model
takes the pretrained transformer and primes it on
an NSP task with in-domain data using Negative
Sampling, which offsets the lack of annotated data.
A final finetuning is done for quality prediction.

USL-H (Phy et al., 2020) combines three mod-
els trained with different objectives: Valid Ut-
terance Prediction (BERT-VUP), Next Sentence
Prediction (BERT-NSP), and BERT-MLM. The
BERT-VUP model determines whether a response
is valid and grammatically correct. The BERT-NSP
model and BERT-MLM models are trained with
self-supervised objectives to evaluate the sensible-
ness and the likelihood of a given response.

4.3 Subquality Estimation
Pearson Spearman
< BERT-MLM 20.16 0.01
£  BERT-VUP 0.26 0.14
£ USR-MLM 0.01 0.11
= RoBERTa-large 0.35 0.18
= U-Adapter 0.32 0.21
o> BERLNSP 0.63 0.61
S USR-DR (x=c) 0.54 0.47
£ RoBERTa-large 0.6l 0.65
»2  S-Adapter 0.68 0.67

Table 1: Correlation for Understandability and Sensible-
ness subquality between human annotations and auto-
matic metrics. Best results are denoted in bold, italic
identifies p > 0.01.

The test set results on the DailyDialog dataset
for the Understandability and Sensibleness subqual-
ities are presented in Table 1. Here, we evaluate
the correlation between the average human annota-
tion and the model prediction. For fair comparison,
we also include the results with a fully finetuned
RoBERTa-large model. With respect to the estima-
tion of Understandability, U-Adapter outperforms
the models proposed by USR (USR-MLM per-
plexity) and USL-H (BERT-VUP). Similar results
are observed on the Sensibleness task, where both
RoBERTa and S-Adapter outperform both USL-H
(BERT-NSP) and USR baselines. These results
confirm Adapters are a valid substitute to fully fine-
tuned models for the task of subquality estimation.

4.4 Overall Quality Estimation

In the overall quality prediction task, we compare
the different metrics on all datasets. Results in
Table 2 show that, on average, the S+U metric out-
performs all other metrics on these datasets. As
expected, all models obtain the best performance



DD-Z DD-P USR-TC USR-PC DSTC6 FED Avg

Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr.

USR 038 039 | 051 048 | 0.41 042 | 044 042 | 0.18 0.17 | 0.I1 0.12 | 0.34 033
USL-H 025 026 | 0.63 064 | 032 034 | 050 0.52 | 022 0.18 | 020 0.19 | 035 0.36
RoB-eval 064 0.66 | 073 0.74 | 022 022 | 034 033 | 028 029 | 029 0.26 | 042 041
S+U 073 0.74 | 0.76 0.76 | 029 029 | 036 036 | 043 042 | 027 023 | 047 047
-U Adapter | 0.67 0.69 | 0.80 0.76 | 0.28 0.30 | 0.37 037 | 039 040 | 0.17 0.13 | 045 044
-Speaker 062 0.65 | 0.67 0.70 | 0.33 0.33 | 0.36 036 | 0.33 0.31 | 020 020 | 042 042
-Fusion 060 054|072 073 | 020 0.23 | 037 034 | 036 033 | 0.17 021 | 040 040
S+U+E 068 0.70 | 0.76 0.73 | 0.18 0.19 | 0.36 036 | 036 036 | 0.18 0.14 | 042 041

Table 2: Correlation for Overall Quality between human annotations and automatic metrics. Best results are denoted
in bold, italic identifies p > 0.01. Baseline results are obtained using codebase provided by Yeh et al. (2021).

when evaluated on both DD test sets. Lowest
results are obtained on the FED dataset, which
contains responses from advanced chatbots, and
are therefore more difficult to identify as being
low-quality. This underlines the importance of in-
cluding more subqualities for dialogue evaluation,
as contemporary chatbots achieve human perfor-
mance on typical subqualities such as sensibleness
and understandability. This in turn makes them in-
sufficient to discriminate between good and bad re-
sponses. However, finer-grained submetrics do not
have an obvious mapping to semi-supervised data
collection methods, and are therefore discarded due
to the lack of sufficient annotated data to fully train
models.

4.5 Ablation Studies

Single Adapter Finetuning In this experiment, we
verify the effectiveness of having several Adapters
trained on different objectives contributing to the
performance of the downstream task. To evaluate
this, the U-Adapter and the Fusion module is dis-
carded and the S-Adapter is further finetuned with
the quality annotated data (denoted in Table 2 as
-U Adapter). On average, dropping the U-Adapter
reduces relative performance by 5%.

Removing Speaker Tokens We compare the
performance of S+U without the speaker tokeniza-
tion (denoted in Table 2 as -Speaker). Results show
the removal of these tokens reduces performance
on all datasets except on USR-PC and USR-TC.
This may indicate the topic shift between speakers
is small and as such "who said what" is inconse-
quential to sensibleness.

Removing Adapter Fusion The contribution of
AdapterFusion for the task of quality estimation
is assessed by comparing S+U against a Linear
Regression model that receives as input the pre-
dictions of the individual qualities obtained by the
trained Adapters (denoted in Table 2 as -Fusion).
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The regression model is trained using the same an-
notated data split as AdapterFusion. Overall, the
regression model yields worse results when com-
pared against AdapterFusion. This underlines the
power of composition using Fusion, leveraging the
learned parameters of the trained Adapters instead
of just their prediction.

4.6 Emotion Adapter

We posit the emotion conveyed by the agent during
the conversation should positively correlate with
overall quality annotations: responses that display
happiness and excitement are expected to have a
positive impact in the dialogue and therefore should
favour higher quality annotations when compared
to responses that portray neutral, or negative emo-
tions. This was the basis for adding an Emotion
Adapter to S+U, denoted S+U+E. The Adapter was
trained on the DailyDialog corpus, using the same
training parameters as the S and U Adapters, and
a Weighted Cross Entropy Loss. A Macro-F1 of
45.00 is achieved on the test set. The inclusion of
the emotion Adapter fails to outperform S+U. Our
initial hypothesis is that this is due to generative
models being conditioned to respond with positive
emotions. We leave further investigation of these
results for future work.

5 Prediction Compute

One of the motivations of the QualityAdapt frame-
work is it’s computational efficiency. We present
average sample predictions per second on the test
set using a single RTX 3070Ti 8BG GPU, to-
gether with size of the metric’s unique param-
eters on Table 3. For the baseline methods, the
transformer model is fully fine-tuned and therefore
the full model in included; for the Adapters, only
the Adapter, the fusion layer and corresponding
heads are included in the calculation. We note that
a full transformer model (RoBERTa-base/large) is



Metric Samples/s | Model Params
USR 22.44 4.2 GB
USL-H 10.83 39GB
RoBERTa-eval 79.11 3.2GB

S (large) 59.67 17.1 MB
S+U (base) 107.29 168.8 MB
S+U (large) 59.11 319.1 MB
S+U+E (large) 59.24 332.1 MB

Table 3: Prediction loop compute on DD-Z (250 sam-
ples). For the QualityAdapt models, (base/large) denote
the transformer model’s size.

still required for inference in Quality Adapt. How-
ever, the sharing of its weights is simplified.

As expected, the forward pass on several trans-
former models decreases runtime performance
when compared to a single forward pass, even when
using larger models (USR and USL-H metrics are
based on the RoOBERTa and BERT-base models, re-
spectively). When comparing between the different
larger models, we can see that the inclusion of the
Adapter model decreases run-time performance by
25%. However, both the fusion module and the
inclusion of more Adapters does not significantly
affect performance.

6 Conclusions

This paper presents QualityAdapt, a framework for
automatic dialogue quality estimation. We show
the composition of Sensibleness and Understand-
ability Adapters for the downstream task of qual-
ity estimation outperforms, on average, the per-
formance of robust baselines, including those that
take advantage of subquality composition. How-
ever, QualityAdapt only requires a single forward
pass on a Language Model to produce predictions
for overall quality, thus reducing computational
complexity.”

Current research in dialogue focuses mostly on
monolingual chatbots, typically in English. Mul-
tilingual LMs such as XLM-RoBERTa (Conneau
et al., 2020) can be used to extract utterance rep-
resentations directly in the target language after
fine-tuning. However, this approach would still be
somewhat limited by the lack of multilingual anno-
tated data. Pfeiffer et al. (2020b) proposes leverag-
ing Adapters for transfer learning in low resource
settings by training a stack consisting of the source-

The parallel inference of individual Adapters and their
fusion using AdapterHub is still WIP.

language Adapter with a task Adapter. Then, dur-
ing inference, the source-language Adapter is re-
placed with the target-language one. We leave these
experiments for future work.
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A Experiments

A.1 Datasets

DailyDialog (Li et al., 2017) is a high-quality
human-human open-domain dialogue dataset fo-
cused on day-to-day conversations. The dataset
consists of 13,118 dialogues and 103,632 utter-
ances. Zhao et al. (2020) (DD-Z) annotates 900
context-response pairs in terms of Appropriateness
from a pool of responses obtained by negative-
sampling response randomly selected from a dif-
ferent dialogue and responses generated by genera-
tive models trained on the training split; Phy et al.
(2020) (DD-P) collected five responses from two
retrieval methods, two generative methods, and one
human-generation for 50 contexts. These responses
are then annotated in terms of Understandability,
Sensibleness, Specificity and Overall Quality.

TopicalChat (Gopalakrishnan et al., 2019) is
a knowledge-grounded human-human conversa-
tion dataset that consists of 11,319 dialogues and
248,014 utterances. PersonaChat (Zhang et al.,
2018) is human-human persona-conditioned con-
versations that consists of 10,907 dialogues and
162,064 utterances. Mehri and Eskenazi (2020b)
(USR-TC) performs human annotation on 60 dia-
log contexts, with 6 responses per context for Topi-
calChat (four system outputs, one newly-annotated
human output, one original ground-truth response)
and five for PersonaChat (USR-PC). Each response
was annotated in terms of Understandability, Natu-
ralness, Sensibleness, Interesting, Uses Knowledge
and Overall Quality.

DSTC6 (Hori and Hori, 2017), the 6th Dialog
System Technology Challenge, used dialog data
collected from multiple Twitter accounts of cus-
tomer service for its conversation modeling track.
Each dialogue consisted of real tweets between a
customer and an agent. 40,000 responses are ob-
tained from the competing system, all of which are
based on the LSTM Seq2Seq model, which are then
annotated in terms of overall quality (DSTC-6).

FED (Mehri and Eskenazi, 2020a) is con-
structed by annotating 40 Human-Meena conver-
sations, 44 Human-Mitsuku conversations and 40
Human-Human conversations obtained from Adi-



wardana et al. (2020b). The conversations are anno-
tated with 18 subqualities, at the turn and dialogue
levels. In this work we use the turn-level overall
quality annotations for evaluation (FED).

A.2 Training setup and Hyperparamters

This work’s codebase uses AdaterHub 3, which is
based on HuggingFace Transformers #. We train all
Adapters using Adam with a learning rate of le-4.
Training is conducted for 10 epochs, with a batch
size of 16, except for the Fusion training, which
we set to 8. We experiment different seeds for the
Fusion training, and present the best performing
one. The best performing model on the evaluation
set is selected for testing. Max sequence length
was fixed to 128. The regression head consists of
2 layer MLP with a hidden size of 1024. We use
the Hyperbolic tangent as the activation function.
We use a single Quadro RTX 6000 24GB GPU for
training.

3https://Adapterhub.ml/
“https://github.com/huggingface/transformers
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Abstract

Task-oriented dialogue systems are designed
to achieve specific goals while conversing with
humans. In practice, they may have to handle
simultaneously several domains and tasks. The
dialogue manager must therefore be able to take
into account domain changes and plan over dif-
ferent domains/tasks in order to deal with multi-
domain dialogues. However, learning with rein-
forcement in such context becomes difficult be-
cause the state-action dimension is larger while
the reward signal remains scarce. Our experi-
mental results suggest that structured policies
based on graph neural networks combined with
different degrees of imitation learning can ef-
fectively handle multi-domain dialogues. The
reported experiments underline the benefit of
structured policies over standard policies.

Introduction

Task-oriented dialogue systems are designed to
achieve specific goals while conversing with hu-
mans. They can help with various tasks in different
domains, such as seeking and booking a restaurant
or a hotel (Zhu et al., 2020). The conversation’s
goal is usually modelled as a slot-filling problem.
The dialogue manager (DM) is the core component
of these systems that chooses the dialogue actions
according to the context. Reinforcement learning
(RL) can be used to model the DM, in which case
the policy is trained to maximize the probability of
satisfying the goal (Gao et al., 2018).

We focus here on the multi-domain multi-task
dialogue problem. In practice, real applications
like personal assistants or chatbots must deal with
multiple tasks: the user may first want to find a
hotel (first task), then book it (second task). More-
over, the tasks may cover several domains: the user
may want to find a hotel (first task, first domain),
book it (second task, first domain), and then find a
restaurant nearby (first task, second domain).

One way of handling this complexity is to rely
on a domain hierarchy which decomposes the

linamaria.rojasbarahona,
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decision-making process; another way is to switch
easily from one domain to another by scaling up
the policy. Although structured dialogue policies
can adapt quickly from a domain to another (Chen
et al., 2020b), covering multiple domains remains
a hard task because it increases the dimensions of
the state and action spaces while the reward signal
remains sparse. A common technique to circum-
vent this reward scarcity is to guide the learning
by injecting some knowledge through a teacher
policy!.

Our main contribution is to study how structured
policies like graph neural networks (GNN) com-
bined with some degree of imitation learning (1L)
can be effective to handle multi-domain dialogues.
We provide large scale experiments in a dedicated
framework (Zhu et al., 2020) in which we analyze
the performance of different types of policies, from
multi-domain policy to generic policy, with differ-
ent levels of imitation learning.

The remainder of this paper is structured as fol-
lows. We present the related work in Section 1.
Section 2 presents our structured policies combined
with imitation learning. The experiments and evalu-
ation are described in Sections 3 and 4 respectively.
Finally, we conclude in Section 5.

1 Related Work

Fundamental hierarchical reinforcement learning
(Dayan and Hinton, 1993; Parr and Russell, 1998;
Sutton et al., 1999; Dietterich, 2000) has inspired
a previous string of works on dialogue manage-
ment (Budzianowski et al., 2017; Casanueva et al.,
2018a,b; Chen et al., 2020b). Recently, the use of
structured hierarchy with GNN (Zhou et al., 2020;
Wau et al., 2020) rather than a set of classical feed-
forward networks (FNN) enables the learning of
non-independent sub-policies (Chen et al., 2018,

! For deployment the teacher is expected to be a human
expert, however, for experimentation purposes we used the
handcrafted policy as a proxy (Casanueva et al., 2017).

Proceedings of the SIGdial 2022 Conference, pages 91-100
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2020a). These works adopted the Domain Indepen-
dent Parametrisation (DIP) that standardizes the
slots representation into a common feature space
to eliminate the domain dependence. It allows poli-
cies to deal with different slots in the same way. It
is therefore possible to build policies that handle a
variable number of slots and that transfer to differ-
ent domains on similar tasks (Wang et al., 2015).

Our contribution differs from Chen et al. (2020b)
on three points: first we perform our experiments
on CONVLAB (Zhu et al., 2020) which is a ded-
icated multi-domain framework; second, the dia-
logue state tracker (DST) output is not discarded
when activating the domain; third, we adapt the
GNN structure to each domain by keeping the rel-
evant nodes while sharing the edge’s weights.

The reward sparsity can be bypassed by guiding
the learning through the injection of some knowl-
edge via a teacher policy. This approach, called
imitation learning (IL) (Hussein et al., 2017), can
be declined from pure behaviour cloning (BC)
where the agent only learns to mimic its teacher to
pure reinforcement learning (RL) where no hint
is provided (Shah et al., 2016; Hester et al., 2018;
Gordon-Hall et al., 2020; Cordier et al., 2020).

2 Extended GNN Policies with Imitation

We adopt the multi-task setting as presented in
CONVLAB, in which a single dialogue can have
the following tasks: (i) find, in which the system
requests information in order to query a database
and make an offer; (ii) book, in which the system
requests information in order to book the item. A
single dialogue can also contain multiple domains
such as hotel, restaurant, attraction, train, etc.
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Our method, illustrated in Figure 1, is designed
to adapt: (i) at the domain-level (i.e. be scalable
to changes in the number of slots), and (ii) at the
multi-domain-level (i.e. be scalable to changes of
domain). For each dialogue turn, it works as fol-
low: first, the DST module chooses which domain
to activate. Then, the multi-domain belief state
(and action space) is projected into the active do-
main (i.e only the DIP nodes corresponding to the
active domain are kept) as shown in Figure la. Af-
terwards, we apply the GNN message passing as
Chen et al. (2020b) but only among the domain
specific DIP nodes in the decision making module
(Figure 1b).

GNN Policies The GNN structure we consider
is a fully connected graph in which the nodes are
extracted from the DIP. We distinguish two types
of nodes: the slot nodes representing the parametri-
sation of each slot (denoted as S-NODE) and the
general node representing the parametrisation of
the domain (as I-NODE for slot-Independent node).
This yields three types of edges: 12S (for I-NODE
to S-NODE), S2I and S28S. This abstract structure
is a way of modelling the relations between slots
as well as exploiting symmetries based on weight
sharing (Figure 1b).

Imitation Learning In addition to the structured
architecture, we use some level of IL to guide the
agent’s exploration. In our experiments, we used
CONVLAB’s handcrafted policy as a teacher (or or-
acle)', but other policies could be used as well. Be-
haviour cloning (BC) is a pure supervised learning
method that tries to mimic the teacher policy. Its
loss function is the cross-entropy loss as in a classi-
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Figure 2: Distribution via boxplot of the performance of the proposed approaches on CONVLAB, with 10 different
initializations and without pre-training. The coloured area represents the interquartile Q1-Q3 of the distribution, the
middle line represents its median (Q2) and the points are outliers.

fication problem. Imitation Learning From Oracle
Demonstrations (ILFOD) is a RL method which
allows the agent to play oracle actions as demon-
strations and to inject them in its replay buffer. In
our experiments, we kept half of the agent’s own
actions in the buffer along with those generated
by the oracle. Imitation Learning From Oracle
Supervision (ILFOS) is the combination of super-
vised and reinforcement learning when the agent
learns with a supervised loss, namely the margin
loss (Hester et al., 2018).

3 Experiments

We performed an ablation study: (i) by progres-
sively extending the baseline to our proposed
GNNs and (i1) by guiding the exploration with IL.
All the experiments were restarted 10 times with
random initialisations and the results evaluated on
500 dialogues were averaged. Each learning trajec-
tory was kept up to 10,000 dialogues with a step of
1,000 dialogues in order to analyse the variability
and stability of the methods.

Models The baseline is ACER which is a so-
phisticated actor-critic method (Wang et al., 2016).
After an ablation study, we progressively added
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some notion of hierarchy to FNNs to approximate
the structure of GNNs. FNN is a feed-forward
neural network with DIP parametrisation. Thus,
the agent actions are single-actions. FNN-REF
is a FNN with the native parametrisation (no DIP)
with multiple-actions of CONVLAB?. HFNN is a
hierarchical policy with domain-selection module
and based on FNNs for each domain. HGNN is a
hierarchical policy with domain-selection module
and based on GNNs. UHGNN is a HGNN with a
unique GNN for all domains.

Metrics We evaluate the performance of the poli-
cies for all tasks. For the find task, we use the
precision, the recall and the F-score metrics: the
inform rates. For the book task, we use the accu-
racy metric namely the book rate. The dialogue is
marked as successful if and only if both inform’s
recall and book rate are 1. The dialogue is consid-
ered completed if it is successful from the user’s
point of view (i.e a dialogue can be completed with-
out being successful if the information provided is
not the one objectively expected by the simulator).

2The native parametrisation manually groups multi-actions
based on MULTIWOZ (Budzianowski et al., 2018).



Configuration Avg Turn Inform (%) Book Complete Success
NLU Policy NLG | (succ/all) Prec./Rec./F1 Rate (%) Rate (%) Rate (%)

- HDC - 10.6/10.6  87.2/98.6/90.9 98.6 97.9 - 97.3 -

- ACGOS (ours) - 13.1/13.2  94.8/99.0/96.1 98.7 98.2 (+0.3) 97.0 (-0.3)
BERT HDC T 11.4/12.0 82.8/94.1/86.2 91.5 92.7 - 83.8 -
BERT HDC' T 11.6/12.3  79.7/92.6/83.5 91.1 90.5 (-2.2) 813 (-2.5)
BERT MLEf T 12.124.1 62.8/69.8/62.9 17.6 427 (-50.0)0 359 (-47.9)
BERT PGt T 11.0/25.3 57.4/63.7/56.9 17.4 374 (-553) 31.7 (-52.1)
BERT GDPL' T 11.5/21.3 64.5/73.8/65.6 20.1 494 (43.3) 384 (454
BERT PPOf T 13.1/17.8  69.4/85.8/74.1 86.6 755 (-17.2) 71.7 (-12.1)
BERT ACGOS (ours) T 14.0/14.8 88.8/92.6/89.5 86.6 89.1 (-3.6) 81.7 (-2.1)

Table 1: Dialogue system evaluation with simulated users. T means template-based NLG. Configurations without
NLU and NLG modules pass directly the dialogue act. Configurations with ACGOS and HDC policies are
evaluated on a single run with 1,000 dialogues. Configurations with | are taken from the GitHub of CONVLAB.
PPO in CONVLAB used behaviour cloning as the pre-trained weights (see for more details).

4 Evaluation

We evaluate the dialogue manager and the dialogue
system both with simulated users.

Dialogue Manager We performed an ablation
study based on ACER as reported in Figure 2. First,
all RL variants of ACER (Figure 2a) have diffi-
culties to learn without supervision in contrast to
BC variants (Figure 2b). In particular, we see that
hierarchical decision making networks (HFNN in
green), graph neural network (HGNN in red) and
generic policy (UHGNN in purple) drastically im-
prove the performance compared to FNNs. Sim-
ilarly, using IL like ILFOD (Figure 2c) and IL-
FOS (Figure 2d) notably improves the performance.
Therefore, learning generic GNNs allows collab-
orative gradient update and efficient learning on
multi-domain dialogues. Conversely, we observe
that hierarchical decision making with HFNNs
does not systematically guarantee any improve-
ment. These results suggest that GNNS are use-
ful for learning dialogue policies on multi-domain
which can be transferred during learning across
domains on-the-fly to improve performance. Fi-
nally, regarding ILFOD variants (Figure 2c), we
can observe that all architectures are affected by
a large variability. This shows that multi-domain
dialogue management is difficult despite the use of
demonstrations and that learning with reward is not
sufficient to robustly succeed.

Dialogue System We evaluate the policy learning
algorithms in the entire dialogue pipeline, in partic-
ular our best DM policy ACER-ILFOS-UHGNN
under a shorter name ACGOS. The results of
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our experimentation are presented in Table 1. We
observe that the performance of our approach is
closed to the handcrafted policy (the teacher) when
directly passing the dialogue acts (97.3 vs. 97.0). It
is also closed to the handcrafted policy when using
BERT NLU (Devlin et al., 2018) and template-
based NLG (83.8 vs. 81.7). It is much better com-
pared to the baselines with a significant difference
(e.g. with 81.7 for ACGOS vs. 71.7 for pre-trained
PPO). These results highlight the benefit of struc-
tured policies against standard policies.

5 Conclusion

We studied structured policies like GNN combined
with some imitation learning that effectively handle
multi-domain dialogues. The results of our large-
scale experiments on CONVLAB confirm that an
actor-critic based policy with a GNN structure can
solve multi-domain multi-task dialogue problems.
Finally, we evaluated our best policy (ACGOS) in
a complete dialogue system with simulated users.
It overcomes the baselines and it is comparable to
the handcrafted policy.

A limitation of current policies in CONVLAB,
including ours, is that the robustness to noisy inputs
is not specifically addressed as it had been done
in PyDial (Ultes et al., 2017). It could be also
interesting to study the impact of incorporating real
human feed-backs and demonstrations instead of a
handcrafted teacher.

The GNN structured policies combined with
imitation learning avoid sparsity, while being data
efficient, stable and adaptable. They are relevant
for covering multi-domain task dialogue problems.
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A Appendix

A.1 Domains

Domain # constraint slots  # request slots
CONVLAB find/book search
Restaurant 4/3 5
Attraction 3/- 7

Hotel 7/3 5

Taxi 4/- 2

Train 5/1 5
Hospital 1/- 3
Police -/- 3

Table 2: Domains Description of CONVLAB framework

Belief State The belief state representation is de-
terministic. As shown in Figure 3, there is no un-
certainty (all values are either 0’s or 1’s).

State Space The input to the dialogue manager is
the belief state which is a dictionary of all tractable
information (slot-value pairs, history, dialogue ac-
tions of system and user, etc.). This is called the
master state space. And, due to its large size, the
representation is projected into the summary state
space by a process called value abstraction (Wang
et al., 2015). Finally, it must be vectorised in order
to be interpretable by neural networks.

Action Space The dialogue manager’s output is
a probabilistic distribution over all possible actions.
To reduce the complexity of the learning problem,
master actions, which are valued dialogue acts such
as INFORM(date = °2022-01-15"), are abstracted
into summary actions like INFORM(date), the value
abstraction module being in charge of restoring the
relevant values in the context. On CONVLAB the
policy may activate several actions simultaneously
(called multiple-actions).

Domain Independent Parametrisation (or
DIP) (Wang et al., 2015) standardises the slots
representation into a common feature space to
eliminate the domain dependence. In particular,
the DIP state and action representations are not
reduced to a flat vector but to a set of sub-vectors:
one corresponding to the domain parametrisation
(called slot-independent representation), the others
to the slots parametrisation (called slot-dependent
representations).



Component / Description

Beliefs

constraint slot beliefs: {bilnsf € Vs, Vs €

Sflnf , Vd € D} The goal constraints belief for
each informable slot. This is either an assignment
of a value from the ontology which the user has
specified as a constraint, or has a special value
— either dontcare which means the user has no
preference, or none which means the user is yet
to specify a valid goal for this slot. To be ex-
act, for each domain, the constraint slot dictionary
separates slots with respect to the task i.e we dis-
tinguish the find slot dictionary and the book slot
dictionary.

request slot beliefs: {bgﬁf €B,Vse S, Vde
D}: A set of requested slots, i.e. those slots whose
values have been requested by the user, and should
be informed by the system.

Features

terminated: f; € B: A boolean showing that the
user wants to end the call.

booked: f2 € Vpp(g): The name of the last venue
offered by the system to the user with respect to
the constraint slots with additional information like
reference. To be exact, this feature is located in
the book slot dictionary.

degree pointer: f3 € BS: The vector counting the
number of entities count matching with constraint
slots in acceptance list: [count==0, count==1,
count==2, count==3, count==4, count>=5].

System Acts

system acts: a’¥® € list(A%Y®): The list of the
last system actions.

User Acts

user acts: a"*¢" € list(A"5"): The list of the last
user actions.

Table 3: Belief State Template in CONVLAB framework
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value_1

0
0 value_2 1
1 1 known_value known_value
value3 0 dontcare 0 dontcare
0 value_4 0 to_ask
0 0 to_ask ot 1
dontcare slot 1 slot_
slot_1
0 known_value
0 value_1 0
(Q dontcare known_value
0 value 2 1t " 0 dontcare
0_as
0 dontcare 1 to_ask
slot_2 slot 2
slot_2 ="
0 known_value
0 value_1
1 dontcare 0
0 value_2 known_value
0 | 0 to_ask 1 dontcare
value_3 dlot.3 0 to_ask
1 dontcare

slot_3
slot_3

Domain Dependent Value Independent Slot Independent

=DIP
Representation

= Master = Summary

Representation Representation

Figure 3: Transformation from initial state to DIP state
representation (it works similarly for actions).

A.2 State and Action Representations

We propose to formally present the state represen-
tations used in our experiments. For details about
our notations, see Table 3.

Flat state representation in CONVLAB

o(x) = ( €D v)

sesinf
©a*" oD fil® f20 f3

where x is the initial state, ¢(x) is the full state
parametrisation, S/ is the set of informable slots,
b/ is the one-encoding vector of the informable
slot s, a“*" and a®¥® are the one-encoding vec-
tors of previous user and system actions, fj is the
boolean "terminated dialogue”, f> is the boolean
"booked offer" with respect to each domain, f3 is
the one-encoding vector of the matching entities
count with respect to each domain and & is the
vector concatenation operator.

DIP state representation

Slot independent parametrisation:

¢a(x) = a®" |y & a®|y & [f1, fola, f3ld]

where z is the initial state, ¢g(x) is the active
domain state parametrisation, a"*“"|, and a*¥*®|,
are the one-encoding vectors of previous general
user and system actions, fi is the boolean "termi-
nated dialogue", f2|4 is the boolean "booked offer"
with respect to the active domain, f3|q is the one-
encoding vector of the matching entities count with
respect to the active domain and @ is the vector
concatenation operator.



Slot dependent parametrisation:

Vs € Sa, 0, (z) = a7, @ @V,

® [1(3v € Vs, /{none}, b [v] = 1)] (2a)
@ [1(s; € Sé"f)] (2b)
@ [1(si € Sy )] (2¢)

where x is the initial state, ¢, (x) is the slot
parametrisation of the ! slot, Sy is the set of slots
of the active domain, a"*“"|;, and a*¥*|,, are the
one-encoding vectors of previous user and system
actions of the 7" slot, (2a) is the indicator of known
value, (2b) is the indicator of informable slot and
(2c) is the indicator of requestable slot and & is the
vector concatenation operator.

A.3 Implementation Details

Imitation learning The used oracle is the hand-
crafted agent proposed by each framework. When
we use ILFOD or ILFOS methods, 50% of the
time the oracle trajectories is used. When we use
ILFOS, we call also in 100% of the time the oracle
which gives us the best expert action as supervision
and a margin penalty p = log(2) (Hester et al.,
2018).

Reinforcement learning Our policy algorithm is
an off-policy learning that uses experience replay
(all data are stored in buffers) without priority i.e
without importance sampling. The exploitation-
exploration procedure is achieved by Boltzmann
sampling with a fixed temperature 7 = 1.

Metrics and Rewards Inform recall evaluates
whether all the requested information has been in-
formed when inform precision evaluates whether
only the requested information has been informed.
Book rate assesses whether the offered entity
meets all the constraints specified in the user goal.
The system is guided by the rewards as follows. If
all domains are solved (a domain is solved if all
related tasks are solved), it gains 40 points. If the
current active domain is solved, it gains 5 points.
Otherwise, it is penalised by 1 point.

Model setup for neural network architectures
Our FNN models have two hidden layers, both
with 128 neurons. Our GNN models have one first
hidden layer with 32 neurons for each node (two in
all: S-NODE and I-NODE). Then the second hidden
layer is composed of 32 neurons for each relation
(three in all: S2S, S2I and 12S). The size of the

98

tested networks are of the order of magnitude of
10 000 to more than 100 000 parameters.

For learning stage, we use a learning rate
Ir = 1073, a dropout rate dr = 0.1 and a batch
size bs 64. Each loss function has a weight
of \g = 0.5, A\x = 1., A\;p = 1. and A¢,y = 0.01
respectively. The learning frequency is one iter-
ation after each episode (finished dialogue) with
only one gradient iteration.

Used packages for the experiment We used
the dialogue system frameworks named CON-
VLAB (Zhu et al., 2020). For the implementation
of neural networks, we used PYTORCH (Paszke
et al., 2019) in our dialogue systems. We also used
another toolkit for reinforcement learning research
named OPENAI GYM (Brockman et al., 2016).

A.4 Supplementary Results

We propose to present supplementary results of
our ablation study. We show the distribution (via
boxplot) of different measures with 10 different ini-
tialisations and without pre-training. In particular,
Figure 4 presents the distribution of inform recall,
Figure 5 the distribution of book rate, Figure 6 the
distribution of success rate and Figure 7 the distri-
bution of cumulative rewards. We precise that the
coloured area represents the interquartile Q1-Q3
of the distribution, the middle line represents its
median (Q2) and the points are outliers.



Performance vs Number Train Dialogues Performance vs Number Train Dialogues

2 T e e Se = Ay o ee .9F s 0 25 puec guzvy puic puee puts guev pres guvz prea
.
08 08 T
= g
5 06 : Z 08
o - 2
goa ° = € 04 *
. &
02 02 . ‘- = = £
0.0 1N ISR DSV S - - - - - - . 00 — a. - . L 2 2 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues Number of train dialogues
(a) Recall Average - UHGNN models (a) Book Rate - UHGNN models
Performance vs Number Train Dialogues Performance vs Number Train Dialogues
10 Loﬁprgﬂ..oﬂ-.n
08 i 08
]
= g
g 06 x 06
® 2
g &
S 04 € 04
N :
0.2 ; * ! ! T * * i 0.2
% 1000 2000 3000 4000 5000 G000 7000 8000 9000 10000 %0 “ooo 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues Number of train dialogues
(b) Recall Average - HGNN models (b) Book Rate - HGNN models
Performance vs Number Train Dialogues Performance vs Number Train Dialogues
10 10 jf *
,I,'I-Fi?Fﬂ':’i‘r-r’-r? iﬂﬂ T! l'
0.8 & ! Q. . = . 0.8
= g
g o6 5 £ 06
o 3
g °
g 04 g 04
i i E

M'}{- i o % 2 3 4 M**‘

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 : 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues Number of train dialogues
(c) Recall Average - HFNN models (c) Book Rate - HFNN models
Performance vs Number Train Dialogues Performance vs Number Train Dialogues
1.0 1.0
08 £3 33 & B T 08
1T P #
5 &
S 06 1 % 06
g 04 . €04
& ] .
. g . .
02 i - = ; . - 02 2
. i 4 : :
w0 = ‘ * ? & T i = & & 0.0 1N (IS (S [ N S S S S S —
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues. Number of train dialogues
(d) Recall Average - FNN models with DIP (d) Book Rate - FNN models with DIP parametriza-
parametrization tion
Performance vs Number Train Dialogues Performance vs Number Train Dialogues
Lo BN ACER 0 BN ACER
B ACERILFOD BN ACERILFOD
BN ACERILFOS BN ACERILFOS

°
@

o
kS

average recall
average book rate

ERERERRNRE :-;;- N ;“!H!T
AL

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 ‘6000 ‘7000 ‘EOOO ‘9000 IOOOO
Number of train dialogues Number of train dialogues
(e) Recall Average - FNN models with native (e) Book Rate - FNN models with native parametriza-
parametrization tion
Figure 4: Summary of performance - Task find Figure 5: Summary of performance - Task book

99



1.0

0.8

0.6

success rate

0.4

0.2

0.0

0.8

0.6

0.4

success rate

0.2

0.0

10

0.8

0.6

0.4

success rate

0.2

0.0

1.0

0.8

0.6

success rate

0.4

0.2

0.0

(d) Success Rate - FNN models with DIP

Performance vs Number Train Dialogues
*4‘;%?0“??6??}‘.’{.

]

oo . . o . . .

N . : . H 9 : H B

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

(a) Success Rate - UHGNN models

Performance vs Number Train Dialogues
T2 e # T | 5 % e

F g o8 8 8 g8 i
. 5 . . .
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

(b) Success Rate - HGNN models

Performance vs Number Train Dialogues

TIREIARE.
b

8 & & @
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

(c) Success Rate - HFNN models

Performance vs Number Train Dialogues

. A F PR HE A
s ¥

¥

2z 2® 2% 4l .z .t  ai 2= 2 as

as
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

parametrization

10

0.8

success rate

o
kS

(e) Success Rate - FNN models with native

Performance vs Number Train Dialogues

W ACER
B ACERILFOD
B ACERILFOS
== BC .

ii”?*i*}l i'}

jj* !

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

parametrization

Figure 6: Summary of performance - Global task (Task

find and/or Task book)

Performance vs Number Train Dialogues

o B i!T..
; i‘i‘lilll:. i

. .

8 8 & 8

average cumulative reward
N
8

20 . & . & & o o o o -

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

(a) Cumulative rewards - UHGNN models

Performance vs Number Train Dialogues

T TF
:fJi.Twr+:;

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

(b) Cumulative rewards - HGNN models

8 8 &8 8

average cumulative reward
N
8

Performance vs Number Train Dialogues

jpidpgtagh

_1:'}‘;;*&*;@#{,131

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

8 8 8 8

average cumulative reward
N
8

(c) Cumulative rewards - HFNN models

Performance vs Number Train Dialogues

average cumulative reward
N
8

s F B O O#H O F T F P&
0 # T °
-1o BN 95 e E
-20 J FEORE S S A S SSS S
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

(d) Cumulative rewards - FNN models with DIP

parametrization

Performance vs Number Train Dialogues

= ACER
B ACERILFOD
I ACERILFOS
== BC

8 8 & 8

i?'};"i'lf
IEEREE *i

20 B EUI AN

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of train dialogues

average cumulative reward
BN
5 8
il
L
o W

N

(e) Cumulative rewards - FNN models with native

parametrization

Figure 7: Summary of performance - Cumulative re-
100wards



The DialPort tools
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Abstract

The DialPort project (http://dialport.
org/), funded by the National Science Foun-
dation (NSF), covers a group of tools and ser-
vices that aim at fulfilling the needs of the di-
alog research community. Over the course of
six years, several offerings have been created,
including the DialPort Portal and DialCrowd.
This paper describes these contributions, which
will be demoed at SIGDIAL, including imple-
mentation, prior studies, corresponding discov-
eries, and the locations at which the tools will
remain freely available to the community going
forward.

1 Introduction

The DialPort project' has created tools and services
that respond to needs voiced by many in the dia-
log research community during several workshops
organized by the Principle Investigators (PIs). Its
offerings are available at no cost to the commu-
nity with the goal of helping researchers gather
high quality data, and easily assess and compare
their dialog systems. This paper and its correspond-
ing demos showcase the DialPort Portal> and Dial-
Crowd?.

There is an increasing need for large amounts
of natural dialog data that can be obtained at rea-
sonable cost and in an interactive manner. Static
datasets are ineffective for both evaluation and op-
timization. This has led to the creation of the Di-
alPort Portal, which facilitates the collection of
flexible and evolving data as well as interactive as-
sessment with real users. Notably, the Portal was
used to connect systems and collect data for the
Interactive Evaluation of Dialog track (Mehri et al.,
2021) at DSTC9 (Gunasekara et al., 2020).

*Equal contribution
"http://dialport.org/
nttps://dialport.org/portal
*http://dialport.org/dialcrowd.html

cljiao,
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Another community need centers around how to
gather high quality data when using crowdsourc-
ing platforms. DialCrowd has been constructed to
facilitate crowdsourcing by guiding researchers to
give clear, understandable explanations of the task
to the workers who produce or annotate data. It
also aids in calculating the correct level of worker
payment. Finally, it includes several methods of
data quality assessment.

The University of Southern California (USC) is
a partner in DialPort. The team at USC works on a
tools repository* and the REAL Challenge.

This paper gives background and describes in
detail the parts of both the Portal and DialCrowd.
It also provides information on how to access and
use them. As the DialPort project draws to an end,
the paper indicates the permanent sites where these
tools will reside.

2 Background

2.1 Interactive Platforms for Dialog

As dialog models improve, it is imperative that
they are evaluated in interactive settings with real
users. Mehri and Eskenazi (2020) show that while
pre-trained dialog systems excel at generating re-
sponses (Zhang et al., 2019; Bao et al., 2020), they
underperform in back-and-forth interactions.

The Alexa Prize challenge (Ram et al., 2018;
Khatri et al., 2018) allows university teams to build
socialbots that are assessed in interactive settings
with Alexa users. In contrast, the DialPort Portal
is accessible to the broader research community.
Furthermore, the Alexa Prize challenge primarily
relies on speech input from the user, which may
result in speech recognition errors. Though the
DialPort Portal can accept speech input, its web
interface can also be used with text-only input.

*https://dialport.ict.usc.edu/
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2.2 Crowdsourcing

With the amount of dialog data available or able
to be collected with systems such as DialPort, it
is important to have easy and accessible tools to
create detailed annotations of this data for differ-
ent metrics. One method of obtaining annotations
is crowdsourcing with platforms such as Amazon
Mechanical Turk (AMT). However, it is sometimes
difficult to obtain conclusive results, and a survey
of current natural language processing HITs has
shown the weaknesses of these HITs (Huynh et al.,
2021). Instructions (Chandler et al., 2013), exam-
ples (Doroudi et al., 2016), and payment are some
of the aspects that need to be attended to in order
for HITs to acquire higher quality data.

3 DialPort Portal

The DialPort Portal was initially conceived with
the objective of listing many dialog systems from a
variety of sites. This type of platform, with demon-
strations, links, and references to various systems,
is valuable to both researchers and real users. The
concept of the Portal evolved, and the different
systems were linked such that a user could inter-
act with all of the connected systems, transitioning
seamlessly between systems, with the dialog state
(consisting of slots such as city or date) shared
across systems (Zhao et al., 2016; Lee et al., 2017).
As dialog systems continued to improve, especially
with the advent of engaging response generation
models (Zhang et al., 2019; Bao et al., 2020), the
Portal recruited real users through Facebook adver-
tising with the objective of providing researchers
with a platform to collect interactive dialogs with
real users (Mehri et al., 2021).

3.1 Portal Version 1

The original version of the Portal grouped several
dialog systems from different sites (Cambridge,
USC, CMU) and managed seamless switching
amongst (Zhao et al., 2016). For example, a user
could ask for the weather in Pittsburgh and get the
CMU weather system, then ask the CMU system
for the weather in Cambridge, then ask for a restau-
rant and automatically switch to the Cambridge
restaurant system, then ask to play a game and get
the USC system.

This instance of the Portal serves as a platform
to interact with different systems over the course
of one dialog (Zhao et al., 2016). To accomplish
this, the Portal needed to address several challenges

(1) how to share information across systems (e.g.,
remembering the city the user wanted the weather
for when interacting with the CMU system, and
sharing that with the Cambridge system when the
user wants a restaurant recommendation), (2) how
to gracefully continue a dialog when a system is
down, and (3) how to give two systems addressing
the same task (e.g., restaurants) equal time with the
users. Respectively, these problems were addressed
by (1) maintaining a shared dialog state across sys-
tems, (2) backing off to an equivalent system or
changing the topic, and (3) a pseudo-random sys-
tem selection policy. In order to make the system
easy to use, an API was developed to facilitate con-
necting new systems to the Portal. This version has
pedagogical value as it can easily be demonstrated
for dialog classes.

3.2 Portal Version 2

With the advent of the API, the possibilities of use
of the Portal greatly expanded. The Portal was used
for the DSTC9 Challenge (Mehri et al., 2021), as a
tool that enabled researchers to both compare their
systems on one common platform (with real users)
and to gather considerable amounts of data. The
Portal was made available to DSTC9 participants.
The idea was to connect systems and have them
tested by real (unpaid) users. The CMU DialPort
team advertised the Portal on Facebook and inter-
ested individuals tried it out (with text only). Upon
visiting the Portal, real users are randomly matched
with a dialog system, without knowledge of the spe-
cific system they are interacting with. While some
people left the site after only one or two turns with
a system, many actually continued to communicate
with a system for a substantial conversation, and
were thus considered to be real users. Real users
consist of users who find some personal interest
(getting information, companionship, curiosity) in
continuing a dialog. There were 11 participants in
the interactive part of the Challenge (Mehri et al.,
2021). With an advertising budget of $2500, we
collect more than 4000 dialogs on the DialPort
portal (2960 dialogs with at least 4 turns or 8 utter-
ances); thus the cost was less than $1.00 per usable
dialog. The DialPort portal, through funding from
the National Science Foundation, has been able to
provide interactive evaluation as a service free of
charge to any dialog researchers. The Appendix
contains a sample dialog from the winning system
of the DSTC9 track (Bao et al., 2020).
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What is DialPort?

Welcome to DialPort. You will be matched with a random

conversational Al! Feel free to chat about anything. Please provide
feedback to help assess and improve these systems.

Like Dislike  Feedback? Improve Response? End Conversation

DialPort is a collection of the
best conversational systems. You
will be randomly matched with
one of these systems.

What can | do?

You can talk about anything you
want! Please provide feedback,

to help researchers improve
their systems. If you'd like to try
a new system, press End
Conversation.

Figure 1: DialPort Portal. This screenshot of the Portal displays (1) the dialog history, shown in the center of the
screen, (2) an input field for the user to type their responses, and (3) a set of feedback buttons below the dialog
history (“Like”, “Dislike”, “Feedback?”, “Improve Response?” and “End Conversation”). The interface clear and
emphasizes the three important actions that a user should perform while using the Portal: (1) reading the dialog
history, (2) responding to the dialog system, and (3) providing feedback.

DSTC9 demonstrated that the Portal could easily
be used to both compare systems and to gather
data with real users. Besides challenges, another
potential use of the Portal would be for students to
connect systems that they build for a class project
to see how well they do in real user interaction.

At the end of the DialPort project in the coming
year, the Portal will move from the Dialog Research
Center at CMU to LDC at UPenn.

3.3 DialPort Dashboard

After collecting data from real users on the Dial-
Port interface, a subsequent task is to perform anal-
ysis on the gathered data. We provide the DialPort
dashboard which allows researchers to (i) analyze
dialogs collected on their system, (ii) interact with
the dashboard to filter and organize dialogs based
on various criteria, and (iii) compare their system
to other systems connected to the DialPort Por-
tal. Currently, the Dashboard contains over 7000
dialogs from 28 systems. The Dashboard is con-
nected to the DialPort Portal via API calls, allowing
dialogs to be quickly displayed on the Dashboard
after being collected from the Portal. The Dash-
board code will soon be released, allowing for use
of the Dashboard in offline mode.

The Dashboard UI contains panels, tables, and

charts. At both the system and dialog level, at-
tributes such as the number of utterances, likes,
dislikes, comments, corrections are displayed (see
figure 3). In addition, the two evaluation metrics of
FED (Mehri and Eskenazi, 2020) and human rat-
ings are shown. Since the Dashboard is designed to
be easily extended, additional metrics can be added
in the future. Users can interact with the dash-
board by filtering and ranking dialogs based on
attributes and metrics. For example, the provided
toolbar can be used to find all conversations with a
given user’s system with more than # turns or rank
conversations from most-to-least number of likes.
Users can also filter words and phrases in dialogs
by their number of occurrences from the perspec-
tive of both the system or human participant, and
thus view common phrases or words mentioned on
either side of the conversation. Finally, each system
contains a progress monitor graph which displays
the number of dialogs being collected over time,
allowing users to actively observe data collection
in the DialPort Portal.

4 DialCrowd

To address the many issues that present themselves
when using crowdsourcing to collect high qual-
ity data, DialCrowd was created. DialCrowd (Lee
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v Instructions

After reading each of the following messages, please rate the message as spam or not spam.

We expect this HIT will take 5 minute(s) and we will pay $1.25
Categories

Category Instructions Examples

Select this if you feel that the

spam )
message is spam.

Select this if you feel that the
not spam ’ R
message is not spam. because.

+ Click this link 1o win $10,0001 pecause

- Here is your tracking number for your package

Counterexamples

« The period for selecting courses has started. pecause

« You've won a cruise to the Bahamas! Click here to
redeem. e

Figure 2: DialCrowd Examples and Counterexamples with Explanations

et al., 2018) is a dialog assessment toolkit which
aids researchers with human intelligence task (HIT)
creation. Requesters follow templates on the Di-
alCrowd site, which generate a HIT that can be
linked for a worker on any crowdsourcing site.

The second version of this tool (Huynh et al.,
2022) focuses on collecting high-quality data with
tools such as:

¢ Links to create better instructions

* Prompts to provide examples and counterex-
amples with explanations seen in Figure 2

* Functionality for adding golden data and du-
plicate data in each HIT

¢ Payment suggestions
¢ A feedback area

* Overall statistics from the HIT (time, patterns
in the responses, inter-annotator agreement)

This allows for requesters to create a well-
structured HIT which allows workers to provide
better quality annotations. Consequently, it makes
it easier to filter responses from potential bots. Ad-
ditional tools include the capability to include a
mandatory consent form at the start of the HIT, and
detailed style changes for the HIT. Further descrip-
tion of the system along with corresponding images
can be found in (Huynh et al., 2022).

One DialCrowd template, intent classification,
has been merged into the new home for DialCrowd,
ParlAI 3, and is now available for use.

5 The DialPort demo

The demos of the DialPort Portal and Dashboard
and of DialCrowd at SIGDIAL will include:
Shttps://github.com/facebookresearch/

ParlAI/tree/main/parlai/crowdsourcing/
tasks/dialcrowd

* how to connect a system
¢ what interaction with each tool looks like

* advantages there are in using the tools, with
examples (for example, what resulting data
looks like)

6 Conclusion and Future Directions

The tools presented in this demo help dialog re-
searchers in data gathering and assessment. As the
community uses them, more types of applications
will arise. The tools have been created in a way that
enable additions as the field and the needs evolve.
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A Appendix

User: Hello
System: hello! hows your day going so far?
User: What are you up to?

System: just finished making coffee! what about
you? what do you do?

User: i’m playing video games

System: oh, nice! what kind? and i’'m just relaxing
here and listening to some classical music.

User: i’m playing league of legends

System: nice! what rank are you? i haven’t played
in forever.

User: who is your favorite classical musician?

System: probably beethoven. i like classical mu-
sic.

User: i’m plat 2

System: nice! i’d imagine you are better than that!
User: can you play an instrument?

System: i can play the piano. do you play any
instruments?

User: thanks

System: i appreciate it! so what is it like being plat
27

User: i can play the clarinet, but not very well haha
System: oh nice! i played clarinet in high school.
User: the games are difficult but rewarding

System: yes they are! i played the trumpet in
college.

Table 1: An example of a conversation snippet from the
DSTC9 top performing system. The system is capable
of maintaining two simultaneous threads of dialog about
League of Legends and music, and switch between them
in a coherent and engaging manner.



Dashboard

BaselineDgpt-M

Guide

Overview

System: BaselineDgpt-M
Started: 2020-08-25 10:03:02

Ended: 2020-08-26 16:30:06
Total conversations: 422
Run Time: 1day, 6:27:04

Total utterances: 4954

Average utterances per conversation: 11.7

Words and Phrases

Graphs

Figure 3: The home page for a system on the DialPort dashboard. General information about the conversations
collected from the system are displayed. Sections such as "Words and Phrases" and "Graphs" can be expanded or

Total Likes:

Total Dislikes:

Total feedbacks:

Total corrections:

collapsed to view additional information about the system.
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Figure 4: Using the DialPort dashboard to find all conversations in a system with more than 3 utterances
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Abstract

In recent years, spoken dialogue systems have
been used in job interviews where an appli-
cant talks to a system that asks pre-defined
questions, called on-demand and self-paced
job interviews. We propose a simultaneous
job interview system, where one interviewer
can conduct one-on-one interviews with multi-
ple applicants simultaneously by cooperating
with multiple autonomous interview dialogue
systems. However, it is challenging for inter-
viewers to monitor and understand all paral-
lel interviews done by the autonomous system
simultaneously. To address this issue, we im-
plement two automatic dialogue understanding
functions: (1) response evaluation of each ap-
plicant’s responses and (2) keyword extraction
for a summary of the responses. In this system,
interviewers can intervene in a dialogue ses-
sion when needed and smoothly ask a proper
question that elaborates the interview. We have
conducted a pilot experiment where an inter-
viewer conducted simultaneous job interviews
with three candidates.

1 Introduction

Owing to the widespread use of online job inter-
views during the COVID-19 situation, spoken dia-
logue systems supporting job interviews to make
them more efficient are being investigated. In con-
ventional face-to-face job interviews, interviewers
conducted interviews with many applicants one by
one, which was time-consuming. Therefore, on-
demand interviews have been widely adopted as an
alternative to face-to-face interviews, such as Hire-
vue ! and Modern Hire %. In this style, job appli-
cants answer predefined typical questions and then
submit video recordings of interviews. However,
there is a lack of the much needed interaction be-
tween interviewers and applicants since applicants
only respond to predefined questions. Therefore,

"https://www.hirevue.com/
Zhttps://modernhire.com/

Applicant

Pre-defined
question

Autonomous

@c)

Pre-defined

question

Autonomous

Detailed
question

0

Intervention

Interview agent Interview agent

®
[

Interviewer

D Monitoring

Figure 1: Concept of simultaneous job interview system

to elicit sufficient information from applicants for
their selection becomes difficult.

In this study, we propose a new framework for
a spoken dialogue system that makes job inter-
views more interactive and efficient than that of
on-demand interviews. The proposed framework is
a cooperation between system and humans, namely
semi-autonomous agents. With this framework,
job interviewers can conduct multiple job inter-
views simultaneously. Specifically, a human job
interviewer (operator) cooperates with multiple au-
tonomous job interview agents to conduct one-on-
one interviews with multiple applicants simultane-
ously (Figure 1). For most of the session, an au-
tonomous agent conducts a job interview with each
job applicant, and the human interviewer (opera-
tor) monitors them. The interviewer can intervene
in any of the dialogues when necessary and then
asks specific follow-up questions that cannot be
generated by the autonomous agent. These follow-
up questions are necessary to make job interviews
more interactive and substantial. In this paper, we
describe the framework of the proposed system and
report a pilot experiment.
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2 Simultaneous job interview system

First, we introduce the one-on-one autonomous job
interview dialogue system which is a basic com-
ponent of the proposed framework. This system
only asks predefined questions one by one such as
motivation, strengths, and weaknesses. Similar to
the existing on-demand job interview systems, no
follow-up questions are asked after the responses.
Although several works exist on follow-up question
generation in the job interview domain (Su et al.,
2019; Inoue et al., 2020), the questions automati-
cally generated by the system are not necessarily
appropriate or what the interviewer actually wants
to know.

Next, we describe the proposed simultaneous job
interview system. In this system, each applicant is
interviewed by the above autonomous agent, and
the human interviewer observes these multiple in-
terview sessions. If the human interviewer wants
to directly interact with any applicant, the inter-
viewer can switch from the autonomous agent and
then interact with the applicant. For example, the
interviewer can ask specific follow-up questions
that cannot be generated by the autonomous agent.
Then, after the interviewer ends the intervention,
the autonomous agent continues the session.

In this system, the interviewer is required to
comprehend each applicant’s answer and then ask
proper follow-up questions and also decide on the
timing of intervention. However, due to the cogni-
tive ability of humans, it is not possible to under-
stand the contents of multiple dialogues simultane-
ously. Even if each log of automatic speech recog-
nition is generated and shown to the interviewer,
it is difficult to follow all of them. It is neces-
sary to summarize the information of each session.
Therefore, we introduce response evaluation and
keyword extraction that enable the interviewer to
follow the dialogues done by multiple agents, as
follows.

2.1 Response evaluation

We implemented a model that automatically evalu-
ates the quality of each applicant’s response. First,
we conducted an annotation of response quality
using a job interview dialogue corpus containing
86 mock job interview sessions (Inoue et al., 2020).
The following three metrics were evaluated on the
3-point scale, from 0 (low) to 2 (high), for each
response from the corpus.

Table 1: Number of annotated samples for response
evaluation (0: insufficient, 1: middle, 2: sufficient)

Evaluation item 0 1 2

Appropriateness 18 26 464
Concreteness 164 190 154
Conciseness 112 311 85

* Appropriateness (Does the response fulfill
what was asked?)

* Concreteness (Is the response concrete? Does
the response contain any evidence and specific
episodes?)

* Conciseness (Is the response brief?)

The numbers of annotated samples for each score
and item are summarized in Table 1.

For each evaluation item, we made a binary clas-
sifier with BERT where the input is the concate-
nation of the system’s question and applicant’s re-
sponse. The pre-trained BERT model 3 was fine-
tuned with the three class labels of each item. The
five-fold cross-validation was conducted and the
macro F1-scores were 64.2%, 71.6%, and 76.0%
for appropriateness, concreteness, and conciseness,
respectively. A sample input is shown below, and
the response evaluation models correctly assign
each score of 2.

(What is your strength?)

“I have a degree in education, so I know a
lot about how to help children learn while
having fun. I also studied specialized
content in my master’s program, which
I believe will be useful in creating teach-
ing materials. I am also well versed in
special needs education, and I think my
strength lies in my ability to work with a
wide variety of children.”

The sum of the three scores is presented to the
operator and used for evaluation of applicants. The
operator can choose to intervene the applicant who
is given high scores. On the other hand, when the
system is used for interview practice, the operator
might intervene against applicants with low scores.

2.2 Keyword extraction

Keyword extraction was implemented using the
same response data. We annotated keywords using

*https://github.com/cl-tohoku/
bert-japanese
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the criterion of “words (or compound nouns) that
represent the applicant’s ability and experience”. A
character-based BILSTM-CRF (Akbik et al., 2018)
was used as a keyword extraction model. The
benchmark result showed that the F1-score was
61.9%. For example, keywords extracted from the
same input response as in Section 2.1, were “degree
in education”, “how to help”, “specialized content”,
and “a wide variety of children”. These keywords
are presented to the interviewer as summary of the

responses as a help for follow-up questions.

3 System implementation

Figure 3 depicts the configuration of the proposed
system. The autonomous job interview system runs
for each applicant. The input speech is segmented
by a pause and fed into an automatic speech recog-
nition with the sub-word-based attention mecha-

nism. The recognition results are concatenated
within the same turn and then used for the response
evaluation and keyword extraction. The interface
of the job interviewer agent is realized by MMDA-
gent (Lee et al., 2013). The system utterances are
played with a text-to-speech engine.

Figure 2 shows the GUI for an interviewer where
they can monitor multiple dialogues. This interface
consists of mainly three items: (1) the dialogue his-
tory of each applicant, (2) the results of response
evaluation, and (3) the results of keyword extrac-
tion. The human interviewer can select any appli-
cant they want to intervene by clicking a button
in the GUIL. Once the interviewer selects an ap-
plicant, they can interact with each other directly,
meanwhile, autonomous agents talk with the other
applicants simultaneously.

4 Pilot experiment

We conducted a pilot experiment to confirm if
the proposed system can handle multiple job in-
terviews. In this experiment, a within-subject com-
parison was made between the fully autonomous
system without human intervention (baseline) and
the proposed system with three applicants. The
subjects were 30 undergraduate and graduate stu-
dents as applicants in the setting of “a student who
participates in a first-round interview of some com-
pany.” Note that the company was selected by each
participant freely and independently. They were di-
vided into groups of three persons in the condition

109



Table 2: Evaluation result in pilot experiment (5-point scale from 1:low to 5:high)

Evaluation items Baseline Proposed p-value
Mean STD Mean STD

(Q1) The dialogue was smooth 414 1.53 432  0.82 153
(Q2) The system’s responses were natural 407 118 414 1.02 301
(Q3) You participated in the interview seriously 436 091 443  0.77 245
(Q4) You were nervous during the interview 329 1.34 3.61 1.14 .030%*
(Q5) You talked well about yourself 3.64 1.13 3.93 1.03 .066+
(Q6) You felt the interviewer listened your answers ~ 3.29  1.40 4.14 0.35 <.001**
(Q7) The interviewer understood you 3.11 143 3.64 0.83 .005%*

of the proposed system. The evaluation items are
listed in Table 2 where each was rated on a 5-point
scale from 1 to 5. This experiment was conducted
in Japanese.

Table 2 summarizes the evaluation results. The
one-tailed paired #-test was conducted for each eval-
uation item, and the proposed system received sig-
nificantly higher scores on the three items ““You
were nervous during the interview”, ‘“You felt the
interviewer listened to your answers”, and “The
interviewer understood you”. A significant trend
was also observed for the item “You talked well
about yourself”. Although no significant trend was
observed, the proposed method was rated higher
than the baseline method for the other three items.
Therefore, the proposed system improved the qual-
ity of interaction through the intervention of the
interviewer, and can conduct efficient multiple job
interviews with three applicants simultaneously.

We present some comments given by the sub-
jects after the experiment. Following were the com-
ments regarding the proposed system.

“I thought it was efficient to let the ma-
chine ask the typical questions that have
to be asked during the interview and let
a human engage in interaction more ad-
vanced.”

“I get very nervous when the questions
are asked back. It is good to have a real-
istic sense.”

The baseline fully autonomous system received the
following comments.

“I did not feel like I was being listened
to.”

“I did not really feel like I was being in-
terviewed because I was always told “I

(+p < .10, *p < .05, **p<.01)

see” after each answer. I did not feel like
I was being interviewed very much.”

5 Conclusions

We propose a simultaneous job interview system
that allows human interviewers to interact with
multiple applicants in real-time based on response
evaluation and keyword extraction. For the inter-
face of interviewers, the response evaluation and
keyword extraction were implemented for making
efficient intervention. In the pilot experiment, we
showed the effectiveness of the proposed system
and confirmed the proposed architecture would po-
tentially be accepted as a new framework for future
job interviews.
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Abstract

Embodied agents need to be able to interact in
natural language — understanding task descrip-
tions and asking appropriate follow up ques-
tions to obtain necessary information to be ef-
fective at successfully accomplishing tasks for
a wide range of users. In this work, we pro-
pose a set of dialog acts for modelling such di-
alogs and annotate the TEACh dataset that in-
cludes over 3,000 situated, task oriented con-
versations (consisting of 39.5k utterances in
total) with dialog acts. TEACh-DA is one of
the first large scale dataset of dialog act anno-
tations for embodied task completion. Further-
more, we demonstrate the use of this annotated
dataset in training models for tagging the di-
alog acts of a given utterance, predicting the
dialog act of the next response given a dialog
history, and use the dialog acts to guide agent’s
non-dialog behaviour. In particular, our ex-
periments on the TEACh Execution from Di-
alog History task where the model predicts the
sequence of low level actions to be executed
in the environment for embodied task comple-
tion, demonstrate that dialog acts can improve
end task success rate by up to 2 points com-
pared to the system without dialog acts.

1 Introduction

Natural language communication has the potential
to significantly improve the accessibility of embod-
ied agents. Ideally, a user should be able to con-
verse with an embodied agent as if they were con-
versing with another person and the agent should
be able to understand tasks specified at varying lev-
els of abstraction and request for help as needed,
identifying any additional information that needs to
be obtained in follow up questions. Human-human
dialogs that demonstrate such behavior are criti-
cal to the development of effective human-agent
communication. Annotation of such dialogs with
dialog acts is beneficial to better understand com-
mon conversational situations an agent will need to

*These two authors contributed equally.
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handle (Gervits et al., 2021). Dialog acts can also
be used in building task oriented dialog systems
to plan how an agent should react to the current
situation (Williams et al., 2014).

In this paper, we design a dialog act annotation
schema for embodied task completion based on the
dialogs of the TEACh dialog corpus (Padmakumar
et al., 2021). TEACh is a dataset of over 3,000 situ-
ated text conversations between human annotators
role playing a user (Commander) and a robot (Fol-
lower) collaborating to complete household tasks
such as making coffee and preparing breakfast in
a simulated environment. The tasks are hierarchi-
cal, resulting in agents needing to understand task
instructions provided at varying levels of abstrac-
tion across dialogs. The human annotators had a
completely unconstrained chat interface for com-
munication, so the dialogs reflect natural conversa-
tional behavior between humans, not moderated by
predefined dialog acts or turn taking. Additionally,
the Follower had to execute actions in the environ-
ment that caused physical state changes which were
examined to determine whether a task was success-
fully completed. We believe that these annotations
will enable the study of more realistic dialog be-
haviour in situated environments, unconstrained by
turn taking.

Summarizing our contributions:

* We propose a new schema of dialog acts for
task-driven embodied agents. This consists
of 18 dialog acts capturing the most common
communicative functions used in the TEACh
dataset.

We annotate the TEACh dataset according to
the proposed schema to create the TEACh-DA
dataset.

We investigate the use of the proposed dialog
acts in an extensive suite of tasks related to
language understanding and action prediction
for task-driven embodied agents.

Proceedings of the SIGdial 2022 Conference, pages 111-123
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We establish baseline models for classifying the
dialog act of a given utterance in our dataset and
predicting the next dialog act given an utterance
and conversation history. Additionally, we explore
whether dialog acts can aid in plan prediction -
predicting the sequence of object manipulations
the agent needs to make to complete the task, and
Execution from Dialog History (EDH) - where the
agent predicts low level actions that are executed
in the virtual environment and directly evaluated
on whether required state changes were achieved.

2 Related Work

Dialog act annotations are common in language-
only task-oriented dialog datasets, and are com-
monly used to plan the next agent action in dialog
management or next user action in user simula-
tion (Williams et al., 2014; Budzianowski et al.,
2018; Schuster et al., 2019; Hemphill et al., 1990;
Feng et al., 2020; Byrne et al., 2019). Many frame-
works have been proposed to perform such anno-
tations. Some examples are DAMSL (Dialog Act
Markup in Several Layers) and ISO (International
Organization for Standardization) standard (Core
and Allen, 1997; Young, 2007; Bunt et al., 2009;
Mezza et al., 2018). Such standardization of dialog
acts across applications has been shown to be ben-
eficial for improving the performance of dialog act
prediction models (Mezza et al., 2018; Paul et al.,
2019).

Most task-oriented dialog (TOD) applications
and dialog act coding standards assume that the
tasks to be performed can be fully specified in
terms of slots whose values are entities (Young,
2007). However, we find that if we need to adopt
a slot-value scheme for multimodal task-oriented
dialog datasets such as TEACh, much of the infor-
mation that needs to be conveyed is not purely
in the form of entities. For example, If an ut-
terance providing a location of an object: “the
cup is in the drawer to the left of the sink” is
to be coded at the dialog act level simply as an
INFORM act, it could for example have a slot
value called OBJECT_LOCATION but the value
of this would need to refer to most of the utterance,
i.e. “the drawer to the left of the sink”. Hence,
we define more fine-grained categories, such as
InfoObjectLocAndOD (information on object
location and other details) in TEACh-DA. These
categories are designed in a way so that they could
be re-purposed into broader dialog act category and

intent/slot in the future by merging categories, if
needed. As in a TOD, inform would be the DA tag,
intent could be inform_object_location
or object_location could be slot category.
Thus, we combine the use of many standardized
dialog acts such as Greetings, Acknowledge,
Affirm / Deny with domain-specific finer
grained dialog acts replacing the typical Inform
and Request dialog acts.

Additionally, since the TEACh dataset is not con-
strained by turn taking or a pre-defined dialog flow,
sometimes a single utterance may perform multiple
communicative functions. To address this, similar
to Core and Allen 1997, we allow multiple dialog
acts per utterance and require annotators to mark
utterance spans corresponding to each dialog act.

There exist other multimodal task-oriented dia-
log datasets that include annotations of dialog acts
such as Situated and Interactive Multimodal Con-
versations (SIMMC 2.0) (Kottur et al., 2021) and
Multimodal Dialogues (MMD) (Saha et al., 2018).
These are multimodal datasets in the shopping do-
main that allows users to view products visually,
and engage in dialog with an agent where the agent
can take actions to refine the products available
for the user to view. However, in contrast to the
TEACh dataset considered in our work, the dialogs
are created by first simulating probable dialog flows
and then having annotators paraphrase utterances.
As such, in these datasets, utterances clearly map
to predefined dialog acts and follow patterns ex-
pected by the designers. These may not fully cover
the range of possible conversational flows that can
happen between humans in an unconstrained multi-
modal context, as can be observed in TEACh. The
Human Robot Dialogue Learning (HuRDL) corpus
includes annotations of human-human multimodal
dialogs, with a focus on classifying different types
of clarification questions to be used by a dialog
agent (Gervits et al., 2021) but it is limited in size -
consisting of only 22 dialogs, in contrast to the over
3,000 dialogs in TEACh. Another related dataset
is MindCraft (Bara et al., 2021) where annotators
are periodically asked to answer questions in the
middle of the collection of dialog sessions to elicit
their belief states. However, belief states do not
map directly to utterances and do not directly cap-
ture communicative intents, differentiating them
from dialog acts.

Prior works propose models for predicting dialog
acts given the current utterance and context (Kalch-
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Figure 1: Illustration of example session for the task Boil Potato with corresponding dialog acts for each utterance
and plans with corresponding actions in the game session.

brenner and Blunsom, 2013; Lee and Dernoncourt,
2016; Ribeiro et al., 2019), dialog acts of previous
utterances or both (Paul et al., 2019). We perform
similar experiments on our dataset to tag the di-
alog acts of given utterances and also to predict
the dialog acts of future utterances. Due to the
limited set of situated dialog datasets annotated
with dialog acts, there has been relatively limited
work on exploring the benefit of dialog acts on
predicting an agent’s future behavior in the envi-
ronment. However, there are works that explore
when to engage in a dialog as opposed to acting
in the environment (Gervits et al., 2020; Chi et al.,
2020; Shrivastava et al., 2021). While we do not di-
rectly model this problem, we experiment with the
TEACh Execution from Dialog History task, where
the end of our predicted action sequence would
signal the need for another dialog utterance.

3 TEACh-DA dataset

The TEACh dataset (Padmakumar et al., 2021) con-
sists of situated dialogs between human annotators
role playing a user (Commander) and robot (Fol-
lower) collaborating to complete household tasks.
In each dialog session, there is a high level task
that the Follower is expected to accomplish, for ex-
ample MAKE COFFEE or PREPARE BREAKFAST.
Details of the task are known to the Commander
but not the Follower. The Follower needs to engage
in a dialog with the user to identify the task to be
completed, customize the task (for example iden-
tify what dishes need to be prepared for breakfast)
or obtain additional information such as locations
of relevant objects, or more detailed steps needed
to accomplish a task, and translate these to actions

that can be executed in a simulated environment to
complete the task.

In this work, we annotate the TEACh dataset
with dialog acts (we refer to this new, annotated
dataset as TEACh-DA) to better understand how
language is used in task-oriented situated dialogs.
We also explore the usefulness of these dialog acts
to develop better agents that can converse in natu-
ral language and act in a situated environment for
task completion.The TEACh-DA dataset consists
of 39.5k utterances from 3,000 dialogs, 60% of
which are from the Commander and the rest from
the Follower.

We find that other dialog act frameworks for
multimodal datasets (Gervits et al., 2021; Kottur
et al., 2021; Saha et al., 2018) tend to be domain
specific and do not cover all utterance types that
would be beneficial for embodied task completion.
Hence, we propose a new set of dialog acts for
embodied task completion based on the commu-
nicative functions we observe in the TEACh dataset.
Whenever possible, for utterances that are not very
specific to the TEACh task, we have borrowed dia-
log acts from prior work. These include dialog acts
related to generic chit chat such as Greetings,
Affirm, Deny and Acknowledge (Paul et al.,
2019).

In total, we defined 18 dialog acts that covered
all utterances in TEACh. Our careful analysis of ut-
terances in TEACh data lead to 5 broader categories
of dialog acts as shown in Table 1.

* Generic: Acts that fall under conventional
dialog such as opening and closing of dialog,
* Instruction Related: Which represent the ut-
terances related to actions that should be per-
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Dialog Act Category Example Count Commander(%) Follower(%)
Instruction Instruction fill the mug with coffee 11019 99.4 0.6
RegForInstruction Instruction what should I do today? 4043 0.7 99.3
RequestOtherInfo Instruction How many slices of tomato? 675 0.75 99.25
RequestMore Instruction Is there anything else to do 503 0.2 99.80
InfoObjectLocAndOD Object/Location knife is behind the sink 6946 99.4 0.6
RegForObjLocAndOD Object/Location where is the mug? 2010 0.3 99.70
InformationOther Object/Location Mug is already clean 1148 88.76 11.24
AlternateQuestions Object/Location yellow or blue mug? 123 27.65 72.35
Acknowledge Generic perfect 7421 21.38 78.62
Greetings Generic hello 2565 44.01 55.9
Confirm Generic Should I clean the cup? 726 25.75 74.25
MiscOther Generic ta-da 607 52.22 47.78
Affirm Generic Yes 460 78.26 21.74
Deny Generic No 161 72.92 26.08
FeedbackPositive Feedback great job 2745 97.12 2.88
FeedbackNegative Feedback that is not correct 46 95.65 4.35
OtherInterfaceComment Interface ‘Which button opens drawer 486 60.09 3991
NotifyFailure Interface not able to do it 408 3.68 96.32

Table 1: Dialog act labels, total number of utterances and frequencies per speaker type in overall corpus.

formed in the environment to accomplish the
household task.

* Object/Location related: Represents requests
and information seeking utterances related to
objects that need to be handled or manipu-
lated for the specific TEACh task. Many of
these are on the specifics of object location
(where to find it, where to place it) and queries
on disambiguation related to objects or their

locations.

e Interface  Related: Utterances  re-
lated to TEACh data  annotation
itself (NotifyFailure and

OtherInterfaceComment)

» Feedback related: Utterances used to provide
feedback (both positive and negative) on nav-
igation, object manipulation and in general
task execution.

We hired expert annotators who are fluent in En-
glish to annotate utterances from the TEACh dataset
with our dialog acts. Annotators were shown the
complete dialog and asked to annotate each utter-
ance with the most appropriate dialog act. When
an utterance had multiple dialog acts applicable,
annotators were asked to divide the utterance into
spans and annotate each span with a single dialog
act label. We observed that 7% of the utterances
were segmented to have multiple dialog acts. To
measure the quality of the annotations, on a small
subset of 235 utterances (17 dialogs), we collected
annotations from two annotators. On this subset,
we observed a Cohen’s kappa score of 0.87. We
include an example TEACH session in Figure 1 for

the task Boil Potato containing dialog act acctions
for each utterance.

Similar to many task-oriented dialogs, we ob-
serve a strong correlation between the speaker role
(Commander or Follower) and the dialog act of
an utterance. For example, the majority of the in-
form utterances are from Commander i.e., where
Commander gives instructions or informs object
locations or other details on the task, whereas ma-
jority of the request utterances (instructions, object
locations etc.) are from Follower. In Table 1, we
present the set of dialog acts, definitions and their
frequency distributed across Commander and Fol-
lower utterances. We observe that some commu-
nicative functions such as clarification of ambiguity
are relatively infrequent in this dataset. We group
together such rare functions into a single dialog act
MiscOther.

4 Experiments

In this section, we explore how dialog acts can be
used for various modeling tasks including predict-
ing the agent’s future behavior in the environment.
We explore the following tasks (i) dialog act classi-
fication: predicting the dialog act of an utterance;
(ii) future turn dialog act prediction given dialog
history; (iii) given TEACh dialog history, predict-
ing a plan for the task and (iv) given dialog history
and the past actions in environment, predicting the
entire sequence of low-level actions to be executed
in the TEACh environment to complete the task
(Execution from Dialog History (EDH) benchmark
from Padmakumar et al. 2021). Note that TEACh
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Utterance (Utt) the bowl is in the microwave

Utt + ST

<<Commander>> the bowl is in the microwave

utt + DH

how can i help <<TURN>> please serve 1 slice of tomato in a bowl <<TURN>> where can i find a
bowl <<TURN>> the bowl is in the microwave

Utt + DH + DA-E

how can i help <<ReqForInstruction>> <<TURN>> please serve 1 slice of tomato in a bowl
<<Instruction>> where can i find a bowl <<ReqForObjLocAndOD>> <<TURN>> the bowl is in the
microwave <<InfoObjectLocAndOD>>

Utt + ST + DH + DA-E
<<InfoObjectLocAndOD>>

<<Follower>> how can i help <<ReqForInstruction>> <<TURN>> <<Commander>> please serve 1
slice of tomato in a bowl <<Instruction>> <<TURN>> <<Follower>> where can i find a bowl
<<ReqForObjLocAndOD>> <<TURN>> <<Commander>> the bowl is in the microwave

Figure 2: Sample input to dialog act prediction or next turn dialog act prediction models showing incorporation of

speaker and dialog history

Valid Valid Test Test
Seen unseen seen unseen

Utterance 85.59 83.74 85.88 83.59
+Speaker Tags (ST) 87.98 85.91 87.55 85.73
+ Dialog History (DH) 86.7 84.66 86.48 84.25
+ DH + DA-E 88.6 86.32 88.35 86.09
+DH + ST+ DA-E  88.35 86.15 88.54 85.89

Follower utterances only

Utterance 83.12 79.58 84.86 83.85
+Speaker Tags (ST) 86.84 82.26 88.33 87.71
+Dialog History (DH) 86.52 84.13 86.67 84.53

+ DH +DA-E 88.62 85.87 88.82 86.56
+DH + ST+ DA-E  88.32 85.79 89.22 86.3
Commander utterances only
Utterance 87.16 86.71 86.5 83.42
+ Speaker Tags (ST) 88.70 88.52 87.08 84.42

+ Dialog History (DH) 87.11 81.03 85.79 83.49
+ DH + DA-E 88.55 87.90 86.69 84.84
+DH + ST +DA-E  88.42 87.4 86.15 84.79

Table 2: Dialog Act prediction accuracy scores for
whole TEACh-DA dataset. We also report accuracy
scores for Follower and Commander utterances sepa-
rately.

has two validation and two test splits each - seen
and unseen. These refer to visual differences be-
tween the environments in which gameplay ses-
sions occurred. With the exception of the EDH
experiment, since we only focus on language, we
do not expect significant differences between the
seen and unseen splits.

4.1 Dialog Act Classification

Dialog Act classification is the task of identifying
the general intent of the user utterance in a dia-

log. While dialog act classification has been well
explored in both task-oriented dialogs and open-
domain dialogs, it is still an under explored prob-
lem in human-robot dialogs (Gervits et al., 2020).
We study the TEACh dataset to predict the dia-
log act for a given utterance. We experimented
with fine-tuning a large pre-trained language model
RoBERTa-base for the classification of dialog acts'.
We expect the speaker role (Follower or Comman-
der) and the dialog context to be important for
predicting the intent of an utterance. To test this,
we predict dialog acts with different input formats
(shown in Figure 2) ablating the value of speaker
and context information (DH: all the previous ut-
terances in the dialog, ST: speaker tags, DA-E:
ground-truth dialog act tags of all the previous ut-
terances in the dialog). We present our results in
Table 2. Similar to prior studies on dialog act clas-
sification for task-oriented dialogs, we observe that
both the speaker tags and dialog history help in pre-
dicting the correct dialog act for a given utterance,
and the best performance is observed when both of
them are used.

In TEACh, the distribution of dialog acts varies
with the speaker role (Commander vs. Follower)
as shown in Table 1. To understand the accuracy
of the models on utterances of each speaker role,
we also present results separated by speaker role in
Table 2. We observed that both speaker tags and
dialog history with previous turn dialog acts helped
identifying dialog acts for Follower utterances. For
Commander utterances both speaker tags and dia-
log history gave marginal improvements.

"We also experimented with BERT-base and TOD-BERT
but observed RoBERTa-base performed consistently better
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Valid Valid Test Test
SEen unseen seen unseen

DH 42.62 42.44 43.55 41.07
DH + ST 56.23 54.68 54.69 53.27
DH + DA-E 56.05 55.58 56.49 53.45
DH + ST + DA-E 56.72 56.14 56.28 54.99
Follower utterances only
DH 30.73 28.64 31.41 29.06
DH +ST 51.67 49.3 54.11 52.34
DH + DA-E 50.19 50.28 54.72 52.24
DH + ST + DA-E 52.17 50.35 54.72 53.44
Commander utterances only
DH 49.27 51.08 50.07 48.08
DH + ST 58.78 58.05 55.01 53.82
DH + DA-E 59.33 58.9 574 54.16
DH + ST + DA-E 59.26 59.77 57.11 55.89

Table 3: Predict next utterance Dialog Act given dia-
log history. We also report results when next utterance
is Commander and Follower separately. Speaker Tags:
Additional to current utterance speaker tag we also pro-
vide next utterance speaker information.

4.2 Next Dialog Act Prediction

In end-to-end dialog models, predicting the desired
dialog act for the next turn is useful for response
generation (Tanaka et al., 2019). Predicting the dia-
log act of the next response in TEACh will provide
insights into a model’s ability to provide appropri-
ate dialog responses. This is particularly useful
for Follower utterances to enable the agent to iden-
tify when to ask for more instructions or additional
information to accomplish a sub-task. We mod-
eled this as a classification task where we provide
dialog history until a particular turn as input and
predict the dialog act of the next turn. In addition
to providing dialog history, we also tested this to
see if providing next turn speaker information will
improve the performance of the model. Similar to
our dialog act classification model in Section 4.1
we fine-tuned a RoBERTa-base model for predict-
ing the dialog act of the next utterance. In Table
3, we present results for next dialog act predic-
tion. We observe a significant improvement in the
performance for next dialog act prediction when
the next utterance is from the Follower and the
speaker information or previous utterances dialog
act is added to the input. We hypothesize that the
accuracy in this task is low compared to similar

tasks in other task-oriented dialog datasets because
this dataset does not enforce turn taking. The Com-
mander or Follower may break up a single intent
into multiple utterances and one may anticipate the
next response from the other before it is asked. For
example, if the Commander has asked the Follower
to slice a tomato, the Commander may expect that
the Follower is likely to then ask for the locations
of the tomato or the knife and may start providing
this information before the Follower has asked for
it. Further, the Commander or Follower may have
responded directly to visual cues or actions taken
by the other in the environment. Hence, visual or
environment information is likely also important
for predicting future dialog acts.

4.3 Plan Prediction

In robotics, task planning is the process of generat-
ing a sequence of symbolic actions to guide high-
level behavior of a robot to complete a task (Ghal-
lab et al., 2016). In this experiment, we consider a
simple plan representation where a task plan con-
sists of a sequence of object manipulations that
need to be completed in order for the task to be
successful. An example is included in Figure 3
When executing such a plan, the robot will need
to navigate to required objects and additional steps
may be required based on the state of the environ-
ment (for example if the microwave is too full, the
robot may need to partially clear it first).

However, it should be possible to generate the
plan for a task based on the dialog alone. We ex-
plore two settings for this

* Game-to-Plan: Given the entire dialog
from a gameplay session, predict the plan -
that is, all object interaction actions taken dur-
ing that gameplay session.

* Dialog-History-to—-Plan: Given a
portion of dialog history from a gameplay ses-
sion, predict the object interaction actions that
need to occur until the next dialog utterance.

The Game-to-Plan setting is more likely to
be useful for post-hoc analysis of such situated
interactions after they have occurred, whereas
the Dialog-History—-to—-Plan setting can
be used to build an embodied agent that engages in
dialog with a user and executes actions in a virtual
environment based on information obtained in the
dialog. At any point in time, such an agent would
predict the next few object interactions to be accom-
plished given the dialog history so far, complete
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Language Input:

how can i help <<TURN>> please serve 1 slice of tomato in a bowl <<TURN>> where cani find a

DH .. .

bowl <<TURN>> the bowl is in the microwave

<<Follower=> how can i help <<ReqForInstruction>> <<TURN>> <<Commander>> please serve 1
DH + DA slice of tomato in a bowl <<Instruction>> <<TURN>> <<Follower>> where can i find a bowl

<<TURN=>> <<Commander=>> the bowl is in the microwave

DH + DA + Filter

<<Commander>> please serve 1 slice of tomato in a bowl <<Instruction>>

Language Output:

Pickup Tomato -- Place CounterTop -- Pickup ButterKnife -- Slice Tomato -- Place CounterTop - Pickup TomatoSliced --
ToggleOff Microwave -- Open Microwave -- Place Bowl -- Pickup Bowl

Figure 3: Sample input and output for plan prediction showing incorporation of speaker and dialog act information.

Game—-to—-Plan

Percentage of valid plans

Plan tuple precision

Plan tuple recall

Valid Valid Test Test
S€en unseen seen unseen

Valid Valid Test
S€en unseen seen unseen

Valid Valid Test Test
Seen unseen seen unseen

Test

DH 24.31 30.39 28.18 28.69 72.67 73.93 73.48 78.53 37.06 34.35 37.46 36.00

+DA 2597 23.86 19.89 26.83 75.29 73.0 74.81 77.52 38.18 33.7 39.28 35.31

+ Filter 37.57 29.41 27.62 32.94 71.29 70.94 69.80 75.45 34.33 31.61 35.45 33.42
Dialog-History-to-Plan

DH 23.76 23.69 2541 24.45 7297 73.47 75.65 78.64 36.38 34.06 39.11 36.53

+ DA 2431

+ Filter 26.52 23.69 25.41 28.01

30.39 28.18 28.69 72.67 73.93 73.48 78.53
73.66 69.88 71.67 74.33

37.06 34.35 37.46 36.0
36.08 31.29 35.83 33.12

Table 4: Plan prediction results. Using dialog act information helps increase the fraction of valid generated plans

but not as much with plan precision or recall.

them and then use another module that makes use
of subsequent dialog act prediction (section 4.2) to
engage in further dialog with the user.

We model plan prediction as a sequence to se-
quence task where the input consists of the dialog
/ dialog history, and the output as a sequence of
alternating object interaction actions (eg: Pickup,
Place, ToggleOn) and object types (eg: Mug,
Sink). We experiment with augmenting the dia-
log history with dialog act information (+ DA in-
formation) and filtering the input dialog to only
contain utterance segments annotated as being
of type Instruction (+ filter) We fine-tune a
BART-base model for this task and evaluate dif-
ferent experimental conditions on the following
metrics:

* Fraction of valid plans: Fraction of generated
output sequences that consist of alternat-
ing valid actions and object types. (For
example (Pickup, Mug), (Place,

Faucet) 1is a
(Pickup, Mug)

Sink) (ToggleOn,
valid sequence while
(Sink) (ToggleOn, Faucet)

and (Pickup, Mug) (Place)
(ToggleOn, Faucet)) are not due
to the missing action for Sink and the
missing object for P1ace respectively.

* Precision of (action, object) tuples: We iden-
tify a valid object type followed by a valid ac-
tion as an (action, object) tuple and precision
is the fraction of such tuples in the generated
output present in the ground truth plan.

* Recall of (action, object) tuples: Recall is the
fraction of (action, object) tuples in the ground
truth plan present in the generated output.

The results are included in Table 4. We notice
that addition of dialog act information and filtering
to relevant dialog acts improves performance in
some splits but not others. More improvements
are seen in the Dialog-History-to-Plan
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DH

how can i help <<TURN>> please serve 1 slice of tomato in a bowl

DH + ST .
tomato in a bowl

<<Follower>> how can i help <<TURN>> <<Commander>> please serve 1 slice of

DH + ST + DA-E

<<Follower>> how can i help <<ReqForInstruction>> <<TURN>>
<<Commander>> please serve 1 slice of tomato in a bowl <<Instruction>>

DH + DA-E ) .
in a bowl <<Instruction>>

how can i help <<ReqForInstruction>> <<TURN>> please serve 1 slice of tomato

DH + ST + DA-SE
bowl <<Instruction>>

<<Follower>> <<ReqForlInstruction>> how can i help <<ReqForlnstruction>>
<<TURN>> <<Commander>> <<Instruction>> please serve 1 slice of tomato in a

Figure 4: Language Input Variants for EDH.

EDH Test
Seen

EDH Validation
Seen Unseen

Unseen

Language Input SR [TLW] GC [TLW] SR [TLW] GC [TLW] SR [TLW] GC [TLW]

SR [TLW] GC [TLW]

DH 791100 7.1[133] 6.7[04 3915 10505 79321 7.5[0.7] 5.6[1.9]
+ ST 6.7105] 7.4128] 6.7[08] 4.0[15] 9.8109] 8.31[29] 7.1[0.8] 6.6[1.7]
+ DA-E 8.51[0.6] 82[3.3] 6.7[0.5] 5.0[1.9] 12.2[1.2] 8.6[3.7] 7.4[0.8] 6.1][2.3]
+ DA-SE 7.8[1.8] 6.4[4.0] 7.2[0.6] 4.6[1.6] 11.0[0.7] 10.1[4.3] 7.7[0.8] 6.2[1.8]
+ ST+ DA-SE 8.7[1.0]1 7.3[2.6] 7.5[0.8] 4.4[1.8] 9.9[0.7] 80[29] 7.0[0.7] 7.2[2.2]

Table 5: We experiment whether addition of speaker or dialog act information improves performance of the
Episodic Transformer (E.T.) model on the Execcution from Dialog History (EDH) task. In most cases, speaker
information is not found to be beneficial but adding dialog acts at the end or start and end of an utterance is seen

to provide small improvements in performance.

setting compared to the Game—to—Plan setting.
We hypothesize that this is because the model is
able to automatically identify the dialog act from
the utterance text and hence does not need it to be
explicitly specified.

4.4 Execution from Dialog History

The Execution from Dialog History (EDH) task
defined in the Padmakumar et al. 2021 is an exten-
sion of the above task. Instead of simply predicting
important object interactions, given dialog history
and past actions in the environment, a model is
expected to predict a full sequence of low level
actions to accomplish the task described in the dia-
log. Action sequences predicted by the model are
executed in the virtual environment and models
are evaluated based on how many required object
state changes are accomplished. The metrics used
for this task include the fraction of successful state
changes (goal condition success rate or GC), the
fraction of sessions for which all state changes were
accomplished (success rate or SR) and Trajectory
Length Weighted versions of these metrics that mul-

tiply the metrics with the ratio of the ground truth
path length to the predicted path length - where
a lower value of the trajectory weighted metric
suggests that the model used longer sequences of
actions to accomplish the same state changes.

We borrow the Episodic Transformer (E.T.)
model proposed in Padmakumar et al. 2021 and
vary the language input (with a baseline of just the
dialog history (DH)) by adding speaker tags (+ST)
and ground-truth dialog act tags at the start (+DA-
S), end (+DA-E) or both (+DA-SE). We present the
results for selected set of experiments in Table 5.
We observe small performance improvements on
success rate of up to 2 points when the language
input is marked up with dialog acts, either at the
end or start and end of an utterance, but less benefit
is observed from speaker information. We believe
that stronger improvements will likely be observed
when using a more modular approach (eg: (Min
et al., 2021)) where it is easier to decouple the
effects of errors arising from language understand-
ing from those arising from navigation which is
the most difficult component when predicting such
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low-level actions (Blukis et al., 2022; Jia et al.,
2022; Min et al., 2021).

5 Conclusion

We propose a new dialog act annotation frame-
work for embodied task completion dialogs and use
this to annotate the TEACh dataset - a dataset of
over 3,000 unconstrained, situated human-human
dialogs. We evaluate baseline models for predicting
dialog acts of utterances, demonstrate that predict-
ing future dialog acts from past ones is much more
difficult in dialog datasets that are not constrained
by turn taking. Towards guiding agent actions in
the environment beyond dialog, we show explore
the benefit of dialog acts in the generation of plans,
and improve end-to-end performance in the TEACh
Execution from Dialog History task.

6 Future Work

Unlike the majority of dialog datasets, situated or
otherwise, utterances in the TEACh dataset are not
constrained by a pre-designed dialog act schema or
by turn taking. We observe that this makes it much
more difficult than expected to predict subsequent
dialog acts given past ones - the predictability of
which has been typically used to design dialog sim-
ulators (Schatzmann and Young, 2009; Keizer et al.,
2010). We believe that annotation of this large and
more natural dataset will aid in the development of
more realistic dialog simulators, which can in turn
result in the development of more natural dialog
agents. Further, in TEACh, visual cues or actions
taken by the agent in the environment might play
an important role for predicting future dialog acts.
This would be an interesting direction to explore
for future. Finally, we hypothesize that there is con-
siderable scope in using such annotated dialog acts
to develop modular models for embodied task com-
pletion that involve better language understanding,
and to generate realistic situated dialogs for data
augmentation.
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A Further Experiment Details

A.1 Dialog Act Classification and Next Turn
Dialog Act Prediction

Both for dialog act classification and next turn
dialog act prediction models, we finetune a
RoBERTa-base model for multiclass classifica-
tion with 18 classes (our target number of dia-
log acts). For all the experiments were run us-
ing Huggingface library and the publicly available
pre-trained models. Additional to the utterance
we provide dialog-context and speaker information
(mentioned as dialog history (DH) and Speaker
Info (SI)) and train the classifiers for a maximum
sequence length of 512 tokens. When the input
exceeds 512 tokens we truncate from left i.e., we
keep the most recent context. We use a batch size
of 16 per GPU and accumulate gradients across 4
GPU instances. We use a learning rate of 2e — 05
and train for 5 epochs.
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A.2 Plan Prediction

For the plan prediction task, we finetune a
bart-base model, treating the problem as se-
quence to sequence prediction. A sample input and
output from the Game—-to—-Plan version of the
task are included below:

Sample Input:

what do I do? <<TURN>> making
coffee <<TURN>> grab a mug
<<TURN>> where 1is tyhe mug?
<<TURN>> on the counter next to
you <<TURN>> empty, and wash
<<TURN>> should I wash the mug
<<TURN>> place in coffee maker
after cleaning <<TURN>> yes
<<TURN>> okay <<TURN>> turn on
water <<TURN>> turn off <<TURN>>
place in coffee maker next to
sink <<TURN>> empty first
<<TURN>> turn on <<TURN>> great
job....we’re done... <<TURN>>

Sample Output:

Pickup Mug Pour SinkBasin Place
SinkBasin ToggleOn Faucet
ToggleOff Faucet Pickup Mug Pour
SinkBasin Place CoffeeMachine
ToggleOn CoffeeMachine

Note that we do not include any punctuation
in the output sequence to demarcate (action, ob-
ject) tuples and instead post process the generated
sequence deleting any action not followed by an
object or object not preceded by an action for eval-
uation. Also, while we use ((TURN)) in the above
example to demarcate turns, in actual implementa-
tion, the default BART separator token is used.

All experiments are run using the HuggingFace
library and pretrained models 2. We use a batch size
of 2 per GPU accumulating gradients from batches
on 4 GPUs of an AWS ‘p3.8xlarge instance lead-
ing to an effective batch size of 8. Training was
done for 20 epochs. We use the AdamW optimizer
with 51 = 0.9, B2 = 0.99, ¢ = 1le — 08 and weight
decay of 0.01. We use a learning rate of 5e — 05
with a linear warmup over 500 steps. Where neces-
sary, we right-truncate the input to the model’s limit
of 1024 tokens as we believe that when an incom-
plete conversation must be used, the model may be
able to infer most of the necessary steps from the

https://huggingface.co/

task information which is likely to be indicated by
the first few utterances of the conversation.

The primary hyperparameter tuning we exper-
imented with involved the position at which the
dialog act was inserted relative to the utterance,
which was one of

e START OF_SEGMENT - Start of the utter-
ance segment

e END_OF_SEGMENT - End of the utterance
segment

e START_END_SEGMENT - Start and end of
the utterance segment

and the format used to insert dialog act information,
which was one of

e NO_CHANGE_TEXT - The name of the dia-
log act is inserted in Camel case as a part of
the input text to the model.

* FILTER - Retain only utterances marked with
the dialog act INSTRUCTION. Additionally,
the name of the dialog act is inserted in Camel
case as a part of the input text to the model.

* TAGS_IN_TEXT - The name of the dialog
act in Camel case is surrounded by (()).

e TAGS_SPL_TOKENS - The name of the di-
alog act in Camel case is surrounded by (())
and this is specified as being a special token
so that it does not get split by the tokenizer.

e SPLIT_WORDS_TEXT - The name of the
dialog act is split into individual words (for
example, REQUESTFORINSTRUCTION be-
comes “request for instruction”) and these are
inserted into the text.

We also tuned whether speaker information was
passed to the model. None of the format, position
or speaker tag choices were found to consistently
outperform the other.

For the DH rows in table 4, neither the po-
sition, nor the format of dialog acts is rele-
vant as no dialog act information is used. We
also do not filter utterances. The best +DA
row in the Game-to-Plan setting used dialog
acts in format SPLIT_WORDS_TEXT in position
END_OF_SEGMENT with speaker tags. The best
+Filter row in the Game-to-Plan setting used
dialog acts in format START_END_SEGMENT
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without speaker tags. The best +DA row in
the Dialog-History—-to—Plan setting used
dialog acts in format SPLIT_WORDS_TEXT
in position START_OF_SEGMENT without
speaker tags. The best +Filter row in the
Dialog-History-to-Plan setting used dia-
log acts in format END_OF_SEGMENT without
speaker tags.

A.3 Execution from Dialog History

We adapt the Episodic Transformer (E.T.) model
first introduced in (Pashevich et al., 2021) and used
for baseline experiments in (Padmakumar et al.,
2021) on the TEACh dataset. We keep all train-
ing parameters constant from (Padmakumar et al.,
2021) and primarily experiment with the input for-
mat as described in the main paper. Unlike our
previous experiments, since the language encoder
of the E.T. model is trained from scratch using only
the vocabulary present in the training data, we in-
sert dialog acts and speaker indicators as individual
tokens in the input that will be treated identically
to other text tokens.

B Dialog Acts

In Table 6 we add further examples for each dialog
act (for both Followerand Commander) from dif-
ferent TEACh tasks to demonstrate the difference
in type of utterances we observe in the dataset.
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Dialog Act Task Agent: Example

Water Plant Commander: The plant by the sink needs to be watered
Instruction Plate Of Toast Commander: please slice bread and toast 1 slice

Plate Of Toast Commander: lets make a slice of toast

Plate Of Toast Commander: knife is in the fridge
InfoObjectLocAndOD Plate Of Toast Commander: the clean plate is on the white table

Clean All X Commander: right cabinet under the sink

Make Coffee Commander: we are done!
Acknowledge Clean All X Follower: Plate is clean

N Slices Of X In Y Follower: found it

Put Al X On'Y Follower: how can I help
RegForInstruction Put Al XOnY Follower: what are my directions

Plate Of Toast Follower: what is my task today

Plate Of Toast Commander: good job
FeedbackPositive Put All X In One Y Commander: that’s it good job

Water Plant Commander: thank you its seems to be done

Make Coffee Commander: Hi how are you today?
Greetings Water Plant Follower: Good day

Boil X Commander: Good morning

Clean All X Follower: where is the dirty cookware?
RegForObJjLocAndOD Plate Of Toast Follower: Can you help me find knife?

Put All X In One Y Follower: where is the third one?

Make Coffee Commander: Don’t take martini glass
InformationOther Boil X Commander: You keep walking past them

Boil X Commander: That looks cooked already

Put All X In One Y Follower: was that everything
Confirm Salad Commander: you can see the toaster right?

N Slices of X in Y Follower: Shall I turn off the water?

Breakfast Follower: how many slices of each?
RequestOtherInfo Clean All X Follower: what pieces?

Plate Of Toast Follower: shall i take it to the toaster now

Sandwich Commander: One sec
MiscOther Salad Commander: Common!!

Breakfast Commander: Thant’s my bad...Sorry

N Cooked Slices Of X In Y Follower: Is there anything more I can help with?
RequestMore Salad Follower: what else would you like me to do

Clean All X Follower: Any more tasks?

OtherInterfaceComment

Plate of Toast
Clean All X

Follower: Finish and report a bug?
Follower: refresh the page

Put All X On'Y Follower: connection is slow

Water Plant Commander: yes, you can use the green cup
Affirm Breakfast Commander: yes, toast the bread

Put Al X On'Y Commander: yes please

Make Coffee Follower: It’s not turning on the coffee.
NotifyFailure N Slices Of X In Y Follower: tomato won’t fit in those

Sandwich Follower: can’t seem to grab the knife in cabinet

Make Breakfast Commander: No don’t toast the bread
Deny Salad Commander: don’t

Plate of Toast Commander: don’t think so

N Cooked Slices Of X In Y Follower: Do 1 boil it or slice it?
AlternateQuestions Clean All X Follower: To the left or right of the stove?

Make Coffee Follower: This mug or the other one?

Make Coffee Commander: you don’t have the correct mug
FeedbackNegative N cooked Slices of X in Y Commander: task not complete

Plate of Toast

Commander: wrong plate

Table 6: Example utterances for Dialog act labels that could be observed in different TEACh tasks from Comman-

derand Follower.
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Abstract

Object permanence is the ability to form and
recall mental representations of objects even
when they are not in view. Despite being a
crucial developmental step for children, ob-
ject permanence has had only some explo-
ration as it relates to symbol and communica-
tive grounding in spoken dialogue systems. In
this paper, we leverage SLAM as a module
for tracking object permanence and use a robot
platform to move around a scene where it dis-
covers objects and learns how they are denoted.
We evaluated by comparing our system’s ef-
fectiveness at learning words from human di-
alogue partners both with and without object
permanence. We found that with object per-
manence, human dialogue partners spoke with
the robot and the robot correctly identified ob-
jects it had learned about significantly more
than without object permanence, which sug-
gests that object permanence helped facilitate
communicative and symbol grounding.

1 Introduction

Communicative grounding is the process of medi-
ating what words mean (Clark, 1996) and symbol
grounding is the establishment of connections be-
tween language and the perceptual, physical world
(Harnad, 1990). Following Larsson (2018) that ex-
plained how symbol grounding is a side effect of
communicative grounding, children who are learn-
ing their first language cannot learn symbol ground-
ing without simultaneously being engaged in com-
municative grounding. Consider the following ex-
ample, within the physical space of a room. A child
(C) picks up a ball (B) and a caregiver (P) engages
in dialogue with the child about the ball:

(1 (C picks up a B and looks at it)
P: That’s a ball!
C: ball

P: Ball! Very good!

/o o
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Communicative grounding happens between P and
C during this interaction as P offers ball as a word
with a semantic potential and C understands B to
be an extension of ball. At the point (1)-b symbol
grounding takes place between C and B where C
links the word ball to the object in their hand. Com-
municative grounding then follows when C says
ball and receives a positive confirmation from P,
resulting in knowledge that P has experienced an
interaction with C when C heard and demonstrated
understanding of ball, and C received confirmation
of understanding of the word ball from P.

But what happens in Example (1) when C moves
their attention to a different object? It is the case
that the C has grounded the word ball using their
experience with B, and P acknowledges that C has
done so, but does it matter that the object is no
longer in view? Prior work explored the interplay
between communicative and perceptual grounding
(Chai et al., 2014; Larsson, 2018), but there is very
little work on how object permanence plays a role
in the communicative and symbol grounding pro-
cess. Piaget identified object permanence in the
child development process within the sensorimotor
stage—a period that lasts from birth to nearly two
years old (i.e., beginning before children can speak)
when children largely interact with and understand
the world through their sensorimotor experience
(Piaget, 2013; Bremner et al., 2015). Moreover,
children who are learning their first words are ego-
centric in that they have not yet developed the ca-
pability of understanding another person’s point
of view (i.e., of an object) (Repacholi and Gopnik,
1997). A lack of object permanence means that
objects that children observe, but are then out of
view no longer exist, and are separate and distinct
objects if the child observes them again. '

"Lack of object permanence is the common assumption
that holds for most vision and language datasets, e.g., ref-
COCO (Yu et al., 2016) where referring expressions to ob-
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Moore and Meltzoff (1999) suggested that as
early as four months, a child begins to recognize
that objects have permanence even when the child
is not actively observing them—an ability that
the child can leverage before they start to learn
language—but this knowledge has been ignored
in prior research. Therefore, in this paper, we ask
the question: Does object permanence matter for
communicative grounding and symbol grounding
in an automated learning spoken dialogue system?
We hypothesize that it does matter, particularly for
first-language acquisition in a spoken dialogue sys-
tem (SDS) that has no prior exposure to language.
We test our hypothesis in a human-robot interac-
tion (HRI) task where we task human participants
to interact with a robot and observe that the robot
has been able to utter words in the right context.
We use a survey to measure the perceptions of the
human participants in order to establish that com-
municative grounding took place, and we measure
the number of words that the robot “learned” dur-
ing the interaction to determine if communicative
and symbol grounding took place. We find through
our experiment that symbol and communicative
grounding are affected by object permanence, lead-
ing to increased user engagement and a more re-
sponsive and effective spoken dialogue system that
learns word groundings as it interacts.

In the following section, we compare our work to
others then explain our method for tracking object
permanence using a simultaneous localization and
mapping (SLAM) module and the the robot-ready
SDS system that we used. We then explain our
experiment and conclude.

2 Background & Related Work

Object permanence is a crucial milestone in cog-
nitive development, and it has been suggested by
Moore and Meltzoff (1999) that as early as four
months this milestone is reached. Tomasello and
Farrar (1984) shows that as infants enter the sixth
stage of object permanence development (where
children understand that objects completely re-
moved from their view still exist) they start to learn
relational words. A more recent study explores
the development of search behavior in 7 month
old infants after they guide them in understand-
ing the effects of their actions upon hidden objects.
This indicates that object permanence is crucial in

jects depicted in images only offer a single visual experience
(though multiple referring expressions) to the objects.
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searching behavior as it leads to the understanding
that infants have the ability to cause hidden objects
to reappear (O’Connor and Russell, 2015).

Bechtle et al. (2015) worked towards developing
a sense of object permanence in robots through
creating a simulated experimental setup where a
robot learns how the movements of its arms (one
holding a shield) affect the visual detection of an
object in a scene. Although, not directly related to
object permanence, Platonov et al. (2019) is more
closely related to grounding as they create a SDS
which is able to create a 3D model of a physical
block world and answer spatial questions about it.
Roy et al. (2004) also explored spatial reasoning
within a physical world through the creation of a
robot called Ripley which performed grounding of
spatial language that could not be understood under
fixed-perspective assumptions.

Of similar importance in cognitive development
is communicative grounding. Researchers, notably
Chai et al. (2014), have investigated how the collab-
orative efforts of a robot in situated human-robot
dialogue affects both perceived and true grounding
which involved a situated setup of objects simi-
lar to our experiment. This notion of common
ground and communicative grounding has also
been explored in other human-robot interaction
work (Kiesler, 2005; Powers et al.; Stubbs et al.,
2007, 2008; Peltason et al., 2013) and work involv-
ing human interactions with virtual agents (Puste-
jovsky et al., 2017). Our work extends and builds
on prior work as we focus on using object perma-
nence in a robot to improve its language learning
abilities.

3 Proposed System

In this section we explain how we modeled the
dialogue for language learning, integrated with
robot modules. We first explain the choice of
robot: Digital Dream Lab’s Cozmo robot. Plane
et al. (2018) showed that participants perceived
Cozmo as young and with potential to learn, which
is precisely the setting and perception that we want
dialogue partners to have when interacting with
Cozmo. Cozmo is small, has a track for movement,
a lift and a head with an OLED display which allow
it to display its eyes. Within the head is a small
camera and a speech synthesizer (with a “young”
sounding voice). For this study we make use of
Cozmo’s camera for object detection, track for
navigation and most importantly Cozmo’s built-in



SLAM (Simultaneous Localization and Mapping)
functionality for object permanence. Cozmo has
no microphone, so we use an external microphone.
The system outlined in this paper uses the incre-
mental framework ReTiCo (Michael and Moller,
2019; Michael, 2020) extended for multimodal use
with Cozmo (Kennington et al., 2020), leveraging
existing modules as well as the newly developed
Object Permanence module. The full SDS is de-
picted in Figure 3. The modules include: Object
Detection, Feature Extraction, Automatic Speech
Recognition, Natural Language Understanding,
Grounded Semantics, Action Management (Navi-
gation & Speaking), and Object Permanence.

Object Detection The Object Detection module
uses YOLO object detection (Redmon et al., 2016).
The model we used was pre-trained on the MSCoco
dataset (Lin et al., 2014) containing 91 object types
with a total of 2.5 million labeled objects in 328
thousand images. We apply this model as a means
for object region classification in order to draw
bounding boxes around objects in images received
from Cozmo’s Camera. We discard the labels and
only use the bounding box information as to avoid
the use of a pretrained vocabulary since children
are born without linguistic knowledge. The output
of this module is the bounding box information of
the objects in view to Cozmo.

Feature Extraction The Feature Extraction
module uses CLIP (Radford et al., 2021) a neural
network trained on a variety of (image, text) pairs.
This module takes an image and bounding box in-
formation, extracts each sub-image containing each
object, then passes those through CLIP’s image en-
coder which returns image features encoded by the
vision portion of the CLIP model. This module out-
puts a vector of size 512 for each detected object,
for each frame. In our case only one object will be
detected in an image, though as the robot shifts and
moves, multiple frames of the object will results in
multiple CLIP vector representations of that object.
Taken together, the Object Detection and Feature
extraction modules provide a way of isolating and
extracting features from objects; children likewise
have experienced objects physically (i.e., visual,
tactile) before they learn that words denote objects.
Both modules use models that were trained using
language data which certainly affects functionality
of the modules. We ignore the language aspects
of the models, and leave for future work develop-

ing models (e.g., object region detection) that are
trained without language data.
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Figure 1: Visualization of the creation of a custom ob-
ject in SLAM. In 1, the object is not yet observed, but
in 2 the object is placed in the SLAM space.

Automatic Speech Recognition The Automatic
Speech Recognition (ASR) module transcribes user
speech. We use Google’s speech to text API. The
output is the word-level transcription.

Natural Language Understanding The Natural
Language Understanding (NLU) module takes in
the transcribed speech from the ASR and deter-
mines the dialogue act (i.e., intent) of the user using
RASA (Bocklisch et al., 2017) an open source NLU
library. Specifically, we use RASA to categorize
user speech into 5 different dialogue acts:

e positive user feedback (e.g., yes)

e negative user feedback (e.g., no)

e where questions (e.g., where is the can?)
e what questions (e.g., what is that?)

e statements (e.g., that is red.)

The positive and negative user feedback is used
to document the number of questions that Cozmo
a