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Preface

We are glad to pen the first few words for the proceedings of SIGDIAL 2022, the 23rd Annual Meeting of
the Special Interest Group on Discourse and Dialogue. The SIGDIAL conference is a premier publication
venue for research in discourse and dialogue. This year the conference is organized as a hybrid event with
both in-person and remote participation on September 7-9, 2022, at Heriot-Watt University, Edinburgh,
Scotland, and is hosted by the Interaction Lab and the National Robotarium.

The SIGDIAL 2022 program features 3 keynote talks, 6 sessions of in-person paper presentations,
including the special session on Natural Language in Human-Robot Interaction (NLiHRI), 2 in-person
mixed demo and poster sessions, and 5 remote presentation sessions. The 2022 Young Researchers’
Roundtable on Spoken Dialog Systems (YRRSDS 2022) is also being held as a satellite event, just
before SIGDIAL, on September 5-6.

SIGDIAL received 140 submissions this year, comprising 79 long papers, 49 short papers, and 12 demo
descriptions. We had 14 Senior Program Committee (SPC) members who were each responsible for
9-11 papers, leading the discussion process and also contributing with meta-reviews. Each submission
was assigned to an SPC member and received at least three reviews. Decisions carefully considered
the original reviews, meta-reviews, and discussions among reviewers facilitated by the SPCs. We are
immensely grateful to the members of the Program Committee and Senior Program Committee for their
efforts in providing excellent, thoughtful reviews of the large number of submissions. Their contributions
have been essential to selecting the accepted papers and providing a high-quality technical program for
the conference. We have aimed to develop a broad, varied program spanning the many positively-rated
papers identified by the review process. We therefore accepted 64 papers in total: 37 long papers (47%),
19 short papers (39%), and 8 demo descriptions, for an overall acceptance rate of 45.7%. The topics to
be presented demonstrate the current breadth of research in discourse and dialogue.

In organizing this hybrid in-person/ remote conference, we have tried to maintain as much of the spirit of
a fully in-person conference as possible, allowing opportunities for questions and discussion. Recordings
for all remote papers and demos will be made available, and will be played to the audience in the
conference auditorium, with an opportunity for authors to answer questions live online. We have also
set up slack channels for online discussions. Long remote papers will each be presented as a seven-
minute pre-recorded talk followed by three minutes of live Q&A, and short/demo remote papers will be
presented as a four-minute pre-recorded talk followed by three minutes of live Q&A. A conference of
this scale requires the energy, guidance, and contributions of many parties, and we would like to take this
opportunity to thank and acknowledge them all.

We thank our three keynote speakers, Yun-Nung (Vivian) Chen (National Taiwan University), Angeliki
Lazaridou (DeepMind), and Giuseppe Carenini (University of British Columbia), for their inspiring talks
on "Robustness, Scalability, and Practicality of Conversational AI”, "On opportunities and challenges
on communicating using Large Language Models”, and "Unlimited discourse structures in the era of
distant supervision, pre-trained language models and autoencoders”. We also thank the organizers of the
special session: "Natural Language in Human-Robot Interaction (NLiHRI)”. We are grateful for their
coordination with the main conference.

SIGDIAL 2022 is made possible by the dedication and hard work of our community, and we are indebted
to many. The conference would not have been possible without the advice and support of the SIGDIAL
board, particularly Gabriel Skantze and Milica Gasic. The hybrid nature of the conference inevitably
increases the workload for the organizers, and so special thanks go to Daniel Hernández Garcia for his
tireless effort in managing the website with timely updates, and to the team handling various online
aspects of participation: Angus Addlesee, Arash Ashrafzadeh, Bhathiya Hemanthage, Selina Meyer, and
Nikolas Vitsakis. Many thanks also go to Tanvi Dinkar, Amit Parekh, and Weronika Sieinska for their
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support with local arrangements.

We would also like to thank the sponsorship chair David Vandyke, who has been our SIGDIAL
ambassador to industry year after year. He continues to bring to the conference an impressive panel
of conference sponsors. We thank David for his dedicated effort. We gratefully acknowledge the support
of our sponsors: LivePerson (Platinum), Apple (Gold), Alana (Gold), Toshiba Research Europe (Silver),
and Furhat Robotics (Bronze). In addition, we thank Malihe Alikhani, the publication chair, and Ondřej
Dušek, the mentoring chair for their dedicated service.

Finally, it is our great pleasure to welcome you physically and remotely to the conference. We hope that
you will have an enjoyable and productive experience, and leave with fond memories of SIGDIAL 2022.
With our best wishes for a successful conference.

Fàilte gu Alba !

Oliver Lemon, General Chair

Junyi Jessy Li, Dilek Hakkani-Tur, Program Co-Chairs
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xix



Thursday September 8, 2022 (continued)

12:10–13:00 Lunch

13:00–14:40 Oral Session 4: “Deep dives into dialogue systems”

A Systematic Evaluation of Response Selection for Open Domain Dialogue
Behnam Hedayatnia, Di Jin, Yang Liu and Dilek Hakkani-Tur

Inferring Ranked Dialog Flows from Human-to-Human Conversations
Javier Miguel Sastre Martinez and Aisling Nugent

Structured Dialogue Discourse Parsing
Ta-Chung Chi and alexander rudnicky

"Do you follow me?": A Survey of Recent Approaches in Dialogue State Tracking
Léo Jacqmin, Lina M. Rojas Barahona and Benoit Favre

14:40–15:00 Break

15:00–16:00 Remote Session 3

MultiWOZ 2.4: A Multi-Domain Task-Oriented Dialogue Dataset with Essential
Annotation Corrections to Improve State Tracking Evaluation
Fanghua Ye, Jarana Manotumruksa and Emine Yilmaz

The Duration of a Turn Cannot be Used to Predict When It Ends
Charles Threlkeld and JP de Ruiter

Getting Better Dialogue Context for Knowledge Identification by Leveraging
Document-level Topic Shift
Nhat Tran and Diane Litman

Neural Generation Meets Real People: Building a Social, Informative Open-
Domain Dialogue Agent
Ethan A. Chi, Ashwin Paranjape, Abigail See, Caleb Chiam, Trenton Chang, Kath-
leen Kenealy, Swee Kiat Lim, Amelia Hardy, Chetanya Rastogi, Haojun Li, Alexan-
der Iyabor, Yutong He, Hari Sowrirajan, Peng Qi, Kaushik Ram Sadagopan, Nguyet
Minh Phu, Dilara Soylu, Jillian Tang, Avanika Narayan, Giovanni Campagna and
Christopher Manning

xx



Thursday September 8, 2022 (continued)

DeepCon: An End-to-End Multilingual Toolkit for Automatic Minuting of Multi-
Party Dialogues
Aakash Bhatnagar, Nidhir Bhavsar and Muskaan Singh

ICM : Intent and Conversational Mining from Conversation Logs
Sayantan Mitra, Roshni Ramnani, Sumit Ranjan and Shubhashis Sengupta

16:00–17:00 Remote Session 4

Entity-based De-noising Modeling for Controllable Dialogue Summarization
Zhengyuan Liu and Nancy Chen

iEval: Interactive Evaluation Framework for Open-Domain Empathetic Chatbots
Ekaterina Svikhnushina, Anastasiia Filippova and Pearl Pu

Unsupervised Domain Adaptation on Question-Answering System with Conversa-
tion Data
Amalia Adiba, Takeshi Homma and Yasuhiro Sogawa

UniDU: Towards A Unified Generative Dialogue Understanding Framework
Zhi Chen, Lu Chen, Bei Chen, Libo Qin, Yuncong Liu, Su Zhu, Jian-Guang LOU
and Kai Yu

Advancing Semi-Supervised Task Oriented Dialog Systems by JSA Learning of Dis-
crete Latent Variable Models
Yucheng Cai, Hong Liu, Zhijian Ou, Yi Huang and Junlan Feng

xxi



Thursday September 8, 2022 (continued)

17:00–18:00 Remote Session 5

Redwood: Using Collision Detection to Grow a Large-Scale Intent Classification
Dataset
Stefan Larson and Kevin Leach

Dialogue Evaluation with Offline Reinforcement Learning
Nurul Lubis, Christian Geishauser, Hsien-chin Lin, Carel van Niekerk, Michael
Heck, Shutong Feng and Milica Gasic

Disruptive Talk Detection in Multi-Party Dialogue within Collaborative Learning
Environments with a Regularized User-Aware Network
Kyungjin Park, Hyunwoo Sohn, Wookhee Min, Bradford Mott, Krista Glazewski,
Cindy E. Hmelo-Silver and James Lester

Generating Discourse Connectives with Pre-trained Language Models: Condition-
ing on Discourse Relations Helps Reconstruct the PDTB
Symon Stevens-Guille, Aleksandre Maskharashvili, Xintong Li and Michael White

Toward Self-Learning End-to-End Task-oriented Dialog Systems
Xiaoying ZHANG, Baolin Peng, Jianfeng Gao and Helen Meng

19:30 Banquet

Friday September 9, 2022

09:00–10:00 Keynote 3: Unlimited discourse structures in the era of distant supervision, pre-
trained language models and autoencoders
Guiseppe Carenini

xxii



Friday September 9, 2022 (continued)

10:00–10:15 Break

10:15–11:30 Oral Session 5: “Dynamics and Methods I”

Combining Structured and Unstructured Knowledge in an Interactive Search Dia-
logue System
Svetlana Stoyanchev, Suraj Pandey, Simon Keizer, Norbert Braunschweiler and
Rama Sanand Doddipatla

How Much Does Prosody Help Turn-taking? Investigations using Voice Activity
Projection Models
Erik Ekstedt and Gabriel Skantze

What makes you change your mind? An empirical investigation in online group
decision-making conversations
Georgi Karadzhov, Tom Stafford and Andreas Vlachos

11:30–11:40 Break

11:40–12:55 Oral Session 6: “Dynamics and Methods II”

Dialogue Term Extraction using Transfer Learning and Topological Data Analysis
Renato Vukovic, Michael Heck, Benjamin Ruppik, Carel van Niekerk, Marcus Zi-
browius and Milica Gasic

Evaluating N-best Calibration of Natural Language Understanding for Dialogue
Systems
Ranim Khojah, Alexander Berman and Staffan Larsson

LAD: Language Models as Data for Zero-Shot Dialog
Shikib Mehri, Yasemin Altun and Maxine Eskenazi

xxiii



Friday September 9, 2022 (continued)

12:55–13:45 Lunch

13:45–14:45 Poster + Demo Session 2:

Improving Bot Response Contradiction Detection via Utterance Rewriting
Di Jin, Sijia Liu, Yang Liu and Dilek Hakkani-Tur

Comparison of Lexical Alignment with a Teachable Robot in Human-Robot and
Human-Human-Robot Interactions
Yuya Asano, Diane Litman, Mingzhi Yu, Nikki Lobczowski, Timothy Nokes-
Malach, Adriana Kovashka and Erin Walker

TREND: Trigger-Enhanced Relation-Extraction Network for Dialogues
Po-Wei Lin, Shang-Yu Su and Yun-Nung Chen

User Satisfaction Modeling with Domain Adaptation in Task-oriented Dialogue Sys-
tems
Yan Pan, Mingyang Ma, Bernhard Pflugfelder and Georg Groh

N-best Response-based Analysis of Contradiction-awareness in Neural Response
Generation Models
Shiki Sato, Reina Akama, Hiroki Ouchi, Ryoko Tokuhisa, Jun Suzuki and Kentaro
Inui

A Visually-Aware Conversational Robot Receptionist
Nancie Gunson, Daniel Hernandez Garcia, Weronika Sieińska, Angus Addlesee,
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Keynote Abstracts

Keynote 1 - Robustness, Scalability, and Practicality of Conversational AI
Yun-Nung (Vivian) Chen
National Taiwan University

Abstract

Even conversational systems have attracted a lot of attention recently, there are many remaining
challenges to be resolved. This talk presents three different dimensions for improvement: 1) Robustness
— how to deal with speech recognition errors for better language understanding performance, 2)
Scalability — how to better utilize the limited data, and 3) Practicality — how to naturally perform
recommendation in a conversational manner. All directions enhance the usefulness of conversational
systems, showing the potential of guiding future research areas

Biography

Yun-Nung (Vivian) Chen is currently an associate professor in the Department of Computer Science
Information Engineering at National Taiwan University. She earned her Ph.D. degree from Carnegie
Mellon University, where her research interests focus on spoken dialogue systems and natural language
processing. She was recognized as the Taiwan Outstanding Young Women in Science and received
Google Faculty Research Awards, Amazon AWS Machine Learning Research Awards, MOST Young
Scholar Fellowship, and FAOS Young Scholar Innovation Award. Her team was selected to participate
in the first Alexa Prize TaskBot Challenge in 2021. Prior to joining National Taiwan University, she
worked in the Deep Learning Technology Center at Microsoft Research Redmond.
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Keynote 2 - On opportunities and challenges on communicating using Large Language
Models
Angeliki Lazaridou
DeepMind

Abstract

From science fiction to Turing’s seminal work on AI, language and communication have been among the
central components of intelligent agents. Towards that dream, the new-generation of large language
models (LLMs) have recently given rise to a new set of impressive capabilities, from generating
human-like text to engaging in simple, few-turn conversations. So, how close do LLMs bring us to
being able to interact with such intelligent agents during our lifetime? In this talk, I will review key
recent developments on LLMs by the community and I will discuss these in the context of advancing
communication research. At the same time, I will also highlight challenges of current models in
producing goal-driven, safe and factual dialogues. Capitalizing on their strengths and addressing their
weaknesses might allow us to unlock LLMs full potential in responsibly interacting with us, humans,
about different aspects of our lives.

Biography

Angeliki Lazaridou is a Staff Research Scientist at DeepMind. She received a PhD in Brain and Cognitive
Sciences from the University of Trento. Her PhD initially focused on developing neural network models
and techniques for teaching agents language in grounded environments. However, one day in late 2015,
while walking towards the lab she realized that interaction and communication should play a key role in
this learning . This was the beginning of her work in deep learning and multi-agent communication. In
the following years, she looked at this fascinating problem from many different angles: how to make this
learning more realistic or how to extend findings from cooperative to self-agents and even how to make
this communication resemble more natural language. Currently, she spends most of her time thinking
and working on how to best make language models be in sync with the complex and ever-evolving world.
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Keynote 3 - Unlimited discourse structures in the era of distant supervision, pre-trained
language models and autoencoders
Giuseppe Carenini
University of British Columbia

Abstract

Historically, discourse processing relies on human annotated corpora that are very small and lack
diversity, often leading to overfitting, poor performance in domain transfer, and minimal success of
modern deep-learning solutions. So, wouldn’t it be great if we could generate an unlimited amount
of discourse structures for both monologues and dialogues, across genres, without involving human
annotation? In this talk, I will present some preliminary results on possible strategies to achieve this goal:
by either leveraging natural text annotations (like sentiment and summaries), by extracting discourse
information from pre-trained and fine-tuned language models, or by inducing discourse trees from task-
agnostic autoencoding learning objectives. Besides the many remaining challenges and open issues,
I will discuss the potential of these novel approaches not only to boost the performance of discourse
parsers (NLU) and text planners (NLG), but also lead to more explanatory and useful data-driven theories
of discourse.

Biography

Giuseppe Carenini is a Professor in Computer Science and Director of the Master in Data Science at
UBC (Vancouver, Canada). His work on natural language processing and information visualization to
support decision making has been published in over 140 peer-reviewed papers (including best paper at
UMAP-14 and ACM-TiiS-14). Dr. Carenini was the area chair for many conferences including recently
for ACL’21 in “Natural language Generation”, as well as Senior Area Chair for NAACL’21 in “Discourse
and Pragmatics”. Dr. Carenini was also the Program Co-Chair for IUI 2015 and for SigDial 2016. In
2011, he published a co-authored book on “Methods for Mining and Summarizing Text Conversations”.
In his work, Dr. Carenini has also extensively collaborated with industrial partners, including Microsoft
and IBM. He was awarded a Google Research Award in 2007 and a Yahoo Faculty Research Award in
2016.
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Post-processing Networks: Method for Optimizing Pipeline Task-oriented
Dialogue Systems using Reinforcement Learning

Atsumoto Ohashi Ryuichiro Higashinaka
Graduate School of Informatics, Nagoya University

ohashi.atsumoto.c0@s.mail.nagoya-u.ac.jp
higashinaka@i.nagoya-u.ac.jp

Abstract

Many studies have proposed methods for op-
timizing the dialogue performance of an en-
tire pipeline task-oriented dialogue system by
jointly training modules in the system using re-
inforcement learning. However, these methods
are limited in that they can only be applied to
modules implemented using trainable neural-
based methods. To solve this problem, we pro-
pose a method for optimizing a pipeline system
composed of modules implemented with arbi-
trary methods for dialogue performance. With
our method, neural-based components called
post-processing networks (PPNs) are installed
inside such a system to post-process the output
of each module. All PPNs are updated to im-
prove the overall dialogue performance of the
system by using reinforcement learning, not
necessitating each module to be differentiable.
Through dialogue simulation and human evalu-
ation on the MultiWOZ dataset, we show that
our method can improve the dialogue perfor-
mance of pipeline systems consisting of various
modules1.

1 Introduction

Task-oriented dialogue systems can be classified
into two categories: pipeline systems, in which
multiple modules take on a sequential structure,
and neural-based end-to-end systems (Chen et al.,
2017; Gao et al., 2018; Zhang et al., 2020b).

A typical pipeline system consists of four mod-
ules (Zhang et al., 2020b): natural language under-
standing (NLU), dialogue state tracking (DST), Pol-
icy, and natural language generation (NLG). Each
module can be implemented individually using var-
ious methods (e.g., rule-based and neural-based)
(Ultes et al., 2017; Zhu et al., 2020). In a pipeline
system, the inputs and outputs of each module are
explicit, making it easy for humans to interpret.

1Our code is publicly available at https://github.
com/nu-dialogue/post-processing-networks

RewardNLU DST Policy NLG

(a) Diagram of conventional method. Modules are fine-tuned
using RL.

NLU DST Policy NLGPPN PPN PPN Reward

(b) Diagram of proposed method. Each PPN that post-
processes output of each module is optimized using RL.

Figure 1: Comparison of conventional and proposed
methods

However, since each module is processed sequen-
tially, errors in the preceding module can easily
propagate to the following ones, and the perfor-
mance of the entire system cannot be optimized
(Tseng et al., 2021). This results in low dialogue
performance of the entire system (Takanobu et al.,
2020).

In contrast, neural-based methods can optimize
entire neural-based end-to-end systems, which al-
lows for less error propagation than pipeline sys-
tems and high dialogue performance (Dinan et al.,
2019; Gunasekara et al., 2020). The drawback of
these methods is the large amount of annotation
data required to train systems (Zhao and Eskenazi,
2016). Compared with pipeline systems, neural-
based end-to-end systems are also less interpretable
and more difficult to adjust or add functions.

To marry the benefits of both pipeline and end-
to-end systems, methods (Liu et al., 2018; Mehri
et al., 2019; Lee et al., 2021; Lin et al., 2021) have
been proposed for optimizing an entire pipeline
system in an end-to-end fashion by using reinforce-
ment learning (RL) (Figure 1(a)). These methods
are powerful because they jointly train and fine-
tune neural-based implementations of the modules,
such as NLU, Policy, and NLG, by using RL. How-
ever, these methods may not always be applicable
because there may be situations in which modules
can only be implemented with rules or the modules’
internals cannot be accessed, such as with a Web

1



API.
With this background, we propose a method for

optimizing an entire pipeline system composed of
modules implemented in arbitrary methods. We
specifically focus on modules that output fixed
sets of classes (i.e., NLU, DST, and Policy) and
install neural-based components (post-processing
networks; PPNs) in the system to post-process the
outputs of these modules, as shown in Figure 1(b).
Each PPN modifies the output of each module by
adding or removing information as necessary to
facilitate connections to subsequent modules, re-
sulting in a better flow of the entire pipeline. To
enable the appropriate post-processing for the en-
tire system, each PPN uses the states of all modules
in the system when executing post-processing. The
post-processing of each PPN is optimized using RL
so that the system can improve its dialogue perfor-
mance, e.g., task success. A major advantage of
our method is that each module does not need to
be trainable since PPNs are trained instead.

To evaluate the effectiveness of our method, we
applied PPNs to pipeline systems consisting of
modules implemented with various methods (e.g.,
rule-based and neural-based) on the basis of the
MultiWOZ dataset (Budzianowski et al., 2018) and
conducted experiments by using dialogue simula-
tion and human participants. The contributions of
this study are as follows.

• We propose a method of improving the dia-
logue performance of a pipeline task-oriented
dialogue system by post-processing outputs of
modules. Focusing on NLU, DST, and Policy,
our method can be applied to various pipeline
systems because PPNs do not depend on the
implementation method of each module or a
combination of modules.

• Dialogue simulation experiments have shown
that our method can improve the dialogue per-
formance of pipeline systems consisting of
various combinations of modules. Additional
analysis and human evaluation experiments
also verified the effectiveness of the proposed
method.

2 Related Work

Our study is related to optimizing an entire dia-
logue system with a modular architecture. Wen
et al. (2017) proposed a method for implement-
ing all the functions of NLU, DST, Policy, and

NLG modules by using neural networks, enabling
the entire system to be trained. Lei et al. (2018)
incorporated both a decoder for generating belief
states (i.e., DST module) and a response-generation
decoder (i.e., NLG module) into a sequence-to-
sequence model (Sutskever et al., 2014). Zhang
et al. (2020a) also proposed a method for jointly
optimizing a system that includes three decoders
that respectively execute the functions of DST, Pol-
icy, and NLG. Liang et al. (2020) extended the
method of Lei et al. (2018) by jointly optimiz-
ing four decoders that generate user dialogue acts
(DAs), belief states, system DAs, and system re-
sponses. However, these systems are trained in a
supervised manner and require large amounts of
data (Liu et al., 2017).

Our study is related to improving the dialogue
performance of a pipeline system by using RL.
Zhao and Eskenazi (2016) and Li et al. (2017)
implemented DST and Policy in a neural model
and used the Deep Q Network (Mnih et al., 2013)
algorithm to optimize the system to achieve ro-
bustness against errors that occur in interactions.
Liu et al. (2018) proposed a Policy-learning op-
timization method for real users by combining
supervised learning, imitation learning, and RL.
Mehri et al. (2019) proposed a method for training
a response-generation model by using RL while
using the hidden states of the learned NLU, Pol-
icy, and NLG. Methods have been proposed (Lee
et al., 2021; Lin et al., 2021) for building a pipeline
system with individually trained modules and fine-
tuning specific modules by using RL, which signifi-
cantly improved the performance of the overall sys-
tem. These methods are powerful because they can
fine-tune a system directly through RL. However,
they can only be applied to systems consisting of
specific differentiable modules implemented using
neural-based methods, not to systems consisting
of non-differentiable modules. Our method is in-
dependent of the module-implementation method,
trainability of each module in pipeline systems, and
combination of modules.

3 Proposed Method

We developed our method to improve the dialogue
performance of an entire pipeline system by op-
timizing the output of each module through post-
processing. Post-processing means modifying the
output by adding or removing information from
the actual output of the module. With our method,
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Figure 2: Architecture of our proposed method. Output of each module is post-processed by subsequent PPN. Each
PPN has InAdapter to convert output label o of module into multi-binary vector v, MLP to post-process multi-binary
vector into v′ on basis of v and state sAll of all modules, and OutAdapter to restore v′ to output label o′.
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Figure 3: Procedure in which InAdapter converts output
label o into vector v and OutAdapter restores vector v′

into output label o′ by using output vocabulary (in this
case, output labels are DAs of NLU). Value information,
which cannot be encoded in v, is copied directly from o
when creating o′.

each PPN needs to execute post-processing appro-
priate for all modules so that the entire system can
improve overall dialogue performance. With this in
mind, each PPN post-processes the target module’s
output while using the latest states of all modules
in the system. Basically, each module’s state is the
latest output of each module. However, if a module
can provide information that represents its state in
more detail than the module’s output, the PPN also
uses that information (see Section 3.1). Figure 2
shows the architecture of PPNs applied to a pipeline
system consisting of Module1, ..., Modulen.

3.1 Post-processing Algorithm
The following equations describe the steps in which
PPNi post-processes the output oti of Modulei at
turn t, as in Figure 2.

oti, s
t
i = Modulei(o

′t
i−1) (1)

vti = InAdapteri(o
t
i) (2)

stAll = [st1; ...; s
t
i; s

t−1
i+1; ...; s

t−1
n ] (3)

v′ti = MLPi([v
t
i ; s

t
All]) (4)

o′ti = OutAdapteri(v
′t
i ) (5)

As in a general pipeline system, Modulei first re-
ceives the output o′ti−1 of the preceding Modulei−1

and outputs oti as the result of its processing (Eq.
(1)) (e.g., for the NLU module, it receives the user’s
utterance as input and outputs the user’s DAs). At
the same time, Modulei outputs its additional in-
formation sti obtained in the processing, which is
related to the state of Modulei (Eq. (1)). Basi-
cally, sti is the same as oti. However, if Modulei
can provide more detailed information about its
state obtained in the processing (e.g., for the NLU
module, it typically outputs confidence scores of
predicted user’s DAs), Modulei outputs that infor-
mation as sti.

Next, oti is input to PPNi. In PPNi, InAdapteri
creates a multi-binary vector vti , which is a vec-
tor representation of oti (Eq. (2)). The left half
of Figure 3 shows a concrete example of an In-
Adapter converting a module output into a multi-
binary vector. The InAdapteri is created by hand-
crafted rules using the output vocabulary set of
Modulei. At the same time as creating vti , s

t
All =

[st1; ...; s
t
i; s

t−1
i+1; ...; s

t−1
n ], which is a concatenation

of the latest states of Module1, ..., Modulen, are
also created (Eq. (3)). Note that st−1 is used for
states of Modulei+1, ..., Modulen because modules
after Modulei have not produced their states in turn
t.

The vti and stAll created thus far are combined
and input to multi-layer perceptron (MLP) MLPi,
which outputs a multi-binary vector v′ti (Eq. (4)).
The dimensions of v′ti are the same as the vocab-
ulary size of Modulei. At this point, the changes
in the original vectors vt and v′t become the re-
sult of post-processing. That is, the dimension, the
value in vti of which is 1 and value in v′ti of which
is 0, is the information deleted by MLPi, and the
reverse is the information added by MLPi. Finally,
OutAdapteri converts v′ti into o′ti , the output label
representation of Modulei. Some of the value in-
formation is directly copied from oti when creating
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o′ti since these values are not given by v′ti . If there
is no need to fill in the value, it is left empty. The
right half of Figure 3 shows a concrete example
of an OutAdapter converting a multi-binary vector
into a label representation of a module’s vocabu-
lary. As with InAdapteri, OutAdapteri is created
by hand-crafted rules using the output vocabulary
set of Modulei.

At runtime, in the initial turn, the states of some
modules that have never processed yet are initial-
ized with zero vector (i.e., s0 = 0). In the subse-
quent turn t, as mentioned above, PPNi uses the
preceding modules’ states [st1, ..., s

t
i] and the suc-

ceeding modules’ states [st−1
i+1, ..., s

t−1
n ].

With our method, the MLPs of all PPNs are op-
timized jointly by using RL via interaction with
users (see Section 3.3). To apply PPNs to a system,
we only need the vocabulary set of each module to
implement an InAdapter and OutAdapter for con-
version. Therefore, our method can be applied to
both differentiable and non-differentiable imple-
mentations of the modules. Since we want first to
verify the idea of PPNs, we only used MLPs and
focused on NLU, DST, and Policy in this study.
Once the verification is complete, we aim to apply
PPNs to more complex modules, such as NLG.

3.2 Pre-training with Imitation Learning

It is not easy to optimize an MLP from scratch by
using RL. Many studies have shown that model per-
formance can be improved by imitation learning,
which is a scheme for learning to imitate the behav-
ior of experts before RL is conducted (Argall et al.,
2009; Rajeswaran et al., 2017). We considered
the actual output oi of Modulei to be the behavior
of the expert for PPNi and conducted supervised
learning so that PPNi copies ot before RL. This
should allow each PPN to focus only on “how to
modify the module’s output o” during RL.

With our method, a pipeline system consisting
of Module1,..., Modulen first executes dialogue ses-
sions for sampling training data. In each dialogue,
we sample the [sAll, v] of each module for all turns.
At this stage, no PPNs execute post-processing,
and no MLPs are used. When training MLPs by
imitation learning, supervised learning is carried
out using the sampled data. We train all MLPs to
execute a multi-labeling task in which the input
is [v; sAll] and the output label is v. Binary cross-
entropy is used to update the MLP to minimize the
difference between v and v′ = MLP([v; sAll]).

3.3 Optimization with Reinforcement
Learning

The goal with PPNs is to improve dialogue per-
formance (e.g., task success) by each PPN post-
processing the output of each module. Therefore,
the MLP of each PPN needs to be optimized us-
ing RL for maximizing the rewards related to dia-
logue performance. We use proximal policy opti-
mization (PPO) (Schulman et al., 2017) as the RL
algorithm, which is a stable and straightforward
policy-gradient-based RL algorithm.

The following steps show the learning algorithm
of a PPN for each iteration:

Step. 1 The pipeline system with PPNs interacts
with a user. Each PPN post-processes and
samples the stAll, v

t, v′t, and reward rt of each
MLP in turn t. The sampled (stAll, v

t, v′t, rt)
are added to the post-processing history
(called trajectory) of each PPN. As an rt, we
give the same value to all PPNs. These tri-
als are repeated until the trajectory reaches a
predetermined size (called horizon).

Step. 2 The PPN to be updated in this iteration
is selected on the basis of the PPN-selection
strategy, which is a rule for selecting PPNs to
be updated in each iteration. We have three
strategies described in the next paragraph.

Step. 3 The MLPs of the PPNs selected in Step. 2
are updated using the PPO algorithm. Each
MLP is updated for multiple epochs using the
trajectory sampled in Step. 1 as training data.

Since it is not apparent which modules’ PPN
should be updated and in what order, we prepared
the following three PPN-selection strategies: ALL
(select all PPNs in every iteration), RANDOM (ran-
domly select one or more PPNs in each iteration),
and ROTATION (select one PPN at each iteration in
order). In the following experiments, we examined
which strategy is the best.

4 Experiments

To confirm the effectiveness of our method, we
applied PPNs to several different pipeline systems
and evaluated dialogue performance using dialogue
simulation. We also carried out a human evalua-
tion.
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4.1 Dataset

We evaluated PPNs using modules and a user simu-
lator implemented using the MultiWOZ dataset
(Budzianowski et al., 2018), which is a task-
oriented dialogue dataset between a clerk and
tourist at an information center. MultiWOZ con-
tains 10,438 dialogues; one to three domains (seven
domains in total in the dataset) appear simultane-
ously in each dialogue.

4.2 Platform and User Simulator

ConvLab-22 (Zhu et al., 2020) is a platform for
multi-domain dialogue systems, which provides
pre-implemented models of each module in the
pipeline system and tools for end-to-end evaluation
of the dialogue system.

We used the user simulator implemented in
ConvLab-2. The simulator interacts with the di-
alogue system in natural language on the basis of
the user goal given for each dialogue session. The
simulator consists of a BERT (Devlin et al., 2019)-
based NLU (Chen et al., 2019), an agenda-based
Policy (Schatzmann et al., 2007), and a template-
based NLG. The agenda-based Policy models a
user’s behavior in MultiWOZ by using a stack-like
agenda created using hand-crafted rules. A user
goal for each dialogue is randomly generated: the
domains are randomly selected from one to three
domains (out of all seven domains) on the basis
of the domains’ frequency in MultiWOZ; the slots
are also randomly selected on the basis of the slots’
frequency in MultiWOZ.

4.3 Evaluation Metrics

In evaluating each dialogue, we used the number
of turns3 (Turn) to measure the efficiency of com-
pleting each dialogue; the smaller the Turn is, the
better the system performance. We also measured
whether the system responds to the requested slot
by the user without excess or deficiency (Inform
F1) and whether the entity presented by the system
met the condition of the user goal (Match Rate).
We also used Task Success as a result of Match
Rate and Inform Recall being equal to 1 within 20
turns. The above four metrics are the major ones
for dialogue evaluation and have been used in many
studies using ConvLab-2 (Li et al., 2020; Takanobu
et al., 2020; Hou et al., 2021).

2https://github.com/thu-coai/ConvLab-2
3One user utterance and its system response form one turn.

4.4 Implementation

4.4.1 System Configurations
To select the modules that make up a pipeline sys-
tem, we referred to Takanobu et al. (2020), who
developed and evaluated various combinations of
modules using ConvLab-2. For the models of each
module (NLU, DST, Policy, and NLG), we in-
cluded both classical rule-based and recent neural-
based models. Note that, since this study focused
on whether PPNs can be used to optimize pipeline
systems consisting of non-trainable modules, we
did not update modules even if the modules may
be trainable. Each of the models4 we prepared are
as follows.

NLU We used BERT NLU (Chen et al., 2019) for
the NLU module. This model estimates DAs by tag-
ging which domain-intent-slot each token in a user
utterance represents by using a pre-trained BERT
(Devlin et al., 2019). The InAdapter/OutAdapter
are created using the DA set defined in BERT NLU
(see Figure 3 for an illustration of an InAdapter-
processing example by using a DA set). We used
the estimated probabilities of each DA as BERT
NLU’s state s.

DST We used two models for the DST module:
Rule DST (Zhu et al., 2020) and TRADE (Wu
et al., 2019). Rule DST updates the dialogue state
consisting of belief state, database search results,
current user DAs, and previous system DAs at each
turn by directly using the DAs estimated by the
NLU. On the contrary, TRADE is a neural-based
model that directly extracts slot-value pairs and
generates belief states using the dialogue history as
input. For DST modules, a belief state is subject
to post-processing. Therefore, we created an In-
Adapter/OutAdapter on the basis of the slot types
defined in the belief state on ConvLab-2. As states
of Rule DST and TRADE, an entire dialogue state
is converted into a multi-binary vector by using a
vectorizer implemented in ConvLab-2.

Policy We used four models for the Policy mod-
ule: Rule Policy (Zhu et al., 2020), MLE Pol-
icy, PPO Policy (Schulman et al., 2017), and
LaRL Policy (Zhao et al., 2019). Rule Policy is a
model based on hand-crafted rules. MLE Policy
is a model trained on state-action pairs in Multi-
WOZ using supervised learning. PPO Policy is

4For models, we used the best ones provided by ConvLab-
2 as of October 20, 2021
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Module Models |s| |v|
NLU BERT 175 175
DST Rule, TRADE 340 24

Policy Rule, MLE, PPO 209 209
LaRL 0 0

NLG Template, SC-LSTM 0 0

Table 1: Dimensions |s| of state s output from each
module and |v| of vector v processed by PPN of each
module. Number of output vocabularies defined for
each module and |v| are equal.

a fine-tuned model based on MLE Policy using
the PPO RL algorithm. Unlike the other Policy
models, LaRL Policy is an LSTM-based model
trained to directly generate system utterances in-
stead of system DAs by using RL. We created an
InAdapter/OutAdapter using the DA set defined in
each model. For states of MLE Policy and PPO Pol-
icy, we used the estimated probability of each DA.
For Rule Policy’s state, we used a binary vector
representation of DAs. Since the output of LaRL
is a natural language, it was not subject to post-
processing in this study.

NLG We used two models for the NLG module:
Template NLG and SC-LSTM (Wen et al., 2015).
Template NLG creates system responses by insert-
ing values into templates of utterances manually
created in advance for each DA. SC-LSTM is an
LSTM-based model that generates utterances on
the basis of DAs. For the same reason as for LaRL
Policy, we did not implement PPNs for Template
NLG and SC-LSTM in these experiments.

Table 1 shows the dimensions of each module’s
state s described above and the number of dimen-
sions of the multi-binary vector o of each PPN (i.e.,
the vocabulary of each module). Note that for the
DST modules, the dimensions of s and v are dif-
ferent. This is because s is a vector representation
of a dialogue state, which includes a belief state,
database search results, user’s DAs, etc., and v is a
vector representation of a belief state only.

4.4.2 Training
Throughout all experiments, the data used for imita-
tion learning of each pipeline system was sampled
by simulating 10,000 turns, corresponding to ap-
proximately 1,000 dialogue sessions. In RL for
each system, we trained 200 iterations, where one
iteration consists of approximately 100 dialogue
sessions. Following Takanobu et al. (2019), we
gave a reward of −1 for each turn, and when the

PPN-selection
strategy Success Inform Match Turn

ALL 64.2 71.9 76.6 9.20
RANDOM 66.1 71.5 78.7 8.61
ROTATION 60.4 70.5 73.2 9.10

Table 2: Performance after PPN training with each PPN-
selection strategy

task was a success, we gave the maximum number
of turns × 2 at the end of the dialogue session, i.e.,
40 in our case. See Section A.1 of the appendix for
more training details.

To test each system, we ran 1,000 dialogues us-
ing a system that achieved the best Task Success
during the RL training. Throughout all experi-
ments, we trained with five different random seeds
and reported the average of their scores as the final
performance.

4.5 Experimental Procedure
We conducted four experiments. The first exper-
iment was conducted to determine which of the
PPN-selection strategies (see Section 3.3) is appro-
priate. We used a combination of BERT NLU, Rule
DST, MLE Policy, and Template NLG as the sys-
tem configuration. The reasons for using this com-
bination are that (1) the Task Success of a system
composed of this module combination is around
50%. Therefore, it would be easy to understand the
impact of the PPNs, and (2) MLE Policy is used as
the initial weight in many RL methods (Takanobu
et al., 2019; Li et al., 2020), making it a reasonable
starting point for RL. The second experiment was
conducted to verify whether the PPNs work for any
combination of modules; we combined some of the
modules described in Section 4.4.1 to build pipeline
systems and applied PPNs. The third experiment
was conducted to investigate the contribution of the
PPN of each module and sAll to the overall perfor-
mance of the system. The final experiment was a
human evaluation; we examined whether the pro-
posed method is effective not only for a simulator
but also for humans.

4.6 Comparison of
Post-processing-network-selection
Strategies

Figure 4 shows the learning process in the three
PPN-selection strategies. Task Success and Inform
F1 at 50 iterations show that ALL reached the high-
est score about 100 iterations earlier than RAN-
DOM and ROTATION. This is a reasonable result
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Figure 4: Scores of each evaluation metric in learning process with three PPN-selection strategies

System Model Combination w/ PPN Task Success Inform F1 Match Rate TurnNLU DST Policy NLG

SYS-RUL BERT Rule Rule Template 84.1 87.4 90.2 5.92
✓ 84.0 86.3 92.4 6.33

SYS-MLE BERT Rule MLE Template 43.3 62.4 27.8 9.03
✓ 66.1 71.5 78.7 8.61

SYS-PPO BERT Rule PPO Template 54.9 65.5 55.2 8.41
✓ 68.8 72.1 77.8 8.37

SYS-SCL BERT Rule Rule SC-LSTM 38.3 57.5 56.7 13.53
✓ 44.2 71.7 71.8 11.04

SYS-TRA TRADE Rule Template 19.0 45.6 36.4 12.08
✓ 18.8 49.2 31.6 12.14

SYS-LAR BERT Rule LaRL 21.6 44.9 27.6 13.24
✓ 23.9 50.9 34.1 12.77

Table 3: Combination of models for each pipeline system and scores before and after applying PPNs to each system.
‘w/ PPN’ indicates whether PPNs are applied to the system. Scores that have been improved using PPNs are in bold.

since the number of updates for each MLP in ALL
was up to four times that for the other strategies.
However, it was unstable after 50 iterations, and
the scores of Task Success, Inform F1, and Turn all
worsened as the learning process progressed. This
is probably because the gradients of each MLP
were calculated simultaneously in the PPO update
algorithm, which caused each MLP to update in a
different gradient direction, making it difficult for
each MLP to coordinate with one another.

Although the learning speed of ROTATION and
RANDOM was slow, all metrics consistently im-
proved. Turn and Inform F1 also showed stable im-
provements compared with ALL. For RANDOM
and ROTATION, each MLP computed its gradient
after the other MLPs computed and updated their
gradients one by one, which probably prevented
significant discrepancies among MLPs and stabi-
lized learning.

Table 2 shows the final performance of each strat-
egy. RANDOM outperformed ALL in all the final
scores, and ROTATION was inferior to ALL in
Task Success, Inform F1, and Match Rate. Since
the learning was stable and the final performance
was generally better than the other strategies, we

decided to use RANDOM in the following experi-
ments.

4.7 Comparison of Model Combinations
We built six pipeline systems with different model
combinations. Table 3 summarizes the compari-
son of the scores when PPNs were applied to each
system. For a fair comparison, systems without
PPNs were also evaluated on the average scores5

of 1,000 dialogues conducted with five different
random seeds.

Table 3 shows that Task Success improved for
most of the systems. In addition, all systems im-
proved in Inform F1 or Match Rate. These results
indicate that post-processing with PPNs can im-
prove the dialogue performance of a pipeline sys-
tem without touching the module internals. How-
ever, neither Task Success nor Turn improved for
SYS-RUL and SYS-TRA. The common feature
of these two systems is that they use Rule Policy
and Template NLG. These modules are carefully
designed by hand and originally have high accu-

5Although we used the latest models implemented in
ConvLab-2, we could not reproduce the scores reported
in https://github.com/thu-coai/ConvLab-2#
end-to-end-performance-on-multiwoz
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System w/ sAll Success Inform Match Turn
SYS-MLE 43.3 62.4 27.8 9.03
+PPNNLU 59.6 73.1 65.8 9.59
+PPNDST 46.7 65.1 36.7 9.41
+PPNPolicy 59.9 67.3 67.9 9.20
+PPNAll 59.7 68.0 69.9 9.84
+PPNNLU ✓ 62.2 72.1 64.0 9.36
+PPNDST ✓ 47.9 66.1 40.2 9.21
+PPNPolicy ✓ 65.8 67.6 76.9 8.56
+PPNAll ✓ 66.1 71.5 78.7 8.61
+Fine-tuned Policy 71.9 74.3 80.4 7.88

Table 4: Impact analysis of PPNs. Subscripts (i.e., NLU,
DST, Policy, and All) indicate that PPN was applied
to that one specific module or all modules. ‘w/ sAll’
indicates whether sAll was used. Row of Fine-tuned
Policy shows scores when SYS-MLE’s Policy was fine-
tuned using RL.

racy, leading to little room for improvement in this
configuration.

In general, there were large differences in per-
formance among the systems regardless of whether
PPN was used. As mentioned above, this is due
to the performance differences among the modules
comprising the systems. For example, SYS-RUL
is considered to have significantly higher perfor-
mance than the other systems due to the use of
elaborately designed rules and templates.

4.8 Impact of Post-processing Networks

We investigated the impact of each module’s PPN
and sAll. We used SYS-MLE as a base configura-
tion for this experiment since its performance was
most improved with our method (see Table 3); we
considered it appropriate to measure the impact of
PPNs. In Table 4, the results of applying PPNs to
only one of the NLU, DST, and Policy are shown,
as well as the results of applying PPNs without
using sAll. The system performance consistently
improved when only a single module’s PPN was ap-
plied. In particular, +PPNPolicy achieved the best
performance (Task Success improved by more than
20%), indicating that the PPN of Policy contributed
the most to dialogue performance. When sAll was
not used, most of the scores decreased. This indi-
cates that each PPN can execute post-processing
more appropriately by using the states of all mod-
ules in the system.

To confirm the degree of performance improve-
ment achieved with the PPNs, the method of fine-
tuning the modules by using RL was used as the
upper bound of post-processing. Only the Policy
module was fine-tuned, as is common with conven-
tional methods (Liu et al., 2018; Lin et al., 2021).

System Success Turn Und. App. Sat.
SYS-MLE 39.0 11.0 2.93 3.12 2.46
+PPNNLU 53.7 11.1 3.10 3.37 2.93
+PPNDST 60.0 10.4 3.30 3.43 3.28∗

+PPNPolicy 62.5∗ 8.20∗ 2.93 3.03 3.00
+PPNAll 57.5 9.00 2.83 3.00 2.95

Table 5: Results of human evaluation for each system
configuration. Asterisks indicate statistically significant
differences (p < 0.05) over SYS-MLE.

The bottom row of Table 4 shows the results when
the Policy of SYS-MLE was fine-tuned by PPO
(Schulman et al., 2017) (see Section A.2 of the
appendix for training details). The difference be-
tween +PPNAll and +Fine-tuned Policy is small
with 5.8%. This is a promising result considering
that our proposed method does not touch on the
internal architecture of Policy.

4.9 Human Evaluation

Five systems (SYS-MLE and four systems with
our proposed method, i.e., +PPNNLU, +PPNDST,
+PPNPolicy, and +PPNAll) in Table 4 were used
for the human evaluation. Not that sAll was used
in all four systems. About forty Amazon Mechani-
cal Turk (AMT) crowd workers were recruited to
interact with each of the five systems and judged
on Task Success. As in the simulation experiments
(see Section 4.2), user goals were randomly gener-
ated for each dialogue. After the interaction, the
workers also evaluated the system’s ability to under-
stand the language (Und.), accuracy of the system’s
responses (App.), and overall satisfaction with the
interaction (Sat.) on a 5-point Likert scale. See
Section B of the appendix for the procedures taken
by the workers.

Table 5 shows the results. All four systems
with our proposed method performed better than
SYS-MLE, which is similar to the result in Table
4. Wilcoxon rank-sum tests were conducted us-
ing the top score in each evaluation metric and
the score of SYS-MLE, and statistically significant
differences were confirmed for Task Success and
Turn in +PPNPolicy and interaction satisfaction
in +PPNDST. In contrast, there were no signifi-
cant differences in scores for language understand-
ing and responses’ appropriateness. This is proba-
bly because RL was conducted with rewards that
only relied on Task Success and Turn. The perfor-
mance of +PPNNLU did not improve as much as
in Table 4. A possible reason is the overfitting of
+PPNNLU with the user simulator. The same over-
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fitting might have occurred in the NLU’s PPN in
+PPNAll, which resulted in a smaller improvement
in scores of +PPNAll.

We also investigated how PPNs executed post-
processing by analyzing the actual dialogue logs
collected in this experiment. A specific case study
is described in Section C of the appendix. Gener-
ally, in the dialogue of +PPNPolicy, we observed
that PPNPolicy added necessary DAs when the
original Policy failed to output them.

5 Conclusions and Future Work

We proposed a method for optimizing pipeline
dialogue systems with post-processing networks
(PPNs). Through dialogue simulation and human
evaluation experiments on the MultiWOZ dataset,
we showed that the proposed method is effective
for a pipeline system consisting of modules with
various models.

For future work, we plan to design more sophis-
ticated rewards in RL such as module-specific re-
wards. We also plan to extend PPNs to handle
natural language generation by implementing them
using Transformer-based models. We are also con-
sidering to apply PPNs to modules dealing with
speech recognition and multi-modal processing.
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ica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A Network-based
End-to-End Trainable Task-oriented Dialogue Sys-
tem. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 438–449.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable Multi-Domain State Generator
for Task-Oriented Dialogue Systems. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 808–819.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020a. Task-
Oriented Dialog Systems That Consider Multiple
Appropriate Responses under the Same Context. In
Proceedings of the AAAI Conference on Artificial
Intelligence, pages 9604–9611.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie
Huang, and XiaoYan Zhu. 2020b. Recent advances
and challenges in task-oriented dialog systems. Sci-
ence China Technological Sciences, pages 1–17.

Tiancheng Zhao and Maxine Eskenazi. 2016. Towards
End-to-End Learning for Dialog State Tracking and
Management using Deep Reinforcement Learning.
In Proceedings of the 17th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 1–10.

Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi.
2019. Rethinking Action Spaces for Reinforcement
Learning in End-to-end Dialog Agents with Latent
Variable Models. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1208–1218.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. ConvLab-2:
An Open-Source Toolkit for Building, Evaluating,
and Diagnosing Dialogue Systems. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 142–149.

11



A Training Details

A.1 Training Post-processing Networks

Model All MLPs of the PPNs for all modules
are implemented in three layers: one input layer,
one hidden layer, and one output layer, and the
dimensionality of the hidden layer is 128 for all
layers. The number of dimensions of the input and
output layers are |o|+ |sAll| and |oi|, respectively.
The activation functions are all ReLUs.

Imitation Learning The sampled data of 10,000
turns were split as training : validation = 8 : 2.
All MLPs were trained on a batch size of 32 for 20
epochs using the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 1e-3. The weights at
the epoch with the highest accuracy for validation
were used for the following RL.

Reinforcement Learning The hyperparameters
shown in Table 6 were determined with reference
to the implementation of PPO in ConvLab-2. We
used Generalized Advantage Estimation (Schul-
man et al., 2015). Referring to Engstrom et al.
(2020), the learning rate was annealed linearly in
accordance with the current iteration. The compu-
tational resource used was a single NVIDIA Tesla
V100 SXM2 GPU with 32GB RAM. In training,
the trajectory was sampled in parallel by eight pro-
cesses, and it took 5 to 17 hours, depending on the
system, to complete the training of 200 iterations.

A.2 Fine-tuning of Policy

The MLE Policy of SYS-MLE in Section 4.8 was
fine-tuned with PPO using the same user simula-
tor used for training PPNs. The hyperparameters
used for training were the same as those used in
ConvLab-2, as shown in Table 6. To evaluate the
fine-tuned Policy, training and testing (consisting
of 1,000 dialogue sessions) were conducted with
five random seeds.

Hyperparameters PPN Fine-tuned Policy
Number of iterations 200 200
Batch size 1024 1024
Epoch 5 5
Mini batch size 32 32
Discount factor γ 0.99 0.99
GAE factor λ 0.95 0.95

Optimizer policy net Adam RMSprop
value net Adam

Learning rate policy net 1e-4 1e-4
value net 5e-5

Table 6: Hyperparameter settings in PPO

B Details of Human Evaluation

Referring to Takanobu et al. (2020), we designed
the following experimental procedure. First, each
worker is presented with an instruction for a ran-
domly generated user goal. Next, the user interacts
with one of the five systems in Table 5 for up to 20
turns. Workers determine whether the interaction
succeeded or failed within 20 turns; after 20 turns,
the interaction is automatically marked as failed.
To ensure the quality of the workers, several qualifi-
cations were set; the eligible workers should (1) re-
side in an English-speaking country, (2) have a task
accomplishment number on AMT greater than 10,
(3) have a task-approval rate greater than 90%, and
(4) correctly answer all the common sense ques-
tions (total of five questions) we designed. The
time limit for the task was 10 minutes, and the re-
ward was $1.7. To account for workers who may
cancel the task amid the dialogue session, more
than 40 workers were recruited for each system. At
the end, 41 workers for SYS-MLE and +PPNNLU

and 40 workers for +PPNDST, +PPNPolicy, and
+PPNAll participated in the experiment.

C Case Study

Tables 7 and 8 show the user goal and exam-
ple of a dialogue session between a worker and
+PPNPolicy, respectively, in the human evaluation
experiment. Table 8 also includes the outputs of the
system’s Policy and the post-processing result of
PPNs. In S1, the original MLE Policy did not gen-
erate any DAs. At this time, PPNPolicy generated
additional DAs informing the user that “free park-
ing is available at the hotel found in the database”
and asked if there was anything else the user needs.
In S2, the user requested a reservation, but MLE
Policy could not make the reservation. In contrast,
PPNPolicy successfully made the reservation and
provided a booking reference number.

Domain Task Slot

Hotel

Info Area = West
Parking = Yes

Book
Day = Sunday
Time = 11:00
People = 1

Restaurant

Fail Info Area = West
Food = Mediterranean

Info Area = West
Food = Thai

Reqt Postcode
Address

Table 7: User goal used in Table 8
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U1 I need a hotel in the west with free parking for 7 people on saturday for 3 nights

S1 Policy outputs:

PPNPolicy outputs: Inform-Hotel-Parking-yes, reqmore-general

System response: It offers free parking . Is there anything else I can help you with today ?

U2 can i book a room for 7 people for 3 nights on Saturday

S2 Policy outputs: reqmore-general-none

PPNPolicy outputs: Book-Booking-Ref-00000017, reqmore-general

System response: Here is the booking information : Booking was successful . Reference number is : 00000017. You 

are welcome . Is there anything else I can help you with today ?

U3 I need a mediterranean restaurant in the west

S3 Policy outputs: NoOffer-Restaurant-Area-west, NoOffer-Restaurant-Food-Mediterranean, NoOffer-Restaurant, 

Request-Restaurant-Food

PPNPolicy outputs: Inform-Taxi-Car-ford, NoOffer-Restaurant-Food-Mediterranean, NoOffer-Restaurant, Request-

Restaurant-Food

System response: A ford is booked for you . There are no mediterranean restaurants unfortunately . No , I ' m sorry . 

The search did n't pull up any matches . What type of food would you like ?

U4 I need a thai restaurant in the west

S4 Policy outputs: Inform-Restaurant-Name-sala thong, Inform-Restaurant-Area-west, Inform-Restaurant-Food-thai, 

Inform-Restaurant-Price-expensive, Inform-Booking

PPNPolicy outputs: Inform-Restaurant-Name-sala thong, Inform-Restaurant-Area-west, Inform-Restaurant-Food-thai, 

Inform-Restaurant-Price-expensive, Inform-Hotel-Internet-yes, Inform-Booking

System response: How does the sala thong sound ? It is in the west area . That is a thai restaurant . They are 

expensive. The place provides free wifi . Would you like for me to try and make a reservation ?

U5 Yes

S5 Policy outputs: Inform-Booking, Request-Booking-Day, Request-Booking-People, Request-Booking-Time, 

reqmore-general

PPNPolicy outputs: Inform-Hospital-Phone-01223216297, Inform-Booking, Request-Booking-Day, Request-

Booking-People, Request-Booking-Time, reqmore-general

System response: The phone is 01223216297 . Would you like me to book it ? What day would you like that 

reservation ? How many people will be with you ? What time would you like me to make your reservation ? You are 

welcome . Is there anything else I can help you with today ?

U6 yes. what is the address?

S6 Policy outputs: Request-Booking-Day, Request-Booking-Time, reqmore-general

PPNPolicy outputs: Inform-Hotel-Addr-144 thornton road, Inform-Hotel-Post-cb30nd, Book-Booking-Ref-00000017, 

Request-Booking-Day, Request-Booking-People, reqmore-general

System response: They are located at 144 thornton road. The postal code for that hotel is cb30nd . Here is the 

booking information : Booking was successful . Reference number is : 00000017. What day would you like your

booking for ? How many people will be with you ? Is there anything else I can help you with today ?

U7 No

S7 Policy outputs: reqmore-general

PPNPolicy outputs: reqmore-general

System response: Did you need any further assistance today ?

U8 Success

Table 8: Example of dialogue history between worker and +PPNPolicy in human evaluation experiment. DAs
appropriately added by PPNPolicy are in blue, and those inappropriately added are in red.
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Abstract

Retraining modern deep learning systems can
lead to variations in model performance even
when trained using the same data and hyper-
parameters by simply using different random
seeds. This phenomenon is known as model
churn or model jitter. This issue is often ex-
acerbated in real world settings, where noise
may be introduced in the data collection pro-
cess. In this work we tackle the problem of
stable retraining with a novel focus on struc-
tured prediction for conversational semantic
parsing. We first quantify the model churn by
introducing metrics for agreement between pre-
dictions across multiple re-trainings. Next, we
devise realistic scenarios for noise injection and
demonstrate the effectiveness of various churn
reduction techniques such as ensembling and
distillation. Lastly, we discuss practical trade-
offs between such techniques and show that
co-distillation provides a sweet spot in terms of
churn reduction with only a modest increase in
resource usage.

1 Introduction

Deep learning systems can perform inconsistently
across multiple runs, even when trained on the
same data with the same hyper-parameters. De-
ployment in real-world environments presents a
challenge, where constantly changing production
systems require frequent re-training of models. For
a conversational semantic parsing system such as
Google Assistant or Amazon Alexa, where the
goal is to convert users’ commands into executable
forms, this erratic behavior can have some unfor-
tunate practical consequences. Some examples
include irreproducibility, which limits the ability
to make meaningful comparisons between exper-
iments (Dodge et al., 2019, 2020), bias, which
creates credibility issues if systems consistently
struggle with members of a certain class (D’Amour
et al., 2020), and user frustration, which can arise
due to unpredictable interactions over time.

Query will i need snow tires to drive the sierra
nevada mountains this afternoon?

Model Run 1 [in:get_weather [sl:weather_attribute
snow tires ] [sl:location sierra mountains
] [sl:date_time this afternoon ] ]

Model Run 2 [in:get_info_road_condition
[sl:road_condition snow tires ]
[sl:location sierra mountains ]
[sl:date_time this afternoon ] ]

Table 1: An example from the TOPv2 dataset (Chen
et al., 2020a) where two model runs re-trained on the
same data with the same hyper-parameters make differ-
ent predictions. Only the first matches the gold target,
but the second has an incorrect intent and slot.

The root cause of widely divergent behavior is
underspecification (D’Amour et al., 2020), where
there are many equivalent but distinct solutions to
a problem. Non-determinism in model training
(e.g. different data orders or weight initializations)
can lead to finding local minima that obtain the
same measurements on a held-out test set but make
different predictions (also known as model churn).

Even in an academic setting, controlling for
all non-determinism is unrealistic - Table 1 pro-
vides an example of churn from the TOPv2
dataset (Chen et al., 2020a). In this case, re-training
the same model twice with the same data and hyper-
parameters results in two different predictions for
the given query. While at the token level the slots
and arguments overlap, the intents are different,
resulting in a drastically different user experience.
In this scenario, the dataset is static and yet we
still observe model churn. In a real-world setting,
the dataset may be constantly changing and noisy,
necessitating frequent re-training. The goal, then,
is to maintain consistency even in this scenario.

We thus conduct experiments to evaluate and re-
duce churn across multiple model re-training runs.
Our contributions are as follows:

1. We extend the notion of model churn to struc-
tured prediction. To this end, we introduce
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new metrics for agreement and exact match
agreement (Section 3).

2. We show that techniques such as ensem-
bling (Dietterich, 2000) and distillation/co-
distillation (Hinton et al., 2015; Kim and Rush,
2016; Anil et al., 2018), described in Sec-
tion 4, reduce churn on the TOP (Gupta et al.,
2018), TOPv2 (Chen et al., 2020a), MTOP
(Li et al., 2021), and SNIPS (Coucke et al.,
2018) datasets (Section 6).

3. We explore the effects of model churn in “real-
world” environments, conducting experiments
with a smaller model and two types of simu-
lated noise (random and systematic)1 to rep-
resent various sources of error (Sections 5
and 6).

4. We make practical recommendations based
on resource usage (number of parameters) in
addition to accuracy and agreement and ob-
serve that co-distillation with label smoothing
provides the best tradeoff (Section 7).

To the best of our knowledge, we are the first to
study model churn for the structured prediction task
of spoken language understanding (SLU).

2 Background and Related Work

The problem of model churn (Milani Fard et al.,
2016), defined as the difference in predictions ob-
served across runs when re-training models, has tra-
ditionally been studied for classification tasks. In
contrast with previous work, we study the problem
of model churn for structured prediction, specif-
ically for SLU. Shamir and Coviello (2020) in-
troduced “anti-distillation” to increase diversity in
ensemble predictions and Shamir et al. (2020) in-
troduced the smooth-relu activation function; how-
ever, in our initial experiments we did not find
significant improvement using these methods when
applied to structured prediction. Other work has
explored forms of smoothing to reduce churn, ei-
ther by computing soft labels using the nearest
neighbors (Bahri and Jiang, 2021) or by weight-
ing the loss term of individual examples using the
predicted probabilities from a teacher model (Jiang
et al., 2022). As these methods were developed for

1Datasets can be found at https://github.com/
google/stable-retraining-conversational-
agents

classification, we leave the task of adapting them
to structured prediction for future work.

Other research has focused on related problems
such as reproducibility (McCoy et al., 2020) and
calibration (Guo et al., 2017; Mosbach et al., 2021).
Nie et al. (2020) argue that this phenomenon is
due to underlying task complexity and annotator
disagreement. D’Amour et al. (2020) claim that
reproducibility is primarily due to underspecifica-
tion, where there are many distinct solutions to the
same problem. While these problems are related
to churn, both reproducibility and calibration met-
rics are computed relative to a target, rather than
accounting for agreement across re-training runs.

It has been well known that ensembling increases
reproducibility and model calibration (Hansen and
Salamon, 1990; Lakshminarayanan et al., 2017).
Since ensembles increase inference times, distilla-
tion (Hinton et al., 2015) is commonly used to train
a student model with similar inference resource us-
age. Reich et al. (2020) show that ensemble distil-
lation improves calibration for machine translation
and named entitity recognition. For our distilla-
tion baselines, we follow the recipe by Chen et al.
(2020b). For co-distillation, we follow the recipe
developed by Anil et al. (2018). In our work, we
look at the aforementioned approaches and com-
pare them in terms of resource usage, churn re-
duction, and effectiveness on the task of conversa-
tional semantic parsing (Gupta et al., 2018; Cheng
et al., 2020; Damonte et al., 2019; Aghajanyan
et al., 2020; Lialin et al., 2020).

3 Task Definition and Evaluation

We follow recent work (Rongali et al., 2020) and
treat conversational semantic parsing as sequence
generation using auto-regressive neural models.
The goal is to make a structured prediction given a
user command such as the example in Table 1. For
structured prediction, the task of churn reduction is,
given an input, to predict the exact same sequence
across multiple re-training runs. A re-training run
refers to the model parameters that result from dif-
ferent random weight initialization and data order
but the same data and hyper-parameters.

Our aim is to reduce churn across runs while
maintaining high accuracy on the gold labels. Thus,
we report exact match accuracy (EM) with the
mean over N runs. While our goal is not to obtain
the state of the art, we do want to show which meth-
ods reduce churn without a loss in performance.
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To measure churn, we need a way to compare
predictions across runs, independent of the gold la-
bels. While previous work (Shamir et al., 2020) has
used metrics such as prediction difference (similar
to Hamming distance), the focus was on classifi-
cation tasks only, making it necessary to compute
an alternative measure. Metrics such as edit dis-
tance or multiple sequence alignment would be
appropriate for sequence generation tasks such as
machine translation or paraphrasing, where churn
across output may differ locally by only a few to-
kens. Comparatively, the meaning of these met-
rics is unclear for structured prediction tasks such
as semantic parsing. For example, computing a
token-level distance between a prediction such as
“[in:unsupported ]” and “[in:get_event [sl:date_time
this weekend ] ]” would not be a useful measure.
Thus, we report sequence-level model agreement
(AGR) across N runs, where each example has a
score of 1 if all N runs agree on the exact same
predicted sequence and 0 otherwise. However, it is
possible for all runs to agree but make an incorrect
prediction; the goal ultimately is to consistently
make correct predictions. Consequently, we further
extend this metric to include the case where the pre-
dictions from all N runs agree and the predictions
match the target. We refer to this metric as exact
match agreement (EM@N).

4 Methods for Churn Reduction

For our experiments, we explore three techniques
which have been effective on related problems such
as model calibration: ensembling, which com-
bines the predictions of multiple models, distil-
lation, which pre-trains a teacher model and uses
its predictions to train a student, and co-distillation,
which trains two or more peer models in parallel
and allows each model to learn from the predictions
of the other. Figure 1 displays these techniques.

4.1 Ensembling
We create ensembles by uniformly averaging the
probabilities of each model to obtain a point esti-
mate. As our semantic parser is an auto-regressive
sequence-to-sequence model, at every timestep we
create the ensemble distribution over the vocabu-
lary from a mixture of K distributions, as in Reich
et al. (2020):

p(yt|y0...yt−1, X) =
1

K

K∑

k=1

pk(yt|y0...yt−1, X)

(1)

During inference, the next token at each timestep
is determined as usual by taking the argmax (in
the case of a greedy decoding approach) or using
an algorithm such as beam search.

4.2 Distillation
As ensembling increases model size, distillation
(Hinton et al., 2015) was introduced to compress
the knowledge of an ensemble into a single model.
With distillation, a teacher model2 provides a fixed
distribution used to train a student. The distillation
loss from the teacher can be combined with a loss
over the target distribution given by gold labels:

Lstudent = LNLL(θ,D)+λ∗LKD(pθ, q,D) (2)

where D is the training dataset, LNLL is negative
log-likelihood loss, and LKD is knowledge distil-
lation loss. While LKD may be any dissimilar-
ity measure, we use cross-entropy loss between
teacher probabilities q and student probabilities pθ.

For a sequence generation task, computing the
exact probabilities q(Y |X) and p(Y |X) for a given
X is intractable as it would require a computation
over the space of all possible Y . One way to ad-
dress this problem is with sequence-level distilla-
tion (Kim and Rush, 2016), which approximates
these probabilities with M samples. However, in
practice, increasing training time by a factor of M
is often infeasible. Instead, we perform token-level
distillation, computing token probabilities qi and
pi at each timestep.

The teacher probability qi of a token i is com-
puted using the “softmax” of its logit zi,3 adjusted
by a temperature T :

qi =
exp(zi/T )∑
j exp(zj/T )

(3)

While T usually is set to 1, the temperature can
be used to control the entropy of the distribution,
where a high temperature increases uniformity. As
the temperature approaches 0, the probability mass
is increasingly concentrated on a single token, even-
tually becoming equivalent to the argmax (a tech-
nique known as hard distillation). Otherwise, the
method is referred to as soft distillation.

One challenge for distillation is computing the
sequence of targets prior to time t. One possibility
is to perform inference with a method such as beam

2which is not required to be an ensemble
3When distilling from an ensemble, we average the proba-

bilities as in Equation 1 and convert them back to logits.
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Figure 1: Overview of churn-reducing methods. Dashed and dotted lines indicate the training and inference
stages. Rounded rectangular boxes represent seq2seq models with 4- or 12-layer BERT encoders. Ensembling and
distillation techniques are applied to the decoder.

search to obtain model predictions. Alternatively,
we can use teacher-forcing (Williams and Zipser,
1989; Reich et al., 2020) and condition on true
targets through time t − 1. For soft distillation,
using model predictions would require expensive
pre-computation and storage of logits or slower
training by performing inference at every timestep.
However, for hard distillation, only teacher labels
are required, making it possible to pre-compute
teacher predictions in a single training set pass.

4.3 Co-Distillation

In contrast to distillation, which requires sequen-
tial training of the teacher and student, Anil et al.
(2018) introduced co-distillation, which involves
training multiple peer models in parallel. While dis-
tillation as an abstract idea only requires logits as a
signal, and thus the teacher may be a different ar-
chitecture or even a different dataset, co-distillation
has a few distinct features. First, the peer models
share an architecture and training data so that the
models can be trained online in parallel. Second,
the distillation loss is used before the models have

converged. Co-distillation loss is computed as:

Lpeers =
K∑

k=1

LNLL(θk,D)+
∑

j ̸=k

λ ∗ LKD(pθk , qj ,D)
(4)

where each of K models is trained with negative
log likelihood loss (LNLL) on training data as well
as distillation loss (LKD) on the predictions of all
other models.

The main advantage of co-distillation is that in-
ference time is equivalent to a single model as only
one of the peers is needed. Training time and mem-
ory usage are implementation and resource depen-
dent; however the worst case is a K-times increase
and may be reduced by, e.g. model parallelism or
asynchronous updates (Anil et al., 2018).

5 Experiment Setup

5.1 Datasets
We showcase the problem of model churn on 4
conversational semantic parsing datasets. The TOP
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Dataset Train Test

TOP 31,279 9,042
TOPv2 124,597 38,785
MTOP 15,667 4,386
SNIPS 13,784 700

Table 2: Data statistics (# of utterances).

dataset (Gupta et al., 2018) consists of queries with
hierarchical semantic parses in 2 domains. The
TOPv2 (Chen et al., 2020a) and MTOP (Li et al.,
2021) datasets expand to 6 more domains with both
linear and nested intents and 5 more languages, re-
spectively.4 Table 1 gives an example of the data
format shared across all 3 datasets. We further eval-
uate on SNIPS (Coucke et al., 2018), another popu-
lar semantic parsing dataset with utterances from
7 domains (including AddToPlaylist, BookRestau-
rant, GetWeather, and PlayMusic). Data statistics
are shown in Table 2.

5.2 Noise Injection
We hypothesize that distillation combined with
noise reduces churn without a loss in performance.
On the one hand, adding noise is a common ap-
proach to improving model stability and robustness
(Szegedy et al., 2016; Müller et al., 2019). On the
other hand, real-world environments often unin-
tentionally contain noise (due to labels collected
from multiple sources, e.g., annotators, users, or
distant supervision) and models should be resilient
to unexpected changes. We explore both scenar-
ios, reporting the results of experiments for label
smoothing (Szegedy et al., 2016) for the former
and random and systematic noise for the latter.

Label Smoothing Label smoothing is a widely-
used technique for calibration of deep learning
models, especially for distillation (Müller et al.,
2019). Label smoothing can also be thought of as
a noise injection method. This technique is applied
by using a weighted average of the one-hot label at
a specific timestep and a uniform distribution over
all labels. Specifically, at time step t, we compute
a new “soft” target:

(1− α)δt,l + α
1

|L| (5)

where δt,l is the one-hot label if present, α is a pa-
rameter that controls the percentage of smoothing,
and L is the set of all labels. We follow the rec-
ommendations of (Müller et al., 2019) in applying

4Although our work is limited to English only.

label smoothing only to student models. We set
α = 0.1 to match the random/systematic noise set-
tings and hold constant the amount of noise across
all experiments.

Random Noise To simulate noise that may occur
in a real-world scenario, we create an artificial ran-
dom noise dataset by randomly swapping 10% of
labels from a weighted distribution. To construct
this dataset, we first find all labels with the prefix
“[in:” (intents) and compute their probabilities in
training. Then, we randomly sample a replacement
intent from this distribution. We repeat this process
for slots (“[sl:”).

Systematic Noise High-quality labeled data for
SLU systems may be difficult to come by in large
quantities. Conversational agents are therefore of-
ten trained using “distant-labeled” data from an
earlier iteration. This process inevitably results in
noisy data, as no SLU system will obtain 100% on
all unseen examples. To simulate this distant su-
pervision, we construct a systematic noise dataset.
We train a baseline with a 4-layer BERT encoder
(see Section 5.3) on 90% of each training set and
label the remaining 10%. However, in order to
obtain labels that are both (a) systematic and (b)
incorrect, we select the prediction at the second
beam position rather than the first.5

5.3 Implementation details

Baselines The pointer generator network of Ron-
gali et al. (2020) obtained competitive performance
on the TOP datasets using pre-trained encoders. We
obtain similar results upon re-implementing this
work as a baseline. As our goal is to reduce churn
in a realistic environment, we use a “production-
sized” encoder – the 4-layer BERT model of Turc
et al. (2019) with 4 heads and 256 dimensions – to
reflect what can reasonably be served to users at
a robust query-per-second rate. We selected this
model to evaluate distillation from a larger model
of the same type, 12-layer BERT-base (Devlin et al.,
2019), which differs only by the number of pa-
rameters. The 4-layer BERT was distilled from
BERT-base and obtained only a small decrease on
benchmark datasets compared to larger models.

5In practice, this results in less than 10% of the training
data being incorrect. However, on all datasets used in these
experiments, the percentage of correct predictions at the sec-
ond beam position is less than 5%, thus ensuring that at least
9.5% of the training data is noisy.
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TOP TOPv2 MTOP SNIPS

Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR

BERT-4 80.65 (70.29) 75.48 83.88 (73.12) 78.15 79.31 (69.04) 73.64 86.90 (77.12) 80.29
Ensemble 84.60 (78.55) 86.18 86.42 (80.38) 88.17 84.59 (78.52) 84.39 87.69 (80.58) 84.60

SD (ensemble) 81.20 (70.80) 76.16 84.00 (73.47) 78.75 79.29 (67.40) 71.38 87.29 (79.71) 83.45
SD (BERT-12) 80.93 (71.14) 76.80 84.12 (73.87) 79.02 79.23 (68.71) 73.23 87.34 (78.27) 80.86
HD (BERT-12) 80.72 (70.01) 75.03 83.84 (72.57) 77.37 78.96 (68.61) 73.07 87.44 (80.86) 84.75
Co-distillation 81.43 (73.56) 80.41 84.21 (76.10) 82.99 79.45 (69.73) 74.87 87.50 (80.86) 84.75

(a) Original dataset (label smoothing with α = 0.1).

TOP TOPv2 MTOP SNIPS

Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR

BERT-4 77.02 (65.81) 71.58 82.60 (71.03) 75.96 68.12 (45.88) 49.12 78.41 (57.12) 58.85
Ensemble 78.67 (72.21) 80.55 83.78 (76.53) 83.89 72.37 (58.78) 65.24 82.27 (67.23) 70.50

SD (ensemble) 79.44 (68.53) 73.78 83.22 (72.40) 77.71 67.75 (44.51) 47.23 77.89 (56.69) 58.99
SD (BERT-12) 77.11 (65.47) 71.51 82.73 (70.25) 74.65 66.67 (41.00) 43.62 78.11 (56.69) 58.85
HD (BERT-12) 77.33 (59.83) 63.14 82.40 (68.85) 72.76 67.99 (42.84) 44.51 77.89 (56.69) 58.99
Co-distillation 80.21 (72.04) 78.86 83.18 (73.09) 78.85 73.50 (58.43) 62.22 82.00 (66.33) 68.92

(b) 10% random noise.

TOP TOPv2 MTOP SNIPS

Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR

BERT-4 78.15 (61.36) 65.11 81.80 (67.20) 70.86 74.72 (57.09) 60.81 81.17 (58.42) 60.43
Ensemble 79.87 (68.78) 74.52 83.40 (73.60) 79.75 77.59 (68.55) 75.80 84.50 (71.22) 74.53

SD (ensemble) 79.85 (67.46) 72.36 83.04 (71.50) 76.60 74.84 (57.91) 61.99 81.96 (60.72) 63.02
SD (BERT-12) 79.28 (66.83) 71.70 81.84 (67.47) 71.10 74.97 (57.16) 61.01 81.67 (59.71) 62.45
HD (BERT-12) 79.12 (65.93) 70.37 81.36 (65.33) 68.47 74.51 (56.72) 60.37 80.23 (56.26) 58.71
Co-distillation 80.83 (72.14) 78.45 81.97 (70.12) 75.91 75.03 (58.16) 61.49 83.66 (68.78) 72.23

(c) 10% systematic noise.

Table 3: Model performance (over N = 10 runs) when trained on datasets with varying degrees of noise. All student
models use 4-layer BERT. BERT-4/12: 4/12-layer BERT. Ensemble: 4-layer ensemble. SD: soft distillation. HD:
hard distillation. EM: exact match (mean over 10 runs). EM@10: EM if all 10 models are correct. AGR: model
agreement. Bold: best non-ensemble.

Experiments For our experiments, we explore
different settings for ensembling and distillation.
For both our ensemble and ensemble distillation,
we use 4-layer BERT models with K = 3. We
use soft distillation and obtain teacher probabilities
with teacher forcing and Equation 1. While dis-
tilling from an ensemble may increase agreement
by preventing the student from assigning too much
probability to a single token and becoming over-
confident, we also explore soft distillation from a
12-layer teacher. We hypothesize that the 12-layer
model would have higher EM but lower AGR than
the 4-layer ensemble and this setup allows us to ex-
plore any tradeoff between these measurements. In
addition, we consider hard distillation from a 12-
layer model. For this setting, we use beam search
inference with a beam width of 3 to obtain predic-
tions, so that we can compare to teacher forcing for
soft distillation. We perform offline inference with

the 12-layer model on the entire training set and
use both the teacher-labeled data and the gold data
for every example. Finally, we use co-distillation
with K = 26 and λ = 1. We distill from model pre-
dictions using weights updated at every timestep.

Hyperparameters To reduce non-determinism,
we use a single set of hyper-parameters for the 3
TOP datasets and all experiments. For SNIPS, we
select a single set of hyper-parameters by tuning the
baseline on 10% of the training data. Appendix B
lists all hyper-parameters.

6 Results

We test the effectiveness of the methods described
in Section 4 over N = 10 runs. We compile re-
sults in Table 3a for models trained on the original
datasets with label smoothing. We also report re-

6as recommended by Anil et al. (2018).
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sults for the 10% random/systematic noise setting
(Tables 3b and 3c) as we assume this represents a
“real-world” scenario where labels are 90% correct.

Ensemble superior at the cost of much increased
computational cost First, ensemble sets a high
bar in almost all settings regardless of artificial
noise. While impressive, this approach requires
significantly more computation at inference time
and is sometimes deemed infeasible to deploy when
accounting for resource usage (see Table 8).

Co-distillation best among distillation-based
methods regardless of noise For label smooth-
ing (Table 3a) and the random/systematic noise
settings (Tables 3b and 3c), co-distillation clearly
and consistently outperforms the baseline in EM,
EM@10, and AGR. We also find that soft dis-
tillation from the ensemble occasionally obtains
the best performance (TOPv2 with systematic
noise) but more frequently performs worse than
the baseline (MTOP/SNIPS with random noise).
On the other hand, soft/hard distillation perform
merely on-par with the baseline or worse. Sur-
prisingly, in the 10% random/systematic noise set-
ting, co-distillation not only narrows the gap for
EM@10/AGR compared to the ensemble, but also
occasionally outperforms the ensemble in EM for
TOP/MTOP and TOP, respectively, which may be
due to increased robustness to noise during training,
rather than only during inference in the ensemble.

6.1 Effect of Task Difficulty

Table 4 shows the performance of the baseline mod-
els as we increase the task difficulty by reducing
the model size or increasing noise in the data. As
expected, EM decreases as the task becomes more
difficult. However, AGR decreases more rapidly be-
cause with lower EM the model has more degrees
of freedom to find solutions. These results also
show that EM alone is not enough to measure re-
producibility and validate the use of EM@10/AGR.

6.2 Effect of Label Smoothing

To better understand the effect of label smooth-
ing, we conduct a study of TOPv2 for the base-
line and co-distillation models (Table 5)7. On the
base dataset in the baseline setting (BERT-4), label
smoothing provides little to no benefit in all met-
rics. However, we observe a dramatic improvement
for co-distillation with label smoothing vs without

7see Appendix D for the full results

Model and Setting EM(@10) AGR

BERT-12 (0% random noise) 85.68 (76.11) 81.30
BERT-4 (0% random noise) 83.74 (73.18) 78.15

BERT-4 (10% random noise) 82.60 (71.03) 75.96
BERT-4 (25% random noise) 81.34 (69.04) 73.73
BERT-4 (50% random noise) 76.83 (62.87) 67.28

Table 4: Effect of Task Difficulty on TOPv2, varying
baseline model size (4/12-layer BERT) and random
noise. EM(@10): exact match (with all 10 runs cor-
rect). AGR: model agreement. Bold: best performance.

Model and Setting EM(@10) AGR

BERT-4 (α = 0) 83.74 (73.18) 78.47
BERT-4 (α = 0.1) 83.89 (73.12) 78.15
CD (α = 0) 84.01 (73.96) 79.49
CD (α = 0.1) 84.21 (76.10) 82.99

BERT-4 (α = 0, 10% rand.) 82.60 (71.03) 75.96
BERT-4 (α = 0.1, 10% rand.) 82.38 (71.11) 76.24
CD (α = 0, 10% rand.) 83.18 (73.09) 78.85
CD (α = 0.1, 10% rand.) 82.60 (73.06) 79.33

BERT-4 (α = 0, 10% sys.) 81.80 (67.20) 70.86
BERT-4 (α = 0.1, 10% sys.) 83.02 (72.27) 77.74
CD (α = 0, 10% sys.) 81.97 (70.12) 75.91
CD (α = 0.1, 10% sys.) 83.19 (73.96) 80.50

Table 5: Effects of Label Smoothing on TOPv2. BERT-
4: baseline. CD: co-distillation. α: label smoothing wt.
EM(@10): exact match (with all 10 runs correct) AGR:
model agreement Bold: best performance.

in EM@10 (+2.14) and AGR (+3.5). On the other
hand, on the dataset with 10% random noise, we
do not observe any benefit with label smoothing for
either the baseline or co-distillation, perhaps due to
the noise already in the data. Finally, on the dataset
with 10% systematic noise, we observe that label
smoothing dramatically improves results for both
the baseline - EM@10 (+5.07) and AGR (+6.88)
- and co-distillation - EM@10 (+2.84) and AGR
(+4.59). Overall, in the most realistic scenarios
(“clean” or distant-labeled data), we find that co-
distillation can be effectively combined with label
smoothing. This result is in contrast to Müller et al.
(2019), who found that training a teacher with label
smoothing is not effective. When both models are
teachers, it is clear that label smoothing helps.

7 Discussion

Qualitative Analysis To further understand what
queries cause the model to churn, we analyze cases
where multiple runs disagree. To keep the analysis
simple we compare the baseline with co-distillation
in Table 6 (additional examples in Appendix C).
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Query play new matchbox 20

Model Run 1 [in:play_music [sl:music_artist_name
matchbox 20 ]]

Model Run 2 [in:play_music [sl:music_track_title
matchbox 20 ]]

Query repeat closer

Model Run 1 [in:replay_music [sl:music_track_title
closer ]]

Model Run 2 [in:loop_music ]

Table 6: Churn examples from TOPv2 fixed by co-
distillation. Model predictions are from the baseline.
In both cases, only Model Run 1 matches the target, but
Model Run 2 has an incorrect intent or slot.

The first row shows that the baseline model runs
are confused by semantically similar slots – mu-
sic_artist_name vs. music_track_title. The sec-
ond row demonstrates baseline confusion between
the intents loop_music vs. replay_music. In both
cases the co-distilled models agree across all train-
ing runs. Due to the semantic similarity of the
slots/intents, we can attribute this churn to under-
specification (D’Amour et al., 2020), which is re-
duced by co-distillation.

We also explore the relation between agreement
and the length of the structured output sequences.
Figure 2 plots the number of models in agree-
ment against the number of intents and slots. In
making a structured prediction during inference,
as length increases the model has more freedom
to select incorrect tokens and therefore churn in-
creases. Co-distillation increases agreement for
longer sequences, but ensembling is especially ro-
bust. Table 7 reports the average target and pre-
diction length where all N models disagree. Sur-
prisingly, we observe that the models over-generate
compared to the target; however, the difference is
reduced with co-distillation/ensembling.

Figure 2: Agreement across trained models for various
methods vs prediction complexity.

Method Target Prediction

Baseline 3.66 3.91
Co-distillation 3.77 3.82
4 layer ensemble 3.56 3.70

Table 7: Average # of slots and intents for cases where
all N models disagree. When there is churn the model
over-generates (i.e. prediction length > target length).

Practical considerations We roughly compare
the methods along the resource usage dimension in
Table 8. As resource usage may be implementation
or architecture dependent, we report the number
of parameters, which correlates strongly with train-
ing/inference time and memory. While ensembling
is the strongest approach, it also comes with the
most expensive inference. Although wall-clock in-
ference time may be the same as the base model due
to parallelization, computing power and memory
scales by a factor of K. Further, while distillation
methods have the same inference time due to sim-
ilar sized outputs, they have different costs w.r.t.
training the teacher.8 For ensemble distillation, the
teacher models can be trained in parallel, but still
have Kx storage requirements. For large-model
distillation, in practice our 12-layer teacher has
about P = 9 times the number of parameters as the
baseline. In both cases, the student must be trained
sequentially. Overall, co-distillation performs con-
sistently well across different datasets and noise
settings in terms of EM and model agreement while
striking a balance between computational cost and
performance, rendering it an attractive approach
for goal-oriented conversational semantic parsing.

Method Training (actual) Inference (actual)

Baseline x x
Ensemble P ∗

e = 3x P ∗
e = 3x

Ens. distillation P ∗
e + x = 4x x

Large distillation Pl + x = 10x x
Co-distillation P ∗

c = 2x x

Table 8: Overview of resource usage by number of
parameters (relative to 4-layer baseline with x =~14
million parameters). Pe/l/c: Number of ensem-
ble/teacher/peer parameters. * denotes parallelism.

8 Conclusion

Our experiments showed that there exists substan-
tial churn across runs when re-training models on
the same conversational semantic parsing datasets.
We showed that for “production-sized” models, co-

8Hard/soft distillation have equal number of parameters.
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distillation with label smoothing increases agree-
ment without loss of accuracy. Furthermore, on
noisy data simulating a real-world environment,
the improvement is even more drastic. When we
account for resource usage along with accuracy,
we provide strong evidence that co-distillation pro-
vides the sweet spot compared to methods like
hard/soft distillation and ensembling.

In future work, we plan to explore how other
modeling decisions can increase or decrease model
churn. In this work, we limited our focus to BERT
encoders with different number of layers. Other
questions to explore include whether the choice
of pre-training technique affects churn or whether
pre-trained encoder-decoders show the same ef-
fects. Finally, we will examine whether alternative
decoding algorithms, such as non-autoregressive
approaches (Babu et al., 2021; Oh et al., 2022), can
reduce churn.
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A Ethics

The TOP and SNIPS datasets used in this experi-
ments are intended for research purposes only. We
verified that the datasets do not contain personally
identifiable information. The risks of dual use for
task-oriented conversational semantic parsers are
low as we are not performing open-ended genera-
tion; however, the models are likely to overfit to
certain demographic groups and underperform on
others.

B Hyper-parameter Search and Settings

We run our experiments on the TPU v2 available
through Google Cloud.9

We use the same hyper-parameters for all 3 TOP
datasets and SNIPS, except for SNIPS we use a
different number of training steps and learning
rate. The hyper-parameters were selected using
the Google Cloud black box optimizer (Golovin
et al., 2017). We tuned the parameters using 64
re-runs over the settings described in Table 9. For
SNIPS, we held out 10% of the training data for
tuning the training steps (100000) and learning
rate (0.000031) and trained the final models on
100% of the training data with the selected hyper-
parameters. For distillation experiments we ad-
justed the learning rate to 1e− 5 and the batch size
to 128 to prevent overfitting.

We train all models (including teacher and stu-
dent) for 300000 steps on the TOP datasets and
100000 on SNIPS. We use the Adam optimizer with
weight decay (Loshchilov and Hutter, 2017) and
the relu activation function. To follow the pointer
generator approach of Rongali et al. (2020), we
embed the output vocabulary in 128-dimensional
vectors and project the BERT embeddings from

9https://cloud.google.com/tpu

the input to 128 dimensions as well. For our trans-
former decoder (Vaswani et al., 2017), we use 2
heads and 2 layers (see Table 9) with 256 dimen-
sions for the attention and feed forward layers. We
also use a maximum output length of 51. We use
dropout on the input wordpiece embeddings, af-
ter the contextual BERT embeddings, and on the
output embeddings before the softmax layer.

Hyper-parameter Range/Set Selected Value
Learning rate [2e− 5, 2e− 4] 4e-5

Decoder Heads {2, 4, 8} 2
Decoder Layers {2, 4, 8} 4

Batch Size {128, 256} 256
Dropout [0.01, 0.1] 0.0316

Table 9: Tuned Hyper-parameters and their Possible
Values

C Additional Examples

Table 10 provides additional examples where en-
sembling fixes errors still present in co-distilled
models. In these cases, the co-distilled models
over-generate (the phenomenon indicated in Table
7) whereas the lengths of the ensemble predictions
are correctly calibrated to the target lengths.

D Additional Results

We present the full set of results from Table 5 in
Table 11. The results in Table 11a provide strong
evidence that co-distillation with label smoothing
(Table 11b) is clearly preferable. When we examine
the full set of datasets and methods combined with
label smoothing in the random/systematic noise
setting, we also see that soft distillation from an en-
semble performs well. However, in some cases soft
ensemble distillation performs worse than the base-
line; swapping occasionally slightly better perfor-
mance for occasionally much worse performance
would not be an acceptable tradeoff in most cases.
Co-distillation is more stable in terms of consis-
tently outperforming the baseline. Furthermore,
co-distillation requires fewer resources and can be
trained in parallel.
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Query Ground Truth Model predictions
play new matchbox 20 [in:play_music [sl:music_artist_name

matchbox 20 ]]
[in:play_music [sl:music_track_title matchbox
20 ]]
[in:play_music [sl:music_artist_name match-
box 20 ]]

repeat closer [in:replay_music [sl:music_track_title
closer ]]

[in:replay_music [sl:music_track_title closer ]]

[in:loop_music ]
Churn examples fixed by co-distillation. Model predictions are from the baseline model

show me alarms for to-
morrow

[in:get_alarm [sl:date_time for tomorrow
]]

[in:get_alarm [sl:alarm_name [in:get_time
[sl:date_time for tomorrow ]]]]
[in:get_alarm [sl:date_time for tomorrow ]]

take out my wednesday
alarm.

[in:delete_alarm [sl:alarm_name [in:delete_alarm [sl:alarm_name [in:get_time
[sl:date_time wednesday ]]]]

[in:get_time [sl:date_time wednesday ]]]] [in:silence_alarm [sl:alarm_name [in:get_time
[sl:date_time wednesday ]]]]

Churn examples further fixed by ensembling. Model predictions from the co-distilled model

Table 10: Qualitative comparison on TOPv2 of the types of errors fixed by co-distillation and ensembling.

TOP TOPv2 MTOP SNIPS

Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR

BERT-4 81.51 (72.14) 77.85 83.74 (73.18) 78.47 80.13 (68.71) 72.54 86.83 (75.25) 78.42
Ensemble 84.60 (78.55) 86.18 86.42 (80.38) 88.17 84.59 (78.52) 84.39 87.69 (80.58) 84.60

SD (ensemble) 81.36 (71.63) 77.25 83.73 (72.62) 77.72 79.50 (68.11) 71.97 86.80 (75.11) 77.84
SD (BERT-12) 81.31 (71.16) 76.43 83.51 (72.13) 77.10 79.87 (67.36) 70.76 86.37 (73.96) 76.69
HD (BERT-12) 81.33 (70.91) 75.92 83.56 (72.15) 76.99 79.66 (67.09) 70.39 86.93 (77.12) 80.29
Co-distillation 81.31 (72.04) 77.98 84.01 (73.96) 79.49 79.55 (68.48) 72.95 87.39 (79.28) 82.59

(a) Original dataset (no noise)

TOP TOPv2 MTOP SNIPS

Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR

BERT-4 77.90 (64.28) 68.76 82.39 (71.11) 76.24 70.01 (44.97) 46.63 76.59 (51.08) 52.95
Ensemble 78.67 (72.21) 80.55 83.78 (76.53) 83.89 72.37 (58.78) 65.24 82.27 (67.23) 70.50

SD (ensemble) 80.14 (70.59) 76.45 83.51 (74.31) 80.46 71.14 (48.89) 51.27 80.96 (61.01) 63.17
SD (BERT-12) 78.71 (66.96) 72.05 82.71 (70.75) 75.50 69.83 (45.26) 47.09 78.59 (53.09) 55.54
HD (BERT-12) 77.71 (64.77) 69.54 81.11 (60.39) 63.08 69.63 (44.78) 46.52 76.70 (47.34) 48.92
Co-distillation 78.91 (68.42) 74.54 82.60 (73.07) 79.34 73.74 (57.64) 61.22 82.50 (68.35) 71.80

(b) 10% random noise and label smoothing with α = 0.1.

TOP TOPv2 MTOP SNIPS

Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR

BERT-4 79.66 (65.28) 70.17 83.03 (72.27) 77.74 74.58 (58.50) 62.86 84.19 (68.20) 70.94
Ensemble 79.87 (68.78) 74.52 83.40 (73.60) 79.75 77.59 (68.55) 75.80 84.50 (71.22) 74.53

SD (ensemble) 81.02 (71.71) 77.87 83.85 (74.46) 80.68 74.97 (58.87) 63.30 82.24 (57.12) 59.14
SD (BERT-12) 80.75 (71.22) 77.15 83.25 (73.19) 78.97 75.01 (59.28) 63.30 82.59 (63.02) 65.90
HD (BERT-12) 79.49 (64.51) 69.10 82.93 (72.27) 77.94 75.21 (57.11) 60.51 81.57 (59.71) 62.88
Co-distillation 80.84 (73.61) 81.27 83.19 (73.96) 80.50 76.98 (63.64) 68.09 85.49 (72.09) 76.26

(c) 10% systematic noise and label smoothing with α = 0.1.

Table 11: Model performance (over N = 10 runs) when trained on datasets with varying degrees of noise. All
student models use 4-layer BERT. BERT-4/12: 4/12-layer BERT. Ensemble: 4-layer ensemble. SD: soft distillation.
HD: hard distillation. EM: exact match (mean over 10 runs). EM@10: EM if all 10 models are correct. AGR:
model agreement. Bold: best non-ensemble.
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Abstract

While rich, open-domain textual data are gen-
erally available and may include interesting
phenomena (humor, sarcasm, empathy, etc.)
most are designed for language processing
tasks, and are usually in a non-conversational
format. In this work, we take a step towards au-
tomatically generating conversational data us-
ing Generative Conversational Networks, aim-
ing to benefit from the breadth of available lan-
guage and knowledge data, and train open do-
main social conversational agents. We eval-
uate our approach on conversations with and
without knowledge on the Topical Chat dataset
using automatic metrics and human evaluators.
Our results show that for conversations with-
out knowledge grounding, GCN can general-
ize from the seed data, producing novel con-
versations that are less relevant but more en-
gaging and for knowledge-grounded conversa-
tions, it can produce more knowledge-focused,
fluent, and engaging conversations. Specifi-
cally, we show that for open-domain conversa-
tions with 10% of seed data, our approach per-
forms close to the baseline that uses 100% of
the data, while for knowledge-grounded con-
versations, it achieves the same using only 1%
of the data, on human ratings of engagingness,
fluency, and relevance.

1 Introduction

Conversational Artificial Intelligence has pro-
gressed a lot in the recent past, partly due to ad-
vances in large pre-trained language models (PLM)
and partly due to commercial conversational agents
(Alexa, Siri, Cortana, Google Assistant, and others).
It is evident, however, that many challenges still
remain, such as handling idioms, humour, express-
ing empathy, processing unstructured knowledge,
and so on. One big factor for this is the lack of
large and rich conversational data that include these
complex aspects of human communication. While
the research community is making great efforts in
collecting such data (e.g. empathetic dialogues

(Rashkin et al., 2019), persuasion (Wang et al.,
2019), and others), these are still small compared
to the amount of data needed to train deep neural
networks. Furthermore, these expensive data col-
lections usually target a single phenomenon at a
time, and hence do not necessarily scale to the rich-
ness of human conversations. Another challenge
for real world applications is privacy, preventing
the use of much of the publicly available conversa-
tional data.

In this work, we take a first step into automati-
cally generating conversational data from unstruc-
tured textual knowledge (e.g. web sources) using
Generative Conversational Networks (GCN) (Pa-
pangelis et al., 2021). GCN is a meta-learning
method initially proposed for intent detection and
slot tagging; we extend that approach and demon-
strate that we can learn how to generate responses
grounded in unstructured knowledge. Specifically,
GCN learns how to generate labelled, diverse, and
targeted data that are optimised with Reinforce-
ment Learning (RL). This is achieved by using a
generator model that produces new data which is
used to train a separate learner model. The per-
formance of the learner model is used as a reward
signal to train the generator, so that over time the
quality of the generated data increases. This re-
ward signal can allow us to guide the data gen-
eration towards dimensions of interest, for exam-
ple, knowledge-grounded, empathetic, or polite
dialogues and can be derived from automatic met-
rics or human feedback if the system is deployed.
In our case, the generator produces open-domain
dialogues and the learner is a conversational agent
that is trained on that data. Selecting an appropri-
ate reward signal can be difficult, since we want to
generate good quality dialogues that do not exist
in the training data, but dialogue evaluation is a
challenging open problem. We therefore investi-
gate a combination of multiple metrics that capture
different aspects: BLEU (Papineni et al., 2002)
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and ROUGE (Lin, 2004) to ensure some similarity
with the reference data, BERTScore (Zhang et al.,
2020a)1 to encourage good quality dialogues, and
Knowledge F12 (Shuster et al., 2021) to encour-
age knowledge integration. It should be noted that
while the focus in this work is knowledge ground-
ing in open-domain response generation, our ap-
proach is extensible to other conversational phe-
nomena with appropriate reward signals.

Our main contributions are: a) we generate
knowledge-grounded conversational data from un-
structured textual knowledge (e.g. the kind of
knowledge available on the web); b) we improve re-
sponse generation quality over a baseline that uses
fine-tuning on seed data, eliminating the need for
additional human-human data collection; and c) we
demonstrate improved performance on knowledge-
grounded response generation on Topical Chat, as
measured by KF1 and human evaluations.

2 Related Work

Language Data Augmentation Approaches.
There are a lot of recent works on data augmen-
tation, but most of them are geared towards individ-
ual language processing tasks rather than training
complete conversational agents. Due to lack of
space we only mention the ones that are most rele-
vant to our work.

PROTODA (Kumar et al., 2021) uses prototyp-
ical networks to augment data for intent classifi-
cation while GenSF (Mehri and Eskenazi, 2021)
uses DialoGPT (Zhang et al., 2020b) for zero-shot
slot tagging; DINO (Schick and Schütze, 2021)
uses PLM to generate data for semantic textual
similarity; Campagna et al. (2020) focus on zero-
shot dialogue state tracking and use an abstract
dialogue model to generate data. SOLOIST (Peng
et al., 2021) uses a PLM fine-tuned on large di-
alogue corpora and is designed for transactional
(goal-oriented) dialogues. Mohapatra et al. (2020)
use PLM to train user simulators from crowd-
generated conversations and their instructions. Lin
et al. (2021a) train domain-independent user sim-
ulators for transactional dialogues. Chang et al.
(2021) augment data for Data-To-Text NLG by
generating text in two steps: replacing values with
alternatives and using GPT-2 to produce surface

1Data driven evaluation metrics tend to favor dialogues
similar to the ones used during their training and we found
that we cannot solely rely on such metrics.

2KF1 measures the token level F1 score between a knowl-
edge piece and an utterance.

text. They then do automatic labelling and enforce
cycle-consistency (make sure text can be generated
from data and vice versa). Stahlberg and Kumar
(2021) focus on data generation for Grammatical
Error Correction and propose a method that can
generate an erroneous sentence given a correct sen-
tence and an error tag. Chen and Yu (2021) use
data augmentation to improve out of scope (OOS)
detection models. Specifically, they extract utter-
ances from a different dataset than the one they
are targeting that can be labelled as OOS and then
do some smart filtering to select good candidates.
Kim et al. (2021) propose NeuralWOZ, a frame-
work to generate dialogue state tracking data given
goal descriptions and API calls. NeuralWOZ has
a data generator and a data labeler that annotates
the data. GCN does not need a separate labeler
model and has the added option of being continu-
ally trained with RL. PromDA (Wang et al., 2022b)
is a soft-prompt learning method for low-resource
NLP tasks, that addresses the problem of overfit-
ting (memorizing) when fine-tuning a PLM with a
very small number of examples. The authors gen-
erate data for sequence classification and labelling.
However, this approach is not tested on full dia-
logues which require significantly more context in
the input. Bayer et al. (2022) propose a three step
method, where they first fine-tune a PLM and then
generate new data-points by adjusting the temper-
ature of the generation. They then filter the gener-
ated data by putting a threshold on embedding simi-
larity with respect to the target class centroid. GCN
uses RL to guide the generation process, alleviating
the need for explicit post-processing. Wang et al.
(2022a) present a data augmentation approach for
aspect-based sentiment analysis that can generate
data along two dimensions: aspects and polarity.
The resulting data are then used in a contrastive
learning setting to train a sentiment classifier. Sim-
ilarly to other approaches, it is not clear how it
would perform in knowledge-grounded dialogue
generation, with large inputs (context and available
knowledge). For a more comprehensive review of
data augmentation for language tasks, please see
(Feng et al., 2021; Li et al., 2021; Sahin, 2022).

Regarding data augmentation for conversational
agents, one of the most prominent methods is User
Simulation (Schatzmann et al., 2007; Asri et al.,
2016; Liu and Lane, 2018; Papangelis et al., 2019;
Lin et al., 2021b; Shah et al., 2018, e.g.). These ap-
proaches, however, have been designed to work
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Figure 1: The architecture of our approach using Generative Conversational Networks for knowledge-grounded dialogues. The
generator is first fine-tuned with seed data and produces an augmented dataset and those data are used to train a learner. The
performance of the learner on a held-out validation set (along with auxiliary metrics) is used as a reward to update the generator.

with well-structured databases whereas we are
concerned with grounding open-domain conversa-
tional responses in unstructured knowledge. DG2

(Wu et al., 2021) focuses on data augmentation
for document-grounded dialogues, using Doc2Dial
(Feng et al., 2020). The authors use an agent bot
and a user bot to conduct simulated conversations
and generate data. However, unlike GCN, the bots
are not continually updated and may not gener-
alise well to produce novel content. The code was
not available for a direct comparison on our dataset,
however, in the few-shot learning experiments, they
demonstrate good performance with as little as 25%
of the data (869 Doc2Dial dialogues), whereas we
demonstrate competitive performance by only us-
ing 1% of the training data (86 Topical Chat dia-
logues).

Few-Shot Approaches. Another line of related
work is based on few-/zero-shot transfer learning
for dialogue tasks. Again due to space we only
mention the most relevant works. Earlier studies
have focused on improving the generalizability of
natural language understanding problems such as
intent classification (Chen et al., 2016) and slot
filling (Bapna et al., 2017; Shah et al., 2019) for un-
seen labels or domains. Then, focus was placed on
other dialogue problems including dialogue state
tracking (Wu et al., 2019; Rastogi et al., 2020),

next action prediction (Mosig et al., 2020), and
natural language generation (NLG) (Peng et al.,
2020). Bapna et al. (2017) and Shah et al. (2019)
utilized slot descriptions for improving the zero-
shot slot filling performance. Rastogi et al. (2020)
used slot, intent, and task-specific API descrip-
tions for schema-guided dialogue state tracking.
Mosig et al. (2020) based on a structural schema in
graph representations instead of textual descrip-
tions for zero-shot action prediction and NLG.
Peng et al. (2020) pre-trained on massive text data
followed by dialog act labeled dialogue utterances.
Madotto et al. (2020) used a large-scale pre-trained
language model as a few-shot learner with task-
specific prompting. All the methods presented
above, however, are geared towards specific tasks
and are not shown to generalize to open-domain
social or knowledge-grounded conversation.

3 Notation

We conduct experiments under two settings: con-
versations without explicit knowledge-grounding
(we call them open-domain) and knowledge-
grounded conversations.
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3.1 Open-domain conversations

We define a multi-turn conversation as a list
of utterances: U1, U2, ..., UN where Ui is the
utterance at turn i, and N is the number of turns
in the conversation. Each utterance is composed
of words w1, ..., wM , where M is the number of
words in the utterance. Conversational agents are
given a subset of the dialog context, for example
the t most recent turns UN−t−1, ..., UN−1 and
generate the response UN .

3.2 Knowledge-grounded conversations

To formulate knowledge-grounded responses, con-
versational systems need two steps (sometimes
taken jointly): knowledge selection and response
generation (Dinan et al., 2019). The conversational
agent should therefore first select relevant knowl-
edge pieces from the sources provided with respect
to the current dialog context and then generate a
response that incorporates the selected knowledge.
A knowledge piece in our case is defined as a fact
consisting of one or more sentences (see Table 8
for some examples). To select a knowledge re-
trieval method, we conducted preliminary experi-
ments comparing TF-IDF, BM25, and BERTScore
and we saw that the more sophisticated parsing
and dense retrieval methods did not outperform
TF-IDF. We therefore represent conversation con-
text and knowledge using TF-IDF vectors and uti-
lize TF-IDF-based retrieval over documents as our
knowledge selection mechanism. We select the
most relevant knowledge using cosine similarity
with the context C = UN−t−1, ..., UN−1:

kN = argmax
k
{cos(tC , tk)} (1)

where tC is the TF-IDF vector corresponding to
the context and tk is the vector corresponding to
knowledge piece k. Knowledge-grounded conver-
sational agents are given not only the dialog context
C but also the selected knowledge kN (or multiple
pieces of knowledge as in our case) and are asked
to generate a response UN that incorporates kN .

4 Generative Conversational Networks

GCN (Papangelis et al., 2021) (Figure 1) consist
of two models in a meta-learning architecture: a
data generator and a learner. The generator creates
a labeled dataset that is used to train a new learner
(a conversational agent in our case) in a supervised

fashion. The learner is then evaluated on an exter-
nal validation set and its performance is used as a
proxy for the quality of the dataset. This quality
measure is used as a reward in a RL setup that trains
the generator. Over time, the generator learns to
create data of better and better quality, with respect
to the learner’s task, leading the learner to perform
well. To avoid overfitting the validation set, we
can limit the number of meta-iterations or include
domain-independent performance metrics, such as
fluency, perplexity, or even human feedback. When
deployed, the generator is directly optimized on
the test set (i.e. real interactions). Both models
can be pre-trained with seed data, if available, and
paired with reward estimation, GCN can be used
for continuous learning from user feedback. This
approach has been proven to work well for intent
detection and slot tagging in goal-oriented conver-
sations (Papangelis et al., 2021) and we here apply
it to train social conversational agents. Different
from Generative Adversarial Networks (Goodfel-
low et al., 2014)3 where the model tries to mimic
the data, GCN models are guided by an external re-
ward signal - that does not need to be differentiable
- and can therefore generalize better. Depending
on the optimization criteria, we can set the direc-
tion towards which the models will go, for example
more polite conversations, more technical terminol-
ogy, different dialect, knowledge grounding, and
even directions that are not easily quantifiable (e.g.
engagingness ratings from humans).

For open-domain conversations, as a proof of
concept, we conduct few-shot experiments using
10% of the data and for knowledge-grounded con-
versations which is the main focus of this work, we
use 1%, 5%, and 10% of the data; we call these
the seed data (Dseed). At the beginning of train-
ing, we sample Dseed from the data D, fine-tune
the generator on Dseed (see G.train(Dseed), line
4 in Algorithm 1), and then start the outer loop
meta-iterations. Along with the training data, we
sample the corresponding percentage of validation
dataDval. Once the training is complete, we spawn
a new learner, train it on the seed and synthetic data,
and evaluate it on Dtest which has been unseen so
far. As described earlier, each meta-iteration has
four phases: data generation, learner fine-tuning,
learner evaluation, and generator update. Algo-
rithm 1 summarizes the process.

3A direct comparison with GAN approaches is out of scope
for this work and we leave it for the future.
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4.1 Data generation

In the first phase of the process, the generator G
is given some dialog context sampled from Dseed

and, in the knowledge-grounded condition, top-
m retrieved knowledge pieces k from the TFIDF
retriever. Specifically, we give the last two turns as
context and the top-3 matching knowledge pieces,
and ask the generator to predict the next system
response. At each turn i, the context Ci is used to
retrieve relevant knowledge ki that is then used as
input to the generator which produces the next turn
response Ui:

(2)
Ui = G(Ci, ki)

=

n⋃

w=0

{sample(PLM (w|wn−1, ..., w0, ci, ki)}

where PLM is the probability of the underlying
language model generating each word w of the
response Ui, and sample is the method we use to
sample from the PLM, (greedy, nucleus, etc). This
way, the generator produces a synthetic dataset
Dsynth of size L, where each datapoint is a triplet
of context Ci, knowledge ki, and response Ui:

Dsynth = {(Ci, ki, Ui), i = 1, ..., L} (3)

In essence, to create Dsynth, instead of taking the
human response from the data as a target, we use
the generated response U as a target and feed that
along with C and k to fine-tune the learner.

4.2 Learner fine-tuning and evaluation

Since the learner’s task is knowledge-grounded dia-
logue, it does not have access to the TFIDF retriever
and, as k may contain multiple relevant knowledge
pieces, it will learn to perform its own implicit
knowledge selection, not knowing what the exact
knowledge piece used to produce U was.

At every iteration, we create a new learner
(based on a pre-trained model) and fine-tune it on
Dseed ∪Dsynth (see line 10 in Algorithm 1). The
knowledge-grounded learners are trained using a
combination of cross entropy loss and knowledge
retrieval score, specifically, Knowledge F1 (KF1)
(Shuster et al., 2021) which measures the F1 score
between the produced utterance and the selected
knowledge piece. The trained learner is then evalu-
ated (see line 11 in Algorithm 1) and a numerical
reward is computed by combining several metrics.

Algorithm 1 GCN training procedure.
1: procedure TRAIN(Dseed, Dval, Dtest, ε)
2: Initialize Generator G
3: if Dseed then
4: G.train(Dseed)
5: end if
6: Performancemeta ← 0
7: while Performancemeta < 1− ε do
8: Dsynth ← G.generate()
9: Sample and initialize new Learner l

10: l.train(Dseed ∪Dsynth)
11: Performancemeta ← l.evaluate(Dval)
12: . Performancemeta ∈ [0, 1]
13: G.update(Performancemeta)
14: end while
15: Dsynth ← G.generate()
16: Sample and initialize new final Learner L
17: L.train(Dseed ∪Dsynth)
18: L.evaluate(Dtest) . or other evaluator
19: end procedure

4.3 Generator update

Following (Ziegler et al., 2019) and (Papangelis
et al., 2021), we use Proximal Policy Optimization
(PPO) (Schulman et al., 2017) with the following
modified reward R to train the generator using the
learner’s validation performance r:

R(C,U) = r(C,U)− β log G(U |C)
Gref (U |C)

(4)

whereC represents the context including the knowl-
edge if applicable, U represents the model’s re-
sponse, and β is a constant that prevents G from di-
verging too much from a reference generator Gref .

In the open-domain condition, the generator
uses multiple losses to calculate r: BLEU (Pap-
ineni et al., 2002), ROUGE-L (Lin, 2004), and
BERTScore (Zhang et al., 2020a) which measure
the similarity of the learner-produced utterance and
the utterance in the data (Dseed or Dsynth). We
evaluate each learner on the validation set Dval

and compute the above metrics using the human
responses in Dval as references. The weighted
sum of the NLG metrics comprises the reward for
the generator training. The weights were deter-
mined via grid search: 0.1, 0.01, 0.95, for BLEU,
ROUGE-L and BERTScore, respectively. In the
knowledge-grounded condition, we use a combi-
nation of BLEU-1 and KF1 (with weights 0.75 for
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BLEU-1 and 0.25 for KF1) as we found via grid
search that it produced better results.

After the meta-iterations are finished, we pick
the best performing generator checkpoint (mea-
sured by the learners’ performance on Dval at
each meta-iteration) and create a final synthetic
set Dfinal synth that is 5 times the size of the seed.
We then create a new learner as our final learner
(i.e. the conversational agent) and fine-tune it on
Dseed ∪Dfinal synth (lines 15-18 in Algorithm 1).
IfDfinal synth is of good quality, we should expect
the final learner to outperform the baseline, as it is
trained with more data. The results presented next
are all computed on the final learners, trained for
3 epochs, evaluated on Dtest, and averaged over 3
runs (as are our baselines).

5 Experiments

To evaluate GCN as a data augmentation method
for conversations with and without knowledge, we
conduct few-shot experiments on Topical Chat (TC)
(Gopalakrishnan et al., 2019). TC is a set of human-
human conversations, without explicitly defined
roles for each participant, collected over Amazon
Mechanical Turk. Each participant had access to a
set of facts or articles with some conversations be-
ing symmetric (participants had access to the same
knowledge) and some being asymmetric. All ex-
periments were conducted on 2 Tesla V100 GPUs
with 32GB memory each.

5.1 Model ablations

To quantify the effect of data augmentation and RL
in both conditions, we train BART (Lewis et al.,
2020) or BlenderBot-small (BBs)4 (Roller et al.,
2021) models for no-knowledge and knowledge-
grounded conversations respectively, under the fol-
lowing conditions:

• Baseline (BART/BBs): In this condition, we
train BART or BBs on the seed data. This
will give us a lower bound on performance
(if the augmented data is good, it should help
performance).

• Data augmentation without RL (GCN-
RL): In this condition, we pre-train a
DialoGPT-small5 (Zhang et al., 2020b) gener-
ator with the seed data, and use that to gener-
ate 5x more data. We then use the seed and

490M parameters
5117M parameters

generated data to train a final BART or BBs
(learner) model depending on the task.

• Data augmentation with RL (GCN+RL):
In this condition, we take the GCN-RL gen-
erator and iteratively update it using RL, as
described in section 4. This is the full GCN
framework. At the end of the meta-iterations,
we take the best-performing generator and use
it to create 5x more data. We use the seed and
generated data to train a final BART or BBs
model.

• Generator direct evaluation (G±RL gener-
ator): For the knowledge-grounded condition,
in addition to the above three models, we eval-
uate the generator by having it directly inter-
act with humans instead of generating data to
train a learner.

5.2 Open-domain conversations

For the open-domain conversations, we sample
10% of TC as seed for GCN and use DialoGPT-
small and BART as initial models for the generator
and the learner, respectively. We compare the per-
formance of the GCN learner and 3 baselines using
automated metrics, and also conduct human evalu-
ations. Our baselines are: BART trained with the
same seed data (BART 10%), BART trained with
the entire training set (BART 100%), and a GCN
learner trained on seed and synthetic data but with-
out updating the generator via RL (GCN-RL). Last,
we also compare against the human responses that
appear in the data (“Data” in Tables 1 and 3).

5.3 Knowledge-grounded conversations

For knowledge grounded conversations, we sample
1%, 5%, and 10% of TC as seed data for GCN.
Again we use DialoGPT-small as a generator but
we use BBs as our learner. We compare the per-
formance of GCN against similar baselines to the
open-domain condition: BBs trained on the seed or
the entire data, GCN without RL, human responses
from the data, and we also evaluate the genera-
tors themselves if we were to use them directly
as conversational agents (G±RL generator). Even
though KF1 is the metric of choice in related work
on knowledge-grounded conversations, we did not
find works that report KF1 for TC.
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Model BLEU Rouge(1/2/L) BScore Engaging. Fluency Relevance Overall
Data - - - 3.85 4.55 3.77 4.06
BART (100%) 3.1 20.3/6.1/17.8 0.861 3.80 4.58 3.68 4.02
BART (10%) 2.0 18.5/4.2/16.0 0.858 3.63 4.50 3.62 3.92
GCN-RL 1.1 15.0/2.1/12.6 0.850 3.70 4.47 3.47 3.88
GCN+RL 1.3 15.8/2.7/13.6 0.851 3.79 4.49 3.58 3.96

Table 1: Automatic and human evaluation results. Human evaluators rate responses on a scale of 1 to 5. BScore stands for
BERTScore. Bold indicates statistically significant difference (t-test assuming unequal variance). BART (100%) and BART
(10%) are BART trained on 100% and 10% of the data, GCN-RL is GCN without RL, and GCN+RL is GCN with RL training.

1% data 5% data 10% data
Model PPL KF1 BL-4 PPL KF1 BL-4 PPL KF1 BL-4
BBs 23.39 0.10 0.07 23.52 0.17 0.09 21.69 0.17 0.09
GCN-RL 26.47 0.15 0.08 24.54 0.18 0.09 23.11 0.18 0.09
GCN+RL 27.11 0.20 0.08 24.60 0.25 0.14 23.67 0.28 0.10

Table 2: Results of automated evaluation on knowledge-grounded conversations. All models try to maximize KF1, and the
baseline is the same model as the GCN learners (BBs: BlenderBot-small, 90M parameters).

Model Eng. Flu. Rel. Avg
Data 3.74 3.98 3.57 3.76
BBs (100%) 3.69 3.99 3.57 3.75
BBs (1%) 3.64 3.86 3.42 3.64
G-RL generator 3.47 3.35 3.23 3.35
G-RL learner 3.58 3.85 3.48 3.64
G+RL generator 3.37 3.27 3.40 3.35
G+RL learner 3.73 3.97 3.48 3.73

Wins Percentage
Combinations Base G-RL G+RL Tie
BBs VS G-RL 40.0 44.3 - 15.7
BBs VS G+RL 44.7 - 47.7 7.6
All 3 models 29.3 25.7 45.0 -

Table 3: Human evaluation results (top) for knowledge-
grounded conversations. Human evaluators rate responses
with the same conversation context on a scale of 1 to 5. In
a different evaluation (bottom), they were asked to choose
the best response from two options. BBs: BlenderBot-small
(90M), G-RL: GCN without RL, G+RL: GCN with RL.

6 Results

6.1 Automatic evaluation

We report perplexity (PPL), BLEU-4 (Papineni
et al., 2002) with the “method 7” smoothing func-
tion from (Chen and Cherry, 2014) as it has higher
correlation with human ratings, and KF1. We cal-
culate these metrics on the TC “frequent” test set,
(Tables 1 and 2). In the open-domain condition, we
see that BART 10% outperforms GCN agents on all
automated metrics. In knowledge-grounded conver-
sations, we see that GCN+RL is able to incorporate
more knowledge as evidenced by the higher KF1.

6.2 Human evaluation

Due to the intrinsic one-to-many property of con-
versation, reference-based metrics may not corre-
late with human ratings; our generated conversa-
tion may be appropriate for the dialogue context
but different from the reference responses. For this
reason, we also conduct human evaluation (follow-
ing sub-section). Human evaluators rate the output
of the GCN learner, the baselines, and the ground
truth. Specifically, they rate how engaging, fluent,
and relevant each response is, on a scale from 1 to
5. We generate 1,000 samples for each condition
using the same context and make sure we have 3
ratings per sample per condition. Tables 1 (right)
and 3 show the results of the evaluation, where we
see that in the open-domain condition, the GCN
learner produces engaging but less relevant con-
versations. This is likely because the model in-
serts facts or other output that is not entirely rel-
evant, but is perceived as more engaging (e.g. in-
formation on a somewhat relevant subject, fun fact,
etc.). Consistent with prior work, (Papangelis et al.,
2021), this shows that GCN can generalize from
the data. When it comes to knowledge-grounded
conversations, where GCN is explicitly trained to
optimize KF1 (among other metrics), then rele-
vance is indeed higher than the baseline. Overall,
averaging the three metrics, GCN+RL outperforms
BART 10% and is close to BART 100%’s perfor-
mance. All models are outperformed by the human
responses, which may be due to the size of our
models or the number of training iterations.

32



Iterations PPL KF1 BL-4
1 30.8 0.146 0.179
2 31.1 0.147 0.182
3 30.7 0.146 0.186
5 30.8 0.163 0.190
10 27.1 0.238 0.085

Table 4: Performance of GCN+RL for varying number
of meta-iterations. Here, we generate 3x the seed data
and use 1% of TC.

Data Mult. PPL KF1 BL-4
1 26.5 0.201 0.082
2 27.4 0.213 0.084
3 28.6 0.17 0.083
5 22.2 0.25 0.154
10 22.9 0.27 0.106

Table 5: Performance of GCN+RL for varying size of
generated data (as a multiplier of the seed). Here, we
do 5 meta-iterations and use 1% of TC.

For knowledge-grounded conversations (Table 3)
we see that GCN+RL produces more engaging and
fluent conversations and overall outperforms both
baselines while again being close to BBs trained on
all the data. In pair-wise comparisons, GCN+RL
is generally preferred more than the other models.
Overall, for the GCN conditions, given that we
generate 5x the seed data, the total amount of data
is about 6% of the size of TC and our results show
that the generated data is indeed of high quality,
since the same model (BlenderBot-small) using the
generated data performs close to the one that uses
100% of the human-human data and close to the
data itself. It should be noted that GCN achieves
this performance using small models (in the order
of 100M parameters each).

In Figure 2 in the appendix, we show the Ama-
zon Mechanical Turk setup that we used during our
human evaluations.

6.3 Generated data diversity

In this section we further analyze the performance
of GCN, specifically its performance with respect
to the number of meta-iterations (Table 4) and the
amount of generated data (Table 5). In Table 4,
we see that KF1 increases as we have more meta-
iterations, meaning that the generator actually leads
the learner to learn to produce more knowledgable
responses. BLEU naturally drops as these more
knowledgable responses may not appear in the data.

Data % BBs GCN-RL GCN+RL
1% 8.1% 17.4% 25.1%
5% 8.5% 12.1% 24.5%
10% 5.9% 9.2% 13.6%

Table 6: Out-Of-Vocabulary (OOV) rates for various
seed percentages.

We observe similar trends in Table 5, where we vary
the amount of synthetic generated data (as a multi-
plier of the size of the seed data). Regarding data
diversity, Table 6 presents out of vocabulary rates
for all three conditions when using 1%, 5%, and
10% of the data as seed. Higher rates mean more
diversity but may also mean that the generated data
is farther from the seed data. Paired with the results
in Tables 1-3, however, we can see that GCN+RL
produces more diverse data that are still in-domain
and useful.

6.4 Examples

In Table 7, we provide example responses for con-
versations without knowledge grounding, and in
Table 8 we show example responses for knowledge-
grounded conversations. We see that in both cases
GCN+RL tries to insert knowledge or fun facts
and that appear to be received well by the human
judges. However, since there are no knowledge-
grounding abilities, the model hallucinates and
this is what likely drives relevance ratings down.
In the knowledge-grounded example, we see that
GCN+RL can use the knowledge pieces more ef-
fectively than the other models.

7 Conclusion

We presented a meta-learning method based on
GCN to generate conversational data grounded on
unstructured textual knowledge such as what can be
found on the web. We show that given a small seed
(1% of TC or 86 examples) our approach can gener-
ate high quality data that can be used to train a com-
petitive conversational agent able to do knowledge
selection and grounding. Lower reference-based
metric scores (Table 1, left and Table 2) indicate
that our method generates diverse data. Based on
the good scores in the human evaluation (Table 1,
right and Table 3), we see that the generated data
is also useful for the task at hand, a result in line
with the results on intent detection and slot tagging
in (Papangelis et al., 2021). As future work, we
are conducting thorough analyses and evaluations
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Context
Hello, do you watch football?
Hi, yes. I love football! I did not realize the season lasted 17 weeks!
Yeah pretty long. I guess with 32 teams playing it takes that much time
Did you see they only rest one weekend during the season?
That is crazy, so much work goes in there. Did you know U of Iowa painted their visitor locker
room pink?
Oh yes,that is so funny. they really want to intimidate the other team, but is more like a joke
Wow, what an idea. Did you know bowlers used to make more than football players in the 60s

Responses
Baseline that’s a good point. i wonder how many of the top bowlers make twice as much as top football stars.

do you have a favorite
GCN-RL that’s a good point. i’m not a big fan of football, but i do like to watch it.

do you like football?
GCN+RL i didn’t know that, that’s interesting. did you know there are more than 30 million players in the nfl?

i wonder how many of those players are still playing?

Table 7: Example responses for open-domain conversations. The models here are not trained to optimize knowl-
edgable responses and therefore may hallucinate. This may be the reason for lower relevance scores for GCN+RL
(Table 1); however, GCN+RL’s tendency to provide fun facts is what may be leading to more engaging responses.

Context
Did you know that the University of Iowa’s locker room is painted pink? I wonder why?
I think I did hear something about that. I imagine it is an attempt to psych the other team out.
So, it would be in the visiting team’s locker room but not their own?

Retrieved Knowledge (subset)
the University of Iowa’s locker room for visiting football teams is completely painted pink in the
1960’s top bowlers made twice as much as top football stars
Football is a family of team sports that involve, to varying degrees, kicking a ball [...]
in 39 out of 50 states, the highest paid state employee is either a college football or basketball coach.

Responses
Baseline i think it would be in the visiting team’s locker room. i don’t know why they would want to psych

the other team out
GCN-RL that’s interesting. i’ve never heard that before. do you have a favorite team?
GCN+RL i’m not too familiar with iowa’s locker room for visiting football teams, but i do know that they’re

the highest paid employees in the state of iowa. do you know why they are paid so much?

Table 8: Example responses for knowledge-grounded conversations. In this setting, models are trained to optimize
knowledgable responses which explains in part why GCN+RL is preferred in human judgements (Table 3).

of the generated data, exploring more model archi-
tectures, and are working on more conversational
phenomena.
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Markus Bayer, Marc-André Kaufhold, Björn Buchhold,
Marcel Keller, Jörg Dallmeyer, and Christian Reuter.
2022. Data augmentation in natural language pro-
cessing: a novel text generation approach for long
and short text classifiers. International Journal of
Machine Learning and Cybernetics, pages 1–16.

Giovanni Campagna, Agata Foryciarz, Mehrad Morad-
shahi, and Monica Lam. 2020. Zero-shot transfer
learning with synthesized data for multi-domain di-
alogue state tracking. In Proceedings of the 58th
Association for Computational Linguistics.

Ernie Chang, Xiaoyu Shen, Dawei Zhu, Vera Demberg,
and Hui Su. 2021. Neural data-to-text generation

34



with lm-based text augmentation. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, EACL 2021, Online, April 19 - 23, 2021,
pages 758–768. Association for Computational Lin-
guistics.

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level bleu. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 362–367.

Derek Chen and Zhou Yu. 2021. GOLD: improving
out-of-scope detection in dialogues using data aug-
mentation. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2021, Virtual Event / Punta Cana, Do-
minican Republic, 7-11 November, 2021, pages 429–
442. Association for Computational Linguistics.

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong
He. 2016. Zero-shot learning of intent embeddings
for expansion by convolutional deep structured se-
mantic models. In 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6045–6049. IEEE.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of wikipedia: Knowledge-powered conversational
agents. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Song Feng, Kshitij Fadnis, Q Vera Liao, and Luis A
Lastras. 2020. Doc2dial: a framework for dialogue
composition grounded in documents. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 13604–13605.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard H. Hovy. 2021. A survey of data augmenta-
tion approaches for NLP. In Findings of the Associ-
ation for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 968–
988. Association for Computational Linguistics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. Advances in neural information pro-
cessing systems, 27.

Karthik Gopalakrishnan, Behnam Hedayatnia,
Qinglang Chen, Anna Gottardi, Sanjeev Kwatra,
Anu Venkatesh, Raefer Gabriel, Dilek Hakkani-Tür,
and Amazon Alexa AI. 2019. Topical-chat: Towards
knowledge-grounded open-domain conversations.
In INTERSPEECH, pages 1891–1895.

Sungdong Kim, Minsuk Chang, and Sang-Woo Lee.
2021. NeuralWOZ: Learning to collect task-
oriented dialogue via model-based simulation. In

Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3704–3717, Online. Association for Computational
Linguistics.

Manoj Kumar, Varun Kumar, Hadrien Glaude, Cyprien
de Lichy, Aman Alok, and Rahul Gupta. 2021. Pro-
toda: Efficient transfer learning for few-shot intent
classification. In 2021 IEEE Spoken Language Tech-
nology Workshop (SLT), pages 966–972. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7871–7880. Association for Computational
Linguistics.

Bohan Li, Yutai Hou, and Wanxiang Che. 2021. Data
augmentation approaches in natural language pro-
cessing: A survey. CoRR, abs/2110.01852.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Hsien-chin Lin, Nurul Lubis, Songbo Hu, Carel van
Niekerk, Christian Geishauser, Michael Heck, Shu-
tong Feng, and Milica Gašić. 2021a. Domain-
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Figure 2: Our human evaluation setup.

A Limitations and Risks

Given that GCN relies on Reinforcement Learning,
it may be difficult to tune for more complex appli-
cations. Also, due to its meta-learning nature it can
be computationally expensive, although we show it
here working with small versions of each model.

As with any machine learning approach - espe-
cially ones that rely on PLMs - there are inher-
ent risks as to the language that will be produced,
which may be biased in many ways. Our approach
works with any machine learning model and there-
fore inherits the risks of the models used. Rein-
forcement Learning can also play a role in learning
biased models if we are not careful.

B Amazon Mechanical Turk Setup

In Figure 2 we show a screenshot of our Amazon
Mechanical Turk setup for human evaluation.
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Abstract

Over the last several years, end-to-end neu-
ral conversational agents have vastly improved
their ability to carry unrestricted, open-domain
conversations with humans. However, these
models are often trained on large datasets from
the Internet and, as a result, may learn undesir-
able behaviours from this data, such as toxic or
otherwise harmful language. Thus, researchers
must wrestle with how and when to release
these models. In this paper, we survey recent
and related work to highlight tensions between
values, potential positive impact, and potential
harms. We also provide a framework to support
practitioners in deciding whether and how to
release these models, following the tenets of
value-sensitive design.

1 Introduction

The social impact of natural language processing
and its applications has received increasing atten-
tion within the NLP community (e.g. Hovy and
Spruit, 2016) with Large Language Models (LLMs)
as one of the recent primary targets (e.g. Bender
et al., 2021; Bommasani et al., 2021; Weidinger
et al., 2021). This paper examines what consid-
erations are salient when designing and releasing
conversational AI (ConvAI) models. We focus
on neural conversational response generation mod-
els that are trained on open-domain dialog data
and lack a domain-specific task formulation, but
instead are designed to freely and engagingly con-
verse about a wide variety of topics. These models
are typically trained in the popular encoder-decoder
paradigm, which was first introduced for this task
by Vinyals and Le (2015); Shang et al. (2015); Ser-
ban et al. (2016). We call conversational models
trained in this paradigm end-to-end (E2E) systems
because they learn a hidden mapping between in-
put and output without an interim semantic repre-
sentation. An important benefit of E2E ConvAI
models trained in this paradigm is that they can be

adapted to new domains or taught new skills just
by fine-tuning a pre-trained model on datasets of
interest (e.g. Roller et al., 2020; Smith et al., 2020;
Solaimon and Dennison, 2021). Releasing these
pre-trained models thus allows different groups of
researchers to build on the work of others, which
can increase reproducibility and progress. Unfor-
tunately, releasing a model can also have harmful
impacts.

We discuss a subset of ethical challenges related
to the release and deployment of these models,
which we summarise under the term “safety,” and
highlight tensions between potential harms and ben-
efits resulting from such releases. This is particu-
larly salient in light of recently proposed AI regu-
lation in the European Union (European Commis-
sion, 2021). While several recent efforts have been
made to describe and mitigate unsafe behaviour of
conversational models (e.g. Dinan et al., 2019; Xu
et al., 2021; Ouyang et al., 2022; Thoppilan et al.,
2022; Perez et al., 2022; Dinan et al., 2022), this
work aims to provide a framework to help practi-
tioners think through the conflicts and tensions that
arise when designing a conversational model and
deciding whether or not to release it, and how.

Releasing models “safely” is particularly chal-
lenging for the research community. The concept
of “safe language” varies from culture to culture
and person to person. It may shift over time as lan-
guage evolves and significant cultural or personal
events provide new context for the usage of that lan-
guage. In addition, the downstream consequences
may not be fully known a priori, and may not even
be felt for years to come. This is particularly true
for large interactive E2E models, where the space
of possible generated replies is both extremely vast
and highly dependent on context, and can there-
fore not be exhaustively explored before release.
Researchers are then left with the task of trying to
arbitrate between uncertain, changing, and conflict-
ing values when making decisions about creating
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and releasing these models.
We propose ways to conceptualise the interac-

tion of values at play in conversational models (sec-
tion 3). Based on that understanding, we present
a conceptual analytical framework to guide re-
searchers and practitioners towards making better-
informed decisions about model release (section
4). We aim to move away from a notion of safety
that is based on “the absence of risk” to a more
resilience-based notion of safety that is focused on
the ability of sociotechnical systems (i.e., users, de-
velopers, and technology combined) to anticipate
new threats and value changes.

2 Safety problems and mitigations in E2E
conversational AI models

We first illustrate some possible sources of safety
concerns for ConvAI models through concrete ex-
amples grounded in references to existing work –
pointing out similarities and differences in issues
shared with LLMs. We mainly distinguish ConvAI
and generative LLMs by their usage: We refer to
ConvAI models if they are used interactively and
take an active role as the interlocutor in a dialogue,
whereas we refer to LLMs if models are mainly
used to generate text, e.g., via text completion or
via prompting.

2.1 Training models

While we focus mainly on model release, many of
our considerations also apply to earlier stages of
training a model, particularly as early choices can
have downstream effects that impact elements of
the cost-benefit analyses of the researchers. For
example, for LLMs and ConvAI systems alike, the
type of data used during training might influence
what populations could benefit from or be harmed
by release of a model (Bender et al., 2021). In addi-
tion, training large neural networks on vast amounts
of data, leading to high energy consumption and
environmental costs (Strubell et al., 2019; Bender
et al., 2021). Furthermore, the data used to train
models can be insufficiently protected, leading to
the leakage of sensitive information through model
generations and privacy breaches as happened re-
cently with commercial chatbot Lee-Luda (Jang,
2021). Similar privacy problems are observed for
LLMs (e.g. Nasr et al., 2019; Shokri et al., 2017;
Carlini et al., 2019, 2020).

2.2 Offensive content

Once trained, a conversational generative model
can give rise to safety sensitive situations, by di-
rectly generating toxic or otherwise harmful con-
tent, by agreeing with offensive statements uttered
by the conversation partner (Dinan et al., 2022), or
by responding defensively or dismissively when
provided with corrective feedback by the conversa-
tion partner (Ung et al., 2021). While the first case
is shared with LLMs, the latter two are unique to
ConvAI systems. Generating this type of content
can cause harm to users, and poses a reputational
risk to the organisation releasing the model, for
instance when the bot voices undesirable or con-
troversial opinions, e.g., Tay’s anti-semitic stances
(Miller et al., 2017).

The boundaries of what is offensive or not are
both subjective and culturally dependent. This
makes it especially important to consider what com-
munity norms are applicable when deploying a
model (Jurgens et al., 2019; Sap et al., 2019; Kir-
itchenko and Nejadgholi, 2020; Liang et al., 2022),
and whether the use of labels might not be a risk in
itself (Thylstrup and Waseem, 2020).

Many existing mitigations rely on the ability
to detect problematic content – often centred on
content written by humans on social media plat-
forms, such as Twitter (e.g. Waseem and Hovy,
2016; Wang et al., 2020; Zampieri et al., 2019,
2020; Zhang et al., 2020), Facebook (Glavaš et al.,
2020; Zampieri et al., 2020), or Reddit (Han and
Tsvetkov, 2020; Zampieri et al., 2020). However,
of course, conversational systems may not necessar-
ily have the same patterns as social media content
(Cercas Curry et al., 2021). Existing work on con-
versational systems often relies on identification of
keywords (Ram et al., 2017; Cercas Curry et al.,
2018; Fulda et al., 2018; Khatri et al., 2018; Paran-
jape et al., 2020), or uses human labels such as flag-
ging of a post to train classifiers (Larionov et al.,
2018; Cercas Curry et al., 2018). These first-pass
classifiers can then be augmented adversarially as
done in Dinan et al. (2019); Xu et al. (2020).

In addition, work on building safer LLMs ex-
plores fine-tuning on curated data (Solaimon and
Dennison, 2021) or directly controlling the gen-
erations of the model (Dathathri et al., 2019;
Liu et al., 2021; Schick et al., 2021; Xu et al.,
2020). Conditioning generations on certain types
of context, such as personas of diverse historically
marginalised demographics, has also been shown
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to decrease the generation of harmful responses
(Sheng et al., 2021).

2.3 Mitigating the risks of mitigations
LLMs and ConvAI models often rely on a clas-
sifier to detect and mitigate unsafe model out-
puts. However, these classifiers themselves can
have issues with bias, e.g., by learning undesir-
able correlations that tie toxicity to identity terms
(Dixon et al., 2018; Nozza et al., 2021, 2022), or
language varieties, such as African American En-
glish (Liu et al., 2019; Sap et al., 2019). Possible
mitigations include using race and dialect prim-
ing (Sap et al., 2019), using adversarial training
techniques (Xia et al., 2020), adding fairness con-
straints (Gencoglu, 2020), or relabeling data used
during training (Zhou et al., 2021).

2.4 Interacting with users
There are some additional challenges which are
unique to ConvAI system arising from the direct
interaction with users. This includes the possibil-
ity of an involuntary anthropomorphic relationship
arising between a conversational model and a hu-
man interacting with it (Abercrombie et al., 2021),
and the fact that model generations are inherently
dependent on the unknown inputs of a conversation
partner who will be repeatedly interacting with the
systems and steering them in unpredictable direc-
tions. Some users have been observed to behave in
an adversarial way, as happened for instance with
Tay (Miller et al., 2017).

Another empirical pattern is that user utterances
in their conversations with chatbots are often abu-
sive (Cercas Curry and Rieser, 2018; Cercas Curry
et al., 2021). Thus, the safety implications of the
system needs to be considered within the expected
conversational context, including adversarial in-
puts. For example, publicly available chatbots have
been shown to agree with sexist or racist utterances
(Lee et al., 2019b). Automatically detecting un-
safe user utterances is still a challenge, both for
system directed abuse (Cercas Curry et al., 2021)
and general toxic statements (Xu et al., 2020). A
recent report by UNESCO points out that the in-
ability to respond appropriately to system-directed
abuse may reinforce negative gender stereotypes
(West et al., 2019), especially paired with their
anthropomorphic and feminised design cues (cf.
Abercrombie et al. (2021)).

The possibility of adversarial interaction and,
more generally, the unpredictability of a system

used far outside the training distribution, make it
particularly important to not exclusively rely on
mitigations such as cleaning up training data to
avoid exposing the system to offensive content, as it
has been shown to still leave models prone to gener-
ating toxic content in response to specific prompts
(Gehman et al., 2020) or inadequate responses to
abuse from users (Cercas Curry and Rieser, 2018).

2.5 Use in unsafe applications

Conversational and language models can also prove
unsafe if they are used for medical advice or emer-
gency situations (self-harm, crime, natural disas-
ters, etc) (e.g. Palanica et al., 2019; Bickmore et al.,
2018). Conversational systems designed for dis-
cussing health issues tend to not be generative mod-
els and use expert-produced rather than generic
data (e.g. Brixey et al., 2017; Fadhil and AbuRa’ed,
2019; Vaira et al., 2018; Pereira and Díaz, 2019).

A mitigation avenue for E2E ConvAI models is
to recognise topics that do not lend themselves to
automated conversation, and steer the conversation
away from them (Dinan et al., 2022). When using
such mitigations, considerations for release might
then usefully include how effective the context de-
tection is, and the costs of false negatives (i.e., fail-
ing to steer away from an unsafe context), false
positives (i.e., refusing to talk about safe topics),
and lost opportunity to provide safe benefits, e.g.,
safe general medical advice such as that generally
offered on public health websites.1

3 Tensions between values, potential
positive impact, and potential harm

After highlighting some existing barriers to the
creation of safe ConvAI (as well as possible mitiga-
tions), we lay out some important tensions between
values, positive impact and potential harm. These
considerations establish a foundational understand-
ing of the system, after which we can consider
release decisions (discussed in section 4).

There is a growing understanding that comput-
ing systems encode values, and will do so whether
or not the parties involved in designing and releas-
ing the system are explicitly aware of those values
(Friedman et al., 2008; van de Poel, 2018). Reflect-
ing more deliberately on values throughout model
development can help surface potential problems
and opportunities early on, identify what informa-

1For a recent, taxonomy of harms and risks from LLMs,
see Weidinger et al. (2021).
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tion might be important to communicate as part of
a model release, and allow practitioners and down-
stream users to make better-informed decisions.

We use the broad definition of values employed
in Friedman et al. (2008): “what a person or group
of people consider important in life.” With this def-
inition, values extend beyond the use of the term
akin to moral tenets, to the more general things of
value. Examples relevant to conversational agents
could be: getting or providing education, compan-
ionship, or comfort, preserving privacy, widening
access to more populations through automation –
or trust, friendship, accessibility, and universality.

Throughout this section, we employ the scenario
of a hypothetical companion: a potential chatbot
that leverages the constant availability and scalabil-
ity of automated systems to provide companionship
to people who feel lonely. However, it could raise
privacy and consent concerns, e.g., if the conver-
sations are recorded for subsequent improvement
of the model without informing the user. Deeper
concerns would be that the system might displace
human companionship in a way that creates an un-
healthy reliance on a bot, a decreased motivation
to engage with humans, and a lower tolerance to
the limited availability and patience of humans.

3.1 How values conflict

Determining how to best arbitrate between different
values requires the consideration of multiple types
of conflicts. For example:

Conflicts between values. Some values can be
in direct conflict: for example, lowering privacy
protections to harvest more detailed intimate con-
versation data to train a powerful artificial “close
friend” system pits privacy against relieving lone-
liness. These conflicts require deciding on a value
trade-off. But even values that are not directly in
conflict can require trade-offs, through competition
for limited resources and prioritisation of certain
goals or values: the resources invested to uphold
a given value might have instead enabled a better
implementation of another value. Thus, opportu-
nity costs (Palmer and Raftery, 1999) need to be
considered along with absolute costs.

Conflicts arising from distributional dispari-
ties. Besides values in a local setting (i.e., for a sin-
gle stakeholder, at a single point in time), another
source of conflict arises from disparities between
stakeholders: who bears the costs and who reaps
the rewards? This raises issues of distributional

justice (Bojer, 2005). In intertemporal conflicts,
the same person may pay a cost and reap a benefit
at different points in time. For example, a user
electing to contribute their private information now
to enable systems they expect to benefit from later.

Arbitrating conflicts. For conflict within an in-
dividual stakeholder, the individual should theoret-
ically be able to arbitrate the decision themselves,
given relevant information. However, that arbitra-
tion would still be subject to ordinary cognitive
and motivational biases. These include favouring
instant gratification (Ainslie, 2001), and resorting
to frugal heuristics to make faster decisions (Kah-
neman, 2011). Thus, practitioners need to grapple
with additional tensions between prioritising users’
autonomy (i.e., letting people choose, even if they
are likely to choose something they will regret) or
users’ satisfaction with outcomes of their choices
(i.e., protecting people from temptations). In the
example of a companion chatbot, one could imag-
ine a system that always tells people what they
most want to hear, even if it reinforces unhealthy
addictive patterns: would this require regulation
like a drug, or would people best be left as the sole
autonomous judges of how they want to use such
a system? Clever defaults and nudges can help
resolve this kind of tension, making it easier for
people to choose what may ultimately be better for
them (Thaler and Sunstein, 2009).

If costs and benefits allocate to different stake-
holder groups, things become even more complex.
Values are then compared in terms of the distri-
bution of costs and benefits among stakeholders.
For example, the value of fairness demands that
distributions not be overly skewed. Utilitarian and
rights-based approaches favour different trade-offs
between increasing the benefits of a system for a
large majority of people at the cost of harming a
few, and emphasising preservation of the rights
of as many people as possible (Velasquez et al.,
2015). If a companion conversational system pro-
vides a great amount of comfort to millions of peo-
ple, but harms a handful, different ethical systems
will weigh the good and the bad in different ways
and reach dissimilar conclusions. Next, we discuss
what processes can achieve a particular desired bal-
ance of values and costs, regardless of what that
desired balance is.
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3.2 Additional Challenges

There are two additional challenges when aim-
ing to balance values: First, human judgements
of risks, costs, and benefits can vary considerably
across groups. These include cognitive heuristics
– such as the fact that people tend to have trou-
ble comprehending large numbers and have more
of a response to representative narratives (Slovic,
2010) – but also population biases in risk estima-
tion, where white men are often outliers in how
they (under)estimate risks (Finucane et al., 2000;
Flynn et al., 1994). This discrepancy makes it espe-
cially important to pay attention to the demographic
make-up of the sample of stakeholders providing
a risk estimate. Other related issues is the asym-
metry between perception of costs and benefits,
where Baumeister et al. (2001) find “bad [events]
to be stronger than good in a disappointingly relent-
less pattern," and that “bad events wear off more
slowly than good events." This effect is especially
pronounced in algorithmic systems, where people
apply higher standards than in their interaction with
other humans (Dietvorst et al., 2015). These find-
ings mean that the balance between costs and bene-
fits needs to be strongly tilted towards benefits to
appeal to humans subjectively.

The other challenge stems from the inherent un-
certainty and change in safety related concepts.
Early estimates of costs and benefits are often
plagued by uncertainty. This includes uncertainty
about future use (malicious misuse or unintended
use, broader or smaller adoption than planned, etc.),
and uncertainty about interaction with an evolv-
ing society and other innovations. Beyond uncer-
tainty, van de Poel (2018) draws attention to value
change and its sources, from the emergence of new
values in society to changes in how different val-
ues are weighed. As advocated in van de Poel
(2018), systems should be designed with a focus on
adaptability, robustness, and flexibility. In practical
terms for conversational models, this entails the use
of rapidly adaptable techniques (e.g., fine-tuning,
inference-time control, etc.). It also highlights the
importance of continually questioning assumptions
on what evaluation methods measure and investing
in methods that can evolve from ongoing feedback.

3.3 Value-sensitive design

Value-sensitive design (Friedman et al., 2008) in-
corporates human values throughout the design
process. It adopts an iterative process of concep-

tual exploration, i.e., thinking about relevant val-
ues and how they manifest, about who the stake-
holders are, and what the tradeoffs between val-
ues ought to be); empirical investigations, includ-
ing surveys, interviews, empirical quantitative be-
havioural measurements, and experimental manip-
ulations; and technical investigation, i.e., eval-
uating how a given technology supports or hin-
ders specific values. Friedman et al. (2017) survey
several techniques to help practitioners implement
value-sensitive design, such as the “value dams
and flows" heuristic (Miller et al., 2007). Value
dams remove parts of the possible universe that
incur strong opposition from even a small fraction
of people. In contrast, value flows attempt to find
areas where many people find value. An exam-
ple of value dams would be thresholds on some
features, as a way to translate values into design
requirements (Van de Poel, 2013). This process
is reminiscent of the machine learning practice of
constrained optimisation, which combines satisfic-
ing constraints and maximising objectives. Van de
Poel (2013) reviews how to operationalise values
into design requirements.

4 A Framework for Researchers to
Deliberate Model Release

The topic of when and how to release LLMs de-
signed by research groups has been of increasing in-
terest to the community (e.g. Solaiman et al., 2019;
Crootof, 2019; Ovadya and Whittlestone, 2019;
Partnership on AI, 2020; Partnership on AI , 2021;
Liang et al., 2022). The case is similar for con-
versational models, with safety issues in particular
posited as a reason for withholding the release of
such models. For example, in a blog post about the
ConvAI model Meena (Adiwardana et al., 2020)
the authors cite safety challenges as a reason for
not releasing the model.2

Within the broader context of value-sensitive
design, and absent responsible release norms in
the field (Ovadya and Whittlestone, 2019; Liang
et al., 2022), we propose the following elements of
a framework to aid researchers in deliberating safer
release, and guidance to support learning during
and after release.

We ground our discussion in two relevant, theo-
retical case studies:

2https://ai.googleblog.com/2020/01/
towards-conversational-agent-that-can.
html accessed 10th May 2022.
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• Case 1 – Open-sourcing a model: Researchers
train a several billion parameter Transformer
encoder-decoder model on (primarily) English-
language conversational data from the internet.
They publish a peer-reviewed paper on this
model. The researchers seek to open-source the
weights of their model such that other researchers
in the academic community can reproduce and
build off of this work.

• Case 2 – Releasing a research demo of a model:
The researchers from Case 1 would additionally
like to release a small scale demo of their model
through a chat interface on a website. Creating
such a demo would allow non-expert stakehold-
ers to interact with the model and gain a better
sense of its abilities and limitations.

4.1 Intended use

Explicitly surfacing the intended use of the released
model is a simple, but important, initial step. By
stating their intentions early in the research, and
re-evaluating at stages later in the process, the re-
searchers can track whether their intentions have
meaningfully drifted. In accordance with other ele-
ments of this framework, researchers can inquire:
Is the intended use expected to have “positive im-
pact,” and what does that mean in the context of
this model? To whom will these benefits accrue?
Lastly, is releasing the model in the intended fash-
ion necessary to fulfil the intended use?

At this stage, researchers might further consider
uses that do not fall within their conception of the
intended use. Explicitly deliberating on this might
bring to the fore vulnerabilities and possible ethical
tensions that could inform the release policies.

In Case 1, for example, the researchers’ inten-
tion may be to advance the state of the art in the
field and allow other researchers to reproduce and
build off of their work (Dodge et al., 2019). Out-
side of the intended use, however, the researchers
might imagine that – depending on the manner of
the release – a user could build a product utilising
the released model, resulting in unintended or pre-
viously unforeseen consequences. The researchers
may then adopt a release policy designed to limit
such an unintended use case. In Case 2, there are
many possible intended uses for releasing such a
demo. A primary intention might be to further re-
search on human-bot communication by collecting
data (with clear consent and privacy terms) to better
understand the functioning and limitations of the

model. Alternatively, it may be to simply increase
awareness of the abilities and limitations of current
neural models among the general public.

4.2 Audience

The consequences of a model being released be-
yond the research group depend largely on both the
intended and unintended audiences of the release,
as well as the policies that support and guardrail
the research release (subsection 4.6). For conver-
sational AI, the language(s) the model was trained
on, the demographic composition and size of the
intended audience, and the intended audience’s fa-
miliarity with concepts and limitations of machine
learning and NLP are all important considerations.
Policies (subsection 4.6) may be designed to mini-
mize access outside of the intended audience of the
release where possible, so as to limit the potential
harms of use outside the model’s designed scope.

In both Case 1 and Case 2, the model in question
is trained primarily on English-language data, and
so we might expect the audience to be primarily
composed of English speakers, perhaps even those
of a particular cultural community or dialect. This
consideration is important both for user compre-
hension and due to the fact that different languages
have different ways of expressing and responding
to the same concept, like politeness, and different
cultures might vary in their evaluation of the same
concept. For example, Japanese requires the consid-
eration of the social hierarchy and relations when
expressing politeness (Gao, 2005), whereas English
can achieve the same effect by adding individual
words like “please.” Arabic-speaking cultures, on
the other hand, might find this use awkward, if not
rude, in conversations among close friends (Kádár
and Mills, 2011; Madaan et al., 2020).

Furthermore, in Case 1, the size of the audience
may be hard to gauge a priori. On the other hand,
in Case 2, the researchers/designers would have
strict control over the size of the audience. Re-
sulting policy decisions (section 4.6) will differ if
the audience is on the scale of tens, hundreds, or
millions of people interacting with this technology.

Lastly, in Case 1, access to the model may re-
quire deep technical knowledge of the program-
ming language the model was implemented in, and
as such, the audience would likely (although not
definitely) be limited to folks with a working knowl-
edge of machine learning and NLP, while in Case
2 a more general audience may be able to access
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the model. This is important, as a general audience
may have different expectations and a different un-
derstanding of the limitations of systems (Bianchi
and Hovy, 2021). If the targeted audience is the
general public, a policy for releasing such a model
might explicitly include a means for transparently
communicating scope and expectations.

4.3 Envision Impact
The process of envisioning impact – including both
potential harms and benefits – is not straightfor-
ward, as documented by Ovadya and Whittlestone
(2019), Prunkl et al. (2021), Partnership on AI
(2020), and Partnership on AI (2021), among oth-
ers, and it may not always be possible to estimate
impact. The goal is to get ahead of potential harms
in order to direct tests, mitigation efforts, and de-
sign appropriate policies for mitigation and protec-
tion, however there must be caution against basing
release decisions solely on envisioned harms rather
than overall impact (subsection 3.2). This is the
conceptual exploration of value sensitive design
(subsection 3.3), similar in concept to the NeurIPS
broader impact statement (NeurIPS, 2020). It bene-
fits from consulting relevant community or domain
experts (subsection 4.5). Again, considering the au-
dience of the release matters here, e.g., considering
to whom the benefits of the model will accrue and
whether it might work less well for (or even harm)
some members of the audience/community.

To begin, researchers from Case 1 and Case 2
might conduct a review of previous, similar domain
research and the resulting impacts: If the research
incrementally improves upon previous work, could
the impacts be presumed similar to those of previ-
ous work? If not, how might those differences lead
to divergent impacts (positive and negative)? Per-
haps the model exhibits some issues described in
section 2. Beyond these, it may be helpful to think
outside the box, even constructing a fictional case
study (CITP and UHCV) or thought experiment,
such as asking: How would a science fiction author
turn your research into a dystopian story? (Part-
nership on AI , 2021). Ovadya and Whittlestone
(2019) recommend bringing in wider viewpoints
(subsection 4.5), such as subject matter experts, for
increased understanding of the risk landscape.

4.4 Impact Investigation
After the conceptual exploration of impacts, at-
tempting to measure the expected impact can pro-
vide quantitative grounding. This means conduct-

ing a technical investigation, evaluating how the
model supports or hinders the prioritised values.
We reiterate that it is not always possible to ac-
curately estimate impact, nevertheless, such em-
pirical analyses may guide next steps or appropri-
ate policies. Investigating benefits may be more
application-dependent than investigating harms, so
we encourage researchers to think through this for
their own particular use cases.

The authors in Case 1 and Case 2 may estimate
the frequency with which and the circumstances
under which their model behaves inappropriately
using human evaluators or automatic tooling, such
as the toolkit provided by Dinan et al. (2022) to
detect safety issues, for example. In Case 2, the au-
thors may undergo a “dogfooding” process for their
demo with a smaller audience that roughly matches
the composition of their intended audience.

4.5 Wider Viewpoints
Input from community or domain experts relevant
to the model application is highly recommended
throughout the model development process, and
indeed throughout this framework – from envision-
ing potential harms, to feedback for the purpose of
model improvement – but particularly so in release
deliberation to better understand the risk landscape
and mitigation strategies (Martin Jr et al., 2020;
Ovadya and Whittlestone, 2019; Bruckman, 2020).
Researchers could further consider the burgeoning
literature on participatory AI methodologies (e.g.
Martin Jr et al., 2020; Lee et al., 2019a).

In Case 1, the researchers may seek feedback
and discussions with researchers or potential users
outside of their immediate institution, community,
or more formal engagements through employment
or a workshop on related topics. Researchers could
reach out to stakeholder and advocacy groups for
input, where possible. In Case 2, researchers might
consider an explicit “dogfooding” step to gather
feedback from users, as described in subsection 4.4,
and expert representatives of social groups.

4.6 Policies
An important aspect of release is whether it is pos-
sible to design an effective guard-railing policy to
both bolster/maintain the positive outcomes while
mitigating any potential negative consequences.

For Case 1, in which a model is open-sourced
to the research community, policies might include
restrictive licensing or release by request only. If re-
leased only by request, then researchers who wish
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to access the model would be required to contact
the model owners. This method upholds the re-
searchers values’ of reproducibility while poten-
tially limiting unintended uses, but incurs a pos-
sibly high maintenance cost if many researchers
send in requests with detailed plans of use which
would need to be examined and adjudicated. If
multiple model versions exist which might be ex-
pected to have differing impacts, the researchers
might consider adopting a staged release policy, as
in Solaiman et al. (2019). This would allow further
time and information to aid in technical investi-
gations prior to releasing the version expected to
have highest impact. Such a policy would be most
effective if users had ample opportunity to provide
feedback throughout the release stages.

For Case 2, releasing a small demo of a model on
a chat interface, the researchers may limit access to
the demo to a small group of people above a certain
age. This could be enforced through password
protection and cutting off access to the demo after a
certain number of unique users have interacted with
the model. Further, access might be revoked under
certain circumstances, e.g., in case new potential
for harm is detected and the model needs to be
corrected, or abusive access by certain users.

4.7 Transparency

Striving for transparency can help researchers and
model users reason through whether their use case
is appropriate and worth the risk of engaging
with the model (Diakopoulos, 2016). Consider
the methodology laid down for Model Cards by
Mitchell et al. (2019) to clarify the intended use
cases of machine learning models and minimise
their usages that fall outside of these parameters.

For Case 1, when open-sourcing the model, the
authors may consider releasing it with a model
card, following the content recommendations from
Mitchell et al. (2019). In such a model card they
might additionally report the outcome of any inves-
tigation into potential harms or benefits.

In Case 2, for a small-scale demo, a full model
card with abundant technical details may not be ef-
fective (see discussion in subsection 3.2), however,
the researchers might consider providing some
easily-digestible model information – such as the
institution responsible for the model, its intended
use, any potential harms and policies in place to
limit those harms, means for reporting or redress in
case of error or harm, or other relevant details. In

order to sustain the value of informed consent, the
researchers might carefully craft the information
such that the user is informed that they are interact-
ing with an artificial conversational system, which
may be unclear due to the anthropomorphic design
cues from these models (Abercrombie et al., 2021).

4.8 Feedback to Model Improvement

Learning systems can produce unexpected out-
comes, and thus unforeseen harms. Particularly
as the environment (e.g., the world) in which the
model is operating changes. Researchers can gain
a better grasp on these with accessible and reliable
mechanisms to capture unexpected outcomes and
changes (e.g., a reporting form for the user to sub-
mit). Upon gathering feedback, researchers can
then use this information to improve the model in
future iterations, or consider how to design their
model to be adaptable to changes in values.

In Case 1, for example, it may be hard to control
or refer to the impact of open-sourcing the model.
However, the researchers might consider providing
access and encouraging reports of safety issues to
a well-monitored GitHub Issues page. In Case 2,
the researchers should consider how to design the
demo UI to empower users to report problems.

Provided meaningful feedback about safety is-
sues with the model in Case 1 and Case 2, the
researchers might release an updated version of the
model, particularly if the model is designed in a
way that makes it able to adapt easily to feedback.

5 Conclusion

Besides the overall challenges posed by large lan-
guage models, conversational models present spe-
cific issues. They are inherently dependent on the
unknown inputs of the users who will be repeat-
edly interacting with the systems and steering them
in combinatorially unpredictable directions. The
costs and benefits of releasing a model can thus
be hard to determine, especially when they only
appear after cascades of uncertain consequences
at different time scales. Reckoning with these is-
sues requires weighing conflicting, uncertain, and
changing values. To aid in this challenging process,
we provided a framework to support preparing for
and learning from model release, following princi-
ples of value-sensitive design. We illustrate each
of our proposed steps with concrete, hypothetical
scenarios to help practitioners in their reflection.

While this is a theoretical paper, informed by
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an interdisciplinary collaboration, we believe in
the value of publishing it through an applied con-
ference since this will maximise the chances of
reaching our target audience.
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Abstract
Prior work has demonstrated that data augmen-
tation is useful for improving dialogue state
tracking. However, there are many types of
user utterances, while the prior method only
considered the simplest one for augmentation,
raising the concern about poor generalization
capability. In order to better cover diverse di-
alogue acts and control the generation qual-
ity, this paper proposes controllable user dia-
logue act augmentation (CUDA-DST) to aug-
ment user utterances with diverse behaviors.
With the augmented data, different state track-
ers gain improvement and show better robust-
ness, achieving the state-of-the-art performance
on MultiWOZ 2.1.1

1 Introduction

Dialogue state tracking (DST) serves as a back-
bone of task-oriented dialogue systems (Chen et al.,
2017), where it aims at keeping track of user in-
tents and associated information in a conversation.
The dialogue states encapsulate the required infor-
mation for the subsequent dialogue components.
Hence, an accurate DST module is crucial for a di-
alogue system to perform successful conversations.

Recently, we have seen tremendous improve-
ment on DST, mainly due to the curation of large
datasets (Budzianowski et al., 2018; Eric et al.,
2020; Rastogi et al., 2020) and many advanced
models. They can be broadly categorized into 3
types: span prediction, question answering, and
generation-based models. The question answer-
ing models define natural language questions for
each slot to query the model for the correspond-
ing values (Gao et al., 2020; Li et al., 2021). Wu
et al. (2019) proposed TRADE to perform zero-
shot transfer between multiple domains via slot-
value embeddings and a state generator. Sim-
pleTOD (Hosseini-Asl et al., 2020) combines all

∗Equal contribution.
1The source code is available at https://github.

com/MiuLab/CUDA-DST.

components in a task-oriented dialogue system
with a pre-trained language model. Recently,
TripPy (Heck et al., 2020) categorizes value predic-
tion into 7 types, and designs different prediction
strategies for them. This paper focuses on general-
ized augmentation covering all categories.

Another research line leverages data augmen-
tation techniques to improve performance (Song
et al., 2021; Yin et al., 2020; Summerville et al.,
2020; Kim et al., 2021). Most prior work used
simple augmentation techniques such as word in-
sertion and state value substitution. With recent
advances in pre-trained language models (Devlin
et al., 2019; Radford et al., 2019; Raffel et al.,
2020), generation-based augmentation has been
proposed (Kim et al., 2021; Li et al., 2020). These
methods have demonstrated impressive improve-
ment and zero-shot adaptability (Yoo et al., 2020;
Campagna et al., 2020), while our work focuses on
data augmentation with in-domain data.

The closest work is CoCo (Li et al., 2020), a
framework that generates user utterances given aug-
mented dialogue states. The examples are shown
in Figure 1, where the main differences between
CoCo and ours are that 1) CoCo only augments
user utterances in slot and value levels, but dialogue
acts and domains are fixed, making augmented data
limited. Our method can augment reasonable user
utterances with diverse dialogue acts and domain
switching scenarios. 2) Boolean slots and referred
slots are not handled by CoCo due to its higher com-
plexity, while our approach can handle all types of
values for better generalization.

This paper proposes CUDA-DST (Controllable
User Dialogue Act augmentation), a generalized
framework of generation-based augmentation for
improving DST. Our contribution is 2-fold:

• We present CUDA which generates diverse
user utterances via controllable user dialogue
acts augmentation.

• Our augmented data helps most DST mod-
53



[System]: Hello, how can I help you? 
[User]: I need to find a restaurant in the center.
[System]: I recommend Pho Bistro, a popular restaurant in the center.

[User]: No, it needs to serve British food and I’d like a reservation for 18:00.

[VS]: No, it needs to serve Chinese food and I’d like a reservation for 17:00.

[CoCo]: No, it should serve Chinese food and I need to book a table for 2 people.

[CUDA]: Thank you, can you also find me a hotel with parking near the restaurant?

Turn 1

Turn 2

VS-Turn 2

CoCo-Turn 2

CUDA-Turn 2

Recommendation { restaurant-name=pho bistro, restaurant-area=center }

Confirm=False, Inform{ restaurant-area=center, restaurant-food=Chinese, restaurant-time=17:00 }

Confirm=False, Inform{ restaurant-area=center, restaurant-food=Chinese, restaurant-people=2 }

Confirm=True, Inform{ restaurant-area=center, restaurant-name=pho bistro, hotel-area=center, hotel-parking=yes }

Confirm Domain Change Coreference

Confirm=False, Inform{ restaurant-area=center, restaurant-food=British, restaurant-time=18:00 }

Boolean

Figure 1: Augmented user utterances with the associated user dialogue acts and states from three methods.

els improve their performance. Specifically,
CUDA-augmented TripPy model achieves the
state-of-the-art result on MultiWOZ 2.1.

2 Controllable User Dialogue Act
Augmentation (CUDA)

The goal of our method is to augment more and
diverse user utterances that fit the dialogue context,
and then the augmented data can help DST models
learn better. More formally, given a system utter-
ance U sys

t in the turn t and dialogue history Ht−1

before this turn, our approach focuses on augment-
ing a user dialogue act and state, Ât, and generating
the corresponding user utterance Ûusr

t . Note that
each user utterance can be augmented.

To achieve this goal, we propose CUDA with
three components illustrated in Figure 2: 1) a user
dialogue act generation process for producing Ât,
2) a user utterance generator for producing Ûusr

t ,
and 3) a state match filtering process.

2.1 User Dialogue Act Generation

Considering that a user dialogue act represents the
core meaning of the user’s behavior (Goo and Chen,
2018; Yu and Yu, 2021), we focus on simulating
reasonable user dialogue acts given the system con-
text for data augmentation. After analyzing task-
oriented user utterances, user behaviors contain the
following user dialogue acts:

1. Confirm: The system provides recommen-
dation to the user, and the user confirms if
accepting the recommended item.

2. Reply: The system asks for a user-desired
value of the slots, and the user replies the cor-
responding value.

3. Inform: The user directly informs the desired
slot values to the system.

Heck et al. (2020) designed their dialogue state
tracker that tackle utterances with different dia-
logue acts in different ways and achieved good
performance, implying that different dialogue acts
contain diverse behaviors in the interactions. To
augment more diverse user utterances, we intro-
duce a random process for each user dialogue act.
Unlike the prior work CoCo that did not generate
utterance whose dialogue act different from the
original one, our design is capable of simulating di-
verse behaviors for better augmentation illustrated
in Figure 2.

Confirm When the system provides recommen-
dations, our augmented user behavior has a prob-
ability of Pconfirm to accept the recommended val-
ues. When the user confirms the recommenda-
tion, the suggested slot values are added to the aug-
mented user dialogue state Ât as shown in Figure 1.
In the example, the augmented user dialogue act
is to confirm the suggested restaurant, and then
includes it in the state (restaurant-name=pho
bistro, restaurant-area=center).

Reply When the system requests a constraint for
a specific slot, e.g. “which area do you prefer?”,
the user has a probability of Preply to give the value
of the requested slot. Preply may not be 1, because
users sometimes revise their previous requests with-
out providing the asked information.

Inform In anytime of the conversation, the user
can provide the desired slot values to convey his/her
preference. As shown in the original user utterance
of Figure 1, the user rejects the recommendation
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I recommend Pho Bistro, a 
popular restaurant in the center.

Recommendation{
restaurant-name=pho bistro,
restaurant-area=center }

Confirm ( )

Reply ( )
Inform

Confirm=True

System 
Recommend

System 
Request

Inform{
hotel-area=east,
hotel-parking=yes }

Domain Change (   ) 

Anytime Coreference Augmentation (   )  
Inform{

hotel-area=near the restaurant,
hotel-parking=yes }

Turn-Level Dialogue Act & State
Confirm=True
Inform{

restaurant-name=pho bistro,
restaurant-area=center,
hotel-area=near the restaurant(center),
hotel-parking=yes }

1. Thank you, can you also find me a hotel with parking near the restaurant?

2. Thank you, can you also find me a hotel without parking near the restaurant?

3. Thank you, can you also find me a hotel with parking in the center of the town?

4. Thank you, can you also find me a hotel with free wifi near the restaurant?

User Utterance Generation State Match Filtering

User Dialogue Act Generation

1. Slot Appearance: Value Consistency: (span) (boolean) 

2. Slot Appearance: Value Consistency: (span) (boolean) 

3. Slot Appearance: Value Consistency: (span) (boolean) 

4. Slot Appearance: Value Consistency: (span)   -- (boolean) --

System Turn

System Act

Figure 2: The overview of the proposed CUDA augmentation process.

and then directly informs the additional constraints
(food and time). The number of additional in-
formed values is randomly chosen, and then the
slots and values are randomly sampled from the
pre-defined ontology and dictionary. Note that
the confirmed and replied information cannot be
changed during additional informing. Considering
that a user may change the domain within the dia-
logue, our algorithm allows the user to change the
domain with a probability of Pdomain, and then the
informed slots and values need to be sampled from
the new domain’s dictionary. The new domain is
selected randomly from all the other domains.

Coreference Augmentation In the generated
user dialogue act and state, all informed slot values
are from the pre-defined dictionary. However, it
is natural for a user to refer the previously men-
tioned information, e.g., “I am looking for a taxi
that can arrive by the time of my reservation”. To
further enhance the capability of handling coref-
erence, our algorithm has a probability of Pcoref
to switch the slot value from the generated user
dialogue state. Since not all slots can be referred,
we define a coreference list containing all referable
slots and the corresponding referring phrases, e.g.,
“the same area as” listed in Appendix A.

With the generated user dialogue acts and the
system action, we form the corresponding turn-
level dialogue act and state based on the confirmed
suggestions and referred slot values as shown in
the green block of Figure 2.

2.2 User Utterence Generation

To generate the user utterance associated with the
augmented user dialogue act and state, we adopt a
pre-trained T5 (Raffel et al., 2020) and fine-tune it

on the MultiWOZ dataset by a language modeling
objective formulated below:

Lgen = −
nt∑

k=1

log pθ(U
usr
t,k | Uusr

t,<k, U
sys
t , Ht−1, At),

where Uusr
t,k denotes the k-th token in the user ut-

terance, Ht−1 represents the all dialogue history
before turn t, and At is the user dialogue act and
state in the t-th turn. With the trained generator,
we can generate the augmented user utterance by
inputting the augmented user dialogue act and state
Ât as shown in the green block of Figure 2. In
decoding, we apply beam search so that we can
augment diverse utterances for improving DST.

2.3 State Match Filtering
To make sure the generated user utterance well
reflects its dialogue state, we propose two modules
to check the state matching: a slot appearance
classifier and a value consistency filter, where the
former checks if the given slots are included and
the latter focuses on ensuring the value consistency
between dialogue states and user utterances.

Slot Appearance Following Li et al., we employ
a BERT-based multi-label classification model to
predict whether a slot appears in the given t-th turn.
The augmented user utterances are eliminated if
they do not contain all slots in the user dialogue
state predicted by the model.

Value Consistency The slot values can be cat-
egorized into: 1) span-based, 2) boolean, and 3)
dontcare values. It is naive to check if the span-
based values are mentioned in the utterances, but
boolean and dontcare values cannot be easily iden-
tified. To handle the slots with boolean and dont-
care values, we propose two slot-gate classifiers
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Dataset CUDA MultiWOZ

Span 100.00 64.61
Confirm (True) 5.27 5.84
Confirm (False) 0.44 0.32
Dontcare 0.67 2.46
Coreference 8.15 3.70
Multi-domain 13.10 24.48

#Turns 54,855 69,673

Table 1: Slot distribution in user utterances (%).

motivated by Heck et al. (2020). Each boolean
slot, e.g. internet or parking, is assigned to one
of the classes in Cbool = {none, dontcare, yes, no},
while other slots are assigned to one of the classes
in Cspan = {none, dontcare, value}, where value
indicates the span-based value. Then for all slots
classified as span-based value, we check if all asso-
ciated values are mentioned in the generated utter-
ance. In addition, we use the coreference keywords,
e.g., same area, to handle the coreference cases.
We apply BERT (Devlin et al., 2019) to encode the
t-th turn in a dialogue as:

RCLS
t = BERT([CLS]⊕U sys

t ⊕ [SEP]⊕
Uusr
t ⊕ [SEP]),

where RCLS
t denotes the output of the [CLS] token,

which can be considered as the summation of the
turn t. We then obtain the probability of the value
types as

pbools,t = softmax(W bool
s ·RCLS

t + bbools ) ∈ R4,

for each boolean slots, and

pspans,t = softmax(W span
s ·RCLS

t + bspans ) ∈ R3,

for each span-based slots. Our multi-task BERT-
based slot-gate classifier is trained with the cross
entropy loss.

The neural-based filters are trained on the orig-
inal MultiWOZ data, and the prediction perfor-
mance in terms of slots (for both appearance and
value consistency) is 92.9% in F1 evaluated on the
development set. In our CUDA framework, we
apply the trained filters to ensure the quality of the
augmented user utterances as shown in Figure 2.

3 Experiments

To evaluate if our augmented data is beneficial for
improving DST models, we perform three popu-
lar trackers, TRADE (Wu et al., 2019), Simple-
TOD (Hosseini-Asl et al., 2020), and TripPy (Heck
et al., 2020), on MultiWOZ 2.1 (Eric et al., 2020).

MultiWOZ TripPy TRADE SimpleTOD

Original 57.72 44.08 49.19
VS 59.48 43.76 50.50
CoCo 60.46 43.53 50.25
CUDA 61.28† 44.86† 50.14
CUDA (-coref ) 62.93† 42.98 49.64

Table 2: Joint goal accuracy on MultiWOZ 2.1 (%). †
indicates the significant improvement over all baselines
with p < 0.05.

3.1 Experimental Setting

Our CUDA generator is trained on the training set
of MultiWOZ 2.3 (Han et al., 2020) due to its ad-
ditional coreference labels. Note that all dialogues
are the same as MultiWOZ 2.1. We then generate
the augmented dataset for the training set of Multi-
WOZ 2.1 for fair comparison with the prior work.
The predifined slot-value dictionary is taken from
CoCo’s out-of-domain dictionary and the defined
coreference list is shown in Appendix A.

In user dialogue act generation, the parame-
ters are set as (Pconfirm, Preply, Pdomain, Pcoref) =
(0.7, 0.9, 0.8, 0.6), which can be flexibly adjusted
to simulate different user behaviors. We report the
distribution of slot types in our augmented data and
the original MultiWOZ data in Table 1, where it
can be found that our augmented slots cover diverse
slot types and the distribution is reasonably similar
to the original MultiWOZ. Different from the prior
work, CoCo, which only tackled the span-based
slots, our augmented data may better reflect the
natural conversational interactions. Additionally,
we perform CUDA with Pcoref = 0 to check the
impact of coreference augmentation.

We train three DST models on the augmented
data and evaluate the results using joint goal ac-
curacy. The compared augmentation baselines in-
clude value substitution (VS) and CoCo (Li et al.,
2020) with the same setting.

3.2 Effectiveness of CUDA-Augmented Data

Table 2 shows that CUDA significantly improves
TripPy and TRADE results by 3.6% and 0.8% re-
spectively on MultiWOZ, and even outperforms the
prior work CoCo. In addition, our CUDA augmen-
tation process has 78% success rate, while CoCo
only has 57%, demonstrating the efficiency of our
augmentation method and the great data utility. In-
terestingly, CUDA without coreference achieves
slightly better performance for TripPy while the
performance of TRADE and SimpleTOD degrade,

56



CoCo+(rare) TripPy TRADE SimpleTOD

Original 28.38 16.65 19.20
VS 39.42 16.42 26.26
CUDA 48.83 17.79 29.32
CUDA (-coref ) 48.67 16.80 28.66

CoCo 56.50 18.01 30.60

Table 3: Joint goal accuracy on CoCo+ (rare) (%).

achieving the new state-of-the-art performance on
MultiWOZ 2.1. The probable reason is that TripPy
already handles coreference very well via its refer
classification module, so augmenting coreference
cases may not help it a lot. In contrast, other gener-
ative models (TRADE and SimpleTOD) can ben-
efit more from our augmented coreference cases.
Another reason may be the small distribution of
coreference slots in MultiWOZ shown as Table 1,
implying that augmented data with too many coref-
erence slots does not align well with the original
distribution and hurts the performance.

3.3 Robustness to Rare Cases
We also evaluate our models on CoCo+ (rare)2, a
test set generated by CoCo’s algorithm (Li et al.,
2020), to examine model robustness under rare sce-
narios. Table 3 presents the results on CoCo+ (rare),
which focuses rare cases for validating the model’s
robustness. It is clear that the model trained on
our augmented data shows better generalization
compared with the one trained on the original Mul-
tiWOZ data, demonstrating the effectiveness on
improving robustness of DST models. The per-
formance of CoCo is listed as reference, because
comparing with its self-generated data is unfair.

3.4 Slot Performance Analysis
To further investigate the efficacy for each slot type,
Figure 3 presents its performance gain on TripPy.
Comparing with CoCo, CUDA improves more on
informed, refer, and dontcare slots. It implies that
CUDA augments diverse user dialogue acts for
helping informed and refer, and the proposed slot-
gate can better ensure value consistency for improv-
ing dontcare slots, even though they are rare cases
in MultiWOZ. Our model can also keep the same
performance for frequent span slots, demonstrat-
ing great generalization capability across diverse
slot types from our controllable augmentation. The
qualitative study can be found in Appendix B.

2CoCo+ (rare) applies CoCo and value substitution (VS)
with a rare slot-combination dictionary.
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Figure 3: Performance gain across slots on TripPy.

4 Conclusion

We introduce a generalized data augmentation
method for DST by utterance generation with con-
trollable user dialogue act augmentation. Experi-
ments show that our approach improves results of
multiple state trackers and achieves state-of-the-
art performance on MultiWOZ 2.1. Further study
demonstrates that trackers’ robustness and gener-
alization capabilities can be improved by diverse
generation covering different user behaviors.

Acknowledgements

We thank reviewers for their insightful comments.
This work was financially supported from the
Young Scholar Fellowship Program by Ministry
of Science and Technology (MOST) in Taiwan,
under Grants 111-2628-E-002-016 and 111-2634-
F-002-014.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. MultiWOZ-a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026.

Giovanni Campagna, Agata Foryciarz, Mehrad Morad-
shahi, and Monica Lam. 2020. Zero-shot transfer
learning with synthesized data for multi-domain dia-
logue state tracking. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics.

Yun-Nung Chen, Asli Celikyilmaz, and Dilek Hakkani-
Tur. 2017. Deep learning for dialogue systems. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics: Tutorial
Abstracts, pages 8–14.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

57



deep bidirectional transformers for language under-
standing. In 2019 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4171–4186. ACL.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj
Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-
tiWOZ 2.1: A consolidated multi-domain dialogue
dataset with state corrections and state tracking base-
lines. In the 12th Language Resources and Evalua-
tion Conference, pages 422–428. European Language
Resources Association.

Shuyang Gao, Sanchit Agarwal, Di Jin, Tagyoung
Chung, and Dilek Hakkani-Tur. 2020. From machine
reading comprehension to dialogue state tracking:
Bridging the gap. In the 2nd Workshop on Natural
Language Processing for Conversational AI, pages
79–89. ACL.

Chih-Wen Goo and Yun-Nung Chen. 2018. Abstractive
dialogue summarization with sentence-gated model-
ing optimized by dialogue acts. In 2018 IEEE Spoken
Language Technology Workshop (SLT), pages 735–
742. IEEE.

Ting Han, Ximing Liu, Ryuichi Takanobu, Yixin Lian,
Chongxuan Huang, Wei Peng, and Minlie Huang.
2020. MultiWOZ 2.3: A multi-domain tasko-
riented dataset enhanced with annotation correc-
tions and co-reference annotation. arXiv preprint
arXiv:2010.05594.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and
Milica Gasic. 2020. TripPy: A triple copy strat-
egy for value independent neural dialog state track-
ing. In the 21th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 35–44.
ACL.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. Advances
in Neural Information Processing Systems, 33:20179–
20191.

Sungdong Kim, Minsuk Chang, and Sang-Woo Lee.
2021. NeuralWOZ: Learning to collect task-oriented
dialogue via model-based simulation. In the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pages 3704–
3717. ACL.

Shiyang Li, Semih Yavuz, Kazuma Hashimoto, Jia
Li, Tong Niu, Nazneen Rajani, Xifeng Yan, Yingbo
Zhou, and Caiming Xiong. 2020. CoCo: Control-
lable counterfactuals for evaluating dialogue state
trackers. In International Conference on Learning
Representations.

Shuyang Li, Jin Cao, Mukund Sridhar, Henghui Zhu,
Shang-Wen Li, Wael Hamza, and Julian McAuley.
2021. Zero-shot generalization in dialog state track-
ing through generative question answering. In the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 1063–1074. ACL.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In AAAI Confer-
ence on Artificial Intelligence, volume 34, pages
8689–8696.

Xiaohui Song, Liangjun Zang, and Songlin Hu. 2021.
Data augmentation for copy-mechanism in dialogue
state tracking. In International Conference on Com-
putational Science, pages 736–749. Springer.

Adam Summerville, Jordan Hashemi, James Ryan, and
William Ferguson. 2020. How to tame your data:
Data augmentation for dialog state tracking. In the
2nd Workshop on Natural Language Processing for
Conversational AI, pages 32–37. ACL.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable multi-domain state generator for
task-oriented dialogue systems. In the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 808–819. ACL.

Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, and
Qun Liu. 2020. Dialog state tracking with reinforced
data augmentation. In the AAAI Conference on Artifi-
cial Intelligence, volume 34, pages 9474–9481.

Kang Min Yoo, Hanbit Lee, Franck Dernoncourt, Trung
Bui, Walter Chang, and Sang-goo Lee. 2020. Varia-
tional hierarchical dialog autoencoder for dialog state
tracking data augmentation. In the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3406–3425. ACL.

Dian Yu and Zhou Yu. 2021. Midas: A dialog act
annotation scheme for open domain humanmachine
spoken conversations. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 1103–1120.

58



A Reproducibility

Our CUDA generator is trained on the training set
of MultiWOZ 2.3 (Han et al., 2020) due to its ad-
ditional coreference labels. Note that all dialogues
are the same as MultiWOZ 2.1. We then generate
the augmented dataset using CUDA for the train-
ing set of MultiWOZ 2.1 for fair comparison with
the prior work. The predifined slot-value dictio-
nary is taken from CoCo’s out-of-domain dictio-
nary shown in Table 4 and the defined coreference
list is shown in Table 5.

B Qualitative Study

The augmented data samples are shown in Figure 4.
It can be found that the augmented user utterances
can fluently switch the domain and include asso-
ciated slot values that are aligned well with the
dialogue states.
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Slot Name Possible Values
hotel-internet† [‘yes’, ‘no’, ‘dontcare’]
hotel-type [‘hotel’, ‘guesthouse’]
hotel-parking† [‘yes’, ‘no’, ‘dontcare’]
hotel-price [‘moderate’, ‘cheap’, ‘expensive’]
hotel-day [‘march 11th’, ‘march 12th’, ‘march 13th’, ‘march 14th’, ‘march 15th’, ‘march 16th’, ‘march 17th’,

‘march 18th’, ‘march 19th’, ‘march 20th’]
hotel-people [‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, ‘26’, ‘27’, ‘28’, ‘29’]
hotel-stay [‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, ‘26’, ‘27’, ‘28’, ‘29’]
hotel-area [‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]
hotel-stars [‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘dontcare’]
hotel-name [‘moody moon’, ‘four seasons hotel’, ‘knights inn’, ‘travelodge’, ‘jack summer inn’, ‘paradise point

resort’]
restaurant-area [‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]
restaurant-food [‘asian fusion’, ‘burger’, ‘pasta’, ‘ramen’, ‘taiwanese’, ‘dontcare’]
restaurant-price [‘moderate’, ‘cheap’, ‘expensive’, ‘dontcare’]
restaurant-name [‘buddha bowls’, ‘pizza my heart’, ‘pho bistro’, ‘sushiya express’, ‘rockfire grill’, ‘itsuki restaurant’]
restaurant-day [‘monday’, ‘tuesday’, ‘wednesday’, ‘thursday’, ‘friday’, ‘saturday’, ‘sunday’]
restaurant-people [‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, ‘26’, ‘27’, ‘28’, ‘29’]
restaurant-time [‘19:01’, ‘18:06’, ‘17:11’, ‘19:16’, ‘18:21’, ‘17:26’, ‘19:31’, ‘18:36’, ‘17:41’, ‘19:46’, ‘18:51’, ‘17:56’,

‘7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, ‘7:17 pm’, ‘6:17 pm’, ‘5:27 pm’, ‘7:32 pm’, ‘6:37 pm’, ‘5:42 pm’,
‘7:47 pm’, ‘6:52 pm’, ‘5:57 pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25
am’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]

restaurant-food [‘asian fusion’, ‘burger’, ‘pasta’, ‘ramen’, ‘taiwanese’, ‘dontcare’]
taxi-arrive [‘17:26’, ‘19:31’, ‘18:36’, ‘17:41’, ‘19:46’, ‘18:51’, ‘17:56’, ‘7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, ‘7:17 pm’,

‘6:17 pm’, ‘5:27 pm’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]
taxi-leave [‘19:01’, ‘18:06’, ‘17:11’, ‘19:16’, ‘18:21’, ‘7:32 pm’, ‘6:37 pm’, ‘5:42 pm’, ‘7:47 pm’, ‘6:52 pm’, ‘5:57

pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25 am’]
taxi-depart [‘moody moon’, ‘four seasons hotel’, ‘knights inn’, ‘travelodge’, ‘jack summer inn’, ‘paradise point

resort’]
taxi-dest [‘buddha bowls’, ‘pizza my heart’, ‘pho bistro’, ‘sushiya express’, ‘rockfire grill’, ‘itsuki restaurant’]
train-arrive [‘17:26’, ‘19:31’, ‘18:36’, ‘17:41’, ‘19:46’, ‘18:51’, ‘17:56’, ‘7:00 pm’, ‘6:07 pm’, ‘5:12 pm’, ‘7:17 pm’,

‘6:17 pm’, ‘5:27 pm’, ‘11:30 am’, ‘11:35 am’, ‘11:40 am’, ‘11:45 am’, ‘11:50 am’, ‘11:55 am’]
train-leave [‘19:01’, ‘18:06’, ‘17:11’, ‘19:16’, ‘18:21’, ‘7:32 pm’, ‘6:37 pm’, ‘5:42 pm’, ‘7:47 pm’, ‘6:52 pm’, ‘5:57

pm’, ‘11:00 am’, ‘11:05 am’, ‘11:10 am’, ‘11:15 am’, ‘11:20 am’, ‘11:25 am’]
train-depart [‘gilroy’, ‘san martin’, ‘morgan hill’, ‘blossom hill’, ‘college park’, ‘santa clara’, ‘lawrence’, ‘sunnyvale’]
train-dest [‘mountain view’, ‘san antonio’, ‘palo alto’, ‘menlo park’, ‘hayward park’, ‘san mateo’, ‘broadway’,

‘san bruno’]
train-day [‘march 11th’, ‘march 12th’, ‘march 13th’, ‘march 14th’, ‘march 15th’, ‘march 16th’, ‘march 17th’,

‘march 18th’, ‘march 19th’, ‘march 20th’]
train-people [‘20’, ‘21’, ‘22’, ‘23’, ‘24’, ‘25’, ‘26’, ‘27’, ‘28’, ‘29’]
attraction-area [‘south’, ‘north’, ‘west’, ‘east’, ‘centre’, ‘dontcare’]
attraction-name [‘grand canyon’, ‘golden gate bridge’, ‘niagara falls’, ‘kennedy space center’, ‘pike place market’, ‘las

vegas strip’]
attraction-type [‘historical landmark’, ‘aquaria’, ‘beach’, ‘castle’, ‘art gallery’, ‘dontcare’]

Table 4: The pre-defined slot-value dictionary, where † indicates a binary slot.
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Slot Name Referred Slot Name Referred Key Value
hotel-price restaurant-price [‘same’, ‘same price’, ‘same price range’]

hotel-day train-day [‘same’, ‘same day’]
restaurant-day [‘same’, ‘same day’]

hotel-people train-people [‘same’, ‘same group’, ‘same party’]
restaurant-people [‘same’, ‘same group’, ‘same party’]

hotel-area restaurant-area [‘same’, ‘same area’, ‘same part’, ‘near the restaurant’]
attraction-area [‘same’, ‘same area’, ‘same part’, ‘near the attraction’]

restaurant-area hotel-area [‘same’, ‘same area’, ‘same part’, ‘near the hotel’]
attraction-area [‘same’, ‘same area’, ‘same part’, ‘near the attraction’]

restaurant-price hotel-price [‘same’, ‘same price’, ‘same price range’]

restaurant-day train-day [‘same’, ‘same day’]
hotel-day [‘same’, ‘same day’]

restaurant-people train-people [‘same’, ‘same group’, ‘same party’]
hotel-people [‘same’, ‘same group’, ‘same party’]

taxi-depart
hotel-name [‘the hotel’]
restaurant-name [‘the restaurant’]
attraction-name [‘the attraction’]

taxi-dest
hotel-name [‘the hotel’]
restaurant-name [‘the restaurant’]
attraction-name [‘the attraction’]

taxi-arrive restaurant-time [‘the time of my reservation’, ‘the time of my booking’]

train-day restaurant-day [‘same’, ‘same day’]
hotel-day [‘same’, ‘same day’]

train-people restaurant-people [‘same’, ‘same group’, ‘same party’]
hotel-people [‘same’, ‘same group’, ‘same party’]

attraction-area hotel-area [‘same’, ‘same area’, ‘same part’, ‘near the hotel’]
restaurant-area [‘same’, ‘same area’, ‘same part’, ‘near the restaurant’]

Table 5: The coreference list. The slots that is not referable will not be displayed in the above table.

Dialogues CUDA Turn label

Example 1
Confirm
Coref
Domain

[sys]:Byard Art is near where you will be eating. The 
entrance fee is free.
[cuda]:Thank you. Can you help me find a train that 
leaves after 19:16 on the same day as the restaurant?

attraction-name: Byard Art
train-leaveat: 19:16
train-day: monday

Example 2
Confirm
Domain

[sys]:I suggest the broughton house gallery. Is there 
anything else I could help you with ? 
[cuda]:Yes, I'm looking for an expensive restaurant. 
I 'd like to make a reservation for Saturday.

attraction-name: the broughton house gallery 
restaurant-book day: saturday
restaurant-pricerange: expensive

Example 3
Reply
Binary

[sys]:There are five hotels that meet your 
requirements. Is there a certain part of town you are 
looking in ? 
[cuda]:Yes, I 'd like to stay in the east, and I need 
it to have free wifi. I 'll need it for 24 people.

hotel-area: east
hotel-internet: yes
hotel-book people: 24

Example 4 
Dontcare

[sys]: No. I am sorry. there isn’t. something else 
perhaps?
[cuda]:How about an art gallery? I don't care what 
area it is in.

attraction-type: art gallery
attraction-area: dontcare

Example 5
Confirm
Coref
Domain

[sys]: Okay , we have the cambridge university 
botanic gardens in the centre of town . Will that 
work for you ? 
[cuda]:Yes, I need a taxi to get me to itsuki
restaurant by the time of my reservation.

attraction-area: centre
attraction-name: cambridge university botanic gardens
taxi-destination: itsuki restaurant
taxi-arriveby: 15:45

Figure 4: The CUDA-generated examples. The red tags indicate the strategies implemented by CUDA.
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Abstract

Corpora of argumentative discourse are com-
monly analyzed in terms of argumentative units,
consisting of claims and premises. Both argu-
ment detection and classification are complex
discourse processing tasks. Our paper intro-
duces a semantic classification of arguments
that can help to facilitate argument detection.
We report on our experiences with corpus anno-
tations using a function-based classification of
arguments and a procedure for operationalizing
the scheme by using semantic templates.

1 Introduction

The corpus-based analysis of argumentative texts
is a widely used discourse processing task needed
both for an in-depth understanding of this basic
discourse type, and in the field of argument mining.
We here present an annotation scheme that has been
developed as part of a project for gaining detailed
insight into the linguistic features of arguments.
These features can be used for machine learning
as well as for the task of argument detection in the
study of discourse and discourse processing.

In contrast to other approaches in the field, our
method aims at the identification and classifica-
tion of arguments, and not at the analysis of an
overall argumentation structure (cf., for example,
Peldszus et al. 2016). We argue that the annota-
tion scheme will facilitate the annotation process in
many applications of argument detection, enabling
both researchers and annotators to zoom into lin-
guistic characteristics that pertain to a specific class
of arguments rather than to the notion of ‘argument’
as a whole. The approach therefore reduces some
of the vagueness of the category of ‘argument’ and
adds to the transparency of annotators’ decisions.

Arguments are used for different purposes, aim-
ing to persuade an addressee to believe, evaluate,
or do something (see e.g. Eggs 2008; Stede and
Schneider 2019). We use this functional versatility
of arguments as a starting point for our annotation

scheme. More precisely, we propose a systematic
testing procedure during which annotators use a set
of linguistic templates on a given text passage to
determine whether it is an argument or not, and,
if so, which argumentative function it has. We are
currently developing and evaluating this approach
with a corpus of COVID-19-related news opinion
texts from The New York Times.

This paper is structured as follows. In section 2,
we introduce the general idea of a function-based
argument classification and briefly describe our
corpus. In section 3, we present and evaluate our
initial, rather ad hoc annotation efforts. In section 4,
we introduce our function-based annotation scheme
and report on our progress in terms of workflow
and inter-annotator agreements. In section 5, we
summarize our insights and provide an outlook.

2 Background

2.1 Arguments and argument categories

Theories of discourse generally claim that argu-
ments do not have a particular linguistic form, but
appear in all sorts of linguistic structures (e.g.,
Smith 2003; Virtanen 2010; Dorgeloh and Wan-
ner 2010). Accordingly, the annotation of argu-
ments in corpora is still a challenge because “a
substantial amount of knowledge needed for the
correct recognition of the argumentation, its com-
posing elements and their relationships is not ex-
plicitly present in the text” (Moens 2018, 1; see
also Lawrence and Reed 2020). Resulting from this
difficulty, argument detection schemes so far often
avoid cross-topic transfer (e.g., Nguyen and Lit-
man 2015; Liebeck et al. 2016), but schemes for
more heterogeneous corpora also exist (e.g., Stab
et al. 2018; Cabrio and Villata 2018; Ein-Dor et al.
2020). Such work from argument mining typically
relies on recurrent patterns identified by the NLP
model used, but does not imply a systematic, truly
topic-independent classification of arguments.
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Argumentative discourse is characterized by pre-
senting a central, disputed issue, the major claim,
which the author argues for or against (Stab and
Gurevych 2017). That is, they aim to persuade
an addressee to believe and/or evaluate and/or do
something, and they provide a number of argu-
ments to this end (van Eemeren and Grootendorst
2004; Stede and Schneider 2019). This variability
of what an argument is ultimately intended to do
is often commented on in existing approaches, for
example as an argument being either the expression
of (positive or negative) stance, or of a policy or
action to be taken (e.g., Hidey et al. 2017; Ein-Dor
et al. 2020).

We suggest that this functional complexity of
argumentation is exactly what is needed for the
aim of developing a topic-independent classifica-
tion scheme that can be applied to arguments as
a whole. In the annotation scheme we developed,
we distinguish between epistemic, ethical and de-
ontic arguments, as first proposed by Eggs (2008;
see Stede and Schneider 2019 for a summary in
English). The three types are illustrated in Table 1.

Table 1: Argument categories

polarity epistemic ethical deontic
positive x is true x is good do x
negative x is false x is bad don’t do x

In addition to an argument being understood by
its function, the most common definition is that it
has two components, the claim and the premise.
The claim is typically described as a controversial
statement which provides the topic of the argument,
and its premise is then a statement which provides
evidence or expresses reasoning that either sup-
ports or attacks the claim (Stab et al. 2018). The
link between a claim and its premise can thus be
conceptualized as a directed argumentative relation,
with a premise as the source and a (major) claim as
its target (Stab and Gurevych 2014b). Each argu-
ment classified by our annotation scheme needs to
have these two components expressed in the text.

2.2 Corpus compilation

Our corpus is currently being developed at Hein-
rich-Heine-University Düsseldorf (‘HHU’) as part
of a collaborative project of both linguists and
computer scientists working on argumentative dis-
course. So far, it consists of 25 COVID-19-related
news opinion texts from The New York Times
(29,466 words), and it will be consecutively ex-

panded as the annotations progress. The corpus is
designed to provide us with an inventory of argu-
ments, divided into components and categorized by
function and polarity. This inventory will first be
used for linguistic analysis and, at a later stage, for
an experiment with human subjects on argument-
specific discourse relations, as well as for machine
learning experiments.

3 The initial annotation process

Our first set of annotations (‘set 1’) was created
before the introduction of our annotation scheme.
Four annotators were instructed to apply a basic,
simplified notion of ‘argument,’ consisting of a
claim that is either supported or attacked. Practical
issues of claim detection and annotation (e.g. size
of the discourse unit, treatment of quotes within the
texts) were discussed at regular meetings, leading
the group from an initial, very thorough exemplary
discussion of three texts (subset 1-1, 3,653 words)
to an annotation of another ten texts in one hit (sub-
set 1-2, 11,646 words). Annotations were created
in the INCEpTION tool (Klie et al. 2018), hosted
on a HHU server.

As the annotation task is not only a coding
but also a unitizing task, we measure the inter-
annotator agreement using Krippendorff’s unitiz-
ing alpha (Krippendorff et al., 2016). This mea-
sure works with an arbitrary number of annotators
(where not all have to annotate all texts) and de-
termines the degree of observed disagreement in
relation to the expected disagreement (assuming
random annotations). Values range from -1 to 1,
with values around zero representing random an-
notations, positive values representing more agree-
ment among the annotators, and negative values
representing more disagreement than expected by
chance. The results for both subsets are displayed
in Table 2.1 We counted whether the annotators
identified a given text passage as a premise, as a
claim, or not as an argument component at all.

While subset 1-1 showed promising inter-anno-
tator agreement scores, subset 1-2 comes with dis-
appointing scores. The good values for subset 1-1
are likely the result of the initial, intensive discus-
sion between and with the annotators, producing
biased annotations. Comparing this to the weaker
values for subset 1-2, it seems obvious that the an-

1The ID numbering starts at 10 because the very first anno-
tations did not turn out to be suitable for our purposes, which
is why the first nine texts were excluded from the corpus.
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Table 2: Inter-annotator agreement (‘iaa’) of set 1 for
annotating premise vs. claim vs. nothing, by text (Krip-
pendorff’s unitizing alpha, Krippendorff et al. 2016)

subset id iaa # of annotators
1-1 10 0.2713 3
1-1 11 0.4078 3
1-1 12 0.2646 3
1-2 13 0.1932 3
1-2 14 -0.0268 3
1-2 15 0.3851 3
1-2 16 0.3002 3
1-2 17 0.0123 3
1-2 18 0.1705 3
1-2 19 0.0941 3
1-2 20 0.3853 3
1-2 21 0.1891 3
1-2 22 0.0681 3

notators need more precise guidelines than what
was provided in this second annotation round. This
is supported by the fact that introducing a sys-
tematic annotation scheme has also been shown
to improve inter-annotator agreement in previous
projects involving argument annotation (see Stab
and Gurevych 2014a). Therefore, our logical next
step was to introduce such a scheme, as described
in the next section.

4 Introducing an annotation scheme

Our updated annotation process is divided into
three major steps (see the similar approaches in e.g.
Stab and Gurevych 2014a; Peldszus et al. 2016):

1. Identify the major claim: The annotator reads
the full text in order to understand the overall
argumentation, and annotates or formulates
the major claim.

2. Identify claims and premises: The annotator
identifies claims and premises according to a
set of criteria, and labels them by semantic
category.

3. Review and submit: The annotator goes
through the whole text again to finalize their
annotation, and submits their annotated text.

We here focus on step two, the identification
of claims and premises. Specifically, we describe
the approach we apply to identify arguments by
systematically categorizing them semantically. For
further information on steps one and three see our
annotation guidelines (Kawaletz et al. in prep).

In order for a pair of text passages to be included
in our database as an argument, it must meet the
following criteria:

1. x is a controversial statement (the claim)

2. x is supported or attacked by y (the premise)
3. x supports, attacks or repeats the major claim
4. x is an epistemic, ethical or deontic claim

The first two criteria represent the standard defi-
nition of claim and premise (see above), while the
third one guarantees that our resulting database has
a homogeneous subject matter (in order to facili-
tate future experiments involving cross-topic trans-
fer). The final criterion, which distinguishes our ap-
proach from other, existing ones, is the obligatory
assignment of the claim to one of three semantic
categories.

In order to test a pair of text passages for these
criteria, annotators insert them into linguistic tem-
plates (see Kawaletz et al. in prep for details). For
the final, semantic criterion, these templates take
the form ‘x, [___] y’ as presented in Table 3. These
templates make use of the connectors and (for sup-
port relations) and but (for attack relations), of sen-
tential negation (e.g. not true negating true), lexi-
cal negation (e.g. false negating true), lexical cues
(e.g. approve/disapprove for ethical claims), and
indication of stress by means of italics to increase
grammatical acceptability. All templates may be
adapted by the annotator to fit a given syntactic
context.

The application of these templates is exemplified
in (1). There, we see a claim (bold print) and a
premise (underlined) from our corpus, inserted in
the template which tests for a supported, positive,
deontic claim (represented in Table 3 by and do this
because). By inserting the two text passages into
this template, both the argumentative function and
the relation between claim and premise are made
explicit.

(1) a. [M]asking should be mandated and
enforced.

b. And this should be done because [i]t’s
not just about your individual risk toler-
ance, but about keeping everyone safe.

By systematically applying such templates, our
annotation process is now based on principled lin-
guistic judgments rather than on ad hoc decisions.
At the point of writing this paper, we have ap-
plied our annotation scheme to 12 texts (14,167
words), with promising results: Annotators have
reported that applying the provided patterns and
being obliged to think about a given text passage
in functional terms facilitates argument identifi-
cation from the start. Thus, by specifying the in-
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Table 3: Templates testing for claim categories

claim category positive claim negative claim
epistemic

support and this is true because and this is false because
and this is the case because and this is not the case because

attack but this is not true because but this is not false because
but this is not the case because but this is the case because

ethical
support and this is good because and this is bad because

and I find this good because and I find this bad because
and I approve because and I disapprove because
and what is good about this is and what is bad about this is

attack but this is bad because but this is good because
but what is bad about this is but what is good about this is

deontic
support and do this because and don’t do this because

attack but don’t do this because but do do this because

ternal, semantic structure of the category claim
thoroughly, its separation from premises as well as
non-argument units becomes clearer. Furthermore,
discussions about the status of text passages as ar-
gumentative discourse units go more smoothly.

These impressions are backed up by a clear trend
toward increasing inter-annotator agreements, as
illustrated in Figure 1. In set 2, annotators reached
an agreement of up to a rounded 0.6 (as compared
to 0.4 for set 1), with no negative values. How-
ever, this difference does not come out as signifi-
cant, as is shown by an unpaired t-test comparing
set 1 (M = 0.208831, SD = 0.143289) and set 2
(M = 0.315300, SD = 0.190852); t(23) = 1.5857,
p = 0.1265. The fact that we have not been able to
support our intuition statistically is likely due to
the small sample size and is currently being tested
on more texts as the project progresses.

Introducing the argument categories has not only
had beneficial effects, however. The annotators
have also reported that actually deciding on one
functional label is often difficult, due to ambigui-
ties in the text. Interestingly, this sentiment is not
reflected in the inter-annotator agreements for set
2: As shown in Table 4, for any given text the dif-
ference between the more basic decision (premise
vs. claim vs. nothing) and the more complex deci-
sion on a specific claim label (premise vs. epistemic
claim vs. ethical claim vs. deontic claim vs. noth-
ing) is negligible. A paired t-test reveals that there
is indeed no significant difference between the two
(p/c/Ø: M = 0.315300, SD = 0.190852; ep/et/d/Ø:
M = 0.316033, SD = 0.188318; t(11) = 0.2020,
p = 0.8436).

Figure 1: Inter-annotator agreement (‘iaa’) of sets 1 and
2 for annotating premise vs. claim vs. nothing (Krippen-
dorff’s unitizing alpha, Krippendorff et al. 2016)

Table 4: Inter-annotator agreement (‘iaa’) of set 2
by text (Krippendorff’s unitizing alpha, Krippendorff
et al. 2016), comparing premise vs. claim vs. nothing
(‘p/c/Ø’) and premise vs. epistemic claim vs. ethical
claim vs. deontic claim vs. nothing (‘p/ep/et/d/Ø’).

subset id iaa iaa # of
(p/c/Ø) (p/ep/et/d/Ø) annotators

2-1 23 0.1811 0.181 4
2-1 24 0.2809 0.2657 4
2-2 25 0.0951 0.113 3
2-2 26 0.2516 0.2798 3
2-2 27 0.5906 0.5953 3
2-2 28 0.2496 0.2391 3
2-2 29 0.0446 0.0428 3
2-2 30 0.2638 0.2623 3
2-2 31 0.5531 0.5525 3
2-2 32 0.2046 0.2027 3
2-2 33 0.5982 0.5829 3
2-2 34 0.4704 0.4753 3
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Apart from further improvements in inter-
annotator agreement, we presume that applying
a semantic classification of arguments is likely to
reduce false positives in manual annotation as well.
The text passage in (2), for example, was wrongly
classified as an argument by one of three annotators
during initial annotation. Applying the templates
from Table 3, however, shows that the passage does
not fit in either of the twelve categories, as ex-
emplified in (2′) with the pattern and this is true
because for the category positive, epistemic, sup-
ported claim.

(2) a. The U.S. Supreme Court threatens to
get into the action, too.

b. In May, four conservative justices [...]
dissented from an order in South Bay
United Pentecostal Church v. New-
som allowing California’s COVID-19-
related restrictions to remain in place
for gatherings at places of worship.

(2′) a. The U.S. Supreme Court threatens to
get into the action, too.

b. # And this is true because, [i]n May,
four conservative justices [...] dis-
sented from an order in South Bay
United Pentecostal Church v. New-
som allowing California’s COVID-19-
related restrictions to remain in place
for gatherings at places of worship.

In this example, (2a) is a controversial statement
and thus a valid candidate for a claim, but (2b)
does not support (nor attack) it. Rather, it specifies
more exactly what happened, as can be shown by
applying another one of our templates, namely ‘X.
What happened is that y.’:

(2′′) a. The U.S. Supreme Court threatens to
get into the action, too.

b. What happened is that, [i]n May, four
conservative justices [...] dissented
from an order in South Bay United Pen-
tecostal Church v. Newsom allowing
California’s COVID-19-related restric-
tions to remain in place for gatherings
at places of worship.

As these examples, contrasting with (1) above, il-
lustrate, the point of the semantic classification and
of the corresponding paraphrases is to enable an-
notators in the early stage of argument detection to
make informed, well-founded decisions. Previous

work with semantic types left the initial argument
detection to experts and applied a semantic classi-
fication separately (see Hidey et al. 2017), while
our approach aims at an improved identification of
arguments, which then become available for thor-
ough linguistic investigation.

5 Conclusion and outlook

In this paper, we have sketched an annotation
scheme which builds on a function-based classi-
fication of arguments. By systematically applying
an array of linguistic templates to pairs of text pas-
sages, the annotation process is streamlined and fa-
cilitated. A first trend for improved inter-annotator
agreements, however, has yet to be statistically con-
firmed. In the long run, we expect significant im-
provements in annotator recall as well as a less
labor-intensive creation of a gold standard (i.e., the
curation of the annotated texts by an expert linguist
annotator).

In order to further improve our results in terms
of inter-annotator agreement and annotator recall,
we are currently refining our work flow: For the
third set of annotations, we have restricted our cor-
pus to editorials, a more homogeneous subgenre
of newspaper opinion pieces, and we are limiting
text length to between 40 and 70 sentences in or-
der to avoid too much variation in how the texts
deal with argumentation in general. In addition, all
annotators are actively involved in the text selec-
tion process, pre-assessing and potentially rejecting
each text according to a growing catalogue of crite-
ria (e.g. too anecdotal, too many direct quotes).

In the future, apart from the methodological ben-
efits of applying a semantically-grounded anno-
tation scheme, ultimately we will also be able to
investigate the semantic types per se. Possible re-
search questions are, for example, which linguistic
features annotators and/or machines use to catego-
rize arguments, and how our classification scheme
relates to others (e.g. Hidey et al. 2017 on interpre-
tation, evaluation, and agreement/disagreement).
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Abstract

Depression is a serious mental illness that im-
pacts the way people communicate, especially
through their emotions, and, allegedly, the way
they interact with others. This work examines
depression signals in dialogs, a less studied
setting that suffers from data sparsity. We hy-
pothesize that depression and emotion can in-
form each other, and we propose to explore
the influence of dialog structure through topic
and dialog act prediction. We investigate a
Multi-Task Learning (MTL) approach, where
all tasks mentioned above are learned jointly
with dialog-tailored hierarchical modeling. We
experiment on the DAIC and DailyDialog cor-
pora – both contain dialogs in English – and
show important improvements over state-of-
the-art on depression detection (at best 70.6%
F1), which demonstrates the correlation of de-
pression with emotion and dialog organization
and the power of MTL to leverage information
from different sources.

1 Introduction

Depression is a serious mental disorder that affects
around 5% of adults worldwide.1 It comes with
multiple causes and symptoms, leading to major
disability, but is often hard to diagnose, with about
half the cases not detected by primary care physi-
cians (Cepoiu et al., 2008). Automated detection
of depression, sometimes associated to other men-
tal health disorders, has been the topic of several
studies recently, with a particular focus on social
media data and online forums (Coppersmith et al.,
2015; Benton et al., 2017; Guntuku et al., 2017;
Yates et al., 2017; Song et al., 2018; Akhtar et al.,
2019; Ríssola et al., 2021). The ultimate goal of
such system would be to complement expert assess-
ments, but such empirical studies are also valuable
to better understand how communication is affected
by health disorders. In this paper, we propose to

1https://www.who.int/news-room/
fact-sheets/detail/depression

investigate depression detection within dialogs, a
scenario less studied but more similar to the in-
terviews with clinicians, which allegedly involves
dialog features and also allows to examine how
interaction is affected.

However, depression detection suffers from data
sparsity. In fact, using social media data was a
way to tackle this issue, including considering data
generated by self-diagnosed users – a method that
leads to potentially noisy data and comes with eth-
ical issues (Chancellor et al., 2019). We rather
examine a dataset of 189 clinical interviews, the
DAIC-WOZ (Gratch et al., 2014), collected by ex-
perts to support the diagnosis of distress condi-
tions. Participants are identified as depressive or
not, and if so they receive a severity score. A line
of work proposed to overcome data scarcity by
leveraging varied modalities, e.g., using audio as in
Al Hanai et al. (2018). Previous approaches were
solely based on textual information relied on hi-
erarchical contextual attention networks on word
and sentence-level representations (Mallol-Ragolta
et al., 2019), or Multi-Task Learning (MTL) but
limited to combing identification and severity pre-
diction (Qureshi et al., 2019; Dinkel et al., 2019),
possibly with emotion (Qureshi et al., 2020).

Inspired by the latter approaches, we also pro-
pose relying on the MTL framework to help our
model leverage information from different sources.
We exploit three auxiliary tasks: emotion classifica-
tion – naturally tied to mental health states –, and
dialog act and topic classification, hoping the shal-
low information about the dialog structure could
further enhance the performance. Our architecture
is classic, based on hard-parameter sharing (Ruder,
2017), simpler than the shared-private architecture
in (Qureshi et al., 2020) but has shown effective. In
order to take into account dialog organization, we
advocate for a dialog-tailored hierarchical architec-
ture with some tasks performed at the speech turn
level and others at the document level.
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Our contributions are: (i) An empirical study
on depression detection in dialogs, leveraging the
power of multi-task learning to deal with data spar-
sity; (ii) An extension of previous work in examin-
ing the effects of depression on dialog structure via
shallow markers, i.e., dialog acts and topics, as a
first step; (iii) State-of-the-art results on depression
detection in DAIC test set with 70.6% in F1 at best.

2 Related work

Within multi-task learning (MTL), a model has
to learn shared representations to generalize the
target task better. It improves the performance
over single-task learning (STL) by leveraging com-
monalities or correlations between tasks. Recent
years have witnessed a series of successful applica-
tions in various NLP tasks, as in Collobert and We-
ston (2008); Søgaard and Goldberg (2016); Ruder
(2017); Ruder et al. (2019), which demonstrate the
effectiveness of MTL in learning information from
different but related sources. It also tackles the data
sparsity issue and reduces the risk of overfitting
(Mishra et al., 2017; Benton et al., 2017; Bingel
and Søgaard, 2017).

Joshi et al. (2019) demonstrated the benefit of
MTL for specific pairs of close health prediction
tasks on tweets. Benton et al. (2017) used MTL on
social media data and achieved important improve-
ments in predicting several mental health signals,
including suicide risks, depression, and anxiety, to-
gether with gender prediction. With a focus on de-
pression detection, the shared task AVEC in 2016
(Valstar et al., 2016) has brought out a series of
multi-modal studies using vocal and visual features
on the DAIC-WOZ dataset (Gratch et al., 2014).
Some of which also explored text-level features:
Williamson et al. (2016) used Gaussian Staircase
Model with semantic content features and reported
a SOTA score on the validation set. Al Hanai et al.
(2018) and Haque et al. (2018) learned sentence em-
beddings with an LSTM network. However, their
results on textual features are lower than SOTA
by a large margin. Dinkel et al. (2019) compared
different word and sentence embeddings and var-
ious pooling strategies. Their best model is mean
pooling with ELMo embeddings. Qureshi et al.
(2019, 2020) proposed MTL approaches in adding
emotion intensity and depression severity (i.e., a
regression problem) prediction to the main classifi-
cation task. They, however, found that the emotion-
unaware model obtained the best result. They used

a monologue corpus for the emotion task, a domain
bias that possibly harms the performance. On the
contrary, we hypothesize that emotional informa-
tion would benefit depression detection. Mallol-
Ragolta et al. (2019) used a hierarchical contex-
tual attention network with static word embeddings
within a single-task setting and then combined rep-
resentations at the word and sentence levels. They
reported at best 63% in F1. Recently, Xezonaki
et al. (2020) presented even better results, 70% in
F1, by augmenting the attention network with a con-
ditioning mechanism based on effective external
lexicons and incorporating the summary associated
with each interview. We instead rely on MTL in
this work, where incorporating external sources is
more direct.

None of the previous studies investigated po-
tential links between depression and dialog struc-
ture. We note that Cerisara et al. (2018) explored
MTL with sentiment2 and dialog act prediction
on Mastodon (a Twitter-like dataset), where both
annotations are available, and found a positive cor-
relation. To the best of our knowledge, we are the
first to tackle depression detection in dialog tran-
scriptions with the MTL approach and explore joint
learning techniques with tasks related to the dialog
structure.

3 Model Architecture

One condition generally assumed for success
within MTL, at least in NLP, is that the primary
and auxiliary tasks should be related (Ruder, 2017).
The emotion-related task is thus a natural choice
since it is linked to mental states. We hypothesize
that depressive disorder can also affect how people
interact with others during conversations. We thus
take a first step toward linking dialog structure and
depression by examining shallow signals: dialog
acts and topics. In addition, since the information
comes at different levels, we propose hierarchical
modeling, from speech turns to documents.

Baseline Model: Our basic model is a two-level
recurrent network, similar to the one in Cerisara
et al. (2018). The input words are mapped to vec-
tors using word embeddings from scratch. The first
level (turn-level) takes the embeddings into a bi-

2Sentiment and emotion are closely related with differ-
ent function and/or granularity, cf. Munezero et al. (2014).
Cerisara et al. (2018) use three labels for sentiment: positive,
negative, neutral. In this paper, we use seven emotional labels:
anger, disgust, fear, happiness, sadness, surprise, neutral.
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Figure 1: Multi-task fully shared hierarchical structure.
Light blue is for DAIC dataset and depression task;
orange is for DailyDialog and three auxiliary tasks.

LSTM network to obtain one vector for each turn.
The second level (dialog-level) takes a sequence of
turns into an RNN network, and the output is finally
passed into a linear layer for depression prediction.

MTL Model: The MTL architecture is com-
posed of shared hidden layers and task-specific
output layers (see Fig. 1) and corresponds to the
hard parameter sharing approach (Caruana, 1993,
1997; Ruder, 2017). Since some auxiliary tasks
are annotated at the speech-turn level (i.e., emo-
tion, dialog act) while others document level (i.e.,
depression, topic), our architecture is hierarchical
and arranges task-specific output layers (MLP) at
two levels. Sentence level emotion and dialog act
information can be learned in the turn-level LSTM
network and transferred upwards to help depression
and topic prediction. On the other hand, higher-
level information can be backpropagated to update
the network at the lower level. The loss is simply
the sum of the losses for each task. Regarding the
MTL setting, we set equal weight for each task as
the standard choice.

4 Datasets

DAIC-WOZ: This dataset is a subset of the
DAIC corpus (Gratch et al., 2014).3 It contains
189 sessions (one session is one dialog with avg.
250 speech turns) of two-party interviews between
participants and Ellie – an animated virtual inter-
viewer controlled by two humans. Table 1 gives
the partition of train (107), development (35), and
test (47) sets. Originally, patients are associated

3https://dcapswoz.ict.usc.edu

Train Dev Test

Depressed 77 23 33
Non Depressed 30 12 14

Total 107 35 47

Table 1: Number of sessions (dialogs) in DAIC-WOZ.

with a score related to the Patient Health Question-
naire (PHQ-9): a patient is considered depressive
if PHQ-9 ≥ 10 (Kroenke and Spitzer, 2002).

DailyDialog: This dataset (Li et al., 2017) con-
tains 13, 118 two-party dialogs (with averaged 7.9
speech turns per dialog) for English learners,4 cov-
ering various topics from ordinary life to finance.
Three expert-annotated information are provided:
7 emotions (Ekman, 1999), 4 coarse-grain dialog
acts, and 10 topics. We select this corpus due to its
large size, two-level annotations and high quality.
The train set contains > 87k turns for emotions and
dialog acts and > 11k dialogs for topics. Detailed
statistics are given in Appendix A.

5 Experimental setup

Baselines: We compare our MTL results with:
(1) Majority class where the model predicts all pos-
itive; (2) Baseline single-task model (see Sec. 3);
(3) State-of-the-art results on test set reported by
Mallol-Ragolta et al. (2019) and Xezonaki et al.
(2020). We do not compare to (Williamson et al.,
2016; Haque et al., 2018; Al Hanai et al., 2018;
Dinkel et al., 2019; Qureshi et al., 2020) who only
report on the development set.

Evaluation Metrics: For depression classifica-
tion we follow Dinkel et al. (2019) and report accu-
racy, macro-F1, precision, and recall. For emotion
analysis, we follow Cerisara et al. (2018) and report
macro-F1.

Implementation Details: We implement our
model with AllenNLP library (Gardner et al., 2018).
We use the original separation of train, validation,
and test sets for both corpora.

The model is trained for a maximum of 100
epochs with early stopping. For STL as well as for
MTL scenario, we optimize on macro-F1 metric
for depression classification. We use cross-entropy
loss. The batch size is 4 for DailyDialog and 1
for DAIC (within the limit of GPU VRAM). We

4http://yanran.li/dailydialog
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use the tokenizer from spaCy Library (Honnibal
et al., 2020) and construct the word embeddings
by default with a dimension of 128. The turn
level has one hidden layer and 128 output neu-
rons. We tune document RNN layers in {1, 2, 3}
and hidden size in {128, 256, 512}. Model pa-
rameters are optimized using Adam (Kingma and
Ba, 2014) with 1e − 3 learning rate. Dropout
rate is set to 0.1 for both turn and document en-
coders. The source code is available at https:
//github.com/chuyuanli/MTL4Depr.

6 Results and Discussion

6.1 Depression Detection Results on DAIC

Results using MTL hierarchical structure are shown
in Table 2, which are compared to majority vote and
SOTA models (at the top). Our baseline model is a
single-task naive hierarchical model which obtains
similar results (F1 44) as the baseline model (NHN)
in Mallol-Ragolta et al. (2019) (F1 45).

Using the multi-task architecture, we get im-
provements when adding each task separately. We
see more than a +11.5% increase in F1 when
adding emotion (‘+Emo’) or topic (‘+Top’) classi-
fication task and, at best, +16.9% with dialog acts
(‘+Diag’). This demonstrates the relevance of each
task to the primary problem of depression detection,
especially the interest of dialog acts. When adding
topics, we observe a small drop in accuracy com-
pared to STL while the F1 is better, meaning that
the prediction for minority class (non-depressive)
improves. Interestingly, in terms of accuracy, the
tasks at different levels (depression ‘+Emo’ and de-
pression ‘+Diag’) seem to help more. We deduce
that they help build a better local representation
(speech turns) before the global representation.

When jointly learning all four tasks – combin-
ing depression detection with three auxiliary tasks
(‘+Emo+Diag+Top’) –, all metrics improve. We
obtain our best system with an improvement of
+26.7% in F1 compared to STL baseline, outper-
forming the state-of-the-art with a +7.6% increase
compared to the best system in Mallol-Ragolta et al.
(2019) and about +0.5% compared to Xezonaki
et al. (2020). Depressed people tend to express
specific emotions; it is thus natural to think that
emotion is beneficial for the main task. These re-
sults indicate that both emotion and dialog structure
help as they provide complementary information,
paving the way for new research directions with
more fine-grained modeling of dialog structure for

F1 Prec. Rec. Acc.

BSL Majority vote 41.3 35.1 50.0 70.2

State-of-the-art
NHN5 (Mallol-Ragolta et al., 2019) 45 - 50 -
HCAN6 (Mallol-Ragolta et al., 2019) 63 - 66 -
HAN+L7 (Xezonaki et al., 2020) 70 - 70 -

Ours
STL Depression 43.9 44.5 47.5 63.8
MTL +Emo 55.5 56.2 61.6 70.2
MTL +Top 55.6 55.9 56.8 59.6
MTL +Diag 60.8 60.6 61.4 66.0
MTL +Emo+Diag+Top 70.6∗ 70.1 71.5∗ 74.5

Table 2: Depression detection results on DAIC. STL:
single-task using DAIC only; MTL: multi-task using
DAIC and adding classification for Emotion (+Emo),
Topic (+Top), Dialog Act (+Diag) from DailyDialog.
*Significantly better than SOTA performance with p-
value < 0.05.

tasks in conversational scenarios.

6.2 Analysis

Performance on Auxiliary Tasks: To better un-
derstand our model, we look at the performance of
emotion, dialog act, and topic auxiliary tasks. Di-
rectly comparing the results of our MTL approach
(‘+Emo+Diag+Top’) with a STL architecture for
each task, however, seems unfair. The optimized
objective and structural complexity are different:
the former is optimized on the depression detec-
tion task on two levels, while the latter is tuned
on the target auxiliary task with either speech turn
(emotion and dialog act) or full dialog (topic). Un-
surprisingly, the results show that the MTL system
underperforms the basic STL structure for dialog
acts and topics, with at best 67.8 in F1 (MTL) vs.
68.8 (STL) for dialog acts, and 52.0 (MTL) vs.
52.4 (STL) for topic classification.

For emotion, on the other hand, our best MTL
system obtains 40.0 in F1 compared to 38.3 for
the STL baseline, showing the mutual benefit of
both tasks. Even though the score is lower than the
SOTA for emotion classification (51.0 F1 in Qin
et al. (2021))8, we believe that refining our model
for this task could lead to further improvements
in depression detection. In addition, we observe
that our MTL approach is particularly beneficial
for negative and rare emotion classes, with anger,

5Naive hierarchical network (baseline).
6Hierarchical contextual attention network.
7Hierarchical attention network with LIWC lexicon.
8Precision: in Qin et al. (2021) authors report results on

sentiment classification. It is yet unclear how they convert
emotion annotation (7 labels) to sentiment (3 labels).
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High-level DA # % Sub-cat. # %

Question 7, 907 53%
Emo 1, 054 13%

Non-emo 6, 853 87%
Backchannel 3, 231 22% - - -
Comment 3, 074 20% - - -
Opening 611 4% - - -
Other 171 1% - - -

Table 3: High-level dialog act distribution of Ellie in
DAIC-WOZ. # and % represent the number and percent-
age of Ellie’s utterances, respectively.

disgust and sadness gaining resp. 5%, 6% and
1% in F1. Finally, we conduct a manual inspec-
tion of the types of utterances (mostly questions)
from Ellie, and classify them into high-level dia-
log acts: Backchannel, Comment, Opening, Other,
Question.9 We find that around 13% of the ut-
terances are emotion-related, for instance “things
which make you mad / you feel guilty about, last
time feel really happy”, etc., and that mentions of
topics related to happiness or regret appear in al-
most all the interviews. Dialog act distribution is
shown in Table 3. We release our annotation to the
community for future studies.

Effectiveness of Hierarchical Structure: To ex-
amine the effectiveness of hierarchical structure,
we conduct ablation studies on the full multi-
learning setting (‘+Emo+Diag+Top’). For dialog
RNN level, we use topic information; for turn
level, we test either emotion or dialog act. The
results are shown in Table 4. Unsurprisingly, both
ablated models (‘+Emo+Top’ and ‘+Diag+Top’)
underperform the full model, with F1 scores de-
creasing ≈ 6% each. Without dialog act, all met-
rics drop, showing the importance of this informa-
tion for dialog structure. Without emotion, recall
drops dramatically while accuracy and precision
increase, indicating that the model ‘+Diag+Top’
predicts more positive classes but fails in negative
ones, which could result in too many false positives
in real-life scenarios. On the other hand, when
comparing hierarchical models (‘+Emo+Top’,
‘+Diag+Top’, ‘+Emo+Diag+Top’) with single-level
models (‘+Emo’, ‘+Top’, ‘+Diag’), we see consid-
erable improvements in all metrics, and this holds
for all auxiliary tasks. We can thus confirm the
advantage of hierarchical structure for model per-
formance.

9Backchannel refers to phatic expressions such as yeah,
hum mm. Here we use different dialog acts from those in
DailyDialog.

F1 Prec. Rec. Acc.

MTL +Emo+Diag+Top 70.6 70.1 71.5 74.5
MTL +Emo+Top 64.4 64.4 64.4 70.2
MTL +Diag+Top 63.7 78.1 62.8 76.6

Table 4: Ablation study on hierarchical structure.

7 Conclusion

In this paper, we demonstrate the correlation be-
tween depression and emotion and show the rel-
evance of features linked to dialog structures via
shallow markers: dialog acts and topics. In the near
future, we intend to investigate more refined mod-
eling of dialog structures, possibly relying on dis-
course parsing (Shi and Huang, 2019). We would
also like to explore depression severity classifica-
tion as an extension to binary classification, possi-
bly through a cascading structure: first, detect de-
pression and then classify the severity. We intend
to refine our work and report on cross-validation
splits of the data to test the stability of the model, an
issue even more crucial when dealing with sparse
data with possibly representativeness problem. A
further step will be to investigate the generalization
of our model to other mental health disorders.
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field, a mistake that in high-stakes healthcare set-
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tings could prove detrimental or even dangerous.
Another issue is the representativeness of the

data. Currently, it is very complex to access pa-
tients in order to have more examples. The insti-
tutional complexity leads researchers to systemati-
cally use the same data set, creating a bias between
the representation of the pathology, in particular for
mental ones whose expression can take very varied
forms. This also implies defining a variation in
relation to a normative use of language that comes
with a strong risk in this type of approach.

Moreover, we carefully select the dialog corpora
used in this paper to control for potential biases
and personal information leakage. We only work
with interview transcription, with no audio or visual
information. For the text part, all the participant’s
name have been marked out with pseudo-ID.
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A Auxiliary Tasks Class Distribution in
DailyDialog

Table 5, Table 6, and Table 7 show the number and
percentage of emotion, dialog act, topic for each
subset, resp.

Emotion
Train Dev Test

# % # % # %

0-no emotion 72, 143 82.8 7, 108 88.1 6, 321 81.7
1-anger 827 0.9 77 1.0 118 1.5
2-disgust 303 0.3 3 0.04 47 0.6
3-fear 146 0.2 11 0.1 17 0.2
4-happiness 11, 182 12.8 684 8.5 1019 13.2
5-sadness 969 1.1 79 1.0 102 1.3
6-surprise 1, 600 1.8 107 1.3 116 1.5

Utt. Total 87, 170 100.0 8, 069 100.0 7, 740 100.0

Table 5: Emotion distribution in train, dev. and test sets.

Dialog Act
Train Dev Test

# % # % # %

1-inform 39, 873 45.7 3, 125 38.7 3, 534 45.7
2-question 24, 974 28.6 2, 244 27.8 2, 210 28.6
3-directive 12, 242 16.3 1, 775 22.0 1, 278 16.5
4-commissive 8, 081 9.23 925 11.5 718 9.3

Utt. Total 87, 170 100.0 8, 069 100.0 7, 740 100.0

Table 6: Dialog act distribution in train, dev. and test
sets.

Topic
Train Dev Test

# % # % # %

1-ordinary life 2, 975 26.8 418 41.8 252 25.2
2-school life 453 4.1 0 0 34 3.4
3-culture & education 50 0 0 0.0 5 0.5
4-attitude & emotion 616 5.5 1 0.0 50 0.5
5-relationship 3, 879 34.9 129 12.9 384 38.4
6-tourism 860 7.7 124 12.4 79 7.9
7-health 205 1.8 41 4.1 21 2.1
8-work 1, 574 14.2 215 21.5 135 1.4
9-politics 105 0.9 13 1.3 13 1.3
10-finance 399 3.6 59 5.9 27 2.7

Total 11, 118 100.0 1, 000 100.0 1, 000 100.0

Table 7: Topic distribution in train, dev. and test sets.
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Abstract

A number of cues, both linguistic and non-
linguistic, have been found to mark discourse
structure in conversation. This paper investi-
gates the role of laughter, one of the most en-
countered non-verbal vocalizations in human
communication, in the signalling of turn bound-
aries. We employ a corpus of informal dyadic
conversations to determine the likelihood of
laughter at the end of speaker turns and to estab-
lish the potential role of laughter in discourse
organization. Our results show that, on average,
about 10% of the turns are marked by laughter,
but also that the marking is subject to individ-
ual variation, as well as effects of other factors,
such as the type of relationship between speak-
ers. More importantly, we find that turn ends
are twice more likely than transition relevance
places to be marked by laughter, suggesting
that, indeed, laughter plays a role in marking
discourse structure.

1 Introduction

Despite the spontaneous nature of human commu-
nication, turn-taking between conversational part-
ners occurs rather smoothly (Sacks et al., 1978),
with interlocutors negotiating control of the floor
through the marking of so-called transition rele-
vance places (points in the conversation where a
speaker change may occur) by means of various
cues. A significant amount of work has been dedi-
cated on investigating the acoustic characteristics
involved in speaker-turn marking (e.g., Wichmann
and Caspers, 2001; Gravano and Hirschberg, 2009;
Niebuhr et al., 2013; Zellers, 2017). Yet, discourse
structure has been shown to be signalled by a com-
bination of different features (Duncan, 1972), both
linguistic (e.g., lexical, syntactic, semantic) and
non-linguistic. The latter type includes body move-
ments and gestures, such as posture shifts (Cassell
et al., 2001) and gaze (Jokinen et al., 2013), but also
non-verbal vocalizations, in the form of breathing
sounds (Włodarczak and Heldner, 2016).

We examine here one of the most commonly en-
countered non-verbal vocalizations in spontaneous
interaction, laughter. It plays various roles in hu-
man communication (Trouvain and Truong, 2017),
including social and communicative (Glenn and
Holt, 2013) as well as linguistic roles (Mazzoc-
coni et al., 2020). Evidence from conversational
analysis suggests a possible role of laughter in dis-
course structure, as a cue marking the edges of
speaker-turns (Gavioli, 1995; Ikeda and Bysouth,
2013; Madden et al., 2002). Most of this evidence
is of qualitative nature, but there are also quantita-
tive findings that offer additional support for this
hypothesis. Norris and Drummond (1998) found
that about 30% of total produced laughter occurred
with the beginning and end of discourse structures,
in materials based on tasks eliciting laughter. In
a distributional analysis of laughter in task-based
dyadic interactions, Ludusan et al. (2020) reported
that turns for which laughter occurred at turn-initial
or turn-final represented up to 50% of all turns
containing laughter, in the three studied languages
(French, German and Mandarin Chinese). Turns
marked by laughter at their edges made up between
13% and 20% of total turns in the same materials
(Ludusan and Wagner, 2022). Also the fact that
laughter entrainment effects have been found at the
turn-level in conversation (Ludusan and Wagner,
2022), represents further indication of the potential
role of laughter in marking turns.

The aforementioned studies, however, presented
only descriptive statistics of laughter events co-
occurring with turn edges, without showing a re-
lationship between laughter and discourse struc-
ture. Thus, we aim to establish in this study the
possible role of laughter in marking turn bound-
aries, by comparing laughter at speaker turn versus
at transition relevance places and by determining
whether turn-holds or turn-changes are more likely
to be marked by laughter. Moreover, as some of
these studies used materials from tasks that elicited
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Speaker A

Speaker B

Figure 1: Conversation fragment from the GRASS corpus illustrating the discourse structure annotation. For each
speaker (A and B), it shows the waveform of the recording, its orthographic transcription, the turn-level annotations
(in blue), and the level of potential transition relevance places (in green). The laughter produced by the speakers is
marked with LAU.

laughter and since laughter patterns in everyday
conversations might differ from those produced in
such tasks, we employ here informal conversations
between friends/family members. We also evaluate
the role of message-external factors, namely rela-
tion type between interlocutors and the gender com-
position of the dyad, as previous work has shown
that they may play a role in the overall production
of laughter (Smoski and Bachorowski, 2003).

2 Materials

The Graz Corpus of Read and Spontaneous Speech
(GRASS) contains about 30 hours of Austrian
German read and conversational speech, collected
from 38 Austrian speakers (19 females, 19 males)
(Schuppler et al., 2014). The conversational speech
component contains speech from 19 pairs of speak-
ers who had known each other for at least sev-
eral years, and who were either friends, family-
members, colleagues or couples, with a similar
number of mixed-gender and same-gender dyads.
These speaker pairs were recorded for one hour
each, without interruption, in order to encourage a
fluent, casual conversation. There were no restric-
tions in terms of topic or speaking behaviour, lead-
ing to the use of casual, partly dialectal pronuncia-
tion, frequent occurrence of overlapping speech, as
well as laughter (laughs and speech-laughs) (Schup-
pler et al., 2017). This resulted in a wide variety of
conversation topics, such as discussions about fam-
ily or about public figures, travelling, relationship
problems, or work-related issues.

The conversational speech component of
GRASS is currently being manually annotated for
discourse structure. As manual annotations are

highly time consuming, in combination with lim-
ited resources, the manual annotation of the entire
GRASS corpus is not possible. In order to capture
as many different speakers and as many different
communicative stages as possible, from each one-
hour conversation, 5 minutes were annotated either
from its beginning, its middle, or its end. So far, 14
dyads (5 f-m, 4 f-f, 5 m-m) were annotated, result-
ing in a total of 70 minutes of recordings available
for this study.

Two independent discourse structure levels were
annotated (cf., conversation example shown in Fig-
ure 1): one for turn management (based on inter-
pausal units), further called turn-level (the blue
tier in Figure 1), and one for potential transition
relevance places (further called TRP-level), which
were defined in terms of points of potential syn-
tactic completion (the green tier in Figure 1). The
turn-level labels were based on the four categories
proposed in Zellers (2017): hold (the same speaker
continues talking), change (a new speaker takes the
floor), question (the speaker transfers the turn to an-
other speaker), and Hearer Response Tokens (HRT,
backchannel-like tokens, Sikveland, 2012). Three
additional turn labels captured incomplete struc-
tures before pauses: incomplete-hold (the speaker
makes a pause at a point of “maximum grammat-
ical control”, Schegloff, 1998: 241, and then con-
tinues speaking), trail-off (a syntactically incom-
plete speaker change, cf. Walker, 2012), and self-
interruption (in the case of turn competition, one
speaker interrupts themselves to cede the turn to
the other speaker). The annotation at the TRP-
level is more fine-grained, having the categories
proposed by Zellers (2017) and six additional la-
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bels. For further details on the different labels used
for annotating the TRP-level, we refer the reader
to Schuppler and Kelterer (2021). All annotations
were created while listening to the recordings and
were not based on the orthographic transcription
alone. Thus, for example, the token “ja” (yes) may
be assigned the label HRT in one instance, where
it was produced with the function of a backchannel
(i.e., no interruption of the turn of the interlocutor),
or the label change in another instance, where it
was produced with a question-like intonation fol-
lowed by a turn of the interlocutor.

In order to guarantee a high annotation quality,
the same process was applied to both discourse
structure levels: First, the conversations were an-
notated by one trained annotator, self-corrected
at a later point in time and then corrected by an-
other, second annotator. In order to estimate the
inter-rater agreement for the two discourse struc-
ture annotation levels, we evaluated a set of 878
word tokens from 3 different conversations. The
Cohen’s kappa on whether a TRP was placed at a
word boundary or not was κ = 0.96. The agree-
ment between the two turn-level labels change and
hold (the only two categories we discriminated be-
tween in this study) was κ = 0.83. Thus, both
levels of discourse annotations used for this study
showed a very high inter-annotator agreement.

3 Methods

Based on the annotations of GRASS, we deter-
mined the units (both at the turn- and at the TRP-
level) which were marked by laughter at their end.
For this, the speaker having the floor or their in-
terlocutor should have produced laughter either at
the end of the unit, overlapping with the end of the
unit, or immediately following (within one second)
the unit. If the interlocutor produced the laughter,
they should not have produced any other speech
between the end of the unit marked by laughter and
the start of the laughter instance. For the labelling
process, other non-verbal vocalizations, such as in-
or out-breaths and coughs, were not considered as
being speech. All units were labelled for the exis-
tence of laughter in the analysis, except for the HRT
tokens, which do not represent an actual conversa-
tional turns. Although not included in the analysis,
HRT were taken into account for the labelling of
turn-units: If a speaker turn-end overlapped or was
followed by an HRT of the conversational partner
containing laughter, the turn was labelled as be-

Level Total Analysed Laughter
Turn 1874 1313 125
TRP 3772 3071 64

Table 1: The number of units considered in this study.
For each analysis level (turn/TRP), the total number of
units, the number of analysed units (non-HRT), and the
units marked by laughter are shown.

ing marked with laughter. Statistics about the total
number of units in our data, the ones analysed here
(non-HRT) and the units marked with laughter can
be found in Table 1.

We then counted, for each speaker and each level,
the number of units signalled by laughter and the
number of units not signalled by laughter. These
counts, representing together the odds of units hav-
ing laughter (number of successes and failures),
were used as dependent variable in a mixed effects
logistic model, to determine whether a significant
difference exists between the marking of two levels.
The unit-level (turn/TRP) was employed as predic-
tor in the model and the speaker was introduced
as a random intercept. Three logistic models were
then fitted on the data consisting of the turn-level
counts, in order to determine the effect of several
message-external factors on the signalling of turns
with laughter. We considered the dyad identity
(ranging between 1 and 14), its gender composition
(f-f, f-m or m-m) or the relation between the con-
versational partners (colleagues, couples, family
or friends), as the independent variables in those
models. Finally, we checked whether turn-marking
with laughter occurs more often for turn-change
or for turn-hold. For this, we deemed all turns la-
belled as incomplete-hold and hold to represent
a turn-hold and the remaining labels to represent
a turn-change. We then tested the probability of
having a turn-change marked by laughter, out of
the total number of turns marked by laughter, by
means of a binomial test. The R (R Core Team,
2019) software was used for all statistical analy-
ses, with the mixed effects model being fitted by
means of the lmerTest package (Kuznetsova et al.,
2017), based on the lme4 package (Bates et al.,
2015) functionalities.

4 Results

First, we examined the likelihood of laughter in
marking turns. Figure 2 illustrates the proportion
of speaker turns followed by laughter, out of the
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total number of turns produced by each speaker.
Speakers were grouped based on the dyad they
were part of and each speaker is represented by a
point. On average, across dyads, 10.6% of all turns
are marked by laughter (represented by a solid hori-
zontal line), but there is significant variation across
speakers (from a minimum of 0% for speaker B
in dyad 3 to a maximum of 43.8% for speaker A
in dyad 11). We checked whether the marking
of turns by the various dyads differs significantly
from mean value, by means of a logistic regression
model with the dyad ID as predictor and employing
a sum to zero contrast. Only three dyads (3, 11 and
13) showed significant differences from the overall
mean.

Then, with regards to the effect of message-
external factors on the laughter-marking of turns,
we examined the purposely built logistic models,
having either the relation between speakers or the
gender composition of the dyads as independent
variable. Logistic models estimate the effect of
the predictors on the log odds ratio of success vs.
failure (here, the probability of a turn to be marked
vs. not be marked by laughter). Higher odds in-
dicate a higher probability of turns being marked
by laughter. For the relation status, the highest
odds were seen for the dyads made up of couples
(the intercept of the model, β = −1.998), fol-
lowed by family (β = −0.301, p = .270), friends
(β = −0.460, p = .051), and the lowest odds for
colleagues (β = −0.725, p = 0.008). Regard-
ing the gender composition, the highest odds were
observed for the female-female dyads (intercept,
β = −2.187), with similar odds for mixed gender
dyads (β = −0.025, p = .913) and lower odds for
all-male dyads (β = −0.551, p = .028). The dif-
ference between mixed-gender and all-male dyads
was also found significant (p = .018).

Next, we estimated whether there is an effect
of the discourse level where laughter is used for
marking the structure (turn/TRP). Employing the
mixed effects model described in the Methods sec-
tion, we obtained a significant effect of the level
(p = 1.3e−6), with the odds of a laughter-marked
structure increasing by 107% (95% confidence in-
terval: [0.54, 1.78]) at the turn-level compared to
at the TRP-level. While the intercept of the model
showed that the probability of a TRP to be sig-
nalled by laughter is about 4%, it increases more
than twice in the case of turn boundaries.

Finaly, we looked in more detail at which types
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Figure 2: The proportion of turns marked by laugh-
ter, out of the total number of turns produced by each
speaker. The results are illustrated on a per-dyad basis,
with each dyad being represented by two data points,
one for each dyad member. Each speaker is coded by a
colour, representing their gender, and a shape, encoding
their relation with the interlocutor. The horizontal line
represents the average proportion across all dyads.

of turns were more likely marked by laughter. The
conducted binomial test showed a significant prefer-
ence for turn-changes (p = .007), with a probabil-
ity of 0.62 (95% confidence interval [0.53, 0.71]).1

5 Discussion

Based on our data from casual conversations be-
tween family members or friends, we have found
that turn boundaries tend to be signalled by laugh-
ter, on average in 10% of the cases. This represents
a lower value than those reported by Ludusan and
Wagner (2022), in which between 13% and 20%
of turns were marked by laughter, across the three
studied languages. Moreover, in the latter case,
backchannels were counted as turns, thus a higher
proportion of turns might be marked by laughter if
one were not to consider backchannels, as in our
case. These differences may well reflect the differ-
ent data elicitation methods. The data employed by
Ludusan and Wagner (2022) consisted of record-
ings in which a significant amount of laughter was
expected, due to the nature of the considered task
(coming up with an idea for a film script based on
an embarrassing moment). This emphasizes the
role of the type of data employed in the investiga-
tion: In a context consisting of casual conversations
between individuals that are close to each other, a
lower proportions of turns are signalled by laughter.
The observed laughter-marking behaviour seems to

1The fact that turns signalled by partner laughter were
included in the analysis did not bias these results, as there
was a higher proportion of turn-holds (0.40) than turn-changes
(0.18) marked by partner laughter, in our data.
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be consistent in our data, with 11 out of the total 14
dyads showing no significant difference from the
mean.

For both investigated message-external factors,
the relation type between the conversational part-
ners and the gender mix of the dyad, we observed
significant effects on the laughter-marking of turns.
Couples exhibited higher odds of turns marked
with laughter than family members, friends and
colleagues, although only the difference between
couples and colleagues was found to be significant.
Previous work looking at the effect of interlocutors’
relation on laughter production (e.g. Smoski and
Bachorowski, 2003; Jansen et al., 2021) considered
two cases: familiar/unfamiliar, and the results were
mixed, either showing a significant effect (Smoski
and Bachorowski, 2003), or a lack of it (Jansen
et al., 2021). Looking at the marking of turn edges
by laughter, Ludusan and Wagner (2022) found no
effect of familiarity (defined as the number of years
the speaker knew each other). However, we em-
ployed here a definition based on the relationship
between speakers, which may be more appropriate.
With respect to the gender mix, we saw no differ-
ence between all-female and mixed-gender dyads,
but significantly lower odds for all-male dyads com-
pared to the other two groups. Our results partially
align with work reporting more laughter in mixed-
gender dyads composed of friends (Smoski and Ba-
chorowski, 2003) (although a different behaviour
may be seen for mixed-gender dyads composed
of strangers Grammer and Eibl-Eibesfeldt, 1990;
Smoski and Bachorowski, 2003). The observed dif-
ferences may stem from the types of laughter con-
sidered in each study (laughter at turn boundaries
here, all laughter instances in previous studies).

How does the marking of turns by means of
laughter compare to the signalling of turns by other
cues? Niebuhr et al. (2013) observed differences
in speech reduction phenomena between turn-final
and turn-internal positions of up to more than four
times, while Cassell et al. (2001) found that pos-
ture shifts at turn boundaries were five times more
likely than turn-internal. We have seen here that
laughter turns are twice more likely to be signalled
by laughter, than transition relevance places. While
laughter may seem, therefore, a weaker cue to the
marking of turns, one must take into account that
we compared here turn-final laughter with laughter
produced only at TRPs (not any turn-internal posi-
tion). When comparing turn-final with phrase-final

positions, also Niebuhr et al. (2013) showed that the
difference in likelihood between these two levels is
lower than between turn-final and any turn-internal
location.

Among the types of considered turn-units, we
observed a higher probability of turn-changes than
turn-holds being marked with laughter. This find-
ing indicates that laughter is one of the cues that
speakers employ to signal the end of their turn or
the taking of the floor from their interlocutor. While
the current study did not examine the characteris-
tics of the various turn-final laughter instances, it
might be that giving/taking the turn may use differ-
ent types of laughter (laughs vs. speech-laughs,
snorts vs. grunts, etc) or laughs with different
acoustic properties (voiced vs. unvoiced, etc.). Fur-
ther investigations in this direction would be nec-
essary to better understand the role of laughter in
turn-taking. Moreover, studies on larger datasets as
well as on other languages are welcome, in order
to test the generalizability of these findings.

6 Conclusions

We investigated the role of laughter in the mark-
ing of speaker turns in a corpus of informal con-
versations between family members and friends.
Besides establishing the frequency of occurrence
of laughter at turn-ends, in a dataset not composed
of task-based interactions, we also showed that
laughter is twice more likely to occur at the end of
turn-units than at TRPs. Next, we found that the
probability of laughter-marked turn-changes was
higher than for turn-holds, suggesting a possible
role of laughter as a cue signalling turn-change. Fi-
nally, our study revealed that this laughter function
is modulated by message-external factors, such as
the nature of the relationship between speakers and
the dyad gender composition. These results repre-
sent one step further in understanding the various
functions that non-verbal phenomena and laughter,
in particular, play in human communication.
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Abstract

Despite considerable advances in open-domain
neural dialogue systems, their evaluation re-
mains a bottleneck. Several automated metrics
have been proposed to evaluate these systems,
however, they mostly focus on a single notion
of quality, or, when they do combine several
sub-metrics, they are computationally expen-
sive. This paper attempts to solve the latter:
QualityAdapt leverages the Adapter frame-
work for the task of Dialogue Quality Estima-
tion. Using well defined semi-supervised tasks,
we train Adapters for different subqualities
and score generated responses with Adapter-
Fusion. This compositionality provides an easy
to adapt metric to the task at hand that incor-
porates multiple subqualities. It also reduces
computational costs as individual predictions
of all subqualities are obtained in a single for-
ward pass. This approach achieves compara-
ble results to state-of-the-art metrics on several
datasets, whilst keeping the previously men-
tioned advantages.

1 Introduction

Open-domain neural dialogue systems have in-
creasingly drawn attention in Natural Language
Generation (NLG). These systems, colloquially
known as Chatbots, take advantage of large-scale
training of complex models, making them increas-
ingly more humanlike (Zhang et al., 2020; Adiwar-
dana et al., 2020a; Roller et al., 2021). A crucial
step in the development of a dialogue system is its
evaluation. The community has identified multiple
characteristics of what constitutes a high-quality
dialogue. These include comprehensible, fluent,
empathetic, relevant and interesting, among others.
The precise definition is often challenging to define
and is application dependent.

The current trend is to train models to evaluate
responses under various aspects. These learning-
based metrics either (1) map overall quality to a

∗ Corresponding author

single defined aspect such as Sensibleness (is the re-
sponse adequate given the context) or (2) leverage
several individual models to cover a wider range
of quality aspects (subqualities). Both have their
drawbacks: in the first approach, the use of a single
notion of quality limits the overall understanding
of model performance and consequently its appli-
cability to other domains; in the second approach,
the need to individually train several models is both
time and resource consuming, possibly duplicating
model parameters that could be shared, such as
feature representations.

This paper proposes QualityAdapt1, an auto-
matic dialogue quality estimation framework that
leverages the Adapter paradigm (Houlsby et al.,
2019a) to train individual Adapters on different di-
alogue subqualities. Then, AdapterFusion (Pfeiffer
et al., 2021) combines the knowledge of the indi-
vidual Adapters for the downstream task of overall
quality estimation. This allows for a system that
is both extensible (by including different subquali-
ties) and less resource-intensive (by sharing most
of the pretrained model parameters). Experimental
results show that QualityAdapt achieves compa-
rable correlations with human judgements when
compared to other state-of-the-art metrics.

2 Background

2.1 Automatic Quality Estimation Metrics

Word-overlap metrics, such as BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005), are a popular choice to evaluate dialogues
as they are used to evaluate machine translation
and summarization models and are easy to employ.
These metrics assume valid responses have signif-
icant word-overlap with the ground truth. How-
ever, this is not a valid assumption: there are many
equally good responses for a single utterance. As

1Model parameters and codebase are available at:
github.com/johndmendonca/qualityadapt.
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such, the correlation with human judgements is
very low for these metrics (Liu et al., 2016), and
they cannot be used to evaluate models in an online
setting, where a gold-response is not available.

Earlier learned metrics such as ADEM (Lowe
et al., 2017) and RUBER (Tao et al., 2018) ex-
plicitly predict human annotations by initialising
pretrained RNN response generators. In both cases,
a reference response is used to score the candidate
response. As such, these metrics still suffer the
same issues as word-overlap metrics.

More recently, open-domain automatic dialogue
quality estimation has concentrated on reference-
free methods. Most metrics focus on evaluating a
single notion of quality such as Engagement (Ghaz-
arian et al., 2020), Sensibleness (Dziri et al., 2019;
Huang et al., 2020) or Human-likeness (Gao et al.,
2020). Metrics such as USR (Mehri and Eske-
nazi, 2020b), USL-H (Phy et al., 2020) and Deep
AM-FM (Zhang et al., 2021b) combine predictions
of individual sub-metrics obtained from Language
Models.

2.2 Adapters

Adapters in NLP (Houlsby et al., 2019b) have been
introduced as an alternative to the full model fine-
tuning strategy. They consist of a small set of addi-
tional trainable parameters added between layers
of a pretrained network. These consist of feed-
forward layers with normalizations, residual con-
nections, and projection layers. The weights are
trained during fine-tuning for a given task, while
the pretrained parameters of the large model are
kept frozen. This strategy allows for parameter
sharing by training different task and language spe-
cific Adapters using the same model. Furthermore,
previous work has shown that Adapters achieve
comparable performance to full fine-tuning (Pfeif-
fer et al., 2020a, 2021), despite the primary focus
being geared towards parameter efficiency.

AdapterFusion (Pfeiffer et al., 2021) proposes
improving downstream task results by transferring
task specific knowledge obtained from training
Adapters on supporting tasks. The architecture
takes inspiration from the attention mechanism
(Vaswani et al., 2017), and consists of learnable
weights Query, Key, and Value: the Query con-
sists of the pretrained transformer weights; the Key
and Value take as input the output of the respective
Adapters. The dot product of the query with all
the keys is passed into a softmax function, which

learns to weight the Adapters with respect to the
context. Therefore, the goal is to learn a parameter-
ized mixer of the available trained Adapters.

3 QualityAdapt

QualityAdapt trains individual Adapters for each
subquality and composes them using AdapterFu-
sion for the task of overall quality estimation. In
both the subquality and overall quality tasks, it
returns a score that is obtained by combining a
transformer encoder with a regression head on top.
During inference, individual subquality predictions
can be obtained in a single forward pass by paral-
lelising their respective heads.

Encoder In our experiments, RoBERTa-large
(Liu et al., 2019) is used to encode the context-
response pair. In the tokenization step, we add for
each utterance a token representative of the speaker.
This added information lets the network identify
the response’s speaker, which in turn allows it to
pay more attention to utterances from this speaker
in the context if needed.

Compositionality Training AdapterFusion for
the downstream task of overall quality estimation is
a supervised task. As such, quality annotated data
in terms of overall quality is required. However,
the amount of annotations required for the Fusion
training step is much smaller when compared to
fully fine-tuning a Language Model with this data.
As a proof of concept, we composed two Adapters
in this paper: U-Adapter, for Understandability,
and S-Adapter for Sensibleness.

U-Adapter An understandable response is one
that can be understood without context. Such re-
sponses may contain minor typos that do not hin-
der the comprehension of the response. Mehri
and Eskenazi (2020b) evaluates this sub-metric by
calculating the likelihood of the response using a
Masked Language Modelling (MLM) metric. In
this paper, we follow the approach used by Phy et al.
(2020) and initially proposed by Sinha et al. (2020).
A model is trained to differentiate between positive
samples and synthetic negative samples. Positive
samples are perturbed by randomly applying one
of the following: (i) no perturbation, (ii) punctu-
ation removal, (iii) stop-word removal. Negative
samples are generated by randomly applying one
of the following rules: (i) word reorder (shuffling
the ordering of the words); (ii) word-drop; and (iii)
word-repeat (randomly repeating words).
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S-Adapter A sensible response is one that takes
into account its preceding context. The task of
predicting sensibleness can be considered a binary
Next Sentence Prediction (NSP) task, distinguish-
ing a positive example (the subsequent utterance)
from a semantically negative one (a random ut-
terance from a response pool obtained from the
dataset). Many dialogue quality estimation metrics
leverage the NSP task when training their models
for quality estimation (Zhao et al., 2020; Zhang
et al., 2021a; Phy et al., 2020; Mehri and Eskenazi,
2020b).

4 Experiments

4.1 Datasets

Different data sources are used in the experiments:
Training – DailyDialog (Li et al., 2017) is used

for the self-supervised training and evaluation of
the S and U Adapters. Additionally, the Fusion
module is trained using the annotated split by Zhao
et al. (2020) (denoted as DD-Z).

Evalution – The evaluation of the subqualities
is done on the data annotated by Phy et al. (2020)
(denoted as DD-P). QualityAdapt’s extensibility is
also evaluated on different overall quality annotated
datasets:

• TopicalChat (Gopalakrishnan et al., 2019) and
PersonaChat (Zhang et al., 2018), which were
annotated by Mehri and Eskenazi (2020b) and
denoted in this work as USR-TC and USR-PC,
respectively;

• DSTC6 (Hori and Hori, 2017);

• FED (Mehri and Eskenazi, 2020a).

A more detailed overview of these datasets can
be found in Appendix A.

4.2 Baselines

USR (Mehri and Eskenazi, 2020b) leverages sev-
eral Language Models to measure dialogue prop-
erties. These include: Fluency, measured using
masked language modelling (MLM) objectives;
Relevance, using a dialog retrieval model and Uses
Knowledge, measured using a fact-to-response se-
lection model. Overall quality prediction is ob-
tained using a Linear Regression model.

RoBERTa-eval (Zhao et al., 2020) proposes an
evaluator that produces an encoding vector given a
context and a response, and then calculates its score

via an MLP with a sigmoid function. The model
takes the pretrained transformer and primes it on
an NSP task with in-domain data using Negative
Sampling, which offsets the lack of annotated data.
A final finetuning is done for quality prediction.

USL-H (Phy et al., 2020) combines three mod-
els trained with different objectives: Valid Ut-
terance Prediction (BERT-VUP), Next Sentence
Prediction (BERT-NSP), and BERT-MLM. The
BERT-VUP model determines whether a response
is valid and grammatically correct. The BERT-NSP
model and BERT-MLM models are trained with
self-supervised objectives to evaluate the sensible-
ness and the likelihood of a given response.

4.3 Subquality Estimation

Pearson Spearman

U
nd

er
st

an
d. BERT-MLM -0.16 0.01

BERT-VUP 0.26 0.14
USR-MLM 0.01 0.11
RoBERTa-large 0.35 0.18
U-Adapter 0.32 0.21

Se
ns

ib
le BERT-NSP 0.63 0.61

USR-DR (x=c) 0.54 0.47
RoBERTa-large 0.61 0.65
S-Adapter 0.68 0.67

Table 1: Correlation for Understandability and Sensible-
ness subquality between human annotations and auto-
matic metrics. Best results are denoted in bold, italic
identifies p > 0.01.

The test set results on the DailyDialog dataset
for the Understandability and Sensibleness subqual-
ities are presented in Table 1. Here, we evaluate
the correlation between the average human annota-
tion and the model prediction. For fair comparison,
we also include the results with a fully finetuned
RoBERTa-large model. With respect to the estima-
tion of Understandability, U-Adapter outperforms
the models proposed by USR (USR-MLM per-
plexity) and USL-H (BERT-VUP). Similar results
are observed on the Sensibleness task, where both
RoBERTa and S-Adapter outperform both USL-H
(BERT-NSP) and USR baselines. These results
confirm Adapters are a valid substitute to fully fine-
tuned models for the task of subquality estimation.

4.4 Overall Quality Estimation

In the overall quality prediction task, we compare
the different metrics on all datasets. Results in
Table 2 show that, on average, the S+U metric out-
performs all other metrics on these datasets. As
expected, all models obtain the best performance
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DD-Z DD-P USR-TC USR-PC DSTC6 FED Avg
Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr. Pr. Spr.

USR 0.38 0.39 0.51 0.48 0.41 0.42 0.44 0.42 0.18 0.17 0.11 0.12 0.34 0.33
USL-H 0.25 0.26 0.63 0.64 0.32 0.34 0.50 0.52 0.22 0.18 0.20 0.19 0.35 0.36
RoB-eval 0.64 0.66 0.73 0.74 0.22 0.22 0.34 0.33 0.28 0.29 0.29 0.26 0.42 0.41
S+U 0.73 0.74 0.76 0.76 0.29 0.29 0.36 0.36 0.43 0.42 0.27 0.23 0.47 0.47

-U Adapter 0.67 0.69 0.80 0.76 0.28 0.30 0.37 0.37 0.39 0.40 0.17 0.13 0.45 0.44
-Speaker 0.62 0.65 0.67 0.70 0.33 0.33 0.36 0.36 0.33 0.31 0.20 0.20 0.42 0.42
-Fusion 0.60 0.54 0.72 0.73 0.20 0.23 0.37 0.34 0.36 0.33 0.17 0.21 0.40 0.40

S+U+E 0.68 0.70 0.76 0.73 0.18 0.19 0.36 0.36 0.36 0.36 0.18 0.14 0.42 0.41

Table 2: Correlation for Overall Quality between human annotations and automatic metrics. Best results are denoted
in bold, italic identifies p > 0.01. Baseline results are obtained using codebase provided by Yeh et al. (2021).

when evaluated on both DD test sets. Lowest
results are obtained on the FED dataset, which
contains responses from advanced chatbots, and
are therefore more difficult to identify as being
low-quality. This underlines the importance of in-
cluding more subqualities for dialogue evaluation,
as contemporary chatbots achieve human perfor-
mance on typical subqualities such as sensibleness
and understandability. This in turn makes them in-
sufficient to discriminate between good and bad re-
sponses. However, finer-grained submetrics do not
have an obvious mapping to semi-supervised data
collection methods, and are therefore discarded due
to the lack of sufficient annotated data to fully train
models.

4.5 Ablation Studies

Single Adapter Finetuning In this experiment, we
verify the effectiveness of having several Adapters
trained on different objectives contributing to the
performance of the downstream task. To evaluate
this, the U-Adapter and the Fusion module is dis-
carded and the S-Adapter is further finetuned with
the quality annotated data (denoted in Table 2 as
-U Adapter). On average, dropping the U-Adapter
reduces relative performance by 5%.

Removing Speaker Tokens We compare the
performance of S+U without the speaker tokeniza-
tion (denoted in Table 2 as -Speaker). Results show
the removal of these tokens reduces performance
on all datasets except on USR-PC and USR-TC.
This may indicate the topic shift between speakers
is small and as such "who said what" is inconse-
quential to sensibleness.

Removing Adapter Fusion The contribution of
AdapterFusion for the task of quality estimation
is assessed by comparing S+U against a Linear
Regression model that receives as input the pre-
dictions of the individual qualities obtained by the
trained Adapters (denoted in Table 2 as -Fusion).

The regression model is trained using the same an-
notated data split as AdapterFusion. Overall, the
regression model yields worse results when com-
pared against AdapterFusion. This underlines the
power of composition using Fusion, leveraging the
learned parameters of the trained Adapters instead
of just their prediction.

4.6 Emotion Adapter

We posit the emotion conveyed by the agent during
the conversation should positively correlate with
overall quality annotations: responses that display
happiness and excitement are expected to have a
positive impact in the dialogue and therefore should
favour higher quality annotations when compared
to responses that portray neutral, or negative emo-
tions. This was the basis for adding an Emotion
Adapter to S+U, denoted S+U+E. The Adapter was
trained on the DailyDialog corpus, using the same
training parameters as the S and U Adapters, and
a Weighted Cross Entropy Loss. A Macro-F1 of
45.00 is achieved on the test set. The inclusion of
the emotion Adapter fails to outperform S+U. Our
initial hypothesis is that this is due to generative
models being conditioned to respond with positive
emotions. We leave further investigation of these
results for future work.

5 Prediction Compute

One of the motivations of the QualityAdapt frame-
work is it’s computational efficiency. We present
average sample predictions per second on the test
set using a single RTX 3070Ti 8BG GPU, to-
gether with size of the metric’s unique param-
eters on Table 3. For the baseline methods, the
transformer model is fully fine-tuned and therefore
the full model in included; for the Adapters, only
the Adapter, the fusion layer and corresponding
heads are included in the calculation. We note that
a full transformer model (RoBERTa-base/large) is

86



Metric Samples/s Model Params
USR 22.44 4.2 GB
USL-H 10.83 3.9 GB
RoBERTa-eval 79.11 3.2 GB
S (large) 59.67 17.1 MB
S+U (base) 107.29 168.8 MB
S+U (large) 59.11 319.1 MB
S+U+E (large) 59.24 332.1 MB

Table 3: Prediction loop compute on DD-Z (250 sam-
ples). For the QualityAdapt models, (base/large) denote
the transformer model’s size.

still required for inference in QualityAdapt. How-
ever, the sharing of its weights is simplified.

As expected, the forward pass on several trans-
former models decreases runtime performance
when compared to a single forward pass, even when
using larger models (USR and USL-H metrics are
based on the RoBERTa and BERT-base models, re-
spectively). When comparing between the different
larger models, we can see that the inclusion of the
Adapter model decreases run-time performance by
25%. However, both the fusion module and the
inclusion of more Adapters does not significantly
affect performance.

6 Conclusions

This paper presents QualityAdapt, a framework for
automatic dialogue quality estimation. We show
the composition of Sensibleness and Understand-
ability Adapters for the downstream task of qual-
ity estimation outperforms, on average, the per-
formance of robust baselines, including those that
take advantage of subquality composition. How-
ever, QualityAdapt only requires a single forward
pass on a Language Model to produce predictions
for overall quality, thus reducing computational
complexity.2

Current research in dialogue focuses mostly on
monolingual chatbots, typically in English. Mul-
tilingual LMs such as XLM-RoBERTa (Conneau
et al., 2020) can be used to extract utterance rep-
resentations directly in the target language after
fine-tuning. However, this approach would still be
somewhat limited by the lack of multilingual anno-
tated data. Pfeiffer et al. (2020b) proposes leverag-
ing Adapters for transfer learning in low resource
settings by training a stack consisting of the source-

2The parallel inference of individual Adapters and their
fusion using AdapterHub is still WIP.

language Adapter with a task Adapter. Then, dur-
ing inference, the source-language Adapter is re-
placed with the target-language one. We leave these
experiments for future work.
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A Experiments

A.1 Datasets

DailyDialog (Li et al., 2017) is a high-quality
human-human open-domain dialogue dataset fo-
cused on day-to-day conversations. The dataset
consists of 13,118 dialogues and 103,632 utter-
ances. Zhao et al. (2020) (DD-Z) annotates 900
context-response pairs in terms of Appropriateness
from a pool of responses obtained by negative-
sampling response randomly selected from a dif-
ferent dialogue and responses generated by genera-
tive models trained on the training split; Phy et al.
(2020) (DD-P) collected five responses from two
retrieval methods, two generative methods, and one
human-generation for 50 contexts. These responses
are then annotated in terms of Understandability,
Sensibleness, Specificity and Overall Quality.

TopicalChat (Gopalakrishnan et al., 2019) is
a knowledge-grounded human-human conversa-
tion dataset that consists of 11,319 dialogues and
248,014 utterances. PersonaChat (Zhang et al.,
2018) is human-human persona-conditioned con-
versations that consists of 10,907 dialogues and
162,064 utterances. Mehri and Eskenazi (2020b)
(USR-TC) performs human annotation on 60 dia-
log contexts, with 6 responses per context for Topi-
calChat (four system outputs, one newly-annotated
human output, one original ground-truth response)
and five for PersonaChat (USR-PC). Each response
was annotated in terms of Understandability, Natu-
ralness, Sensibleness, Interesting, Uses Knowledge
and Overall Quality.

DSTC6 (Hori and Hori, 2017), the 6th Dialog
System Technology Challenge, used dialog data
collected from multiple Twitter accounts of cus-
tomer service for its conversation modeling track.
Each dialogue consisted of real tweets between a
customer and an agent. 40,000 responses are ob-
tained from the competing system, all of which are
based on the LSTM Seq2Seq model, which are then
annotated in terms of overall quality (DSTC-6).

FED (Mehri and Eskenazi, 2020a) is con-
structed by annotating 40 Human-Meena conver-
sations, 44 Human-Mitsuku conversations and 40
Human-Human conversations obtained from Adi-
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wardana et al. (2020b). The conversations are anno-
tated with 18 subqualities, at the turn and dialogue
levels. In this work we use the turn-level overall
quality annotations for evaluation (FED).

A.2 Training setup and Hyperparamters
This work’s codebase uses AdaterHub 3, which is
based on HuggingFace Transformers 4. We train all
Adapters using Adam with a learning rate of 1e-4.
Training is conducted for 10 epochs, with a batch
size of 16, except for the Fusion training, which
we set to 8. We experiment different seeds for the
Fusion training, and present the best performing
one. The best performing model on the evaluation
set is selected for testing. Max sequence length
was fixed to 128. The regression head consists of
2 layer MLP with a hidden size of 1024. We use
the Hyperbolic tangent as the activation function.
We use a single Quadro RTX 6000 24GB GPU for
training.

3https://Adapterhub.ml/
4https://github.com/huggingface/transformers
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Abstract
Task-oriented dialogue systems are designed
to achieve specific goals while conversing with
humans. In practice, they may have to handle
simultaneously several domains and tasks. The
dialogue manager must therefore be able to take
into account domain changes and plan over dif-
ferent domains/tasks in order to deal with multi-
domain dialogues. However, learning with rein-
forcement in such context becomes difficult be-
cause the state-action dimension is larger while
the reward signal remains scarce. Our experi-
mental results suggest that structured policies
based on graph neural networks combined with
different degrees of imitation learning can ef-
fectively handle multi-domain dialogues. The
reported experiments underline the benefit of
structured policies over standard policies.

Introduction

Task-oriented dialogue systems are designed to
achieve specific goals while conversing with hu-
mans. They can help with various tasks in different
domains, such as seeking and booking a restaurant
or a hotel (Zhu et al., 2020). The conversation’s
goal is usually modelled as a slot-filling problem.
The dialogue manager (DM) is the core component
of these systems that chooses the dialogue actions
according to the context. Reinforcement learning
(RL) can be used to model the DM, in which case
the policy is trained to maximize the probability of
satisfying the goal (Gao et al., 2018).

We focus here on the multi-domain multi-task
dialogue problem. In practice, real applications
like personal assistants or chatbots must deal with
multiple tasks: the user may first want to find a
hotel (first task), then book it (second task). More-
over, the tasks may cover several domains: the user
may want to find a hotel (first task, first domain),
book it (second task, first domain), and then find a
restaurant nearby (first task, second domain).

One way of handling this complexity is to rely
on a domain hierarchy which decomposes the

decision-making process; another way is to switch
easily from one domain to another by scaling up
the policy. Although structured dialogue policies
can adapt quickly from a domain to another (Chen
et al., 2020b), covering multiple domains remains
a hard task because it increases the dimensions of
the state and action spaces while the reward signal
remains sparse. A common technique to circum-
vent this reward scarcity is to guide the learning
by injecting some knowledge through a teacher
policy1.

Our main contribution is to study how structured
policies like graph neural networks (GNN) com-
bined with some degree of imitation learning (IL)
can be effective to handle multi-domain dialogues.
We provide large scale experiments in a dedicated
framework (Zhu et al., 2020) in which we analyze
the performance of different types of policies, from
multi-domain policy to generic policy, with differ-
ent levels of imitation learning.

The remainder of this paper is structured as fol-
lows. We present the related work in Section 1.
Section 2 presents our structured policies combined
with imitation learning. The experiments and evalu-
ation are described in Sections 3 and 4 respectively.
Finally, we conclude in Section 5.

1 Related Work

Fundamental hierarchical reinforcement learning
(Dayan and Hinton, 1993; Parr and Russell, 1998;
Sutton et al., 1999; Dietterich, 2000) has inspired
a previous string of works on dialogue manage-
ment (Budzianowski et al., 2017; Casanueva et al.,
2018a,b; Chen et al., 2020b). Recently, the use of
structured hierarchy with GNN (Zhou et al., 2020;
Wu et al., 2020) rather than a set of classical feed-
forward networks (FNN) enables the learning of
non-independent sub-policies (Chen et al., 2018,

1 For deployment the teacher is expected to be a human
expert, however, for experimentation purposes we used the
handcrafted policy as a proxy (Casanueva et al., 2017).
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(a) Domain-selection module. (b) Domain-specific decision module.

Figure 1: GNN policy for multi-domain dialogues with hierarchical decision making and weight sharing.

2020a). These works adopted the Domain Indepen-
dent Parametrisation (DIP) that standardizes the
slots representation into a common feature space
to eliminate the domain dependence. It allows poli-
cies to deal with different slots in the same way. It
is therefore possible to build policies that handle a
variable number of slots and that transfer to differ-
ent domains on similar tasks (Wang et al., 2015).

Our contribution differs from Chen et al. (2020b)
on three points: first we perform our experiments
on CONVLAB (Zhu et al., 2020) which is a ded-
icated multi-domain framework; second, the dia-
logue state tracker (DST) output is not discarded
when activating the domain; third, we adapt the
GNN structure to each domain by keeping the rel-
evant nodes while sharing the edge’s weights.

The reward sparsity can be bypassed by guiding
the learning through the injection of some knowl-
edge via a teacher policy. This approach, called
imitation learning (IL) (Hussein et al., 2017), can
be declined from pure behaviour cloning (BC)
where the agent only learns to mimic its teacher to
pure reinforcement learning (RL) where no hint
is provided (Shah et al., 2016; Hester et al., 2018;
Gordon-Hall et al., 2020; Cordier et al., 2020).

2 Extended GNN Policies with Imitation

We adopt the multi-task setting as presented in
CONVLAB, in which a single dialogue can have
the following tasks: (i) find, in which the system
requests information in order to query a database
and make an offer; (ii) book, in which the system
requests information in order to book the item. A
single dialogue can also contain multiple domains
such as hotel, restaurant, attraction, train, etc.

Our method, illustrated in Figure 1, is designed
to adapt: (i) at the domain-level (i.e. be scalable
to changes in the number of slots), and (ii) at the
multi-domain-level (i.e. be scalable to changes of
domain). For each dialogue turn, it works as fol-
low: first, the DST module chooses which domain
to activate. Then, the multi-domain belief state
(and action space) is projected into the active do-
main (i.e only the DIP nodes corresponding to the
active domain are kept) as shown in Figure 1a. Af-
terwards, we apply the GNN message passing as
Chen et al. (2020b) but only among the domain
specific DIP nodes in the decision making module
(Figure 1b).

GNN Policies The GNN structure we consider
is a fully connected graph in which the nodes are
extracted from the DIP. We distinguish two types
of nodes: the slot nodes representing the parametri-
sation of each slot (denoted as S-NODE) and the
general node representing the parametrisation of
the domain (as I-NODE for slot-Independent node).
This yields three types of edges: I2S (for I-NODE

to S-NODE), S2I and S2S. This abstract structure
is a way of modelling the relations between slots
as well as exploiting symmetries based on weight
sharing (Figure 1b).

Imitation Learning In addition to the structured
architecture, we use some level of IL to guide the
agent’s exploration. In our experiments, we used
CONVLAB’s handcrafted policy as a teacher (or or-
acle)1, but other policies could be used as well. Be-
haviour cloning (BC) is a pure supervised learning
method that tries to mimic the teacher policy. Its
loss function is the cross-entropy loss as in a classi-
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(a) Pure ACER (b) Pure BC

(c) ACER with ILfOD. (d) ACER with ILfOS.

Figure 2: Distribution via boxplot of the performance of the proposed approaches on CONVLAB, with 10 different
initializations and without pre-training. The coloured area represents the interquartile Q1-Q3 of the distribution, the
middle line represents its median (Q2) and the points are outliers.

fication problem. Imitation Learning From Oracle
Demonstrations (ILFOD) is a RL method which
allows the agent to play oracle actions as demon-
strations and to inject them in its replay buffer. In
our experiments, we kept half of the agent’s own
actions in the buffer along with those generated
by the oracle. Imitation Learning From Oracle
Supervision (ILFOS) is the combination of super-
vised and reinforcement learning when the agent
learns with a supervised loss, namely the margin
loss (Hester et al., 2018).

3 Experiments

We performed an ablation study: (i) by progres-
sively extending the baseline to our proposed
GNNs and (ii) by guiding the exploration with IL.
All the experiments were restarted 10 times with
random initialisations and the results evaluated on
500 dialogues were averaged. Each learning trajec-
tory was kept up to 10,000 dialogues with a step of
1,000 dialogues in order to analyse the variability
and stability of the methods.

Models The baseline is ACER which is a so-
phisticated actor-critic method (Wang et al., 2016).
After an ablation study, we progressively added

some notion of hierarchy to FNNs to approximate
the structure of GNNs. FNN is a feed-forward
neural network with DIP parametrisation. Thus,
the agent actions are single-actions. FNN-REF
is a FNN with the native parametrisation (no DIP)
with multiple-actions of CONVLAB2. HFNN is a
hierarchical policy with domain-selection module
and based on FNNs for each domain. HGNN is a
hierarchical policy with domain-selection module
and based on GNNs. UHGNN is a HGNN with a
unique GNN for all domains.

Metrics We evaluate the performance of the poli-
cies for all tasks. For the find task, we use the
precision, the recall and the F-score metrics: the
inform rates. For the book task, we use the accu-
racy metric namely the book rate. The dialogue is
marked as successful if and only if both inform’s
recall and book rate are 1. The dialogue is consid-
ered completed if it is successful from the user’s
point of view (i.e a dialogue can be completed with-
out being successful if the information provided is
not the one objectively expected by the simulator).

2The native parametrisation manually groups multi-actions
based on MULTIWOZ (Budzianowski et al., 2018).
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Configuration Avg Turn Inform (%) Book Complete Success
NLU Policy NLG (succ/all) Prec. / Rec. / F1 Rate (%) Rate (%) Rate (%)

- HDC - 10.6/10.6 87.2 / 98.6 / 90.9 98.6 97.9 - 97.3 -
- ACGOS (ours) - 13.1/13.2 94.8 / 99.0 / 96.1 98.7 98.2 (+0.3) 97.0 (-0.3)

BERT HDC T 11.4/12.0 82.8 / 94.1 / 86.2 91.5 92.7 - 83.8 -
BERT HDC† T 11.6/12.3 79.7 / 92.6 / 83.5 91.1 90.5 (-2.2) 81.3 (-2.5)
BERT MLE† T 12.1/24.1 62.8 / 69.8 / 62.9 17.6 42.7 (-50.0) 35.9 (-47.9)
BERT PG† T 11.0/25.3 57.4 / 63.7 / 56.9 17.4 37.4 (-55.3) 31.7 (-52.1)
BERT GDPL† T 11.5/21.3 64.5 / 73.8 / 65.6 20.1 49.4 (-43.3) 38.4 (-45.4)
BERT PPO† T 13.1/17.8 69.4 / 85.8 / 74.1 86.6 75.5 (-17.2) 71.7 (-12.1)
BERT ACGOS (ours) T 14.0/14.8 88.8 / 92.6 / 89.5 86.6 89.1 (-3.6) 81.7 (-2.1)

Table 1: Dialogue system evaluation with simulated users. T means template-based NLG. Configurations without
NLU and NLG modules pass directly the dialogue act. Configurations with ACGOS and HDC policies are
evaluated on a single run with 1,000 dialogues. Configurations with † are taken from the GitHub of CONVLAB.
PPO in CONVLAB used behaviour cloning as the pre-trained weights (see for more details).

4 Evaluation

We evaluate the dialogue manager and the dialogue
system both with simulated users.

Dialogue Manager We performed an ablation
study based on ACER as reported in Figure 2. First,
all RL variants of ACER (Figure 2a) have diffi-
culties to learn without supervision in contrast to
BC variants (Figure 2b). In particular, we see that
hierarchical decision making networks (HFNN in
green), graph neural network (HGNN in red) and
generic policy (UHGNN in purple) drastically im-
prove the performance compared to FNNs. Sim-
ilarly, using IL like ILFOD (Figure 2c) and IL-
FOS (Figure 2d) notably improves the performance.
Therefore, learning generic GNNs allows collab-
orative gradient update and efficient learning on
multi-domain dialogues. Conversely, we observe
that hierarchical decision making with HFNNs
does not systematically guarantee any improve-
ment. These results suggest that GNNS are use-
ful for learning dialogue policies on multi-domain
which can be transferred during learning across
domains on-the-fly to improve performance. Fi-
nally, regarding ILFOD variants (Figure 2c), we
can observe that all architectures are affected by
a large variability. This shows that multi-domain
dialogue management is difficult despite the use of
demonstrations and that learning with reward is not
sufficient to robustly succeed.

Dialogue System We evaluate the policy learning
algorithms in the entire dialogue pipeline, in partic-
ular our best DM policy ACER-ILFOS-UHGNN
under a shorter name ACGOS. The results of

our experimentation are presented in Table 1. We
observe that the performance of our approach is
closed to the handcrafted policy (the teacher) when
directly passing the dialogue acts (97.3 vs. 97.0). It
is also closed to the handcrafted policy when using
BERT NLU (Devlin et al., 2018) and template-
based NLG (83.8 vs. 81.7). It is much better com-
pared to the baselines with a significant difference
(e.g. with 81.7 for ACGOS vs. 71.7 for pre-trained
PPO). These results highlight the benefit of struc-
tured policies against standard policies.

5 Conclusion

We studied structured policies like GNN combined
with some imitation learning that effectively handle
multi-domain dialogues. The results of our large-
scale experiments on CONVLAB confirm that an
actor-critic based policy with a GNN structure can
solve multi-domain multi-task dialogue problems.
Finally, we evaluated our best policy (ACGOS) in
a complete dialogue system with simulated users.
It overcomes the baselines and it is comparable to
the handcrafted policy.

A limitation of current policies in CONVLAB,
including ours, is that the robustness to noisy inputs
is not specifically addressed as it had been done
in PyDial (Ultes et al., 2017). It could be also
interesting to study the impact of incorporating real
human feed-backs and demonstrations instead of a
handcrafted teacher.

The GNN structured policies combined with
imitation learning avoid sparsity, while being data
efficient, stable and adaptable. They are relevant
for covering multi-domain task dialogue problems.
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A Appendix

A.1 Domains

Domain # constraint slots # request slots

CONVLAB find/book search

Restaurant 4/3 5
Attraction 3/- 7
Hotel 7/3 5
Taxi 4/- 2
Train 5/1 5
Hospital 1/- 3
Police -/- 3

Table 2: Domains Description of CONVLAB framework

Belief State The belief state representation is de-
terministic. As shown in Figure 3, there is no un-
certainty (all values are either 0’s or 1’s).

State Space The input to the dialogue manager is
the belief state which is a dictionary of all tractable
information (slot-value pairs, history, dialogue ac-
tions of system and user, etc.). This is called the
master state space. And, due to its large size, the
representation is projected into the summary state
space by a process called value abstraction (Wang
et al., 2015). Finally, it must be vectorised in order
to be interpretable by neural networks.

Action Space The dialogue manager’s output is
a probabilistic distribution over all possible actions.
To reduce the complexity of the learning problem,
master actions, which are valued dialogue acts such
as INFORM(date = ’2022-01-15’), are abstracted
into summary actions like INFORM(date), the value
abstraction module being in charge of restoring the
relevant values in the context. On CONVLAB the
policy may activate several actions simultaneously
(called multiple-actions).

Domain Independent Parametrisation (or
DIP) (Wang et al., 2015) standardises the slots
representation into a common feature space to
eliminate the domain dependence. In particular,
the DIP state and action representations are not
reduced to a flat vector but to a set of sub-vectors:
one corresponding to the domain parametrisation
(called slot-independent representation), the others
to the slots parametrisation (called slot-dependent
representations).
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Component / Description

Beliefs

constraint slot beliefs: {binfd,s ∈ Vs, ∀s ∈
Sinfd , ∀d ∈ D} The goal constraints belief for
each informable slot. This is either an assignment
of a value from the ontology which the user has
specified as a constraint, or has a special value
— either dontcare which means the user has no
preference, or none which means the user is yet
to specify a valid goal for this slot. To be ex-
act, for each domain, the constraint slot dictionary
separates slots with respect to the task i.e we dis-
tinguish the find slot dictionary and the book slot
dictionary.
request slot beliefs: {breqd,s ∈ B, ∀s ∈ Sreqd , ∀d ∈
D}: A set of requested slots, i.e. those slots whose
values have been requested by the user, and should
be informed by the system.

Features

terminated: f1 ∈ B: A boolean showing that the
user wants to end the call.
booked: f2 ∈ VDB(d): The name of the last venue
offered by the system to the user with respect to
the constraint slots with additional information like
reference. To be exact, this feature is located in
the book slot dictionary.
degree pointer: f3 ∈ B6: The vector counting the
number of entities count matching with constraint
slots in acceptance list: [count==0, count==1,
count==2, count==3, count==4, count>=5].

System Acts

system acts: asys ∈ list(Asys): The list of the
last system actions.

User Acts

user acts: auser ∈ list(Auser): The list of the last
user actions.

Table 3: Belief State Template in CONVLAB framework

Figure 3: Transformation from initial state to DIP state
representation (it works similarly for actions).

A.2 State and Action Representations
We propose to formally present the state represen-
tations used in our experiments. For details about
our notations, see Table 3.

Flat state representation in CONVLAB

ϕ(x) =
( ⊕

s∈Sinf

binfs

)

⊕ auser ⊕ asys ⊕ [f1]⊕ f2 ⊕ f3

where x is the initial state, ϕ(x) is the full state
parametrisation, Sinf is the set of informable slots,
binfs is the one-encoding vector of the informable
slot s, auser and asys are the one-encoding vec-
tors of previous user and system actions, f1 is the
boolean "terminated dialogue", f2 is the boolean
"booked offer" with respect to each domain, f3 is
the one-encoding vector of the matching entities
count with respect to each domain and ⊕ is the
vector concatenation operator.

DIP state representation
Slot independent parametrisation:

ϕd(x) = auser|g ⊕ asys|g ⊕ [f1, f2|d, f3|d]

where x is the initial state, ϕd(x) is the active
domain state parametrisation, auser|g and asys|g
are the one-encoding vectors of previous general
user and system actions, f1 is the boolean "termi-
nated dialogue", f2|d is the boolean "booked offer"
with respect to the active domain, f3|d is the one-
encoding vector of the matching entities count with
respect to the active domain and ⊕ is the vector
concatenation operator.
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Slot dependent parametrisation:

∀si ∈ Sd, ϕsi(x) = auser|si ⊕ asys|si
⊕
[
1(∃ v ∈ Vsi/{none}, b∗si [v] = 1)

]
(2a)

⊕
[
1(si ∈ Sinfd )

]
(2b)

⊕
[
1(si ∈ Sreqd )

]
(2c)

where x is the initial state, ϕsi(x) is the slot
parametrisation of the ith slot, Sd is the set of slots
of the active domain, auser|si and asys|si are the
one-encoding vectors of previous user and system
actions of the ith slot, (2a) is the indicator of known
value, (2b) is the indicator of informable slot and
(2c) is the indicator of requestable slot and ⊕ is the
vector concatenation operator.

A.3 Implementation Details

Imitation learning The used oracle is the hand-
crafted agent proposed by each framework. When
we use ILFOD or ILFOS methods, 50% of the
time the oracle trajectories is used. When we use
ILFOS, we call also in 100% of the time the oracle
which gives us the best expert action as supervision
and a margin penalty µ = log(2) (Hester et al.,
2018).

Reinforcement learning Our policy algorithm is
an off-policy learning that uses experience replay
(all data are stored in buffers) without priority i.e
without importance sampling. The exploitation-
exploration procedure is achieved by Boltzmann
sampling with a fixed temperature τ = 1.

Metrics and Rewards Inform recall evaluates
whether all the requested information has been in-
formed when inform precision evaluates whether
only the requested information has been informed.
Book rate assesses whether the offered entity
meets all the constraints specified in the user goal.
The system is guided by the rewards as follows. If
all domains are solved (a domain is solved if all
related tasks are solved), it gains 40 points. If the
current active domain is solved, it gains 5 points.
Otherwise, it is penalised by 1 point.

Model setup for neural network architectures
Our FNN models have two hidden layers, both
with 128 neurons. Our GNN models have one first
hidden layer with 32 neurons for each node (two in
all: S-NODE and I-NODE). Then the second hidden
layer is composed of 32 neurons for each relation
(three in all: S2S, S2I and I2S). The size of the

tested networks are of the order of magnitude of
10 000 to more than 100 000 parameters.

For learning stage, we use a learning rate
lr = 10−3, a dropout rate dr = 0.1 and a batch
size bs = 64. Each loss function has a weight
of λQ = 0.5, λπ = 1., λIL = 1. and λent = 0.01
respectively. The learning frequency is one iter-
ation after each episode (finished dialogue) with
only one gradient iteration.

Used packages for the experiment We used
the dialogue system frameworks named CON-
VLAB (Zhu et al., 2020). For the implementation
of neural networks, we used PYTORCH (Paszke
et al., 2019) in our dialogue systems. We also used
another toolkit for reinforcement learning research
named OPENAI GYM (Brockman et al., 2016).

A.4 Supplementary Results
We propose to present supplementary results of
our ablation study. We show the distribution (via
boxplot) of different measures with 10 different ini-
tialisations and without pre-training. In particular,
Figure 4 presents the distribution of inform recall,
Figure 5 the distribution of book rate, Figure 6 the
distribution of success rate and Figure 7 the distri-
bution of cumulative rewards. We precise that the
coloured area represents the interquartile Q1-Q3
of the distribution, the middle line represents its
median (Q2) and the points are outliers.
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(a) Recall Average - UHGNN models

(b) Recall Average - HGNN models

(c) Recall Average - HFNN models

(d) Recall Average - FNN models with DIP
parametrization

(e) Recall Average - FNN models with native
parametrization

Figure 4: Summary of performance - Task find

(a) Book Rate - UHGNN models

(b) Book Rate - HGNN models

(c) Book Rate - HFNN models

(d) Book Rate - FNN models with DIP parametriza-
tion

(e) Book Rate - FNN models with native parametriza-
tion

Figure 5: Summary of performance - Task book
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(a) Success Rate - UHGNN models

(b) Success Rate - HGNN models

(c) Success Rate - HFNN models

(d) Success Rate - FNN models with DIP
parametrization

(e) Success Rate - FNN models with native
parametrization

Figure 6: Summary of performance - Global task (Task
find and/or Task book)

(a) Cumulative rewards - UHGNN models

(b) Cumulative rewards - HGNN models

(c) Cumulative rewards - HFNN models

(d) Cumulative rewards - FNN models with DIP
parametrization

(e) Cumulative rewards - FNN models with native
parametrization

Figure 7: Summary of performance - Cumulative re-
wards100
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Abstract

The DialPort project (http://dialport.
org/), funded by the National Science Foun-
dation (NSF), covers a group of tools and ser-
vices that aim at fulfilling the needs of the di-
alog research community. Over the course of
six years, several offerings have been created,
including the DialPort Portal and DialCrowd.
This paper describes these contributions, which
will be demoed at SIGDIAL, including imple-
mentation, prior studies, corresponding discov-
eries, and the locations at which the tools will
remain freely available to the community going
forward.

1 Introduction

The DialPort project1 has created tools and services
that respond to needs voiced by many in the dia-
log research community during several workshops
organized by the Principle Investigators (PIs). Its
offerings are available at no cost to the commu-
nity with the goal of helping researchers gather
high quality data, and easily assess and compare
their dialog systems. This paper and its correspond-
ing demos showcase the DialPort Portal2 and Dial-
Crowd3.

There is an increasing need for large amounts
of natural dialog data that can be obtained at rea-
sonable cost and in an interactive manner. Static
datasets are ineffective for both evaluation and op-
timization. This has led to the creation of the Di-
alPort Portal, which facilitates the collection of
flexible and evolving data as well as interactive as-
sessment with real users. Notably, the Portal was
used to connect systems and collect data for the
Interactive Evaluation of Dialog track (Mehri et al.,
2021) at DSTC9 (Gunasekara et al., 2020).

∗∗Equal contribution
1http://dialport.org/
2https://dialport.org/portal
3http://dialport.org/dialcrowd.html

Another community need centers around how to
gather high quality data when using crowdsourc-
ing platforms. DialCrowd has been constructed to
facilitate crowdsourcing by guiding researchers to
give clear, understandable explanations of the task
to the workers who produce or annotate data. It
also aids in calculating the correct level of worker
payment. Finally, it includes several methods of
data quality assessment.

The University of Southern California (USC) is
a partner in DialPort. The team at USC works on a
tools repository4 and the REAL Challenge.

This paper gives background and describes in
detail the parts of both the Portal and DialCrowd.
It also provides information on how to access and
use them. As the DialPort project draws to an end,
the paper indicates the permanent sites where these
tools will reside.

2 Background

2.1 Interactive Platforms for Dialog

As dialog models improve, it is imperative that
they are evaluated in interactive settings with real
users. Mehri and Eskenazi (2020) show that while
pre-trained dialog systems excel at generating re-
sponses (Zhang et al., 2019; Bao et al., 2020), they
underperform in back-and-forth interactions.

The Alexa Prize challenge (Ram et al., 2018;
Khatri et al., 2018) allows university teams to build
socialbots that are assessed in interactive settings
with Alexa users. In contrast, the DialPort Portal
is accessible to the broader research community.
Furthermore, the Alexa Prize challenge primarily
relies on speech input from the user, which may
result in speech recognition errors. Though the
DialPort Portal can accept speech input, its web
interface can also be used with text-only input.

4https://dialport.ict.usc.edu/
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2.2 Crowdsourcing

With the amount of dialog data available or able
to be collected with systems such as DialPort, it
is important to have easy and accessible tools to
create detailed annotations of this data for differ-
ent metrics. One method of obtaining annotations
is crowdsourcing with platforms such as Amazon
Mechanical Turk (AMT). However, it is sometimes
difficult to obtain conclusive results, and a survey
of current natural language processing HITs has
shown the weaknesses of these HITs (Huynh et al.,
2021). Instructions (Chandler et al., 2013), exam-
ples (Doroudi et al., 2016), and payment are some
of the aspects that need to be attended to in order
for HITs to acquire higher quality data.

3 DialPort Portal

The DialPort Portal was initially conceived with
the objective of listing many dialog systems from a
variety of sites. This type of platform, with demon-
strations, links, and references to various systems,
is valuable to both researchers and real users. The
concept of the Portal evolved, and the different
systems were linked such that a user could inter-
act with all of the connected systems, transitioning
seamlessly between systems, with the dialog state
(consisting of slots such as city or date) shared
across systems (Zhao et al., 2016; Lee et al., 2017).
As dialog systems continued to improve, especially
with the advent of engaging response generation
models (Zhang et al., 2019; Bao et al., 2020), the
Portal recruited real users through Facebook adver-
tising with the objective of providing researchers
with a platform to collect interactive dialogs with
real users (Mehri et al., 2021).

3.1 Portal Version 1

The original version of the Portal grouped several
dialog systems from different sites (Cambridge,
USC, CMU) and managed seamless switching
amongst (Zhao et al., 2016). For example, a user
could ask for the weather in Pittsburgh and get the
CMU weather system, then ask the CMU system
for the weather in Cambridge, then ask for a restau-
rant and automatically switch to the Cambridge
restaurant system, then ask to play a game and get
the USC system.

This instance of the Portal serves as a platform
to interact with different systems over the course
of one dialog (Zhao et al., 2016). To accomplish
this, the Portal needed to address several challenges

(1) how to share information across systems (e.g.,
remembering the city the user wanted the weather
for when interacting with the CMU system, and
sharing that with the Cambridge system when the
user wants a restaurant recommendation), (2) how
to gracefully continue a dialog when a system is
down, and (3) how to give two systems addressing
the same task (e.g., restaurants) equal time with the
users. Respectively, these problems were addressed
by (1) maintaining a shared dialog state across sys-
tems, (2) backing off to an equivalent system or
changing the topic, and (3) a pseudo-random sys-
tem selection policy. In order to make the system
easy to use, an API was developed to facilitate con-
necting new systems to the Portal. This version has
pedagogical value as it can easily be demonstrated
for dialog classes.

3.2 Portal Version 2

With the advent of the API, the possibilities of use
of the Portal greatly expanded. The Portal was used
for the DSTC9 Challenge (Mehri et al., 2021), as a
tool that enabled researchers to both compare their
systems on one common platform (with real users)
and to gather considerable amounts of data. The
Portal was made available to DSTC9 participants.
The idea was to connect systems and have them
tested by real (unpaid) users. The CMU DialPort
team advertised the Portal on Facebook and inter-
ested individuals tried it out (with text only). Upon
visiting the Portal, real users are randomly matched
with a dialog system, without knowledge of the spe-
cific system they are interacting with. While some
people left the site after only one or two turns with
a system, many actually continued to communicate
with a system for a substantial conversation, and
were thus considered to be real users. Real users
consist of users who find some personal interest
(getting information, companionship, curiosity) in
continuing a dialog. There were 11 participants in
the interactive part of the Challenge (Mehri et al.,
2021). With an advertising budget of $2500, we
collect more than 4000 dialogs on the DialPort
portal (2960 dialogs with at least 4 turns or 8 utter-
ances); thus the cost was less than $1.00 per usable
dialog. The DialPort portal, through funding from
the National Science Foundation, has been able to
provide interactive evaluation as a service free of
charge to any dialog researchers. The Appendix
contains a sample dialog from the winning system
of the DSTC9 track (Bao et al., 2020).
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Figure 1: DialPort Portal. This screenshot of the Portal displays (1) the dialog history, shown in the center of the
screen, (2) an input field for the user to type their responses, and (3) a set of feedback buttons below the dialog
history (“Like”, “Dislike”, “Feedback?”, “Improve Response?” and “End Conversation”). The interface clear and
emphasizes the three important actions that a user should perform while using the Portal: (1) reading the dialog
history, (2) responding to the dialog system, and (3) providing feedback.

DSTC9 demonstrated that the Portal could easily
be used to both compare systems and to gather
data with real users. Besides challenges, another
potential use of the Portal would be for students to
connect systems that they build for a class project
to see how well they do in real user interaction.

At the end of the DialPort project in the coming
year, the Portal will move from the Dialog Research
Center at CMU to LDC at UPenn.

3.3 DialPort Dashboard

After collecting data from real users on the Dial-
Port interface, a subsequent task is to perform anal-
ysis on the gathered data. We provide the DialPort
dashboard which allows researchers to (i) analyze
dialogs collected on their system, (ii) interact with
the dashboard to filter and organize dialogs based
on various criteria, and (iii) compare their system
to other systems connected to the DialPort Por-
tal. Currently, the Dashboard contains over 7000
dialogs from 28 systems. The Dashboard is con-
nected to the DialPort Portal via API calls, allowing
dialogs to be quickly displayed on the Dashboard
after being collected from the Portal. The Dash-
board code will soon be released, allowing for use
of the Dashboard in offline mode.

The Dashboard UI contains panels, tables, and

charts. At both the system and dialog level, at-
tributes such as the number of utterances, likes,
dislikes, comments, corrections are displayed (see
figure 3). In addition, the two evaluation metrics of
FED (Mehri and Eskenazi, 2020) and human rat-
ings are shown. Since the Dashboard is designed to
be easily extended, additional metrics can be added
in the future. Users can interact with the dash-
board by filtering and ranking dialogs based on
attributes and metrics. For example, the provided
toolbar can be used to find all conversations with a
given user’s system with more than n turns or rank
conversations from most-to-least number of likes.
Users can also filter words and phrases in dialogs
by their number of occurrences from the perspec-
tive of both the system or human participant, and
thus view common phrases or words mentioned on
either side of the conversation. Finally, each system
contains a progress monitor graph which displays
the number of dialogs being collected over time,
allowing users to actively observe data collection
in the DialPort Portal.

4 DialCrowd

To address the many issues that present themselves
when using crowdsourcing to collect high qual-
ity data, DialCrowd was created. DialCrowd (Lee
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Figure 2: DialCrowd Examples and Counterexamples with Explanations

et al., 2018) is a dialog assessment toolkit which
aids researchers with human intelligence task (HIT)
creation. Requesters follow templates on the Di-
alCrowd site, which generate a HIT that can be
linked for a worker on any crowdsourcing site.

The second version of this tool (Huynh et al.,
2022) focuses on collecting high-quality data with
tools such as:

• Links to create better instructions

• Prompts to provide examples and counterex-
amples with explanations seen in Figure 2

• Functionality for adding golden data and du-
plicate data in each HIT

• Payment suggestions

• A feedback area

• Overall statistics from the HIT (time, patterns
in the responses, inter-annotator agreement)

This allows for requesters to create a well-
structured HIT which allows workers to provide
better quality annotations. Consequently, it makes
it easier to filter responses from potential bots. Ad-
ditional tools include the capability to include a
mandatory consent form at the start of the HIT, and
detailed style changes for the HIT. Further descrip-
tion of the system along with corresponding images
can be found in (Huynh et al., 2022).

One DialCrowd template, intent classification,
has been merged into the new home for DialCrowd,
ParlAI 5, and is now available for use.

5 The DialPort demo

The demos of the DialPort Portal and Dashboard
and of DialCrowd at SIGDIAL will include:

5https://github.com/facebookresearch/
ParlAI/tree/main/parlai/crowdsourcing/
tasks/dialcrowd

• how to connect a system

• what interaction with each tool looks like

• advantages there are in using the tools, with
examples (for example, what resulting data
looks like)

6 Conclusion and Future Directions

The tools presented in this demo help dialog re-
searchers in data gathering and assessment. As the
community uses them, more types of applications
will arise. The tools have been created in a way that
enable additions as the field and the needs evolve.
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A Appendix

User: Hello
System: hello! hows your day going so far?
User: What are you up to?
System: just finished making coffee! what about
you? what do you do?
User: i’m playing video games
System: oh, nice! what kind? and i’m just relaxing
here and listening to some classical music.
User: i’m playing league of legends
System: nice! what rank are you? i haven’t played
in forever.
User: who is your favorite classical musician?
System: probably beethoven. i like classical mu-
sic.
User: i’m plat 2
System: nice! i’d imagine you are better than that!
User: can you play an instrument?
System: i can play the piano. do you play any
instruments?
User: thanks
System: i appreciate it! so what is it like being plat
2?
User: i can play the clarinet, but not very well haha
System: oh nice! i played clarinet in high school.
User: the games are difficult but rewarding
System: yes they are! i played the trumpet in
college.

. . .

Table 1: An example of a conversation snippet from the
DSTC9 top performing system. The system is capable
of maintaining two simultaneous threads of dialog about
League of Legends and music, and switch between them
in a coherent and engaging manner.
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Figure 3: The home page for a system on the DialPort dashboard. General information about the conversations
collected from the system are displayed. Sections such as "Words and Phrases" and "Graphs" can be expanded or
collapsed to view additional information about the system.

Figure 4: Using the DialPort dashboard to find all conversations in a system with more than 3 utterances
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Abstract

In recent years, spoken dialogue systems have
been used in job interviews where an appli-
cant talks to a system that asks pre-defined
questions, called on-demand and self-paced
job interviews. We propose a simultaneous
job interview system, where one interviewer
can conduct one-on-one interviews with multi-
ple applicants simultaneously by cooperating
with multiple autonomous interview dialogue
systems. However, it is challenging for inter-
viewers to monitor and understand all paral-
lel interviews done by the autonomous system
simultaneously. To address this issue, we im-
plement two automatic dialogue understanding
functions: (1) response evaluation of each ap-
plicant’s responses and (2) keyword extraction
for a summary of the responses. In this system,
interviewers can intervene in a dialogue ses-
sion when needed and smoothly ask a proper
question that elaborates the interview. We have
conducted a pilot experiment where an inter-
viewer conducted simultaneous job interviews
with three candidates.

1 Introduction

Owing to the widespread use of online job inter-
views during the COVID-19 situation, spoken dia-
logue systems supporting job interviews to make
them more efficient are being investigated. In con-
ventional face-to-face job interviews, interviewers
conducted interviews with many applicants one by
one, which was time-consuming. Therefore, on-
demand interviews have been widely adopted as an
alternative to face-to-face interviews, such as Hire-
vue 1 and Modern Hire 2. In this style, job appli-
cants answer predefined typical questions and then
submit video recordings of interviews. However,
there is a lack of the much needed interaction be-
tween interviewers and applicants since applicants
only respond to predefined questions. Therefore,

1https://www.hirevue.com/
2https://modernhire.com/
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Figure 1: Concept of simultaneous job interview system

to elicit sufficient information from applicants for
their selection becomes difficult.

In this study, we propose a new framework for
a spoken dialogue system that makes job inter-
views more interactive and efficient than that of
on-demand interviews. The proposed framework is
a cooperation between system and humans, namely
semi-autonomous agents. With this framework,
job interviewers can conduct multiple job inter-
views simultaneously. Specifically, a human job
interviewer (operator) cooperates with multiple au-
tonomous job interview agents to conduct one-on-
one interviews with multiple applicants simultane-
ously (Figure 1). For most of the session, an au-
tonomous agent conducts a job interview with each
job applicant, and the human interviewer (opera-
tor) monitors them. The interviewer can intervene
in any of the dialogues when necessary and then
asks specific follow-up questions that cannot be
generated by the autonomous agent. These follow-
up questions are necessary to make job interviews
more interactive and substantial. In this paper, we
describe the framework of the proposed system and
report a pilot experiment.
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2 Simultaneous job interview system

First, we introduce the one-on-one autonomous job
interview dialogue system which is a basic com-
ponent of the proposed framework. This system
only asks predefined questions one by one such as
motivation, strengths, and weaknesses. Similar to
the existing on-demand job interview systems, no
follow-up questions are asked after the responses.
Although several works exist on follow-up question
generation in the job interview domain (Su et al.,
2019; Inoue et al., 2020), the questions automati-
cally generated by the system are not necessarily
appropriate or what the interviewer actually wants
to know.

Next, we describe the proposed simultaneous job
interview system. In this system, each applicant is
interviewed by the above autonomous agent, and
the human interviewer observes these multiple in-
terview sessions. If the human interviewer wants
to directly interact with any applicant, the inter-
viewer can switch from the autonomous agent and
then interact with the applicant. For example, the
interviewer can ask specific follow-up questions
that cannot be generated by the autonomous agent.
Then, after the interviewer ends the intervention,
the autonomous agent continues the session.

In this system, the interviewer is required to
comprehend each applicant’s answer and then ask
proper follow-up questions and also decide on the
timing of intervention. However, due to the cogni-
tive ability of humans, it is not possible to under-
stand the contents of multiple dialogues simultane-
ously. Even if each log of automatic speech recog-
nition is generated and shown to the interviewer,
it is difficult to follow all of them. It is neces-
sary to summarize the information of each session.
Therefore, we introduce response evaluation and
keyword extraction that enable the interviewer to
follow the dialogues done by multiple agents, as
follows.

2.1 Response evaluation
We implemented a model that automatically evalu-
ates the quality of each applicant’s response. First,
we conducted an annotation of response quality
using a job interview dialogue corpus containing
86 mock job interview sessions (Inoue et al., 2020).
The following three metrics were evaluated on the
3-point scale, from 0 (low) to 2 (high), for each
response from the corpus.

Table 1: Number of annotated samples for response
evaluation (0: insufficient, 1: middle, 2: sufficient)

Evaluation item 0 1 2
Appropriateness 18 26 464
Concreteness 164 190 154
Conciseness 112 311 85

• Appropriateness (Does the response fulfill
what was asked?)

• Concreteness (Is the response concrete? Does
the response contain any evidence and specific
episodes?)

• Conciseness (Is the response brief?)

The numbers of annotated samples for each score
and item are summarized in Table 1.

For each evaluation item, we made a binary clas-
sifier with BERT where the input is the concate-
nation of the system’s question and applicant’s re-
sponse. The pre-trained BERT model 3 was fine-
tuned with the three class labels of each item. The
five-fold cross-validation was conducted and the
macro F1-scores were 64.2%, 71.6%, and 76.0%
for appropriateness, concreteness, and conciseness,
respectively. A sample input is shown below, and
the response evaluation models correctly assign
each score of 2.

(What is your strength?)
“I have a degree in education, so I know a
lot about how to help children learn while
having fun. I also studied specialized
content in my master’s program, which
I believe will be useful in creating teach-
ing materials. I am also well versed in
special needs education, and I think my
strength lies in my ability to work with a
wide variety of children.”

The sum of the three scores is presented to the
operator and used for evaluation of applicants. The
operator can choose to intervene the applicant who
is given high scores. On the other hand, when the
system is used for interview practice, the operator
might intervene against applicants with low scores.

2.2 Keyword extraction
Keyword extraction was implemented using the
same response data. We annotated keywords using

3https://github.com/cl-tohoku/
bert-japanese
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the criterion of “words (or compound nouns) that
represent the applicant’s ability and experience”. A
character-based BiLSTM-CRF (Akbik et al., 2018)
was used as a keyword extraction model. The
benchmark result showed that the F1-score was
61.9%. For example, keywords extracted from the
same input response as in Section 2.1, were “degree
in education”, “how to help”, “specialized content”,
and “a wide variety of children”. These keywords
are presented to the interviewer as summary of the
responses as a help for follow-up questions.

3 System implementation

Figure 3 depicts the configuration of the proposed
system. The autonomous job interview system runs
for each applicant. The input speech is segmented
by a pause and fed into an automatic speech recog-
nition with the sub-word-based attention mecha-

nism. The recognition results are concatenated
within the same turn and then used for the response
evaluation and keyword extraction. The interface
of the job interviewer agent is realized by MMDA-
gent (Lee et al., 2013). The system utterances are
played with a text-to-speech engine.

Figure 2 shows the GUI for an interviewer where
they can monitor multiple dialogues. This interface
consists of mainly three items: (1) the dialogue his-
tory of each applicant, (2) the results of response
evaluation, and (3) the results of keyword extrac-
tion. The human interviewer can select any appli-
cant they want to intervene by clicking a button
in the GUI. Once the interviewer selects an ap-
plicant, they can interact with each other directly,
meanwhile, autonomous agents talk with the other
applicants simultaneously.

4 Pilot experiment

We conducted a pilot experiment to confirm if
the proposed system can handle multiple job in-
terviews. In this experiment, a within-subject com-
parison was made between the fully autonomous
system without human intervention (baseline) and
the proposed system with three applicants. The
subjects were 30 undergraduate and graduate stu-
dents as applicants in the setting of “a student who
participates in a first-round interview of some com-
pany.” Note that the company was selected by each
participant freely and independently. They were di-
vided into groups of three persons in the condition
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Table 2: Evaluation result in pilot experiment (5-point scale from 1:low to 5:high)

Evaluation items
Baseline Proposed

p-value
Mean STD Mean STD

(Q1) The dialogue was smooth 4.14 1.53 4.32 0.82 .153
(Q2) The system’s responses were natural 4.07 1.18 4.14 1.02 .301
(Q3) You participated in the interview seriously 4.36 0.91 4.43 0.77 .245
(Q4) You were nervous during the interview 3.29 1.34 3.61 1.14 .030*
(Q5) You talked well about yourself 3.64 1.13 3.93 1.03 .066+
(Q6) You felt the interviewer listened your answers 3.29 1.40 4.14 0.35 <.001**
(Q7) The interviewer understood you 3.11 1.43 3.64 0.83 .005**

(+ p < .10, * p < .05, ** p < .01)

of the proposed system. The evaluation items are
listed in Table 2 where each was rated on a 5-point
scale from 1 to 5. This experiment was conducted
in Japanese.

Table 2 summarizes the evaluation results. The
one-tailed paired t-test was conducted for each eval-
uation item, and the proposed system received sig-
nificantly higher scores on the three items “You
were nervous during the interview”, “You felt the
interviewer listened to your answers”, and “The
interviewer understood you”. A significant trend
was also observed for the item “You talked well
about yourself”. Although no significant trend was
observed, the proposed method was rated higher
than the baseline method for the other three items.
Therefore, the proposed system improved the qual-
ity of interaction through the intervention of the
interviewer, and can conduct efficient multiple job
interviews with three applicants simultaneously.

We present some comments given by the sub-
jects after the experiment. Following were the com-
ments regarding the proposed system.

“I thought it was efficient to let the ma-
chine ask the typical questions that have
to be asked during the interview and let
a human engage in interaction more ad-
vanced.”

“I get very nervous when the questions
are asked back. It is good to have a real-
istic sense.”

The baseline fully autonomous system received the
following comments.

“I did not feel like I was being listened
to.”

“I did not really feel like I was being in-
terviewed because I was always told “I

see” after each answer. I did not feel like
I was being interviewed very much.”

5 Conclusions

We propose a simultaneous job interview system
that allows human interviewers to interact with
multiple applicants in real-time based on response
evaluation and keyword extraction. For the inter-
face of interviewers, the response evaluation and
keyword extraction were implemented for making
efficient intervention. In the pilot experiment, we
showed the effectiveness of the proposed system
and confirmed the proposed architecture would po-
tentially be accepted as a new framework for future
job interviews.
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Abstract
Embodied agents need to be able to interact in
natural language – understanding task descrip-
tions and asking appropriate follow up ques-
tions to obtain necessary information to be ef-
fective at successfully accomplishing tasks for
a wide range of users. In this work, we pro-
pose a set of dialog acts for modelling such di-
alogs and annotate the TEACh dataset that in-
cludes over 3,000 situated, task oriented con-
versations (consisting of 39.5k utterances in
total) with dialog acts. TEACh-DA is one of
the first large scale dataset of dialog act anno-
tations for embodied task completion. Further-
more, we demonstrate the use of this annotated
dataset in training models for tagging the di-
alog acts of a given utterance, predicting the
dialog act of the next response given a dialog
history, and use the dialog acts to guide agent’s
non-dialog behaviour. In particular, our ex-
periments on the TEACh Execution from Di-
alog History task where the model predicts the
sequence of low level actions to be executed
in the environment for embodied task comple-
tion, demonstrate that dialog acts can improve
end task success rate by up to 2 points com-
pared to the system without dialog acts.

1 Introduction

Natural language communication has the potential
to significantly improve the accessibility of embod-
ied agents. Ideally, a user should be able to con-
verse with an embodied agent as if they were con-
versing with another person and the agent should
be able to understand tasks specified at varying lev-
els of abstraction and request for help as needed,
identifying any additional information that needs to
be obtained in follow up questions. Human-human
dialogs that demonstrate such behavior are criti-
cal to the development of effective human-agent
communication. Annotation of such dialogs with
dialog acts is beneficial to better understand com-
mon conversational situations an agent will need to

∗These two authors contributed equally.

handle (Gervits et al., 2021). Dialog acts can also
be used in building task oriented dialog systems
to plan how an agent should react to the current
situation (Williams et al., 2014).

In this paper, we design a dialog act annotation
schema for embodied task completion based on the
dialogs of the TEACh dialog corpus (Padmakumar
et al., 2021). TEACh is a dataset of over 3,000 situ-
ated text conversations between human annotators
role playing a user (Commander) and a robot (Fol-
lower) collaborating to complete household tasks
such as making coffee and preparing breakfast in
a simulated environment. The tasks are hierarchi-
cal, resulting in agents needing to understand task
instructions provided at varying levels of abstrac-
tion across dialogs. The human annotators had a
completely unconstrained chat interface for com-
munication, so the dialogs reflect natural conversa-
tional behavior between humans, not moderated by
predefined dialog acts or turn taking. Additionally,
the Follower had to execute actions in the environ-
ment that caused physical state changes which were
examined to determine whether a task was success-
fully completed. We believe that these annotations
will enable the study of more realistic dialog be-
haviour in situated environments, unconstrained by
turn taking.

Summarizing our contributions:

• We propose a new schema of dialog acts for
task-driven embodied agents. This consists
of 18 dialog acts capturing the most common
communicative functions used in the TEACh
dataset.

• We annotate the TEACh dataset according to
the proposed schema to create the TEACh-DA
dataset.

• We investigate the use of the proposed dialog
acts in an extensive suite of tasks related to
language understanding and action prediction
for task-driven embodied agents.

111



We establish baseline models for classifying the
dialog act of a given utterance in our dataset and
predicting the next dialog act given an utterance
and conversation history. Additionally, we explore
whether dialog acts can aid in plan prediction -
predicting the sequence of object manipulations
the agent needs to make to complete the task, and
Execution from Dialog History (EDH) - where the
agent predicts low level actions that are executed
in the virtual environment and directly evaluated
on whether required state changes were achieved.

2 Related Work

Dialog act annotations are common in language-
only task-oriented dialog datasets, and are com-
monly used to plan the next agent action in dialog
management or next user action in user simula-
tion (Williams et al., 2014; Budzianowski et al.,
2018; Schuster et al., 2019; Hemphill et al., 1990;
Feng et al., 2020; Byrne et al., 2019). Many frame-
works have been proposed to perform such anno-
tations. Some examples are DAMSL (Dialog Act
Markup in Several Layers) and ISO (International
Organization for Standardization) standard (Core
and Allen, 1997; Young, 2007; Bunt et al., 2009;
Mezza et al., 2018). Such standardization of dialog
acts across applications has been shown to be ben-
eficial for improving the performance of dialog act
prediction models (Mezza et al., 2018; Paul et al.,
2019).

Most task-oriented dialog (TOD) applications
and dialog act coding standards assume that the
tasks to be performed can be fully specified in
terms of slots whose values are entities (Young,
2007). However, we find that if we need to adopt
a slot-value scheme for multimodal task-oriented
dialog datasets such as TEACh, much of the infor-
mation that needs to be conveyed is not purely
in the form of entities. For example, If an ut-
terance providing a location of an object: “the
cup is in the drawer to the left of the sink” is
to be coded at the dialog act level simply as an
INFORM act, it could for example have a slot
value called OBJECT_LOCATION but the value
of this would need to refer to most of the utterance,
i.e. “the drawer to the left of the sink”. Hence,
we define more fine-grained categories, such as
InfoObjectLocAndOD (information on object
location and other details) in TEACh-DA. These
categories are designed in a way so that they could
be re-purposed into broader dialog act category and

intent/slot in the future by merging categories, if
needed. As in a TOD, inform would be the DA tag,
intent could be inform_object_location
or object_location could be slot category.
Thus, we combine the use of many standardized
dialog acts such as Greetings, Acknowledge,
Affirm / Deny with domain-specific finer
grained dialog acts replacing the typical Inform
and Request dialog acts.

Additionally, since the TEACh dataset is not con-
strained by turn taking or a pre-defined dialog flow,
sometimes a single utterance may perform multiple
communicative functions. To address this, similar
to Core and Allen 1997, we allow multiple dialog
acts per utterance and require annotators to mark
utterance spans corresponding to each dialog act.

There exist other multimodal task-oriented dia-
log datasets that include annotations of dialog acts
such as Situated and Interactive Multimodal Con-
versations (SIMMC 2.0) (Kottur et al., 2021) and
Multimodal Dialogues (MMD) (Saha et al., 2018).
These are multimodal datasets in the shopping do-
main that allows users to view products visually,
and engage in dialog with an agent where the agent
can take actions to refine the products available
for the user to view. However, in contrast to the
TEACh dataset considered in our work, the dialogs
are created by first simulating probable dialog flows
and then having annotators paraphrase utterances.
As such, in these datasets, utterances clearly map
to predefined dialog acts and follow patterns ex-
pected by the designers. These may not fully cover
the range of possible conversational flows that can
happen between humans in an unconstrained multi-
modal context, as can be observed in TEACh. The
Human Robot Dialogue Learning (HuRDL) corpus
includes annotations of human-human multimodal
dialogs, with a focus on classifying different types
of clarification questions to be used by a dialog
agent (Gervits et al., 2021) but it is limited in size -
consisting of only 22 dialogs, in contrast to the over
3,000 dialogs in TEACh. Another related dataset
is MindCraft (Bara et al., 2021) where annotators
are periodically asked to answer questions in the
middle of the collection of dialog sessions to elicit
their belief states. However, belief states do not
map directly to utterances and do not directly cap-
ture communicative intents, differentiating them
from dialog acts.

Prior works propose models for predicting dialog
acts given the current utterance and context (Kalch-
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Please boil a potato.

Hello,

t=0

t=5

Is there another pot 
somewhere?

You could try filling the 
cup with water and 
emptying it into the pot

Good thinking! Thank 
you for that suggestion.

t=18

t=50

t=51

Ok

t=8

what shall I do today?

t=2

Follower Commander Dialog Acts

Greetings

RequestForInstruction

Instruction

Acknowledge

RequestForObjectDetails

Instruction

MiscOther

All done!

t=75

Acknowledge

Navigate Move potato near stove Remove cup Go to sink, toffle off, put pot down.

t=7 t=11 t=12 t=21 t=22 t=24 t=32 t=35

Find cup Fill cup with water Transfer water to pot Boil water, add potato

t=54 t=55 t=59 t=62 t=63 t=66 t=72 t=74

(Pickup, Potato), (Place, CounterTop), (Pickup, Cup), (Place, CounterTop), 
(Pickup, Pot), (ToggleOff Faucet), (Place, CounterTop)

(PickUp, Cup), (Place, Sink), (ToggleOn, Faucet), (ToggleOff, Faucet), (PickUp 
Cup), (Pour, Pot), (Place, Sink), (PickUp, Pot), (Place, StoveBurner), 
(ToggleOn, StoveBurner), (PickUp, Potato), (Place, Pot)

Plan

Figure 1: Illustration of example session for the task Boil Potato with corresponding dialog acts for each utterance
and plans with corresponding actions in the game session.

brenner and Blunsom, 2013; Lee and Dernoncourt,
2016; Ribeiro et al., 2019), dialog acts of previous
utterances or both (Paul et al., 2019). We perform
similar experiments on our dataset to tag the di-
alog acts of given utterances and also to predict
the dialog acts of future utterances. Due to the
limited set of situated dialog datasets annotated
with dialog acts, there has been relatively limited
work on exploring the benefit of dialog acts on
predicting an agent’s future behavior in the envi-
ronment. However, there are works that explore
when to engage in a dialog as opposed to acting
in the environment (Gervits et al., 2020; Chi et al.,
2020; Shrivastava et al., 2021). While we do not di-
rectly model this problem, we experiment with the
TEACh Execution from Dialog History task, where
the end of our predicted action sequence would
signal the need for another dialog utterance.

3 TEACh-DA dataset

The TEACh dataset (Padmakumar et al., 2021) con-
sists of situated dialogs between human annotators
role playing a user (Commander) and robot (Fol-
lower) collaborating to complete household tasks.
In each dialog session, there is a high level task
that the Follower is expected to accomplish, for ex-
ample MAKE COFFEE or PREPARE BREAKFAST.
Details of the task are known to the Commander
but not the Follower. The Follower needs to engage
in a dialog with the user to identify the task to be
completed, customize the task (for example iden-
tify what dishes need to be prepared for breakfast)
or obtain additional information such as locations
of relevant objects, or more detailed steps needed
to accomplish a task, and translate these to actions

that can be executed in a simulated environment to
complete the task.

In this work, we annotate the TEACh dataset
with dialog acts (we refer to this new, annotated
dataset as TEACh-DA) to better understand how
language is used in task-oriented situated dialogs.
We also explore the usefulness of these dialog acts
to develop better agents that can converse in natu-
ral language and act in a situated environment for
task completion.The TEACh-DA dataset consists
of 39.5k utterances from 3,000 dialogs, 60% of
which are from the Commander and the rest from
the Follower.

We find that other dialog act frameworks for
multimodal datasets (Gervits et al., 2021; Kottur
et al., 2021; Saha et al., 2018) tend to be domain
specific and do not cover all utterance types that
would be beneficial for embodied task completion.
Hence, we propose a new set of dialog acts for
embodied task completion based on the commu-
nicative functions we observe in the TEACh dataset.
Whenever possible, for utterances that are not very
specific to the TEACh task, we have borrowed dia-
log acts from prior work. These include dialog acts
related to generic chit chat such as Greetings,
Affirm, Deny and Acknowledge (Paul et al.,
2019).

In total, we defined 18 dialog acts that covered
all utterances in TEACh. Our careful analysis of ut-
terances in TEACh data lead to 5 broader categories
of dialog acts as shown in Table 1.

• Generic: Acts that fall under conventional
dialog such as opening and closing of dialog,

• Instruction Related: Which represent the ut-
terances related to actions that should be per-
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Dialog Act Category Example Count Commander(%) Follower(%)

Instruction Instruction fill the mug with coffee 11019 99.4 0.6
ReqForInstruction Instruction what should I do today? 4043 0.7 99.3
RequestOtherInfo Instruction How many slices of tomato? 675 0.75 99.25
RequestMore Instruction Is there anything else to do 503 0.2 99.80
InfoObjectLocAndOD Object/Location knife is behind the sink 6946 99.4 0.6
ReqForObjLocAndOD Object/Location where is the mug? 2010 0.3 99.70
InformationOther Object/Location Mug is already clean 1148 88.76 11.24
AlternateQuestions Object/Location yellow or blue mug? 123 27.65 72.35
Acknowledge Generic perfect 7421 21.38 78.62
Greetings Generic hello 2565 44.01 55.9
Confirm Generic Should I clean the cup? 726 25.75 74.25
MiscOther Generic ta-da 607 52.22 47.78
Affirm Generic Yes 460 78.26 21.74
Deny Generic No 161 72.92 26.08
FeedbackPositive Feedback great job 2745 97.12 2.88
FeedbackNegative Feedback that is not correct 46 95.65 4.35
OtherInterfaceComment Interface Which button opens drawer 486 60.09 39.91
NotifyFailure Interface not able to do it 408 3.68 96.32

Table 1: Dialog act labels, total number of utterances and frequencies per speaker type in overall corpus.

formed in the environment to accomplish the
household task.

• Object/Location related: Represents requests
and information seeking utterances related to
objects that need to be handled or manipu-
lated for the specific TEACh task. Many of
these are on the specifics of object location
(where to find it, where to place it) and queries
on disambiguation related to objects or their
locations.

• Interface Related: Utterances re-
lated to TEACh data annotation
itself (NotifyFailure and
OtherInterfaceComment)

• Feedback related: Utterances used to provide
feedback (both positive and negative) on nav-
igation, object manipulation and in general
task execution.

We hired expert annotators who are fluent in En-
glish to annotate utterances from the TEACh dataset
with our dialog acts. Annotators were shown the
complete dialog and asked to annotate each utter-
ance with the most appropriate dialog act. When
an utterance had multiple dialog acts applicable,
annotators were asked to divide the utterance into
spans and annotate each span with a single dialog
act label. We observed that 7% of the utterances
were segmented to have multiple dialog acts. To
measure the quality of the annotations, on a small
subset of 235 utterances (17 dialogs), we collected
annotations from two annotators. On this subset,
we observed a Cohen’s kappa score of 0.87. We
include an example TEACh session in Figure 1 for

the task Boil Potato containing dialog act acctions
for each utterance.

Similar to many task-oriented dialogs, we ob-
serve a strong correlation between the speaker role
(Commander or Follower) and the dialog act of
an utterance. For example, the majority of the in-
form utterances are from Commander i.e., where
Commander gives instructions or informs object
locations or other details on the task, whereas ma-
jority of the request utterances (instructions, object
locations etc.) are from Follower. In Table 1, we
present the set of dialog acts, definitions and their
frequency distributed across Commander and Fol-
lower utterances. We observe that some commu-
nicative functions such as clarification of ambiguity
are relatively infrequent in this dataset. We group
together such rare functions into a single dialog act
MiscOther.

4 Experiments

In this section, we explore how dialog acts can be
used for various modeling tasks including predict-
ing the agent’s future behavior in the environment.
We explore the following tasks (i) dialog act classi-
fication: predicting the dialog act of an utterance;
(ii) future turn dialog act prediction given dialog
history; (iii) given TEACh dialog history, predict-
ing a plan for the task and (iv) given dialog history
and the past actions in environment, predicting the
entire sequence of low-level actions to be executed
in the TEACh environment to complete the task
(Execution from Dialog History (EDH) benchmark
from Padmakumar et al. 2021). Note that TEACh
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the bowl is in the microwaveUtterance (Utt)

Utt + ST 

how can i help <<TURN>> please serve 1 slice of tomato in a bowl <<TURN>> where can i find a 
bowl <<TURN>> the bowl is in the microwave

Utt + DH

how can i help <<ReqForInstruction>> <<TURN>> please serve 1 slice of tomato in a bowl 
<<Instruction>> where can i find a bowl <<ReqForObjLocAndOD>> <<TURN>> the bowl is in the 
microwave <<InfoObjectLocAndOD>>

Utt + DH + DA-E

<<Follower>> how can i help <<ReqForInstruction>> <<TURN>> <<Commander>> please serve 1 
slice of tomato in a bowl <<Instruction>> <<TURN>> <<Follower>> where can i find a bowl 
<<ReqForObjLocAndOD>> <<TURN>> <<Commander>> the bowl is in the microwave 
<<InfoObjectLocAndOD>>

Utt + ST + DH + DA-E 

<<Commander>> the bowl is in the microwave

Figure 2: Sample input to dialog act prediction or next turn dialog act prediction models showing incorporation of
speaker and dialog history

Valid Valid Test Test
seen unseen seen unseen

Utterance 85.59 83.74 85.88 83.59
+Speaker Tags (ST) 87.98 85.91 87.55 85.73
+ Dialog History (DH) 86.7 84.66 86.48 84.25
+ DH + DA-E 88.6 86.32 88.35 86.09
+ DH + ST + DA-E 88.35 86.15 88.54 85.89

Follower utterances only

Utterance 83.12 79.58 84.86 83.85
+Speaker Tags (ST) 86.84 82.26 88.33 87.71
+Dialog History (DH) 86.52 84.13 86.67 84.53
+ DH +DA-E 88.62 85.87 88.82 86.56
+ DH + ST + DA-E 88.32 85.79 89.22 86.3

Commander utterances only

Utterance 87.16 86.71 86.5 83.42
+ Speaker Tags (ST) 88.70 88.52 87.08 84.42
+ Dialog History (DH) 87.11 81.03 85.79 83.49
+ DH + DA-E 88.55 87.90 86.69 84.84
+ DH + ST + DA-E 88.42 87.4 86.15 84.79

Table 2: Dialog Act prediction accuracy scores for
whole TEACh-DA dataset. We also report accuracy
scores for Follower and Commander utterances sepa-
rately.

has two validation and two test splits each - seen
and unseen. These refer to visual differences be-
tween the environments in which gameplay ses-
sions occurred. With the exception of the EDH
experiment, since we only focus on language, we
do not expect significant differences between the
seen and unseen splits.

4.1 Dialog Act Classification

Dialog Act classification is the task of identifying
the general intent of the user utterance in a dia-

log. While dialog act classification has been well
explored in both task-oriented dialogs and open-
domain dialogs, it is still an under explored prob-
lem in human-robot dialogs (Gervits et al., 2020).
We study the TEACh dataset to predict the dia-
log act for a given utterance. We experimented
with fine-tuning a large pre-trained language model
RoBERTa-base for the classification of dialog acts1.
We expect the speaker role (Follower or Comman-
der) and the dialog context to be important for
predicting the intent of an utterance. To test this,
we predict dialog acts with different input formats
(shown in Figure 2) ablating the value of speaker
and context information (DH: all the previous ut-
terances in the dialog, ST: speaker tags, DA-E:
ground-truth dialog act tags of all the previous ut-
terances in the dialog). We present our results in
Table 2. Similar to prior studies on dialog act clas-
sification for task-oriented dialogs, we observe that
both the speaker tags and dialog history help in pre-
dicting the correct dialog act for a given utterance,
and the best performance is observed when both of
them are used.

In TEACh, the distribution of dialog acts varies
with the speaker role (Commander vs. Follower)
as shown in Table 1. To understand the accuracy
of the models on utterances of each speaker role,
we also present results separated by speaker role in
Table 2. We observed that both speaker tags and
dialog history with previous turn dialog acts helped
identifying dialog acts for Follower utterances. For
Commander utterances both speaker tags and dia-
log history gave marginal improvements.

1We also experimented with BERT-base and TOD-BERT
but observed RoBERTa-base performed consistently better
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Valid Valid Test Test
seen unseen seen unseen

DH 42.62 42.44 43.55 41.07
DH + ST 56.23 54.68 54.69 53.27
DH + DA-E 56.05 55.58 56.49 53.45
DH + ST + DA-E 56.72 56.14 56.28 54.99

Follower utterances only

DH 30.73 28.64 31.41 29.06
DH +ST 51.67 49.3 54.11 52.34
DH + DA-E 50.19 50.28 54.72 52.24
DH + ST + DA-E 52.17 50.35 54.72 53.44

Commander utterances only

DH 49.27 51.08 50.07 48.08
DH + ST 58.78 58.05 55.01 53.82
DH + DA-E 59.33 58.9 57.4 54.16
DH + ST + DA-E 59.26 59.77 57.11 55.89

Table 3: Predict next utterance Dialog Act given dia-
log history. We also report results when next utterance
is Commander and Follower separately. Speaker Tags:
Additional to current utterance speaker tag we also pro-
vide next utterance speaker information.

4.2 Next Dialog Act Prediction

In end-to-end dialog models, predicting the desired
dialog act for the next turn is useful for response
generation (Tanaka et al., 2019). Predicting the dia-
log act of the next response in TEACh will provide
insights into a model’s ability to provide appropri-
ate dialog responses. This is particularly useful
for Follower utterances to enable the agent to iden-
tify when to ask for more instructions or additional
information to accomplish a sub-task. We mod-
eled this as a classification task where we provide
dialog history until a particular turn as input and
predict the dialog act of the next turn. In addition
to providing dialog history, we also tested this to
see if providing next turn speaker information will
improve the performance of the model. Similar to
our dialog act classification model in Section 4.1
we fine-tuned a RoBERTa-base model for predict-
ing the dialog act of the next utterance. In Table
3, we present results for next dialog act predic-
tion. We observe a significant improvement in the
performance for next dialog act prediction when
the next utterance is from the Follower and the
speaker information or previous utterances dialog
act is added to the input. We hypothesize that the
accuracy in this task is low compared to similar

tasks in other task-oriented dialog datasets because
this dataset does not enforce turn taking. The Com-
mander or Follower may break up a single intent
into multiple utterances and one may anticipate the
next response from the other before it is asked. For
example, if the Commander has asked the Follower
to slice a tomato, the Commander may expect that
the Follower is likely to then ask for the locations
of the tomato or the knife and may start providing
this information before the Follower has asked for
it. Further, the Commander or Follower may have
responded directly to visual cues or actions taken
by the other in the environment. Hence, visual or
environment information is likely also important
for predicting future dialog acts.

4.3 Plan Prediction
In robotics, task planning is the process of generat-
ing a sequence of symbolic actions to guide high-
level behavior of a robot to complete a task (Ghal-
lab et al., 2016). In this experiment, we consider a
simple plan representation where a task plan con-
sists of a sequence of object manipulations that
need to be completed in order for the task to be
successful. An example is included in Figure 3
When executing such a plan, the robot will need
to navigate to required objects and additional steps
may be required based on the state of the environ-
ment (for example if the microwave is too full, the
robot may need to partially clear it first).

However, it should be possible to generate the
plan for a task based on the dialog alone. We ex-
plore two settings for this

• Game-to-Plan: Given the entire dialog
from a gameplay session, predict the plan -
that is, all object interaction actions taken dur-
ing that gameplay session.

• Dialog-History-to-Plan: Given a
portion of dialog history from a gameplay ses-
sion, predict the object interaction actions that
need to occur until the next dialog utterance.

The Game-to-Plan setting is more likely to
be useful for post-hoc analysis of such situated
interactions after they have occurred, whereas
the Dialog-History-to-Plan setting can
be used to build an embodied agent that engages in
dialog with a user and executes actions in a virtual
environment based on information obtained in the
dialog. At any point in time, such an agent would
predict the next few object interactions to be accom-
plished given the dialog history so far, complete
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Figure 3: Sample input and output for plan prediction showing incorporation of speaker and dialog act information.

Game-to-Plan

Percentage of valid plans Plan tuple precision Plan tuple recall

Valid Valid Test Test Valid Valid Test Test Valid Valid Test Test
seen unseen seen unseen seen unseen seen unseen seen unseen seen unseen

DH 24.31 30.39 28.18 28.69 72.67 73.93 73.48 78.53 37.06 34.35 37.46 36.00
+ DA 25.97 23.86 19.89 26.83 75.29 73.0 74.81 77.52 38.18 33.7 39.28 35.31
+ Filter 37.57 29.41 27.62 32.94 71.29 70.94 69.80 75.45 34.33 31.61 35.45 33.42

Dialog-History-to-Plan

DH 23.76 23.69 25.41 24.45 72.97 73.47 75.65 78.64 36.38 34.06 39.11 36.53
+ DA 24.31 30.39 28.18 28.69 72.67 73.93 73.48 78.53 37.06 34.35 37.46 36.0
+ Filter 26.52 23.69 25.41 28.01 73.66 69.88 71.67 74.33 36.08 31.29 35.83 33.12

Table 4: Plan prediction results. Using dialog act information helps increase the fraction of valid generated plans
but not as much with plan precision or recall.

them and then use another module that makes use
of subsequent dialog act prediction (section 4.2) to
engage in further dialog with the user.

We model plan prediction as a sequence to se-
quence task where the input consists of the dialog
/ dialog history, and the output as a sequence of
alternating object interaction actions (eg: Pickup,
Place, ToggleOn) and object types (eg: Mug,
Sink). We experiment with augmenting the dia-
log history with dialog act information (+ DA in-
formation) and filtering the input dialog to only
contain utterance segments annotated as being
of type Instruction (+ filter) We fine-tune a
BART-base model for this task and evaluate dif-
ferent experimental conditions on the following
metrics:

• Fraction of valid plans: Fraction of generated
output sequences that consist of alternat-
ing valid actions and object types. (For
example (Pickup, Mug), (Place,

Sink) (ToggleOn, Faucet) is a
valid sequence while (Pickup, Mug)
(Sink) (ToggleOn, Faucet)
and (Pickup, Mug) (Place)
(ToggleOn, Faucet)) are not due
to the missing action for Sink and the
missing object for Place respectively.

• Precision of (action, object) tuples: We iden-
tify a valid object type followed by a valid ac-
tion as an (action, object) tuple and precision
is the fraction of such tuples in the generated
output present in the ground truth plan.

• Recall of (action, object) tuples: Recall is the
fraction of (action, object) tuples in the ground
truth plan present in the generated output.

The results are included in Table 4. We notice
that addition of dialog act information and filtering
to relevant dialog acts improves performance in
some splits but not others. More improvements
are seen in the Dialog-History-to-Plan

117



Figure 4: Language Input Variants for EDH.

EDH Validation EDH Test
Seen Unseen Seen Unseen

Language Input SR [TLW] GC [TLW] SR [TLW] GC [TLW] SR [TLW] GC [TLW] SR [TLW] GC [TLW]

DH 7.9 [1.0] 7.1 [3.3] 6.7 [0.4] 3.9 [1.5] 10.5 [0.5] 7.9 [3.2] 7.5 [0.7] 5.6 [1.9]
+ ST 6.7 [0.5] 7.4 [2.8] 6.7 [0.8] 4.0 [1.5] 9.8 [0.9] 8.3 [2.9] 7.1 [0.8] 6.6 [1.7]
+ DA-E 8.5 [0.6] 8.2 [3.3] 6.7 [0.5] 5.0 [1.9] 12.2 [1.2] 8.6 [3.7] 7.4 [0.8] 6.1 [2.3]
+ DA-SE 7.8 [1.8] 6.4 [4.0] 7.2 [0.6] 4.6 [1.6] 11.0 [0.7] 10.1 [4.3] 7.7 [0.8] 6.2 [1.8]
+ ST + DA-SE 8.7 [1.0] 7.3 [2.6] 7.5 [0.8] 4.4 [1.8] 9.9 [0.7] 8.0 [2.9] 7.0 [0.7] 7.2 [2.2]

Table 5: We experiment whether addition of speaker or dialog act information improves performance of the
Episodic Transformer (E.T.) model on the Execcution from Dialog History (EDH) task. In most cases, speaker
information is not found to be beneficial but adding dialog acts at the end or start and end of an utterance is seen
to provide small improvements in performance.

setting compared to the Game-to-Plan setting.
We hypothesize that this is because the model is
able to automatically identify the dialog act from
the utterance text and hence does not need it to be
explicitly specified.

4.4 Execution from Dialog History

The Execution from Dialog History (EDH) task
defined in the Padmakumar et al. 2021 is an exten-
sion of the above task. Instead of simply predicting
important object interactions, given dialog history
and past actions in the environment, a model is
expected to predict a full sequence of low level
actions to accomplish the task described in the dia-
log. Action sequences predicted by the model are
executed in the virtual environment and models
are evaluated based on how many required object
state changes are accomplished. The metrics used
for this task include the fraction of successful state
changes (goal condition success rate or GC), the
fraction of sessions for which all state changes were
accomplished (success rate or SR) and Trajectory
Length Weighted versions of these metrics that mul-

tiply the metrics with the ratio of the ground truth
path length to the predicted path length - where
a lower value of the trajectory weighted metric
suggests that the model used longer sequences of
actions to accomplish the same state changes.

We borrow the Episodic Transformer (E.T.)
model proposed in Padmakumar et al. 2021 and
vary the language input (with a baseline of just the
dialog history (DH)) by adding speaker tags (+ST)
and ground-truth dialog act tags at the start (+DA-
S), end (+DA-E) or both (+DA-SE). We present the
results for selected set of experiments in Table 5.
We observe small performance improvements on
success rate of up to 2 points when the language
input is marked up with dialog acts, either at the
end or start and end of an utterance, but less benefit
is observed from speaker information. We believe
that stronger improvements will likely be observed
when using a more modular approach (eg: (Min
et al., 2021)) where it is easier to decouple the
effects of errors arising from language understand-
ing from those arising from navigation which is
the most difficult component when predicting such
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low-level actions (Blukis et al., 2022; Jia et al.,
2022; Min et al., 2021).

5 Conclusion

We propose a new dialog act annotation frame-
work for embodied task completion dialogs and use
this to annotate the TEACh dataset - a dataset of
over 3,000 unconstrained, situated human-human
dialogs. We evaluate baseline models for predicting
dialog acts of utterances, demonstrate that predict-
ing future dialog acts from past ones is much more
difficult in dialog datasets that are not constrained
by turn taking. Towards guiding agent actions in
the environment beyond dialog, we show explore
the benefit of dialog acts in the generation of plans,
and improve end-to-end performance in the TEACh
Execution from Dialog History task.

6 Future Work

Unlike the majority of dialog datasets, situated or
otherwise, utterances in the TEACh dataset are not
constrained by a pre-designed dialog act schema or
by turn taking. We observe that this makes it much
more difficult than expected to predict subsequent
dialog acts given past ones - the predictability of
which has been typically used to design dialog sim-
ulators (Schatzmann and Young, 2009; Keizer et al.,
2010). We believe that annotation of this large and
more natural dataset will aid in the development of
more realistic dialog simulators, which can in turn
result in the development of more natural dialog
agents. Further, in TEACh, visual cues or actions
taken by the agent in the environment might play
an important role for predicting future dialog acts.
This would be an interesting direction to explore
for future. Finally, we hypothesize that there is con-
siderable scope in using such annotated dialog acts
to develop modular models for embodied task com-
pletion that involve better language understanding,
and to generate realistic situated dialogs for data
augmentation.
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A Further Experiment Details

A.1 Dialog Act Classification and Next Turn
Dialog Act Prediction

Both for dialog act classification and next turn
dialog act prediction models, we finetune a
RoBERTa-base model for multiclass classifica-
tion with 18 classes (our target number of dia-
log acts). For all the experiments were run us-
ing Huggingface library and the publicly available
pre-trained models. Additional to the utterance
we provide dialog-context and speaker information
(mentioned as dialog history (DH) and Speaker
Info (SI)) and train the classifiers for a maximum
sequence length of 512 tokens. When the input
exceeds 512 tokens we truncate from left i.e., we
keep the most recent context. We use a batch size
of 16 per GPU and accumulate gradients across 4
GPU instances. We use a learning rate of 2e− 05
and train for 5 epochs.
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A.2 Plan Prediction

For the plan prediction task, we finetune a
bart-base model, treating the problem as se-
quence to sequence prediction. A sample input and
output from the Game-to-Plan version of the
task are included below:

Sample Input:

what do I do? <<TURN>> making
coffee <<TURN>> grab a mug
<<TURN>> where is tyhe mug?
<<TURN>> on the counter next to
you <<TURN>> empty, and wash
<<TURN>> should I wash the mug
<<TURN>> place in coffee maker
after cleaning <<TURN>> yes
<<TURN>> okay <<TURN>> turn on
water <<TURN>> turn off <<TURN>>
place in coffee maker next to
sink <<TURN>> empty first
<<TURN>> turn on <<TURN>> great
job....we’re done... <<TURN>>

Sample Output:

Pickup Mug Pour SinkBasin Place
SinkBasin ToggleOn Faucet
ToggleOff Faucet Pickup Mug Pour
SinkBasin Place CoffeeMachine
ToggleOn CoffeeMachine

Note that we do not include any punctuation
in the output sequence to demarcate (action, ob-
ject) tuples and instead post process the generated
sequence deleting any action not followed by an
object or object not preceded by an action for eval-
uation. Also, while we use 〈〈TURN〉〉 in the above
example to demarcate turns, in actual implementa-
tion, the default BART separator token is used.

All experiments are run using the HuggingFace
library and pretrained models 2. We use a batch size
of 2 per GPU accumulating gradients from batches
on 4 GPUs of an AWS ‘p3.8xlarge‘ instance lead-
ing to an effective batch size of 8. Training was
done for 20 epochs. We use the AdamW optimizer
with β1 = 0.9, β2 = 0.99, ε = 1e− 08 and weight
decay of 0.01. We use a learning rate of 5e − 05
with a linear warmup over 500 steps. Where neces-
sary, we right-truncate the input to the model’s limit
of 1024 tokens as we believe that when an incom-
plete conversation must be used, the model may be
able to infer most of the necessary steps from the

2https://huggingface.co/

task information which is likely to be indicated by
the first few utterances of the conversation.

The primary hyperparameter tuning we exper-
imented with involved the position at which the
dialog act was inserted relative to the utterance,
which was one of

• START_OF_SEGMENT - Start of the utter-
ance segment

• END_OF_SEGMENT - End of the utterance
segment

• START_END_SEGMENT - Start and end of
the utterance segment

and the format used to insert dialog act information,
which was one of

• NO_CHANGE_TEXT - The name of the dia-
log act is inserted in Camel case as a part of
the input text to the model.

• FILTER - Retain only utterances marked with
the dialog act INSTRUCTION. Additionally,
the name of the dialog act is inserted in Camel
case as a part of the input text to the model.

• TAGS_IN_TEXT - The name of the dialog
act in Camel case is surrounded by 〈〈〉〉.

• TAGS_SPL_TOKENS - The name of the di-
alog act in Camel case is surrounded by 〈〈〉〉
and this is specified as being a special token
so that it does not get split by the tokenizer.

• SPLIT_WORDS_TEXT - The name of the
dialog act is split into individual words (for
example, REQUESTFORINSTRUCTION be-
comes “request for instruction”) and these are
inserted into the text.

We also tuned whether speaker information was
passed to the model. None of the format, position
or speaker tag choices were found to consistently
outperform the other.

For the DH rows in table 4, neither the po-
sition, nor the format of dialog acts is rele-
vant as no dialog act information is used. We
also do not filter utterances. The best +DA
row in the Game-to-Plan setting used dialog
acts in format SPLIT_WORDS_TEXT in position
END_OF_SEGMENT with speaker tags. The best
+Filter row in the Game-to-Plan setting used
dialog acts in format START_END_SEGMENT
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without speaker tags. The best +DA row in
the Dialog-History-to-Plan setting used
dialog acts in format SPLIT_WORDS_TEXT
in position START_OF_SEGMENT without
speaker tags. The best +Filter row in the
Dialog-History-to-Plan setting used dia-
log acts in format END_OF_SEGMENT without
speaker tags.

A.3 Execution from Dialog History
We adapt the Episodic Transformer (E.T.) model
first introduced in (Pashevich et al., 2021) and used
for baseline experiments in (Padmakumar et al.,
2021) on the TEACh dataset. We keep all train-
ing parameters constant from (Padmakumar et al.,
2021) and primarily experiment with the input for-
mat as described in the main paper. Unlike our
previous experiments, since the language encoder
of the E.T. model is trained from scratch using only
the vocabulary present in the training data, we in-
sert dialog acts and speaker indicators as individual
tokens in the input that will be treated identically
to other text tokens.

B Dialog Acts

In Table 6 we add further examples for each dialog
act (for both Followerand Commander) from dif-
ferent TEACh tasks to demonstrate the difference
in type of utterances we observe in the dataset.
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Dialog Act Task Agent: Example

Instruction
Water Plant Commander: The plant by the sink needs to be watered
Plate Of Toast Commander: please slice bread and toast 1 slice
Plate Of Toast Commander: lets make a slice of toast

InfoObjectLocAndOD
Plate Of Toast Commander: knife is in the fridge
Plate Of Toast Commander: the clean plate is on the white table
Clean All X Commander: right cabinet under the sink

Acknowledge
Make Coffee Commander: we are done!
Clean All X Follower: Plate is clean
N Slices Of X In Y Follower: found it

ReqForInstruction
Put All X On Y Follower: how can I help
Put All X On Y Follower: what are my directions
Plate Of Toast Follower: what is my task today

FeedbackPositive
Plate Of Toast Commander: good job
Put All X In One Y Commander: that’s it good job
Water Plant Commander: thank you its seems to be done

Greetings
Make Coffee Commander: Hi how are you today?
Water Plant Follower: Good day
Boil X Commander: Good morning

ReqForObjLocAndOD
Clean All X Follower: where is the dirty cookware?
Plate Of Toast Follower: Can you help me find knife?
Put All X In One Y Follower: where is the third one?

InformationOther
Make Coffee Commander: Don’t take martini glass
Boil X Commander: You keep walking past them
Boil X Commander: That looks cooked already

Confirm
Put All X In One Y Follower: was that everything
Salad Commander: you can see the toaster right?
N Slices of X in Y Follower: Shall I turn off the water?

RequestOtherInfo
Breakfast Follower: how many slices of each?
Clean All X Follower: what pieces?
Plate Of Toast Follower: shall i take it to the toaster now

MiscOther
Sandwich Commander: One sec
Salad Commander: Common!!
Breakfast Commander: Thant’s my bad...Sorry

RequestMore
N Cooked Slices Of X In Y Follower: Is there anything more I can help with?
Salad Follower: what else would you like me to do
Clean All X Follower: Any more tasks?

OtherInterfaceComment
Plate of Toast Follower: Finish and report a bug?
Clean All X Follower: refresh the page
Put All X On Y Follower: connection is slow

Affirm
Water Plant Commander: yes, you can use the green cup
Breakfast Commander: yes, toast the bread
Put All X On Y Commander: yes please

NotifyFailure
Make Coffee Follower: It’s not turning on the coffee.
N Slices Of X In Y Follower: tomato won’t fit in those
Sandwich Follower: can’t seem to grab the knife in cabinet

Deny
Make Breakfast Commander: No don’t toast the bread
Salad Commander: don’t
Plate of Toast Commander: don’t think so

AlternateQuestions
N Cooked Slices Of X In Y Follower: Do I boil it or slice it?
Clean All X Follower: To the left or right of the stove?
Make Coffee Follower: This mug or the other one?

FeedbackNegative
Make Coffee Commander: you don’t have the correct mug
N cooked Slices of X in Y Commander: task not complete
Plate of Toast Commander: wrong plate

Table 6: Example utterances for Dialog act labels that could be observed in different TEACh tasks from Comman-
derand Follower.
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Abstract

Object permanence is the ability to form and
recall mental representations of objects even
when they are not in view. Despite being a
crucial developmental step for children, ob-
ject permanence has had only some explo-
ration as it relates to symbol and communica-
tive grounding in spoken dialogue systems. In
this paper, we leverage SLAM as a module
for tracking object permanence and use a robot
platform to move around a scene where it dis-
covers objects and learns how they are denoted.
We evaluated by comparing our system’s ef-
fectiveness at learning words from human di-
alogue partners both with and without object
permanence. We found that with object per-
manence, human dialogue partners spoke with
the robot and the robot correctly identified ob-
jects it had learned about significantly more
than without object permanence, which sug-
gests that object permanence helped facilitate
communicative and symbol grounding.

1 Introduction

Communicative grounding is the process of medi-
ating what words mean (Clark, 1996) and symbol
grounding is the establishment of connections be-
tween language and the perceptual, physical world
(Harnad, 1990). Following Larsson (2018) that ex-
plained how symbol grounding is a side effect of
communicative grounding, children who are learn-
ing their first language cannot learn symbol ground-
ing without simultaneously being engaged in com-
municative grounding. Consider the following ex-
ample, within the physical space of a room. A child
(C) picks up a ball (B) and a caregiver (P) engages
in dialogue with the child about the ball:

(1) a. (C picks up a B and looks at it)
b. P: That’s a ball!
c. C: ball
d. P: Ball! Very good!

Communicative grounding happens between P and
C during this interaction as P offers ball as a word
with a semantic potential and C understands B to
be an extension of ball. At the point (1)-b symbol
grounding takes place between C and B where C
links the word ball to the object in their hand. Com-
municative grounding then follows when C says
ball and receives a positive confirmation from P,
resulting in knowledge that P has experienced an
interaction with C when C heard and demonstrated
understanding of ball, and C received confirmation
of understanding of the word ball from P.

But what happens in Example (1) when C moves
their attention to a different object? It is the case
that the C has grounded the word ball using their
experience with B, and P acknowledges that C has
done so, but does it matter that the object is no
longer in view? Prior work explored the interplay
between communicative and perceptual grounding
(Chai et al., 2014; Larsson, 2018), but there is very
little work on how object permanence plays a role
in the communicative and symbol grounding pro-
cess. Piaget identified object permanence in the
child development process within the sensorimotor
stage—a period that lasts from birth to nearly two
years old (i.e., beginning before children can speak)
when children largely interact with and understand
the world through their sensorimotor experience
(Piaget, 2013; Bremner et al., 2015). Moreover,
children who are learning their first words are ego-
centric in that they have not yet developed the ca-
pability of understanding another person’s point
of view (i.e., of an object) (Repacholi and Gopnik,
1997). A lack of object permanence means that
objects that children observe, but are then out of
view no longer exist, and are separate and distinct
objects if the child observes them again.1

1Lack of object permanence is the common assumption
that holds for most vision and language datasets, e.g., ref-
COCO (Yu et al., 2016) where referring expressions to ob-
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Moore and Meltzoff (1999) suggested that as
early as four months, a child begins to recognize
that objects have permanence even when the child
is not actively observing them—an ability that
the child can leverage before they start to learn
language—but this knowledge has been ignored
in prior research. Therefore, in this paper, we ask
the question: Does object permanence matter for
communicative grounding and symbol grounding
in an automated learning spoken dialogue system?
We hypothesize that it does matter, particularly for
first-language acquisition in a spoken dialogue sys-
tem (SDS) that has no prior exposure to language.
We test our hypothesis in a human-robot interac-
tion (HRI) task where we task human participants
to interact with a robot and observe that the robot
has been able to utter words in the right context.
We use a survey to measure the perceptions of the
human participants in order to establish that com-
municative grounding took place, and we measure
the number of words that the robot “learned” dur-
ing the interaction to determine if communicative
and symbol grounding took place. We find through
our experiment that symbol and communicative
grounding are affected by object permanence, lead-
ing to increased user engagement and a more re-
sponsive and effective spoken dialogue system that
learns word groundings as it interacts.

In the following section, we compare our work to
others then explain our method for tracking object
permanence using a simultaneous localization and
mapping (SLAM) module and the the robot-ready
SDS system that we used. We then explain our
experiment and conclude.

2 Background & Related Work

Object permanence is a crucial milestone in cog-
nitive development, and it has been suggested by
Moore and Meltzoff (1999) that as early as four
months this milestone is reached. Tomasello and
Farrar (1984) shows that as infants enter the sixth
stage of object permanence development (where
children understand that objects completely re-
moved from their view still exist) they start to learn
relational words. A more recent study explores
the development of search behavior in 7 month
old infants after they guide them in understand-
ing the effects of their actions upon hidden objects.
This indicates that object permanence is crucial in

jects depicted in images only offer a single visual experience
(though multiple referring expressions) to the objects.

searching behavior as it leads to the understanding
that infants have the ability to cause hidden objects
to reappear (O’Connor and Russell, 2015).

Bechtle et al. (2015) worked towards developing
a sense of object permanence in robots through
creating a simulated experimental setup where a
robot learns how the movements of its arms (one
holding a shield) affect the visual detection of an
object in a scene. Although, not directly related to
object permanence, Platonov et al. (2019) is more
closely related to grounding as they create a SDS

which is able to create a 3D model of a physical
block world and answer spatial questions about it.
Roy et al. (2004) also explored spatial reasoning
within a physical world through the creation of a
robot called Ripley which performed grounding of
spatial language that could not be understood under
fixed-perspective assumptions.

Of similar importance in cognitive development
is communicative grounding. Researchers, notably
Chai et al. (2014), have investigated how the collab-
orative efforts of a robot in situated human-robot
dialogue affects both perceived and true grounding
which involved a situated setup of objects simi-
lar to our experiment. This notion of common
ground and communicative grounding has also
been explored in other human-robot interaction
work (Kiesler, 2005; Powers et al.; Stubbs et al.,
2007, 2008; Peltason et al., 2013) and work involv-
ing human interactions with virtual agents (Puste-
jovsky et al., 2017). Our work extends and builds
on prior work as we focus on using object perma-
nence in a robot to improve its language learning
abilities.

3 Proposed System

In this section we explain how we modeled the
dialogue for language learning, integrated with
robot modules. We first explain the choice of
robot: Digital Dream Lab’s Cozmo robot. Plane
et al. (2018) showed that participants perceived
Cozmo as young and with potential to learn, which
is precisely the setting and perception that we want
dialogue partners to have when interacting with
Cozmo. Cozmo is small, has a track for movement,
a lift and a head with an OLED display which allow
it to display its eyes. Within the head is a small
camera and a speech synthesizer (with a “young”
sounding voice). For this study we make use of
Cozmo’s camera for object detection, track for
navigation and most importantly Cozmo’s built-in
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SLAM (Simultaneous Localization and Mapping)
functionality for object permanence. Cozmo has
no microphone, so we use an external microphone.

The system outlined in this paper uses the incre-
mental framework ReTiCo (Michael and Möller,
2019; Michael, 2020) extended for multimodal use
with Cozmo (Kennington et al., 2020), leveraging
existing modules as well as the newly developed
Object Permanence module. The full SDS is de-
picted in Figure 3. The modules include: Object
Detection, Feature Extraction, Automatic Speech
Recognition, Natural Language Understanding,
Grounded Semantics, Action Management (Navi-
gation & Speaking), and Object Permanence.

Object Detection The Object Detection module
uses YOLO object detection (Redmon et al., 2016).
The model we used was pre-trained on the MSCoco
dataset (Lin et al., 2014) containing 91 object types
with a total of 2.5 million labeled objects in 328
thousand images. We apply this model as a means
for object region classification in order to draw
bounding boxes around objects in images received
from Cozmo’s Camera. We discard the labels and
only use the bounding box information as to avoid
the use of a pretrained vocabulary since children
are born without linguistic knowledge. The output
of this module is the bounding box information of
the objects in view to Cozmo.

Feature Extraction The Feature Extraction
module uses CLIP (Radford et al., 2021) a neural
network trained on a variety of (image, text) pairs.
This module takes an image and bounding box in-
formation, extracts each sub-image containing each
object, then passes those through CLIP’s image en-
coder which returns image features encoded by the
vision portion of the CLIP model. This module out-
puts a vector of size 512 for each detected object,
for each frame. In our case only one object will be
detected in an image, though as the robot shifts and
moves, multiple frames of the object will results in
multiple CLIP vector representations of that object.
Taken together, the Object Detection and Feature
extraction modules provide a way of isolating and
extracting features from objects; children likewise
have experienced objects physically (i.e., visual,
tactile) before they learn that words denote objects.
Both modules use models that were trained using
language data which certainly affects functionality
of the modules. We ignore the language aspects
of the models, and leave for future work develop-

ing models (e.g., object region detection) that are
trained without language data.

Figure 1: Visualization of the creation of a custom ob-
ject in SLAM. In 1, the object is not yet observed, but
in 2 the object is placed in the SLAM space.

Automatic Speech Recognition The Automatic
Speech Recognition (ASR) module transcribes user
speech. We use Google’s speech to text API. The
output is the word-level transcription.

Natural Language Understanding The Natural
Language Understanding (NLU) module takes in
the transcribed speech from the ASR and deter-
mines the dialogue act (i.e., intent) of the user using
RASA (Bocklisch et al., 2017) an open source NLU

library. Specifically, we use RASA to categorize
user speech into 5 different dialogue acts:

• positive user feedback (e.g., yes)
• negative user feedback (e.g., no)
• where questions (e.g., where is the can?)
• what questions (e.g., what is that?)
• statements (e.g., that is red.)

The positive and negative user feedback is used
to document the number of questions that Cozmo
answered correctly and incorrectly from the par-
ticipant. We categorize where and what questions
so that Cozmo can differentiate between initiating
finding behavior (where questions) and answering
questions using the best known word about an ob-
ject (what questions). This signals to our system
when it should be in a state of learning how words
ground into images, or whether it should be exploit-
ing what it knows in order to locate and identify an
object it has seen. This fairly simplistic ontology
of dialogue acts is in line with child development;
children can infer intent of positive and negative
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feedback, as well as simple questions like location
before they are able to speak, albeit often through
extra-linguistic information such as prosody and
affective displays (see (Locke, 1995), chapters 3-5).
We trained RASA on 19 hand-crafted examples
of positive user feedback, 10 examples of nega-
tive user feedback, 25 examples of what questions,
22 examples of where questions, and 747 exam-
ples of statements that we extracted from random
samples of text from Wikipedia. We train on 747
examples of statements because statements are the
most difficult to identify as there are many different
variations of statements therefore requiring many
training examples.

Grounded Semantics The Grounded Semantic
Module performs symbol grounding by mapping
heard words (though the ASR) to observed objects.
The module makes use of the the Words as Clas-
sifiers (WAC) model (Kennington and Schlangen,
2015). In the WAC model, each word is represented
by its own classifier trained on positive and nega-
tive examples of real-world referents and has been
shown to learn words with only a few examples,
which is critical for our task that is intended to
mimic how children fast-map words to objects. The
module learns as it “hears” a word (i.e., a recent
update from the ASR module) and is currently ob-
serving an object. The WAC model associates words
with the detected objects (i.e., represented as CLIP
vectors) as positive examples. The module system-
atically trains individual logistic regression classi-
fiers for each word as it hears words and associates
those words with objects. Negative examples for
training are randomly sampled from positive vec-
tors associated with other words (the system must
have heard at least two words and associated some
objects with them in order to train). The classifiers
are trained every time an utterance is spoken and
after observing an object every 20 added frames.

The Grounded Semantics module has two
modes: explore and exploit. In the explore mode,
the module associates words with objects and trains
the individual word classifiers as explained above.
In the exploit mode, the module instead uses the
recently heard words and either attempts to identify
the object that is the best fit for the description or it
attempts to determine which word is the best fit for
an object that is currently under observation. The
module’s mode is determined by the speech act as
signalled by the NLU module, explained above.

Action Management For dialogue (and robot ac-
tion) management we use PyOpenDial (Jang et al.,
2019). This module acts as a broker of the entire
dialogue state to map from states to actions. In
our case, the primary actions are explore when
the robot drives around looking for objects, find
when the dialogue partner asks about an object,
learnwhen the robot should be associating words
with objects, and answer when the robot should
utter something in response to a dialogue partner’s
where or what dialogue act. The explore action is
the default. In the explore state, Cozmo randomly
drives in front of one of the 7 different objects (see
Figure 4).

Figure 2: Quad-tree Maps are space efficient alterna-
tives to an an occupancy map where open space is com-
pressed into a single “unoccupied” cell. White means
no cells are occupied, grey means some, and black
means all. The root node represents the entire map and
children are arranged in clockwise order. The first child
node corresponds to the 4x4 grid in the upper left.

Object Permanence The Object Permanence
module is an application of a SLAM module that is
part of the Cozmo robot’s functionality. The goal
of the SLAM module is to track the position and
location of observed objects in a 3-dimensional
space. The surface that the robot can drive on is a
2-dimensional plane that the SLAM module breaks
into very small cells. The SLAM module then uses
quad-tree maps (Finkel and Bentley, 1974) to de-
termine which cells are occupied and which ones
are free. Representing the space as a quad-tree
map allows SLAM to store and retrieve object lo-
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Figure 3: Schematic of our system.

cations efficiently. An example of a quad-tree map
is shown in Figure 2. While we do not argue that
humans use quad-tree maps for organizing object
permanence, it serves as a functional approxima-
tion of what object permanence affords: the ability
to remember objects and their locations.

When the system is first invoked, there is ini-
tially no history of observed objects and the robot’s
starting point becomes the point of reference for
everything that the robot will observe. As the robot
moves (i.e., drives forward or backward, and turns
left or right) the SLAM module can track precisely
how far and in which direction the robot has moved
from its origin. The original SLAM module for
Cozmo is designed to track specific objects based
on a marker code (i.e., three blocks each with QR-
like symbols). We extended the functionality of
the SLAM module to include any object that is ob-
served by the Object Detection module described
above. We use that module’s bounding box infor-
mation (See Figure 1) and current observed loca-
tion relative to where Cozmo is facing to infer the
object’s location and uniqueness. The uniqueness
here is important because if the robot moves away
from the object then returns to it later, the robot
should be able to identify the object as one that has
been seen before, not as a new object. For each
new object that the robot observes, the Object Per-

manence module assigns a unique identifier. The
unique identifier is shared with the Grounded Se-
mantics module so it can associate specific objects
(i.e., their CLIP vectors) with words that were used
to describe those specific objects.

Traditional symbol grounding generally only vi-
sualizes representations of objects and associates
those with referring expressions or descriptions, but
the identity of objects is discarded during testing.
Here, the WAC model not only learns word ground-
ings through experience as it observes words ut-
tered in association with observing objects, but it
also uniquely identifies each object and keeps a
history of its visual experience with each object re-
gardless of how they were referred to or described.
Importantly, the SLAM functionality does not just
identify unique objects, it gives the robot the ability
to return directly to that object without colliding
with other objects because it tracks all objects that
Cozmo has observed.

System Task Behavior The default action for
Cozmo is explore which is done by randomly
choosing a position at one of the drawn squares in
front of all seven objects shown in 4 and centering
its camera to the closest object. Once in front of an
object, Cozmo waits up to 10 seconds for an utter-
ance from a dialogue partner. If the partner utters
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Figure 4: The seven objects used for our experiment

something, Cozmo assumes the words are about the
object in view and the Grounded Semantics mod-
ule learns by associating the last uttered word with
the object. If no utterance is given, Cozmo moves
away from the object and continues to explore.
If the dialogue partner continues to speak, Cozmo
remains in front of the object.

The find state is activated when the NLU de-
tects that the dialogue partner has uttered a where
dialogue act. For example, where is a can? would
result in a detected find dialogue act. This trig-
gers the Grounded Semantics module to find the
object in its history that is the most probable fit for
the description (in this case, the word can might
ground more strongly to one object compared to
others). The Grounded Semantics module then
signals to the Object Permanence module to drive
to and face the object with the specified identi-
fier. Once the robot reaches the object, it utters
back the description (i.e., can). At this point the
dialogue partner can utter positive or negative feed-
back. When the Object Permanence module is not
available (i.e., our baseline system version), Cozmo
randomly explores objects and the Grounded Se-
mantics module determines if the description fits
the currently observed object using the last word
in the utterance. If the probability of the model
is above 0.5, then Cozmo repeats what it heard to
signal that Cozmo found the object. The user can
then utter positive or negative feedback.

Another dialogue act is the what question. If
the robot is currently looking at an object, then
the system assumes the what dialogue act is about
the currently observed object and looks through its
history to find the best known word for the object
currently in view and utters the best known word.

In the following section, we will explain how
we evaluated our SDS and whether or not Cozmo’s
language learning abilities improved with the use
of the Object Permanence module.

4 Evaluation

In this section, we explain how we evaluated
our model with human participants to determine
if Cozmo performs communicative and symbol
grounding more effectively with Object Perma-
nence. We compare two versions of our system:
one that did not have an access to the Object Per-
manence module and one that did. Our evaluation
included objective measures logged by the system
and by the participants used to measure symbol
grounding by tracking correctly “learned” words,
as well as subjective measures collected using par-
ticipant questionnaires used to measure commu-
nicative grounding.

Procedure Study participants met in our lab lo-
cated near Boise State University’s Computer Sci-
ence building. The lab is setup for the participant
interaction as follows. A large table is setup with 7
objects on the table as shown in Figure 4. We chose
the 7 objects to vary shape and color, but wanted
to have a degree of overlap for words that might be
used to describe them (e.g., can or blue).

In front of each object is a straight line drawn
on the table and a box.2 Cozmo is placed in front
of the leftmost object. The microphone that feeds
into the ASR module is positioned in front and to
the left of the table with the objects and Cozmo.
The participant stands or sits (as they prefer) at the
front of the table. Cozmo is not introduced to the
participant until the participant has signed a con-
sent form and the task has been explained to them.
The experimenter was present to examine the state
of the robot and the microphone, answer any ques-
tions the participant may have, and troubleshoot
any problems that arose. The experimenter was
permitted to offer a constrained set of coaching
tips to the participant during the experiment, given
the participant needed a reminder of their task or

2The line and box does not affect Cozmo, it is just there to
help the participant adjust Cozmo when needed.
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the instructions. Following each interaction with
Cozmo, the participant was instructed to complete a
questionnaire. Following the completion of the ex-
periment and surveys, the participant was paid $10.
We recruited 24 participants to interact with Cozmo
for two twenty-minute periods over the course of
a single session. Most study participants recruited
were from the Boise State University Department
of Computer Science. 18 of the participants were
male; 6 were female. The entire time for each
participant was approximately one-hour.

After signing the informed consent, Cozmo was
introduced to the participant, with the following
explanation; (1) Cozmo has a camera that can see
the world; (2) Cozmo has a microphone and can
hear them; (3) Cozmo doesn’t know anything, but
would like to know more about the world; (4) for
the next 20 minutes, it is your job to teach Cozmo
as many words as they can, about the seven objects
in front of Cozmo; (5) Cozmo will move in front
of an object. If Cozmo does not hear you speak he
will move on to a new object. If Cozmo does hear
you speak, then it will observe the object and repeat
the word he learned. The word Cozmo learned will
always be the last word you spoke. Do not teach
Cozmo any more words until it repeats this word.
For every word you teach it, you can write it down
so you can keep track; (6) if Cozmo is not on the
square in front of the object when he moves to an
object you must readjust it to that square; (7) After
teaching Cozmo about two different words for two
different objects you can and should ask it what
and where questions to check his knowledge; (8)
For every question he gets right answer “yes” and
put down a tally mark to record a correct answer
for every question he gets wrong answer “no” only;
(9) Only speak to Cozmo when he is in front of an
object.

We used an A/B design, meaning that each par-
ticipant went through the same procedure twice,
once with Cozmo having access to Object Perma-
nence and once without access. To mitigate prim-
ing effects, the order in which the test condition
was presented was alternated.

Two System Versions The test condition is the
system version that had access to Object Perma-
nence and is explained in Section 3. The baseline
point of comparison for this study was a system
that did not have access to the Object Permanence
module. The overall functionality of the baseline
system was the same as the system with access to

Object Permanence, except that the system could
not track and locate objects when participants asked
them to. The Grounded Semantics module in this
case only performs traditional symbol grounding
between words and visual representations—not spe-
cific objects. This meant that the robot behavior
when a find dialogue state was entered (i.e., after
a where dialogue act from the participant) was dif-
ferent: instead of moving directly to the identified
object, the robot would move towards a random
object one at a time and check each object to deter-
mine if they matched the description. If an object
did match, the robot would repeat the description
to the participant, who then in turn offered positive
or negative feedback. Under the best circumstances
for the baseline system, the robot would randomly
move towards an object that fit the description on
the first attempt. But if the first object did not fit the
description, then the robot moved towards a differ-
ent object and repeated until an object matched the
description. To give the baseline version a higher
chance of the robot actually finding the objects,
the objects were placed in a line and the robot sys-
tematically drove directly to a randomly selected
object. This was designed to give the baseline sys-
tem version some degree of the object permanence
functionality as a stronger point of comparison.

Metrics All module communication is logged us-
ing the Platform for Situated Intelligence (Bohus
et al., 2017). We specifically track the number of
utterances made by the participants, including posi-
tive and negative feedback, and the number of ques-
tions asked. The participant themselves keep track
of the number of questions Cozmo correctly an-
swers (i.e., if Cozmo correctly identified an object).
These metrics act as a way to measure symbol and
communicative grounding, as well as engagement
(i.e., more utterances means more engagement).

We evaluate the robot based on questionnaire
responses filled out by the participants following
each interaction to establish that communicative
grounding took place. We used the Godspeed
Questionnaire (Bartneck et al., 2009), a 5-point
Likert-scaled questionnaire with 24 questions using
negative (left side) to positive (right side) ratings
of a robot’s anthropomorphism, animacy, likeabil-
ity, and perceived intelligence. In addition to the
Godspeed questions, we asked the participants the
following questions to further ascertain their per-
ceptions of our system and robot (some items have
boldface text to link them with results):
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(Mean / std. dev) baseline with obj. perm. p-value
Heard Words 15.9 / 3.9 18.8 / 4.7 0.02
Questions Asked 10.7 / 3.2 20.0 / 6.7 3.7e-7
% Correct 70.0 / 22.2 82.7 / 12.1 0.02

Table 1: The effect of object permanence on a language acquisition
task

Interesting 0.0048
Spend more Time 0.049
Responsive 0.083
Intelligence 0.10

Table 2: Statistical Significance
between values with and without
Object Permanence using a t-test.

(Mean / std. dev) 1st Interaction (A) 1st Interaction (B) 2nd Interaction (A) 2nd Interaction (B)
Heard Words 19.4 / 4.7 16.2 / 2.7 18.3 / 5.0 (0.56) 15.6 / 4.9 (0.72)
Questions Asked 16.4 / 4.0 12.0 / 3.5 23.0 / 7.5 (0.01) 9.7 / 2.7 (0.13)
% Correct 83.2 / 11.5 74.7 / 20.4 82.1 / 13.0 (0.84) 64.9 / 23.7 (0.30)

Table 3: The effect of initial setting on a language acquisition task (A is for with Object Permanence and B is for
without. Furthermore, the values in parentheses near the values for the second interaction represent the p-values
between the values in 1st Interaction compared to 2nd Interaction for A and B)

• How attached to the robot did you feel?
• How interesting was the robot to interact

with?
• Would you like to spend more time with the

robot?
• How many years old do you think the robot is

(in terms of its behavior)?

Results Table 1 shows the effect object perma-
nence has on Cozmo’s language acquisition abil-
ities.3 It is clear that with object permanence,
Cozmo is perceived to learn language better than
without object permanence as shown by the statis-
tical significance values. This suggests that object
permanence does appear to have an affect on sym-
bol grounding especially as Cozmo not only hears
more words on average per participant with the test
condition than without, his accuracy in answering
questions also increases by approximately 13%.

Relating to participant perceptions of the robot
and interaction, we find that overall the mean val-
ues for the ratings were higher for the test condition
than the baseline except for three questions which
relate to kindness, and feelings of calmness and in-
terest at the beginning of the interaction. Therefore,
showing that overall, the test condition positively
influenced users’ perception of Cozmo. Further-
more, we observe that with object permanence, par-
ticipants believed that Cozmo learned better than

3Nine interactions had to be restarted due to unexpected
events (e.g., Cozmo rolled off the table) which affected the
SLAM map and learned words, but this happened at roughly
the same frequency for both settings. Cozmo also picked up
his own voice in the microphone in both settings, but this also
happened at roughly the same frequency for both settings so
we decided to leave it as part of the data.

without, as seen by the overall higher intelligence
and responsiveness scores in Figure (1), though
note that the difference in perceived intelligence
is not significant, which tells us that the baseline
system was still viewed positively and therefore
provided a high point of comparison.

Participants on average estimated Cozmo’s age
with the test condition at 3.5 years of age compared
to 2.6 years of age with the baseline, suggesting
that Cozmo was perceived to be more intellectu-
ally advanced with the test condition, but still an
early language learning child, which also tells us
that the robot did not exhibit behaviors that par-
ticipants perceived as too advanced for our task.
We also observe higher responsiveness in the ob-
ject permanence version which likely results from
participants observing that Cozmo answered ques-
tions quickly and with high accuracy, suggesting
that communicative grounding was better with the
object permanence version (see Appendix for more
results comparing perceived Intelligence and Re-
sponsiveness).

Finally, ratings for interest and desire to spend
more time with the robot are significantly higher
with object permanence than without. This is espe-
cially evident when observing that the mean value
for interest at the end of the interaction is 4.7 with
the test condition and 4.2 without; the average in-
crease in interest from the beginning of the interac-
tion for the test condition is 0.54 as compared to
0.83 without. Furthermore, using questions asked
as a measurement for engagement (since it shows
active interest in what Cozmo is learning) we ob-
serve that with Object Permanence, Cozmo is asked

131



approximately 9 more questions than without show-
ing that object permanence has a significant effect
on engagement (see Table 3). This is crucial, be-
cause the interaction itself needs to motivate hu-
man participants to “buy into” the robot’s language
learning by spending time and effort helping it
learn. See also Figure 5 in the Appendix for more
results.

5 Conclusion

We conducted an experiment with twenty-four par-
ticipants who performed a language acquisition
task with Cozmo both with and without object
permanence. We analyzed our results by compar-
ing the participants’ survey responses to measure
communicative grounding and number of words
heard, questions asked, and percent of questions
answered correctly to measure symbol grounding
between the experimental and control interactions.
We found that a robot with object permanence
resulted in improved communicative and symbol
grounding due to stronger engagement from the
participant and a higher percentage of correct an-
swers from Cozmo. User perceptions of Cozmo
with object permanence also greatly improved over-
all. This indicates that object permanence does in
fact have a positive affect on communicative and
symbol grounding. Our findings suggest that an
understanding of object permanence is a necessary
component of any spoken dialogue system built
to reach the potential of natural dialogue between
humans.
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Figure 6: Intelligence and Responsiveness ratings for
Cozmo with and without object permanence

Figure 5: Engagement ratings for Cozmo with and
without object permanence
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Abstract

Chatbots are increasingly used to automate op-
erational processes in customer service. How-
ever, most chatbots lack adaptation towards
their users which may results in an unsatis-
factory experience. Since knowing and meet-
ing personal preferences is a key factor for en-
hancing usability in conversational agents, in
this study we analyze an adaptive conversa-
tional agent that can automatically adjust ac-
cording to a user’s personality type carefully
excerpted from the Myers-Briggs type indi-
cators. An experiment including 300 crowd
workers examined how typifications like extro-
version/introversion and thinking/feeling can
be assessed and designed for a conversational
agent in a job recommender domain. Our re-
sults validate the proposed design choices, and
experiments on a user-matched personality typ-
ification, following the so-called law of attrac-
tion rule, show a significant positive influence
on a range of selected usability criteria such
as overall satisfaction, naturalness, promoter
score, trust and appropriateness of the conver-
sation.

1 Introduction

In today’s rapidly emerging technology-driven
world, chatbots are becoming a more signifi-
cant factor in customer interaction. Next to
voice-driven assistants, text-based conversational
agents—commonly known as chatbots—have at-
tracted significant attention in recent years. Chat-
bots are designed to interact with humans using nat-
ural language and are commonly used on messag-
ing platforms and websites (Dale, 2016; Gnewuch
et al., 2018). With recent advancements in the
field of artificial intelligence (AI), organizations
are starting to realize the potential of chatbots to
automate their customer service operations and
hence reduce costs (Adam et al., 2020). Further-
more, it was predicted that 80% of organizations

⋆ Corresponding authors

would have deployed a chatbot by 2020 (Sandbank
et al., 2017). However, the quality of today’s sys-
tems does not seem to meet customer expectations
(Gnewuch et al., 2018). A key obstacle prevent-
ing most chatbots from being successful is that
the interaction lacks humanness and naturalness
(Schuetzler et al., 2014; Gnewuch et al., 2018).
Several studies have investigated social cues and
their positive effect on users’ perceived social pres-
ence, trust, enjoyment, and usage intentions (Zum-
stein and Hundertmark, 2017; Ahmad et al., 2020).
However, it has also been shown that social cues
may have a negative effect that ends up irritating
the user (Louwerse et al., 2005).

Studies about the nature and quality of human-
machine interactions have identified personality
as an essential factor for this issue (Chaves and
Gerosa, 2021). Personality is a stable pattern that
provides a measure for a person’s behavior (und
Gregory J Feist, 2002). Traditionally, personality
is assessed by questionnaires; current approaches,
however, make it possible to use human-generated
data from social media or online forums (Boyd and
Pennebaker, 2017). A person’s language can pro-
vide information about the user’s personality (Pen-
nebaker and King, 1999; Boyd and Pennebaker,
2017; John et al., 1988).

To address these challenges and leverage mod-
ern technologies, the development of a personality
type-indicator adaptive chatbot that automatically
adapts to a user’s presumed personality type is pro-
posed in this work. The studies analyzes the impact
of the so-called “law of attraction,” according to
which users reported higher communication inter-
action, human-likeliness, preference, and friendli-
ness when interacting with a chatbot that has equal
personality traits (Ahmad et al., 2020; Park et al.,
2012). However, the studies introduced did not
produce statistically significant results except for
Ahmad et al.’s (2020) work (Ahmad et al., 2020).
Their study did not require full interaction with an
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applied chatbot, but rather examined the perception
of different personalities in a chatbot by showing
their participants screenshots of the interactions.
In our empirical quantitative user study, we there-
fore evaluate how adapted personality types are
perceived by chatbot users for the domain of a job
recommender chatbot and whether or not personal-
ity type-based adaptation can lead to higher overall
satisfaction, usability, trust, and appropriateness.

Furthermore, there exist very few works about
design criteria for how to realize personality in
terms of chatbot design. This paper seeks to con-
tribute to this area by giving design implementation
details.

2 Related Work

2.1 Personality and MBTI Typification

Looking in the psychologically motivated litera-
ture of personality assessment and analysis the pre-
dominantly used model is the so called five factor
model (FFM) (McCrae and Costa, 1987; McCrae
and John, 1992). However, and despite overt scien-
tific criticism, e.g. (Pittenger, 1993; Boyle, 1995),
when looking into concurrent practical application
outside the scientific community the application
of Myers-Briggs Type Indicator (MBTI) as a pre-
employment assessment in career and job seeking
processes, all originating to (McCaulley and Mar-
tin, 1995), has gained substantial popularity. In this
work, we therefore adopt and extend the principles
of MBTI typification into a job recommender chat-
bot interaction while taking good care of MBTI
validity and type indicator selection for our exper-
iments. MBTI is a personality theory classifying
people into the combination of four types resulting
in one of 16 distinct classifications (McCrae and
Costa, 1987), rather than continuous dimensions
native to FFM. This distinction leads to a differ-
ence in the meaning of each combination. The
MBTI consists of four dichotomies: Extroversion
(E) vs. Introversion (I), Sensing (S) vs. Intuition
(N), Thinking (T) vs. Feeling (F), and Judging
(J) vs. Perceiving (P) (Myers-Briggs et al., 1998).
(McCrae and Costa Jr, 1989) examined the degree
of empirical convergence between the Big 5 and
the MBTI. Their results show that each MBTI type
is correlated to at least one Big 5 trait. The largest
study in Furnham (1996) shows large correlations1

1According to Cohen (1988), a correlation > 0.1 is con-
sidered as low, > 0.3 as medium, and > 0.5 as large (Cohen,
1988)

Introversion Extroversion

problem talk pleasure talk
single topic many topics
few semantic errors many semantic errors
few self-references many self-references
formal informal
many tentative words few tentative words
many nouns, adjectives many verbs, adverbs
prepositions pronouns
many words per sentence few words per sentence
many articles few articles
many negations few negations
few positive words many positive emojis
less emojis few negative emotions
many negative emotions affiliative humor
(bad emojis)

(cues in italic were used in our study)

Table 1: Overview of linguistic cues for I/E as by (Ruane
et al., 2020; Mairesse et al., 2007; Pennebaker and King,
1999; Mehl et al., 2006; Scherer, 1979; Furnham, 1990;
Gill and Oberlander, 2002)

for I/E with Extroversion, and P/J with Consci-
entiousness and medium correlation between N/S
with Openness and T/F with Agreeableness.

2.2 Link between Personality and Language

According to John et al. (1988), a modern approach
to infer personality is inferring it from language
based on the lexical hypothesis (John et al., 1988).
Over the years, subsequent research has refined
this theory. As a system, the lexical hypothesis
is considered to be a general approach with impli-
cations for cross-cultural diversity, cognitive theo-
ries, and other areas of psychology (Digman, 1990).
The hypothesis states that each person has different
opinions and preferences which are expressed in
a person’s language (John et al., 1988). Thus, in
language analysis based on personality vocabulary,
one should use a clearly defined list of the most
important characteristics (John et al., 1988). Which
characteristics to utilize to design a chatbot’s per-
sonality is explained in the following.

Prior work has mapped linguistic cues for each
of the personality traits (Boyd and Pennebaker,
2017; Pennebaker and King, 1999; Mairesse et al.,
2007; Ruane et al., 2020). As already indicated,
the application of these cues in the literature is
predominantly derived from the FFM, as research
lacks linguistic cues based on the MBTI (Furnham,
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Thinking Feeling

swearing longer words
anger shorter sentences
negations positive emotions
references to facts cheerful
less mentions to emotions many self-references

(cues in italic were used in our study)

Table 2: Overview of linguistic cues for T/F as by (Ru-
ane et al., 2020; Pennebaker and King, 1999)

1996).
Selecting carefully our experimentation scope,

this study focuses on two of the four dichotomies,
namely I/E and T/F, for a essential reasons. Both
dichotomies show respective correlations to ex-
troversion and agreeableness offering well estab-
lished linguistic cues (Ruane et al., 2020; Mairesse
et al., 2007; Pennebaker and King, 1999; Mehl
et al., 2006; Scherer, 1979; Furnham, 1990; Gill
and Oberlander, 2002) drawn from the FFM. The
I/E dichotomy has the strongest correlation to the
FFM’s extroversion scale. Among all four MBTI
dichotomies, however, with the correlation to the
FFM being the lowest between T/F and agreeable-
ness, there is no significant difference to the other
scales when compared with McCrae and Costa’s
study (1989) (McCrae and Costa Jr, 1989). Table
1 and 2 show the overview of linguistic cues for
extroversion and agreeableness as adapted to I/E
and T/F for the presented study.

Obtaining MBTI types is typically done by ques-
tionnaires, e.g. Form M (93 items). Due to avail-
ability and transparency reasons, this study ex-
cerpts from the open-source Open Extended Jun-
gian Type Scales (OEJTS) questionnaire (Jorgen-
son, 2015) provided from openpsychometrics2.

2.3 The Law of Attraction

The law of attraction is the central theory to adapt
a chatbot in order to achieve greater usability. Ac-
cording to this theory, people seek out those similar
to them and prefer to interact with people with sim-
ilar traits. As explained by (Infante et al., 1997),
the perceived similarity is the degree to which we
believe someone’s characteristics are similar to our
own. These characteristics can include several fac-
tors such as demographics, political views, and

2The Open Extended Jungian Type Scales (OEJTS) can be
accessed under: https://openpsychometrics.org/
tests/OEJTS developed by Jorgenson (Jorgenson, 2015)

personality. Many studies in psychology and com-
munication have confirmed this rule (Blankenship
et al., 1984; Nass and Lee, 2001). Originating
from the observations of Human-Human Interac-
tion (HHI), this concept is frequently applied to
Human-Computer Interaction (HCI) as well.

Transferred to HCI, the law of attraction states
that a user prefers to interact with a computer
that has matched personality types rather than mis-
matched ones. When matched, information from
the computer has also been rated as better and more
trustworthy (Zumstein and Hundertmark, 2017).
Specifically for the Big 5 theory, a study found
that for a sub-dimension of the trait extroversion,
dominant people prefer to interact with a dominant
counterpart, and vice versa for the submissive trait
(Moon and Nass, 1996). Several other studies in
the field of HCI also confirmed the law of attraction
(Ahmad et al., 2020; Smestad, 2018; Lee and Nass,
2005). However, some studies do not support the
law of attraction in the area of HCI (Isbister and
Nass, 2000; Liew and Tan, 2016), suggesting that
the applicability may also depend on a concrete
scenario or application. A supporting argument
comes from the field of Human-Robot Interaction
(HRI), e.g. the analysis of task dependency in (Tay
et al., 2014).

3 Chatbot Design

Our personality-adaptive chatbot prototype is based
on the Microsoft Azure Bot Framework and is built
in the browser, allowing it to be embedded into var-
ious channels. Depending on the input personality,
the respective conversation tree is activated for the
task of job recommendation divided into two sub-
dialogs. The first sub-dialog generally greets the
user, while the second one asks job-related ques-
tions to give a personality-based recommendation.

To design the chatbot’s personality type, the pre-
viously introduced linguistic cues were used. Table
3 and 4 show the applied cues including their de-
gree for the four differently designed characters
of the chatbot. For the analysis of the chatbot re-
sponses, both the Python library spaCy3 and the
service Count Wordsworth4 were utilized. In con-
trast to other studies, this table enhances the trans-
parency of the degree of linguistic cues applied,
whereas related work oftentimes does not include
a description of exact design choices.

3https://spacy.io
4https://countwordsworth.com
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ET EF IT IF

Manipulating E and I

Percentage of I/we 3.81% 3.83% 2.41% 2.67%
I, me 12 11 11 10
first person 44 41 32 30
verbs 54 44 64 53
verbs by WR 17.14% 15.33% 14.04% 14.17%
adverbs 19 20 24 17
adverbs by WR 6.03% 6.97% 5.26% 4.55%
pronouns 51 48 66 48
pronouns by WR 16.19% 16.72% 14.47% 12.83%
affiliative humor 1 1 0 0
informal words 18 13 1 2
Total words 315 287 456 374
articles 6 4 36 29
articles by IR 1.90% 1.39% 7.89% 7.75%
nouns 41 23 80 69
nouns by IR 13.02% 8.01% 17.54% 18.45%
adjectives 13 18 39 30
adjectives by IR 4.13% 6.27% 8.55% 8.02%
prepositions 35 31 83 62
prepositions by IR 11.11% 10.80% 18.20% 16.58%
tentative words* 2 1 8 9
third person (formality) 5 5 11 7

Manipulating T and F

words per sentence 8.75 8.46 12.32 11.32
emojis emotion negative 2 0 2 0
words related to 6 0 3 0
swearing/anger
aggressive humor 0 0 1 0
references to facts 2 0 2 0
average length of words 3.98 4.11 4.54 4.70
words related to emotion 8 13 5 11
emojis emotion positive 7 25 0 1
emojis neutral 13 26 0 0
neutral humor 0 0 0 1

WR: word ration, IR: interaction ratio, *e.g. would/could

Table 3: Linguistic cues applied for personality expres-
sion

Overall, due to the short nature of the interac-
tions, the metrics concerning word counts, sentence
length, and word length were hard to manipulate
when designing the messages, as there were too
many dependencies on other metrics such as refer-
ences to facts.

4 User Study

The experiment consists of five steps. (1) Users fill
out a short 12-item personality self-report accord-
ing to OEJTS. (2) Participants interact with our
chatbot, with random assignment of matched or
mismatched personality type. (3) Users assess first
interaction by nine usability items. (5) Participants
again interact with our chatbot, this time seeing the
alternative personality type as in step 2. (6) User
again assess nine usability items plus questions on
preference of one version over the other.

Report: ET EF IT IF

Metrics of linguistic cues where T higher than F

words per sentence 8.75 8.46 12.32 11.32
emojis emotion negative 2 0 2 0
words related to 6 0 3 0
swearing/anger
aggressive humor 0 0 1 0
references to facts 2 0 2 0

Metrics of linguistic cues where F higher than T

average length of words 3.98 4.11 4.54 4.70
words related to emotion 8 13 5 11
emojis emotion positive 7 25 0 1
emojis neutral 13 26 0 0
neutral humor 0 0 0 1

Table 4: Overview of the metrics of linguistic cues to
design personality for T/F.

The first part of the study is a survey is a 12-
item personality self-report based on the OEJTS.
For this study, each of the nine highest scoring
items on the I/E and the T/F scales are used in
this experiment. Additionally, each dichotomy has
further been divided into six items of the E/I types
and six items of the T/F types. The selected items
were assessed by using a five-point Likert scale in
between“Strongly agree,” “Agree,” “Neither agree
nor disagree,” “Disagree,” and “Strongly disagree.”

Depending on the users personality type, two
chatbots were automatically selected to be tested
in step 2 and step 5, of which one is designed to
be perceived the same personality type as the user
(matched), whereas the other one represents the op-
posite option settings (mismatched).For example, if
a user is classified as EF (extroverted-feeling), they
interacted with both an EF and an IT designed chat-
bot, in random order. The extroverted chatbot was
named Carla and the introverted one was named
Sophia to achieve the effect that users are more
likely to share personal information if the chatbot
appears to be female (Toader et al., 2020).

The topic of the interactions in step 2 and 5 is to
chat about personal and job-related preferences to
recommend a suitable job. The job recommenda-
tions given by the chatbot in the end of the conver-
sation are hand crafted and based on the personality
of the user. Note that we do not analyze the perfor-
mance of any recommendation accuracy, nor the
users’ acceptance towards it. In this work, we fo-
cus on the impact of personality on the usability
of the interaction explicitly. In more detail, the
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conversation starts with some general questions re-
garding the name, origin, and personal preferences.
Afterwards, the chatbot commences asking about
job-related preferences. Three questions are asked
that are based on additional items of the OEJTS.
For example, one item of the OEJTS to measure
extroversion assesses whether the user “works best
in groups” or “works best alone.”

Further, the chatbot is designed to be between
the edges of an intra- and an interpersonal chatbot
within a closed domain, offering limited functional-
ity (Nimavat and Champaneria, 2017). Hence, the
chatbot only allows the user to answer the questions
instead of providing functionality that answers cus-
tom questions of the user. This limitation was ex-
plicitly clarified at the beginning of the survey to
avoid false expectations. Moreover, the users have
also been instructed of another limitation of the
current state of chatbot prototype implementation,
namely that writing multiple messages is not sup-
ported. This means that all information has to be
put into a single message.

The usability questionnaire applied consists of
nine items that are asked after each chatbot inter-
action: two items that compare both chatbots with
each other and five general items about the partici-
pants. First, the nine items that are asked directly
after each conversation with the chatbot are intro-
duced. These items are split into four items derived
from ITU telecommunication standardization sec-
tor (ITU-T) Recommendation P.851 (Rec, 2003),
while the other five items are custom-designed.
Adapted to the personality domain, four items were
selected that are related to the following factors:
acceptability, naturalness, and promoter score. For
these items (among others), it was demonstrated
that acceptability and naturalness are well general-
ized (Möller et al., 2007). The personality factor
from ITU-T was not suitable for the experiments
at hand due to the strong focus on personality type
differentiation of this study. Hence, five custom
items were designed to measure whether the design
choices applied could be perceived by the partici-
pants when interacting with the different chatbots.
These nine usability items were assessed using the
same five-point Likert scale from above. In addi-
tion, two items were designed to directly compare
Carla (extroverted) and Sophia (introverted) head-
to-head. The first item assesses which chatbot is
being perceived as more adapted toward the users’
preferences, while the second asks for the general

preference when comparing both directly. For both
items, users had the option to choose Carla, Sophia,
both, or none. Eventually, five profiling questions
were asked at the end of the survey regarding gen-
der, age range, experience with chatbots, native
language, and their current profession. All items
are shown in Appendix A, also including the items
used for comparison and general profile data.

4.1 Participants

300 participants were recruited using the the
Crowdee (Naderi et al., 2014) crowdsourcing plat-
form 5 across the U.S., Great Britain, and Australia.
Participants were paid equally by minimum floor
wage based on the estimated work duration of the
task at hand.

From the general profile items we see, that
90% of the participants were English native speak-
ers.52% of the participants were women and 46%
men, while a minority was diverse (1%) or did
not like to share their gender (1%1). All partici-
pants were older than 18 years, and the distribution
among age classes was as follows: 18–25 (20%),
26–35 (36%), 36–45 (24%), 46–55 (15%), and
<55 (5%). Regarding their experience with chat-
bots, a minority of 13% had never been in touch
with a chatbot before. Moreover, 5% use a chatbot
on a daily basis, while 20% interact with one at
least monthly and 62% occasionally. In total, out
of 300 crowd workers who participated, 266 valid
responses can be considered. 32 participants did
not complete the interactions or the questionnaires,
or interactions could not successfully be logged.
Furthermore, 2 participants were excluded from
the study as outliers due to their scores being three
times higher than the interquartile range.

From a preliminary analysis of the qualitative
feedback we feel confident that the participants
could solve the task as expected and generally en-
joyed the study. The overall tone in qualitative
feedback was positive, e.g. “Carla was the best
one, [...] It was cool but scary.”, “Sophia was great.
Sounded like a real person was on the other end.”,
or “It was pretty fun speaking with the first one
[extroverted], she was way more accurate with her
job recommendations than Sophia.”.
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Figure 1: Distribution of personality type scores and counts, including classification boundaries; top for E/I, bottom
for T/F dichotomies.

5 Results

5.1 Personality Type Distribution

Figure 1 shows the distributions of personality
scores measured with the OEJTS. Both bar charts
show the number of participants by personality
score between 6 (low = Introversion or Thinking
on the left) and 30 (high = Extraversion or Feeling
on the right), and the equal space binning threshold
of 18 to differentiate the values into binary classes.
The upper chart regarding I/E shows that the ratio
between I and E classified participants is 62:38.
More balanced is the distribution of T/F with a ra-
tio of approximately 51:49 in the lower bar chart.
All types are represented by at least 47 participants,
with ET being the minority with 18% (47 partic-
ipants), followed by EF with 20% (54). Among
the introverted participants, IF represents 28% (75)
and a majority of 34% are classified as IT (90). As
no class is equal to or greater than twice the size
of another, there are no imbalances in the overall
distribution.

5.2 Results for the Law Of Attraction

In order to analyze the effect of the law of attraction,
a one-sided t test was used to examine the statis-
tically significant difference between the matched
and mismatched scores of Q1-9 (see Appendix ??).
The test for significance was done at the level of
α = 0.05 for the following t-tests. It was not nec-
essary to apply the Bonferroni correction, as we

5www.crowdee.com

matched mismatched

Usability Item mean SD mean SD
Q1 Overall Satisfaction* 3.94 1.06 3.58 1.19
Q2 Naturalness* 3.68 1.07 3.45 1.12
Q3 Promoter Score* 3.56 1.12 3.20 1.19
Q4 Dialogue Length 3.50 0.10 3.53 1.01
Q7 Trustworthiness* 3.52 0.95 3.38 0.94
Q9 Appropriateness* 3.74 1.11 3.24 1.24

Table 5: Descriptive statistics (N=266) for Q1-4, Q7,
and Q9 comparing matched with mismatched person-
ality. * denotes a statistically significant difference of
means (p < 0.05).

analyze the means of different items (i.e., data) be-
tween two groups. The one-sided test was applied,
as we have expected higher usability ratings for
all items (Q1-9) in the matched-condition due to
the law of attraction. Additionally, a Chi-square
test was used to examine whether the matched
bots were preferred and whether an adaption of
the matched bot could be perceived when both are
directly compared.

Shown in Table 5, there is a significant differ-
ence between the overall satisfaction (Q1) of the
matched personality is significantly higher com-
pared to the mismatched personality, t(265) =
4.016, p = < .001, d = .246. Moreover, the per-
ceived naturalness (Q2) of the matched chatbots is
significantly higher compared to the mismatched
personality ones, t(265) = 2.782, p = .003, d = .171.
Similarly, the matched personality type chatbot is
more likely to be recommended to a friend (Q3)
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compared to the mismatched personality, t(265) =
3.894, p = < .001, d = -.239. Furthermore, there
is a significantly higher trustworthiness (Q7) in
the matched personality than the mismatched one,
t(265) = 2,015, p = .022, d = .124. Finally, also the
matched personality scores significantly higher in
appropriateness for the task at hand than the mis-
matched personality, t(265) = 4.572, p = <.001, d
= .280.

These results support our assumption that a
matched personality has a positive influence on
the perceived usability of our job recommender
chatbot. However, it seems that there is only a
small effect of the matched personality adaption.

Despite explicit manipulation, results also show
that no significant difference was perceived by the
participants with respect to the dialogue length,
t(265) = -0.373, p = .355.

5.3 Validation of Design Choices

Table 6 shows the results of our analysis on the
impact of the design choices.

The one-sided t test found that the formality (Q5)
of the introverted bot is significantly higher com-
pared to the extroverted bot, t(265) = 24.571, p = <
.001, d = 1.507. This strongly supports the assump-
tion that the introverted bot is perceived as more
formal than the extroverted, which corresponds to
the design choices.

Moreover, the perceived trustworthiness of the
introverted bot is significantly higher compared
to the extroverted bot, t(265) = 6.840, p = <.001,
d = .419, while there is also a significantly higher
appropriateness of the introverted bot compared
to the extroverted bot, t(265) = 9.190, p = <.001,
d = -.563.

Message length (Q8) and Emotionality (Q6)

Introverted Extroverted

Usability Item mean SD mean SD

Q5_Formality* 3.94 0.95 1.97 1.15
Q7_Trustworthiness* 3.68 0.83 3.22 0.10
Q8_Message_Length 3.36 1.10 3.55 0.96
Q9_Appropriateness* 3.94 0.88 3.04 1.31

Feeling Thinking

Q6_Emotional 2.73 1.01 3.56 1.06

Table 6: Descriptive statistics (N = 266) for Q5-9 MOS
comparing the introverted and extroverted bot. * denotes
a statistically significant difference of means (p < 0.05).

were not perceived significantly differently, al-
though messages from the introverted bot are per-
ceived as longer compared to the extroverted bot,
t(265) = -2.778, p = < .003, d = -.170. Finally,
the bot design of Feeling (Q6) was also not per-
ceived as significantly more emotional than the bot
designed as Thinking, t(265) = -0.356, p = .361.

Finally, a direct comparison of both bots was
examined with a Chi-square test to assess which
chatbot was perceived as most adapted to the user.
The results show no significant difference between
the I/E personality type and a perceived adaption
in the chatbot’s behavior, χ2(3) = 2.523, p = .471.

6 Discussion

In general, our results and expectations are in line
with the law of attraction within a text-based con-
versational agent (Park et al., 2012) domain such
that overall satisfaction, trustworthiness and appro-
priateness are significantly higher for the matched
personality-based chatbot.

Also, the difference between the combination of
ET and IF is much smaller compared to a scenario
in which the user interacts with the bots EF and
IT. For the first scenario, the messages of the bots
only differ by 59 words; however, the second sce-
nario offers 87 words in message length through
the overall course of the dialogue.

A set of preliminary results may shed some light
on the unexpected results. When looking at a one-
sided t test within the sub-sample of EF and IT
classified participants, the effect of perceived mes-
sage length is also greater compared to the whole
sample (t(144) = 3,863, p < .001, d = -.321). How-
ever, it is natural that the ET and IF types are more
similar to each other compared to the EF and IT.
Surprisingly, the differently designed emotionality
of the messages did not yield significant results in
terms of distinction. A possible explanation for
this could be that the perception of emotionality is
biased by the use of emojis, which are perceived
as an emotional variable. The difference in the
usage of emoticons between IF and ET is in fa-
vor of the ET type. Hence, the ET type could
be perceived as more emotional given the higher
number of emojis, which is also related to feeling.
Therefore, similar to the design aspect of message
length, the other combinations of IT and EF should
show clearer results as EF is designed to be feeling
and uses numerous emojis. A paired t test also
supports this assumption where the EF type is per-
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ceived as significantly more emotional than the IT,
t(144) = 1,967, p = .026, d = .163. Hence, there
might be an interference with the usage of emo-
jis and the relationship towards feeling that was
not designed clearly enough for those participants
that were interacting with ET Carla and IF Sophia.
Another possible reason for the lack of perceived
emotionality, in general, could be that this study
designed the T/F dichotomy under the assumption
that there is a correlation with Big 5’s agreeable-
ness. Due to the lack of research modelling think-
ing and feeling linguistically, the linguistic cues of
agreeableness were used to design T/F. The two
traits correlate with each other (0.47) according
to a study by McCrae and Costa (1989) (McCrae
and Costa Jr, 1989). Nevertheless, they are not
equal, which might result in an information loss or
false interpretation other than what was intended.
Further, the separation of the extroverted and intro-
verted bot is also dependent on whether they were
rated as the matched or the mismatched interaction,
respectively. Our study shows, the law of attraction
has an impact on the perception of the two chatbots.
However, a subliminal study showed that there are
no major differences when analyzing the scores
within the samples of only matched interactions,
the samples of only mismatched interaction, and
the whole sample.

When investigating the results, regardless of the
matched or mismatched personality, the introverted
and formal-designed chatbots (introverted Sophia)
were rated higher than the more informal ones (ex-
troverted Carla). This also fits into the domain of
job recommendation which is usually associated
with professionalism where formality is required.
The more formal bot also scores better on appropri-
ateness and overall satisfaction.

For the evaluation, 266 people have interacted
with it in a realistic scenario, and have rated the in-
teraction by means of MOS. Similar studies either
did not provide a direct interaction with the chatbot
(Ahmad et al., 2020) (users only rated screenshots)
or could only show tendencies with small sample
sizes (Smestad, 2018; Ruane et al., 2020). Hence,
to the best of our knowledge, this is the first study
to show a statistically significant positive effect,
though small, of automatically adapted matched
personality of a chatbot (N = 266) toward usabil-
ity, trust, and appropriateness for the task of job
recommendation.

In addition, linguistic cues that correlate with cer-

tain personality traits were introduced (Pennebaker
and King, 1999; Mairesse et al., 2007; Ruane et al.,
2020) and the results presented in this paper further
contribute to this body of research. They indicate
that personality differences embodied in language
were significantly perceived in two out of three de-
sign choices. These findings further validate that
matched personality results in significantly higher
usability scores (in all but one of the items used
in our study) of a chatbot. Apart from that, trust-
worthiness and appropriateness (for the task of job
recommendation) were also shown to be signifi-
cantly better when matching the personality type
compared to mismatching it. Our results are in
line with previous research (Moon and Nass, 1996;
Ahmad et al., 2020; Smestad, 2018; Lee and Nass,
2005; Zumstein and Hundertmark, 2017), while
at the same time quantitatively demonstrating the
effect of the law of attraction for a high number
of participants (Park et al., 2012). In contrast to
other studies, our study enhances the transparency
of the degree of linguistic cues applied by precisely
stating the numbers of linguistic cues; related work
on chatbots with personality only described their
exact measures briefly.

6.1 Future Research

In future work, we aim to examine whether a chat-
bot that automatically classifies the user’s personal-
ity could become more accurate over time with a
growing body of textual language to result in a per-
sonalized user experience. Additionally, it would
be interesting to apply natural language genera-
tion (NLG) for the matched response generation of
the chatbot to achieve even higher usability scores
and higher overall flexibility. A similar approach
to automatically create utterances that express a
certain personality was developed with PERSON-
AGE (Mairesse and Walker, 2010).

A potential practical future experiment could be
the steady recalculation of the user’s personality
for the saved conversation logs. This would al-
low a personality classification model to iteratively
verify the user’s personality traits with increasing
text size. Based on the assumption that larger text
samples will improve the accuracy of the predicted
personality, the usability of the system could also
be improved over time while it is in usage. How-
ever, storing the users’ texts in business contexts to
calculate their personality raises ethical as well as
legal questions which have to be studied too.
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Eventually, a more dedicated work comparing
the selected dichotomies from MBTI along their
impact on usability to scales and constructs derived
from the FFM would be desirable in order to con-
tribute to further personality theory validation.
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Appendix A: Item Setup for Overall Study

No. Type Item

PQ1 IE I consider myself to be energetic rather than relaxed.
PQ2 IE I would describe myself as a talker rather than a listener.
PQ3 IE I oftentimes like to stay home rather than going out to town.
PQ4 IE Speaking in public is more likely to frighten me than to entertain me.
PQ5 IE I describe myself as a calm person rather than being impulsive.
PQ6 IE I would describe myself as an open person instead of being guarded.
PQ7 TF I am more a skeptical person than a believer.
PQ8 TF I rather strive to have an mechanical mind than striving to let my thoughts run

free.
PQ9 TF I am easily hurt and not emotionally thick-skinned.
PQ10 TF I prefer to follow my heart rather than my head.
PQ11 TF I rather value emotions instead of feeling uncomfortable with (expressing) them.
PQ12 TF I rather use reason over instinct.

Q1 ITU-T Overall, I was satisfied with the chatbot.
Q2 ITU-T The chatbot reacted naturally.
Q3 ITU-T I would advise my friends to also use the chatbot.
Q4 ITU-T The overall dialogue course was too long.
Q5 Custom The chatbot was formal.
Q6 Custom The chatbot was emotional.
Q7 Custom The chatbot was trustworthy.
Q8 Custom The messages were too long.
Q9 Custom The chatbot was appropriate according to my expectations.

C1 Comparison Do you believe the interaction was adapted to you personally?
C2 Comparison Which chatbot do you like more?

G1 General How often do you use chatbots?
G2 General Please tell us about your age range.
G3 General Is English your native language?
G4 General Please tell us about your gender.
G5 General What is your current profession?

Table 7: Overview of all items used throughout the study.

145



Proceedings of the SIGdial 2022 Conference, pages 146–158
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

Towards Socially Intelligent Agents with Mental State Transition and
Human Value

Liang Qiu∗1, Yizhou Zhao∗1, Yuan Liang2, Pan Lu1, Weiyan Shi3, Zhou Yu3, Song-Chun Zhu1

1UCLA Center for Vision, Cognition, Learning, and Autonomy
2University of California, Los Angeles

3Columbia University
liangqiu@ucla.edu

Abstract

Building a socially intelligent agent involves
many challenges. One of which is to track the
agent’s mental state transition and teach the
agent to make decisions guided by its value
like a human. Towards this end, we propose to
incorporate mental state simulation and value
modeling into dialogue agents. First, we build
a hybrid mental state parser that extracts in-
formation from both the dialogue and event
observations and maintains a graphical rep-
resentation of the agent’s mind; Meanwhile,
the transformer-based value model learns hu-
man preferences from the human value dataset,
VALUENET. Empirical results show that the
proposed model attains state-of-the-art perfor-
mance on the dialogue/action/emotion predic-
tion task in the fantasy text-adventure game
dataset, LIGHT. We also show example cases
to demonstrate: (i) how the proposed mental
state parser can assist the agent’s decision by
grounding on the context like locations and ob-
jects, and (ii) how the value model can help
the agent make decisions based on its personal
priorities.

1 Introduction

Recently, there has been remarkable progress in lan-
guage modeling with large-scale pretrained mod-
els (Vaswani et al., 2017; Devlin et al., 2019; Rad-
ford et al., 2019). Such models are used to build
either general chatbots (Zhang et al., 2020) or
task-oriented dialogue systems (Peng et al., 2020;
Acharya et al., 2021; Qiu et al., 2020). While most
of these systems have been able to generate fluent
sentences, there are two major challenges towards
building socially intelligent agents. First, consider-
ing dialogues as a "meeting of minds" (Gardenfors,
2014) or achieving some alignment of the inter-
locutors’ mental models (Rumelhart et al., 1986;
Stolk et al., 2016), few existing works are explicitly

*Equal contribution. The work was done prior to Liang
joining Amazon Alexa.

Hi! I can't find my phone.

When was your last time seeing it?

I went to my friend's apartment. Then
we played basketball. After that, we had
dinner together.

Then you should probably check the
basketball court.

Let's go outside and have some beers!

You know it's too late and not safe outside.

Figure 1: Socially intelligent agents with mental state
simulation and human values.

tracking the mental state transition of agents (Ad-
hikari et al., 2020). Endowing current dialogue
systems with such capability would allow the agent
to condition its utterance on the context, simulate
the effect of its actions, and further help understand
the extended meaning, implicature, and irony ex-
pressed by the user (Grice, 1981, 1989). Second, it
remains under-explored to teach agents to make a
rational decision guided by its value. From a social
and cultural perspective, humans tend to have a
common preference described by the utility func-
tion related to individual values, common sense,
and social awareness. For the example in Figure
1, someone who values personal security prefers
staying at home rather than going outside at night.

Our work aims to alleviate the aforementioned
problems, based on Embodied Cognitive Linguis-
tics (ECL) (Lakoff and Johnson, 1980; Garden-
fors, 2014) and established value theories in sociol-
ogy (Schwartz, 2012). The ECL states that natural
language is inherently executable, driven by mental
simulation and metaphoric inference (Lakoff and
Johnson, 1980), and learned through embodied in-
teraction (Feldman and Narayanan, 2004; Tamari
et al., 2020). Following its tenents, we present a hy-
brid mental state parser that converts dialogue and
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event observations into a graphical representation
of the agents’ mind. Initialized with the location
and object description, the interpretable represen-
tation is updated through the interaction history
to track the evolving process of an agent’s belief
about surroundings and other agents.

In the field of intercultural research, Schwartz
(1992); Schwartz et al. (2012) identify basic indi-
vidual values that are recognized across cultures.
Inspired by the theory, we propose to incorporate
a value model that learns social common prefer-
ences from the human value knowledge base, VAL-
UENET (Qiu et al., 2022). We perform experiments
on a large-scale text-based embodied environment
LIGHT (Urbanek et al., 2019). Empirical results
show that the model with our mental state emula-
tor and value function achieves the highest perfor-
mance that aligns with human annotation among
existing transformer-based models. Moreover, case
studies further demonstrate that the mental state
provides extra context information, while the value
model helps agents make value-driven decisions.

Our contributions are two-fold. First, we pro-
pose to rethink the design of current dialogue sys-
tems and suggest a new paradigm from the per-
spective of cognitive science and contemporary
sociology. Second, we present a new framework
for building socially intelligent agents by incorpo-
rating mental state simulation and human value
modeling into dialogue generation and decision
making. Our methodology can be generalized to
a wide range of interactive social situations in di-
alogue systems (Zhao, 2019), virtual reality (Lai
et al., 2019), and human-robot interactions (Yuan
and Li, 2017).

2 Related Work

2.1 Text-based Embodied AI

Most recent works in dialogues only study the sta-
tistical regularities of language data, without an
explicit understanding of the underlying world. Vir-
tual embodiment (Krishnaswamy and Pustejovsky,
2019) was proposed as a strategy for language re-
search by several previous works (Brooks, 1991;
Kiela et al., 2016; Gauthier and Mordatch, 2016;
Mikolov et al., 2016; Lake et al., 2017). It implies
that the best way to acquire human knowledge is
to have the agent learn through experience in a
situated environment. Urbanek et al. (2019) intro-
duce LIGHT as a research platform for studying
grounded dialogue (Grice, 1981, 1989; Stalnaker,

2002), where agents can perceive, emote, and act
when conducting dialogues with other agents. Am-
manabrolu et al. (2020) extend LIGHT with a
dataset of "quests", aiming to create agents that
both act and communicate with other agents in
pursuit of a goal. Instead of guiding the agent to
complete an in-game goal, our work aims to teach
agents to speak/act in a socially intelligent way.
Besides LIGHT, there are also other text-adventure
game frameworks, such as Narasimhan et al. (2015)
and TextWorld (Côté et al., 2018), but no human di-
alogues are incorporated in them. Based on the
TextWorld, there are recent works (Yuan et al.,
2018; Yin and May, 2019; Adolphs and Hofmann,
2019; Adhikari et al., 2020) on building agents
trained with reinforcement learning.

2.2 Mental State Transition

An important hypothesis in the ECL (Lakoff and
Johnson, 1980; Feldman and Narayanan, 2004) is
that humans understand the meaning of language
by mentally simulating its content. Great efforts
have been made to model human mental states.
For example, Dinan et al. (2019) design a memory
network capable of storing knowledge and gener-
ating natural responses conditioning on retrieved
entries. Adhikari et al. (2020) propose a graph-
aided transformer agent (GATA) that infers and
updates latent belief graphs during planning to en-
able effective action selection. However, GATA
is designed for capturing game dynamics not di-
alogues, and our method is more flexible to en-
code both explicit environmental changes caused
by agents’ actions and implicit mental state up-
dates triggered by agents’ utterances. Such hy-
brid approaches mixing fixed symbolic states with
deep continuous states are studied in recent neural-
symbolic research (Sun, 1994; Garcez et al., 2008;
Besold et al., 2017; Yi et al., 2018). The result
interpretable graphs have two benefits: (i) the men-
tal state parsing could be viewed as a form of ex-
ecutable semantic parses (Liang, 2016), so it is
easy to write programs to simulate the mind tran-
sition. A real-world application leveraging similar
approaches is seen in Andreas et al. (2020). (ii) the
unified graphical representation can be extended
to model higher-order mental states, i.e., theory-of-
mind (ToM) (Premack and Woodruff, 1978). ToM
is defined as the ability to impute mental states
to oneself and others. It enables humans to make
inferences about what other people believe in a
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given situation and predict what they will do (Ap-
perly, 2010; Gordon and Hobbs, 2017; Akula et al.,
2019). ToM is thus impossible without the capacity
to form "second-order representations" (Dennett,
1978; Pylyshyn, 1978; Ganaie and Mudasir, 2015).

2.3 Human Value

When teaching agents to speak and act in a socially
intelligent way, an approach considering values
should be adopted. The theory of basic human
values, developed by Schwartz (1992, 2012), tries
to measure universal values that are recognized
throughout major cultures. A set of 10 basic val-
ues1 are identified and serve as the guiding prin-
ciples in the life of a person or group (Cieciuch
and Davidov, 2012), as shown in Figure 2. Simi-

Universalism

Benevolence

SecurityPower

Achievement

Hedonism

Stimulation

Self-direction

Conformity

Tradition

Openness to
Change

Self-
Transcendence

Self-
Enhancement Conservation

Figure 2: Theory of Basic Human Values (Schwartz,
1992).

larly, in economics and ethics, the concept of utility
was developed as a measure of pleasure or satis-
faction that drives human activities at all levels.
Derived from the rational choice theory (Abella,
2009), utilitarianism states that human decision-
making could be viewed as a two-step procedure.
First, we select a feasible region based on financial,
legal, physical, or emotional restrictions we are
facing. Then we make a choice based on the pref-
erence order (Allingham, 2002; de Jonge, 2012).
In this paper, we learn a transformer-based util-
ity function of human values from the knowledge
base VALUENET (Qiu et al., 2022). Inspired by
descriptive ethics, VALUENET provides social sce-
narios and annotated human preference to teach
the agent human attitudes to various ethical sit-
uations. The dataset is curated from the widely

1A refinement of the theory (Schwartz et al., 2012), par-
titions the same continuum into 19 more narrowly defined
values that permit more precise explanation and prediction.

used social commonsense dataset SOCIAL-CHEM-
101 (Forbes et al., 2020) and labeled with Amazon
Mechanical Turk.

3 Problem Formulation

We will first briefly introduce the text-adventure
environment LIGHT, followed by the mental state
modeling and value utility formulation.

LIGHT (Urbanek et al., 2019) is a large-scale
crowd-sourced fantasy text-adventure platform for
studying grounded dialogues. Figure 4 a⃝ shows
a typical local environment setting, including lo-
cation description, objects (and their affordances),
characters, and their personas. Agents can talk to
other agents in free-form text, take actions defined
by templates, or express certain emotions (Figure
4 b⃝). Given the environmental setting and observa-
tion history, our task is to predict the agent’s utter-
ance/action/emotion for the next turn. To achieve
this goal in a socially intelligent manner, we model
the agent’s mental state transition and incorporate
human values. The mind model is proposed to de-
pict the agent’s belief about the underlying states
of the text world. Meanwhile, a utility function
of human values is designed to describe human
preferences in common social situations. We ex-
periment on the text-adventure game for simplicity,
but the proposed architecture supports richer envi-
ronments.

a small bucket

a rag

persona

I come from the
lower class ... King

persona

carrying
I am a king of the
whole empire ...

a duster

a crowncarrying

a scepter

Servant

carrying carrying

partner

carrying

carrying

in

Figure 3: A graphical representation of the agent’s men-
tal state. Nodes are attributed with encoded natural
language description of agents, objects and the environ-
ment. Agents’ action trigger explicit topology changes
of the graph.

3.1 Mental State Modeling

Our goal is to parse, construct and maintain the
mental states in dialogues. With the mental state
grounding on the details of the local environment,
the agent could simulate and reason the evolution-
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Setting: The main foyer is massive. A grand staircase sits to the back of the foyer leading to the upstairs. At the front of the foyer stand two servants
ready to help anyone who comes to visit. To the left of the room there is a doorway leading into a corridor. To the right there is a door leading to another
corridor for the King's servants. At the foot of the stairs there is a bearskin rug that is staring at you almost as if still hungry. The walls are lined with
portraits of the king and the family.

Self Persona: Servant. I come from the lower class. I do what I am told without question. I can not read. I have not seen my family in a long time.
Self Carrying: a duster, a small bucket, a rag
Self Wearing: a shirt

Partner Persona: King. I am a king of the whole empire. I give rules and pursuit them. I am brave and fearless.
Partner Carrying: a crown, a scepter

Mental
State

2

Action mask

Graph
Encoder

1
2
3
4
5
6
7

1
2
3
4
5
6
7

Value Ranker
3
1
5

utt/act/emote

Action Selector

Self: I am sorry sir the rug startled me.
Action:  drop crown
Partner: Haha! That's bear I slain on my latest hunting trip. He's a mighty beast!
Emote: gesture laugh

update

a

Text Encoder

Text Encoder

A

S

A

S

aggregator

scorer

mask

1

3

4

5

7

6

8 9 10

11

b

12

Mental State
Parser

Figure 4: Socially Intelligent Agent Architecture with Mental State Parser and Value Model.

ary status of the world and condition its speak-
ing and actions. A graphical representation of the
mental state is proposed, as illustrated in Figure 3.
Nodes in the graph represent the involved agents,
persona descriptions, objects, objects’ descriptions,
and setting descriptions, which will change as the
game setting switches. The relational edges be-
tween these nodes describe the state of mind. The
mental state is updated with the observed dialogue
history or actions, e.g., King gives the scepter to
the servant will result in the scepter being moved
from the king to the servant.

3.2 Human Value Modeling

We assume that the agent in the fantasy world
would make near-optimal choices to maximize
the utility of its preferred values. We denote
the available alternatives to be a set of n ex-
haustive and exclusive utterances or actions A =
{a1, ..., ai, ..., an}. The value function fv(·) de-
scribes the utility score of the alternative from the
value dimension v, v ∈ V = {achievement, power,
security, conformity, tradition, benevolence, univer-
salism, self-direction, stimulation, hedonism}2. For
example, if ai is more preferred than aj in terms of
security, then fsecurity(ai) > fsecurity(aj). Usu-
ally, we cannot find an analytical form of the value
function. However, what matters for preference or-
dering is which of the two options gives the higher

2Detailed definition for each dimension is attached in Ap-
pendix A.1.

expected utility, not the numerical values of those
expected utilities.

In LIGHT, the agent’s value priority is reflected
by its persona description. For the example in Fig-
ure 4 a⃝, the servant is a person who values confor-
mity and tradition and has a lower priority on self-
direction and stimulation. Using the same value
function to approximate a value priority parser:
fv(p), where p is the persona description, the util-
ity or the desirability of candidate ai to person p
is the Euclidean distance between its value priority
and the candidate’s utility score:

u(ai) =

√∑

v∈V
(fv(p)− fv(ai))

2. (1)

Since some actions could be impossible physically
(e.g., one cannot drop an object if the agent is not
carrying the object), the decision making process
becomes a problem of maximizing the utility score
that is subject to some constraints from the mental
state, i.e., u(a|c), where c represents the context or
constraints.

4 Algorithms

The overall architecture of our proposed frame-
work is illustrated in Figure 4. For each scenario,
a setting description (Figure 4 a⃝) is provided by
the LIGHT environment, which can include a de-
scription of the location, object affordances, agents’
personas, and the objects that agents are carrying,
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wearing, or wielding. The free-form conversations,
actions, and emotions are logged during the com-
munication as the observation history (Figure 4 b⃝).
To begin with, a mental state parser will parse the
setting descriptions into graph representation and
initialize the agent’s mental state (steps 1⃝ and 2⃝).
Besides the mental state updating, the parser also
outputs an action mask that is aimed to rule out
actions that are physically or causally impossible
to take (step 3⃝). A graph encoder (step 4⃝) and a
text encoder (step 5⃝) will convert the mental state
graph Gt and the dialogue observation Ot into vec-
tor representations, respectively. The same text
encoder will be used to encode the candidates Ct

(step 6⃝). In step 7⃝, the context vectors are com-
bined by a bi-directional attention aggregator (Yu
et al., 2018; Seo et al., 2016), and each candidate
is assigned a score with a Multi-Layer Perceptron
(MLP) (step 8⃝). The action mask is then applied
to get the feasible candidates under current mental
state constraints (step 9⃝). In steps 10⃝ and 11⃝, the
top three candidates from the last step will be fed
into the value model and re-ranked. Finally, the
selected utterance/action/emotion is executed by
the agent (step 12⃝) and fed back to the environment.
Upon receiving the response from other agents in
the environment, the new observation will be again
parsed and used to update the agent’s state of mind,
and the cycle repeats. In the following, we will
describe each component in more detail.

4.1 Mental State Modeling (steps 1⃝- 2⃝)

Figure 5 describes the architecture of the mental
state parser. We define the mental state graph
G ∈ [−1, 1]R×N×N , where R is the maximum
number of relation types and N is the maximum
number of entities. The initial mental state graph
G0 is constructed by a ruled-based parser from the
setting description O0. The graph is encoded by
function fe to a hidden state h0 that is later used
for graph update. At game step t, the mental state
parser parses relevant information from observa-
tion Ot and update the agent’s mental state from
Gt−1 to Gt. Considering that observation Ot typ-

ically conveys incremental information from step
t−1 to t, we generate the graph update ∆gt instead
of the whole graph at each step

Gt = Gt−1 ⊕∆gt, (2)

where ⊕ is the graph update operation. The graph
update can be either discrete or continuous, and
there have been studies on the pros and cons of
each updating method (Adhikari et al., 2020). The
discrete approach may suffer from an accumula-
tion of errors but benefit from its interpretability.
The continuous graph model needs to be trained
from data, but it is more robust to possible er-
rors. In this work, we propose a hybrid (discrete-
continuous) method for updating the agent’s state
of mind by considering there exists a mixture of dis-
crete events and continuous information in typical
human-machine interactive environments. In the
specific example of our tested LIGHT, the actions
or events are template-based, it is more appropriate
to adopt a discrete method for parsing; meanwhile,
since utterances are challenging to be encoded into
discrete representations, we apply a continuous up-
date method instead.

4.1.1 Discrete Graph Definition & Update
To update the graph, we define ∆gt as a sequence
of update operations of the following two atomic
types:

• ADD(src, dst, relation): add a di-
rected edge, named relation, from node
src to node dst.

• DEL(src, dst, relation): delete a di-
rected edge, named relation, from node
src to node dst.

LIGHT defines various actions including get, drop,
put, give, steal, wear, remove, eat, drink, hug and
hit, and each taking either one or two arguments,
e.g., give scepter to servant. Every action could
be parsed as one or a sequence of update operators
that act on Gt−1. For example, actor performing
“give object to agent” can be parsed into DEL(actor,
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object, carrying) and ADD(agent, object, carrying).
The rule-based parsing of the setting description
and the discrete events could also be replaced by a
seq2seq decoding process. Since both strings are
well-structured in LIGHT, we omit training such a
decoder for simplicity. Note that actions in LIGHT
could only be executed when constraints are met,
so we also generate an action mask according to
the current mental state. By checking the adjacency
matrix, we rule out action candidates conducted on
objects that are inaccessible.

4.1.2 Continuous Graph Definition & Update
Besides the actions taken by the agents, their ut-
terances could also have an implicit impact on the
agents’ mental states. To handle the continuous
dialogue observation, we use a recurrent neural
network as the graph update operation ⊕.

∆gt = f∆(hGt−1 , hOt),

ht = RNN(∆gt, ht−1),

Gt = MLP(ht).

(3)

The function f∆ aggregates the information from
the previous mental state Gt−1 and observation Ot

to generate the graph update ∆gt. hGt−1 denotes
the representation of Gt−1 from the graph encoder.
hOt is the output of the text encoder. ht is a hidden
state acting as the memory, from which we decode
the new mental state Gt using a MLP. For the recur-
rent operator, we could either use LSTM (Hochre-
iter and Schmidhuber, 1997) or GRU (Cho et al.,
2014). More details on the graph encoder and text
encoder we applied are presented in the section 4.2.

4.2 Action Selector (steps 4⃝- 11⃝)
Conditioned on the agent’s mental state, the action
selector chooses the optimal candidate based on the
prediction task (i.e., utterance, action, or emotion).
The selector consists of five components: a graph
encoder (Fig. 4 4⃝) to convert the state-of-mind
graph to a hidden state vector; a text encoder (Fig.
4( 5⃝, 6⃝)) to encode the dialogue history and text
candidates; an aggregator (Fig. 4 7⃝) to fuse the two
context representations; a general scorer (Fig. 4 8⃝)
to assign a score to each candidate; and a value
model (Fig. 4 10⃝) to re-rank the candidates based
on the assigned persona.

1. Graph Encoder. We use relational graph con-
volutional networks (R-GCNs) (Schlichtkrull et al.,
2018) to encode the graph representation of mental
states. The R-GCN is adapted from Graph Convo-
lutional Networks (GCNs) so that it could embed

the edge attributes (relational text embedding) in
the mental state graph.

2. Text Encoder. A BERT-based (Devlin et al.,
2019) encoder converts the text-based dialogue his-
tory into a vector representation, using the last hid-
den state corresponding to the [CLS] token; We
also use the same encoder to encode the text re-
sponse candidates.

3. Aggregator. A bi-directional attention
layer (Yu et al., 2018; Seo et al., 2016) is adopted to
fuse the information from the mental state and the
contextualized text hidden state. The co-attention
allows the agent to focus on the memory part that
has been mentioned in the dialogue.

4. Scorer. The full context representation vector
is concatenated with each candidate and an MLP
layer with softmax activation generates a score for
each of them.
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Figure 6: The VALUENET (Qiu et al., 2022) dataset
with social scenarios organized by Schwartz val-
ues (Schwartz, 2012).

5. Value Ranker. After all the candidates are
ranked, we select the top three candidates and
then re-rank them according to the proposed value
model. The value model is a BERT-based util-
ity scorer trained on the knowledge base VAL-
UENET (Qiu et al., 2022). A custom input format
constructed as ‘[CLS][$VALUE]s’ is fed into
the BERT, i.e.,

fv(s) = BERT([CLS][$VALUE]s), (4)

where [CLS] is the special token for regression, s
is the scenario, and [$VALUE] are special tokens
we define to prompt (Li and Liang, 2021; Brown
et al., 2020) the transformer the interested value
dimension v. A regression head is put on top of the
model to get a continuous estimation of the utility
in the range of [−1, 1].
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Seen Test Unseen Test
Dialogue Action Emotion Dialogue Action Emotion

Method R@1/20 Acc Acc R@1/20 Acc Acc

BERT-based Bi-Ranker 76.5 42.5 25.0 70.5 38.8 25.7
BERT-based Cross-Ranker 74.9 50.7 25.8 69.7 51.8 28.6
discrete mental state 75.8 52.1 25.1 69.9 53.4 25.5
continuous mental state 77.3 49.3 26.2 72.1 45.2 29.1
hybrid mental state 78.4 53.5 26.1 72.3 54.3 29.5
hybrid+mask 78.5 54.5 26.1 72.3 55.4 29.4
hybrid+mask+value 78.8 56.4 26.1 72.6 57.5 30.1

Human Performance* 87.5 62.0 27.0 91.8 71.9 34.4

Table 1: Model performance on the LIGHT Seen Test and Unseen Test. For dialogue prediction, Recall@1/20 is
reported for ranking the ground truth among 19 other randomly chosen candidates. Percentage accuracy is calculated
for action and emotion prediction. (*) Human performance is reported by the original paper (Urbanek et al., 2019)
on a subset of data.

The VALUENET is organized in 10 dimensions
of Schwartz values, as shown in Figure 6. It con-
sists of social scenarios curated from SOCIAL-
CHEM-101 (Forbes et al., 2020). And the samples
are annotated by Amazon Mechanical Turk work-
ers, who are asked about their attitudes towards
provided scenarios. For example, if you are some-
one who values benevolence, will you do or say:
“today I buried and mourned a rat"? Their choices
(yes, no, unrelated) are then quantified to numerical
utilities: +1, -1, 0, respectively.

5 Experiments

We conduct experiments on the LIGHT dataset
and compare our model with state-of-the-art meth-
ods based on two variants of BERT models. An
ablation study is carried out to justify our model
design, and a case study is performed to demon-
strate how the proposed framework could help the
agent ground upon the environment details and
make value-driven decisions.

5.1 Experimental Setup and Implementation
The dialogues in LIGHT are split into train (8539),
valid (500), seen test (1000), and unseen test (739)
as the dataset is released. The unseen test set con-
sists of dialogues collected on a set of scenarios
that have not appeared in the training data. We use
the history of dialogues, actions, and emotions to
predict the agent’s next turn. Note that the original
paper manually filters out actions with no affor-
dance leveraging the object annotation, while we
provide all candidates to demonstrate our model’s
capability of reasoning feasible actions automati-
cally from the agent’s mental state.

Here we describe the implementation details of
the proposed framework. The mental state graph
is initialized with a structured setting string includ-
ing all involved elements in the scenario (an ex-
ample is attached in Appendix A.2). The setting
parser is based on general parsing tools: regular ex-
pression and spaCy (Honnibal and Montani, 2017;
Clark and Manning, 2016; Honnibal and Johnson,
2015), resulting in the initial mental state graph as
shown in Figure 7. For the functions fe and fd, we
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needy ...

The graveyard
keeper

rake

Priest

persona

Old Crypt, Graveyard

Broken stones and an iron gate ...

description

iron gate
flowers

name
placard

cross

bible

carrying

partner

in in

in

stone

in

Figure 7: Initial mental state graph parsed from the
example setting string in Appendix A.1. The nodes of
objects’ descriptions are omitted to save space.

use two-layer MLPs with tanh (Karlik and Olgac,
2011) and ReLU (Agarap, 2018) activations. The
Text Encoder is a pretrained BERT (base-uncased)
model (Wolf et al., 2020). The Graph Encoder is
an R-GCN with six layers and a hidden size of 64.
We also adopt the highway connections between
consecutive layers for faster convergence and 3-
basis decomposition to reduce the parameters and
prevent overfitting.
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5.2 Baseline Models

Two BERT-based models (Urbanek et al., 2019)
are used as strong baselines, which have kept the
state-of-the-art performance on this task. BERT
Bi-Ranker produces a vector representation for
the context and each candidate. Each candidate
is assigned a score by the dot product between
the context embedding and the candidate embed-
ding. BERT Cross-Ranker concatenates the con-
text string with each candidate and feeds the string
to the BERT model instead. Compared with the bi-
ranker, The cross-ranker allows the model to attend
to the context when encoding each candidate.

5.3 Results and Analysis

Table 1 shows the results, where our model outper-
forms the state-of-the-art models by a large margin.
To understand the results, we first compare mental
state graph designs using discrete, continuous, and
the proposed hybrid parser.

The discrete mental state parser uses actions to
explicitly update the graph to augment the context
representation. In the action prediction task, the
discrete parser outperforms the purely continuous
method (+2.8% (seen), +8.2% (unseen)), the BERT
Bi-Ranker (+9.6% (seen), +14.6% (unseen)), and
the BERT Cross-Ranker (+1.4% (seen), +1.6% (un-
seen)). While the continuous mental state parser
misses the hard constraints introduced by less fre-
quent actions, it updates the graph implicitly with
the dialogues and shows a better result than the
discrete one on dialogue prediction (+1.5% (seen),
+2.2% (unseen)) and emotion prediction (+1.1%
(seen), +3.6% (unseen)).

The hybrid mental state parser performs the best
among the three according to almost all metrics,
mainly because it aggregates the soft update from
the dense dialogue and the hard constraints from
the sparse actions. We also notice that the emotion
prediction in LIGHT is a hard task because it is not
strictly constrained by the context. Even humans
can only achieve 27.0% (seen) and 34.4% (unseen)
accuracy. Nevertheless, our model provides a rela-
tively 1.2% (seen) and 3.1% (unseen) performance
boost compared to the best BERT baseline.

Then, with the ablation study of our proposed
action mask (hybrid mental state vs. hybrid+mask),
we prove the effectiveness of it for improving ac-
tion accuracy by ∼1% in action prediction. Figure
8 demonstrates how the mental state could help
agent ground on the context. We can see a very
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Figure 8: Intermediate mental state for the agent Ser-
vant in the dialogue example of Figure 4. The adjacency
matrix of the mental state graph is visualized and the
darkness of the edges represent the relation strength.
Only critical relation types between nodes are shown
for illustration purpose.

weak relation of the type "carrying" between the
agent servant and the object crown. Thus the ser-
vant should not be able to give the crown to others
at this time step. Though our model does not rely
on annotated action affordances during action pre-
dicting, an action mask can be reasoned from such
a mental state, which helps filter out physical or
causally impossible actions.

Lastly, we analyze the results after introducing
the value model. We first compute the value prior-
ity of the agent by applying the value function to
its persona description. For example, given the ser-
vant’s persona description in Figure 4, it shows con-
formity, tradition, and security have higher utility
scores to the agent than other dimensions. Then we
calculate utility scores of the top three candidates
based on Equation 1. This teaches the agent to
make decisions that align with the assigned role and
further improves the overall performance, (+0.3%
(seen), +0.3% (unseen)) for dialogue prediction,
(+1.9% (seen), +2.1% (unseen)) for action predic-
tion, and +0.7% (unseen) for emotion prediction.

6 Conclusion

This paper proposes to build a socially intelligent
agent by incorporating mind simulation and human
values. We explore using a hybrid parser to track
agents’ mental state transition. The value model
pretrained on VALUENET brings social preference
to help the agent make decisions. The model is
proved to have a better performance than the state-
of-the-art models on LIGHT. In the future, we have
a plan to build a dataset to study the implicature in
conversation and model deeper levels in the Theory
of Mind based on the proposed representation.
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A Appendix

A.1 Schwartz Value Definition
Self-Direction Defining goal: independent thought
and action–choosing, creating, exploring. Self-
direction derives from organismic needs for control
and mastery and interactional requirements of au-
tonomy and independence. (creativity, freedom,
choosing own goals, curious, independent) [self-
respect, intelligent, privacy]

Stimulation Defining goal: excitement, novelty,
and challenge in life. Stimulation values derive
from the organismic need for variety and stimu-
lation in order to maintain an optimal, positive,
rather than threatening, level of activation. This
need probably relates to the needs underlying self-
direction values. (a varied life, an exciting life,
daring)

Hedonism Defining goal: pleasure or sensuous
gratification for oneself. Hedonism values derive
from organismic needs and the pleasure associated
with satisfying them. Theorists from many disci-
plines mention hedonism. (pleasure, enjoying life,
self-indulgent)

Achievement Defining goal: personal success
through demonstrating competence according to
social standards. Competent performance that gen-
erates resources is necessary for individuals to sur-
vive and for groups and institutions to reach their
objectives. As defined here, achievement values
emphasize demonstrating competence in terms of
prevailing cultural standards, thereby obtaining so-
cial approval. (ambitious, successful, capable, in-
fluential) [intelligent, self-respect, social recogni-
tion]

Power Defining goal: social status and prestige,
control or dominance over people and resources.
The functioning of social institutions apparently
requires some degree of status differentiation. A
dominance/submission dimension emerges in most
empirical analyses of interpersonal relations both
within and across cultures. To justify this fact of
social life and to motivate group members to accept
it, groups must treat power as a value. Power values
may also be transformations of individual needs
for dominance and control. Value analysts have
mentioned power values as well. (authority, wealth,
social power) [preserving my public image, social
recognition]

Both power and achievement values focus on so-
cial esteem. However, achievement values (e.g.,
ambitious) emphasize the active demonstration

of successful performance in concrete interaction,
whereas power values (e.g., authority, wealth) em-
phasize the attainment or preservation of a domi-
nant position within the more general social sys-
tem.

Security Defining goal: safety, harmony, and
stability of society, of relationships, and of self.
Security values derive from basic individual and
group requirements. Some security values serve
primarily individual interests (e.g., clean), others
wider group interests (e.g., national security). Even
the latter, however, express, to a significant degree,
the goal of security for self or those with whom one
identifies. (social order, family security, national
security, clean, reciprocation of favors) [healthy,
moderate, sense of belonging]

Conformity Defining goal: restraint of actions,
inclinations, and impulses likely to upset or harm
others and violate social expectations or norms.
Conformity values derive from the requirement that
individuals inhibit inclinations that might disrupt
and undermine smooth interaction and group func-
tioning. As I define them, conformity values em-
phasize self-restraint in everyday interaction, usu-
ally with close others. (obedient, self-discipline,
politeness, honoring parents and elders) [loyal, re-
sponsible]

Tradition Defining goal: respect, commitment,
and acceptance of the customs and ideas that one’s
culture or religion provides. Groups everywhere
develop practices, symbols, ideas, and beliefs that
represent their shared experience and fate. These
become sanctioned as valued group customs and
traditions. They symbolize the group’s solidarity,
express its unique worth, and contribute to its sur-
vival (Durkheim, 1912/1954; Parsons, 1951). They
often take the form of religious rites, beliefs, and
norms of behavior. (respect for tradition, humble,
devout, accepting my portion in life) [moderate,
spiritual life]

Tradition and conformity values are especially
close motivationally; they share the goal of sub-
ordinating the self to socially imposed expecta-
tions. They differ primarily in the objects to which
one subordinates the self. Conformity entails sub-
ordination to persons with whom one frequently
interacts—parents, teachers, and bosses. Tradi-
tion entails subordination to more abstract ob-
jects—religious and cultural customs and ideas.
As a corollary, conformity values exhort respon-
siveness to current, possibly changing expecta-
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tions. Tradition values demand responsiveness to
immutable expectations from the past.

Benevolence Defining goal: preserving and en-
hancing the welfare of those with whom one is in
frequent personal contact (the ‘in-group’). Benev-
olence values derive from the basic requirement
for smooth group functioning and from the organis-
mic need for affiliation. Most critical are relations
within the family and other primary groups. Benev-
olence values emphasize voluntary concern for oth-
ers’ welfare. (helpful, honest, forgiving, responsi-
ble, loyal, true friendship, mature love) [sense of
belonging, meaning in life, a spiritual life].

Benevolence and conformity values both pro-
mote cooperative and supportive social relations.
However, benevolence values provide an internal-
ized motivational base for such behavior. In con-
trast, conformity values promote cooperation in
order to avoid negative outcomes for self. Both val-
ues may motivate the same helpful act, separately
or together.

Universalism Defining goal: understanding, ap-
preciation, tolerance, and protection for the welfare
of all people and for nature. This contrasts with
the in-group focus of benevolence values. Univer-
salism values derive from survival needs of indi-
viduals and groups. But people do not recognize
these needs until they encounter others beyond the
extended primary group and until they become
aware of the scarcity of natural resources. Peo-
ple may then realize that failure to accept others
who are different and treat them justly will lead
to life-threatening strife. They may also realize
that failure to protect the natural environment will
lead to the destruction of the resources on which
life depends. Universalism combines two subtypes
of concern—for the welfare of those in the larger
society and world and for nature (broadminded,
social justice, equality, world at peace, world of
beauty, unity with nature, wisdom, protecting the
environment)[inner harmony, a spiritual life]

A.2 Example Environment Setting

An example setting string for the utterance predic-
tion is:
"_task_speech
_setting_name Old Crypt, Graveyard
_setting_desc Broken stones and a iron gate clos-
ing the entrance with a name placard that the name
is worn off.
_partner_name the graveyard keeper who lives

across the yard _self_name priest
_self_persona I am here to help the needy. I am
well respected in the town. I can not accept lying.
_object_desc a gate : The gate is made out of rusty
metal. It squeaks as it swings on its hinges.
_object_desc a flowers : you can see them up close
but not afar. when noticed, you realize that they are
old.
_object_desc a name placard : The placard is made
of wood witha clear name on it.
_object_desc a stone : The stone is chipped from
being used as target practice from soldier trainees
_object_desc a placard : A sign used to display
names of buildings or notices.
_object_desc an iron gate : The gate is ornate, with
complicated iron scrollwork patterns.
_object_desc a Rake : This rake is made of care-
fully split wood with a sturdy looking handle.
Seems useful for keeping the leaves under control.
_object_desc a Cross : The cross is broken and
with a few dents in the sides.
_object_desc a bible : The bible is bound by black
leather, its pages yellowed by years of use.
_object_in_room a gate
_object_in_room a flowers
_object_in_room a name placard
_object_in_room a stone
_object_in_room a placard
_object_in_room an iron gate
_object_carrying a Rake".
The result mental state graph parsed from this set-
ting is illustrated in Figure 7.
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Abstract

Verbal and nonverbal communication skills are
essential for human-robot interaction, in partic-
ular when the agents are involved in a shared
task. We address the specific situation where
the robot is the only agent knowing about both
the plan and the goal of the task, and has to
instruct the human partners. The case study is
a brick assembly. We here describe a multi-
layered verbal depictor whose semantic, syn-
tactic, and lexical settings have been collected
and evaluated via crowdsourcing. One crowd-
sourced experiment involves a robot-instructed
pick-and-place task. We show that implicitly re-
ferring to achieved subgoals (stairs, pillars, etc)
increases the performance of human partners.

1 Introduction

Task-oriented interactions between systems and
humans, in order to achieve a common goal, are
present in many applications. For instance, receiv-
ing directions via GPS is a task-oriented communi-
cation with the instructions being delivered visually
and verbally (Belvin et al., 2001). Similarly, robots
have been used to give directions (Bohus et al.,
2014), describe its route experience (Rosenthal
et al., 2016; Perera et al., 2016) or instruct students
in a tutorial class Gomez et al. (2015). In the later
work (see Figure 1), a robot helps two participants
to perform a jigsaw assembly task using verbal and
non-verbal communication.

Figure 1: Face-to-face interaction on a Jigsaw reassem-
bly task with an Icub robot (right) acting as the instructor
for two students (left). From (Gomez et al., 2015).

The rise of social robots endowed with verbal,
co-verbal and non-verbal communication capabili-
ties, now raises the question from the robotic point
of view. How a robot and a human can commu-
nicate to achieve a common goal and share plans,
involving manipulating objects in their common
working space?

In this paper, we study this problem by focus-
ing on verbal communication. Indeed, a verbal
description of how the task is to be done is a more
effective way of communicating objectives than
non-verbal descriptions: not only does it improve
task performance but also gives rise to more compli-
ance and better mutual adaptation (see Nikolaidis
et al., 2017). More precisely, we propose to ex-
plore the impact of the verbalization strategy in an
extreme case where the robot is the only agent that
knows the plan and the goal, and human cowork-
ers are awaiting instructions planned by the robot
to achieve the goal. Note that we limit here the
number of human partners to one: the opportunis-
tic allocation of tasks between available coworkers
will be addressed in a following paper.

When using verbalisation as the main means of
communication, an important question is to see
how the style, i.e. saying the same thing in dif-
ferent ways, quoted as the verbalization space by
(Karlgren, 2000), in which the instructions are be-
ing delivered, can affect the execution of the task,
especially when communicating complex tasks.

In this context, our contribution is threefold:

Styles: we test four different styles on an assembly
task (see Figure 2) that offers a large verbal-
ization space, i.e. many stylistic dimensions
including choice of geometric relations be-
tween bricks, of syntactic and lexical descrip-
tions, etc. One primary style parameter is the
use of context. By context, we mean implicit
referencing to elements of the environment
that go beyond the previous and current ac-
tions. We compare two AI-generated styles
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Figure 2: Face-to-face interaction on a LEGO™
assembly task with YUMI acting as the instructor.

(inclusion vs. dismissal of the use of context)
with the lowest vs. highest human instruc-
tions in terms of: time-to-complete, compre-
hension/complexity of the instruction, and ef-
ficiency/effectiveness of the task completion.

Architecture: we propose a robotic control archi-
tecture and its sensorimotor capabilities for
task-oriented human interaction. We focus on
two key components: (a) the planner and (b)
the verbalizer. While the former takes deci-
sions on what to do next, the verbalizer puts
each elementary instruction into words for a
text-to-speech synthesizer.

Evaluation: we propose an evaluation framework
based on a series of three crowdsourced ex-
periments for: (a) collecting and (b) scoring
human verbalizations for parameterizing our
flexible verbalizer as well as (c) assessing and
evaluating the performance of human vs. auto-
matic verbalizations on actual task assembly.

This paper is organized as follows: section 2 con-
tains related work for task-oriented communication
and plan description; section 3 describes the over-
all architecture of our control model, with a closer
look on the planner and the verbalizer with its dif-
ferent layers (fig. 6); section (4) introduces the
three experiments used to parametrize the verbal-
izer; section 4.1 presents the results of the first two
web-based experiments used for data collection
and assessment of human verbalizations; finally,
section 4.2 presents the setup and results of the
last web-based experiment used to validate the effi-
ciency of the set of rules in our automatic verbalizer
and to compare it with human verbalization.

2 Related work

Verbal communication of plans has been used in
a large variety of Human-Robot Interaction (HRI)
scenarios. They mainly vary along four main cate-

gories: (1) task type (e.g. commentating, instruct-
ing, navigation). (2) perception capabilities (audi-
tive/visual sensors). (3) style and its use in sentence
generation (e.g. information tagging). (4) role (e.g.
receptionist, instructor, navigator).

Most HRI tasks require some form of commu-
nication. It could be used to describe what hap-
pens in the scene: Veloso et al. (2008) presented
Rocco, a fully automated RoboCup (Kitano et al.,
1997) commentator, aiming at generating real-time
summaries of the actions in the games (Voelz et al.,
1998). For navigation tasks, Rosenthal et al. (2016);
Perera et al. (2016) presented algorithms for gener-
ating routing narratives with varying parametrized
styles. Belvin et al. (2001) presented a real-time
spoken language navigation system able to respond
to natural conversational queries. The queries were
mainly regarding details of a step in the route.
However, responses were generated using simple
pre-written "holly sentences" filled with variables
extracted from the plan. For assembly tasks, the
‘SHRDLU’ system (Winograd, 1972, 1974) is quite
inspiring: the task focused on manipulating blocks
with a robot arm on the basis of the user’s textual
input. The system translates the user’s input into
procedures to move the blocks and question the
scene. Our work exchanges the roles of the agents:
our robot instructs human agents verbally. Fiore
et al. (2014) also shares some similarities with our
work, i.e. verbalising the actions in the plan for
the user as well as explaining which actions should
be executed and in what order. However, the task
they chose does not require the same level of pre-
cision – and their focus was not on verbalization.
Finally, the Robert system (Behnke et al., 2020), in-
stalled on Bosch equipment, provides its user with
a step-by-step instruction (on a screen using text,
images, voice and videos) detailing how to com-
plete a given DIY project successfully. Similarly to
us, the sequence of instructions (plan) is obtained
using HTN planning. They also added a new fea-
ture to perceive the scene using connected tools
(sensors), enabling the system to check whether the
user is performing the project’s steps correctly and
to provide help in the case of failure.

Zhu et al. (2017) proposed a verbalization sys-
tem able to generate explanations for navigation as
well as grasping and manipulation tasks (pick-and-
place kitchen scenario). They used pre-written sen-
tence templates. Canal et al. (2021) proposed Plan-
Verb, a domain and planner-independent method
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Figure 3: Outer part shows the Human-robot Interaction.
The inner part shows the multimodal Architecture. The
two components involved in the paper are highlighted .

for the verbalization of task plans based on seman-
tic information tagging of the actions and predi-
cates in the domain (for both PDDL and RDDL).
Several works showed the importance of having
different styles (Aires et al., 2004; Miehle et al.,
2018a; MacFadden et al., 2003). In line with Voelz
et al. (1998); Veloso et al. (2008), our verbal gen-
eration framework relies on crowdsourcing experi-
ments, for both defining the different styles of the
instructions and assessing their efficiency.

Verbal communication has been used in a large
variety of situations. Gockley et al. (2005) pro-
posed a robot receptionist with pre-written story-
lines. Their focus was on long-term interactions
with a robot that exhibits personality and character.
For their robot bartender, Petrick and Foster (2013)
construct plans with tasks, dialogue, and social ac-
tions. They advocate for a stronger link between
planning and language.

3 The architecture

Figure 3 shows the overall architecture of our
HRI system monitoring the interaction between
the agents (humans and robot) and the working en-
vironment. While no single architecture has proven
to be best for all applications, layered architec-
tures have proven to be increasingly popular, due
to their flexibility and ability to operate at multiple
levels of abstraction simultaneously (Kortenkamp
et al., 2016). Similarly to what can be found in
(Alami et al., 1998), our robot’s architecture can be
divided into three levels: perception, decision mak-
ing and action. With different robots, capabilities
change and so do their perception/action modal-
ities. This architecture allows us to add/remove

Figure 4: An example where the task is to build a
LEGO™ arch – Hierarchical decomposition in fig. 5

modalities, in order to cope with both industrial
(e.g. no gaze/head) and humanoid robots (e.g. no
grippers).

The perception level is in charge of capturing
the current state of the environment as well as
the agents acting on it, e.g. analyzing verbal
requests coming from the human agent and all
changes happening in the working environment.
The action level takes charge of all actions to-
wards the environment (e.g robot moving around
to pick an object) and agents (e.g. coordinated
gaze, speech and pointing to attract partners’ atten-
tion). The controller is responsible for orchestrat-
ing action/perception loops according to the current
objective given on request by the planner. In partic-
ular, the controller is in charge of monitoring the
addressee’s activity when processing the robot’s
instruction, such as on-line attention, task compre-
hension and correct execution. This includes the
chunking or repetition of the instruction if neces-
sary.

It all starts with the controller that receives a "go"
signal and requests the first action from the planner.
Provided the requested information, the controller
(via the action modules) either applies the action
or instructs the human agent to apply it. The envi-
ronment is modified, the controller perceives the
updated current state, and the loop continues until
the planner deems this task as completed.

The following subsections detail the key mod-
ules for the generation of verbal instructions: the
planner and the verbalizer.

3.1 Planner

The planner takes as input a domain that con-
tains a logical description of the actions, an initial
state obtained from the perception layer and an
objective and outputs a sequence of actions (the
plan/solution) in order to reach the objective. The
initial state and the objective are described as a set
of logical propositions.

The first advantage of using a planner is (a) being
able to scale to other types of tasks (e.g. assembly,
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Figure 5: Hierarchical decomposition of an arch into
towers/pillars and a bridge/beam – Example in fig. 4

real-world applications, navigation, etc.), by adapt-
ing the domain and the problem to the new task;
(b) allowing the robot to autonomously adapt and
replan when observed actions differ from expected
ones. Our planner has two important properties: it
performs Hierarchical Planning (Pellier and Fior-
ino, 2018), i.e. the goal task can be divided into
subtasks, and Partial order planning, i.e. some ac-
tions can be executed in parallel as long as they
satisfy applicability constraints. Hierarchical Plan-
ning allows us to specify subtasks, name them, and
use these names in the verbalizer. Partial ordering
means that the sequence of actions does not need to
be fixed and some actions, while satisfying appli-
cability constraints, can be executed in a different
order. Partial ordering eases task description and
offers more flexibility while executing the plan or
verbalizing it. For instance, building an arch can be
decomposed into building two pillars and a beam.
Each pillar can be constructed by different work-
ers but the beam assembly requires pillars to be
finished.

This provides a plan that is almost identical to
how a human would plan to build an arch. Thus, en-
abling the planning system to provide context about
the plan as well as some explanation regarding its
decisions in the plan. One might argue that con-
text may not be crucial when giving an instruction.
However, when dealing with a complex/important
task, the addition of hierarchical decomposition
into subtasks can help with assigning separate sub-
tasks to different users, or giving a clear explana-
tion to why we are applying a certain action. Our
focus for using hierarchy is to give context to help
remove ambiguity from instructions, and reduce
the number of errors and needed time to complete
the task.

The planner takes into account other constraints

such as visibility (cannot perform an action if it
prohibits you from seeing a later action), applica-
bility (cannot apply what is inapplicable in a given
state), and hierarchical constraints (best to finish
all actions of a subtask before starting another one).
The planner module also provides vital contextual
information for the completion of that action.

3.2 Verbalizer

We communicate the instructions via verbalization.
The aforementioned verbalizer has multiple param-
eterized layers (see Figure 6), each shaping one
aspect of the message:

The depictor takes charge of all geometric as-
pects which are vital for completing an action
(e.g. 3D position, orientation). This is where
business ontologies are hosted (presently,
what characterizes a pillar, steps, windows,
walls, etc)

The semantic generator focuses on the context,
which is in our case giving a hierarchical ex-
planation of where and why we are applying a
certain action (e.g. “To finish the red tower”).

The syntactic generator focuses on the syntax
(i.e. arranging the words and phrases to create
well-formed sentences).

The realizer generates the final sentence from the
syntactic tree

The text-to-speech system converts the text into
audiovisual signals

Style parameters condition each layer so that
to be able to adapt communication to the task dif-
ficulty and workers’ competence, with the objec-
tive to improve performance – e.g fewer mistakes
and faster completion time of the instruction (Cas-
sell and Bickmore, 2003; Forbes-Riley et al., 2008;
Stenchikova and Stent, 2007; Reitter et al., 2006;
Mairesse and Walker, 2010; Miehle et al., 2018b) –
as well as cognitive load – e.g better recall of the
task and processing capacity.

This multi-layer architecture was chosen in or-
der to separate the different skills of the verbalizer,
therefore constraining interventions when extend-
ing its capabilities. We first discuss each layer sep-
arately and spot differences between car navigation
vs. assembly task.

3.2.1 Depictor
The depictor handles here agents, objects, and pred-
icates that populate a particular domain: here 3D
arrangement of objects. It contains all necessary
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Figure 6: The different layers of the Verbalizer.

properties of these elements such as dimension,
relative position, color of objects, sets of objects
(e.g. pillars, arches, etc), their relations as well as
possible actions (e.g. placing, straddling, sticking,
etc). Relative positioning is used by the verbalizer
to describe where to place what, how and why, e.g.
relative to the closest LEGO™ object, or the last
placed one. It can be relative to more than one
object, or even a structure. For example: it enables
the generation of “To finish the south pillar, put
another red brick on top of the previous red brick”.

It takes as input the action to be performed, the
observed scene, as well as the goal, i.e. hierarchical
information of the desired final arrangement; and
outputs all possible spatial descriptions of the next
action using metric, directional and topological op-
erators as seen in (Borrmann and Rank, 2009). For
instance, “Stick a blue cube, East of the previous
cube then move it two slots to the South”. Stick
translates to the blue cube touching the previous
one which is a topological operator. East of is a
directional operator. Lastly, move it two slots to
the South is a metric putting forward the distance
between the two objects in a certain direction.

3.2.2 Semantic generator

Given all possible actions delivered by the depic-
tor, this layer filters/prioritizes the output list of the
depictor according to the style policy: efficiency of
the description in terms of positioning (e.g. use of
centering, alignments), displacements, use of con-
text, etc. When a chosen description is potentially
ambiguous, it may add to the corresponding action
extra verification(s).

The context is coming from the hierarchy of the
tasks delivered by the planner (e.g. Without con-
text: “Put a red brick on top of the previous red
brick”. vs. with context: “To finish the red tower,
put a red brick on top of the previous red brick”).
Note that it is also responsible for adding infor-
mation on the addressee (who should perform the
task) and the task (e.g. explaining what it consists
of and why this action is triggered, e.g. “Let’s start
building an arch starting with its north pile!).

3.2.3 Syntactic generator
The syntactic generator is responsible for building a
syntactic tree with proper verbal constructs, names
of objects, etc

Finally, in this layer, we have the option of either
including all of the information (verbose) or omit-
ting any redundant information as well as including
pronominalisation, all while preserving the unicity
of the task. (concise). Verbose: “Put a red brick
on top of the previous red brick”. Concise: “Put
another one on top”. The verbose option is straight-
forward and simply includes everything there is to
know about the action. When applying the concise
option, in order to remove redundant information,
we need to consider what was previously manipu-
lated by the human agent (i.e. LEGO™ type, color,
orientation, task).

3.2.4 Realizer
It converts a syntactic tree into sentences. We used
the jsRealB (Molins and Lapalme, 2015), that can
handle both English and French (fig. 7).

3.2.5 Text To Speech
We currently use the macOS TTS. One issue that
we have encountered is problematic mispronuncia-
tions in French (in particular handling homographs,
liaisons, etc). The current TTS also does not al-
low to change the intonation in case we decided
to manipulate the style of speech (e.g. instructing
an order or an astonishment), nor can we include
pauses to include coordination with gesture and
gaze. Future work will include the use of a differ-
ent TTS which allows controlling expressivity and
rhythm as well as adding emphasis on certain parts
of the text.

Going back to the idea of parametrizing the mod-
ule for another task, a spatial task to be precise, a
navigation task for instance. Aside from the nec-
essary updates in the domain and problem files of
the planner module corresponding to the new task
at hand, some changes need to occur in the first
two layers of the verbalizer. The depictor would
still generate the semantic depiction and the rel-
ative positions between the objects, however, we
would need to introduce the newly added different
types of objects from the new environment (e.g.
immovable obstacles, roads, traffic lights) and ac-
tions ("turn", "cross", "look", etc) as well as some
information about the role and the link between
these objects. The semantic generator would have
the same objective as well, however, changes might
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Figure 7: English and French realization using jsRealB

be required to accommodate with the type of in-
formation that needs to be transmitted. As for the
rest of the layers, no particular update is required
since it only concerns the styling, generation and
utterance of the sentence.

It is important to mention that previous work,
such as (Dogan et al., 2020), have shown that in-
cluding perspective-taking helps reduce time and
error. However, their work also mentions that the
use of ‘in front’ and ‘behind’ did generate some
ambiguity and caused more time and errors when
applying a task. In our work, the use of left and
right could have been easily used instead of East
and West since we know the user’s position with
respect to the environment. However, we decided
to use conventional directions (i.e. North East West
South) instead of using perspective taking, (1) to
ensure the absence of any ambiguity and (2) since
this formulation can be used to instruct multiple
users having different perspectives.

The following sections include the three web-
based experiments that we conducted for find-
ing out which (depiction/verbalization parameters)
combination offers the best reduction of errors to
complete the assembly.

4 Experiments

The purpose of the first two experiments is to pro-
vide us with a ground-truth corpus of verbal de-
scriptions and obtain the highest and lowest ranked
human exemplars for giving an instruction. The
third experiment introduces an assembly task in
order to test the efficiency of AI-generated instruc-
tions with reference to the natural ones.

Following the spatial representation — using
metric, directional and topological operators as
well as using multiple types of object references
(point/corner, line/axis . . . ) (Borrmann and Rank,
2009) — we chose a set of elementary actions

which (1) spans most of these operators and (2)
allows the implicit use of the context of that ac-
tion. Thus, the instructions studied in the following
describe the placement of the first brick of a new
structure, i.e. giving the semantic generator the
possibility to refer (or not) to the just finished one.

We describe below how we use crowdsourcing
to gather human descriptions of these placements
(mainly to parametrize the semantic and syntactic
generator) and compare the efficiency of human vs.
automatic descriptions. For this, we asked subjects
to actually perform the actions. We expect condi-
tions (human vs. AI-generated utterances, effective
vs. no use of context) will impact placement error
or time-to-complete.

All experiments are performed in French.

4.1 Collection of ground-truth data

We collected and ranked verbal descriptions per-
formed by human subjects in two steps:

Free descriptions provide us with a ground-truth
corpus of verbal descriptions of elementary
placements performed by human subjects in
which they put themselves in the place of a
robot instructor.

Ratings of the former verbalizations were then
collected by asking subjects to put themselves
in the place of human partners and listen to
the robot’s instructions.

Scene presentation. In both sub-tasks, subjects
are presented with bricks laid on a board. The brick
just placed by the robot and the one to be placed by
the subjects are respectively displayed with back
edges vs. 50% transparency. The following video
shows the screen during the experiment.
Instructions. The proposed vs ranked verbal de-
scriptions should be unambiguous and as short as
possible. Before the actual test (24 scenes), we
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trained the participants with three examples con-
taining some incorrect propositions. The results are
used to validate crowdsourced data. We give the
participants additional instructions when describ-
ing an action, namely, the use of specific terms (e.g.
cube, brick, east-west orientation, north of) and the
possibility to refer to the previously laid brick or
any overtly constructed structure.
Subjects. The free descriptions were performed
by the authors and 10 French-speaking participants
while 15 participants recruited through Prolific per-
formed the ranking.
Analysis of free descriptions. We combined de-
scriptions performed by the authors with the ones
suggested by the 10 participants. We manually
selected an average of 5 natural instructions per
scene in order to ensure that there were no dupli-
cates, mistakes or ambiguities while trying to span
as closely as possible the variety of styles, in par-
ticular syntactic constructs, topological properties
of objects, etc.
Feature selection. Then, amongst all the sen-
tences, we gather the following key parts which
are essential or helpful for the action description:
Hierarchy (Hierarchical Planning) and precedence
between actions in the assembly (Short and long
term recall when referencing objects/landmarks).
The different reference types being the previously
placed element, a built structure (e.g. tour, bridge,
staircase etc) and a part of an element: (e.g. sides,
corners, section of a structure etc). Aside from
the reference object, an instructed action can be
decomposed using multiple sub-actions or it can
contain verification (i.e. additional information for
validating the executed action). We note that the
topological features and types of objects that can
be found in our suggested scenes are taken from
Borrmann and Rank (2009).
Analysis of the ranking. Following this phase,
we repeat the same experiment with the same ex-
ample and test sets along with the updated set of
scene descriptions. However, we only ask the par-
ticipants to choose the best, among the new list of
natural instructions (see video). 15 participants are
recruited through Prolific. The participants have
to be French native speakers. The reason behind
this experiment is to check which criteria a human
agent would prefer as an instruction (e.g. including,
or not, a verification step).

Figure 8: Frequency of appearance of topological oper-
ators in the proposed scenes

Figure 9: Results of all description criteria (by chance,
and chosen by the 15 participants)

4.1.1 Results
As instructed, the participants are to choose a com-
pact description of the action, all while being un-
ambiguous and easy to understand. Amongst all
the participants over all the scenes, 58.33% of the
chosen sentences are the shortest ones. Suggesting
that even with the instruction of ‘choosing a com-
pact sentence’, longer sentences (usually caused by
adding a verification step, or using multiple sub-
actions) are also considered by the participants.

Figure 9 compares the percentage of sentences
chosen at random with the ones chosen by the par-
ticipants when a certain criterion is provided. In
other words, the more the participants prefer a crite-
rion, the bigger the difference will be between both
percentages for that criterion. An instruction is a
combination of multiple criteria, however the re-
sults still show a difference of preference between
some of them. Going from the right, we see that
when the feature is provided, the use of ‘Decom-
position’ (decomposing an instruction), ‘Metric’
(numerical distance), and ‘Topological’ (touching
reference)} were mainly preferred. Then ‘Previous’
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(mention of previously placed object), ‘Structure’
(mention of context and structures), and ‘Direc-
tional’ (3D directions) were also preferred but with
a smaller percentage. The final two criteria {Ver-
ification, Axes} were disliked by the participants.
Despite the fact that including a ‘Verification’ step
ensures the correctness and reduces the ambiguity
in an instruction, only 25% of the times do the par-
ticipants choose the option with verification. This
might be due to the fact that the participants are
steering away from longer sentences containing
this verification step. Lastly, we notice that the
‘Axes’ criterion corresponding to alignment is not
largely preferred, which might be caused by the
complexity of the positioning compared to other
options.
Table 1: Subjective evaluation of different aspects of our
verbalisation: 1:Strongly disagree - 5:Strongly agree

Questions Score
1- Utterances were generated by a computer 4.3
2- Instructions were unambiguous 2.9
3- I prefer instructions referring to structures in place 3.98
4- Utterances were spelled clearly 3.65
5- Syntax was correct 4.15
6- I prefer instructions referring to the brick just placed by the robot 3.55
7- Utterances were generated by humans 3.33
8- The complexity of sentences were well adapted to the task 3.05

Table 2: Subjective evaluation of the participants’ men-
tal charge: 1:Strongly disagree - 5:Strongly agree

Questions Score
1- The task was highly demanding 3.9
2- The pace of the task was too fast 2.9
3- You managed to accomplish what you were told to do 3.23
4- You worked hard to achieve your level of performance 3.9
5- You were insecure and stressed 2.48

Table 3: Different styles of sentences for the scene in
fig.10

Type Sentence
robot Pour terminer la tour Sud, je mets un cube rouge ici.

worst_NI
Empile une barre bleue orientée Est-Ouest pour recouvrir exactement
le haut de l’escalier, et le pilier qui est à l’Ouest de ce dernier.

best_NI
Dépose une barre bleue recouvrant complètement la tour rouge au
Nord et le sommet de l’escalier jaune.

without_context
Place une barre bleue orientée Est-Ouest dont le côté Ouest doit être
aligné avec celui du cube précédent laissant deux tenons libres vers le Nord.

with_context
Pour faire un pont, place une barre bleue orientée Est-Ouest qui recouvre
le sommet jaune de l’escalier et le sommet rouge de la tour Nord.

4.2 Task Assembly

The previous experiments helped us to identify the
key features used and preferred by humans for ver-
bally instructing an action. We now test the impact
of this verbal instruction on effective action perfor-
mance.

Figure 10 shows an example scene and table 3
shows the sentences for that scene. The line ‘Robot’
gives the sentence accompanying the robot’s first
action. The other four sentences correspond to the

Figure 10: Scene example, having the bold red cube
as the previously placed cube by the robot, and the
transparent blue bar as the new object to be placed by
the human agent

different styles we are comparing when instructing
a participant. At first glance, we see in this example
some difficulty of giving an instruction without the
use of structures/context. This is why both highest
and lowest ranked natural sentences use context
and structures, suggesting their importance when
giving the instruction.
Scene presentation. The participants were asked
to observe the robot placing a brick on the game
board, and then to continue the assembly according
to its verbal instructions (see video). We use the
same scenes as before and increase the test set using
data augmentation (mirroring along the north/south
axis), resulting in 54 scenes in total (3 training
scenes & 51 test scenes).
Subjects. 40 French native speakers are recruited
through the Prolific platform. 86.79% are right
handed, 50% identified as men and 88.67% have
already played with LEGO™ before this experi-
ment.
Instructions and conditions. They have to place
the right element as instructed, accurately and as
fast as possible (see video). We have 4 instruction
styles: (a) Lowest preference rate from the data-
collection experiments (worst_NI). (b) Highest
preference rate from the data-collection experi-
ments (best_NI). (c) AI-generated description
without mention of structures (without_context).
(d) AI-generated description with mention of struc-
tures (with_context). The 4 styles are equally
distributed among the 40 participants so that each
scene with a given style is exactly performed by 10
participants.
Final questionnaires. We also include a two-part,
5-point Likert scale, questionnaire at the end of the
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Figure 11: Normalized results over the 4 different styles
– scenes with only one structure as available reference

Figure 12: Normalized results over the 4 different styles
– scenes with multiple structures as available references

experiment: (a) the first one evaluates the different
parts of our verbalizer (table 1); (b) the second one
(table 2) uses the NASA Task Load Index (NASA-
TLX) (Hart and Staveland, 1988), which is the most
common, subjective, multidimensional framework
Colligan et al. (2015) to measure the cognitive load.
Results. For each of the 4 styles, we measure 5
cues: (a) the pick_to_place time (i.e. time between
the first chosen object and the final release), (b-c)
the number of chosen objects and positions to evalu-
ate the participants’ hesitation, (d-e) the percentage
of correct selections and placements to evaluate
performance. Results are given in Figures 11-12.
We select scenes involving more than 2 bricks but
less than 2 laid structures (see Figure 11). We fit a
linear mixed-effects model (lmr from lme4 R pack-
age) with the scene as additional factor and subjects
as random effect, and performed a post-hoc Tukey
adjustments for pairwise comparisons (ght from
multcomp R package). The highest ranked natural
instruction significantly outperforms (p < 10−3)
the three other styles for time-to-complete and all
but best-AI for successful completion. For scenes
21-24 with more than 2 laid structures (see Fig-
ure 12), AI-generated descriptions without mention
of structures unexpectedly outperforms (p < 10−3)
all others for successful completion at a large mar-
gin: it seems that complex calculations seduce hu-
man intelligence but penalize performance. It also
mirrors the findings of the data collection: people
propose the use of axes and verifications (in experi-
ment 1) but dislike them when asked to choose the

best instruction (in experiment 2).
The verbalisation questionnaire (Tab. 1) shows that
the verbalizer is working adequately: instructions
are syntactically correct and clear, do not contain
any major ambiguities and are properly uttered.
The participants agree that both the use of hierar-
chical context and the mentioning of previously
placed objects are a plus, while still leaning more
towards the use of the former.
The NASA-TLX questionnaire (Tab. 2) shows that
the experiment does require effort and cognitive
load. It also shows that the participants are fairly
satisfied with the rhythm, do not have much to
say about their performance and do not express
important signs of stress/frustration.

5 Conclusions and Future Work

We evaluate the impact of using hierarchical con-
text when giving instructions in an assembly task.
We gathered and ranked crowdsourced human in-
structions. We set up a multi-layer verbalizer that
computes AI-generated instructions. We then com-
pared the performance of these verbalization poli-
cies on a web-based assembly task. The differ-
ences between users’ preferences and actual per-
formances claim for an evaluation method in two
steps: first, selecting candidate policies by subjec-
tive preference but then assess their efficiency by
objective performance. We see that referring to
hierarchical context improves human performance,
compared to refraining from using it, in particu-
lar when context is unambiguous. We also show
that our AI-generated instructions often outperform
the least popular human instructions, validating the
efficiency of our verbalizer.

While verbalizing, pointing towards the intended
object would improve the understanding of the
robot’s intention, and reduce the effort in the verbal
explanation to ensure task completion. Therefore,
future work will include this modality in the ac-
tion layer of our architecture along with speech-
hand-gaze coordination. Incremental monitoring
of actions by perception, in particular for on-line
comprehension and attention, is a key issue for
HRI.
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A Appendix

A.1 Obtaining natural exemplars

We present here, a screen capture from the crowd-
sourcing experiment1. The left part of figure 13
shows the fixed working environment. The right
part shows a list of proposed naturally written sen-
tences where the participants needs to choose the
best action description (first objective).

Figure 13: Describing the action

In figure 14, we show the second objective of the
task, getting a suggestion of an action description
from the participant.

Figure 14: Participant inputs their description of the
next action (scene in appendix fig. 15)

Figure 15: A 3D scene containing, the last added ele-
ment being the yellow cube on top of a staircase and the
next object to be added being the blue brick on the left

1https://youtu.be/D5fPfKz8c8Q – video

Figure 16: On the left, our proposed sentences. On
the right, explanation of the correctness of each choice
during the training phase. (scene in appendix fig. 15)

A.2 Data Collection

This section – the second experiment2

Figure 17: Different criteria (topological) found in a 3D
scene

Figure 18: An example of the proposed action descrip-
tions for the scene in fig. 17

2https://youtu.be/uS65RWLmpWw – video
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Figure 19: Different criteria found in a 3D scene

Figure 20: An example of the proposed action descrip-
tions for the scene in fig. 19

A.3 Assembly

We present here, a screen capture from the assem-
bly task experiment3. The top part of figure 21
shows the robot placing a yellow cube in order to
finish a staircase. The bottom part shows a human
participant trying to accomplish a task after receiv-
ing a detailed instruction, from the system, on how
to do so.

Below, we have a screen capture of the objec-
tive evaluation of our assembly task with figure 22
corresponding to the participants’ evaluation of the
verbalisation and figure 23 corresponding to the
participants’ evaluation of the concerned mental
charge.

3https://youtu.be/harvF23E_dI – video

Figure 21: Top: Robot’s action. Bottom: participant’s
action

Figure 22: Questions on the verbalisation

Figure 23: Questions on mental load – taken from
NASA-TLX
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Abstract

Dementia often manifests in dialog through spe-
cific behaviors such as requesting clarification,
communicating repetitive ideas, and stalling,
prompting conversational partners to probe or
otherwise attempt to elicit information. Di-
alog act (DA) sequences can have predictive
power for dementia detection through their po-
tential to capture these meaningful interaction
patterns. However, most existing work in this
space relies on content-dependent features, rais-
ing questions about their generalizability be-
yond small reference sets or across different
cognitive tasks. In this paper, we adapt an ex-
isting DA annotation scheme for two different
cognitive tasks present in a popular dementia
detection dataset. We show that a DA tagging
model leveraging neural sentence embeddings
and other information from previous utterances
and speaker tags achieves strong performance
for both tasks. We also propose content-free
interaction features and show that they yield
high utility in distinguishing dementia and con-
trol subjects across different tasks. Our study
provides a step toward better understanding
how interaction patterns in spontaneous dia-
log affect cognitive modeling across different
tasks, which carries implications for the design
of non-invasive and low-cost cognitive health
monitoring tools for use at scale.

1 Introduction

A recent surge of interest in automated assessment
of cognitive health within the speech and language
processing communities (Zhu et al., 2019; Di Palo
and Parde, 2019; Farzana and Parde, 2020; Luz
et al., 2020, 2021) has spurred the development of
high-performing diagnostic models. These models
carry the potential for substantial real-world posi-
tive impact, offering an affordable and accessible
healthcare screening solution for individuals who
may otherwise be under-served (Petti et al., 2020).
However, recent cognitive assessment models have
generally been constrained to specific tasks, each

with their own characteristics and requirements.
Although this facilitates the development of mod-
els that excel at their target task (e.g., predicting
which users have Alzheimer’s disease in a picture
description task (Luz et al., 2020)), it creates chal-
lenges in building generalizable knowledge about
the complex relationship between linguistic or ver-
bal behavior and cognitive status. It can be unclear
which findings are task-specific, and which may be
applicable to different tasks in related settings.

In this work, we set out to provide clarity regard-
ing the generalizability of a category of features
that have held promise for task-specific cognitive
assessment. Specifically, we examine facets of in-
dividuals’ interaction patterns, which have been
recognized as predictive of Alzheimer’s disease or
related dementia (AD) in sociolinguistic studies
(Orange et al., 1996; Elsey et al., 2015; Hamilton,
1994) and proved informative for automatically de-
tecting AD in task-specific settings (Nasreen et al.,
2021; Mirheidari et al., 2019). We do so by adapt-
ing an existing dialog act (DA) annotation scheme
(Bunt, 2006; Farzana et al., 2020), previously used
to analyze dialogs from AD and control partici-
pants, to two distinct cognitive tasks and study sub-
jects’ interactions across tasks. We also examine
the use of interaction features derived from these
DA tags in dementia detection models to assess
their task-agnostic utility in this domain. Our key
contributions are as follows:

• We adapt a DA annotation scheme for two
cognitive tasks in a popular dementia detec-
tion corpus and present comparative analyses
of subjects’ interaction patterns across tasks.

• We develop a DA tagging model using this
scheme and show that it achieves strong per-
formance (F1=0.82) when trained on both
tasks jointly. The model leverages neural sen-
tence embeddings, part-of-speech (POS) tags,
previous utterances, and speaker information
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to make its predictions.

• We propose a set of content-free interaction
features for task-agnostic dementia detection
and show that they yield high utility in distin-
guishing between dementia and control sub-
jects across different tasks.

We describe these contributions further in the
remainder of this paper. In §2, we review relevant
background to position our work within the broader
research landscape. In §3, we present our meth-
ods for modeling DA sequences using the selected
DA scheme (§3.1) and developing task-agnostic
interaction features within this domain (§3.2). We
describe our data in §4, our experiments in §5, and
our results in §6, before concluding in §7.

2 Background

2.1 Interaction Patterns and AD Detection
Conversation analysis has proved to be effective
for detecting dementia and tracking its progression
through the study of user intent, clarification and
verbal disfluency frequency, and other discourse
cues (Mirheidari et al., 2019; Orange et al., 1996;
Farzana et al., 2022). Speech-based interaction
features like average turn duration, total turn du-
ration, and average number of words per minute
have been utilized to model conversation dynamics
in the context of AD detection (Luz et al., 2020).
However, many of these features are task-specific,
and focus only on the participants’ part of the dia-
log. Nonetheless, fine-grained analysis of question-
answer ratio has been the focus of several studies
showing promising performance on dementia de-
tection (Hamilton, 1994; Varela Suárez, 2018).

Dialog act-based conversation analysis was first
introduced by Farzana et al. (2020), capturing the
interaction patterns from DementiaBank’s (Becker
et al., 1994) semi-structured picture description
task in terms of different DAs from both the sub-
ject and interviewer. Similar corpus analyses on the
Carolinas Conversation Collection (CCC) (Pope
and Davis, 2011) by Nasreen et al. (2019) ob-
served that interaction patterns like signal non-
understanding and clarifying questions are more
evident in cognitively challenged subjects than
healthy controls, and leveraged DA features to
model dementia detection (Nasreen et al., 2021).
Speaker turn sequence processing has also previ-
ously been used to model intervention patterns
(Sarawgi et al., 2020), and leveraging acoustic,

linguistic, and fusion features to represent con-
versations between interviewers and participants
has shown promising performance in AD detection
(Pérez-Toro et al., 2021). Most of these experi-
ments have been evaluated on task-specific corpora,
including semi-structured cognitive screening inter-
views like the picture description task (Roth, 2011)
or more open-ended tasks in which subjects talk
about their health (Pope and Davis, 2011)). Mod-
eling task-agnostic linguistic anomalies to detect
dementia from casual conversations has been stud-
ied very recently (Li et al., 2022), although this
work did not extend its study to interaction style.

2.2 DA Tagging and AD Detection

DA recognition is known to be a complex prob-
lem, and many approaches ranging from multi-
class/multilabel classification to structured predic-
tion have sought to tackle it (Stolcke et al., 2000;
Yang et al., 2009). Performing DA classification
effectively enables the development of high-quality
natural language dialogue systems (Higashinaka
et al., 2014). Previously, a context-aware deep
neural model leveraging a hierarchical recurrent
network and self attention mechanism (Raheja and
Tetreault, 2019) achieved state-of-the-art perfor-
mance in DA tagging on the SWDA corpus (Ju-
rafsky et al., 1997), a standard benchmark for this
task.

Most DA tagging corpora are highly imbalanced,
so a crucial shortcoming of most high-performing
DA tagging models is that in focusing on improv-
ing overall performance, they end up performing
poorly on rare class DAs. These DA classes can
be critical for modeling conversations in cogni-
tive health screening tasks (Farzana et al., 2020;
Nasreen et al., 2021). Thus, DA tagging models
tailored more specifically for AD detection settings
may be needed to facilitate sufficient understanding
and analysis of interaction patterns.

3 Methods

3.1 DA Tagging Model

Our initial dialogue act recognition model trained
on Farzana et al. (2020)’s Cookie-Theft DA dataset
is a multi-layer perceptron (MLP) adapted from a
model introduced in prior work (Martínek et al.,
2021). Each utterance, consisting of a variable
number of words, is first encoded into a single pre-
trained 1024-dimensional sentence embedding vec-
tor using a BERT Large (Reimers and Gurevych,
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Figure 1: DA Tagging model architecture.

2019) encoder. As shown in Figure 1, our model
computes two such vectors, respectively, for the
context and current utterances. These vectors are
concatenated and passed along as input to the MLP.
We also incorporate utterance-wise part-of-speech
(POS) tags generated using the pre-trained Stan-
ford CoreNLP parser (Qi et al., 2020). To do so,
we feed sequences of POS tags for the current and
contextual utterance through an LSTM and con-
catenate its output with the previously computed
semantic representation as shown in Figure 1.

We also add a speaker information vector indicat-
ing the speaker for a given utterance. We compute
one speaker vector each for the current and context
utterances and concatenate them with the previ-
ously created representation, ultimately resulting
in a concatenation of numerous input vectors (ut-
terances, POS sequences, and speaker tags) that
is fed to the dense layer of the MLP, followed by
the output layer. Following the training procedures
later described in §5.1, we perform DA tagging
experiments on two AD detection tasks separately
and in a joint setting. In doing so, we seek to
investigate the following topics pertaining to DA
prediction: (1) the model’s ability to generalize
when predicting DAs for two different cognitive
tasks, provided that the tasks share some common
nuances in interaction style, yet differ in linguis-
tic traits and overall objectives; and (2) the extent
to (and ways in) which prediction accuracy for
rare DAs differs when the model is trained jointly
with a class-weighted loss function versus when
the model is trained separately on single tasks.

3.2 AD Detection Features

To investigate the effects of interaction patterns on
AD detection performance in numerous cognitive
tasks, we made use of the DA tags as well as turn-
based features, following their earlier success in
prior work (Nasreen et al., 2021). We represented
local interaction patterns as unigram, bigram, and

trigram sequences of DA tags. To avoid sparsity,
we filtered these n-grams based on their training
set frequency differences between the AD and non-
AD classes (i.e., only DA n-grams for which the
between-class training set frequency differed by
≥ 5 were retained). To represent turn-taking pat-
terns, we computed the following based on timing
signatures from the transcripts:

• Average Turn Duration: The average length
of a participant’s turn, in milliseconds.

• Total Duration: The length of the full con-
versation (in milliseconds) between the partic-
ipant and interviewer.

• Normalized Turn Switch: The average num-
ber of turn switches per minute (e.g., a minute
of dialog with the turn sequence (Participant
→ Interviewer→ Interviewer→ Participant)
would have two turn switches).

• Average Words/Minute: The average num-
ber of words spoken in a minute of recorded
speech.

These features may provide valuable clues re-
garding the interaction patterns and approximate
flow of communication in a given dialog. All
turn-taking features were extracted using timings
recorded for each utterance in the transcripts. Fi-
nally, we also incorporated ratio-based features to
measure other aspects of the interaction patterns.
We included the following ratio-based features:

• Question Ratio: The number of DAs tagged
as Request:Clarification or Question:General
from participants, normalized by all DA tags
in the dialog.

• Answer Ratio: The number of DAs tagged
as Answer:General, Answer:Yes, Answer:No,
or Acknowledgement by an interviewer, nor-
malized by all DA tags in the dialog.

These features were designed to capture vari-
ous aspects of global interaction patterns that may
have been missed by other feature groups, and have
also shown promise in prior work on specific tasks
(Nasreen et al., 2021; Khodabakhsh et al., 2015).

4 Data

4.1 Data Sources
We evaluated our DA tagging and AD detection
models on two tasks in a subset of DementiaBank
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Cookie Fluency

Gender M=45, F=52 M=9, F=8

Age 90.29±35.01 66.47±8.41

Education 13.10 ±2.65 12.59±2.99

Onset Age 65.31±8.64 63.88±8.23

Table 1: Demographic information for both tasks.
Cookie refers to the picture description task, and Flu-
ency refers to the verbal fluency task. Education is in
years. The onset age is the age of a participant when
first diagnosed with AD.

known as the Pitt corpus (Becker et al., 1994). De-
mentiaBank is a large database encompassing cor-
pora pertaining to dementia submitted by numerous
contributors around the globe. It includes corpora
in multiple languages, spanning multiple cognitive
tasks. The Pitt corpus is an English-language sub-
set containing longitudinal dementia and control
audiorecordings and associated transcripts for four
language tasks, including picture description, ver-
bal fluency, sentence construction, and story recall.
We selected the picture description and verbal flu-
ency tasks for our experiments.

The picture description task, known formally as
the Cookie Theft Picture Description Task (Roth,
2011), is the most commonly studied task in re-
search towards automated dementia detection, serv-
ing as the focus of two popular challenges in 2020
(Luz et al., 2020) and 2021 (Luz et al., 2021). It in-
cludes semi-structured interviews between an inter-
viewer and a subject belonging to one of two groups
(AD or non-AD). The subject is instructed to de-
scribe the contents of an eventful picture featuring,
among other things, a child stealing a cookie. Pre-
viously, Farzana et al. (2020) annotated 100 tran-
scripts from this dataset spanning 1616 utterances
with 26 DA tags. The DA classes were adapted
from the ISO Standard 24617-2 (Bunt, 2006) DA
scheme, with the addition of 8 task-specific DAs.

The second task, designed to assess verbal flu-
ency, features dialog between a participant and an
interviewer. In the first segment of the interview,
the participant is prompted to utter as many animal
names as they can in one minute. In the second
segment, they are instructed to utter as many words
starting with f as they can within one minute.

For AD detection using the DA tags, we filtered
the dataset such that each subject had one conver-

Cookie Fluency

# Conversations 97 17
Total Utterances 1569 760
Average Duration 672.43 147.29
Words/Minute 623.16 300.19

Table 2: Descriptive statistics for both tasks. Duration is
in seconds, averaged across the number of conversations
in the task.

sation.1 We excluded three annotated conversa-
tions from Farzana et al. (2020)’s Cookie-Theft DA
corpus, since two of the conversations belonged
to a repeated participant (in different years) and
the other’s participant overlapped with one also
present in the verbal fluency task. Altogether, our fi-
nal dataset included 97 conversations (non-AD=46,
AD=51) from the picture description task, and 17
(non-AD=2, AD=15) from the fluency task.2 The
annotations are available for the research commu-
nity3 for further followup work, and can be used
after separately gaining access to DementiaBank.4

Table 1 presents demographic statistics and Table
2 presents descriptive statistics for each task.

4.2 Data Annotation

Although we were able to use the existing DA tags
from Cookie-Theft DA directly, we manually anno-
tated the 17 transcripts from the verbal fluency task
with corresponding DAs. We followed the same
guidelines established by Farzana et al. (2020),
with minor task-specific adjustments. Specifically,
we replaced the 8 task-specific DA tags corre-
sponding to core topics in the cookie theft pic-
ture (denoted with labels Answer:t1–Answer:t8 in
Cookie-Theft DA) with two task-specific DA tags
more closely aligned with the verbal fluency task;
namely, Answer:Topic1 and Answer:Topic2. An-
swer:Topic1 is assigned to utterances in which par-
ticipants refer to animal names, and Answer:Topic2
is assigned to utterances in which participants say
words beginning with the letter f. We distinguished
these tags from one another to facilitate easy sepa-

1Since the Pitt corpus contains longitudinal data, some
subjects have multiple entries for the same task, from initial
and follow-up visits.

2We annotated 17 transcripts from verbal fluency task in
DementiaBank, which is an imbalanced corpus with 2 and 239
transcripts from the non-AD and AD classes respectively, to
avoid having a huge class imbalance in our resulting dataset.

3https://nlp.lab.uic.edu/resources/
4https://dementia.talkbank.org/
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DA Label Example Ratio

QUESTION:
GENERAL

qg
do you know
other types?

<0.1

QUESTION:
REFLEXIVE

qr a bird? <0.1

ANSWER:
YES

ay
yeah that’s
fine

<0.1

ANSWER:
NO

an I don’t know <0.1

ANSWER:
GENERAL

ag
gosh I can’t
think of it

<0.1

INSTRUC-
TION

is
words that
begin with f

0.2

SUGGEST. sg
just keep
naming them

<0.1

ACK. ak okay good 0.1

REQUEST:
CLAR.

rc
did I say
facts?

<0.1

FEEDBACK:
REFLEXIVE

fr
no that’s not
an animal

<0.1

STALLING sl oh let’s see <0.1

OTHER or &=laughs <0.1

ANSWER:
TOPIC

at
uh dog, &hm
oh a fence

0.5

Table 3: DAs with non-zero frequency in our Verbal
Fluency DA dataset, with examples. For DA tagging
and AD detection, we reduce the task-specific DAs in
both tasks to Answer:Topic. Ratio indicates the specified
DA’s frequency ratio for the verbal fluency task.

ration of tasks in later analyses.
Two graduate students annotated these tran-

scripts adhering to the annotation guidelines pub-
lished by Farzana et al. (2020), with new amend-
ments added for the task-specific DA classes, after
an initial training session with a practice transcript.
They achieved strong inter-annotator agreement,
as measured using Cohen’s kappa (Cohen, 1960)
with a score of κ = 0.79. The annotations were
collected using the INCEpTION framework (Klie
et al., 2018), a free, user-friendly, web-based anno-
tation interface with built-in support for adjudica-
tion and assessment of inter-annotator agreement.
Disagreements were forwarded to a third-party, ex-
pert adjudicator for final label selection. Table 3

presents example labeled utterances from our new
Verbal Fluency DA corpus with a variety of DA
tags.

5 Experiment

We conducted two core sets of experiments in this
work. In the first set (§5.1), we evaluated the per-
formance of our DA tagging model (described in
§3.1) at correctly assigning labels from our annota-
tion scheme to utterances in the picture description
and verbal fluency tasks. In the second (§5.2), we
measured the performance of features designed to
capture meaningful interaction patterns using these
DAs when leveraged in a dementia detection task.

5.1 DA Tagging

To evaluate the performance of our DA tagging
model, we devised a series of experimental condi-
tions featuring different components of interest in
our study:

• NO-CONTEXT: The current utterance embed-
ding. This was used as our baseline model.

• n EMB.: An utterance embedding history of
length n is passed to the DA prediction model.
For example, when n = 1, the current utter-
ance is passed to the model, and when n = 2,
the previous utterance is used as context along
with the current one.

• n POS: A POS embedding history of length
n is passed to the DA prediction model. For
example, when n = 1, the POS tag se-
quence for the current utterance is passed to
the model, and when n = 2, the POS tags
for the previous utterance are used as context
along with the current sequence.

• n SPK.: A speaker history of length n is
passed to the DA prediction model. For ex-
ample, when n = 1, the current speaker tag
is passed to the model, and when n = 2, the
speaker tag for the previous utterance is used
as context along with the current speaker tag.

Studying performance under these different con-
ditions allowed us to develop a fuller understand-
ing of the contributions of individual components.
To implement our DA tagging model, we used a
neural network backbone with the fine-tuned hyper-
parameters: learning rate = 0.001, Adam optimizer
(Kingma and Ba, 2015), batch size = 32, epoch
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Feature Details

Unigram (I_Instruction),
(P_Request:Clarification)

Bigram
(P_Request:Clarification +
I_Answer:General), (P_Stalling
+ I_Acknowledgment)

Trigram
(I_Instruction +
P_Request:Clarification +
I_Answer:General)

Ratio +
Turn-
Taking

Question Ratio, Answer Ratio,
Average Turn Duration,
Normalized Turn Switch, Total
Duration, Average Words/Minute

Table 4: Interaction pattern features for AD detection.
Durations are in milliseconds (ms).

= 300, and early stopping criteria min δ = 0.0001.
We used a class-weighted categorical cross-entropy
loss, since our class labels (for both the picture de-
scription and verbal fluency tasks) are imbalanced.
Our utterance embeddings were computed using
the nli-bert-large (Conneau et al., 2017) model
with an embedding dimension of 1024 from the
HuggingFace sentence-transformers library.

Finally, to capture our DA tagging model’s abil-
ity to generalize, we also compared three versions
of each condition. Specifically, we trained and
evaluated the DA tagger on the picture description
and verbal fluency tasks separately, and then we
also trained and evaluated a joint model using data
from both the tasks combined. This allowed us to
empirically validate the feasibility of this model
in several settings for later use in extracting AD
detection features.

5.2 AD Detection

To evaluate the impact of our interaction features on
classifying AD status in a task-agnostic setting, we
performed experiments considering the following
conditions:

• ALL: This condition utilizes all features in-
cluded in Table 4 and described previously.

• N-GRAM: This condition includes all fea-
tures in the rows corresponding to unigrams,
bigrams, and trigrams in Table 4.

• N-GRAM + TURN-TAKING: This condition

Features Joint Cookie Fluency

1 EMB. (NO

CONTEXT)
0.77 0.82 0.71

1 EMB. & 1
POS & 1 SPK.

0.77 0.82 0.73

2 EMB. 0.81 0.84 0.74

2 EMB. & 2
POS & 2 SPK.

0.81 0.83 0.74

1 EMB. & 1 POS 0.78 0.82 0.70

2 EMB. & 2 POS 0.79 0.84 0.75

1 EMB. & 1
SPK.

0.78 0.81 0.74

2 EMB. & 2
SPK. 0.82 0.85 0.75

Table 5: 10-fold cross-validation DA tagging results
with micro-averaged F1 scores on the picture description
(Cookie), verbal fluency (Fluency) and joint tasks.

includes the union of all n-gram and interac-
tion features listed in Table 4.

• N-GRAM + RATIO: This condition includes
the union of all n-gram and ratio features
listed in Table 4.

We implemented our AD detection model using
a random forest classifier (rfc) with the following
hyperparameters: number of estimators=100, max
depth=10. We selected this model from among a
pool of it and two other feature-based classification
models (support vector models with polynomial
and radial basis functions, respectively) based on
preliminary performance validation experiments.
Our choice of a feature-based classifier rather than
more complex (and potentially higher-performing)
neural network alternatives was driven by our need
for easy interpretability, to analyze and compare
features in task-agnostic settings.

6 Results

6.1 DA Tagging

We summarize the results of our DA prediction
experiments in Table 5, comparing all conditions
earlier described in §5.1. For the n EMB., n
POS, and n SPK. conditions, we use values of
n ∈ {1, 2}. We limited our experiment to include
only the immediate previous context (n = 2) since
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Accuracy Precision Recall F1
AD HC AD HC AD HC

BASELINE 0.58 1.00 0.00 1.00 0.00 0.73 0.00

ALL 0.79 0.80 .77 0.85 0.71 0.82 0.74

N-GRAM 0.68 0.72 0.63 0.74 0.60 0.73 0.62

N-GRAM +
TURN-TAKING

0.74 0.76 0.70 0.79 0.67 0.78 0.68

N-GRAM + RATIO 0.71 0.76 0.65 0.73 0.69 0.74 0.67

Table 6: Five-fold cross-validation results, for models jointly trained on the picture description and verbal fluency
tasks using gold-annotated DA tags. The baseline model predicted the most frequent class for each instance.

that contributed the strongest performance boost in
prior research (Nasreen et al., 2021; Farzana et al.,
2020). Our baseline model (NO CONTEXT) yielded
micro-averaged F1 scores of F1=0.77, F1=0.82, and
F1=0.71 on the joint, picture description, and ver-
bal fluency training settings, respectively. The per-
formance of F1=0.82 for the picture description set-
ting exceeds that of the highest-performing bench-
marking model reported by Farzana et al. (2020).

The results were further improved by adding
contextual information from previous utterances
(2 EMB.), achieving scores of F1=0.81, F1=0.84,
and F1=0.74 on the joint, picture description,
and verbal fluency training settings, respectively.
Adding the previous utterance’s POS sequences
and speaker tag (2 EMB. & 2 POS & 2 SPK.)
did not offer noticeable advantages beyond this,
with nearly equivalent performance. Overall, we
observe the strongest performance when contex-
tual embeddings and speaker tags are used without
contextual part-of-speech sequences (2 EMB. & 2
SPK.), achieving scores of F1=0.82, F1=0.85, and
F1=0.75 on the joint, picture description, and ver-
bal fluency training settings, respectively.

When comparing training settings, we observe
that the picture description setting consistently
achieves the highest performance, followed by the
joint setting and finally the verbal fluency setting.
This makes sense intuitively. The verbal fluency
dataset was the smallest, and its size may have
interfered with the DA prediction model’s ability
to derive meaningful information from the feature
set. The joint dataset was the largest, but it may
have struggled to effectively distinguish between
class traits that manifested differently in different
tasks. The picture description task is the most well-
studied, and the only one for which benchmarking

results were available (Farzana et al., 2020). We
note that all of our models exceeded Farzana et al.
(2020)’s strongest benchmark (F1=0.77).

6.2 AD Detection

We summarize the results of our AD detection ex-
periments in Table 6. For these results, we em-
ployed the joint corpus and used a five-fold cross-
validation training and evaluation setting, compar-
ing the different feature combinations outlined in
§5.2. We report precision, recall, and F1 for each
class (AD and healthy control participants without
AD, referred to as HC), as well as overall accuracy.
We observe the highest performance under the ALL

condition, with per-class F1 scores of F1=0.82 and
F1=0.74 for the AD and HC classes, respectively,
and an overall accuracy of 0.79. This provides
evidence of meaningful contributions from all in-
teraction features when used in a task-agnostic AD
detection setting.

All AD detection models exceeded the baseline
condition (predicting the most frequent class, AD,
in all cases). When combined with the DA tag
unigrams, bigrams, and trigrams, the turn-taking
features (accuracy=0.74) outperformed the ratio-
based features (accuracy=0.71), although both
added utility beyond the DA tag n-grams alone
(accuracy=0.68). At a per-class level, performance
for the AD class exceeded that of the control class;
this was expected given that the dataset included a
higher percentage of AD than HC participants.

6.3 Discussion

The results observed from the AD detection ex-
periments clearly suggest that features based on
content-free interaction patterns are helpful for de-
mentia detection classifiers in task-agnostic set-
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qg qr ay an ag is or ak rc fr sl at
DA Tags

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

Class-wise DA tags prediction in NO-CONTEXT condition
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Figure 2: Comparison of class-wise recall of DA tags in
the NO CONTEXT condition for all three tasks.
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Figure 3: Comparison of class-wise recall of DA tags in
the 2 EMB. 2 SPK. condition for all three tasks.

tings. Using only these features, our AD detection
model was able to achieve performance comparable
to that seen with content-driven, task-specific alter-
natives (Luz et al., 2020; Di Palo and Parde, 2019).
This holds exciting implications for downstream di-
agnostic or assessment applications, which may be
able to leverage these more general features rather
than retraining models for new tasks.

To further understand the performance of our DA
prediction model and examine the extent to which
automated DA tags can support AD detection, we
conducted additional error analyses. Specifically,
we investigated model outcomes for different DA
tags in the baseline (NO CONTEXT) and highest-
performing conditions across the picture descrip-
tion, verbal fluency, and joint task settings. We il-
lustrate the findings from these analyses in Figures
2, 3, and 4. Overall, we observed poor recall scores
(Figure 2 and 3) for the Request:Clarification (rc)
tag in both models across all tasks. This may be
because rc utterances can be easily confused with
Question:Reflexive (qr) or Question:General (qg)
tags since they carry similar linguistic and syntac-
tic characteristics (Farzana et al., 2020). Although
these question types differ in their intent (rc con-
veys follow-up questions or lack of understanding
of specific prior context, whereas qr is observed in

qg qr ay an ag is or ak rc fr sl at
DA Tags
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Class-wise DA tags prediction for joint task
class NO-CONTEXT
class 2 EMB. 2 SPK.

Figure 4: Comparison of class-wise recall of DA tags in
NO-CONTEXT vs. 2 EMB. 2 SPK. for the joint task.

think-aloud scenarios during which subjects ques-
tion themselves and qg is most commonly seen
in out-of-context queries), they ultimately all seek
information in some form.

When comparing the NO CONTEXT and highest-
performing conditions across all tasks, we also ob-
served that, surprisingly, adding prior context was
not always beneficial. In the case of rc specifically,
performance degrades when the previous speaker
tag and utterance embedding are added, primarily
in the verbal fluency task. The same pattern holds
true for qg in the verbal fluency task, and qr in the
picture description task.

Nonetheless, prior context boosts model perfor-
mance (or has no negative impact) on a variety
of DA classes across tasks. Figure 4 captures the
effect of having speaker tags and utterance em-
beddings both for the current and previous utter-
ance, and shows increases in recall for Instruction
(is), Other (or), Acknowledgement (ak), Answer:No
(an), and Answer:General (ag); we note that these
dialog classes in general are associated with ut-
terances that are strongly situated in context. For
example, Instructions may differ in form depend-
ing on how they are received, and Answer:General
and Answer:No are mostly uttered in the context of
a question in the previous utterance. Utterances la-
beled as Other are mostly out-of-context statements
or non-verbal expressions made by participants,
and therefore the inclusion of speaker information
is helpful in understanding these utterances.

7 Conclusion

In this paper we studied the extent to which auto-
mated analyses of interaction patterns can be lever-
aged for task-agnostic dementia detection. To do
so, we adapted a DA annotation scheme for two dif-
ferent cognitive tasks. We then presented a context-
aware DA tagging model that uses transfer learning
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from pre-trained sentence embeddings to compute
rich representations of utterances, paired with lin-
guistic features (POS sequences) and speaker tags.
The model achieved scores of F1=0.75, F1=0.85,
and F1=0.82 in a verbal fluency, picture descrip-
tion, and joint task, respectively. We find that al-
though performance is low for some rare-class DAs,
adding context information and speaker tags boosts
performance in several cases.

To test the utility of interaction patterns as
content-free features, we generate features based
on these DA tags and other interaction characteris-
tics. We use these to train a random forest classifier
for task-agnostic AD detection and achieve strong
performance on a joint dataset of picture descrip-
tion and verbal fluency dialogs. These interpretable
interaction features in cognitive health screening
tasks show promising performance in AD detec-
tion. In the future, we will extend this work to
create a more balanced (across tasks and AD vs.
non-AD classes) cognitive screening dataset, to fur-
ther test the boundaries to which these results may
generalize. These findings will allow us to outline
a guiding principal for designing dialog agents for
virtual interviewing in the cognitive health screen-
ing domain.
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Abstract

Neural approaches to end-to-end argument min-
ing (AM) are often formulated as dependency
parsing (DP), which relies on token-level se-
quence labeling and intricate post-processing
for extracting argumentative structures from
text. Although such methods yield reason-
able results, operating solely with tokens in-
creases the possibility of discontinuous and
overly segmented structures due to minor in-
consistencies in token level predictions. In this
paper, we propose EDU-AP, an end-to-end ar-
gument parser, that alleviates such problems
in dependency-based methods by exploiting
the intrinsic relationship between elementary
discourse units (EDUs) and argumentative dis-
course units (ADUs) and operates at both token
and EDU level granularity. Further, appropri-
ately using contextual information, along with
optimizing a novel objective function during
training, EDU-AP achieves significant improve-
ments across all four tasks of AM compared to
existing dependency-based methods.

1 Introduction

Considered an integral mode of persuasion, argu-
mentation is prevalent in our daily verbal commu-
nication and represents chains of thought patterns
and reasoning. An argument constitutes claims and
premises, with the claim being the central contro-
versial statement of the argument, and the premise
either supporting or attacking the claim by provid-
ing the reasoning for the claim (Stab and Gurevych,
2014b). Argument mining (AM) is a recent re-
search field in computational linguistics, that deals
with analyzing discourse on the pragmatics level,
and finding argumentation structures in natural lan-
guage texts (Mochales and Moens, 2011; Lippi and
Torroni, 2016; Lawrence and Reed, 2019). AM
comprises four sub-tasks: (a) text segmentation:
identifying ADUs from text, by separating argu-
mentative units from non-argumentative units; (b)
component classification: associating each identi-

Figure 1: Dependency tree for the argument “Biking is
good because it reduces stress, and releases endorphins".

fied ADU with a tag from a pre-defined labeling
scheme (e.g., Claim or Premise); (c) relation detec-
tion: determining if any relationship exists between
pairs of ADUs; (d) relation classification: labeling
a determined relationship with a tag from a pre-
defined labeling scheme (e.g., attack or support).
When performed successfully, AM generally leads
to the creation of an argumentation graph (AG)
(Peldszus and Stede, 2013): a graphical framework
for representing arguments, whereby nodes repre-
sent claims and premises, and the edges represent
diverse relationships (e.g., support, attack) between
arguments. Such graphical structures not only help
analyze discourse but also aids in the creation of
dialogue agents that can leverage the AGs for re-
sponse generation (Chalaguine and Hunter, 2020;
Slonim et al., 2021). Figure 1 illustrates such a
graphical relationship, where the premise “biking
reduces stress and releases endorphins", supports
the claim “biking is good".

With an increased interest in engendering pur-
poseful and persuasive conversational agents, the
need for argument parsers that can automatically
and effectively extract, parse and relate argumenta-
tive components end-to-end from natural language
text is on the rise. In this paper, we address this
need by proposing a robust end-to-end argument
parser that formulates AM as a dependency pars-
ing (DP) problem. Unlike prior research in DP
based argument mining approaches, we exploit the
innate relationship between EDUs and ADUs in
multi-task learning (MTL) framework and achieve
competitive results. We further improve upon our

183



results by utilizing appropriate contextual infor-
mation and optimizing a novel objective function
during training.

2 Related Work

Significant advancements have been made in com-
putational model for AM in recent years. Stab
and Gurevych (2014b) implemented a feature en-
gineering based pipelined approach for perform-
ing all four sub-tasks of AM, on the Persuasive
Essays (PE) corpus (Stab and Gurevych, 2014a),
which was further improved by the Integer Linear
Programming (ILP) based approach proposed by
Persing and Ng (2016). Stab and Gurevych (2017)
introduced a larger version of the PE corpus and im-
plemented an ILP constrained pipelined approach
for AM. Mirko et al. (2020) improved upon the
pipelined approach for AM introduced by Nguyen
and Litman (2018), and further implemented a
novel graph construction process to create argu-
ment graphs. Recently, Bao et al. (2021) proposed
a neural transition-based model for component clas-
sification and relationship detection, which incre-
mentally builds an argumentation graph by gener-
ating a sequence of actions, and can handle both
tree and non-tree argumentation structures.

Eger et al. (2017) formulated the tasks of AM
as a token level DP, and achieved state-of-the-art
performance on the PE dataset, using a neural de-
pendency parser. Inspired by the success of incor-
porating biaffine classifiers for semantic DP (Dozat
and Manning, 2016, 2018), Ye and Teufel (2021)
further improved the DP based approach by using
biaffine layers, and leveraged pre-trained BERT
(Devlin et al., 2018) for richer argument represen-
tations. Instead of operating at a word level, Morio
et al. (2020) experimented with proposition level
AM and used a joint learning framework for jointly
performing the tasks of component classification,
relation detection and classification.

Considerable work has also been done in trying
to establish relationships between ADUs and EDUs.
Peldszus (2015); Peldszus and Stede (2016); Musi
et al. (2018); Hewett et al. (2019) studied the
mapping from discourse structure from Rhetori-
cal Structure Theory (RST) to argumentation struc-
tures and showed that discourse relations from RST
often correlate with argumentative relations.

3 Proposed Approach

Our work is inspired by the token level dependency
parser proposed by Ye and Teufel (2021), and the
proposition level parser proposed by Morio et al.
(2020). However, unlike previous works, our for-
mulation of dependency representation for argu-
ments unifies all sub-tasks of AM under an EDU
level framework and exploits the relationship be-
tween EDUs and ADUs. We factorize the sub-tasks
of AM as different prediction tasks and train end-to-
end in a multi-task learning (MTL) framework. We
implement a hierarchical encoding scheme, which
enables the use of a larger context, and train using a
modified loss function for increasing performance.

3.1 Dependency Representation for
Arguments

As illustrated in Figure 1, we structure arguments
as a combination of EDUs and define types of rela-
tionships that could potentially hold between EDUs.
We further enrich each EDU token with segment
boundaries, that enable the re-construction of ADU
from the EDUs. We list the properties of our de-
pendency representation below:

• An EDU can either partially or fully overlap
with an ADU and each token in an EDU is la-
beled as argumentative or non-argumentative,
using the IO tagging scheme. For example in
Figure 1, EDU 1 partially overlaps with ADU
1, as the token “because" is tagged as “O",
whereas the EDUs 2 and 3 fully overlap with
ADU 2, which is indicated by all the tokens
in the EDUs labeled as “I".

• Each EDU can only belong to 1 of 4 classes
∈ [major claim (MC), claim (C), premise
(P), non-argument (NA)]. Consecutive EDUs
which belong to the same class can be com-
bined using Append relationship to yield an
ADU. For example in Figure 1, EDU 2 and 3
can be combined using the Append relation-
ship to construct ADU 2.

• Claim and premise EDUs can be related us-
ing “Support" (Sup) or “Attack" (Att) relation-
ships, with the relationship originating from
the last EDU of a claim to the last EDU of a
premise. EDUs comprising premises can be
related using the “Support" relationship, with
the relationship originating from the last EDU
of the supported premise to the last EDU of
the supporting premise.
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Figure 2: End-to-End Model Architecture.

• A pseudo-token “ROOT" is added to the
beginning of each argument, which repre-
sents the topic or gist of the entire argument.
“ROOT" is always acting as a parent to the
highest-level component(s).

• Each claim is parented by the “ROOT", and
related using “For" (For) or “Against" (Agn)
relationship, signifying the stance of the claim
concerning the topic of discussion. In case of
the presence of a MC, the “ROOT" parents
the MC using a “default" (Def) relationship,
which in turn parents the claims using “For"
or “Against" relationships.

• An EDU can contain zero or more parents,
and the relationships are acyclic.

In contrast to Ye and Teufel (2021), parsing ar-
guments at an EDU level reduces complexity and
simplifies all sub-tasks of AM, which we hypothe-
size should lead to better results. Similar to Morio
et al. (2020), we implement DP only for the rela-
tionship detection and classification sub-tasks and
further incorporate separate classifiers for text seg-
mentation and component classification.

3.2 Multi-Task Learning (MTL) for AM

We train our argument parser in a MTL framework,
where all the AM sub-tasks share a common encod-
ing representation, followed by task-specific layers.
Figure 2 illustrates our architecture in detail 1.

1EDU-AP codebase: https://github.com/sougata-ub/edu-
ap.

3.2.1 Model Input Representation

We segment input text into EDUs using the Bi-
LSTM-CRF based discourse segmenter by Wang
et al. (2018) and add a special [EDU] token to
the start of each span. The [EDU] token acts as a
delimiter between EDU spans, and also represents
the meaning of the corresponding EDU. Further, a
[ROOT] token is added to the start of each input,
which represents the meaning of the entire text.

3.2.2 Hierarchical Encoding

Depicted in Figure 2, we implement a hierarchical
encoder, where we sequentially encode the current
paragraph input and context tokens using a shared
transformer encoder, and perform multi-headed at-
tention (MHA) between the current input special
tokens and the concatenated contextual [ROOT] to-
kens. Equations 1 to 4 defines the encoding process,
where Ecurr and Ectx are the encoded representa-
tions of the current and context inputs Scurr and
Sctx. The representations of the current turn and
context special tokens EI

curr and EI
ctx are selected

(using Get) from Ecurr and Ectx respectively. The
final representation EMHA

curr of the current turn’s spe-
cial tokens is obtained by sum pooling EI

curr and
the MHA output followed by a dropout layer.

Ecurr=Encode(Scurr);Get(X, idx)=X[idx, :] (1)

EI
curr=Get(Ecurr, idxROOT,EDU) (2)

EI
ctx=Get(Encode(Sctx), idxROOT) (3)

EMHA
curr =EI

curr+Dropout(MHA(EI
curr,E

I
ctx)) (4)
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Such a formulation not only encourages the special
tokens to better encode its representative span but
also ameliorates the length bottleneck (Joshi et al.,
2020) in transformer architectures by reducing the
sequence length. Thus, enabling the use of a larger
context compared to token level parsing.

3.2.3 Task Specific Prediction
Post encoding, we incorporate task-specific layers
to perform the final prediction for each task. De-
picted in Equations 5 and 6, we use single-layered
feed-forward neural networks (FNNs) as the final
layer for both text segmentation and component
classification. For text segmentation, we use the
initial token level encoding (Ecurr) of the current
text as input, whereas for component classification,
the final encoding of the current text [EDU] tokens
(EMHA

curr ) are used as inputs.

scspan=FNN(Ecurr); sc
typ=FNN(EMHA

curr ) (5)

y
′span={scspan ≥ 0}; y′typ=argmax sctyp (6)

Biaffine classifiers are generalizations of linear clas-
sifiers, which include multiplicative interactions
between two vectors. Since relation detection and
relation classification require performing inference
between argument pairs, we implement biaffine de-
pendency parsing (DP) for both the tasks. Using
FNNs, the current text [ROOT] and [EDU] encod-
ings EMHA

curr are split into two parts with reduced
hidden size–a head (parent) and a dependent (child)
representation, which in turn are passed through a
biaffine classifier (Biaf) for predicting edges and
labels between EDUs. Equations 7 to 11 details
our biaffine DP formulation, where He_p and He_c

denotes the parent and child representations for
relation detection, and Hl_p and Hl_c denotes the
parent and child representations for relation classi-
fication. sce and scl contains the output logits from
the biaffine layers, where scei,j and scli,j denotes
the logits between the ith and jth EDU for relation
detection and classification respectively.

Biaf(x, y)=xTUy +W(x⊕ y) + b (7)

He_p=FNN(EMHA
curr ); He_c=FNN(EMHA

curr ) (8)

Hl_p=FNN(EMHA
curr ); Hl_c=FNN(EMHA

curr ) (9)

sce=Biaf(He_p,He_c); scl=Biaf(Hl_p,Hl_c) (10)

y
′e
i,j={scei,j ≥ 0}; y′l

i,j=argmax scli,j (11)

3.2.4 Modified Objective Function
Depicted in Equation 16, we train the model end-
to-end by minimizing the aggregated interpolated

loss across all four sub-tasks, with an interpola-
tion factor λ. The sub-tasks of text segmentation,
component classification and relation classification
are trained by minimizing the cross entropy (CE)
losses Lspan, Ltypi , Lli,j respectively in Equations
14 and 15, whereas relation prediction is trained
by minimizing the binary cross entropy (BCE) loss
Lei,j (Equation 13).

We further add an extra penalty term δ with an in-
terpolation factor of β to the BCE loss in Equation
13, to increase the recall of predicting relationships
between EDUs. Exploiting the symmetry of the
final score matrix (logits) in biaffine classifiers, as
depicted in Equations 12 and 13, the penalty term
for the relationship from the ith to jth EDU is set
to be dependent on the logit of its reverse: jth to
ith. This results in the loss function being penal-
ized most in case a relationship and its conjugate
reverse are both predicted to be present or absent,
and least if either is predicted to exist. We hypothe-
size that such a penalty should increase the relation
detection recall, while minimally impacting the
precision.

δ(y, ỹ)=y log(1-σ(ỹ)) + (1-y) log σ(ỹ) (12)

Lei,j=β BCE(yei,j, sc
e
i,j)-(1-β)δ(yei,j , sc

e
j,i) (13)

Lli,j=CE(yli,j , scli,j);Ltypi =CE(ytypi , sctypi ) (14)

Lspan = CE(yspan, scspan) (15)

L = λLe + (1 - λ)(Ll + Lspan + Ltyp) (16)

3.2.5 Post Processing and Graph Construction
During inference, we perform a few post-
processing steps to constrain the model output.
For relationship prediction, we discard self ref-
erences and cyclic relationships, and further re-
strict the argument structures to conform to the
ones defined by Stab and Gurevych (2017), i.e
premise→premise, premise→claim, claim→major
claim/claim→ROOT and major claim→ROOT.

For generating an argument graph, we extract
ADUs by concatenating consecutive argumentative
EDUs that are predicted to be connected by an “Ap-
pend" relationship and remove non-argumentative
tokens, using the text segmentation prediction. To
yield contiguous arguments and prevent unnatu-
ral segmentation, we ensure the label of each to-
ken within an appended ADU confirms with its
neighbours, and re-label to the majority class of its
neighbours if needed. Next, we label each ADU
by assigning the majority label of the constituent
EDUs predicted by the component classifier. Fi-
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nally, a graph is formed by connecting the labeled
ADUs with the relationships predicted by the rela-
tion classifier, only if the relation detector predicts
its existence.

4 Experiments

4.1 Dataset

We use the benchmark persuasive essays (PE)
dataset by Stab and Gurevych (2017), for all our
experiments. This dataset comprises 402 persua-
sive essays: 322 for training and 80 for testing,
randomly selected from an online forum. Barring
non-arguments, there are three kinds of argumen-
tative components in the dataset, along with four
types of relationships that can hold between the
components: (i) Major claim: the main claim by
an author, which informs their stance. (ii) Claim:
a statement that is either For or Against one or
more major claims. (iii) Premise: a statement that
provides evidence to a claim or another premise
by a Support or Attack relationship. Please refer
Stab and Gurevych (2017) for a detailed dataset
statistics.

4.2 Experiment Setup

We use Roberta (base) (Liu et al., 2019) as the base
encoder, and increase its embedding layer to accom-
modate the special tokens. Two layers comprising
four attention heads are used for MHA, where the
MHA result in each layer is sum pooled with the
residual output while applying dropout with 0.1
probability to the MHA result. The hidden size of
the FNNs in the biaffine layer is set to 600. An in-
terpolation factor λ of 0.95 is used for aggregating
the losses, and the factor β in the modified BCE
loss is set to 0.85. All models are trained with a
learning rate of 1e-5 for 15 epochs and optimised
using AdamW (Loshchilov and Hutter, 2017), with
early stopping if the validation loss doesn’t reduce
for 2 epochs. We repeat each experiment five times
and report the average across all runs.

4.3 Competing Model

We recreate the state-of-the-art BiPAM parser by
Ye and Teufel (2021) as an external baseline and
compare it against our proposed method. BiPAM
implements token level dependency parsing for
end-to-end argument mining and had achieved
significant improvements over LSTM-Parser and
LSTM-ER reported in Eger et al. (2017).

4.4 Evaluation Metrics

All tasks are evaluated using the F1 score. Similar
to Persing and Ng (2016), approximate and exact
overlap is computed between the golden and pre-
dicted ADUs, where a predicted ADU is classified
as approximate overlap if at least 50% of its to-
kens match with the golden ADU, and is classified
as exact overlap if all the tokens match with the
golden ADU. Each task is evaluated for both the
approximate and exact overlapping ADU spans.

4.5 Results and Analysis

We share the experimental results for the sub-tasks
of text segmentation and component classification
in Table 1, and the sub-tasks of relation detec-
tion and relation classification in Table 2. In each
table, we calculate and report the F1 score for
both approximate and exact overlapping ADUs (ap-
prox/exact). We treat EDU-AP–our non-contextual
implementation without the δ loss penalty as the in-
ternal baseline, and underline the best performing
model for each task, in comparison to this base-
line. We also compare the results obtained from
the BiPAM parser and highlight the best perform-
ing result in comparison to this baseline in bold.

As indicated by the top section of Table 1, us-
ing a mixture of EDUs and tokens, our baseline
EDU-AP outperforms token level BiPAM for text
segmentation by a significant margin (61.8/53.2
compared to 38.8/25.6). We reason that operating
solely with tokens, BiPAM increases the chances
of locally erroneous predictions, yielding discon-
tinuities in ADU spans. Whereas EDU-AP min-
imizes this by globally identifying EDUs which
should be combined as an ADU using the “Ap-
pend" relationship, and further locally eliminating
non-argumentative tokens from each EDU. This is
further corroborated by the fact that the average ra-
tio between predicted ADU spans and golden ADU
spans per paragraph is 1.1 for the EDU-AP, in com-
parison to an average ratio of 2.2 in the BiPAM
parser, signifying a greater number of short spans
predicted by BiPAM.

For component classification (Table 1), EDU-
AP outperforms BiPAM across all classes (Major
Claim: MC, Claim: C, Premise: P and Non Argu-
ment: NA) for the approximately matched ADU
spans. However, for the exact matching spans, Bi-
PAM mostly performs better than EDU-AP.

For both the relation detection and classification
tasks in the top section of Table 2, EDU-AP largely
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ADU
Span

Component
Classification

Model F1 MC-F1 C-F1 P-F1 NA-F1

BiPAM † 38.8 / 25.6 81.9 / 87.8 67.8 / 77.0 88.8 / 88.0 92.5 / 98.3
EDU-AP * 61.8 / 53.2 86.2 / 86.8 68.9 / 70.8 90.3 / 90.7 96.4 / 97.6

EDU-AP + prompt 61.4 / 52.5 84.9 / 85.2 69.2 / 71.7 90.5 / 91.1 96.6 / 97.7
EDU-AP + left 61.5 / 51.9 84.2 / 83.9 64.8 / 67.4 89.9 / 90.1 96.2 / 97.6
EDU-AP + all 60.5 / 50.8 83.6 / 84.1 68.2 / 70.2 90.5 / 90.8 95.9 / 97.7
EDU-AP + δ 61.4 / 53.5 85.7 / 87.3 73.5 / 75.1 91.2 / 91.4 97.2 / 98.1
EDU-AP + δ + prompt 61.2 / 53.2 87.8 / 88.1 74.2 / 76.1 91.9 / 92.2 97.3 / 97.9
EDU-AP + δ + left 60.0 / 51.5 87.0 / 88.4 71.2 / 73.0 91.5 / 91.6 96.6 / 97.8
EDU-AP + δ + all 59.9 / 51.6 86.3 / 86.6 71.9 / 73.7 91.3 / 91.6 96.0 / 97.4

Table 1: Results for the sub-tasks Text Segmentation and Component Classification (Major Claim, Claim, Premise,
Non Argument), for both approximate and exact overlapping spans (approx/exact). †and * denotes external and
internal baselines respectively.

Relation
Detection

Relation
Classification

Model F1 Agn-F1 Att-F1 Def-F1 For-F1 Sup-F1

BiPAM † 37.1 / 13.2 16.1 / 5.0 0.0 / 0.0 61.1 / 30.9 51.3 / 24.4 26.1 / 5.7
EDU-AP * 57.0 / 47.3 56.5 / 46.9 31.9 / 12.4 85.5 / 72.9 74.1 / 65.6 57.7 / 47.5

EDU-AP + prompt 62.0 / 51.6 58.5 / 47.7 35.3 / 14.1 85.1 / 71.2 81.9 / 73.2 68.8 / 57.3
EDU-AP + left 57.2 / 46.8 55.9 / 48.3 29.8 / 14.1 86.5 / 71.0 75.4 / 66.9 59.6 / 48.2
EDU-AP + all 57.8 / 47.4 56.4 / 47.2 31.1 / 15.6 86.5 / 71.1 75.9 / 66.9 59.5 / 48.8
EDU-AP + δ 62.6 / 53.8 64.6 / 57.0 38.8 / 18.7 86.3 / 77.8 80.3 / 73.2 69.1 / 58.5
EDU-AP + δ + prompt 64.9 / 55.0 64.4 / 56.7 41.1 / 22.6 88.4 / 77.0 82.5 / 74.1 74.3 / 62.9
EDU-AP + δ + left 62.3 / 52.2 59.3 / 50.9 39.0 / 17.3 86.1 / 75.9 77.7 / 69.9 66.8 / 54.8
EDU-AP + δ + all 62.8 / 53.0 64.4 / 57.0 37.7 / 18.1 87.8 / 76.7 81.1 / 72.5 69.3 / 58.0

Table 2: Results for the sub-tasks Relation Detection and Relation Classification (Against, Attack, Default, For,
Support), for both approximate and exact overlapping spans (approx/exact). †and * denotes external and internal
baselines respectively.

outperforms BiPAM. We reason that since both the
tasks demand inference over pairs of argumentative
sentences, using our formulation of operating at an
EDU level and using representative [EDU] tokens
better represents and encodes arguments, thus pro-
viding better context during scoring, compared to
operating at the individual token level. Further, un-
like BiPAM, incorporating task-specific layers en-
courages learning task-specific parameters, which
enhances the model’s performance.

4.6 Ablation Study

We further perform an ablation study, to determine
the effect of adding the δ penalty and utilizing con-
text in all sub-tasks. The bottom section in both
Tables 1 and 2 includes the ablation results. We
experiment with combinations of adding an essay’s
prompt as context (+prompt), the prompt along

with all the past paragraphs (+left), the prompt
along with all other paragraphs (+all), and the loss
penalty (+δ).

Overall, we observe that although baseline EDU-
AP performs better than BiPAM, incorporating the
δ penalty increases the model’s efficacy for most
sub-tasks, which is further boosted by adding the
essay’s prompt (+prompt) as context. Most sig-
nificant improvements are observed for relation
detection and classification (Table 2 bottom sec-
tion), which is intuitively justified, as establishing
relationships (like For/Against) not only require
knowledge and understanding of the main theme of
discussion, but also cognizance of the established
stance towards the topic from prior paragraphs. Ta-
ble 3 further illustrates the impact of the δ penalty
on the precision and recall scores for relation de-
tection. As previously hypothesized, we observe
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Figure 3: Comparison of a parsed paragraph from test set using the EDU-AP (left) and BiPAM (right) parsers.

that incorporating the δ penalty almost always im-
proves recall, while also boosting the precision in
some cases.

Model F1 Precision Recall
BiPAM † 37.1 / 13.2 32.3 / 13.9 45.4 / 13.1
EDU-AP * 57.0 / 47.3 71.6 / 66.1 48.1 / 37.6
+ prompt 62.0 / 51.6 68.0 / 62.1 57.1 / 44.2
+ left 57.2 / 46.8 68.6 / 62.4 49.4 / 37.7
+ all 57.8 / 47.4 70.2 / 64.2 50.2 / 38.5
+ δ 62.6 / 53.8 69.2 / 64.5 57.5 / 46.4
+ δ + prompt 64.9 / 55.0 67.8 / 62.5 62.3 / 49.2
+ δ + left 62.3 / 52.2 72.8 / 67.7 55.0 / 42.9
+ δ + all 62.8 / 53.0 69.0 / 63.7 58.1 / 45.7

Table 3: Comparison of F1, Precision and Recall for the
Relation Detection subtask, for both approximate and
exact overlapping spans (approx/exact). † and * denotes
external and internal baselines respectively.

We also observe that text segmentation largely
remains unaffected by the addition of context and δ
penalty (Table 1 bottom section), which is justified
by the nature of the task, which does not depend
much on external context, and relies more on lin-
guistic features.

The nature of argumentation is such that the la-
bel of the components can be ascertained with a
fair probability, from the relationships that exist
between components. For example, as described
in sub-section 4.1, only a claim can be the child
node in a For/Against relationship, and premises

can only be a part of Support/Attack relationships.
Although the δ penalty is not directly applied to
component classification, we still observe an in-
crease in performance for classifying components,
with the addition of the δ penalty and context (Table
1 bottom section). We attribute this to our multi-
task learning framework, which enables learning
joint representations that benefit all sub-tasks.

It is also interesting to note that for all the sub-
tasks, adding more context (+left, +all) does not
always yield superior results, whereas just adding
the prompt (+prompt) of the essay yields better
results. We attribute this to the fairly small size
of the corpus used in the experiments, which does
not provide many data points for learning complex
interactions from context.

4.7 Discussion
Our results indicate that parsing text at a combina-
tion of EDU and token level yields better results,
compared to bare token level DP, and can be further
improved by appropriately penalizing the loss func-
tion, and incorporating contextual information. Fig-
ure 3 illustrates and compares a parsed example of
a paragraph from the test set, using both the EDU-
AP and BiPAM parsers. We underline and enclose
the predicted argumentative spans by the models
in square brackets, and assign a unique identifier
to each component (C1, C2, P1, etc.). Predicted
claims are highlighted in red, and their unique iden-
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tifier starts with ‘C’, whereas premises are high-
lighted in green, with their identifier starting with
‘P’. Predicted relationships between components
are separated using a colon. Example P5:P4 signi-
fying support relationship from P4 to P5, or C1:(P1,
P3, P5) signifying support relationship from P1, P3
and P5 to C1.

We observe that EDU-AP can correctly iden-
tify ADU spans by merging EDUs using the “Ap-
pend" relationship and further eliminating non-
argumentative tokens. BiPAM on the other hand
yields more fragmented and discontinuous spans.
The average ratio of predicted and golden ADU
spans per paragraph in the test set is 1.1 for the
EDU-AP in comparison to 2.2 for BiPAM parser,
signifying a greater number of shorter spans pre-
dicted by BiPAM. For example, the span C1 in
EDU-AP parsed output (which matches with the
golden span) is split into two spans: P1 and P2 by
BiPAM. We further observe that EDU-AP is not
only able to correctly label the identified ADUs as
claim and premise but also able to correctly predict
support relationships between the ADUs. Com-
pared to that, BiPAM is not able to correctly iden-
tify the claim of the paragraph and fails to predict
any relationships between the arguments.

Figure 4: KDE plots comparing the effect of δ penalty
on the distribution of relationship probability and its re-
verse for relationship detection. The dotted line denotes
the probability threshold used for the experiments.

To understand the effect of the δ penalty on rela-
tion detection, we combine results from all experi-
ments and plot the kernel density of probabilities of
predicted relationships and its conjugate reverse re-

lationship in Figure 4. We observe that as expected,
overall the model assigns lower probabilities when
no relationship exists between a pair of argument
components and asymmetrically higher probabil-
ities when a relationship exists, signifying a uni-
directional relationship. Adding the δ penalty has
the effect of shifting the probability distributions to-
wards more symmetry (i.e for pairs of components,
the difference of predicted probability for both di-
rections is reduced), resulting in a recall seeking
behaviour.

Although EDU-AP outperforms all baselines, it
still fails to attain the human upper bound perfor-
mance measured by Stab and Gurevych (2017) on
the PE corpus. Further, trained only on monologi-
cal essay data, EDU-AP can’t be used for parsing
other forms of discourse like dialogue, which we
seek to address in our next research steps.

5 Conclusion

In this paper, we present EDU-AP, an end-to-end
dependency parsing based argument parser for pars-
ing arguments from molonogical text. Exploiting
the innate relationship between EDUs and ADUs,
along with the appropriate use of context, and a
hierarchical encoding scheme, EDU-AP is trained
end-to-end in a multi-task learning setting by mini-
mizing a novel loss function. EDU-AP’s efficacy
is demonstrated by its superior experimental and
ablation results, in comparison to strong internal
and external baselines. We believe, with minor ad-
justments EDU-AP can be purposed for parsing
arguments from dialogues.
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Abstract
Smooth turn-taking is an important aspect of
natural conversation that allows interlocutors
to maintain adequate mutual comprehensibil-
ity. In human communication, the timing be-
tween utterances is normatively constrained,
and deviations convey socially relevant par-
alinguistic information. However, for spoken
dialogue systems, smooth turn-taking contin-
ues to be a challenge. This motivates the
need for spoken dialogue systems to employ
a robust model of turn-taking to ensure that
messages are exchanged smoothly and with-
out transmitting unintended paralinguistic in-
formation. In this paper, we examine dialogue
data from natural human interaction to de-
velop an evidence-based model for turn-timing
in spoken dialogue systems. First, we use
timing between turns to develop two models
of turn-taking: a speaker-agnostic model and
a speaker-sensitive model. From the latter
model, we derive the propensity of listeners to
take the next turn given TRP duration. Finally,
we outline how this measure may be incorpo-
rated into a spoken dialogue system to improve
the naturalness of conversation.

1 Introduction

Turn-taking is an important component of many
spoken dialogue systems and involves (a) detecting
or predicting the end of a turn and (b) accurate tim-
ing of the initiation of speech production (Michael,
2020; Kennington et al., 2020). Smooth turn-taking
continues to be a challenge for spoken dialogue
systems that aim to engage in natural conversa-
tion (Hara et al., 2019). Traditionally, most spo-
ken dialogue systems process Inter-Pausal Units
(IPUs), which are speech units surrounded by ar-
bitrary fixed length silence thresholds (Skantze,
2021). These pauses of arbitrary duration cause a
stilted, unnatural conversation style.

Other systems use incremental approaches, pro-
cessing smaller units of speech at a time. For exam-
ple, the incremental dialogue system proposed by

Skantze and Schlangen (2009) operates on Incre-
mental Units (IUs) that are processed by Incremen-
tal Modules (IMs). These modules may include ac-
tion, turn, or dialogue management—each of which
influences turn-planning and end of turn detection.
Although such systems initiate the production of
speech when a silence is detected, they do so based
on pitch or semantic completeness (Skantze and
Hjalmarsson, 2010). Machine learning models of
turn-taking operate on previously detected multi-
modal cues (Bohus and Horvitz, 2010; Skantze,
2021).

The turn-taking techniques used in traditional
spoken dialogue systems, such as predicting turn-
ends in a time window (Lala et al., 2019), are not
fully grounded in current theory of human turn-
taking. In natural conversation, people tend to
minimize gaps and overlaps while also following
the one “one speaker at a time” rule (Sacks et al.,
1974). This means that when a turn ends, another
speaker may start speaking. Speakers also use the
duration of silences to convey social information
(de Ruiter, 2019). For example, long and short gaps
may communicate hesitance or impatience. Addi-
tionally, interlocutors use turn-taking cues (e.g.,
lexico-syntactic, pragmatic, prosodic etc.) to pre-
dict the end of turns and plan responses (Levinson
and Torreira, 2015; Liddicoat, 2004). In contrast,
turn-taking techniques typically do not explicitly
identify points where floor change may occur (Hara
et al., 2019), normatively time the duration of si-
lences, or predict turn-ends independent of the oc-
currence of specific events (e.g, silences) (Skantze
and Hjalmarsson, 2010). For spoken dialogue sys-
tems, this leads to mistimed responses and a de-
crease in human engagement (Zhao et al., 2018).

In this paper, we propose an evidence-based
model for when speech may be produced to facili-
tate smooth turn-taking, based on the turn-taking
model proposed by Sacks et al. (1974). In this
model, a speaker’s turn consists of one or more
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Turn Construction Unit (TCU), which encompasses
sentential, clausal, phrasal, and lexical construc-
tions. Between each TCU are Transition Relevance
Places (TRPs), where the current turn may be com-
pleted and a floor change may occur (Selting, 2000).
We further divide TRPs into continuations (TRPs
where the current speaker continues) and switches
(TRPs where a speaker-transition occurs). Addi-
tionally, in our operationalization, each TRP has
a duration—the time between when the previous
TCU is complete but before the next TCU begins.
We use TCU-level data from transcriptions of the
Switchboard corpus (Godfrey and Holliman, 1993)
to develop two models of turn-taking based on the
duration of TRPs: a speaker-agnostic model and
a speaker-sensitive model. Next, we develop an
evidence-based function for the propensity of floor-
transfer as a function of time after the end of a TCU.
Finally, we outline a proposal for implementing
this propensity function into the continuous dia-
logue system architecture formalized by Skantze
and Schlangen (2009).

2 Motivation and Related Work

2.1 Conceptual Models of Turn-Taking

Two models of turn-taking have been proposed in
the turn-taking literature: Duncan’s signal-based
model (Duncan, 1972) and Sacks, Schegloff, and
Jefferson’s “simplest systematics” model (hereafter
the Sacks et al. model) (Sacks et al., 1974).

Duncan’s model of turn-taking proposes that
speakers produce turn-keeping and turn-yielding
signals that are picked up by listeners, thereby en-
suring smooth floor transfer. Turn-yielding signals
include, among others, changing intonation, spe-
cific syllable stress patterns, and gesture ending or
relaxation.

Previous work has shown that intonational
phrases at unit boundaries are signals used in end-
of-turn detection (Bögels and Torreira, 2015a). Gra-
vano and Hirschberg (2011) found that the greater
the number of turn-end cues present in a phrase,
the greater the likelihood of a floor transfer occur-
ring. Similarly, Ford and Thompson (1996) found
that syntactic, intonational, and pragmatic com-
pleteness are all required for smooth turn transition.
One important takeaway from this model is that the
speaker yields the turn, and is therefore the main
decision maker for whether turn transition occurs.
Speakers can therefore control whether the listener
takes over the turn or not.

In contrast, Sacks et al. (1974) propose a model
of turn-taking in which listeners can (but do not
have to) take the floor at so-called Transition-
Relevance-Places (TRPs). According to Sacks et
al., listeners can predict (or “project”) ahead of
time when the TRP will occur. Once a TRP has
been reached, the rules specified by Sacks et al.
are that a) the current speaker may select the next
speaker, b) if that does not happen, a next speaker
may self-select, and c) if no speaker self-selects,
the current speaker can continue.

2.2 Conceptual Implications

Interestingly, the differences between these mod-
els of turn-taking make different predictions as to
the duration of the TRP as a function of whether
the same or a different speaker takes the floor. In
the Duncan model, the speaker controls the floor
transfer using signals, allowing them to keep the
rhythm of the conversation steady. In contrast, in
the Sacks et al. model, when a speaker arrives at
at TRP and has not selected the next speaker, the
speaker can only continue their turn after having
established that the listener did not self-select. This
predicts that if the Sacks et al. model is correct,
we will see shorter TRP durations when there is a
speaker change than when there is not.

Therefore, the Sacks el al. model predicts that
there are two separate distributions of TRP dura-
tion: one for TRPs at speaker switches and the
other for TRPs at continuations. Since, according
to the rules, a listener has the first option for uptake
during a TRP, we expect that the TRP duration for
speaker switch is faster than for speaker continu-
ation. Of course, the probability distributions are
likely to overlap. A speaker may sometimes con-
tinue with a small pause or there may be a long
pause before a speaker switch. We interpret this
model to mean that the speaker switch distribution
will be generally faster than the speaker continua-
tion distribution.

There is a third possibility: that speaker continu-
ation is faster than speaker switch. While neither
model predicts this, it could happen, for instance, if
we assume the Duncan model is correct, and listen-
ers do not detect the turn-yielding cues, or detect
them too late. This implies if we find speaker con-
tinuations to be faster than speaker switches, it will
be evidence for Duncan’s model, and against Sacks
et al.’s model.
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2.3 Application in Spoken Dialogue Systems
Detecting the end of turns and timing speech pro-
duction is vital for a spoken dialogue system to
engage in smooth turn-taking. Accordingly, there
are a number of approaches for automated end of
turn detection in existing literature (e.g., Masumura
et al. (2018, 2019)). A number of approaches have
also been proposed for quick turn-transitions in spo-
ken dialogue systems. For example, Gervits et al.
(2020) found their incremental model was ready to
reply to an utterance 635 ms (±197ms) before the
end of a turn. Since the mean gap between turns is
generally between 0 ms and 200 ms (Heldner and
Edlund, 2010; Stivers et al., 2009), this leaves an
agent with significant temporal space within which
to decide when to start turn production. Our goal,
in contrast, is to address the characteristics of natu-
ralness in smooth turn-taking timing (Edlund et al.,
2008). Therefore, we assume an existing model for
end of turn detection and propose a extension mod-
ule of natural turn taking timing in spoken dialogue
systems.

3 Empirical Models

In this section, we fit two Bayesian models of TRP
duration: one that assumes a single distribution of
all the TRPs in a dialogue, and one that assumes
that the distribution is different for speaker switches
and speaker continuations.

In what follows, we will first describe the empir-
ical data that forms the basis for our models. Next,
we provide a detailed description of the two proba-
bilistic models informed by our conceptual models.
We then describe the implications of our findings
for turn-taking and speaker selection. Finally, we
propose an evidence-based turn-taking propensity
function for natural speech production decisions
after the end of a TCU.

3.1 Data
We are interested in the duration of TRPs i.e.,
the timing between TCUs, in natural dialogue.
Therefore, our data must consist of dialogue with
TCU-level segmentation and highly accurate tim-
ing (down to the millisecond). We gathered this
information from two different transcriptions of the
Switchboard corpus—a corpus of dyadic telephone
conversations (Godfrey and Holliman, 1993). The
Mississippi State University transcriptions (MSU)1

provide word-by-word timing, which has been
1The MSU corpus is hosted on OpenSLR.

hand-corrected to reduce word error rates to be-
low 1%. The Switchboard Dialogue Act Corpus
(SwDA)2 segmented the Switchboard corpus into
TCUs in order to annotate dialogue acts.

The Switchboard corpus is appropriate for this
task because participants do not have access to
many of the cues of face-to-face interaction (Dun-
can, 1972). This simplifies the work to only ac-
count for spoken language. Although using a cor-
pus of telephone conversations may limit the appli-
cability of our work in face-to-face interaction, it
is appropriate for systems where this information
is not available (Bosch et al., 2004).

Here, we outline the preprocessing steps applied
to the data for the work presented in this paper.
First, we merge MSU and SwDA transcripts of
the same conversation to create a subset of the
Switchboard corpus with transcriptions segmented
at the TCU-level and annotated with accurate tim-
ing information. From this subset, we selected only
conversations where the exact word-level matches
were at least 90% of the words in the conversation
and the total uncaught word error rate was below
2%. This allowed us to maintain data quality and
yielded 75 conversations with acceptable timing
information.

Next, we filter our timing data based on the fol-
lowing reasons. Our data consists of the duration
of TRPs between TCUs. This duration may be
positive or negative for speaker-switch TRPs (i.e.,
pauses and overlaps). To make a reasonable com-
parison between values of two different domains,
we fit a truncated distribution to the data. For an
overlap, we know that a speaker may not over-
lap with oneself and there is an obvious ‘barge-in’
when the overlap occurs. Therefore, we set a TRP
floor above 0 ms. Further, previous research shows
that pauses of one second or longer may be con-
sidered trouble sources in conversation (Jefferson,
1983; Roberts et al., 2006). Trouble source detec-
tion is out of the scope of this work. Therefore,
we removed all TRPs with a duration greater than
1000 ms, which has the additional benefit of remov-
ing outliers from the data that might have skewed
our models. Finally, we have two datasets: one for
speaker switch TRPs and one for speaker continua-
tion TRPs.

We recognize that this subset of data excludes
overlaps, which are common in natural dialogue.
However, this paper reasons about turn-taking

2The SwDA corpus is available through Stanford.
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through the duration of a silence. Our models do
not make claims regarding when speech reasoning
may occur, and instead focus on resultant behaviors
that are exhibited 3.

The models and analyses below are based on the
4563 TRPs in our filtered dataset. 2686 of these
TRPs were followed by speaker switches and 1877
were followed by speaker continuations. All mod-
els described are Bayesian models using truncated
normal distributions with lower bounds of 0 ms
and upper bounds of 1000 ms, in order to conform
to the assumptions outlined above. The models
were fit using pymc3 version 3.11.4, a probabilis-
tic programming package for Bayesian modeling.
All priors4 were designed to be weakly informative
based on previous research in the field(Stivers et al.,
2009; de Ruiter et al., 2006b). Weakly informative
priors are also considered best-practice when us-
ing Markov-chain Monte Carlo (MCMC) Bayesian
updating (Lemoine, 2019).

3.2 Speaker-Agnostic Model

Figure 1: This figure shows a histogram with 50 ms
bins of all TRPs with duration between 0 ms and 1000
ms. The best-fit truncated normal curve line is also
shown.

The speaker-agnostic probabilistic model as-
sumes that TRPs have a single underlying distribu-
tion. The assumption is that all TRPs are a function
of the rhythm of the dialogue, controlled by the
speaker, and pause durations are not influenced by
who was speaking before the pause. Under this
model, when there is a pause in the conversation,
each participant has the same chance of deciding
to continue.

As shown in Figure 1, the estimated mode TRP
duration under these assumptions is in the 150–200

3Alternatives to our models are in Appendix A.3.
4Prior distributions useds can be found in Appendix A.1.

µhdi 3% µmean µhdi 97% σmean

µ 56 110 167 30
σ 421 458 495 20

Table 1: This table describes the parameters of the best-
fit truncated normal curve for all TRPs greater than 0
ms and no more than 1000 ms. The high-density inter-
vals are given for a 94% high density interval i.e., the
models predict only 3% probability that the true values
lie above or below these intervals. The σmean terms are
another measure of confidence, though not sensitive to
skew.

ms bin and the mean is 374 ms. The mean TRP du-
ration, according to the posterior predictive model,
is 375 ms. Since we are fitting a truncated normal
distribution, the mean will be larger than the mode
because the distribution is right-skewed. We see
this in both the data and the model. The standard
deviation of both the data and the posterior predic-
tive model is 250 ms—indicating that the model
has a good fit when assessed using the first two
statistical moments. It is interesting to note that the
mode of our empirical data is in the range 150–200
ms. This is the same mode range that previous
work has determined for floor transfer offset, based
only on the speaker switch condition (Levinson and
Torreira, 2015; Heldner and Edlund, 2010; Stivers
et al., 2009). Note that this previous research has fo-
cused on floor transfer for entire turns only, which
is easier to operationalize since it does not require
segmenting turns into TCUs.

3.3 Speaker-Sensitive Model

Figure 2: This figure shows a histogram of the empiri-
cal TRP data from 0 ms to 1000 ms broken down into
50 ms bins and in two conditions: speaker switch and
no speaker switch. The best-fit truncated normal distri-
bution lines for each condition are also shown.

We use the speaker-sensitive probabilistic model
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to test the prediction from the Sacks et al. model.
If this model is correct, we expect to see a different
TRP distribution for the continuation and switch
conditions. This is because the rules specified in
their model lead to shorter TRPs when there is a
speaker switch than when the same speaker contin-
ues, because the speaker first has to wait to see if a
speaker self-selects before continuing their turn.

µhdi 3% µmodel µhdi 97% σmodel

µswitch -164 -85 -10 41
σswitch 417 451 488 19
µcontinuation 407 428 447 11
σcontinuation 300 323 347 13

Table 2: These statistics describe best-fit truncated nor-
mal curves for the independently fit curves. switch
variables are for cases where a speaker switch occurs
at a TRP. The continuation condition has the same
speaker before and after the TRP. The high-density in-
tervals are given for a 94% interval i.e., the models pre-
dict only 3% probability that the true values lie above
or 3% below these intervals. Similarly, the σmodel

terms are a measure of confidence that is not sensitive
to skew.

In our speaker-sensitive model, we fit two dis-
tributions: one for speaker switch and one for a
speaker continuation. The data contains 2686 TRPs
where the speaker switches and 1877 TRPs where
the speaker continues for all pauses in conversation
from 0 ms to 1000 ms. We expect shorter pauses
to be followed by a different speaker while longer
pauses are followed by the same previous speaker.
A fast speaker switch entails understanding and up-
take by the interlocutor. A pause and continuation,
in contrast, gives space for the listener to take the
floor before the current speaker continues their own
turn.

We found distributions that are substantially dif-
ferent for the speaker switch and continuation con-
ditions. The Kolmogorov-Smirnov statistic for the
two categories is 0.289 (p < 0.01). In the speaker
switch condition, the mean of the best-fit posterior
predictive is 315 ms, a bit slower than the data mean
of 311 ms. The mode of the data shows that the
floor transfer pause duration is 100–150 ms when
binned into 50 ms segments, which aligns with pre-
vious work. This means that there is a preference
toward fast responses. As a reminder, we filtered
out any overlapping speech since it is outside the
scope of this paper, even though we want to note
that work on floor transfer offset (e.g., de Ruiter

et al. (2006a); Heldner and Edlund (2010); Riest
et al. (2015)) shows that overlap is a common phe-
nomenon.

For speaker continuation, the data mean is 462
ms and the posterior predictive model mean is 459
ms. The mode of the data is 150–200 ms, although
the values are very close for many other bins from
about 100 ms to 600 ms, as shown in Figure 2.
These data align closely to the predictions made
by Sacks et al.’s model—speaker switch happens
quite quickly, and speaker continuation somewhat
later.

3.4 Model Selection

In Sections 3.2 and 3.3, we defined and fitted two
Bayesian models to test differential predictions of
the conceptual models presented in Section 2.1.
We showed that each empirical model has a good
quantitative and qualitative fit with the empirical
data. We now want to know whether the model that
incorporates speaker information is better even if
we take into account that it has an extra parameter.

We will use linear mixed effects regression mod-
els, which are a common tool for differentiating
trends based on groups within a population. We
created two models, one with a speaker switch
included, and one without. To account for differ-
ent aspects of individual conversations, both mod-
els included the conversation identifier as a ran-
dom factor. We used the rstanarm package in
R (Goodrich et al., 2020) because it allowed us
to use bridge sampling (Gronau et al., 2020) to
compute Bayes Factors for the purpose of model
comparison.

Our analysis shows that the data is 1.43 ×
1080 times more likely under the speaker-sensitive
model than under the speaker-agnostic model, even
when correcting for the higher model complexity
of the speaker-sensitive model. This constitutes
decisive evidence (Wetzels et al., 2011) for next-
speaker being influenced by TRP duration, support-
ing Sacks et al.’s model of turn-taking. Our results
have two implications: (1) when responding, gaps
should be minimized so that the speaker does not
take the silence as an invitation to continue their
own turn, and (2) after speaking, a response should
come within the first few hundred milliseconds.
Any longer, and the speaker may want to continue
their own turn to maintain progressivity (Stivers
and Robinson, 2006).
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3.5 Turn-taking Propensity Function

Figure 3: This figure shows the proportion of speaker-
switch vs. speaker-continue events for each 100 ms
TRP bin between 0 ms and 1000 ms, along with the
best-fit quadratic line.

We have described two conceptual models of
how turn-taking works, built probabilistic models
based on these conceptual models, and established
that the speaker-sensitive model inspired by Sacks
et al. (1974) fits the data much better. We will now
explore how we can use this knowledge to improve
when conversational agents initiate their turn. To
answer this question, we have one missing piece:
we need to determine the propensity for speaker
switch as a function of TRP duration. Note that the
speaker-sensitive model we have formulated can
be seen as two separate models: one for speaker
switch and one for continuation. As mentioned
before, the speaker switch condition was generally
more frequent: 2686 TRPs with speaker switch and
1877 with speaker continuation in our dataset. In
this section we will explore the relative proportion
of speaker switch and continuation as a function of
transition time.

Figure 3 shows the proportion of speaker switch
and speaker continuations in our data. It shows that,
as a silence grows longer, the relative propensity for
a speaker to continue initially increases, while the
relative propensity for a speaker switch decreases.
However, as the silence continues, the share of
floor holding decreases. We fit a basic quadratic
curve to the floor transfer trend shown in Figure 3.
The function below gives the maximum likelihood
estimate for probability of speaker-switch as a best-
fit quadratic function of the number of milliseconds
of silence (t) since the previous turn ended.

Pswitch = (9.70×10−7)t2−(1.48×10−3)t+0.933

It is important to note that our analysis only
looks at the first second of silence after a TCU.
We did perform a cursory exploration of longer
pauses, to check if there were obvious trends. We
found that for silences between 1000 ms and 2500
ms, 56% of TCUs were floor-hold (speaker contin-
uation). We caution against over-interpretation of
these numbers, as there were 4563 TRPs between
0 ms and 1000 ms, but only 672 between 1000 ms
and 2500 ms. Gaps longer than a second in conver-
sations are rare in conversation (Jefferson, 1983),
and may have a variety of causes.

A spoken dialogue system can use this formula
and our two empirical models above in two ways:
(1) timing its own responses and (2) setting re-
sponse seeking limits. Current techniques allow for
extremely fast response rates in spoken dialogue
systems. An agent implementing our models can
choose times that are acceptable to human dialogue
speed. These times do not need to rely on heuris-
tics like the mean FTO or barge-in mechanics, but
can keep conversation at a fluid and natural pace
on an utterance-by-utterance basis. Our model sug-
gests that an agent should respond to a turn within
394 ms—the point at which each speaker has equal
propensity to speak—ideally around 150–200 ms
after a turn end, where the probability of a speaker
change is still close to maximal.

A spoken dialogue system can also incorporate
the propensity function during language genera-
tion to make sure that its turn-internal pauses are
not too long or too short. If the system knows it
wants to continue the turn in a subsequent TCU, it
should flow fluidly, rather than give space for the
interlocutor to respond.

Finally, if the planned turn is over, an agent
could set a maximum listening time, after which it
prompts a response or clarifies its previous state-
ment. Our findings show that the agent should aim
to do this around 762 ms, the minimum point of
our speaker-switch function. Pauses of longer than
a second are signs of trouble in a conversation, so
continuing a turn is preferable than waiting indefi-
nitely for a response (Jefferson, 1983; Roberts et al.,
2006). Adding this functionality to a spoken dia-
logue system will provide an agent with the ability
to ensure that the conversation progresses, and even
prompt an interlocutor if they are unresponsive.

The function presented here is meant to be a
baseline for turn-taking mechanisms. There are
clear paths for extending it, like sensitivity to di-
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alogue acts, ellipses, or prosody, but the overall
effect should be similar in aggregate since the data
here is presented in aggregate.

4 Continuous Module Proposal

In this section, we outline a proposal for opera-
tionalising our turn-taking propensity function for
timing turn-taking. First, we outline relevant com-
ponents of the incremental dialogue processing
architecture proposed by Schlangen and Skantze
(2011). Next, we define the minimal module im-
plementing the proposed timing method, as well
as possible extensions to incorporate existing turn-
taking methods (e.g, Bögels and Torreira (2015b)).

We use the Schlangen and Skantze (2011) archi-
tecture for its continuous and incremental proper-
ties, which may be useful for comparing different
timing methods. However, our proposed method is
based simply on timing and does not have a strong
dependence on any specific architecture.

4.1 Spoken Dialogue System Architecture

The conceptual model of incremental processing
described in Schlangen and Skantze (2011) has two
basic components. Incremental Units (IUs) are the
basic units of processing and contain payloads (e.g.,
audio streams, words etc.) that can be processed
by Incremental Modules (IMs). Each IM has a
Left Buffer (LB) to store incoming IUs and a right
buffer to store outgoing IUs. An IM also has a
processor that consumes LB IUs and produces RB
IUs. IMs communicate with each other by adding
IUs to their RB, which is immediately available for
LB consumption of connected IMs. Note that the
rate of RB IU production does not need to match
the rate of LB IU consumption.

Additionally, IUs may be connected to one an-
other using relations, which effectively track the
flow of information throughout the system. While
there can be many different types of relations, we
introduce two—spatial and grounded-in. The spa-
tial relation connects IUs produced by a single
IM. For example, for an IM generating turns from
words, spatial links may be used to connect words
that form the same turn. Second, the grounded-in
relation can be used by IMs to connect RB IUs to
their corresponding LB IUs. For example, this may
allow a word recognized by an Automatic Speech
Recognition (ASR) IM to be connected to the cor-
responding audio signal.

Finally, both IUs and IMs contain specified prop-

erties and operators. Each IU contains basic meta-
data type information that may be used for decision-
making in individual IMs. This includes informa-
tion for an IU to indicate its relations with other IUs,
the confidence of the IM in the IU data, whether
the IU result is final, and whether the IU has been
processed by a specific IM. Similarly, IMs must im-
plement certain methods including a purge method
to reset the module’s internal state, a new IU update
method to update the module state based on incom-
ing information, and a commit method to finalize
the IUs in its RB.

4.2 Module Incremental Units

Our proposed module aims to provide more gran-
ular turn-taking timing information to the spoken
dialogue system compared to existing approaches,
which plan and execute entire turns (Jokinen et al.,
2013). Therefore, it produces RB IUs whose pay-
loads are waiting times after which the dialogue
system should take the next turn. Additionally, the
IU includes a confidence value to incorporate our
finding that the relative pressure to speak is time-
sensitive within the first second of a gap (as shown
in Figure 3). Variations in this value indicate the
importance of speaking at a specific time.

Finally, a minimal turn-taking timing module
would receive IUs where the payload may be an
input signal (e.g., the audio signal). Additionally,
it requires the ability to determine the elapsed time
between turns in the conversation up to that point.
Therefore, turn-taking module IUs will use the
grounding-in relation to determine the specific IUs
the results are based on.

4.3 Turn-Taking Timing Module

The turn-taking module consumes LB IUs to pro-
duce RB-IUs, with the invariant size(RB) ≤
size(LB), and implements the purge, new IU up-
date, and commit operators. Here, the purge opera-
tor is vital in removing all IUs when a connected
module, such as the ASR module, indicates that an
interlocutor has taken the floor. In this case, any
considerations for the time after which the system
may start a turn depends only on the following turn
and previous results may be discarded. The pro-
cessor also implements the new IU update method
to modify its internal state based exclusively on
new LB IUs. It may then produce new turn-timing
decisions based on the updated information. The
commit method then finalizes the best-guess time
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after which a turn may be started by the spoken
dialogue system.

4.4 Module Extensions

In this section, we proposed a minimal incremen-
tal module for timing turn-taking based primarily
on TRP duration. However, there are additional
sources of information, not considered in this pa-
per, that a spoken dialogue system may use when
deciding when to produce a turn after a TCU. For
example, intonational and semantic end of turn
cues can be used to predict when floor transfer
may occur (Lala et al., 2019; de Ruiter, 2019), and
non-verbal cues may also be used to time turn-
taking (de Ruiter et al., 2006a; Duncan, 1972).
These may be modeled as individual IMs in the
framework we use and connected to the turn-taking
IM to allow information to be integrated when mak-
ing turn-taking decisions. Additionally, the mod-
ule may remember wait times proposed across a
conversation and adjust for the specific interlocutor.
For example, if there is frequent overlap if speech is
produced after the proposed wait time, then future
wait time estimates may be corrected. Similarly,
short gaps by the interlocutor may be mimicked by
the spoken dialogue system.

5 Conclusion and Future Work

In this study, we started by comparing two con-
ceptual models of turn-taking—Duncan’s “turn-
yielding” cue model and Sacks et al.’s “simplest
systematics”, each of which makes different predic-
tions about the organization of turns in conversa-
tion. We used data from the Switchboard corpus to
fit two probabilistic models of TRP duration based
on these conceptual models: a speaker-agnostic
model compatible with Duncan’s conceptual model
and a speaker-sensitive model inspired by on Sacks’
et al.’s conceptual model. Both models have a good
quantitative and qualitative fit with the empirical
data.

However, when comparing the two models di-
rectly, we found that the speaker-sensitive model
i.e., Sacks et al.’s model, was decisively better at
predicting the data than the speaker-agnostic model.
We explored the implications of this finding for
turn-taking systems. We showed that the likelihood
of a speaker beginning a TCU during a pause in
conversation changes as the pause lengthens. For
short pauses, it is more probable that the speaker
will switch, but as the pause continues, the original

speaker becomes more likely to continue their turn.
Our work supports the notion that, for proper

turn-taking, detecting and/or anticipating the end
of turns is not sufficient. People are sensitive to
the pauses and gaps in conversation and organize
their speech to take into account this paralinguistic
signal. We described the regularities that we found,
and outlined implementations for dialogue systems
to incorporate our findings. For naturalistic turn-
taking adhering to these subtle norms is important,
and we described first steps towards implementing
this in agents.

In future work, we plan on implementing the
spoken dialogue system we have proposed in this
paper. While we have established and operational-
ized normative turn-taking behavior based on hu-
man conversations, it is important to investigate
whether and to what degree findings from human-
human data generalize to communication with spo-
ken dialogue systems. Therefore, evaluating the
conversational naturalness of our system through
human-subject experiments is a relevant next step
and will provide insight into the organization of
turns in conversation, both for human-human and
human-agent communication.

Acknowledgments

This paper was funded in part by a grant from the
Data Intensive Studies Center at Tufts University.

References
Dan Bohus and Eric Horvitz. 2010. Computational

models for multiparty turn taking. Technical Report.
Microsoft Research Technical Report MSR-TR 2010-
115.

Louis ten Bosch, Nelleke Oostdijk, and Jan P. de Ruiter.
2004. Durational aspects of turn-taking in sponta-
neous face-to-face and telephone dialogues. In Inter-
national Conference on Text, Speech and Dialogue,
pages 563–570. Springer.
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A Appendix

A.1 Statistical Model Priors and Parameters
The statistics in the table describe the priors used to
fit the truncated normal distributions for the models
described in the turn-taking models Sections 3.2
and 3.3. For each model, identical priors were used
so that differences between the models were func-
tions of the data, not of the priors. µ was drawn
from a normal distribution with priors shown, and
σ was drawn from a Gamma distribution with pri-
ors shown. Gamma distributions are typically pa-
rameterized with α and β parameters, but pymc3
allows for parameterization with µ and σ, which is
what we chose. All models took 10,000 samples
with 6,000 tuning steps and a target acceptance rate
of 0.9.

µµ 200
µσ 75
σµ 300
σσ 200

Table 3: This table shows the prior parameters used in
each of the statistical models.

A.2 Model Comparison Methods

To compare the two models in Section 3.4,
while taking into account model complexity, we
built two linear mixed effects models using the
stan glmer function in the rstanarm pack-
age for the R programming language. This func-
tion fits a linear model of the data based on the
parameters involved. Both models corrected for
the particular conversation as a random effect,
and one took into account whether there was a
speaker switch at the TRP. Unlike pymc3, Stan
does not require the user to specify priors, but
assigns weakly informative default priors based
on the data. Using the Stan models allowed
use the bayesfactor models function of the
bayestestR package to compare the models and
determine if the speaker switch model better ex-
plained the data than the no speaker switch model.

A.3 Generalized Models

We recognize that truncated normal models may
not be the most robust method of modeling our data
- which does not include gaps and overlaps. Addi-
tionally, the truncated normal distribution used for
the speaker continuation condition is only positive
valued. Therefore, we present preliminary analyses
on alternative models that may be used to fit our
data.

The analyses presented in the paper establish
that the speaker switch and continuation condi-
tions are different and provide a justification for
creating stochastic models to describe these phe-
nomenon separately. Therefore, we built a Stu-
dent’s t-distribution model for the speaker switch
condition to approximate the normal model when
ν is large. The dataset used for this model includes
all TRPs with duration in range -800 ms to +2500
ms, and only excludes outliers that were likely to
be transcription artifacts. The widely-applicable in-
formation criterion (WAIC) score for the Student’s
t is 79,131, while the truncated normal (expanded
to the new lower and upper limits) is 79,707, show-
ing some improvement. The Kolmogorov-Smirnov
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statistic is also reduced to 0.425 from 0.741 (both
p < 0.001).

µhdi 3% µmodel µhdi 97% σmodel

ν 2.70 2.96 3.23 0.142
µ 95 105 116 5.50
σ 287 297 307 5.63

Table 4: This table describes the posterior model pa-
rameters used for the Student’s t-distribution model in
the speaker switch condition.

Additionally, we built a Gamma model for the
speaker continuation condition using TRPs with
duration up to 2500 ms. This model describes
a variable with a positive domain more elegantly
than a truncated normal model. The WAIC score
of the Gamma and truncated normal (with ad-
justed bounds) models is 33,845 and 34,125 re-
spectively, which again shows improvement. The
Kolmogorov-Smirnov statistic is also reduced from
0.480 to 0.173 (both p < 0.001).

µhdi 3% µmodel µhdi 97% σmodel

µ 604 621 638 9.00
σ 419 435 451 8.64
α 1.95 2.06 2.16 5.71e-2
β 3.10e-3 3.29e-3 3.49e-3 1.04e-4

Table 5: This table describes the model parameters
used for the Gamma model for the speaker continua-
tion condition.

Each of the models presented show potential
next steps for improving modeling our data. Un-
fortunately, for our purposes, they are not directly
comparable.

A.4 Data Description
The truncated normal models described in Section
3 exclude some data – which was necessary for our
analysis. Here, we include descriptions of our raw
data to provide further information on our analyses.

Duration Number of TRPs
0 ms 3565
0–1000 ms 1933
> 1000 ms 380

Table 6: This table shows the number of speaker-
continuation TRPs in bins of different duration.

The above descriptions show that overlapping
speech is extremely common in our dataset, mak-
ing up about 42% of the speaker switch conditions.

Duration Number of TRPs
< 0 ms 2217
0–1000 ms 2703
> 1000 ms 296

Table 7: This table shows the number of speaker-switch
TRPs in bins of different duration.

Additionally, though we only consider positive val-
ues, speaker continuations with pauses of 0 ms
are the majority of speaker continuation conditions
—61%. The models we have presented model rea-
soning through a silence, and are therefore sound in
the assumption that a silence exists. However, any
turn taking model that only considers turn taking
via silences will be incomplete.
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Abstract

Collecting data for training dialog systems can
be extremely expensive due to the involvement
of human participants and the need for ex-
tensive annotation. Especially in document-
grounded dialog systems, human experts need
to carefully read the unstructured documents
to answer the users’ questions. As a result, ex-
isting document-grounded dialog datasets are
relatively small-scale and obstruct the effective
training of dialogue systems. In this paper, we
propose an automatic data augmentation tech-
nique grounded on documents through a gen-
erative dialogue model. The dialogue model
consists of a user bot and agent bot that can syn-
thesize diverse dialogues given an input doc-
ument, which are then used to train a down-
stream model. When supplementing the origi-
nal dataset, our method achieves significant im-
provement over traditional data augmentation
methods. We also achieve competitive perfor-
mance in the low-resource setting.

1 Introduction

Most of human knowledge is stored in the form of
documents, ranging from answering factoid ques-
tions (Reddy et al., 2019) to providing how-tos on
millions of tasks (Zhang et al., 2020a). How to
comprehend and retrieve relevant knowledge from
documents given a user query is a challenging re-
search problem. Inspired by real-world applica-
tions, there have been more works (Rajpurkar et al.,
2016a, 2018; Kwiatkowski et al., 2019; Yang et al.,
2015) that aims to tackle this challenge. In this
work, we focus on the task of conversational infor-
mation seeking based on the associated documents,
which are often referred to as document-grounded
dialogue systems (Ma et al., 2020).

Recent works have introduced various datasets
for building document-grounded conversational
question answering and dialogue systems. Some
work such as QuAC (Choi et al., 2018) and CoQA
(Reddy et al., 2019) first explored the direction of

Figure 1: An example from Doc2Dial of dialogue con-
versation produced from grounding to an associated
document. The agent must select the correct spans and
engage in a fluent manner to generate a proper response.

conversational question answering. Then, ShARC
(Saeidi et al., 2018) added follow-up questions by
agents. Later, Doc2Dial (Feng et al., 2020a) further
included the dialogue actions and domains, which
aims to simulate more kinds of real-life scenarios.
However, such dataset is typically hard to scale
up to new domains, as it requires carefully crafted
dialogue flows and expensive human annotations.

However, as the relations between conversations
and documents become more complex, the cost
of collecting large-scale datasets also becomes
more expensive. As a consequence, one main ob-
stacle for developing scalable and effective docu-
ment grounded dialog systems is the lack of suf-
ficient data. In chit-chat scenarios, recent works
such as DialoGPT (Zhang et al., 2020b), Meena
(Adiwardana et al., 2020), and Blender (Roller
et al., 2021) have achieved high performance by
taking the advantage of training on a large-scale
corpus. Similarly, task-oriented dialog systems
such as ARDM (Wu et al., 2021) and SimpleTOD
(Hosseini-Asl et al., 2020) have also utilized large-
scale corpora or pre-trained models to achieve
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good performance. The aforementioned models
were trained with millions of samples, while the
current document-grounded dialogue datasets like
Doc2Dial (Feng et al., 2020a) only contain thou-
sands of conversations. Training on such a small-
scale dataset constrains the performance of neural
network models. Therefore, augmenting existing
datasets can help build a more effective document-
grounded dialogue system.

One popular approach to augmenting datasets is
to paraphrase existing seed data. The most straight-
forward form of paraphrasing is to directly use a
model trained to generate paraphrase pairs (Gao
et al., 2020). Back-translation serves as another
type of paraphrasing, which first translates a sen-
tence into another language and then back again
(Chadha and Sood, 2019; Bornea et al., 2021).
Back-translation ensures the quality and correct-
ness of the augmented data and often shows im-
provement in downstream models. Both methods
aim to provide variety to the training data without
greatly altering the semantics of the original sen-
tences. However, these methods only operate on
the existing dialogue data and fail to take advantage
of the available document for augmentation.

Another direction for data augmentation is to
generate examples from scratch by grounding to
auxiliary documentation. Lewis et al. (2021) gener-
ate question-answer pairs with a model pre-trained
on available training data. This often requires ad-
ditional filtering or denoising measures to ensure
correctness of generated data. Also, these models
are built for the purposes of single-turn question
answering, rather than multi-turn dialogues.

Inspired by Alberti et al. (2019), we propose
an automatic document-grounded dialogue gener-
ation (DG2) method that augments the amount of
data available for training a dialogue system. The
model consists of a user bot and an agent bot that
alternately generates utterances to complete a con-
versation. The user bot includes a span extraction
model that can first select a passage and then pre-
dict the rationale start and end positions inside a
passage. The agent bot has a denoising mechanism
to filter out generated rationales irrelevant to the
conversation. The user bot begins by selecting a
passage from the document that is most relevant to
the current context. It then selects a rationale span
from this passage and generates the user utterance.
The agent bot takes the selected span from the user
bot, and then checks if it can find the correct ratio-

nale span, and finally generates the agent response.
This process repeats until an entire dialogue is gen-
erated.

We evaluate our model on a representative
document-grounded dialog dataset Doc2Dial (Feng
et al., 2020a). We test and generate additional
dialogs with both the seen documents and un-
seen documents. We augment the original dataset
and train it on a downstream model. The results
show that our method improves the performance
of the downstream model after augmentation. We
also test scenarios of low-resource settings. We
train and evaluate the generative models with only
25%, 50%, 75% data. Experimental results show
that our method perform well even when training
data is scarce.

2 Related Work

2.1 Document Grounded Dialogue Systems

Document Grounded Dialogue System (DGDS)
is the type of dialogue systems that the dialogues
are grounded on the given documents. It helps
humans to better retrieve information they want as
most of human knowledge is stored in the form of
documents. The study of DGDS can greatly impact
the future way of interacting with knowledge.

Recently, there are many document grounded
dialogue datasets proposed. Doc2Dial (Feng et al.,
2020b) is a representative document grounded di-
alogue dataset which involved human-to-human
conversations and focused on real scenarios under
social welfare domains. Previous datasets such as
CoQA (Reddy et al., 2019) and QuAC (Choi et al.,
2018) focused on machine reading comprehension.
SharC (Saeidi et al., 2018) is close to Doc2Dial. Its
conversations are grounded to short text snippets,
and contains follow-up questions. ABCD (Chen
et al., 2021) supports customer service interactions
by providing Agent Guidelines as additional docu-
mentation to aid in task-oriented conversations.

An example of DGDS from Doc2Dial is shown
in Figure 1. For each turn, the agent needs to look
at the specific paragraph inside the document to be
capable of answering the user’s questions. More-
over, the agent can also ask follow-up questions.
For A3, the agent asks “Would you like to know if
you are eligible?". In this way, the agent guides the
user to center more on the details in the document.
Due to the complexity of Doc2Dial, simulating
such dialogues is highly nontrivial.
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Figure 2: Overall pipeline of DG2. Given a document and the dialogue history, DG2 iteratively performs (1)
passage selection, (2) span extraction, and (3) utterance generation to produce a completed dialogue.

2.2 Data Augmentation

Data augmentation for question answering and di-
alogue systems has been well-studied in the past.
There are two major directions: paraphrasing exist-
ing QA pairs from seed data or generating new QA
pairs from scratch.

Paraphrasing is a simple and effective technique
to augment natural language datasets. It has been
widely used in many NLP tasks including natu-
ral language understanding, question answering,
and task-oriented dialog systems (Gao et al., 2020)
to improve the downstream models’ performance.
In question answering, paraphrasing with back-
translation (Chadha and Sood, 2019; Bornea et al.,
2021) is well-studied for datasets such as SQUAD
(Rajpurkar et al., 2016b).

Another approach is generating new question-
answer pairs. Early question-answer generation
models used rule-based methods (Rajpurkar et al.,
2016b). More recently, there have been studies of
neural network-based question-answer pair genera-
tion models. PAQ (Lewis et al., 2021) generated 65
million question-answer pairs based on Wikipedia
and trained a retriever with the generated data.

However, existing approaches have not explored
applications for conversational question answer-
ing yet, especially for document grounded dialog
systems. Compared to single-turn question answer-
ing datasets like SQUAD (Rajpurkar et al., 2016b),
it involves additional complexity of modeling di-
alog flow and interconnection naturalness. Also,
instead of only providing an answer span, datasets
like Doc2Dial (Feng et al., 2020b) have free-form
agent responses. The agent needs to produce natu-

ral utterances conditional to the selected rationale.

Also, existing conversational question genera-
tion models (Gu et al., 2021) only focused on
the quality of generations but did not address the
improvement on downstream models. We de-
sign a specific dialog augmentation approach for
document-grounded dialog systems. Our work can
synthesize the entire conversation, and can be used
to improve down-stream task’s performance.

3 Document-Grounded Dialogue Setup

A dialogue can be thought of as a series of turns
between two interlocutors. Within goal-oriented
dialogues, we refer to the first speaker as the user,
and the second speaker as the agent, whom we
model as d = [(u1, a1), (u2, a2), ...(ut, at)]. In a
document-grounded setting, the conversation re-
volves around the topics and entities mentioned in
the associated document. A document is composed
of a series of text passages, which are themselves
broken down further into spans.

Dialogue success is determined by following the
typical success metrics for any given task, where
the only difference is that the outcome of the con-
versation is likely to depend on the ability to reason
about the contents of the document. While sophisti-
cated architectures are certainly capable of improv-
ing document-grounding, we take a data-centric ap-
proach instead by generating new dialogues from
the documents to serve as additional training data
for the downstream model.
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4 Data Augmentation via DG2

We propose Document-Grounded Dialogue
Generation (DG2) as a method of data augmenta-
tion. We aim to generate a complete and coherent
dialogue given a document by building two bots
talking to each other.

Given a document C, we can model a dialog d
between the user and the agent with:

p(d|C) =
t∏

i=1

p(ui, ai|ci ∈ C) (1)

where ui is the user turn utterance, ai is the agent
turn utterance, and ci is the selected passage at i-th
turn.

We further decompose the model into three parts:
passage selection, rationale extraction, and utter-
ance generation. We also apply a filtering model to
ensure the quality of generated utterances.

4.1 Passage Selection
A document can often be very long, so it must
be divided into smaller passages first. Then, we
need to rank the passages, and select a relevant
passage given the dialogue context. We can maxi-
mize the passage probability for ct with contrastive
loss where the positive passages are from ground
truth, and the negative passages are from the same
document.

p(ct|{ui, ai}i<t, C) (2)

During generation, we sample from the probabil-
ity distribution to select the passage. We choose to
sample rather than perform greedy selection since
this allows for choosing different passages given
the same dialogue context, thereby increasing the
diversity of the augmentation.

4.2 Rationale Extraction
Next, we further extract a rationale span from the
selected passage.

p(rt|{ui, ai}i<t, ct)

Span extraction systems typically model the start
and end position of a span independently as
p(rstart|c)×(rend|c). This settings works well when
the span is short, as is often the case for stan-
dard question answering tasks. However, the spans
encountered in some document-grounded dialog
datasets are much longer causing problems in tra-
ditional approaches. As an alternative, we propose

an autoregressive method that samples the start and
end position in sequentially with:

p(rt) = p(rstart|c)× p(rend|rstart, c) (3)

To ensure that the autoregressive property holds, we
add the predicted start position’s hidden state Hstart
and each position’s hidden state Hi, and then we
project the combined hidden state with a learnable
function fr to get the final predicted end position.
Thus, the training objective becomes to maximize

rend = argmax
i

fr(Hstart +Hi) (4)

When extracting a rationale, we first sample a start
position from top-k options. Conditioned on this
start index, we then sample the end position. This
allows us to extract different rationales given the
same context, which greatly improves the diversity
of generated dialogues compared to using the same
rationale.

4.3 Utterance Generation
Given the selected passage and the extracted ratio-
nale, we can now start to generate the user utterance
and the agent utterance.

User Utterance As seen in Figure 2, user model
generates a user utterance conditioned on the di-
alog history and the extracted rationale. Instead
of only using the rationale to generate utterances,
we provide the context passage along with the ra-
tionale for better performance. To tell the model
where the rationale is in the passage, we highlight
the rationale span by wrapping its text in the in-
put with “[" and “]". The new passage with the
rationale span information is defined as c′t.

We then model the user utterance with a encoder-
decoder where the input is the dialogue history and
the passage c′t, and the output is the user utterance.

p(ut) = p(ut|{ui, ai}i<t, c
′
t) (5)

Agent Utterance Similar to user utterance gener-
ation, we model the agent utterance with a encoder-
decoder.

p(at) = p(at|{ai, ui}i<t, c
′
t) (6)

The difference is that the dialogue history now
includes the previous generated user utterance. The
rationale position information in the passage is pro-
cessed similarly as in user utterance generation. We
can repeat the user utterance and agent utterance
generation process to generate the entire dialogue.
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4.4 Filtering the Augmented Data

Roundtrip consistency checking (Alberti et al.,
2019; Zhong et al., 2020) has previously been used
to improve the correctness of generated augmen-
tation data. It utilizes a model to double-check
whether the answer span is the same as the span
used to generate the question. Based on this in-
sight, rather than tuning a sampling temperature
to trade-off against noise and diversity, we instead
greedily pick the rationale span and use consistency
checking to filter for quality. For our purposes, we
expect the extracted rationale to be aligned with
the dialogue context as well as the user utterance.

We build a new passage selector and rationale
extraction model such that:

p(ĉt|{ui, ai}i<t, , ut, C) (7)

p(r̂t|{ui, ai}i<t, ut, ĉt) (8)

where ĉt is the predicted passage from the docu-
ment C with the dialogue context and the generated
user utterance, and r̂t is the prediction rationale
within ĉt. When the predicted r̂t contradicts the
previous rt, we filter out the utterance ut. Because
rationale spans can be long and not unique, filtering
based on exact match will be too strict. Instead, we
use F1 word overlap for filtering.

4.5 Document Positional Information

When a document is divided into passages, it loses
positional information between different passages.
As a dialogue progresses, we can expect to focus
more on the later part of a document, which in-
volves more details of a topic. Therefore, it is
important to incorporate the turn information and
the passage position information into the model.

We use a simple yet effective method to com-
bine the dialogue turn positional information
and passage positional information. For the
speaker positions we use a prompt “user{num}:"
or “agent{num}:", where “num" is replaced with
the number of turns so far. This allows the model
to track how many turns have passed, leading to
a more coherent dialog structure. For the passage
positions, we embed a passage index to indicate the
location of the passage within the document. Com-
bining the two flows together, the model is able to
have conversations focused on the beginning of the
document at the first, and naturally shift towards
the end of document later.

5 Experiments

We first introduce the datasets evaluated with our
method, then the baselines for comparisons, and in
the end our method’s implementation details.

5.1 Datasets

Dialogue Level Document Level
#dial #turns #tok %span #doc #tok

train 3,474 11.8 15.0 26.5 415 834
valid 661 12.1 15.3 25.8 273 821
test 661 12.0 14.9 24.5 273 809
DG2 3,474 12.0 14.2 42.2 415 834

Table 2: Doc2Dial dataset statistics. The following
abbreviations are made: ‘dial’ is short for dialogue,
‘tok’ is short for tokens, and ‘doc’ is short for documents.
‘%span’ means the percentage of spans as reference.

Doc2Dial consists of two subtasks around identi-
fying relevant spans based on dialogue context and
producing cohesive responses based on extracted
rationales (Feng et al., 2020a). Formulated as a
span selection task, user utterance understanding
requires an agent to interpret user queries in the
context of the dialogue history and then select the
relevant span from the associated document. Pre-
dicted spans are graded based on Exact match (EM)
and F1-score. Exact match is when the predicted
span exactly lines up with the actual span. F1-score
balances the recall and precision of the predicted
uni-grams compared to the gold span.

The second subtask is agent response prediction,
which requires an agent to generate a natural lan-
guage response to the user query given the dialogue
context and the document. Response quality is mea-
sured by SacreBLEU metric (Post, 2018) which
aims to capture how closely the predicted response
lines up with the gold response. Table 2 shows
Doc2Dial’s dialogue-level statistics and document-
level statistics.

5.2 Baselines

We compare against a number of baselines typically
used to augment natural language data. In contrast
to our technique, these methods all operate on the
existing dialogues, whereas our method generates
new dialogues from scratch from the associated
document.

Easy Data Augmentation Wei and Zou (2019)
propose to augment data through a series of surface
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Model
Validation Test

Span Coverage
EM F1 BLEU EM F1 BLEU

Original data 58.13 72.61 37.08 58.34 73.25 36.89 48.27
+ EDA 60.40 74.30 37.72 59.71 73.62 37.63 48.27*
+ Back-translation 60.15 73.74 36.68 60.17 73.35 37.32 48.27*
+ Paraphrase 59.97 73.92 37.76 57.98 72.71 38.40 48.27*
+ DG2 60.30 74.34 38.07 60.92 74.53 38.57 57.65

Table 1: Experimental results on the Doc2Dial dataset. EM stands for Exact Match. Bold means the best score.
Underline means the second best. *EDA, Back-translation, and Paraphrase do not modify span information and
thus are unable to increase span coverage in relation to the original data.

form alterations. In particular, Easy Data Aug-
mentation (EDA) consists of inserting new tokens,
deleting random tokens, swapping pairs of tokens,
or replacing tokens with their synonyms.

Back-translation Back-translation is another
strong augmentation method which first translates
some text into a separate language and then back-
translates to the original language. We follow
BERT-QA (Chadha and Sood, 2019), in translat-
ing all user utterances to French and then back to
English to augment the original dialogues.

Paraphrase Paraphrasing can be achieved by
training a sequence-to-sequence model on paral-
lel paraphrase pairs corpora. In particular, we
train a BART-base model (Lewis et al., 2020a)
on the MRPC (Dolan and Brockett, 2005), QQP
(Iyer et al., 2017) and PAWS (Zhang et al., 2019)
datasets.

5.3 Coverage Metric
Any section within a document could potentially
contain possible rationale spans. A model trained
on dialogues that cover larger portions of given
documents should therefore perform better. Conse-
quently, a strong data augmentation method should
aim to generate dialogues that cover as much of the
document as possible. We formalize this intuition
with the span coverage metric, which we calculate
as:

Coverage =

∑
span |

⋃
d∈doci

⋃
s∈d s|

|documenti|
where s refers to spans within a document and doc
refers to the number of documents in the corpus.

5.4 Implementation Details
For passage ranker, and rationale extraction model,
we fine-tuned RoBERTa-base (Liu et al., 2019) on

the downstream training datasets. For utterance
generators, we fine-tuned BART-base (Lewis et al.,
2020b). We set total input length of 512-tokens
which is 128 tokens for dialogue followed by 360
tokens for the document, with some room left over
for special tokens. The augmented data is gener-
ated with sampling beam search with beam size 4,
top-p 0.9, and temperature 0.9. When utilizing the
augmented data, we pre-trained the downstream
model on the augmented data for one epoch before
fine-tuning (Alberti et al., 2019). The default F1
threshold is set to 0.9, which we determined by
validating against the dev set. For fine-tuning, we
train for five epochs, and use the same optimizer of
AdamW (Loshchilov and Hutter, 2019) and learn-
ing rate of 3e−5 for all experiments.

6 Results and Analysis

This section shows the results for the full dataset
and low-resource settings. We also conduct human
evaluation on the generated dialogues. Afterwards,
we discuss the results by analyzing generated ex-
amples.

6.1 Main Results

As shown in Table 1, DG2 achieves the overall
best performance compared to other baselines that
only augment the original human-annotated data.
Other baselines all show some improvements over
the downstream model only trained using the orig-
inal data. EDA has very high EM and F1 scores
for the rationale extraction task, but suffers at pro-
ducing coherent dialogues as measured by BLEU.
Paraphrase has relatively lower EM and F1 scores,
but it achieves better BLEU scores than EDA and
Back-translation. We suspect that this is because
Paraphrase contains more diverse utterances as the
inputs than other baselines.

When evaluating the augmented dialogues with
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Model 25% 50% 75%
EM F1 BLEU EM F1 BLEU EM F1 BLEU

Baseline 43.08 64.01 32.76 41.61 62.25 34.35 58.03 72.61 36.48
+ EDA 46.68 64.68 33.97 56.09 70.51 35.84 59.84 73.40 36.24
+ Back-translation 47.48 65.18 33.00 54.44 69.52 35.30 58.66 72.75 36.08
+ DG2 46.48 65.58 32.90 54.51 71.40 35.74 58.89 73.38 37.01

Table 3: Experimental results on low-resource settings on validation set. Bold means the best score. Underline
means the second best.

the original training set’s documents, we find that
DG2 achieves higher span coverage. Unlike the
other methods, DG2 is able to generate novel ra-
tionales to increase the diversity of the augmented
data, which we believe plays a large factor in im-
proving downstream metrics.

Filtering #Spans EM F1

None - 57.78 73.27
F1 < 0.5 top-1 57.73 73.01
F1 < 0.9 top-10 58.23 73.05
F1 < 0.9 top-1 60.80 74.38
F1 < 0.95 top-1 59.21 74.00
F1 < 0.98 top-1 59.26 73.84

Table 4: We test different quality thresholds to deter-
mine the optimal level of filtering. A higher F1 score
means that more samples are filtered.

6.2 Low Resource Setting
To further illustrate the performance of DG2, we
train all the models with only 25%, 50%, 75% of
the original training data. We generate the dia-
logues based on the documents in the knowledge
base. In this limited data setting, our model gen-
erally outperformed Back-translation. However,
compared to EDA, there is still some performance
gap. We suspect that this is because when training
with less data, the generative models’ performance
degenerates faster than the downstream model. We
hope to overcome these issues with further improve-
ments on data quality filtering.

6.3 Different Filtering Thresholds
Prior works in data augmentation have shown that
filtering the synthetically generated examples can
provide a meaningful boost in the data quality
(Chen and Yu, 2021). As a result, we tune against
different F1-score thresholds and span counts on
the validation set. When the generated dialogue
produces a higher F1-score, then this example is

more likely to also produce better results during
testing. The span count determines how many ex-
amples we consider when calculating this score.
While raising the F1-score threshold increases the
potential quality of the data, it comes as the expense
of keeping fewer of the generated examples. Based
on Table 4, we observe a sweet spot at 0.9, where
a stricter filtering process would remove too many
examples while a looser filtering process would
lower the quality too much.

6.4 Human Evaluation

We conduct human evaluation on the human dia-
logues and the generated dialogues. We randomly
sample 50 dialogues from each class. We shuffled
the sampled dialogues and ask annotators to rate
the dialogues with a score 1-5 in four different as-
pects: consistency, fluency, naturalness, and overall
quality.

From the evaluation results, the generated dia-
logues show better fluency than original human
dialogues with p < 0.05. We observed that some
human dialogues contain typos and grammar errors,
while the generated dialogues are more grammati-
cally correct, which explains the score difference.
In terms of other human evaluation metrics, the
generated dialogues are still worse than the origi-
nal human dialogues.

6.5 Qualitative Analysis

We now compare and contrast two examples gener-
ated by our procedure. Table 6 shows a good exam-
ple from the document-grounded dialogue dataset.
In the first four turns, the agent guides the user’s
focus by asking relevant questions. When the user
wants to know more details, the agent then switches
to provide the relevant knowledge retrieved from
the rationale. This behavior is different from tradi-
tional question answering datasets where the agent
simply reacts to user requests rather than exhibit-
ing proactive behavior. On the flip side, one major
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Speaker Utterance
User I’m thinking about getting some retirement benefits.

Agent Are you wondering what age to start your benefits?
Rationale: What Is The Best Age To Start Your Benefits?

User Yes, I want to know what age I should start my benefits.
Agent Are you planning to apply for Medicare?

Rationale: Should I apply for Medicare?
User Yes, I am.

Agent Then you should know that Medicare usually starts when you reach age 65.
Rationale: Remember, Medicare usually starts when you reach age 65. If you decide to delay
starting your benefits, be sure to contact Social Security about 3 months before you turn age
65 to check about applying for Medicare. Even if you have health insurance through a ...

User What if I need to enroll but don’t?
Agent Your Medicare coverage may be delayed and cost more.

Rationale: your Medicare coverage may be delayed and cost more. Please read the general
and special enrollment period information on page 12 of our Medicare booklet to find out
what may happen if you delay.

User What age is the best age to begin benefits?
Agent The answer is that there is no one " best age" for everyone and, ultimately, it is your choice.

You should make an informed decision about when to apply for benefits based on your
individual and family circumstances.
Rationale: The answer is that there is no one " best age " for everyone and, ultimately, it is
your choice. You should make an informed decision about when to apply for benefits based
on your individual and family circumstances.

Table 6: Generated dialogue showing typical agent and user interaction. Unlike question answering datasets, the
agent can also ask questions to the user to guide the direction of the conversation.

Consistency Fluency Naturalness Overall

Human 3.80 3.96* 3.56 3.70
DG2 3.60 4.18* 2.98 3.38

Table 7: Human evaluation results on the generated
dialogues. * Comparison is made p < 0.05.

problem of the current approach is repetition. The
user continues to ask about forgetting to update
their address despite attempts by the agent to an-
swer their query. Although the surface form of the
user utterances are different, the semantic mean-
ing remains the same. This repetition confuses
the agent who then extracts irrelevant rationales,
further exacerbating the situation.

7 Ethical Consideration

The models and approaches introduced in our work
involve using synthetic data as an enhancement to
existing datasets for modeling document-grounded
dialogue. For the existing datasets, they are often
dialogue simulation data generated by human work-
ers based on their understanding of the associated

document content and dialogue context. There are
potential biases or toxic content introduced in the
existing simulation during data collection. We can
address such concerns by making efforts to improve
the quality of the generated data that has shown its
effectiveness in the downstream task. Therefore,
our method can add an extra layer of safety and
privacy if we only use generated data for training
downstream models. Future work can explore how
data augmentation can help to build a more private
and safe dataset.

8 Conclusion

To address the problem of limited data in document-
grounded dialogue systems, we propose DG2 to
perform data augmentation via dialogue genera-
tion. Our technique generates diverse utterances
grounded on the given document while filtering the
utterances to ensure quality and correctness when
training on the downstream model. We demon-
strated the effectiveness of our pipeline by showing
the improvement over the previous data augmenta-
tion methods. We additionally show competitive
results in the low-resource setting when a limited
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amount of human annotated data is available for
training. Future work will explore more techniques
of filtering to improve data quality. We hope this
spurs further research into document-grounded aug-
mentation techniques for dialogue systems.
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A Training Details

Hyper-parameters

batch size 16
warm-up steps 1,000
learning rate 3e-5
dropout 0.1
weight decay 0.01
max gradient norm 1.0
training epochs 5

Table 8: Training Details

We trained our model on and A4000 and A6000
GPUs. The detailed hyper-parameters can be found
in the table above.

B Bad Generation Examples

We show a bad generation example here to illustrate
one of the generation problem.
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Speaker Utterance
User I was planning to move and forgot to update my address. What do I do?

Agent By statute, you must report a change of address to DMV within ten days of moving. That is
the case for the address associated with your license, as well as all the addresses associated
with each registered vehicle, which may differ
Rationale: By statute, you must report a change of address to DMV within ten days of moving.
That is the case for the address associated with your license, as well as all the addresses
associated with each registered vehicle, which may differ.

User Am I able to do anything if I forget to update my address?
Agent It is not sufficient to only: write your new address on the back of your old license; tell the

United States Postal Service; or inform the police officer writing you a ticket.
Rationale: It is not sufficient to only: write your new address on the back of your old license;
tell the United States Postal Service; or inform the police officer writing you a ticket.

User What happens if I forget to update my address?
Agent You will miss a suspension order and may be charged with operating an unregistered vehicle

and/or aggravated unlicensed operation, both misdemeanors. This really happens, but the
good news is this is a problem that is easily avoidable.
Rationale: you will miss a suspension order and may be charged with operating an unreg-
istered vehicle and/or aggravated unlicensed operation, both misdemeanors. This really
happens, but the good news is this is a problem that is easily avoidable. Learn more ...

Table 9: A bad generated dialogue here shows repetition. Although the user utterances’ surface form are different,
their semantic meaning is the same.
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Abstract

Current spoken dialogue systems initiate their
turns after a long period of silence (700-
1000ms), which leads to little real-time feed-
back, sluggish responses, and an overall stilted
conversational flow. Humans typically respond
within 200ms and successfully predicting ini-
tiation points in advance would allow spoken
dialogue agents to do the same. In this work,
we predict the lead-time to initiation using
prosodic features from a pre-trained speech rep-
resentation model (wav2vec 1.0) operating on
user audio and word features from a pre-trained
language model (GPT-2) operating on incre-
mental transcriptions. To evaluate errors, we
propose two metrics w.r.t. predicted and true
lead times. We train and evaluate the mod-
els on the Switchboard Corpus and find that
our method outperforms features from prior
work on both metrics and vastly outperforms
the common approach of waiting for 700ms of
silence.

1 Introduction

Spoken dialogue agents have exploded in popular
use (e.g., Alexa, Siri, and Google Home). How-
ever, they only support explicit turn-taking mech-
anisms: they detect user initiation and barge-ins
using wake-words and identify end of user turns
based on a silence period (typically between 700–
1000ms). Turn-taking feels unnatural under such
mechanisms, leading to less “conversational” inter-
actions (Woodruff and Aoki, 2003). This is particu-
larly damaging for open-ended social conversations
where thoughtful silences get wrongly interrupted
(Chi et al., 2021). To fix this issue, we predict initi-
ation opportunities for spoken dialogue agents for
both turn-taking and backchanneling.

Prior work predicting initiation points uses
prosodic features like pitch and frequency variation
with bag-of-embeddings to predict backchannels
(Ruede et al., 2017a) and turn-completion (Skantze,
2017), and more recently, Ekstedt and Skantze

Figure 1: Humans produce overlapping speech with
small gaps. By predicting lead to initiation, virtual
agents can respond without long waiting periods

(2021) finetuned GPT-2 on dialogue datasets to
predict turn-completion using only word features.
However, they either predict a binary label indi-
cating initiation in a wide event horizon, which
is imprecise; or they predict a binary label for an
initiation to happen at a set offset in the future, in
which case a single incorrect prediction leads to a
missed initiation.

As a robust generalization of previous ap-
proaches, we predict the lead time to initiation as
a continuous value. We model initiation (next ut-
terance from a different speaker) directly and not
end-of-turn because there is a variable (and possi-
bly negative) gap between the two (Skantze, 2021).
In this work, we combine two models: wav2vec 1.0
(Schneider et al., 2019) for representing prosodic
features and finetuned GPT-2 (Radford et al., 2019)
for word features. We model the task with a Gaus-
sian Mixture Model (GMM) to account for inherent
uncertainty. We train and evaluate our models on
Switchboard (Godfrey et al., 1992) and find that the
combination of the pretrained models performs the
best, vastly outperforming a silence-based baseline
that waits for 700ms of silence and baselines using
features from prior work.
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2 Related Work

Prior work for dialogue turn-taking either uses
silent gaps as cues or predicts future events re-
peatedly. A key issue with systems that use silent
gaps as initiation cues (Huang et al., 2011; Co-
hen et al., 2004; Witt, 2015) is the difficulty of
adjusting the silence thresholds to accommodate
dialogue states (Skantze, 2021). When predicting
turn-taking repeatedly, i.e. predicting future ac-
tions at every timestep, acoustic features such as
pitch and frequency are often used, with additional
linguistic features including part-of-speech or word
embeddings (Ruede et al., 2017a,b; Skantze, 2017;
Ward et al., 2018; Roddy et al., 2018). More re-
cently, Ekstedt and Skantze (2021) implement a
spoken dialogue system for travel conversations
using TurnGPT (Ekstedt and Skantze, 2020). How-
ever, a short silence threshold is still used to deter-
mine initiation of agent responses.

Outside of dialogue, Neumann et al. (2019) pro-
pose probabilistic models for predicting events in
videos, Lei et al. (2020) forecast frames and Von-
drick et al. (2016) forecast actions. Time-to-event
analysis in the medical domain involves modeling
patient status as a function of time (Meira-Machado
et al., 2009; Soleimani et al., 2017).

3 Methods

3.1 Setup

Ikspkr is the time of k-th initiation (both backchan-
nels and transitions) by a speaker. We use the cur-
rent speaker’s audio and transcript information to
predict the the lead time to initiation, τ̂t, of the
target speaker. When the current speaker is speak-
ing, we consider an event horizon δmax to narrow
the prediction range and at time t, define the true
lead time to initiation as τt = min(δmax, I

k
tgr− t).

When the target speaker is speaking, we set τt = 0,
to ensure a well-balanced distribution.

3.2 Models

We make two novel contributions. First, we fuse
rich contextual prosodic features from a pretrained
wav2vec model with contextual word representa-
tions from a pretrained GPT-2 model. Prior work
has not used such rich contextual prosodic features
nor their combination with word representations.
Second, prior work does not model the inherent un-
certainty of initiations. Inspired by the video event
prediction literature (Neumann et al., 2019), we do

this using a Gaussian mixture model and maximize
model likelihood under the data distribution.

3.2.1 Features
Features are extracted from the current speaker’s
voice channel and transcript. We suffix model
names with abbreviated versions of the features
they use.

Wav2vec Embeddings (W): Raw audio is fed
into Wav2vec 1.0 (Schneider et al., 2019) to obtain
convolutional embeddings. We choose Wav2vec
1.0 because of its unidirectional nature, which en-
ables handling efficient incremental processing of
audio. We keep the model weights frozen.

GPT-2 Embeddings (G): This is the GPT-2
Small (Radford et al., 2019) embedding of the last
salient word from the target speaker after feeding
in prior utterances. The embedding is updated in-
crementally as more utterances are transcribed. We
fine-tune the GPT-2 model during training.

RMSE (R): We select the Root Mean Square
Energy (RMSE) of the raw waveform to signal
current speaker silence. It simulates audio energy
and power in features from prior work.

Additional Prosodic Features (A): Previous
work explores pre-neural prosodic features (Ruede
et al., 2017a,b; Skantze, 2017); to compare our
approach with previous approaches, we include
pitch and frequency, both represented as a number
for each frame. The prosodic features, including
RMSE, are calculated with a frame shift of 50 ms
and a window length of 100 ms. Additional details
for feature implementation are in Appendix A.1.

Wav2vec features are subsampled to 50 ms by
selecting embeddings at every 50ms and for other
audio features by adjusting the frame shift. Audio
features are concatenated and input to an LSTM
network. When GPT-2 embeddings are used, they
are concatenated with the LSTM’s final hidden
state. This is fed into a linear head. More training
details are presented in Appendix A.2.

3.2.2 Gaussian Mixture Model
There is an inherent uncertainty in the precise lo-
cation of an initiation (e.g., it can occur a few
milliseconds before or after the prediction) and
a single Gaussian is sufficiently powerful to model
it because the uncertainty is localized. How-
ever, a speaker can initiate at many points in time
that are far apart, for e.g., at the completions of
grammatical clauses that can happen hundreds of
milliseconds apart. We use a Gaussian mixture
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Figure 2: An explanation of our metrics. The red vertical intervals correspond to |τx − τ̂x| in the equations. As
illustrated, MAE-Pred(y) evaluates the expected error when a model predicts value y. For MAE-True(t), we highlight
the regions where MAE-True can be calculated in green; depending on how long the current speaker’s next utterance
is, the region has a maximum length of δmax + 1.

model (GMM) to capture this multimodal predic-
tion space.

At every time step, we predict the parameters:
mean, variance and weights, for T Gaussian distri-
butions {µ, σ, h}[1..T ]. The training objective is to
maximize the log of the summed likelihood of τt:

log
( T∑

i=1

hi ·
1

σi
√
2π
· exp−(τt − µi)

2

2σ2
i

)

At inference, we use the mean of the Gaussians.

3.2.3 Baselines
Silence Baseline: We compare our models with
an RMSE-based non-neural baseline. We detect
voice activity based on whether RMSE is above
a certain threshold (0.01 for this work). If there
is a gap of more than 700ms in voice-activity, the
baseline predicts an initiation τt = 0 at the current
time, otherwise predicts δmax.

GMM-AG: We use this baseline as a proxy for
Ruede et al. (2017a), where pitch, power, and FFV
are used as the prosodic features, and word2vec
embedding of the most recent salient word is the
linguistic feature. We simulate these features using
RMSE, pitch and frequency (the prosodic features),
and GPT-2 embeddings.

GMM-G: Ekstedt and Skantze (2020) use GPT-
2 to emulate possible continuations of the current
conversation in order to decide turn-relevant places.
Although we do not use the same algorithm, we
still use GPT-2 embedding as a feature. We train
a GMM on last-salient-word GPT-2 embeddings
only, and use this as a representative baseline for
Ekstedt and Skantze (2020).

GMM-WGR-1: We train a Gaussian mixture
model with T = 1 Gaussian to examine whether

using multiple Gaussian models to capture differ-
ent factors for utterance timing is necessary. This
model is trained on the same data as our GMM-
WGR model, with Wav2vec, GPT-2, and RMS
features.

3.3 Training and Evaluation Data

For training, we randomly sample 60 second audio
segments that have its first target speaker initiation
in the first 5 to 10 seconds. This is to make sure
that there is at least one initiation with enough
context. We backpropagate losses only in a limited
range around each initiation Iitgt, [I

i
tgt−2δmax, I

i
tgt+

1] This is to ensure a balanced distribution of τt.
For evaluation and testing, we instead cover entire
dialogues by collecting 60-second segments every
20 seconds. We randomly choose the target speaker
for each segment.

3.4 Metrics

To measure the performance of our models
that produce continuous values, previous work’s
classification-based metrics are insufficient to dif-
ferentiate between a prediction error of 0.2 ver-
sus 2 seconds. Additionally, we want to differen-
tiate between how precise model predictions are
and how well they cover the initiations observed
in the dataset. We improve upon Time-to-event
error from Neumann et al. (2019), and propose
Mean Absolute Error w.r.t. Predicted Lead Time
(MAE-Pred) and Mean Absolute Error w.r.t. True
Lead Time (MAE-True) as analogues of precision
and recall that improve existing metrics (Skantze,
2017). If a practitioner needs l seconds to generate
a response, MAE-Pred(l) gives the expected error
when the model predicts l (precision) and MAE-
True(l) gives the expected error with the true lead
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Figure 3: (a) MAE-True, (b) MAE-Pred, and (c) average predicted lead time values for representative neural models
and the silence baseline. 95% C.I. are represented by the lightly shaded regions. A perfect model would achieve
the “ideal” (dashed) lines. In (b), because the silence based model only predicts 0 or δmax, only these two points
are defined in plot (b) for the silence based baseline. The corresponding MAE-Pred values for the silence baseline
are indicated as crosses in plot(b). All of our models, including the best performing GMM-WGR, significantly
outperform the silence-based model that waits for 700 ms.

time is l (recall). With the set S representing the
timesteps included in the calculations, both metrics
can be represented as

∑
x∈S
|τx − τ̂x|/|S|

Specifically, for MAE-Pred(y):

S = {x|τ̂x = y}, y ∈ [0, δmax]

For MAE-True(t):

S = {Iitgt−t}, t ∈ [−1, δmax]∩[Iitgt−Ij+1
cur , Iitgt−Ijcur]

for all target-speaker initiations Iitgt, limiting to
intervals between two consecutive initiations by
the current speaker. When t ≤ 0, the initiation has
already occurred and τt = 0. We quantize both true
and predicted values into 16 buckets per second.

As an aggregated metric, we propose Macro-
MAE (MMAE). We define MMAE-X(a, b) =∑

v∈Sab
MAE-X(v)/|Sab|, where Sab is the set of

bucket values between a and b for a given set
S. We define 1 second before and 0.5s after
initiation as the interval of interest for MMAE-
True, and similarly predicted values between 0
and 1 for MMAE-Pred. We compute MMAE =
MMAE-True(−0.5, 1) + MMAE-Pred(0, 1) as a
single number quantifying model performance.

4 Experiments

For training and evaluation, we use audio conver-
sations from Switchboard (Godfrey et al., 1992).

We select a random set of 200 training, 20 valida-
tion, and 20 test dialogues out of a total of 1000
dialogues due to computational constraints. We
use the validation set to select the best performing
checkpoint based on MMAE scores and report the
numbers on the test set. For the GMM models, we
experimented with T = 1, 5, 10, 15, 20, and found
T = 15 to be the best-performing. 1

We plot the MAE-Pred and MAE-True values
in Figure 3 and the show the MMAE values in Ta-
ble 1. A perfect model would have 0 error. As a
diagnostic tool, we also plot the average predic-
tion for each t used in MAE-True (Figure 3 (c)).
Here, we expect a perfect model to be a line with
a slope of −1 passing through the origin before
flattening out at 0. We see that for all models MAE-
True peaks (roughly) at initiation (Figure 3 (b))).
Despite all the cues leading up to an initiation in
the data, it is still highly optional and the models
aren’t able to predict it perfectly. Soon afterward,
as the target speaker stays silent the models predict
smaller lead times to initiation (steeper downward
slope in Figure 3 (c)) and the MAE-True reduces.
On the other hand, for all trained models (GMM-*),
we see that MAE-Pred reduces for smaller values
of y (Figure 3 (c)) indicating that the trained mod-
els are very precise when they predict near-term
initiations.

Our models outperform the silence baseline by
a large margin in most time windows prior to and

1Our code for the models and for training is avail-
able at https://github.com/siyan-sylvia-li/
icarus_final
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Eval Test

Model MT MP MMAE MMAE

GMM-AG 0.90 0.63 1.53 1.51
GMM-G 0.90 0.60 1.50 1.42
GMM-WGR-1 0.67 0.59 1.26 1.30
Silence* 1.33 0.60 1.93 1.88

GMM-W 0.70 0.49 1.19 1.22
GMM-WG 0.67 0.51 1.18 1.19
GMM-WGR 0.63 0.52 1.15 1.11

Table 1: Performance of different models on the eval-
uation and the test dialogues, as measured Macro-
MAE values. MT = MMAE-True(−0.5, 1), MP =
MMAE-Pred(0, 1). * Since only 0 and δmax are valid
predictions for Silence Baseline, we use (MAE-Pred(0)
+ MAE-Pred(δmax))/2 as MMAE-Pred(0, 1).

after initiations (Figure 3 and Table 1). GMM-
WGR outperforms prior work baselines: GMM-G
(TurnGPT) and GMM-AG (Ruede et al. (2017a)).

Comparing GMM-WG vs. GMM-G, Wav2vec
features reduce MAE-True after initiation and sta-
bilizes MAE-Pred for small predicted lead times;
GMM-G’s predictions stay constant after initia-
tions, because it can only access the transcript
from the current speaker. Comparing GMM-WG
vs. GMM-W, GPT-2 features reduce MAE-True
near initiations, possibly because they provide the
model with word cues. GMM-WGR has a lower
MMAE-True(-0.5, 1) compared to GMM-WG, in-
dicating that Wav2vec doesn’t capture silences as
well as RMSE. GMM-WGR-1, our baseline with
one Gaussian, performs poorly compared to GMM-
WGR, highlighting the importance of the Gaussian
mixture.

5 Conclusion

We present the task of lead time to initiation pre-
diction as a continuous-valued problem, collaps-
ing transition and backchannel timing problems
into one. We additionally propose metrics to cap-
ture precision and coverage in these predictions.
Our models trained on pretrained prosodic and
verbal embeddings consistently outperform the
commonly-used silence baseline. We believe our
work will build a foundation for more naturalis-
tic virtual agents with human-like conversational
behaviors.
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A Appendix

A.1 Feature Implementation

1. Pitch: https://pytorch.org/
audio/main/functional.html#
compute-kaldi-pitch

2. Frequency: https://librosa.org/
doc/main/generated/librosa.
yin.html

3. Root Mean Square Energy: https:
//librosa.org/doc/main/
generated/librosa.feature.
rms.html

A.2 Training Details

The models are trained on one A100 GPU. All
model LSTM’s have two layers with 128 hidden
units. Each epoch approximately last 1000 sec-
onds, and we train each neural model for 7 epochs,
at which point overfitting would have definitely
occurred. We train all models with dropout 0.1,
Adam optimizer, and a weight decay of 0.0001. We
include a comprehensive list of our models and
their training details in Table 4.

A.3 Additional Model: Heuristic Heatmap

We have tried training another probabilistic model
from Neumann et al. (2019), Heuristic Heatmap.
We did not find this model to significantly out-
perform our GMM-Full model, although it does
exhibit interesting qualities.

Heuristic Heatmap (Histogram-based Density
Estimator): This model captures temporal shifts
in the probability distribution of lead time; as the
current speaker keeps speaking, the likelihood of an
imminent initiation increases for the target speaker,
shifting the probability mass from higher to lower
lead time values. At every time step, the model
produces a probability distribution with 2δmaxr
(r = 16, the resolution of our estimates) bucket
values hi = P (τt =

2δmaxi
2δmaxr

). Training minimizes
the difference between the predicted distribution
and a Gaussian centered at τt. During inference,
the prediction bucket with the highest probability
is returned.

Model W G Ac R
GMM-AG ✓ ✓ ✓
GMM-G ✓
GMM-W ✓
GMM-WG ✓ ✓
GMM-WGR ✓ ✓ ✓
Heatmap-WGR ✓ ✓ ✓
GMM-WGR-1 ✓ ✓ ✓

Table 2: The trained models and their features. W
represents Wav2vec features, G GPT-2 embeddings, Ac
the set of acoustic features (pitch and frequency), R the
RMSE of the current speaker waveform.
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Figure 4: MAE-True, MAE-Pred graphs for all trained models. We also include the graph of average predicted lead
time values given true lead time to initiation.

Model MTEval MPEval
∑

Eval
∑

Test
GMM-AG 0.90 0.63 1.53 1.51
GMM-G 0.84 0.58 1.50 1.42
GMM-W 0.70 0.49 1.19 1.22
GMM-WG 0.67 0.51 1.18 1.19
GMM-WGR 0.63 0.52 1.15 1.11
Heatmap-WGR 0.80 0.68 1.48 1.44
GMM-WGR-1 0.67 0.59 1.26 1.30
Silence* 1.33 0.60 1.93 1.88

Table 3: Performance of different models on the evalua-
tion and the test dialogues, as measured by the sum of (1)
the average MAE-True(t) on t ∈ [1,−0.5] (MTEval and
MTTest) and (2) the average MAE-Pred(y) on y ∈ [0, 1]
(MPEval and MPTest). * For the Silence baseline, since
only 0 and δmax are valid prediction values, we calcu-
late the average of MAE-Pred(0) and MAE-Pred(δmax)
as MPEval and MPTest.

A.4 MAE-True and MAE-Pred on All Models
We also include the graphs for MAE-True, MAE-
Pred, and average predictions per ground truth time
to initiation values for all of our models. They are
presented in Figure 4.
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Model Features Learning Rate Batch Size
GMM-AG Acoustic features, GPT-2 1e-4 16
GMM-G GPT-2 embedding 1e-4 16
GMM-W Wav2vec representations 1e-4 32

GMM-WG Wav2vec and GPT-2 1e-5 16
GMM-WGR Wav2vec, GPT-2, and RMSE 1e-5 32

GMM-WGR-1 Wav2vec, GPT-2, and RMSE 1e-5 15
Heatmap-WGR Wav2vec, GPT-2, and RMSE 1e-4 32

Table 4: Set of trained models.
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Abstract

The construction of spoken dialog systems to-
day relies heavily on appropriate corpora, but
corpus selection is more an art than a science.
As interaction style properties govern many as-
pects of dialog, they have the potential to be
useful for relating and comparing corpora. This
paper overviews a recently-developed model of
interaction styles and shows how it can be used
to identify relevant corpus differences, estimate
corpus similarity, and flag likely outlier dialogs.

1 Motivation

Today the process of selecting corpora for dialog
systems training or tuning is rarely systematic. This
is a problem because dialog systems developers
rely heavily on machine learning from corpora
to acquire the various knowledge and parameters
needed for effective systems. Models for predicting
likely corpus suitability would therefore be very
useful, but existing methods for corpus compari-
son rely mostly on lexical and topic overlap, e.g.
(Pavlick and Nenkova, 2015), making it hard to
predict how well other types of knowledge will
transfer.

The scientific investigation of dialog behaviors is
similarly impeded by corpus choice issues. Differ-
ent research teams choose corpora to study for all
sorts of reasons, leading to a healthy diversity, but
also to many contradictory findings (Egger et al.,
2014; Wright et al., 2019; Levitan, 2020). Meth-
ods for systematically describing corpus properties
could help resolve these, potentially enabling the
field of computational pragmatics to clearly de-
scribe the realm of validity of each generalization.

This paper focuses on interaction style, as this
is an essential issue in providing high quality user
experiences (Marge et al., 2022). This is, moreover,
no longer a distant goal, as core speech components
have advanced to the point where it is becoming
possible to implement situation-appropriate turn

taking, politeness behaviors, rapport building strate-
gies, and so on (Metcalf et al., 2019). Because
our fundamental knowledge in these areas are still
spotty, developers rely on discovery or learning
from corpora. Indeed, it is still common for a new
development project to start with the collection of
a new corpus, specific to the task, domain, user
demographic, system persona and so on. Instead,
we would like to be able to better exploit existing
resources (Kashyap et al., 2021). One recent suc-
cess was a socially well-behaved recommendation
system for movies, created by discovering behav-
iors from a suitable subset of Switchboard data
(Pecune et al., 2019). Selection of this subset was
easy because Switchboard was designed around
topics, and in particular the “movies” tag was avail-
able. However, we would like to be able to more
precisely delineate relevant corpus subsets, and to
do so even when annotations are lacking.

This paper introduces three ways to characterize
spoken dialog corpora and their subsets.

2 Precursor Work

Biber, in his landmark contribution to style descrip-
tion, investigated what he termed “conversation
text types” (Biber, 2004). Using transcripts from
various corpora as data and a text-based feature set,
he used Principal Component Analysis to derive
three dimensions of variation, and showed how dif-
ferent conversations could be automatically located
in this space.

This method has been very influential in the com-
parison of diverse text corpora, and also occasion-
ally for speech corpora (Shen and Kikuchi, 2014).
However these models generally seem to have low
explanatory power; for example, Biber’s three di-
mensions accounted for only 36% of the variance.
Further, although acoustic-prosodic features poten-
tially provide much more information than text,
these have been used in corpus selection so far only
by Siegert et al. (2018), who demonstrated their
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value, but only for the narrow problem of training
emotion recognizers. Overall, work in this tradition
appears not to have found practical use.

In contrast to text-based models (Troiano et al.,
2021, submitted), styles in spoken dialog, and in
particular interaction styles, have been less studied.
Much work in this area has built on Tannen’s sem-
inal observations on “conversational styles” (Tan-
nen, 1989, 1980). Importantly, these are not fixed
properties of speakers, and frequently vary even
in the course of a conversation (Dingemanse and
Liesenfeld, 2022).

More recently, computational models have been
developed to study style in dialog (Grothendieck
et al., 2011; Laskowski, 2016; Yamamoto et al.,
2020; Ward, 2021a). These works have variously
used features of turn-taking and prosodic and other
behaviors to derive models of style. However these
models have previously been applied only to ques-
tions of how individuals vary in style, not to corpus
characterization.

3 Model Properties

The explorations reported in this paper build on
our own model of interaction style variation (Ward,
2021a; Ward and Avlia, 2022, submitted), because
it is the most comprehensive and because the code
is available. The purpose of this section is only
to explain the model briefly while clarifying the
aspects not clear in (Ward, 2021a) but relevant for
the current exploration.

For current purposes, the model serves to take as
input one or more 30-second fragments of Ameri-
can English conversation, and to output a represen-
tation of its style as a vector of length 8: that is, it
maps dialogs into a vector space representation of
interaction styles. While for current purposes this
is used as a black box, it may be worth overviewing
the steps of the process.

1. Low-level (frame level) prosodic features are
computed, specifically the raw pitch, intensity,
and cepstral coefficients.

2. These are normalized by track.

3. Filters and aggregation processes are applied
to obtain mid-level features over various tem-
poral spans, including estimates of intensity,
speaking rate, phoneme lengthening, creaki-
ness, enunciation or reduction, and the extent
to which the pitch is high or low, or wide or
narrow.

4. These mid-level features are normalized using
parameters that brought each to mean 0 and
standard deviation 1 on the training data.

5. The match of these normalized features to 12
meaningful temporal configurations is com-
puted every 20 milliseconds. These mean-
ingful temporal configurations represent spe-
cific American English prosodic construc-
tions, which mark activities such as turn
switch, topic closing, enthusiasm, positive as-
sessment, empathizing, and contrasting (Ward,
2019). These cover a wide range of dialog
states, activities, behaviors and interactive
events.

6. The match values are binned and pooled
across each 30-second fragment. There are 7
bins per configuration, thus there are bins for
when a speaker is expressing a strong, mild,
or weak contrast, or managing an ambiguous,
clear, or strong turn switch, and so on.

7. The resulting 84 values are rotated, using Prin-
cipal Component Analysis, to a representation
where the top dimensions capture most of the
variance.

8. The top 8 dimensions are retained. (This is
because these 8 already explain 52% of the
variance, because the lower dimensions lacked
clear interpretations, and because including
more dimensions did not significantly change
the qualitative picture presented below.)

Further, each of the eight dimensions can be given
an interpretation, as summarized in Table 1. Those
for Dimensions 4 and 7 differ from those given by
Ward (2021a), for reasons explained in (Ward and
Avlia, 2022, submitted); for all, we here provide
clearer descriptions. While the interpretations are
not needed for most purposes, they help to under-
stand how and whether the model is working, so
the rest of this section elaborates. Evidence and fur-
ther discussion appears at the companion website
(Ward, 2021b).

Dimension 1 relates simply to the amount of
shared engagement. Dimension 2 is very high or
low when one speaker versus the other is taking an
active speaking role and the other an active listen-
ing role. Dimension 3 involves expressing positive
assessment, for example when talking about the
speaker’s dog, a good fishing day, or a favorite
football team, versus expressing negative feelings,
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1 13% both participants engaged ... lack of shared engagement
2 11% focal speaker mostly talking ... focal speaker listening actively
3 8% positive assessment ... negative feelings
4 5% focal speaker speaks knowledgeably ... nonfocal speaker speaks knowledgeably

5 5% factual ... thoughtful
6 4% accepting things beyond individual control ... envisioning positive change
7 3% making points ... referencing shared experiences
8 3% unfussed ... emphatic

Table 1: Inferred functions of the top 8 dimensions of interaction style. The second column shows the amount of
variance explained by each dimension.

for example about underprepared students or im-
moral politicians. Dimension 4 is very high or low
when one speaker versus the other is being confi-
dent and/or dominant as they talk about something
they know well, while the other is acknowledging
the other as an expert on the topic. For Dimen-
sion 5 the positive pole involves a thoughtful style
and the negative pole a factual style, characterized,
among other things, by long regions of low pitch ex-
pressing a stance of calm rationality, as the speaker
describes something they know well, such as how
a network is set up or how security cameras work.
Dimension 6 relates to a resigned attitude, for ex-
ample when taking about high rents or working
in a job where there is no opportunity to meet the
customers, versus a positive, change-oriented out-
look, for example when discussing new exercise
regimens, changes in women’s roles, or medical
research advances. Dimension 7 relates to stating
and justifying opinions, for example general ideas
about dealing with people or situations, versus find-
ing common ground, for example when talking
about similar experiences with catalog shopping,
making hamburger, or drug testing. Dimension 8
involves the continuum between talk about remote
or currently unimportant and half-understood or
half-remembered ideas or events versus express-
ing strong opinions, for example regarding people
or practices that are strongly disliked or strongly
admired.

4 Use 1: Corpus Characterization

This model supports visualization of corpus differ-
ences. As an example, if we view Switchboard
(Godfrey et al., 1992) as a collection of subcorpora,
one per topic, we can map them out, for example
by plotting the average interaction style of all frag-
ments within that topic. Figure 1 shows this for

Dimensions 1 and 3. (Projections onto other di-
mensions are available at the companion website.)
To avoid clutter, the figure show only topics for
which there was ample data (225 minutes or more)
or which were among the most distinctive topics,
in terms of distance on these two dimensions from
the global average style. Table 2 shows the values
for all 8 dimensions for the topics discussed below.

The positions of the topics in the figure suggest
that the model is at least picking up something
meaningful. It is informative to consider further
some of the topics that appear, at first glance, to
be misplaced. For example, it may seem strange
that the model characterizes conversations on the
topic of “metric system” as positive in style, but lis-
tening to examples shows that these conversations
are mostly by engineers, who indeed discussed it
positively. It may also seem strange that “wood-
working” and “painting” are placed differently, as
both can be at-home hobbies and projects. Accord-
ing to the model, their interaction styles are very
different, as seen in Table 2. In particular, these
suggest that dialogs about woodworking exhibited
less shared engagement and were more positive and
thoughtful in tone (Dimensions 1, 3, and 5, respec-
tively). Listening confirmed that these differences
were real, and likely attributable to the tendencies
for woodworking to be discussed fondly by ded-
icated hobbyists, and painting to be discussed by
novices talking about difficulties. Thus the model
captures much more than simple topic similarity.

In general, diagrams like these may help re-
searchers and developers understand the diversity
within and between corpora.

5 Use 2: Similarity Estimation

This model also supports similarity estimation (Kil-
garriff and Rose, 1998), for now by simply us-
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Figure 1: Average Interaction Styles of Some Topics in Switchboard, Projected to Interaction Style Dimensions 1
and 3. The large circle marks (0,0), the global average style. The axis units are standard deviations computed over
all conversation fragments. The topic names shown are just mnemonics for the sentence-length prompts given to the
participants.

dimension
1 2 3 4 5 6 7 8

woodworking 0.6 2.2 –1.4 1.4 1.1 –0.4 0.6 0.5
painting –0.8 3.0 0.9 1.8 –0.6 0.1 –0.6 0.5

politics 1.0 2.6 0.1 1.6 0.4 0.1 0.1 –0.2
capital punishment 1.1 2.7 0.3 1.6 0.5 0.0 0.0 –0.0

movies –1.6 –0.0 0.5 0.0 –0.7 –0.5 0.3 –0.1

Table 2: Average interaction style for selected topics from Switchboard on the 8 dimensions.

ing the Euclidean distance in the 8-dimensional
space. For example, considering Switchboard’s
20 topics most distant from the global average,
the closest pair was “politics” and “capital pun-
ishment,” as seen in Table 2 respectively. The
other most similar pairs were “baseball” and “foot-
ball,” “weather/climate” and “vacation spots,” and
“movies” and “TV programs.”

Such similarity estimates could be used to sup-
port targeted data augmentation. Considering again
the scenario of seeking data to train a movie rec-
ommendation system, the subcorpora closest to
“movies” were “TV programs,” “clothing and dress,”
“football,” and “baseball,” indicating that these
would be likely be most compatible as supplemen-

tary data.

6 Use 3: Identifying Outliers

The similarity metric could also be used in support
of data cleaning. For example, many conversations
in Switchboard have the “movies” tag, but not all
fragments are good exemplars of the typical style
for talking about movies. The model can help iden-
tify these, as fragments distant from the average
interaction style for this topic. For the movies topic,
examination of the five most distant fragments re-
vealed that these were indeed mostly atypical —
two involved strong moral judgments, and one was
mostly about audience behavior — and would be
good candidates for exclusion from the training set
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for a movie recommending system with a normal,
upbeat style.

7 Prospects

Spoken data is fundamentally richer than text data,
and recent work is exploiting this to create more
informative models of corpus similarities and dif-
ferences. This brief report has proposed new ways
to exploit one such model, involving interaction
style.

Eventually, direct quantitative evaluation of this
method should be done. One way would be to
examine the correspondences to human judgments
of interaction styles and style similarities. This
would be a long-term project, but potentially of
great benefit for systematizing the scientific study
of dialog phenomena.

In the short term, we think the value of these
methods will instead be shown by their practical
value: their ability to support the creation of better-
tailored dialog systems, and to reduce the data-
collection efforts required to develop them. More
specifically, in addition to the three ways illustrated
above, we conjecture that the model will be use-
ful in at least three other ways. 1) It could su-
port quality control and consistency control during
corpus collection. 2) It could support attempts to
collect corpora with a sweet-spot style that is simul-
taneously natural for humans and implementable
with current technology (Budzianowski et al., 2018;
Byrne et al., 2019), by identifying the dimensions
in which such corpora most resemble both human-
human dialogs and technically-realizable dialogs.
3) It could support the development of widely use-
ful pretrained models by supporting the selection
of truly diverse sets of dialog corpora.

To support such uses, the code is available at
(Ward, 2021c).

Acknowledgments: I thank Jonathan E. Avila for
helping refine the dimension interpretations.
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Abstract

As an important component of task-oriented
dialogue systems, dialogue state tracking is
designed to track the dialogue state through
the conversations between users and systems.
Multi-domain dialogue state tracking is a chal-
lenging task, in which the correlation among
different domains and slots needs to consider.
Recently, slot self-attention is proposed to pro-
vide a data-driven manner to handle it. How-
ever, a full-support slot self-attention may in-
volve redundant information interchange. In
this paper, we propose a top-k attention-based
slot self-attention for multi-domain dialogue
state tracking. In the slot self-attention layers,
we force each slot to involve information from
the other k prominent slots and mask the rest
out. The experimental results on two main-
stream multi-domain task-oriented dialogue
datasets, MultiWOZ 2.0 and MultiWOZ 2.4,
present that our proposed approach is effective
to improve the performance of multi-domain di-
alogue state tracking. We also find that the best
result is obtained when each slot interchanges
information with only a few slots.

1 Introduction

As a crucial component of task-oriented dialogue
systems, dialogue state tracking (DST) is designed
to track the dialogue states through the conver-
sations between users and systems (Young et al.,
2010, 2013), which is generally expressed as a list
of {(domain, slot, value)}. In recent years, dialogue
state tracking has drawn more and more attention,
and numerous methods are proposed (Mrkšić et al.,
2017; Zhong et al., 2018; Nouri and Hosseini-Asl,
2018; Ramadan et al., 2018).

Despite many progresses have been achieved,
these approaches track dialogue states for each
slot separately without considering the correlation
among slots (Ouyang et al., 2020; Wu et al., 2019;
Lee et al., 2019; Hu et al., 2020; Ye et al., 2021b).
Spoken language is not formal, in which ellip-

User: Hi, I’m looking for a cheap restaurant
in the centre of the city.
Sys: Nutnut is a steal and popular there.
State: restaurant-area=centre; restaurant-
pricerange=cheap; restaurant-name=nutnut
User: Is there any place of pleasure near it?
Sys: What type of attraction do you like?
State: restaurant-area=centre; restaurant-
pricerange=cheap; restaurant-name=nutnut;
attraction-area=centre;
........
User: Can you book a taxi for me to get to
the restaurant?
Sys: Of course, could you please provide your
departure place?
State: restaurant-area=centre; restaurant-
pricerange=cheap; restaurant-name=nutnut;
attraction-area=centre; taxi-destination=nutnut

Table 1: An example of a dialogue with three domains.

sis and cross-reference phenomena make multi-
domain dialogue state tracking problematic as
shown in Table 1. To provide the user with sev-
eral options, the values of slot "attraction-area"
in the domain "attraction" at the second turn, the
system should look for the information in another
domain "restaurant" because the user implicitly in-
dicates that the attraction he is looking for should
be near the restaurant without explicitly speaking it
out. And the value of slot "taxi-destination" should
be that the system mentioned at the first turn.

Several researchers have paid attention to mod-
eling the correlations to some certain degrees
(Ouyang et al., 2020; Hu et al., 2020; Heck et al.,
2020). In these works, the correlation between
the slot names is taken into consideration (Ouyang
et al., 2020) or a strong prior knowledge is involved,
i.e., the similarity coefficient is set to one manu-
ally if two slots are regarded to be relevant by hu-
man (Hu et al., 2020). But it may overlook the
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Figure 1: An overview of the proposed approach. For the BERTcontext model of the context encoder (solid blue
rounded rectangle), its parameters are fine-tuned during training to encoder dialogue history; for the BERTsv model
of the slot-value encoder (gray rounded rectangle), its parameters remain frozen to encoder slots and candidate
values.

dependencies of some slots with the approach only
considering the slot names. To address it, Ye et al.
(2021b) proposed a slot self-attentive attention ex-
tracting slot-specific information for each slot from
the dialogue context by utilizing a stacked slot self-
attention module to learn the correlations among
slots in a fully data-driven way without any hu-
man efforts or prior knowledge. However, it may
involve some redundant information for some spe-
cific slots from other slots and result in incorrect
prediction.

In this paper, we propose a dialogue state track-
ing with top-k slot self-attention. Here we have
a premise of this work: For each slot, not all of
the others play a positive role in the value pre-
diction for it. The more redundant information
is involved, the worse would be the performance.
More specifically, in our work, in the layer where
the slots interchange their information, we force
each slot to pay attention to the other k slots with
the highest scores and mask the rest out rather than
considering all of them. We conduct experiments
on MultiWOZ 2.0 and MultiWOZ 2.4 datasets and
present that our proposed model works better than
the methods handling the correlations with fully
slot self attention.

The contributions of this paper are as follows:
(1) We propose a top-k attention-based slot self-
attention method for multi-domain dialogue state
tracking; (2) The experimental results verify the

effectiveness of our approach, and we find that the
best result is obtained when each slot interchanges
information with only a few slots.

2 Approach

Figure 1 shows the overview of the proposed model.
It consists of a dialogue encoder, slot attention, top-
k slot self-attention, and slot value matching.

2.1 Encoding

Let’s define the dialogue history DT =
{R1, U1, ..., RT , UT } as a set of system responses
R and user utterances U in T turns of dialogue,
where R = {Rt}Tt=1 and U = {Ut}Tt=1, 1 ≤ t ≤
T . We define ET = {B1, ..., BT } as the dialogue
states of T turns, and each Et is a set of slot value
pairs {(S1, V1), ..., (SJ , VJ)} of J slots. The con-
text encoder accepts the dialogue history till turn t,
which can be denoted as Xt = {D1, ..., Dt, E

′
t−1},

as the input and generates context vector represen-
tations Ht.

Ht = BERTcontext(Xt) (1)

Another BERTsv is employed to encode the slots
and candidate values. The difference is that the pa-
rameters of BERTsv remain frozen during training.
For those slots and values containing multiple to-
kens, the vector corresponding to the special token
[CLS] is employed to represent them. For each slot
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Sj and value Vj ,

hSj = BERTsv(Sj) (2)

hVj = BERTsv(Vj) (3)

2.2 Slot attention
For predicting the states of a specific slot, it is
necessary to extract slot-specific information from
the dialogue history (?). A multi-head attention-
based slot attention is employed to capture this
information.

Q
Sj

t = hSjWQ + bQ (4)

K
Sj

t = HtWK + bK (5)

V
Sj

t = HtWV + bV (6)

α
Sj

t = Softmax(
Q

Sj

t K
Sj

t

T

√
dk

)V
Sj

t (7)

C
Sj

t = W2ReLU(W1[hSj ,α
Sj

t ] + b1) + b2

(8)

Where WQ,bQ,WK ,bK , WV , and bV are the
parameters of the linear layers for projecting query,
key and value respectively. dk = dh/N in which
dh is the hidden size of the model, and N is the
number of heads in multi-head attention.

2.3 Top-k slot self-attention
Inspired by Ye et al. (2021b), the information
across different slots can be communicated by ap-
plying self-attention mechanism. In this work, we
introduce a top-k slot self-attention to capture the
correlation among different slots. We assume that,
for each slot, not all of the other slots play a positive
role in the value prediction. Forcing it with a few
k slots with the highest attention scores performs
better than considering all of them. To implement
it, we mask out all but its k largest dot products
with the keys in the slot-attention layers. For the
l-th self-attention sub-layer, Fl

t = [CS1
t , ...,CSJ

t ],
the formulations are as follows.

F̃l
t = LayerNorm(Fl

t) (9)

Gl
t = TopkAtt(F̃l

t, F̃
l
t, F̃

l
t) + F̃l

t (10)

TopkAtt(Q,K, V ) = Softmax(Topk(QK⊤))V
(11)

For the l-th feed-forward sub-layer, the formula-
tions are as follows.

G̃l
t = LayerNorm(Gl

t) (12)

Fl+1
t = FFN(G̃l

t) + G̃l
t (13)

The output of the final layer is regarded as the final
slot specific vector FL+1

t = [fS1
t , ..., fSJ

t ], where
f
Sj

t represents the output corresponding to a slot.

2.4 Slot value matching
A Euclidean distance-based value prediction is per-
formed for each slot. Firstly, the slot-specific vector
is fed into a normalization layer. Then the dis-
tances between slot-specific vector and value are
measured. Finally, the nearest value is chosen to
predict the state value.

r
Sj

t = LayerNorm(Linear(f
Sj

t )), (14)

p(V j
t |Xt, Sj) =

exp(−d(hVj , r
Sj

t ))
∑

V ′
j∈νj exp(−d(h

V ′
j , r

Sj

t ))

(15)

where d(·) is Euclidean distance function, and νj
denotes the value space of the slot Sj . The model
is trained to maximize the joint probability of all
slots. The loss function at each turn t is denoted as
the sum of the negative log-likelihood.

Lt =
J∑

j=1

− log(p(V j
t |Xt, Sj)) (16)

3 Experiments

3.1 Datasets
MultiWOZ 2.0 (Budzianowski et al., 2018) and
MultiWOZ 2.4 (Ye et al., 2021a) are employed as
the datasets in our experiments. MultiWOZ 2.0
is one of the largest open-source human-human
conversational datasets of multiple domains. It con-
tains over 10,000 dialogues in which each dialogue
averages 13.68 turns. MultiWOZ 2.4 is the latest
refined version. It mainly fixes the annotation er-
rors in the validation and test set. To make a fair
comparison with the models evaluated on these two
datasets, we follow the procedure in several previ-
ous works (Wu et al., 2019; Lee et al., 2019; Wang
et al., 2020; Ye et al., 2021b) to keep consistent.

3.2 Training details
The used dialogue context encoder BERTcontext

is a pre-trained BERT-base-uncased model of 12
layers with 768 hidden units and 12 self-attention
heads. We employ another BERT-base-uncased
model as the slot and value encoder BERTsv. The
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Table 2: The joint goal accuracy (JGA) of different
models on the test set of MultiWOZ 2.0 and 2.4 dataset.

Model MW2.0 MW2.4

TRADE (Wu et al., 2019) 48.62 54.89
Open SOM (Kim et al., 2020) 51.72 66.78
Vocabulary TripPy (Heck et al., 2020) - 59.62

SimpleTOD (Hosseini-Asl et al., 2020) - 66.78
SUMBT (Lee et al., 2019) 46.65 61.86
DS-DST (Zhang et al., 2020) 52.24 -
DS-Picklist (Zhang et al., 2020) 54.39 -

Ontology SAVN (Wang et al., 2020) 54.52 60.55
SST (Chen et al., 2020) 51.17 -
STAR (Ye et al., 2021b) 54.53 73.94
Top-k SSA(k=1) 54.82 77.10
Top-k SSA(k=3) 54.47 77.25

Figure 2: The results (JGA) of the proposed model
based on top-k slot self-attention with different ks on
MultiWOZ 2.4 dataset.

number of attention heads for slot attention and
slot self-attention is 4. The number of slot self-
attention layers is 6. Adam optimizer is adopted
with a training batch size of 8. The hidden size is
set to 768 for the model. The slot attention part has
6 layers in which the number of attention heads is
6 as well. Adam is used as the optimizer with a
learning rate of 4e-5 for encoder and 1e-4 for other
parts. The hyper-parameters are chosen from the
best-performing model over the validation set. We
use the training batch size 16 and dropout rate 0.1
on utterances in a dialogue history.

4 Results and analysis

4.1 Main results

Table 2 shows the main results. We compare our ap-
proach with several typical and SOTA methods on
this task. Top-k SSA denotes our proposed model
with top-k slot self-attention. Joint goal accuracy
(JGA) is employed to evaluate the overall perfor-
mance. The joint goal accuracy is a strict measure-
ment comparing the predicted values of each slot

Figure 3: The error rate of each slot in the STAR and
our proposed model on MultiWOZ 2.4 dataset.

with ground truth for each dialogue turn, and the
prediction is considered correct if and only if all
the predicted values match the ground truth values
without any error at each turn. As shown in Table 2,
our proposed model achieves the best performance
on these two datasets. We utilize the Wilcoxon
signed-rank test, and the proposed approach is sta-
tistically significantly better (p < 0.05) than base-
lines. Specifically, our model with top-k (k=1)
SSA for the MultiWOZ 2.0 dataset obtains a JGA
of 54.82%. For the refined MultiWOZ 2.4 dataset,
our model with top-k (k=3) SSA achieves a JGA
of 77.25%, which outperforms other models by a
large margin.

4.2 The effect of different ks
We investigate the performance using different ks
to have a further understanding. As shown in Fig-
ure 2, the best performance is obtained when k
is small, which means each slot performs infor-
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User: Hi, I am looking for a place to eat some
indian food.
Sys: Do you have a price range in mind?
......
User: I would like a place in the south, please.
Sys: Taj Tandoori is the place you want to go. It
meets all of your needs.
STAR: restaurant-name=none
Ours: restaurant-name=taj tandoori
......
User: I want a taxi from the restaurant that I am
at.
Sys: Ok, so you would like a taxi from the restau-
rant to the park? Could you please let me know
your desired departure and arrival times?
STAR: taxi-departure=tandoori palace
Ours: taxi-departure=taj tandoori
User: I am sorry, I would like a taxi from Wandle-
bury country to Taj Tandoori. I would like the taxi
to pick me up at 10:15.
Sys: Okay, I have booked a taxi for you it will be
white tesla ...
STAR: taxi-departure=tandoori palace; taxi-
destination=Wandlebury country
Ours: taxi-departure=Wandlebury country; taxi-
destination=taj tandoori

Table 3: An example of a dialogue MUL2491 in Multi-
WOZ 2.4 dataset.

mation interchange with only a few slots. Then
it drops a lot with the increase of k. It verifies
our assumption that it is positive to force each slot
to interchange information with limited slots than
all of them to prevent abundant information inter-
change, in which the more redundant information
is involved, the worse would be the performance.

4.3 Error analysis

Figure 3 presents the error rate of each slot. First
it can be noticed that the overall error rate is re-
duced with our model. We also find that, comparing
with the previous SOTA model STAR, the perfor-
mance of the slots that may interchange informa-
tion with others, e.g., hotel-area, restaurant-area,
is improved by a large margin with our model. The
performance of "taxi"-related and "train"-related is
also improved slightly. Even though our model re-
duce the error rates of several "name"-related slots,
like "restaurant-name" and "hotel-name", they still
have very high error rate.

4.4 Case study
Table 3 demonstrates an example in the test set of
MultiWOZ 2.4 dataset. We can note that firstly
STAR makes a mistake in the prediction for the
slot "restaurant-name" while our model correctly
find it. At the last turn, the user indicates his/her
"taxi-departure" and "taxi-destination". Although
STAR capture the "Wandlebury country" but it fails
to find the correlation of these slots, and the value
of "restaurant-name" is copied from the error pre-
dicted value for this slot at the previous turns.

5 Conclusion

In this work, to address the correlation among dif-
ferent slots, we propose multi-domain dialogue
state tracking with top-k slot self-attention, in
which, each slots is forced to interchange infor-
mation with the k slots with highest scores than all
of them. We conduct experiments on MultiWOZ
2.0 and MultiWOZ 2.4 datasets and present that
our model works better than existing methods that
consider the correlations. The best results can be
obtained when each slot interchanges information
with only a few other slots.
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Abstract

In recent years, generation-based dialogue sys-
tems using state-of-the-art (SoTA) transformer-
based models have demonstrated impres-
sive performance in simulating human-like
conversations. To improve the coherence
and knowledge utilization capabilities of di-
alogue systems, knowledge-based dialogue
systems integrate retrieved graph knowledge
into transformer-based models. However,
knowledge-based dialog systems sometimes
generate responses without using the retrieved
knowledge. In this work, we propose a method
in which the knowledge-based dialogue system
can constantly utilize the retrieved knowledge
using text infilling. Text infilling is the task
of predicting missing spans of a sentence or
paragraph. We utilize this text infilling to en-
able dialog systems to fill incomplete responses
with the retrieved knowledge. Our proposed di-
alogue system has been proven to generate sig-
nificantly more correct responses than baseline
dialogue systems.

1 Introduction

Building open-domain dialog systems that gen-
erate human-like response is a challenging area
for natural language processing. In recent years,
generation-based dialogue systems, such as Mi-
crosoft’s DialoGPT (Zhang et al., 2019) and
Google’s Meena (Adiwardana et al., 2020), have
demonstrated impressive performance in simulat-
ing human-like conversations. However, when the
human asks "What time is it?", the generation-
based system will develop a conversation based
on the old information contained in the training
data. It has been reported that the "illusion prob-
lem" generates responses that are not based on the
latest facts (Komeili et al., 2021). To address this,
research on knowledge-based dialogue systems uti-
lizing external knowledge has attracted attention
as a dialogue system that can retrieve appropriate
external knowledge.

Alternatively, many knowledge-based dialogue
systems (Galetzka et al., 2021; Dinan et al., 2018)
learn to generate target response sentences by in-
putting retrieved knowledge and dialogue history in
a concatenated form to a language model during the
learning phase. However, it has been reported that
in the inference phase, the response sentences are
generated based only on the input dialogue history,
despite the input of retrieved knowledge (Weston
et al., 2018).

In this work, we propose a knowledge-based dia-
logue system with text infilling, which enables the
dialogue system to constantly generate responses
that include retrieved knowledge. Specifically, the
system first inserts blank tokens before and after
the retrieved knowledge. The inserted text is the
incomplete response. Next, the proposed dialogue
system takes the incomplete response as input and
generates text. Finally, it replaces the blank to-
kens in the incomplete response with this text and
outputs the completed response.

2 Related work

2.1 Generation-based Dialogue System

Recent advances in pre-trained language models
have had great success in dialogue response gen-
eration. DialoGPT (Zhang et al., 2019), Plato-
2 (Bao et al., 2020), Meena (Adiwardana et al.,
2020), and Blenderbot (Roller et al., 2020) have
achieved strong generation performances by train-
ing transformer-based language models on an open-
domain conversation corpus. In contrast, our pro-
posed method focuses on controlling the content of
responses in the fine-tuning process.

2.2 Knowledge-Based Dialogue System

To improve the coherence and knowledge retrieval
capabilities of dialogue systems, recent knowledge-
based dialogue systems (Galetzka et al., 2021) us-
ing knowledge graphs integrate fixed background
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movie type Spider Man year 2002 directed by Sam Raimi

2002
Spider-Man

Sam Raimi movie

directed by
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Good morning ! EOS

Do you like movies ? EOS

Good morning !

Good morning, sir
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Good morning , sir EOS

Yes, I enjoyed Spider-man a lot. Mask MASK MASK MASK MASK Spider Man MASK MASK EOS
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a

b
c

d

e

f

Dialogue 
History

Retrieved
Knowledge

Target
Response

Target
Response

Encode

Encode
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Figure 1: Encoding of knowledge and dialogue data in the training phase. Each type of encoded word sequences is
indicated by a different colour.

context by creating pseudo utterances through para-
phrasing knowledge triples, added into the dialogue
history. Galetzka et al. (2021) proposed concise
encoding for background context structured in the
form of knowledge graphs, by expressing the graph
connections through restrictions on the attention
weights. In this work, we utilize the knowledge-
based dialogue system using this encoding as our
baseline.

2.3 Text Infilling

Text infilling is the task of predicting missing spans
of text that are consistent with the preceding and
subsequent text. Donahue et al. (2020) proposed a
simple strategy for the task of text infilling which
can enable language models to infill entire sen-
tences effectively on three different domains: short
stories, scientific abstracts, and lyrics. In this work,
we utilize the text infilling task with this strategy to
enable a knowledge-based dialogue system to gen-
erate responses that include retrieved knowledge.

3 Building the dialogue system

In this section, we introduce our proposed
knowledge-based dialogue system that includes
text infilling. We will introduce the training phase
and the inference phase of the proposed dialogue
system.

3.1 Training

In the training phase, the knowledge and dialogue
history are encoded as follows:

• Encoding Knowledge (Figure 1-a) : The re-
trieved knowledge is concatenated with the enti-
ties and relations of each knowledge to form a
knowledge series. Next, the different knowledge

series are randomly concatenated and converted
into a word sequence a.

• Encoding Dialogue History (Figure 1-bcd):
Each utterance in the dialogue history is con-
verted into a word sequence bcd, which consists
of a sequence of tokens. A stop token <EOS>

is added to the end of each converted word se-
quence.

• Masking Target Response (Figure 1-e) : First,
the target response sentence is transformed into
a word sequence e consisting of a sequence of
tokens. Then, let L be the length of the converted
word sequence e, and randomly select integers X
and Y (1 < X < Y < L). The words from X
to Y are retained (in Figure 1, X = 5 and Y = 6)
and the other words in the sequence are replaced
with <MASK> tokens. Finally, a stop token <EOS>

is added to the end of the converted sequence e.

• Encoding Target Response (Figure 1-f ) : First,
a stop token <EOS> is added to the end of the
two sequences that were replaced by the mask
tokens in sequence e. Next, the two sequences
are concatenated into sequence f .

The sequences encoded as described above are
concatenated in the order of abcdef and used as
input to the language model. The training task is to
maximize the probability of generating the target
word sequence f .

3.2 Inference

The flow of the dialog system during the inference
phase is as follows:

• Encoding Knowledge and Dialogue History
(Figure 1-abcd) : The input data in the inference
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phase are converted into word sequence abcd, as
in the training phase in section 3.1.

• Masking Knowledge (Figure 2-e) : First, for
the retrieved knowledge, we randomly select one
entity of retrieved knowledge and transform it
into a word sequence e. Next, integers X and Y
(0 < X,Y ≤ MaskLen, where Masklen is a
hyperparameter of mask tokens’ number. ) are
randomly selected. X and Y <MASK> tokens are
added in the left and right side of word sequence
e. Finally, a stop token <EOS> is added to the end
of the word sequence e.

• Text Infilling (Figure 2-f ) : The word sequences
encoded as described above are concatenated in
the order abcde and input to the language model.
The language model generates word sequence f
sequentially by using a decoding strategy. Text
Infilling is stopped when the second stop token
<EOS> is generated.

• Output (Figure 2-g) : The stop token <EOS>

splits the word sequence f into two word se-
quences, which are converted into word sequence
g by replacing the left and right parts of the mask
tokens <MASK> in e. The word sequence g is the
output of the inference phase.

Randomly select

Text Infilling

MASK MASK MASK MASK Spider Man MASK MASK EOS

Yes , I enjoyed EOS a lot EOS

e

f

Spider Man 2002 Sam Raimi

Yes , I enjoyed Spider Man a lot

Output

g

Retrieved
Knowledge

Figure 2: Encoding of knowledge and the output in the
inference phase.

4 Experiments

We conducted experiments on the OpenDialKG
dataset (Moon et al., 2019) which contains 15,000
dialogues. The dataset was collected in a Wizard-
of-Oz setup, by connecting two human participants
who were tasked to have an engaging dialogue
about a given topic.

4.1 Experimental Details
Following the Zhang et al. (2019); Galetzka et al.
(2021) work and section 3, we built 3 differ-
ent types of the dialogue systems: a dialogue

system without knowledge (generation-based di-
alogue system), a dialogue system with knowledge
(knowledge-based dialogue system), and dialogue
system with knowledge and text infilling (the pro-
posed dialogue system).

We utilized DialoGPT-small (Zhang et al., 2019)
as language model of 3 different dialogue systems.
Table 1 shows the hyperparameters of the language
models.

Table 1: Hyperparameters of language models

Total parameters 117M
Optimizer AdamW
Max dialogue history 3
Decoding strategie Greedy
Epochs 10
Batch size 4
MaskLen 10
Learning rate 6.0e-5

4.2 Evaluation metric
Automatic In the experimental evaluation, the
quality of the response sentences is evaluated from
two angles: diversity and correctness. DIST-n (Li
et al., 2015), which represents the number of types
of n-grams in the response sentences, is used as
the evaluation index for diversity. BLEU-n (Pap-
ineni et al., 2002) and NIST-n (Doddington, 2002),
which represent the degree of similarity between
the response and the correct response, are used as
evaluation indices for correctness. NIST-n is a vari-
ant of BLEU-n that weights n-gram matches by
their information gain, i.e., it indirectly penalizes
uninformative n-grams.

Ent-Res, which we employ to calculate the propor-
tion of responses containing at least one entity of
retrieved knowledge to all responses, and AvgLen,
which represents the average number of words in
the response sentences, are also used as evalua-
tion indices. Furthermore, in order to compare the
proposed method with previous models, we have
listed the results achieved by previous models. The
proposed method and conventional methods were
compared using the same metrics, including the
faithfulness metric FeQA (Durmus et al., 2020)
and correctness metrics Rouge-L and BLEU-4.

Human In human evaluation, we use an evalu-
ation technique called Best-Worst Scaling (BWS)
(Flynn and Marley, 2014), which can handle a long
list of options and always generates discriminating
results. We employ three metrics at the utterance-
level and dialogue-level: naturalness, informative-
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Table 2: Results of the response sentences generated by each dialogue system. Higher is better.

Dialogue System DIST-1 DIST-2 BLEU-1 BLEU-2 NIST-2 NIST-4 Ent-Res Avg Len
Generation-Based 11.93 36.79 15.74 8.71 1.39 1.43 20% 10.86
Knowledge-Based 10.77 31.84 17.77 10.47 1.62 1.69 42% 10.45
Ours 9.09 32.18 18.79 10.64 1.64 1.69 100% 13.11

Table 3: Results of human evaluation using Best Worst Scaling (BWS).

Systems Generation-Based Knowledge-Based Ours

naturalness
Best 30% 40% 30%

Worst 35% 21% 44%

informativeness
Best 19% 33% 48%

Worst 55% 27% 18%

coherence
Best 36% 38% 26%

Worst 33% 22% 44%

Figure 3: Heat map comparing the different X and Y impacts of the proposed dialogue system on three metrics.
The blue shades denote lower values, white middle and black higher, with dark blue representing the lowest and
dark black the highest values. X and Y denote the number of <MASK> tokens added to the left and right side of the
word sequence e in Figure 2.

Table 4: Results of other dialogue system on OpenDi-
alKG test data. Higher is better.

Dialogue System FeQA Rouge-L BLEU-4
AdptBot 23.1 31.0 10.1
GPT-2+KE 19.5 19.0 5.5
GPT-2+KB 26.54 30.0 11.1
GPT-2+NPH 28.9 31.0 11.3
FSB 25.3 29.17 6.08
Ours 22.7 23.97 4.0

ness, and coherence. We randomly select 33 gener-
ated response examples. Three workers are asked
to choose the best one and the worst one for three
metrics in terms of response quality of each dia-
logue system with respect to the dialogue history.

• Naturalness is an utterance-level metric, judging
whether the response is natural or not.

• Informativeness is also an utterance-level metric,
evaluating whether the response is informative or
not.

• Coherence is a dialogue-level metric, measuring
whether the response is relevant and consistent
with the context.

4.3 Results and Discussion

Table 2 shows the results of the response sentences
generated by each dialogue system. The table
shows that the proposed dialogue system reached
the highest scores in the correctness evaluation in-
dex. This confirms the effectiveness of the text
infilling task. On the other hand, the proposed
method reached the highest value in the Ent-Res
score, but the lowest value in the DIST-1 score. The
improvement of the diversity in response sentences
by the proposed method is a topic for future work.

Table 3 shows the results of human evaluation
using Best Worst Scaling (BWS). We observed
that the proposed method achieves lower natural-
ness and coherence scores compared to other mod-
els. Since the generated responses of the proposed
method always contain entities as a result of the
text infilling, the responses of the proposed method
are rendered unnatural and incoherent. In future
work, we will develop a module capable of deter-
mining whether knowledge should be embedded in
the responses.
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Table 5: Samples of responses generated by each dialog system. The retrieved knowledge entities are shown in blue.

Input 1

User A what about tonto fistfight?
User B it was written by sherman alexie
User A was he a poet?

Knowledge 1 poet: sherman alexie film producer: sherman alexie written by: sherman alexie
Generation-Based yes he was a poet
Knowledge-Based yes, he was a poet

Ours yes, he was a poet. the sherman alexie wrote the poems and drawings of a rose.

Input 2

User A they just got lebron james so that is a big benefit.
User B yes i was so happy that he signed. he is one of the greatest, right?

User A
i’d say so. plus the lakes already have a good record, several nba finals championships under
their belt.

Knowledge 2 team: utah jazz
Generation-Based i am sure the fans would love it. since lebron james is your favorite player, you must like him?
Knowledge-Based that’s awesome! i think he’s a great player too.

Ours i agree. i like the utah jazz. do you know who won that year?

Table 4 shows the comparison with previous
models GPT-2+KB, AdapterBot (Madotto et al.,
2020b), GPT-2+KE (Madotto et al., 2020a) and
GPT-2+KB with Neural Path Hunter (NPH) (Dziri
et al., 2021) and Few-Shot Bot (FSB) (Madotto
et al., 2021). Due to the differences in the test
dataset and the model sizes, the scores of the pro-
posed method are just reference values. Neverthe-
less, the proposed method achieves lower FeQA,
Rouge-L and BLEU-4 scores compared to previ-
ous models. Overall, NPH achieves the best perfor-
mance, but it can also be applied to the proposed
method; we leave this exploration to future work.

Table 5 shows samples of responses generated
by each dialogue system. From the table, it can
be confirmed that the proposed method can accu-
rately use the retrieved knowledge and generate
natural response sentences. On the other hand, the
knowledge-based dialogue system is not able to
use the knowledge. Despite this, it can be consid-
ered that knowledge 1 is not necessary to generate
natural response sentences to the dialogue history
of input 1. The development of a module that can
determine the necessity of knowledge is a subject
for future work.

4.4 Impact of <MASK> tokens
The results of the proposed dialogue system with
different X and Y are compared using heat maps
for various metrics, where X and Y denote the
number of <MASK> tokens added to the left side
of the word sequence e in Figure 2. Here, the
heat map indicates a two-dimensional matrix with
scores of the metrics such as BLEU-1 and DIST-1,
computed by changing the length X and Y . We
show the heat maps for three metrics in Figure 3.

The heat maps for other metrics are shown in the
Appendix A.

As can be observed in the heat map of Avg Len
scores in Figure 3, the larger the sum of X and Y ,
the higher the value. It can be confirmed that the
proposed dialogue system can correctly generate
responses of the corresponding length based on
X and Y . On the other hand, we can control the
length of the generated responses by modifying X
and Y . Due to the possibility of duplicate words in
longer responses, the values in heat maps of Avg
Len and DIST-1 show the opposite trend.

As can be observed in the heat map of BLEU-1
scores in Figure 3, the scores are similar when the
sums of X and Y are equal, and the score is highest
when the sum of X and Y is around 13. It can be
confirmed that the scores are relevant to the sum
of X and Y , not X nor Y . If the appropriate X
and Y can be determined, the proposed dialogue
system will have better performance. However, the
appropriate sums of X and Y may be different in
various datasets. Developing a method for find-
ing the best combination on X and Y will be the
subject of future work.

5 Conclusion

We proposed a knowledge-based dialogue system
based on the text infilling method, aiming to im-
prove the problem that the knowledge-based dia-
logue system generates responses without using
retrieved knowledge. The proposed dialogue sys-
tem can constantly incorporate external knowledge.
In our experiments, the proposed dialogue system
generated significantly more correct responses than
baseline approaches.
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system with different X and Y on the test set in
Figure 4.
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Figure 4: Heat map comparing the different X and
Y impacts of the proposed dialogue system on three
metrics. The blue shades denote lower values, white
middle and black higher, with dark blue representing
the lowest and dark black the highest values. X and Y
denote the number of <MASK> tokens added to the left
and right side of the word sequence e in Figure 2.
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Abstract

A major part of business operations is inter-
acting with customers. Traditionally this was
done by human agents, face to face or over
telephone calls within customer support cen-
ters. There is now a move towards automation
in this field using chatbots and virtual assis-
tants, as well as an increased focus on analyz-
ing recorded conversations to gather insights.
Determining the different services that a human
agent provides and estimating the incurred call
handling costs per service are key to prioritiz-
ing service automation. We propose a new tech-
nique, ELDA (Embedding based LDA), based
on a combination of LDA topic modeling and
sentence embeddings, that can take a dataset
of customer-agent dialogs and extract key ut-
terances instead of key words. The aim is to
provide more meaningful and contextual topic
descriptions required for interpreting and label-
ing the topics, reducing the need for manually
reviewing dialog transcripts.

1 Introduction

Topic models are statistical tools for discovering
the hidden semantic structure in a collection of doc-
uments/dialogs. One such widely used topic model
is Latent Dirichlet Allocation (LDA, Blei et al.,
2003). LDA is a hierarchical probabilistic model
that represents each topic as a distribution over
terms/words and represents each document/dialog
as a mixture of the topics. One of the main issues
with the standard LDA bag-of-words approach is
that the discovered topics can be difficult to in-
terpret, as the user is presented with only the key
words per topic. Due to this, the user often needs
to go through the documents/dialogs for each topic
to gather more context. The ELDA (Embedding
based LDA) approach attempts to produce more
interpretable topics by running the topic model-
ing at an utterance level. The resulting topics can
be represented by the most relevant utterances per
topic, giving more context to the analyst so they

can better understand the topic, with little to no
manual inspection of the dialogs.

Another issue with bag-of-word approaches is
that they fail to capture co-reference resolution,
homonymy, and polysemy. For example, the words
“leave” and “depart” mean the same thing in sim-
ilar contexts but will be treated as having differ-
ent meanings. Conversely, one word, for example
“right”, can mean different things given the context
but will be treated as having the same meaning.
Representing text as embeddings can overcome
these issues to some extent. For example, word
and sentence encoders such as (Google’s) Multi-
lingual Universal Sentence Encoder (MUSE, Yang
et al., 2020), Sentence-BERT (SBERT, Reimers
and Gurevych, 2019), etc. can capture the meaning
of sentences and words in context with no need for
any text pre-processing (e.g. stop word removal,
part-of-speech tagging, lemmatization etc.).

A further challenge in running LDA is that it
requires to specify in advance the number of topics
to generate, which can be hard to determine in cases
where the domain or data is not known in detail.
The ELDA approach includes a novel technique
to automatically estimate the number of topics to
generate for a given dataset.

We compared the topic descriptions of the ELDA
approach with that of standard LDA on the Multi-
WOZ dataset (Han et al., 2021).

2 Related Work

Cygan (2021) employed a method of topic model-
ing that leverages SBERT (Reimers and Gurevych,
2019) to create rich semantic document embed-
dings by averaging sentence embeddings, after
which documents are assigned to a cluster using
HDBSCAN. Once the clusters are created, Cygan
uses LDA to construct a single topic descriptor (a
list of key words) over the documents of each clus-
ter. They claim in their analysis that a small set
of documents clustered together by SBERT em-
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beddings can generate a coherent and interpretable
topic, outperforming topics made from Doc2Vec
(Le and Mikolov, 2014) based document embed-
dings. Our approach uses sentence-level topic de-
scriptors rather than key words, and we apply a
recent sentence encoder that supports multiple lan-
guages (Yang et al., 2020).

Kozbagarov et al. (2021) present another ap-
proach to generating interpretable topics by com-
bining sentence embeddings with a topic model-
ing technique, though they use EM (expectation-
maximization) instead of LDA and use averaged
BERT word embeddings (Devlin et al., 2019) in-
stead of a pretrained sentence encoder. Like us,
they cluster the resulting sentence embeddings and
estimate the probability of sentence occurrence
within texts, assuming sentences within each clus-
ter as identical. However, they apply EM on the
text distribution over sentence clusters, thereby rep-
resenting each topic as a probability distribution
over sentence clusters. Finally, they also labeled
the clusters with the closest sentence to the cluster
centroid, as we do. Their experimental results show
a high level of interpretability in the formed topics
compared to traditional topic modeling approaches.

Moody (2016) described the lda2vec model,
which builds representations over both words and
documents by mixing word vectors (word2vec)
with Dirichlet-distributed latent document-level
mixtures of topic vectors, yielding sparse and inter-
pretable document-to-topic proportions in the style
of LDA. The topics obtained on the 20newsgroup
corpus are shown to yield high mean topic coher-
ences, correlating with human evaluations of the
topics.

Dieng et al. (2020) developed an embedded topic
model (ETM) which integrates topic embeddings
with traditional topic models. Like in LDA, the
ETM is a generative probabilistic model, where
each document is a mixture of topics, and each
term is assigned to one of the topics. In contrast to
LDA, each term is represented by an embedding,
and each topic is a point in that embedding space.
The topic’s distribution over terms is proportional
to the exponentiated inner product of the topic’s
embedding and each term’s embedding. The ETM
claims to discover more interpretable topics even
with large vocabularies that include rare words and
stop words. It claims to outperform LDA in both
predictive performance and topic quality and diver-
sity as measure by topic coherence.

Our work specifically targets topic discovery in
customer call conversations rather than general doc-
uments, such as news articles or publications, as
in most of the related work. We have also created
novel techniques in: (i) automatically deciding on
the number of topics to produce and (ii) to measure
the interpretability and accuracy of the produced
topics.

3 Method

Given a collection of dialogs segmented into ut-
terances, either by a speech-to-text system that in-
cludes diarization or based on metadata provided
by a text-messaging system (see Table 1), ELDA
applies topic modeling at the utterance level, pro-
ducing topics represented by a selection of key
utterances relevant to each topic. The method is
split in 5 steps, namely: computing the utterance
vectors (Section 3.1), clusterizing the utterance vec-
tors (Section 3.2), auto-labeling the clusters (Sec-
tion 3.3), encoding the dialogs as bags of utterance
clusters (Section 3.3), and applying LDA on these
bags of utterance clusters (Section 3.5), using then
their corresponding cluster auto-labels as the result-
ing topic key items.

3.1 Utterance encoding

We first apply a sentence encoder to each utter-
ance to obtain a vector representation. In partic-
ular, we have tested Universal Sentence Encoder
(USE, Cer et al., 2018), Multilingual Universal
Sentence Encoder (MUSE, Yang et al., 2020), and
Sentence-BERT (SBERT, Reimers and Gurevych,
2019). Each of these embed text segments into vec-
tors of a fixed size. In our approach, we settled on
using MUSE as it supports 16 different languages
and produced results comparable to the other two.
Comparison was done as explained in Section 4.3,
though we only present here the results obtained
with MUSE to avoid repetition.

3.2 Utterance clustering

We compute groups of semantically similar utter-
ances by clustering the set of utterance embeddings.
This allows us to represent each dialog as a collec-
tion of utterance clusters/types. For the clustering,
we employ a combination of k-means (MacQueen,
1967) and DBSCAN (Ester et al., 1996) algorithms
in two steps. We first apply k-means to create an
initial set of k clusters, with a relatively low k pro-
portional to the total number of utterances n (e.g.,
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# Speaker Utterance
1 CUSTOMER Hi , I ’m looking for a train

that is going to cambridge
and arriving there by 20:45
, is there anything like that?

2 AGENT There are over 1,000 trains
like that . Where will you
be departing from ?

3 CUSTOMER I am departing from birm-
ingham new street .

4 AGENT Can you confirm your de-
sired travel day ?

5 CUSTOMER I would like to leave on
wednesday.

6 AGENT I show a train leaving birm-
ingham new street at 17:40
and arriving at 20:23 on
Wednesday . Will this work
for you ?

7 CUSTOMER That will , yes . Please
make a booking for 5 peo-
ple please

8 AGENT I ’ve booked your train tick-
ets , and your reference
number is A9NHSO9Y.

9 CUSTOMER Thanks so much .

Table 1: Sample dialog between customer and agent re-
garding a train booking in the MultiWOZ dataset. Note
some utterances may convey more than one sentence
(e.g., utterances 2, 6 and 7).

n/5000). Then we apply DBSCAN to the set of
utterances of each initial cluster in order to avoid
having to choose a final number of clusters to gen-
erate: DBSCAN creates a cluster for each set of a
minimum size min_pts of transitively connected
points, where 2 points are connected (or neigh-
bors) iff they are within a maximum distance eps.
Sets smaller than min_pts do not form clusters,
naturally discarding rare utterances. As a draw-
back, DBSCAN requires to compute the distance
between every pair of points, which can be time
intensive for the case of large sets of utterances. By
pre-clustering the set of utterances with k-means
we reduce the number of distances to compute by
several orders of magnitude. The two main hyper-
parameters of DBSCAN, eps and min_pts, have
considerable impact on the quality of ELDA results.
The tuning of these hyperparameters is described
in Section 4.3.

3.3 Utterance cluster auto-labeling

For each utterance cluster we select the best ut-
terance representative to serve as the cluster’s la-
bel. We first compute the cluster centroid (the aver-
age of its vectors), then select the utterance whose
vector is closest to the centroid. An example of
the clusters and their labels can be found in ap-
pendix A.2.

3.4 Dialog encoding

To perform topic modeling on the labeled utter-
ances clusters, we represent each document/dialog
as a bag of utterance clusters (instead of a bag of
words), followed by the standard LDA approach.
We use a TF-IDF-like vectorizer to compute the
document/dialog vectors by considering the ut-
terance clusters as terms (i.e., we compute ut-
terance cluster frequency-inverse document fre-
quency). The set of document vectors form the
document-cluster matrix D.

3.5 LDA topic modeling

Like k-means, the LDA algorithm requires to spec-
ify the number of topics K to compute in advance.
However, it is often difficult to choose a proper
value, especially for unknown domains. We pro-
pose a new approach to automatically select the
number of topics by modeling the topic coverage
decay using an exponential function (see Algo-
rithm 1). The goal of this approach is to auto-
matically discover as many real services/use cases
in call center conversations as possible, at the ex-
pense of generating an excess of topics that are
either redundant, subcategories of other topics, or
noise.

Instead of specifying K, the algorithm requires a
rough estimate of the interval [Kmin,Kmax] com-
prising K. Starting from Kmin and at step incre-
ments, an LDA topic model is computed and tested
for the given document-cluster matrix D and num-
ber of topics K until a complying model is found.
To test compliance of a model, each dialog is as-
signed to its highest probability topic, according
to the model, and the coverage of each topic (pro-
portion of total dialogs assigned to each topic) is
computed. The topic coverages are sorted in de-
scending order and an exponential function is fitted
to smooth the decay curve y = metx with m as
the y-intercept and t as the exponent factor (refer
to Figure 1). Using the inverse of the exponential
function derivative, we find the frontier between
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Algorithm 1 exponential_decay_LDA(D)

Input: D, document cluster matrix
Parameters: Kmin,Kmax, step,

slope_threshold,min_tail_ratio
Output: lda_model

1: for each K = Kmin to Kmax by step do
2: lda_model← train_lda_model(D,K)
3: for each i = 0 to K − 1 do
4: topic_dialogsi ← ∅
5: end for
6: for each dialog d do
7: i ← topic index for which d has its

highest probability, according to lda_model
8: topic_dialogsi ← topic_dialogsi ∪
{d}

9: end for
10: for each i = 0 to K − 1 do
11: topic_coveragei ← |topic_dialogsi|

K
12: end for
13: X ← (0, 1, . . . ,K − 1)
14: sort_descending(topic_coverage)
15: m, t← exponential_regression(X,Y )

16: xt ←
ln( slope_threshold

mt )

t

17: tail_ratio← |{topici : i ≥ xt}|
K

18: if tail_ratio ≥ min_tail_ratio then
19: break
20: end if
21: end for

the head and the tail of the exponential function
(dashed line in Figure 1), where the tail is the part
of the curve with a slope below slope_threshold.
We then compute tail_ratio, the proportion of top-
ics in the tail, and check if it is greater than or equal
to the threshold min_tail_ratio. If true, the algo-
rithm stops and returns the corresponding model;
otherwise, further LDA models for higher K val-
ues are computed until either min_tail_ratio or
Kmax is reached. By enforcing a minimum tail
ratio, we expect to discover most of the relevant
conversation topics while limiting the number of
topics to compute. After a certain point, increasing
K results in a greater number of topics in the tail
region, each one covering a very small portion of
the totality of dialogs.

We used the following parameter values in
all our experiments: Kmin = 5, Kmax = 60,
step = 1, slope_threshold = −0.001 and
min_tail_ratio = 0.4. For the MultiWOZ
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Figure 1: Plot showing the exponential decay approach
for K = 24 (the first compliant K found) on MultiWOZ
data. The ×’s represent the actual topic coverages, the
curve denotes the best fitted exponential function and
the vertical dashed line denotes the frontier between the
head and the tail regions.

dataset, the algorithm stopped at K = 24 (refer
to Figure 1).

Each topic in the resulting model is a probability
distribution of utterance clusters where each cluster
is labeled with the most representative utterance.
Thus, each topic can be represented by a set of key
utterances, thereby providing descriptive context to
the user in the process of interpreting and labeling
the topics.

The ELDA result comprises a document/dialog-
topic matrix (just like the standard LDA) and a
topic-cluster or topic-utterance matrix (contrary to
topic-word matrix of standard LDA).

4 Experiments

4.1 Data

To evaluate the quality of the ELDA approach
we use the MultiWOZ dataset (Han et al., 2021),
which comprises more than 10,000 annotated agent-
customer dialogs across 7 domains/intents, namely:
train, taxi, hotel, restaurant, attraction, police and
hospital (Table 2, Figure 2). The dialogs are seg-
mented into turns, which we use as utterances, and
each dialog is annotated with the customer’s in-
tents, each dialog having at least one intent. In our
case, we refer to each dialog’s set of intents as its
“label”.
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# dialogs # utterances # intents
10,438 224,179 7

Table 2: MultiWOZ data metrics

res
tau

ran
t
ho

tel tra
in

att
rac

tio
n

tax
i

ho
sp

ita
l

po
lic

e
0

10

20

30

40

50

%
di

al
og

s

Figure 2: True intent distribution of the MultiWOZ
dataset – Vertical axis denotes percentage of dialogs per
intent

4.2 Evaluation methods

In this section we discuss two different aspects
of evaluating ELDA. Mainly we compare ELDA’s
results with that of standard word-level LDA based
on two evaluation criteria:

1. Accuracy of dialog label identification

2. Interpretability of topic key utterances vs
topic key words

Accuracy: To measure the accuracy of a topic
model, we must first manually inspect its output
topics and label each topic with one of the seven
MultiWOZ intents. For simplicity, we assume each
topic has just one intent. For each topic, we first
observe the topic key items (words for standard
LDA and utterances for ELDA) and their respective
scores. Giving priority to the key items with higher
scores, we identify the related dominant intent and
select it as the topic label (see Table 3). Topics with
an equal mixture of different intents (more than one
dominant intent), or those with unclear intents, are
not given any label (see Table 4). We first label the
bigger topics (based on topic coverage) and pro-
ceed towards the smaller ones. This strategy allows
for identifying the most frequent intents first, while
also considering the greatest number of dialogs in

the least amount of time. Smaller topics that are
subcategories of the bigger topics (e.g., Chinese
restaurant booking vs restaurant booking) are given
the same labels as the corresponding bigger topics.

Topic 8
Cluster Cluster label Score

41 I am looking for a hotel in-
stead of a guesthouse .

0.119

11 Is there a price range you ’d
like ?

0.080

39 I need to book it for 4 peo-
ple starting from saturday
for 5 nights .

0.062

3 Can I get some help finding
a hotel or guesthouse please
?

0.043

30 I need free parking and free
wifi though .

0.034

10 I would like to book a reser-
vation for it .

0.033

46 There are a couple of op-
tions .

0.031

23 I would like a guesthouse
that is 4 stars .

0.031

34 Is there a particular area of
town you ’d like to be in ?

0.029

32 I am also looking for a place
to go in town .

0.027

Table 3: An example of topic with a clear dominant
intent “hotel” (label given by either the oracle, annotator
1 or annotator 2 was “hotel”)

Next, we assign these labeled topics to dialogs.
For each dialog, we find all topics that have a proba-
bility score greater than or equal to the mean dialog-
topic probability score (average of the probabilities
in the dialog-topic matrix). The reason for selecting
the mean as the threshold is that the topic probabil-
ities, after being sorted for each dialog, are likely
to follow a skewed distribution and the mean helps
to filter out the lower probability or less frequent
topics, steering the focus towards the higher proba-
bility or dominant topics for each dialog. We take
the union of those dominant topics’ labels as the
predicted label for each dialog. Thus, each dialog
will have zero, one or more of the seven Multi-
WOZ intents as its label. We then compare these
predicted labels to the true dialog labels. Any over-
lap between the true and predicted dialog labels is
considered a hit, and the hit rate across all dialogs
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Topic 5
Cluster Cluster label Score

7 Is there anything else you
need ?

0.023

9 The phone number is
01223351241 .

0.023

33 Can I get the phone num-
ber , postcode , and address
please ?

0.023

35 I need to book a taxi please
.

0.023

44 Glad that I could help . 0.023
40 From Cambridge , which is

why I asked the Cambridge
TownInfo centre .

0.022

21 No , indeed . 0.022
3 Can I get some help finding

a hotel or guesthouse please
?

0.022

0 I ’ll take a cheap one please
.

0.022

31 From where will you be de-
parting ?

0.022

Table 4: An example of a “noisy” topic with more than
one dominant intent, hence gets no label (label given
by either the oracle, annotator 1 or annotator 2 was
“blank”)

is computed. This hit rate, or overlap score as we
call it, is the accuracy of our topic model.

Interpretability: To compare interpretability of
topic key words with topic key utterances, we show
a few example topics obtained by running standard
LDA and ELDA respectively on the MultiWOZ
dataset and describe the efforts required to interpret
and label them.

4.3 Experiment details

In this section, we discuss the experiments we per-
formed to evaluate ELDA.

Baseline: For the baseline standard LDA model
we start by applying a standard NLP pre-processing
pipeline to the dialog words comprising lower-
casing, POS tagging, lemmatization and stop word
removal. We then encode the dialogs as TF-IDF
vectors using the Gensim library (Řehůřek and So-
jka, 2010). While encoding, we also use the inbuilt
Gensim filtering utility to first remove the words
that appear in more than 90% of the dialogs and

in less than two dialogs, and then keep the remain-
ing most frequent 100,000 words only. We use the
described exponential decay approach to compute
LDA models for different numbers of topics and for
the resulting model, the topics are then manually
labeled. Finally, the topics are assigned to each
dialog, and an overlap score between the dialog
topic labels and the MultiWOZ true labels is com-
puted for the sake of evaluation and comparison
with ELDA.

ELDA: We first run a grid search to find optimal
values of the DBSCAN hyperparameters min_pts
(minimum points per cluster) and eps (maximum
allowed distance between neighboring points in
the same cluster), computing multiple ELDA mod-
els for each combination and then calculating the
overlap score between the true and predicted di-
alog labels. To avoid having to manually label
the topics for each hyperparameter combination,
we use an oracle approach: for a given topic, find
the set of dialogs that are dominant using mean
as the threshold, and select as topic label the most
frequent MultiWOZ intent in that set of dialogs.
In the case where a topic does not have dialogs
above the threshold, it gets no label and will not
contribute to the overlap score. We tested Gensim
filtering analogous to the process used in baseline
LDA on ELDA but filtering out low and high docu-
ment frequency clusters barely filtered any clusters
out, which in turn had little to no impact on the
overlap scores. The DBSCAN density parameter
values used for the grid search are as below:

• min_pts: 3 and 5

• eps: 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6,
0.7, 0.8 and 0.9.

Comparison: In the search for optimal ELDA
model, we compare the different ELDA models’
overlap scores with that of baseline LDA. For fair
comparison, we apply the same oracle labeling ap-
proach to both ELDA and LDA models. Then, on
obtaining the optimal ELDA model, it is evaluated
against the baseline LDA model using the overlap
scores obtained from manual labels of two annota-
tors. To ensure oracle labeling is consistent with
manual labeling, we also compare the oracle labels
and the manual labels of both the baseline LDA
and optimal ELDA models.
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5 Results

In this section we first report the overlap scores of
the baseline LDA model and the different ELDA
models, using the oracle topic labeling for all the
models. Then we report the results of the compar-
ison between the oracle labels and manual labels
(from the annotators) for both the baseline LDA
and optimal ELDA (best grid-search model). Next,
we show a comparison of the overlap scores re-
sulting from manual labeling obtained from the
baseline LDA with the same obtained from the
optimal ELDA. We also compare the true intent
distribution of MultiWOZ with that produced by
the manual labels of the baseline LDA and optimal
ELDA. Lastly, we exhibit the topic descriptions of
the three biggest topics from the baseline LDA and
optimal ELDA and compare their individual level
of interpretability.

5.1 ELDA optimization

The overlap score using the oracle labels of the
baseline LDA model is 0.9281, showing that there
is a high similarity between the predicted and the
true dialog labels. This score is used as the base-
line that the ELDA optimization aims to match or
exceed.

The best ELDA model produced an overlap score
of 0.9555 using the oracle labels for min_pts = 5
and eps = 0.5, surpassing our baseline score for
LDA.

Based on these optimization results (Table 5) we
expect the best ELDA model to match the baseline
LDA in overlap score using the manual labels ob-
tained from the annotators. Before that, we need
to ensure that the optimization of ELDA based on
oracle labels is consistent with manual labeling.

5.2 Validation of oracle labels

To validate the use of oracle labeling in optimizing
the ELDA results, two annotators manually labeled
the topics of the baseline LDA and the best ELDA
model, and then we compared those manual labels
to the oracle’s labels. The results seen in Table 6
show reasonable overlaps between the oracle and
manual topic labels. This validates the use of the
oracle labeling as an efficient alternative to man-
ual labeling, and so, was considered a suitable ap-
proach to enable running the ELDA optimization.
Note the optimal values found for hyperparame-
ters min_pts and eps may be extrapolable to other
datasets, given that the semantic similarity distance

min_pts eps # topics Overlap

3

0.2 35 0.6868
0.25 39 0.7603
0.3 29 0.8463
0.35 37 0.8912
0.4 39 0.9449
0.45 40 0.9461

0.475 40 0.9503
0.5 39 0.9517

0.525 38 0.9516
0.6 41 0.9493
0.7 40 0.9428
0.8 40 0.9289
0.9 40 0.9415

5

0.3 35 0.8818
0.4 40 0.9488

0.475 37 0.9538
0.5 38 0.9555

0.525 40 0.9303
0.6 42 0.9428

Table 5: Overlap scores of ELDA for different values
of DBSCAN hyperparameters min_pts and eps, and
different number of topics, based on oracle labels (best
result in bold)

Model # topics Annota-
tor 1

Annota-
tor 2

Baseline LDA 24 0.71 0.75
Best ELDA 38 0.71 0.76

Table 6: Average annotator overlap scores between ora-
cle and manual topic labels

magnitudes are given by the sentence embedding
and not by the dataset. Hence, we would not need
to manually annotate other datasets to repeat the
tuning of the hyperparameters, which would defeat
the purpose of running ELDA.

5.3 Evaluation of ELDA

As discussed earlier, we evaluate ELDA against
LDA based on two aspects: accuracy and inter-
pretability. We measure both on the best ELDA
model and the baseline LDA model.

5.3.1 Accuracy
The overlap scores of the best ELDA model are
evaluated against that of the baseline LDA accord-
ing to the manual annotations of their respective
topics obtained from the two annotators (see Ta-
ble 7). From the results we observe an average of
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Model # top-
ics

Anno-
tator 1

Anno-
tator 2

Annota-
tor avg.

Baseline
LDA

24 0.8921 0.9157 0.904

Best
ELDA

38 0.9040 0.8827 0.8934

Table 7: Average annotator overlap scores of the base-
line LDA and best ELDA models
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Figure 3: True vs baseline LDA vs best ELDA – Com-
parison of the intent ratio over the dialogs (% of dialogs
per intent)

89% overlap with the best ELDA as opposed to an
average of 90% overlap with the baseline LDA.

We also compare the true ratio of intents across
the dialogs (% dialogs per intent) with that obtained
from the best ELDA and baseline LDA models
(Figure 3). For both LDA and ELDA, we show
the average ratio of intents for each of the two
annotators. Observing the plot, we see that ELDA
has successfully identified the most frequent five of
the seven intents, however LDA performs better in
matching the true intent ratio. Potentially, further
fine-tuning of the ELDA approach may improve
these results.

5.3.2 Interpretability
In this section we analyze the top key items for
the topics of the best ELDA model (along with
the clusters) and the baseline LDA model (see Ta-
bles 8, 9 and 10 in the appendix). At first glance,
the topic key words in Table 8 would be meaning-
ful only to someone familiar with the MultiWOZ
intents. To anyone with no knowledge of Multi-

WOZ, these key words lack the context required
to interpret the topics, the context which can only
be discovered when the same key words are used
in sentences or utterances like in Table 9. For ex-
ample, the highest scoring key word “train” in the
largest baseline LDA topic versus the highest scor-
ing key utterance “I need a train on thursday” in the
largest ELDA topic, the key word “depart” versus
the key utterance “What day and time would you
like to depart”, the key word “leave” versus the key
utterance “I want to leave on Tuesday after 12:45”,
the key words “parking”, “wifi”, “free”. versus the
key utterance “I need free parking and free wifi
though.”, etc. show the power of utterances over
words. As discussed before these key utterances
are cluster labels and Table 10 provides a good idea
about the quality of the clusters and validates the
selection of their respective labels. Often in topic
modeling evaluation, the reviewer must read the
actual documents within the topics to better grasp
what the topic is about, as the key words alone
may not provide enough context. ELDA reduces
this manual effort as the top utterances provide this
context.

We ran both LDA and ELDA on an unseen, un-
labeled technical helpdesk Accenture dataset (con-
taining customer-agent dialogs resolving technical
issues) with the optimal ELDA hyperparameters
found for MultiWOZ and labeled the topics for
both approaches. As expected, the topic key words
were not descriptive enough to label the LDA top-
ics and we had to manually review a few dialogs of
each topic to understand what they were about. In
contrast, the topic utterances provided the required
context and meaning to understand and label the
ELDA topics, with little to no need of reviewing
the dialogs. For legal/privacy reasons we are not
able to share these results.

6 Conclusions and future work

In this work we developed ELDA, an embedding-
based LDA method, that represents each document
or dialog in a dataset as a bag of utterance clusters
instead of a bag of words. As a result, this approach
represents each LDA topic as a probability distri-
bution over utterance clusters which are labeled
by the utterances closest to the cluster centroids.
Unlike key words, the key utterances (cluster la-
bels) provide more context to each topic, which
helps to better interpret and label the topics. The
ELDA and LDA approaches were evaluated and

251



compared using the MultiWOZ dataset. The results
indicate ELDA is on par with the standard LDA in
accurately identifying the existing topics or dialog
intents, while producing easier-to-interpret topic
descriptions that facilitate and accelerate the task
of manually labeling the resulting topics.

The optimal ELDA hyperparameter values pre-
sented here may be extrapolable to other datasets,
given that the semantic similarity distance magni-
tudes are given by the sentence embedding and not
by the dataset. We continue testing ELDA with
other (proprietary) datasets to verify this hypothe-
sis.

One proposal for improving this work is to use
a more stringent overlap metric in order to force
the hyperparameter fine-tuning process to converge
to better values. Note that the current approach
considers a match between the predicted and true
intents if any one of the intents match. Hence better
hyperparameter values than the ones selected in this
paper may be yet found.
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A Appendix

A.1 Topic modeling results for baseline LDA and best ELDA models

Tables 8 and 9 list the three largest topics obtained from the baseline LDA and best ELDA models,
respectively, along with the top 9 key items and their probability scores.

Topic 17 Topic 12 Topic 2
Word Score Word Score Word Score
train 0.045 hotel 0.032 hotel 0.024
leave 0.027 stay 0.020 guesthouse 0.022
arrive 0.022 guesthouse 0.020 parking 0.017
travel 0.021 parking 0.019 stay 0.016
ticket 0.021 night 0.019 free 0.016
depart 0.020 free 0.018 east 0.015
time 0.018 wifi 0.016 allenbell 0.015

cambridge 0.013 guest 0.016 north 0.013
departure 0.011 house 0.014 night 0.013

Table 8: Top 9 key words (with probability scores) for the three largest LDA topics

Topic Cluster Cluster label Score

6

25 I need a train on thursday . 0.131
5 Train TR1526 leaves 17:40 and will get you there by 18:08 . 0.085
14 I need to find a train leaving on Thursday going to Cambridge . 0.060
27 I want to leave on tuesday after 12:45 . 0.048
38 What day and time would you like to depart ? 0.047
31 From where will you be departing ? 0.034
40 From Cambridge , which is why I asked the Cambridge TownInfo centre . 0.033
43 Would you like me to book a reservation for it ? 0.027
37 Its entrance fee is free . 0.027

37

23 I would like a guesthouse that is 4 stars . 0.150
41 I am looking for a hotel instead of a guesthouse . 0.063
11 Is there a price range you ’d like ? 0.047
39 I need to book it for 4 people starting from saturday for 5 nights . 0.046
30 I need free parking and free wifi though . 0.042
3 Can I get some help finding a hotel or guesthouse please ? 0.041
46 There are a couple of options . 0.034
34 Is there a particular area of town you ’d like to be in ? 0.034
36 Would you like any other info ? 0.030

31

19 I have your table booked for Tuesday at 15:15 . 0.146
8 I ’m looking for a moderately priced restaurant that serves chinese food . 0.095
28 Is there a particular kind of restaurant you would like ? 0.065
12 Your reference number is AJSQZY8R . 0.034
11 Is there a price range you ’d like ? 0.031
6 It is in the centre part of town . 0.030
42 The Booking was successful . 0.026
22 I need the reference number please . 0.025
10 I would like to book a reservation for it . 0.024

Table 9: Top 9 key utterances (with probability scores) for the three largest ELDA topics
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A.2 Clustering results
Table 10 contains a sample of three clusters and some of their utterances. Each of these clusters is
a top-scoring key item for each of the largest three topics from the best ELDA model (see the rows
in bold in Table 9). To exhibit the quality of these clusters and represent them fairly, we take all the
utterance embeddings within a given cluster, compute the distances to the cluster centroid, and rank them
in ascending order. We display nine utterances in total, the first three are the three closest to the centroid,
the next three are in the middle of the ranked list, and the last three are the three furthest from the centroid.

Cluster 25: I need a train on
thursday .

Cluster 23: I would like a
guesthouse that is 4 stars .

Cluster 19: I have your table
booked for Tuesday at 15:15 .

Closest
I need a train on thursday . I would like a guesthouse that is

4 stars .
I have your table booked for
Tuesday at 15:15 .

I need a train that gets me where
I ’m going by 4:15 PM .

I am looking for a moderately
priced hotel , that has a 4 star
rating .

I would like to book a table for
6 at 15:15 on Tuesday .

I need a train that is leaving on
wednesday .

I would prefer a 4 star hotel , are
any of those three rated 4 stars ?

Please book a table for 7 at 15:15
on Wednesday .

Middle
I have a number of trains leaving
from london liverpool street .

yes it is 4 star Can you book a table for seven
people on Thursday at 15:00 ?

Actually yes , can you help me
find a train to london liverpool
street ?

Might you be willing to accept a
place with 4 stars and free park-
ing ?

Can you book me a table for 7
people on Sunday at 13:00 ?

Could I have the price for that
train please ?

Yes , I would like to stay in the
West area of town and I would
also like it to have a 3 star rating
.

Please book a table for 1 at 20:00
on friday .

Furthest
The last train of the day will
work for you .

Lucky star . I am very sorry , our system was
giving me an error , but I have
managed to book your party of
5 at 16:45 on Tuesday .

There are 10 results of trains de-
parting from Ely on Thursday .

It is four starts and it does have
wifi .

You ’ll find a table for 8 at Loch
Fyne for 18:15 , reference num-
ber NGNNFSHD .

With your new criteria , that train
wo n’t work anymore , but there
are other options .

The lucky star is chinese . OK , a yellow Skoda will pick
you up at the Cherry Hinton at
12:30 to get you to the restaurant
in time for that 13:00 reservation
.

Table 10: Sample of three utterance clusters (the highest scoring for each of the three largest topics from the best
ELDA model) each with a sample of nine utterances.
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Abstract

When writing, a person may need to anticipate
questions from their audience, but different
social groups may ask very different types
of questions. If someone is writing about
a problem they want to resolve, what kind
of follow-up question will a domain expert
ask, and could the writer better address the
expert’s information needs by rewriting their
original post? In this paper, we explore
the task of socially-aware question generation.
We collect a data set of questions and posts
from social media, including background
information about the question-askers’ social
groups. We find that different social groups,
such as experts and novices, consistently ask
different types of questions. We train several
text-generation models that incorporate social
information, and we find that a discrete
social-representation model outperforms the
text-only model when different social groups
ask highly different questions from one
another. Our work provides a framework
for developing text generation models that
can help writers anticipate the information
expectations of highly different social groups.

1 Introduction

Writers are often expected to be aware of their
audience (Park, 1986) and to minimize the effort
required for others to understand them, especially if
they cannot receive immediate feedback. However,
NLP tools for writing assistance are not often made
aware of the social composition of the audience (Ito
et al., 2019; Zhang et al., 2020) and the information
needs that different people may have. Preemptive
writing feedback may therefore fail to help writers
address the expectations of different people in their
audience. This is especially important when the
writer requests feedback from a specific group of
people: in one post on a forum related to personal
finance, a writer asks for help from financial “gurus”
for advice about accepting a job offer.

A system that can preempt the hypothetical
audience’s information needs would enable the
writer to revise their original post and avoid
possible information gaps (Liu et al., 2012).
Some online forums have already implemented
crude solutions for this problem with automated
reminders for writers to include basic information
(e.g., location) in their post. Providing writers
with preemptive questions can help especially
in domains where different social groups have
diverse information expectations. In the earlier
example about personal finance, the advice-seeker
could adapt their original post with answers to
hypothetical “expert-level” questions (e.g. “Have
you saved enough money for retirement?”), adding
extra information that would enable experts to
provide advice more quickly.

We cannot predict everyone’s information needs,
but some social groups with similar backgrounds
(e.g., domain experts) will likely have consistent
patterns in information expectations (Garimella
et al., 2019; Welch et al., 2020). In this work, we
evaluate several socially-aware question generation
models with the goal of providing customized
clarification questions to writers.

Our work contributes answers to the following
questions:

• How different are social groups based on the
questions that they ask? We collect a dataset of
200,000 Reddit posts seeking advice about a variety
of everyday topics such as technology, legal issues,
and finance, containing 700,000 questions.1 We
define several social groups that are relevant to
possible information expectations such as expertise
(§ 4.1). We demonstrate that different social groups,
e.g. experts vs. novices, ask consistently different
questions (§ 4.2, § 5.2.2).
• How well can generation models predict
socially-specific questions? We extend an

1We will release the IDs for the post and author data, as
well as the data processing code, to aid replication.
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existing generation model to incorporate social
information about the question-askers (§ 5.1). In
automated evaluation, a token-based socially-aware
model outperforms the baseline for questions that
are “divisive” and questions that are specific to a
social group, particularly with respect to location
as a social group (§ 5.2.3, § 5.2.4).
• Are socially-aware questions useful for
writers? In human evaluations, we found that
the socially-aware model is preferred over the
text-only model for questions related to the
question-asker’s location and within the general
advice-seeking domain (§ 5.3). This reinforces the
utility of socially-aware models in scenarios where
the social information is well-defined and where
the topics are related to everyday concerns.

Importantly, the research presented in this paper
shows that there are significant differences across
groups with respect to questions they ask, and that
we can develop models that are more attuned to
these differences. Note that the goal of our work is
not to improve the overall accuracy of a question
generation system, but rather to develop methods
that are sensitive to the needs of specific groups,
thus paving the way toward technology that is
available and useful for all.

2 Related Work

Question generation Question generation (QG)
is unique among text generation tasks because
it tries to address what a person does not know,
rather than what they already know and want to
write. QG systems are expected to create fluent
and relevant questions based on prior text, in
order to provide QA systems with augmented
data (Dong et al., 2019) and students with question
prompts to help their learning (Becker et al.,
2012; Liu et al., 2012). In addition to typical
supervised learning approaches (Du et al., 2017),
reinforcement learning has proven useful, where
questions are assigned a higher “reward” if they
are more likely to have interesting answers (Qi
et al., 2020a) and more relevant to the context (Rao
and Daumé, 2019). Furthermore, work such as
Gao et al. (2019) has proposed controllable
generation techniques to encourage less generic
questions, e.g. with higher difficulty. Such
controllable-generation systems often leverage
human-generated questions from a variety of
domains, including Wikipedia (Du and Cardie,

2018), Stack Overflow (Kumar and Black, 2020),
and Twitter (Xiong et al., 2019).

To our knowledge, prior work in question
generation did not leverage the prior expectations
of the question-askers. While sometimes providing
controls for difficulty, no datasets currently include
information about the inferred background of the
question-askers. It seems natural that a person’s
prior knowledge would shape the information that
they seek in response to a particular situation, yet
analysis of the impact of social information on
question generation remains absent. This study
tests the role of social information in question
generation using a dataset of posts from online
forums, which feature complicated scenarios that
can result in different information expectations
between social groups.

Language model personalization Personalized
language modeling often seeks to improve the
performance of common language tasks, such as
generation, using prior knowledge about the text’s
author (Paik et al., 2001). Personalization can
improve task performance and make language
processing more human-aware (Hovy, 2018),
which ensures that a more diverse population
is included in language models (Hovy and
Spruit, 2016). To represent the text writer,
personalized systems often integrate a writer’s
identity (Welch et al., 2020) or a writer’s social
network information (Del Tredici et al., 2019) into
existing language models. A more generalizable
approach converts the text-writer to a latent
social representation such as an embedding (Pan
and Ding, 2019), to be combined with the
language representation in a neural network
model where the social and text representations
are learned jointly (Miura et al., 2017). We
draw inspiration from the contextualized view of
personalization from Flek (2020), and we represent
the question-askers based on their prior behavior
with respect to the specific context of a given post.

3 Data

In this study, we consider the task of generating
clarification questions on information-sharing
posts in online forums. We choose to study
subreddits that have a high proportion of text-only
posts, diverse topics, and where community
members often ask information-seeking
questions: Advice (lifestyle improvement),
AmItheAsshole (social norms in complicated
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Total posts 270694
Total questions 730620
Post length 304 ± 221
Question length 13.9 ± 8.08
Questions with question-asker data 77.7%
Questions with discrete question-asker data 75.2%
Questions with question-asker embeddings 43.5%

Table 1: Summary statistics about posts, questions, and
question-asker data.

Subreddit Posts Questions

Advice 48858 87592
AmItheAsshole 61857 331345
LegalAdvice 53577 92737
PCMasterRace 31657 47613
PersonalFinance 74745 171333

Table 2: Summary statistics about subreddits.

situations), LegalAdvice (law disputes),
PCMasterRace (computer technology), and
PersonalFinance (money and investment).
We collect all submissions (∼ 8 million)
to the above subreddits from January 2018
through December 2019, using a public
archive (Baumgartner et al., 2020). We filter the
post data to only include submissions written in
English with at least 25 words, which we chose as
a cutoff for posts that lack the context necessary
for people to ask informed questions. To identify
potential clarification questions, we collect all the
comments of the submissions (∼ 6 million) that
are not written by bots, based on a list of known
bot accounts like AutoModerator.

We conduct extensive filtering to include
questions that are relevant and that seek extra
information from the original post. The details
are available in Appendix A. We summarize the
overall data in Table 1, and we show the distribution
of the posts and questions among subreddits in
Table 2. Example posts and associated clarification
questions are shown in Table 3.

4 Defining social groups

In this work, we assess the relevance of the
question-asker’s background in the task of question
generation, by defining social groups and assessing
their differences in question-asking.

4.1 Defining social groups
We collect a limited history for the question-askers
(N = 1000 comments) to quantify relevant
aspects of their background that may explain their
information-seeking behavior. We consider the

following social groups who are likely to have
different information expectations:

1. EXPERTISE: A question-asker with less
experience may ask about surface-level aspects of
the post, while someone with more expertise might
ask about a more fundamental aspect of the post.
We quantify “expertise” using the proportion of
prior comments that the question-asker made in the
subreddit s (or a topically related subreddit; see
§ B.1) in which the original post was made. For
example, if a question-asker has frequently written
comments in WallStreetBets before asking a
question in PersonalFinance, they are likely
more familiar with financial terms than the average
person. We define an Expert question-asker as
anyone at or above the 75th percentile of rate of
commenting in a relevant subreddit, and a Novice
question-asker as anyone below the percentile,
where we chose the threshold to fit the skewed
data distribution. Other threshold values produced
similar results in social group classification.
2. TIME: A question-asker who replies soon after
the original post was written may ask about missing
information that is easily corrected (e.g. clarifying
terminology), while a question-asker who replies
more slowly may ask about more complicated
aspects of the writer’s request (e.g. the writer’s
intent). We quantify this with the mean speed of
responses of the question-asker’s prior comments
relative to the parent post. We define a Slow
question-asker as anyone at or above the 50th

percentile of mean response time, and a Fast
question-asker as anyone below the threshold.
3. LOCATION: A question-asker who is based in
the US may ask questions that reflect US-centric
assumptions, while a non-US question-asker
may ask about aspects of the post that are
unfamiliar to them. We quantify location with
the question-asker’s self-identification from prior
comments, using Stanza’s English NER tool (Qi
et al., 2020b) to identify LOCATION entities
and OpenStreetMap to geo-locate the most likely
locations. For those without self-identification, we
identify all location-specific subreddits SL in a
question-asker’s previous posts based on whether
the subreddit name can be geolocated with high
confidence (e.g., r/NYC maps to New York City).
A question-asker a’s location is identified with the
location-specific subreddit where a writes at least 5
comments and where they write the most comments
out of all location-specific subreddits SL.
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Group category Description Social group Example question Example post title

EXPERTISE Prior rate of commenting in
the target subreddit, or a
topically-related subreddit.

Expert
(≥ 75th percentile)

How much would you need to make on
day 1 to meet your current financial
obligations?

(PersonalFinance)
Changing careers at 39

Novice
(< 75th percentile)

Where do you live?

TIME Mean amount of time elapsed
between original post and
question-asker’s comment,
among all prior comments.

Fast
(< 50th percentile)

Does your wife have a relationship with
him?

(LegalAdvice) Having a
child and partner’s father is
sex offender

Slow
(≥ 50th percentile)

If he is a sex offender, shouldn’t he be
kept away from children?

LOCATION Inferred location of
question-asker.

US Have you looked at the RX 580? (PCMasterRace) Should I
buy GTX 1050Ti?non-US The 1050 is 160$ in India?

Table 3: Group categories for question-askers, with example questions and posts.

Group category Top-3 LIWC categories
(absolute frequency difference)

LOCATION
US >non-US MONEY (0.512%), WORK

(0.361%), RELATIV (0.337%)
non-US >US FOCUSPRESENT (0.356%),

FUNCTION (0.327%),
AUXVERB (0.305%)

EXPERTISE
Expert >Novice MONEY (0.207%), YOU

(0.135%), FOCUSPRESENT
(0.106%)

Novice >Expert DRIVES (0.097%),
AFFILIATION (0.056%),
REWARD (0.055%)

TIME
Fast >Slow YOU (0.312%), PPRON

(0.225%), PRONOUN
(0.160%)

Slow >Fast DRIVES (0.105%), AFFECT
(0.082%), IPRON (0.066%)

Table 4: LIWC category word usage differences
across social groups (% indicates absolute difference in
normalized frequency). All differences are significant
with p < 0.05 via Mann-Whitney U test.

We summarize these definitions of different
social groups in Table 3. The example questions
in demonstrate that question-askers who occupy
different groups tend to ask questions about
different aspects of the original post: e.g. the Fast
question-asker addresses a basic fact about the
situation, while the Slow question-asker addresses
a more complicated/hypothetical point.

4.2 Validating group differences

As a first step, we test for consistent differences
in the types of questions asked by different social
groups. We test for topical differences between
the groups by comparing the relative rate of
LIWC word usage in their questions, a common
strategy to identify salient differences between
social groups (Pennebaker et al., 2001). The results
in Table 4 show consistent differences in word

usage in the questions. Expert question-askers
ask about money more often than Novices,
which could indicate an assumption from prior
experience that post authors’ core problems stem
from their financial decisions (even outside of
the finance-related subreddits). Similarly, US
question-askers have more questions about money
and work than non-US readers, who often frame
questions to address present-tense issues and
write with more auxiliary verbs. Fast-response
question-askers ask more often about the post
author (YOU), which may indicate a stronger
interest toward the post author’s background, as
opposed to slow-response question-askers who
address the poster’s high-level intentions (DRIVE)
and emotional behavior (AFFECT). While it is
possible that some of these differences are spurious,
it is unlikely that they all relate to stylistic
patterns such as regional differences (LOCATION),
considering the prevalence of relevant LIWC
categories (e.g. MONEY relates to financial
questions, which are relevant to the data).

We verify these differences with a classification
task, which we detail in § B.2.

5 Question generation

5.1 Model design

We build the generation models on top of the
BART model (Lewis et al., 2020), a transformer
model known to be resistant to data noise. We
use the same pre-trained model (bart-base;
|V | ≈ 50, 000) and the same training settings
for all models.2 The main point of the model
modifications is not to achieve universally high
accuracy, but to assess the value of different social
data representations in question generation.

2Learning rate 0.0001, weight decay 0.01, Adam optimizer,
10 training epochs, batch size 2, max source length 1024
tokens, max target length 64 tokens, cross-entropy loss.
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5.1.1 Social tokens
For the “social-token” model (a discrete
representation), we add a special token
{GROUPg} to the text input of the baseline
model to indicate whether the asker belongs to
social group g (cf. prior work in controllable
generation; Keskar et al. 2019). The embeddings
for these social tokens are learned during training
in the same way as the other text tokens. All
question-askers who could not be assigned to a
group are represented with UNK tokens.

5.1.2 Social attention
For discrete modeling, we also consider
customizing a separate part of the model for
different social groups. Specifically, we change one
of the attention layers of the typical transformer
model (Vaswani et al., 2017) to represent
differences in how different question-askers may
perceive a post.

We replace attention module ` in the encoder
with a different module for each social group g. For
regularization, we train a separate generic attention
module at the same time as the social-group
attention, concatenate the social attention with
the generic attention, and pass the concatenated
attention through a linear layer to produce the
final attention distribution. We choose the layer
index ` = 1 from {1, 3, 5} through performance on
validation data. For a question written by an asker
who belongs to group g (gen indicates generic
attention, f indicates a feed-forward linear layer),
the attention is computed as follows:

Multihead`(x) = f([Multiheadg(x); Multiheadgen(x)])

5.1.3 Social embeddings
For a continuous approach to personalization (Wu
et al., 2021), we represent question-askers using
latent embeddings e(a) based on their prior
subreddit and text behavior.

For subreddit behavior, we compute the
cross-posting matrix P for all subreddits and
all question-askers in our data, where Pi,j is
equal to the NPMI of question-asker j writing
a comment in subreddit i. We compress the
matrix using SVD (d = 100), and the subreddit
embedding e(a)s for question-asker a is set to the
average of the embeddings across all subreddits in
which a previously posted. For text, we compute
an embedding based on the question-asker’s
previous comments. We train a Doc2Vec
model D (Le and Mikolov, 2014) on all prior

comments and represent each comment as a
single document embedding (d = 100, default
skip-gram parameters). The text embedding e(a)t

for question-asker a is computed as the average
over all prior comments.

To add the social embedding to the input text,
we pass e(a) through a linear layer to match the text
dimensionality (d = 768). We append a special
“social embedding” token and the embedding ê(a)

to the end of the text input.

5.2 Results
We use the models proposed above and a text-only
baseline, and train them on the same task of
question generation. We use a sample of our data
for training/testing, for a total of 155396 questions
for training, 51774 for validation, and 53080 for
test.

We use the following metrics to automatically
evaluate text quality for target question q and
generated question q̂: BLEU-1 (single word
overlap between q and q̂); perplexity; BERT
Distance (cosine distance between sentence
embeddings for q and q̂, via the same DistilBERT
system used throughout; Sanh et al. 2019);
Type/token ratio (among bigrams in q̂); Diversity
(% unique questions among all generated questions
Q̂); Redundancy (% generated questions Q̂ that
also appear in training data Qtrain). The text
overlap metrics like BLEU are important in judging
performance even in our open-domain setting,
because the models should produce questions
that are faithful to the original intent of the
question-askers (Wu et al., 2021). Without
measuring overlap, it would be possible for a
socially-aware model to generate highly diverse
questions that are completely unrelated to the
question-asker’s intent.

5.2.1 Aggregate results
The aggregate results are shown in Table 5.
Overall, we see that the simpler socially-aware
models (tokens and attention) perform roughly
the same as the text-only model via traditional
BLEU and BERT Distance metrics. The
socially-aware model generates questions that
have higher overall diversity, but also higher
perplexity. These results echo prior work in
text generation which finds that models which
incorporate pragmatic information often produce
more diverse text than expected (Schüz et al.,
2021). The higher perplexity can be explained
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stat BLEU-1 ↑ BERT Dist. ↓ Diversity ↑ Type/token ↑ Redundancy ↓ PPL ↓
Text-only 0.159 0.728 0.613 0.122 0.187 264
Social token 0.159 0.731 0.675 0.127 0.191 271
Social attention 0.157 0.752 0.511 0.068 0.468 488
Subreddit embedding 0.153 0.746 0.744 0.091 0.277 657
Text embedding 0.154 0.745 0.732 0.090 0.292 609

Table 5: Question generation results by model on full test data. ↑ means higher score is better, ↓ means lower is
better.

Subreddit LegalAdvice AmITheAsshole
Text
context

My five year old son
is in kindergarten. The
teacher let the kids out of
their recess area and did
not watch them properly,
and my son got lost.

My roommate has been
dating someone with a
young child. Both the
woman and her child are
generally annoying.

Social
group

LOCATION (US) EXPERTISE (Novice)

Actual
question

What is your location? Have you talked to your
roommate?

Text-only What are your damages? Have you spoken to your
roommate about this?

Social
token

Was this a private school
or a government agency?

Do you and your
roommate pay rent to the
landlord?

Model
performance

social token > text-only
(BERT Dist.)

text-only > social-token
(BLEU)

Table 6: Example posts, target questions, and generated
questions.

partly by the unconstrained nature of the generation
task (e.g., not providing an answer to generate
the question; see § 6.2) as well as the relatively
complex nature of most of the questions.

5.2.2 Qualitative analysis of model output

We first show several examples of generated text
(Table 6). In a legal context (first column),
the social-token model correctly predicts that the
question-asker will focus on the location of the
incident rather than the outcome (text-only model),
possibly because a US question-asker may have
location-specific advice to provide.

We also use the social-token model to generate
attention distributions over the input sequence
for different groups. We input the same text
for both reader groups in the same category,
changing only the social token appended to the
text. We compute the attention distribution from
the first layer of the encoder, compute per-word
attention scores via the mean over all heads and
all token-pairs, and compute the ratio of attention
for each group category. The distributions for an
example post are shown in Table 7, and they seem
to match our earlier findings with word category
differences (§ 4.2). For LOCATION, we see that
the model prompted with a US token pays more
attention to MONEY words (“booked tickets”),
while the model prompted with NONUS focuses

on time-related words that could be translated to
FOCUSPRESENT in the question (“happened,”
“‘few days ago”). For Expertise, the NOVICE
social token produces higher attention on social
relationships (“friend,” “daughter”), and the model
with EXPERT input attends to pronouns that could
be converted to “you” pronouns in a following
question (“my”). For TIME, the model with SLOW
input pays attention to DRIVE words (“planning,”
“looking”), while the model with FAST input pays
more attention to personal pronouns (“I”, “my”).
While we do not perform large-scale annotation of
attention distributions, the examples shown here
complement the generated text and reveal potential
concepts that the model has learned to associate
with different social groups.

5.2.3 Divisive posts
Socially-aware question generation should perform
well in cases where different social groups have
divergent opinions, e.g. where experts disagree
with novices. We now test the models’ ability to
predict divisive questions. For post p, question
q1 written by an author of group 1, and question
q2 written by an author of group 2, we define
sim(q1, q2) based on the cosine similarity of the
latent representations of the questions, generated
by DistilBERT as before (Sanh et al., 2019). We
label as “divisive” all pairs of questions that have
a similarity score in the lowest nth percentiles. We
show examples of divisive posts in § C.3.

The results of the question prediction task
on divisive posts are shown in Table 8. The
social-token model slightly outperforms the
text-only baseline for questions that are highly
dissimilar (i.e. less similar than 90% and 95% of
the question pairs), and all socially-aware models
tend to do better in diversity. This suggests that
the social-token model may pick up information
specific to the different social groups that is
required to anticipate how the question-askers
approach potentially subjective posts. We also note
the unusually high perplexity across all models,
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EXPERTISE
EXPERT , NOVICE

So my friend is having difficulty getting her 15 year old daughter to school . My friend

will let her off at school , watch her enter the building , and then later will find her

back home during school time .

LOCATION
NONUS , US

This happened a few days ago and my friend thought I was a bit rude , but I felt I

was totally justified . So we booked tickets for a nearly full flight and the only row with

2 seats beside each other had somebody that already booked the seat...

TIME
SLOW , FAST

Folks , I am planning to return to PCs after an absence . my budget is about 3 k and

I already found a machine that will be around 2 , 5 k . So right now I am searching

for monitors and I am looking for...

Table 7: Ratio of encoder attention generated by social-token model for input conditioned on different social
groups. Attention computed via mean over all pairwise scores between tokens.

Model BLEU-1 Div. Red. PPL
sim(q1, q2) ≤ 5% (N=1074)

Text-only 0.137 0.688 0.222 383
Social token 0.142 0.771 0.208 359
Social attention 0.130 0.875 0.479 601
Subreddit emb. 0.137 0.854 0.292 945
Text emb. 0.137 0.840 0.375 623

sim(q1, q2) ≤ 10% (N=2146)
Text-only 0.160 0.699 0.232 325
Social token 0.164 0.781 0.235 327
Social attention 0.155 0.798 0.500 547
Subreddit emb. 0.148 0.864 0.308 1048
Text emb. 0.150 0.868 0.348 617

Table 8: Question generation results for divisive posts.

which may indicate that socially-specific questions
are complicated and far from “normal” questions.

5.2.4 Group-specific questions

We investigate another desired property of
socially-aware models, the ability to predict
questions that are strongly associated with a
particular group. Post writers would benefit from
such questions, e.g. technical questions from
“expert” askers, because these questions would help
the post writer preempt specific and unexpected
information needs from that group. We subset the
data to all questions q with question-asker a that
the trained social group classifiers assign to the
group ga with high confidence (P ≥ 95%) (see
§ B.2 for classifier details).

We report the results for this data subset
in Figure 1. The relative performance of
the socially-aware models increases when only
considering data with highly group-specific
questions. This is particularly apparent for the
LOCATION group category, illustrated by the
following example. In our data, a socially-specific
question was written by a non-US question-asker
in LegalAdvice in response to a post about
a mailing problem: “Have you sent a change

Figure 1: BLEU-1 scores for question generation,
on (1) full data and (2) subset of data with high
group-specific probability (determined by classifier).

of address notice to the post office?” In this
situation, the social-token model generated the
question “Did you give them your current address?”
The social-token model seems to have identified
a concern that a non-US question-asker might
be more likely to focus on (e.g. due to moving
frequently) than a US question-asker.

5.3 Human evaluation
To corroborate the generation results about divisive
questions, we collect human annotations about: (1)
question quality; and (2) guessing the social group
based on the generated question (see § C.6 for (2)).

We use the text-only model and the social-token
model to generate questions from a sample of the
test data, as follows. For each subreddit s and social
group category G, we sample up to N = 10 posts
that have divisive questions from groups g1 and g2
where the similarity is below the 10th percentile
(§ 5.2.3).3 We then generate a single question for
the post from the text-only model and two questions
from the social-token model, one for each social
group in the category (e.g., for EXPERTISE, q1 for
Expert and q2 for Novice). We provide details

3Some combinations of subreddits and reader groups have
fewer than 10 posts, due to the data sampling strategy.
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Text type A R U
Overall

Ground-truth 3.83 3.59 3.92
Text-only 3.84 3.68* 3.96*
Social-token 3.80 3.35 3.73

Social group
EXPERTISE

Ground-truth 3.89 3.68 3.85
Text-only 3.81 3.62* 3.91*
Social-token 3.61 2.99 3.49

LOCATION
Ground-truth 4.06 3.58 4.20
Text-only 4.01 3.69 4.05
Social-token 4.20 3.63 4.19

TIME
Ground-truth 3.64 3.52 3.83
Text-only 3.77 3.74 3.95*
Social-token 3.74 3.53 3.70

Subreddit
Advice

Ground-truth 3.75 3.63 3.91
Text-only 3.32 3.29 3.57
Social-token 3.49 3.15 3.67

AmItheAsshole
Ground-truth 3.79 3.58 4.01
Text-only 3.74 3.61 3.89
Social-token 3.82 3.39 3.69

LegalAdvice
Ground-truth 4.18 3.88 4.47
Text-only 3.95 3.60 4.19*
Social-token 3.86 3.23 3.81

PCMasterRace
Ground-truth 3.72 3.44 3.62
Text-only 4.20 4.07* 4.16
Social-token 3.98 3.39 3.84

PersonalFinance
Ground-truth 3.72 3.43 3.58
Text-only 4.04 3.89 4.01*
Social-token 3.87 3.56 3.70

Table 9: Human annotation scores for question quality,
including Answerable, Relevant, Understandable
(scale 1-5). * indicates that the score is greater than
the scores from the other model type with p > 0.05
(Wilcoxon test). Underline indicates best generation
model.

of annotation in § C.5.

We show the results in Table 9. The
annotators in aggregate preferred the questions
from the text-only model over the social-token
model. However, the social-token model
questions were perceived as more answerable
and understandable for questions generated using
LOCATION information, which aligns with prior
results (§ 5.2.4). The social-token model is also
perceived as more answerable and understandable
in the context of Advice, which makes sense
considering that the social-token model has more
diverse output that may suit the broad domain of
general-advice posts.

We show example generated and actual
questions with their human evaluation ratings in

Subreddit LegalAdvice Advice
Text context My mother lost $50000

on an online dating site
to a scam. If something
happened to her, would I
be on the hook for this?

I want to break up
with my girlfriend but:
number 1 I don’t want to
hurt her, number 2 I don’t
know if I can manage
on my own, number 3 I
don’t always believe in
myself, and if I lose my
job I’ll be homeless.

Social group EXPERTISE (Expert) LOCATION (non-US)
Actual
question

Has your mother
contacted the police?
(Understandable=4.67)

Have you tried talking to
her? (Answerable=5)

Text-only
model

How did the scammer get
the info from your Mom?
(Understandable=4.33)

Number 2 doesn’t even
sound like a good idea,
have you tried number 3?
(Answerable=2.33)

Social token
model

Are you on the
hook for what?
(Understandable=2.67)

Why do you think
you’ll be homeless?
(Answerable=5)

Table 10: Example questions with human evaluation
scores.

Table 10. In the first example, the text-only
model addresses an important missing gap in
original post (how the scammer got information),
while the social-token model seems to focus
too much on details (“on the hook”) which
leads to a less understandable question. In the
second example, the social-token model addresses
missing information that may be more salient
to a non-US question-asker who wants to know
more about homelessness (possibly less salient to
a US question-asker), while the text-only model
produces a question that is not answerable due to a
misunderstanding of the original post (focus on the
text rather than the writer). Note that this type of
question is not marked by a surface-level feature
such as regional style, but rather a deeper focus
on cause and effect, which suggests that the model
has learned more fundamental differences about
the nature of LOCATION as a social group.

6 Conclusion

6.1 Discussion
This study evaluated the incorporation of social
information into question generation, to help
writers understand the information needs of
different people. We found that social groups
related to expertise, time, and location can all be
differentiated based on the questions that they ask.
In generation, the discrete social representations
outperformed continuous representations, and the
social-token model outperformed the baseline
when the questions are divisive. In human
evaluation, the social-token models produced better
output for the LOCATION group, implying a more
clear definition versus other social groups.
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Future research in question generation should
focus on divisive questions as the main area of
improvement. Researchers may also consider
ensemble models (Liu et al., 2021) that use a
text-only generator with less subjective input text
(e.g., in technical settings), and a social-token
generator in more divisive settings. For future
evaluation, socially-aware question generation
may benefit other contexts such as journalism,
medicine, and public policy, where people are
likely to have differing information needs based
on their background experience (Assmann and
Diakopoulos, 2017). No matter the case, writers
will always benefit from knowing in advance what
information their audience will need.

6.2 Limitations

The primary limitations of this work relate to
the definition of “social group,” which may have
contributed to the minimal gains by the social
token model. This work focused on generic
social groups that can be extended to other
domains, which may leave out domain-specific
social groups (e.g., socioeconomic status). The
social groups may not mean the same thing in
different domains: an EXPERT question-asker in
the legal domain may be a professional lawyer,
while in personal advice the average EXPERT may
lack professional experience. Most notably, the
social groups used in this work were not validated
by any annotators or by the question-askers. This
especially matters for the EXPERTISE category,
considering the subjective status of expertise within
online communities (Johnson, 2001). To accurately
identify non-obvious social groups, researchers
should ask domain experts to label a small set
of user data as gold labels, and then compare the
automated labels against this gold standard set.

In terms of the task, this work focuses on
unconstrained question generation, i.e. we
do not use answers (Dong et al., 2019) or
intentions (Cao and Wang, 2021) to guide
generation. The results presented in this work
represent a lower bound on performance, which
includes unusually high perplexity (Table 5) and
sometimes unexpected topic choices (Table 6).
This problem is compounded by the fact that
social group information may not always be useful
e.g. for non-divisive questions, and therefore such
social guidance may simply confuse the model.
Future work would collect both questions and

answers, or at least question type labels, to provide
consistent guidance for socially-aware question
generation.

7 Ethics statement

We acknowledge that text generation is an ethically
fraught application of NLP that can be used to
manipulate public opinion (Zellers et al., 2020)
and reinforce negative stereotypes (Bender et al.,
2021). Our models could be modified to generate
abusive or factually misleading questions, which
we do not endorse. Furthermore, our models may
accidentally memorize private information from
the training data. We intend for our work to benefit
people who share information about themselves for
the purpose of gaining feedback from peers.

All data used in this project was publicly
available via the Pushshift API (Baumgartner et al.,
2020). In our final release we will not release
any data with personally identifiable information
(e.g., LOCATION data), in order to protect the
original authors. This is not ideal considering that
LOCATION seemed to be the most useful input to
the model, but the remaining social attributes may
prove useful for future researchers who want to
test other definitions of “divisive” questions, e.g.
positive versus negative valence. Furthermore, we
do not claim that we have the perfect definitions
of the social groups that we attempted to identify
in our study, and it is possible that a Reddit user
who finds themselves labeled as e.g. an “expert”
would disagree. We encourage future researchers to
compare their own definition of the various social
groups against our own labels, e.g. a different
definition of “expertise.”
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A Data: question filtering

Initial analysis revealed that some questions were
either irrelevant to the post (e.g., “what about X”
where X is unrelated to the post topic) or did not
actually seek more information from the original
post (e.g., rhetorical questions). To address this, we
sampled 100 questions from each subreddit in the
data along with the parent post, and we collected
binary annotations for relevance (“question is
relevant”) and information-seeking (“question asks
for more information”) from three annotators, who
are undergraduate students and native English
speakers. We provided instructions and a sample
of 20 questions labeled by one of the authors as
training data for the annotators. On the full data,
the annotators achieved fair agreement on question
relevance (κ = 0.56) and on whether questions are
information-seeking (κ = 0.62).

After annotation, we removed all instances
of disagreement among annotators to yield
questions with perfect agreement for relevance
(76% perfect-agreement) and information-seeking
(80%). In the perfect-agreement data, the majority
of questions (94%) were marked as relevant by
both annotators, which makes sense considering
that the advice forums generally attract good-faith
responses from commenters. We therefore chose
to not filter questions based on potential relevance.
To filter information-seeking questions, we trained
a simple bag-of-words classifier on the annotated
data (binary 1/0; based on questions with perfect
annotator agreement).4 The annotated data were
split into 10 folds for training and testing, and the
model achieved 87.5% mean F1 score, which is
reasonable for “noisy” user-generated text. We
applied the classifier to the full dataset and removed
questions for which the classifier’s probability was
below 50%.

B Defining social groups

B.1 Social embeddings: topically-related
subreddits

In our discrete-representation models, the criterion
for defining a question-asker for post p in subreddit
s as an Expert or Novice is whether they have

4We restricted the vocabulary to the 50 most frequent
words, minus stop-words, to avoid overfitting. Initial tests with
SVM, logistic regression, and random forest models revealed
that the random forest model performed the best, which we
used for the final classification model.

Subreddit Neighbors

Advice answers, ask,
askdocs,
dating_advice,
getdisciplined,
mentalhealth,
needadvice,
socialskills,
tipofmytongue

AmItheAsshole askdocs,
isitbullshit,
tooafraidtoask

LegalAdvice askhr,
bestoflegaladvice,
insurance, landlord,
lawschool,
legaladviceuk, scams

PCMasterRace bapcsalescanada,
buildmeapc,
linuxmasterrace,
monitors,
overclocking,
pcgaming,
suggestalaptop,
watercooling

PersonalFinance accounting,
askcarsales,
churning,
creditcards,
financialindependence,
financialplanning,
investing,
realestate,
smallbusiness,
studentloans, tax,
whatcarshouldibuy,
yna

Table 11: Filtered neighbor subreddits for
advice-related subreddits.

previously written comments in s or in a topically
similar subreddit.

We find similar subreddits for each target
subreddit s by (1) computing the top-20 nearest
neighbors for subreddit s in subreddit embedding
space (see § 5.1.3) and (2) manually filtering
unrelated subreddits. We report the related
subreddits in Table 11.

B.2 Validating group differences:
classification

To verify the differences in question content
observed in § 4.2, we train a single-layer neural
network to classify social groups, using a latent
semantic representation of the question-asker’s
question q and the related post p generated by
the DistilBERT transformer model (Sanh et al.,
2019). The embedding for the question and the
post are each converted to d = 100 dimensions via
PCA for regularization, and then concatenated. We
train a separate model for each subreddit, and we
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Features Social group Accuracy

Question text
EXPERTISE 70.1 (± 2.5)
TIME 81.6 (± 7.5)
LOCATION 75.4 (± 2.8)

Post +
question text

EXPERTISE 73.5 (± 6.4)
TIME 83.1 (± 8.3)
LOCATION 66.3 (± 10.2)

Table 12: Social group prediction accuracy (mean,
standard deviation measured across subreddits).

up-sample data from the minority class.
We report mean accuracy over all subreddits

in Table 12. The models consistently outperform
the random baseline across all group categories
tested, which suggests a clear difference between
social group members. The models trained on
the combined post and question text generally
help prediction improve over the question text
alone, which supports the hypothesis that a
question-asker’s background is reflected in both
the question they ask and the context in which
the question is asked. Therefore, generating
group-specific questions requires understanding
how the question relates to the original post content,
in addition to the question writing style. We find an
unusually high performance for TIME, which may
be due to a more consistent writing style among
Fast question-askers.

C Results: question generation

We report here the results of additional tests to
evaluate the relative utility of the socially-aware
models with respect to different types of
question-post scenarios.

C.1 Performance by question type

First, we assess the relative performance of
different question generation models according
to the type of question asked. Questions are
categorized based on the root question word, e.g.
“who,” “what,” “when.”5 We compare the BLEU-1
scores of all question generation models on the
specified questions, restricting to questions asked
by question-askers who could be assigned to at
least one social group or an embedding.

The results are shown in Figure 2. In contrast
to the aggregate results, the social-attention
model outperforms the text-only baseline for “do,”
“where,” and “who” questions. All socially-aware

5We use the dependency parser from spacy (Honnibal
and Johnson, 2015) to identify root question words based
on their dependency to the root verb of the question (e.g.
advmod for “where” in “where do you live?”).

models outperform the text-only model for “when”
questions. These questions may reflect more of a
focus on concrete details such as locations, times,
and people mentioned by the original poster, and
therefore the socially-aware models may generally
identify differences among question-askers in
terms of the details requested. The text-only
model outperforms the socially-aware models for
questions that are potentially more subjective,
including “can,” “could,” “would,” and “should”
questions. These more subjective questions may
require the models to focus more precisely on the
original post (e.g. a “would” question to pose
a hypothetical concern about the post author’s
situation), and therefore such questions may be
less dependent on question-asker identity.

C.2 Post similarity
A helpful question should be related to the original
post, but should not be so similar that it requests
information that the post has already provided.
We therefore assess the tendency of the models
to generate semantically related questions for the
given posts. We compute the similarity between
each generated question q and the associated post p
using the maximum cosine similarity between the
sentence embedding for q and each sentence s in p.
The sentence embeddings are generated using the
DistilBERT model (Sanh et al., 2019).

The results in Figure 3 show that the best overall
models, text-only and social-token, generate
questions that are more similar to the original
post than expected (cf. “target text” i.e.
ground-truth). The other socially-aware models
show a significantly lower similarity, implying that
their generated questions address new information
about the post that is not mentioned in the post
itself. For example, in response to a r/Advice
post about self-improvement (“I just need some
tips on maybe motivating myself”), the model with
social text embeddings asks “What do you want
to do with your life?” The generated question is
less semantically similar to the original post than
the target question (“Have you talked to a doctor
about this?”) but addresses an underlying personal
issue for the post author that only a particularly
thoughtful question-asker would uncover.

C.3 Divisive questions: examples
We provide examples of divisive posts in Table 13
(§ 5.2.3). For TIME, the Slow question-asker
seems to target a more complicated and underlying
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Figure 2: Model performance by question type.

Subreddit PersonalFinance LegalAdvice AmITheAsshole
Text context I need help figuring out what’s

the best next step. I have $1200
saved for car payments but I
have no idea after that.

Last month I got a letter from a
law firm representing someone
that I owe a debt to. Two years
ago I couldn’t continue to make
payments to the creditor and
almost went bankrupt.

My younger brother is autistic.
He can function and he has a
job (janitor), hangs out with his
friends but he can’t live on his
own.

Social group EXPERTISE TIME LOCATION

Group 1 (Expert) Have you been
applying for jobs all day?

(Slow) Have you asked what
they are willing to settle for?

(US) What if down the road you
had to re-locate for work or your
wife’s work?

Group 2 (Novice) Are you above water
on the car?

(Fast) Do you actually intend
on filing bankruptcy?

(non-US) How disabled is your
brother?

Question similarity 0.209 0.256 0.190

Table 13: Example divisive questions for different social groups.

Figure 3: Maximum semantic similarity between
questions and sentence from original post.

issue around the debt problem, while the Fast
question-seeker clarifies a basic detail about the
case. For LOCATION, the question from the US
asker focuses on adapting to work needs, while the
non-US question addresses the writer’s brother
and his medical situation. In all cases, we can see
that these kinds of questions are more likely to be
anticipated by a generation model that produces
more diverse output.

C.4 Divisive posts: word embeddings

In § 5.2.3, we identified questions as “divisive”
based on low similarity between the latent
representations of the questions, as generated
by a sentence encoder. We also experiment
with determining divisiveness based on static
word embeddings. We leverage a set of
word embeddings trained with the FastText
algorithm (Joulin et al., 2017), and we convert
each questions to a latent representation using
the average over all embeddings for the tokens in
the question. We then compute paired question
similarity as before, with cosine similarity. The
questions from the sentence embeddings and those
from the static word embeddings have a high
degree of overlap: setting the similarity threshold
below 5% yields an overlap of 23.7%, and a
similarity threshold below 10% yields an overlap
of 45.3%. Next, we test the correlation between
the sentence embedding similarity and the word
embedding similarity and find a high amount
of correlation (R = 0.98, p < 0.001). We
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Data Accuracy

Overall 47.5
Social group

EXPERTISE 49.3
LOCATION 60.8
TIME 36.9

Subreddit
Advice 45.6
AmItheAsshole 48.9
LegalAdvice 53.3
PCMasterRace 42.9
PersonalFinance 47.8

Table 14: Human annotation accuracy for group
guessing task.

conclude that labeling divisive questions using
word embedding similarity rather than sentence
embedding similarity would yield similar results to
those observed earlier.

C.5 Human evaluation: annotation details

We provide the details of the annotation required
for the human evaluation task (§ 5.3). We annotate
the questions for each combination of subreddit
and group category, and we recruit 1 annotator
per task via Prolific, with 3 social groups ×
5 subreddits × 3 annotators = 45 annotators
total, and a maximum of 50 questions total for
each annotator. For domain-specific subreddits,
we recruit annotators based on profession, e.g.
annotators who work in the finance industry for
r/PersonalFinance. We pay our annotators
$5 for the task, assuming about 30 minutes
per task. Annotators judged question quality
on a 5-point scale based on whether they
were answerable, relevant, and understandable.
The annotators achieved reasonable agreement
considering the subjective nature of the task, with
Krippendorff’s alpha at 0.153 for “Answerable,”
0.309 for “Relevant,” and 0.23 for “Understandable”
(compared to 0 for random chance).

C.6 Human evaluation: social group
prediction

We report here the results of the additional
annotation task mentioned in § 5.3. Following the
question quality task, for each post we provide
the two social-token model questions in random
order for a group prediction task, where annotators
must choose the question that corresponds to a
given social group in the category: e.g. “Which
question was more likely to be written by an
expert reader?” We show the results for the
group-guessing task in Table 14. Annotators

generally had trouble guessing the identity of the
social groups except for the LOCATION category,
which corresponds with the higher quality ratings
reported in Table 9. We also find slightly higher
guessing accuracy for LegalAdvice, which
may be due to intuitive understanding among
annotators on what constitutes a difference in social
groups for the legal domain (e.g. experts using
particular terminology). The low performance in
this task may indicate that human-understandable
differences between the questions may be less
obvious in individual pairs of questions as
compared to the aggregate groups of questions (see
differences in § 4.2).
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Abstract

User simulators (USs) are commonly used to
train task-oriented dialogue systems (DSs) via
reinforcement learning. The interactions often
take place on semantic level for efficiency, but
there is still a gap from semantic actions to
natural language, which causes a mismatch be-
tween training and deployment environment.
Incorporating a natural language generation
(NLG) module with USs during training can
partly deal with this problem. However, since
the policy and NLG of USs are optimised sep-
arately, these simulated user utterances may
not be natural enough in a given context. In
this work, we propose a generative transformer-
based user simulator (GenTUS). GenTUS con-
sists of an encoder-decoder structure, which
means it can optimise both the user policy and
natural language generation jointly. GenTUS
generates both semantic actions and natural
language utterances, preserving interpretability
and enhancing language variation. In addition,
by representing the inputs and outputs as word
sequences and by using a large pre-trained lan-
guage model we can achieve generalisability
in feature representation. We evaluate Gen-
TUS with automatic metrics and human evalu-
ation. Our results show that GenTUS generates
more natural language and is able to transfer to
an unseen ontology in a zero-shot fashion. In
addition, its behaviour can be further shaped
with reinforcement learning opening the door
to training specialised user simulators.

1 Introduction

Task-oriented dialogue systems (DSs) assist their
users in accomplishing a goal, such as booking a
flight ticket or making a payment. This should be
done through natural language interactions between
the system and the user, whilst the system interacts
with various external databases and API calls in
the background. The core component of such a
DS is the dialogue policy module, which decides
what should be said to the user next. This module

can be trained via interaction with users, through
reinforcement learning (RL). However, this creates
a conflict between the high cost of interacting with
real users and the large amount of interactions re-
quired for RL. As a result, user simulators (USs)
are often utilised instead to train dialogue policies,
as they make it possible for the system to learn
from a large number of interactions in a controlled
environment at a fraction of the cost.

Rule-based USs are widely used both in research
and industry because they are interpretable and can
be built without a labelled dataset. However, de-
signing the rules demands expert knowledge and
creating these rules becomes intractable on com-
plex domains, making them only suitable for small
and simple domains. In addition, human behaviour
is too complex and diverse to be manually de-
scribed by rules, leading to sub-optimal perfor-
mance of DSs in deployment scenarios (Schatz-
mann et al., 2006).

On the other hand, data-driven USs can be built
with less expert involvement. However, these mod-
els are either ontology-dependent (El Asri et al.,
2016; Gür et al., 2018; Kreyssig et al., 2018),
which means adapting to a new domain requires re-
engineering the feature representation or re-training
the model, or they do not model the language of
the user (Lin et al., 2021). Both shortcomings are
serious. The user simulator needs to support zero-
shot transfer across ontologies, as it is difficult to
collect enough labelled data for each new domain.
The ability to produce natural language output is
also critical as it makes the training and testing en-
vironment more challenging and similar to the real
user scenario. Therefore, models that can attain
both properties are much needed.

In this work, we propose a model that has both
desired properties. More specifically, our contribu-
tions are as follows:

• We, propose a generative transformer-based
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user simulator that we call GenTUS1. The re-
sponse of GenTUS includes both semantic ac-
tions and natural language utterances, which
retains interpretability and induces linguistic
variation.

• By optimising the user policy and natural lan-
guage jointly, GenTUS generates more natural
language in the given context.

• GenTUS can adapt to an unseen ontology in a
zero-shot fashion and have its behaviour fur-
ther shaped by reinforcement learning (RL).

The rest of the paper is organised as follows. In
Section 2, we review the related work. Section 3
describes in detail the proposed simulation frame-
work. In Section 4, we present the experimental
set-up, followed by the experimental results in Sec-
tion 5. We conclude with Section 6.

2 Related Work

The performance of a task-oriented dialogue policy
trained by RL is significantly affected by the quality
of the US used to generate the interactions (Schatz-
mann et al., 2005). An N-gram user simulator pro-
posed by Eckert et al. (1997) is one of the earliest
data-driven models. This model predicts the user
action au according to the system action am based
on a bi-gram model P (au|am). Its behaviour is
often unreasonable since it only takes the latest sys-
tem action as input without any information about
the user goal. Therefore, models which can act on
a given user goal were introduced (Georgila et al.,
2006; Eshky et al., 2012). A Bayesian user simu-
lation model which predicts the user action based
on the user goal is proposed by Daubigney et al.
(2012). In Cuayáhuitl et al. (2005), the user and the
system behaviour are modelled by hidden Markov
models. A graph-based US, which constructs a
graph from all possible dialogue paths, is proposed
by Scheffler and Young (2002). This simulator
can act reasonably and consistently, but it is not
practical to implement in a complex scenario, as it
requires extensive domain knowledge.

The agenda-based user simulator (ABUS)
(Schatzmann et al., 2007) is widely used to train
tourist-information DSs. Its behaviour is based on
hand-crafted stacking and popping of rules with
a stack-like agenda user goal, ordered by the pri-
ority of the user actions. It is difficult to transfer

1https://gitlab.cs.uni-duesseldorf.de/
general/dsml/gentus-public.git

this model to a new ontology because the rules
need to be redesigned. Moreover, it only provides
semantic-level dialogue acts.

To reduce the involvement of experts, further
data-driven user simulator approaches have been
proposed. The sequence-to-sequence (Seq2Seq)
model structure is the most common framework.
A semantic level Seq2Seq user simulator with an
encoder-decoder structure is proposed by El Asri
et al. (2016). This model embeds the dialogue
history into a context vector via a recurrent neural
network (RNN) encoder. Its decoder then generates
user actions based on the context embedding vector.

Instead of generating dialogue acts, the neural
user simulator (NUS) of Kreyssig et al. (2018) can
generate responses in natural language. However,
this model has limited interpretability because it
does not provide semantic-level outputs and its
input representation is domain-dependent.

The variational hierarchical Seq2Seq user sim-
ulator (VHUS) proposed by Gür et al. (2018) en-
codes the system actions and the user goal by RNNs
instead of complex dialogue history features and
generates semantic user actions. Its features are
still domain-dependent as system actions and user
goals are represented by domain-dependent one-
hot encodings. As VHUS has no constraints in
the decoding process, it often generates impossible
actions under the given ontology.

A domain-independent transformer-based user
simulator (TUS) is proposed by Lin et al. (2021).
With domain-independent input and output feature
representations, TUS can adapt to an unseen do-
main in a zero-shot fashion. However, it does not
model natural language output. Moreover, all in-
tents are part of the model, which makes transfer to
an unrelated ontology, i.e. the one with a different
sets of intents, difficult.

To convert the dialogue acts from the semantic
level to natural language, a user simulator com-
monly includes an NLG module connected to the
semantic level user policy. Although template-
based NLGs are widely used in research, creating
templates for every dialogue act is labour-intensive
and lacks language variation. Data-driven NLG
models, such as SC-LSTM (Wen et al., 2015) and
SC-GPT (Peng et al., 2020) can generate natural
language utterances conditioned on given semantic
actions. However, taking only semantic actions as
input, their results may not be sufficiently natural
in a given context. In addition, the user policy and
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NLG model cannot be optimised jointly within the
modular architecture.

An end-to-end US which generates both dia-
logue acts and utterances is proposed by Tseng
et al. (2021), although in their evaluation they train
a DS using only the semantic actions from the US.
The NLG of this US is based on a simple delexi-
calised LSTM model. The user goal is represented
as a binary vector, with each dimension represent-
ing a domain-slot pair in the ontology. This creates
several obstacles for transfer to an unseen ontology:
such a transfer would require further hand-coded
lexicalisation rules for the NLG component, modi-
fications of the feature representations and further
fine-tuning of the US policy.

3 Generative Transformer-based User
Simulation

Task-oriented DSs are expected to handle the re-
quests of real users in natural language. Therefore,
when designing USs, it is important to endow them
with the ability to converse with the system via
natural language as well. In this way, we can study,
for example, the robustness of the systems towards
misunderstandings that may occur when convers-
ing with real users. On the other hand, users rarely
misunderstand the DS response. It is hence reason-
able to assume that the input to the US may be on
the semantic level. This is also practical in such
cases as when DSs need to execute API calls, such
as playing a song or turning off the light.

Task-oriented DSs are built upon an ontol-
ogy which includes all possible intents that the
user or the system can exhibit in their actions
and domains, which describes the entities the
user or the system can talk about. Domains
are further characterised by a number of slots
and each slot can take a number of values. In
task-oriented DS we assume that the user has
a particular goal they want to achieve. We de-
fine goal as the following set G = {domain1 :
[(slot1, value1), (slot2, value2), . . . ], domain2 :
[(slot3, value3), . . . ], . . . }, where domains, slots
and values are selected from the ontology.

The semantic user action and system action are
composed of several tuples of the following struc-
ture: (intent, domain, slot, value). Users and
systems may have different intents, e.g., systems
can recommend an option and users can negate the
recommended offer. A semantic action can be con-
verted into a natural language utterance, which we

denote with textusr in the case of a user action.
User simulation in a task-oriented dialogue can

be modelled as a sequence-to-sequence problem.
For each turn, GenTUS takes the context infor-
mation as an input sequence, including the system
action, the user history, the user goal, and turn infor-
mation, and generates the semantic action and the
natural language response as the output sequence.
In following sections, we provide more details.

3.1 Model Structure
The backbone of the proposed GenTUS user sim-
ulation model is an encoder-decoder structure as
shown in Fig. 1. In turn t, the user goal is up-
dated by the user action from the previous turn
and the current system action. If the system in-
forms that the user’s request is not possible or fails,
the value of constraint slots will be replaced by a
random value. The encoder takes the system ac-
tion actiont

sys, user actions from previous 3 turns
actiont−1:t−3

usr , the user goal goal, and the turn
number t as input. Then the decoder generates both
the user semantic action actiont

usr conditioned on
the output of the encoder and the associated natu-
ral language response textusr. We initialise Gen-
TUS by BART (Lewis et al., 2020), which is a
transformer-based natural language generator with
a bidirectional encoder and a left-to-right decoder.
BART achieves convincing results on text genera-
tion and comprehension tasks after fine-tuning.

3.2 Input and Output Representation
The system action and user action are semantic
level dialogue acts and are represented by a list
of tuples (intent, domain, slot, value). Note that
the output of this user simulator is a semantic as
well as a natural language representation of the user
action. The natural language action is sent to the
system, while the semantic action is retained by the
user simulator for the next turn. The user goal goal
is represented by a list of tuples,

[(domain1, type1, slot1, value1, status1),

(domain2, type2, slot2, value2, status2), . . . ]
(1)

Following the setting in Lin et al. (2021), the tuples
are ordered by the user preference, which means
one tuple is in front of the others if the user pre-
fer to mention it earlier. The intent, domain, slot,
and value are sampled from the ontology. The
type represents whether a slot in the goal is a con-
straint info, a request reqt, or a booking informa-
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Figure 1: The model structure of GenTUS. Both input and output are JSON-formatted word sequences.

tion book. The status represents the condition
of each domain-slot pair. It can be fulfilled, in
conflict, requested, or not mentioned. The turn in-
formation is the number of the current dialogue
turn. We represent the input to GenTUS as a JSON-
formatted string: "{"system": actiont

sys, "user":
actiont−1:t−3

usr , "goal": goal, "turn": t}".
The output of GenTUS is a set of semantic-level

user sub-actions and the corresponding utterance
in natural language. The output is also easily rep-
resented as a JSON-formatted string: "{"action":
actiont

usr, "text": texttusr}".
As ultimately both input and output contain only

words, we can train GenTUS as a sequence-to-
sequence model. By using a pre-trained language
model for initialisation, we can harness the general-
isation capabilities of these powerful models when
adapting to a new ontology.

3.3 Constrained Semantic Decoding Space

The downside of using a large pre-trained language
model as a generator is that it may suffer from gen-
erating hallucinations. This means that we should
place constraints on the output to prevent generat-
ing illegal semantic actions, which is particularly
problematic for DSs.

In order to only produce valid actions, every
semantic action (intent, domain, slot, value)
is created by following a path in a graph that
defines the valid actions, where the graph is
constructed as follows. The possible intents in
the diagram are derived from the ontology. For
example, the MultiWOZ dataset (Budzianowski
et al., 2018) contains general intents like greeting
and bye, and domain-specific intents like inform

and request. The possible domains, slots and
values are derived from the user goal, and system
actions are used to update the nodes. The possible
paths following intent, domain, slot and value
are constrained by the ontology, which defines
what valid actions are comprised of. Fig. 2 depicts
an example, where GenTUS selected the action
[(Inform, Hotel, Area, North)] in
turn 0 and [(Request, Hotel, Addr,
?), (Inform, Taxi, Leave, 8:00)]
in turn 1 by following the two paths in the diagram.
The graph derived from the user goal is depicted
on the left of Fig. 2 and updated after the system
asked about a cheap hotel. After every decoded
action the model can decide whether to continue
or stop the decoding process. It is important
to highlight that while we use the ontology to
constrain the generation process, no part of the
ontology is ever part of the model, but the model
uses the ontology as one additional input. In that
way it can be transferred to a new ontology in a
purely zero-shot manner.

4 Experimental Setup

The objective of our experiments is four-fold. First,
we want to show that when trained and tested on the
same ontology, the user simulator can adequately
capture the semantics represented in the real user
data. At the same time, we also want to examine its
zero-shot capability by conducting the evaluation
on another unseen ontology. Second, as natural
language output is an important component of the
proposed model, we evaluate it separately using
both automatic measures and a human preference
test. Third, we jointly evaluate the GenTUS dia-
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Figure 2: An example of a constrained semantic decoding space. The intents come from the ontology whereas
domains, slots and values come from the user goal. In addition, system actions can insert new nodes. The user
semantic actions can only contain nodes from the graph. More details are mentioned in section 3.3.

logue policy and its natural language output using
a human trial and compare it to the state of the art.
This aims to show the value of optimising the user
simulator behaviour and language at the same time.
Finally, we show how the behaviour of GenTUS
can be further shaped by RL in interaction with a
DS, with the aim of demonstrating that this model
can yield a number of specialised user simulators.

4.1 Datasets

We conduct our experiments on two corpora,
the Multi-Domain Wizard-of-Oz (MultiWOZ)
(Budzianowski et al., 2018) and Schema-Guided
Dialogue (SGD) (Lee et al., 2022) datasets. Mul-
tiWOZ is a human-to-human conversation dataset
including around 10k dialogues, one person pos-
ing as a user and the other as an operator. In this
dataset, more than one domain may be involved in
one dialogue, even in the same turn. SGD consists
of more than 20k dialogues between humans and
a virtual assistant. The ontology of MultiWOZ in-
cludes 5 intents (3 general intents, e.g., greeting
and bye, and 2 domain-specific intent, i.e., inform
and request) and 7 different domains, e.g. hotel and
attraction. On the other hand, the ontology of SGD
includes 11 intents (2 general intents, i.e., thank-
you and goodbye, and 9 domain-specific intents,
e.g. inform, request, and confirm) and 20 different
domains, e.g., bank and music. More details of
these two datasets are listed in Appendix A.

4.2 Supervised Learning for GenTUS

Our model is inherited from Huggingface’s trans-
formers (Wolf et al., 2020) and trained on both
MultiWOZ and SGD. To measure how well Gen-

TUS can transfer to a new ontology, the model
trained on MultiWOZ is not only tested on the Mul-
tiWOZ test set but also evaluated on the SGD test
set without any further fine-tuning, and vice versa.
To the best of our knowledge, no other data-driven
US has been tested in such a rigorous zero-shot
transfer set-up.

We evaluate NLG performance by automatic
metrics, including slot error rate (SER), sacre-
BLEU score (Post, 2018) and self-BLEU score
(Zhu et al., 2018), and a human preference test.
SER evaluates the exact matching of semantic ac-
tions in the candidate utterance. SER = (m +
h)/N , where N is the total number of slots in se-
mantic actions, m and h stand for the number of
missing and hallucinated slots, respectively. The
self-BLEU is a diversity evaluation metric. For
every data point we generate a sentence. Given
such a sentence, we calculate a BLEU score where
the reference sentences are all other generated sen-
tences. Then we can get the self-BLEU score by
averaging all these results. The lower self-BLEU
score implies the higher diversity. We conduct the
human preference test on the Amazon Mechani-
cal Turk2 platform. Following the setting of Peng
et al. (2021), the workers are requested to rate each
utterance from 1 (bad) to 3 (good) in terms of in-
formativeness and naturalness. Informativeness
measures whether the given utterance contains all
the information specified in the semantic actions.
Naturalness evaluates whether the given utterance
is human-like. A screenshot of this questionnaire
can be found in Appendix C.

In addition, we measure how well GenTUS can
2https://www.mturk.com/
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fit or transfer to a dataset using precision, recall,
F1 score, as well as turn accuracy on the semantic
level and sacre-BLEU on the language level.

4.3 Training the Dialogue System with User
Simulators

USs are designed to simulate the real-world sce-
nario for training DSs, thus USs should respond in
natural language as real users’ utterances. In this
section, we investigate the ability of the proposed
model to train a dialogue policy by interacting on
the natural language level.

The policies of different DSs are trained by prox-
imal policy optimization (PPO) (Schulman et al.,
2017), a simple and stable RL algorithm, with dif-
ferent USs, including the agenda-based US (ABUS)
with template-based NLG (ABUS-T), ABUS with
SC-GPT (ABUS-S), and GenTUS which gener-
ates language. Note that we do not include NLG
modules in evaluation which are based on delex-
icalisation, such as Tseng et al. (2021), as their
performance strongly depends on the amount of
hand-coding invested in defining the delexicali-
sation rules. The downsides of delexicalisation
already became clear in early neural network dia-
logue state trackers (Mrkšić et al., 2017) and are
further exacerbated in natural language genera-
tion (Peng et al., 2020). We do however include a
rule-based user simulator (Schatzmann et al., 2007)
with a template-based NLG, noted as ABUS-T in
our experiments, as the rule-based user simulator
has achieved competitive results in human evalua-
tions (Kreyssig et al., 2018; Lin et al., 2021). Also,
TUS (Lin et al., 2021) did not significantly outper-
form ABUS in the human trial, so we exclude it
from the evaluation here.

To deal with the user response in natural lan-
guage, a natural language understanding mod-
ule composed with BERT (Devlin et al., 2019)
(BERTNLU) is included and a rule-based dia-
logue state tracker (RuleDST) is used to track the
users’ states for each DS. These modules, e.g.,
BERTNLU, RuleDST, ABUS, a template-based
NLG, and SC-GPT, are provided in the ConvLab-2
framework (Zhu et al., 2020).

We train policies for 200 epochs, each of which
consists of 1000 dialogues. The reward function
gives a reward of 80 for a successful dialogue and
−1 for each dialogue turn, with the maximum num-
ber of dialogue turns set to 40. For failed dialogues,
an additional penalty is set to −40. Each dialogue

policy is trained on 5 random seeds.
We apply the cross-model evaluation (Schatzt-

nann et al., 2005) to evaluate these DSs. Different
USs are used to evaluate a DS which is trained
with a particular US to estimate the generalisation
ability. We also conduct an interactive human trial.
For evaluation, we select the DS policy performing
best on the US it was trained on. For each DS we
collected 300 dialogues. The human trial is imple-
mented with DialCrowd (Lee et al., 2018; Huynh
et al., 2022) connected to the Amazon Mechanical
Turk platform. Users are provided with randomly
generated user goals based on the ontology of Mul-
tiWOZ and are required to interact with DSs in
natural language.

4.4 Fine-tuning GenTUS with RL

Simulators purely trained using supervised learn-
ing will learn behaviour that best fits the data and
most likely will result in general behaviour. As
behaviour can be very different from one user
to another, it is important to be able to model
different user behaviours, which will in turn re-
sult in more robust policies. To this end, we fur-
ther fine-tune GenTUS using RL and shape its be-
haviour by deploying different reward functions.
In order to achieve that, for a given user action
{(intenti, domaini, sloti, valuei)}mi=1, we define
the turn level reward r := −ρeff + ρact ·m, where
ρeff and ρact are hyperparameters. In addition, as
for the system reward, we give a reward of 80 for a
successful dialogue and −40 for a failed dialogue
at the very end of the dialogue. We let GenTUS
interact with the rule-based dialogue system both
on semantic level and optimise its behaviour us-
ing PPO. We test two different reward settings
that are distinguished by the turn level reward:
r1 := −5 · m (turn level penalty and low action
reward) and r2 := −10+20 ·m (turn level penalty
and high action reward). The corresponding aver-
age returns and trained user simulators associated
with the rewards are abbreviated with R1, R2 and
User1,User2 respectively. We train each model on
4 different seeds. We then take for every seed the
model with highest average return on its respective
reward and evaluate on the other reward functions
to obtain a cross-reward evaluation.

5 Experimental Results

Our experimental results can be divided into five
parts. In Section 5.1, we analysis the impact of
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different features with an ablation study. In Sec-
tion 5.2, we conduct the direct evaluation by mea-
suring automatic metrics (SER, sacre-BLEU, and
self-BLEU) and human ratings (informativeness
and naturalness) from the preference test. In Sec-
tion 5.3, we focus on the generalisability of Gen-
TUS by a zero-shot ontology transfer experiment,
measured by semantic level and language level met-
rics on two different corpora. The indirect evalua-
tion is in Section 5.4. We compare DSs trained by
different USs with cross-model evaluation. The re-
sult from the interactive human trial is discussed in
Section 5.5. In Section 5.6, we show that it is pos-
sible to further configure the behaviour of GenTUS
via RL.

5.1 Impact of different features
We conduct an ablation study to investigate the
usefulness of our proposed feature representation.
The result is shown in Table 1. First, we measure
the performance of the model which takes the turn
information, the system action actiont

sys and the
user action actiont−1

usr from previous turn. Without
context information, the model can only achieve
0.21 turn accuracy and 0.35 F1-score. After includ-
ing the user goal goal, the F1-score is improved
by 0.30 and the turn accuracy is also improved
by 0.30 absolutely. After adding more user his-
tory actiont−1:t−3

usr , the F1 score is also improved
slightly with the same turn accuracy.

This result indicates that the context information
can improve the performance especially including
the user goal in the input sequence.

Model P R F1 ACC

System and user action only 0.42 0.30 0.35 0.21
+ user goal 0.66 0.64 0.65 0.51

+ history 0.68 0.66 0.66 0.51

Table 1: The GenTUS ablation experiments on Multi-
WOZ. We analyse the impact of different input features
by measuring precision (P), recall (R), F1 score (F1),
and turn accuracy (ACC).

5.2 Natural Language Evaluation
The NLG performance of different models on Mul-
tiWOZ is shown in Table 2. TemplateNLG, SC-
GPT, and GenTUS-golden generate natural lan-
guage responses from golden semantic actions and
their SER is calculated based on these golden se-
mantic actions. On the other hand, the language
of GenTUS is generated based on semantic actions

Model SER ↓ sacre-BLEU ↑ self-BLEU ↓
Human 3.92% - 0.77
TemplateNLG 1.67% 10.46 0.89
SC-GPT 5.33% 10.51 0.79
GenTUS-golden 5.73% 19.61 0.93
GenTUS 3.97% - 0.95

Table 2: The NLG performance on MultiWOZ.
GenTUS-golden is generated based on the golden se-
mantic actions and GenTUS is using its own semantic
action prediction. The arrow direction means which
trend is better.

Model Informativeness Naturalness

SC-GPT 2.50 2.45
GenTUS 2.55 2.58

Table 3: Human preference test for NLG on MultiWOZ.
The naturalness score is statistically significantly differ-
ent (pv < 0.05).

predicted by itself, which means we can directly
measure the agreement between the semantic ac-
tion the simulator indented to produce and the final
natural language content produced by the simulated
user. The sacre-BLEU is calculated with golden
utterances.

Although data-driven NLG models have higher
SER than template-based NLG, these models have
better scores in BLEU. GenTUS-golden outper-
forms SC-GPT by 9.10 points in BLEU because
our model not only takes semantic actions as input
but also context information, e.g., the user goal.
Moreover, there is no statistically significant dif-
ference in SER between SC-GPT and GenTUS-
golden. The human preference test in Table 3 also
shows that GenTUS is more natural than SC-GPT
with similar informativeness. The diversity of the
proposed model is the worst, which is not surpris-
ing as we didn’t include beam-search or sampling
to keep the computational complexity as low as pos-
sible. An investigation of a method which balances
the two we leave for future work.

Without golden dialogue acts in the input, the
SER of GenTUS drops by 1.77% absolute when
GenTUS generates utterances from its prediction
dialogue acts instead of from golden dialogue acts,
which means the language-level and semantic-level
outputs of GenTUS are in agreement. In other
words, with the context information and its pre-
dicted semantic actions, GenTUS can generate
more natural language and have fewer missing and
redundant pieces of information.
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5.3 Zero-shot Ontology Transfer
The results of zero-shot ontology transfer are
shown in Table 4. For the semantic level evalua-
tion, GenTUS has higher precision, recall, F1 score
and turn accuracy on MultiWOZ than SGD when
training and testing on the same corpus. The reason
is the ontology of SGD is more complicated than
MultiWOZ, i.e., contains more intents, domains,
slots and values as shown in Section 4.1.

The performance of GenTUS trained on Multi-
WOZ dropped by 0.39 on F1 score and 0.35 on turn
accuracy when testing on SGD. On the other hand,
GenTUS trained on SGD can still achieve 0.49 on
F1 score and 0.34 turn accuracy when testing on
MultiWOZ without fine-tuning on the unseen Mul-
tiWOZ ontology. In other words, GenTUS trained
on SGD can get a comparable F1 score and turn
accuracy on both known and unknown ontology.

When testing and training on the same corpus,
the BLEU score of GenTUS is 17.84 on MultiWOZ
and 18.30 on SGD. However, when transferring to
another corpus, the BLEU score drops because
users in MultiWOZ and SGD have different vocab-
ulary and language styles.

Train Test Semantic Language
data data P R F1 ACC sacreBLEU

M M 0.68 0.66 0.66 0.51 17.84
S S 0.60 0.58 0.58 0.47 18.30
S M 0.51 0.51 0.49 0.34 2.70
M S 0.30 0.26 0.27 0.16 1.86

Table 4: The cross-dataset evaluation of GenTUS based
on two different corpora, MultiWOZ 2.1 (M) and
Schema-Guided Dialogue dataset (S). The semantic ac-
tions and language responses generated by GenTUS are
evaluated by semantic level metrics, i.e., precision (P),
recall (R), F1 score (F1) and turn accuracy (ACC), and
language level metric, i.e., sacre-BLEU.

5.4 Cross-model Evaluation
The results of cross-model evaluation are presented
in Table 5. The DS trained with GenTUS has the
best performance when interacting with ABUS-T
in a 15% absolute improvement in success rate over
its performance on GenTUS. On the other hand, al-
though the DS trained with ABUS-T achieves 78%
success rate, its performance drops by 28% abso-
lute when evaluated by GenTUS. The DS trained
with ABUS-S also performs best when interacting
with ABUS-T, with 17% absolute improvement
in success rate interacting with ABUS-S. All three
DSs achieve their best performance when evaluated

by ABUS-T, which means ABUS is the easiest set-
ting. This indicates that it may not be sufficient
to simulate real world scenario with only a hand-
crafted policy and a template-based NLG.

On the other hand, the USs with data-driven
NLG are more difficult for the DS to handle. The
DS trained by ABUS-T performs better than the
DS trained by ABUS-S because they learn from the
same policy and SC-GPT has higher SER, making
the DS hard to be fully optimised.

US for US for testing
training ABUS-T ABUS-S GenTUS

ABUS-T 0.78 0.63 0.50
ABUS-S 0.74 0.57 0.45
GenTUS 0.68 0.43 0.53

Table 5: The success rates of policies trained on Gen-
TUS, ABUS with template NLG (ABUS-T), and ABUS
with SC-GPT (ABUS-S) when tested on various USs.
Each pair is evaluated by 400 dialogues on 5 seeds,
which is 2K dialogues in total.

5.5 Interactive Human Trial

US for training Success Overall

ABUS-T 0.75 3.71
ABUS-S 0.79 3.83
GenTUS 0.86 4.08

Table 6: The interactive human trial results include suc-
cess rate and overall rating as judged by users. Each sys-
tem is evaluated by 300 dialogues. The success rate and
overall score of GenTUS are statistically significantly
different from ABUS-S and ABUS-T (pv < 0.05)

The result of the interactive human trial is shown
in Table 6. 155 users were involved in this trial.
The number of interactions per user varies from
1 to 48. A dialogue is rated as successful if the
system fulfils the user’s given goal. The overall
rating ranges from 1 (very poor) to 5 (excellent).

The DS trained by GenTUS outperforms the DS
trained by ABUS-T and the DS trained by ABUS-
S both on success rate and overall rating, which
shows that is beneficial to train a DS with a jointly
optimised user policy and NLG. However, we can-
not observe statistically significant differences be-
tween ABUS-T and ABUS-S on success and over-
all rating, which means including a data-driven
NLG module with the rule-based US is not suffi-
cient to train an optimal DS.
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Models Success Avg Acts Turns R1 R2

User 1 0.84± 0.03 1.33± 0.03 7.01± 0.27 33.5± 3.5 34.2± 3.7
User 2 0.78± 0.04 1.81± 0.04 7.24± 0.33 4.3± 6.2 119.1± 15.5
Supervised 0.76± 0.08 1.39± 0.04 7.38± 0.32 30.9± 8.2 38.6± 10.0

Table 7: Results after fine-tuning GenTUS using RL on three different reward functions. Results show mean and
95% confidence intervals.

5.6 Fine-tuning GenTUS with RL

The results of RL training are depicted in Table 7.
We can observe that both users obtain the high-
est return on the respective reward function. The
success rate of both user 1 and user 2 are higher
than supervised model because of the success re-
ward signal in RL. User 1, which tries to lower its
number of actions, has a similar average number
of actions compared to supervised model, suggest-
ing that paid users from the corpus do not want to
say more than is necessary to achieve a success-
ful dialogue. User 2, which is rewarded for taking
many actions in a turn, shows a much higher aver-
age number of actions compared to the other users,
reflecting a different user behaviour – a chatty user.

6 Conclusion

We propose a generative transformer-based user
simulator (GenTUS), which achieves high inter-
pretability and linguistic variation by generating
both semantic actions and natural language utter-
ances. Moreover, it produces generalisable feature
representation by treating the inputs and outputs as
word sequences and leveraging a large pre-trained
language model. Our results show that GenTUS
generates more natural language than SC-GPT in a
given context and it can transfer to an unseen on-
tology in a zero-shot fashion. We consolidate our
findings by a number of automatic as well as human
evaluations. In addition, the GenTUS behaviour
can be further configured by RL with different re-
ward functions, providing an opportunity to build
specialised USs. In future work, we hope to modify
also the NLG of GenTUS via RL in order to model
user sentiment or personality.
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A Intents and domains in MultiWOZ and
SGD

type system user

general welcome, reqmore,
bye, thank, greet bye, thank, greet

domain-
specific

recommend, inform,
request, select, book,
nobook, offerbook,
offerbooked, nooffer

inform, request

Table 8: Al intents in the MultiWOZ dataset.

All intents in the MultiWOZ dataset are listed in
Table 8 and all intents in SGD dataset are listed in
Table 9. The domains in SGD follow the form of
<domain_name>_<number> and the number
is used to disambiguate services from the same
domain (Lee et al., 2022). We normalize them to
domain name only. All domains in MultiWOZ and
SGD and listed in Table 10.

type system user

general goodbye, req_more thank_you, goodbye

domain-
specific

inform, notify_success,
request, notify_failure,
confirm, offer_intent,
offer, inform_count

inform_intent, inform
negate_intent, negate
affirm_intent, affirm,
request_alts, request,
select

Table 9: All intents in the SGD dataset.

dataset domains

MultiWOZ attraction, hospital, hotel, police, restaurant,
taxi, train

SGD

alarm, banks, bus, calendar, events, flights,
homes, hotels, media, messaging, movies,
music, payment, rental_cars, restaurants,
ride_sharing, servies, train, travel, weather

Table 10: All domains in MultiWOZ and SGD. The
names of domains in SGD are normalized.

B A generated dialogue example

Here we show a dialogue example of GenTUS in-
teracting with a rule-based DS in Table 11. The
system’s semantic actions are converted to natural
language by a template-based NLG.

We can notice that GenTUS provides a natural
response in turn 5. This utterance is difficult for
the natural language understanding model and the
system is not capable to handle it. As a result,
GenTUS mentions the departure and destination
explicitly in turn 8.

C An example of human preference test

The dialogue history, semantic actions, and utter-
ances generated by two different systems are pre-
sented to workers on AMT platform. They are re-
quired to rate the informativeness and naturalness
of these utterances respectively.
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User goal

attraction: {info: {type: college}, reqt: {postcode: ?, entrance fee: ?}},
hotel: {info: {area: north, star:0}, reqt: {parking:?},
taxi: {arriveby:13:00}, reqt:{phone:?, car type:?}}

Dialogue

0-sys Welcome to the dialogue system. How can I help you?
0-usr I’m looking for a college to visit in town.

1-sys
There ’s 18 college in the centre , anything in mind ?
What area would you like this in ?

1-usr No, but I would like the postcode and entrance fee.

2-sys

We have christ’s college. Its postcode is cb23bu .
Would you be interested in visiting a college?
The entry fee is free. The postcode is cb23bu.
Did you need any further assistance today?

2-usr Yes, I’m also looking for a place to stay in the north.

3-sys
I have 13 moderate guesthouse that fit your criteria.
Want one of those? I ’d be happy to help.
May I ask what price range and area of town you are looking for?

3-usr I would like a 0 star rating.

4-sys
I have 1 option for you. It’s listed as cheap. It is a guesthouse.
Would city centre north b and b work for you?

4-usr Does it have free parking?

5-sys
City centre north b and b is available would you like to try that ?
There is wifi available at the hotel . The parking is free .
The hotel is 0 stars . It is a guesthouse .

5-usr Great. I also need a taxi to commute between the two places.

6-sys
Okay, I can help with that.
What are your departure site and destination?
Also, when would you like to leave or arrive by?

6-usr I need to arrive by 13:00.
7-sys There are 18. Would you like me to recommend one for you?
7-usr I ’d like the car type and contact number please.

8-sys
There are 18 entries found for "college" in the centre of town.
Would you like the first listing? How about the christ’s college?
Glad I could be of assistance! If you need anything else, let me know.

8-usr Yes, I need a taxi to get me from the college to the hotel by 13:00.
...

Table 11: A dialogue example of GenTUS interacting with rule-based dialogue system. GenTUS responds in a
natural way utilising anaphora in turn 5. After it finds out the system is not capable to understand, GenTUS provides
the departure and destination explicitly in turn 8.
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Figure 3: An example of human preference test.
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Abstract

We introduce AARGH, an end-to-end task-
oriented dialog system combining retrieval
and generative approaches in a single model,
aiming at improving dialog management and
lexical diversity of outputs. The model fea-
tures a new response selection method based
on an action-aware training objective and a
simplified single-encoder retrieval architecture
which allow us to build an end-to-end retrieval-
enhanced generation model where retrieval and
generation share most of the parameters.

On the MultiWOZ dataset, we show that our
approach produces more diverse outputs while
maintaining or improving state tracking and
context-to-response generation performance,
compared to state-of-the-art baselines.

1 Introduction

Most research task-oriented dialog models nowa-
days focus on end-to-end modeling, i.e., the whole
dialog system is integrated into a single neural net-
work (Wen et al., 2017; Ham et al., 2020). Al-
though recent end-to-end generative approaches
based on pre-trained language models produce flu-
ent and natural responses, they suffer from two
major problems: (1) hallucinations and lack of
grounding (Dziri et al., 2021), which result in faulty
dialog management or responses inconsistent with
the dialog state or database results, and (2) bland-
ness and low lexical diversity of outputs (Zhang
et al., 2020b). On the other hand, retrieval-based
dialog systems (Chaudhuri et al., 2018) select the
most appropriate response candidate from a human-
generated training set, thus producing varied out-
puts. However, their responses might not fit the
context and can lead to disfluent conversations, es-
pecially when the set of candidates is sparse. This
limits their usage to very large datasets which do
not support dialog state tracking or database access
(Lowe et al., 2015; Al-Rfou et al., 2016).

Several recent works focus on combining the re-
trieval and generative dialog systems via response
selection and subsequent refinement, i.e., retrieval-
augmented generation (Pandey et al., 2018; Weston
et al., 2018; Cai et al., 2019b; Thulke et al., 2021).
These models are used for open-domain conver-
sations or to incorporate external knowledge into
task-oriented systems and do not consider an ex-
plicit dialog state.

Our work follows the retrieve-and-refine ap-
proach, but we adapt it for database-aware task-
oriented dialog. We aim at improving diversity of
produced responses while preserving their appro-
priateness. In other words, we do not retrieve any
new information from an external knowledge base,
instead, we retrieve relevant training data responses
to support the decoder in producing varied outputs.
To the best of our knowledge, we are the first to use
retrieval-augmented models in this context. Unlike
previous works, we merge the retrieval and gen-
erative components into a single neural network
and train both tasks jointly, instead of using two
separately trained models. Our contributions are
summarized as follows:1

• We propose a single-encoder retrieval model uti-
lizing dialog action annotation during training,
and we show its superior retrieval capabilities
in the task-oriented setting compared to two-
encoder baseline models (Humeau et al., 2020).

• We propose an end-to-end task-oriented gen-
erative system with an integrated minimalistic
retrieval module. We compare it to strong base-
lines that model response selection and genera-
tion separately.

• On the MultiWOZ benchmark (Budzianowski
et al., 2018), our approaches outperform previ-
ous methods in terms of lexical diversity and
achieve competitive or better results in auto-
matic metrics and human evaluation.
1Code: https://github.com/Tomiinek/Aargh
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Figure 1: Our retrieval-based generative task-oriented system (AARGH, see Section 3.5). Numbers in module
boxes mark the order of processing during inference: (1) inputs are pushed through the shared context encoder and
(2) state encoder; (3) the state decoder produces the update to the current dialog state. The new state is used to
query the database whose outputs are discretized, embedded, and (4) used in the retrieval encoder whose output is
reduced to a single vector via average pooling. The context embedding is used to get the best response candidate
(hint). Finally, (5) the response decoder, which can attend to the state encoder outputs via cross-attention and is
conditioned on the database results and the hint, generates the final system response to be shown to the user.

2 Related Work

Task-Oriented Response Generation Most cur-
rent works focus on building multi-domain data-
base-grounded systems. The breeding ground
for this research is the large-scale conversational
dataset MultiWOZ (Budzianowski et al., 2018; Eric
et al., 2020; Zang et al., 2020).

Recent models often benefit from action anno-
tation. Zhang et al. (2020a) use action-based data
augmentation and a three-stage architecture, decod-
ing the dialog state, action, and response. Chen
et al. (2019) generate responses without state track-
ing, exploiting a hierarchical structure of the action
annotation. On the other hand, reinforcement learn-
ing models (Wang et al., 2021) learn latent actions
from data without using annotation.

Recent works focus on end-to-end systems based
on pre-trained language models. Budzianowski
and Vulic (2019) fine-tune GPT-2 (Radford et al.,
2019) to model task-oriented dialogs, Hosseini-Asl
et al. (2020) enhance this approach with explicitly
decoded system actions. Peng et al. (2021b) use
auxiliary training objectives and machine teaching
for GPT-2 fine-tuning. Lin et al. (2020) introduced
the encoder-decoder-based framework MinTL with
BART (Devlin et al., 2019a) or T5 (Kale and Ras-
togi, 2020) backbones (see Section 3.1).

Response Selection can be viewed as scoring re-
sponse candidates given a dialog context. A popu-
lar approach is the dual encoder architecture (Lowe
et al., 2015; Henderson et al., 2019b) where the re-
sponse and context encoders model a joint embed-
ding space. The encoders can take various forms:

Henderson et al. (2019a) compare encoders based
on BERT (Devlin et al., 2019b) and custom en-
coders pre-trained on Reddit; Wu et al. (2020) pre-
train encoders specifically for task-oriented con-
versations. Humeau et al. (2020) introduce poly-
encoders, which produce multiple context encod-
ings and add an attention layer to allow rich interac-
tion with the candidate encoding (cf. Section 3.3).

Retrieval-Augmented Generation To benefit
from both retrieval and generative models, We-
ston et al. (2018) proposed an open-domain dia-
log system utilizing a retrieval network and a de-
coder to refine retrieved responses. Roller et al.
(2021) further developed this approach, using poly-
encoders with a large pre-trained decoder. They
found that their decoder tends to ignore the re-
trieved response hints. To combat this, they pro-
pose the α-blending method (replacing retrieval
output with ground truth, see Section 3.2). Simi-
larly, Gupta et al. (2021) and Cai et al. (2019a,b)
focus on retrieval-augmented open-domain dialog,
but to prevent the inflow of erroneous information
into the generative part of their models, they use
semantic frames or reduced forms of retrieved re-
sponses instead of raw response texts.

Thulke et al. (2021) aim at knowledge retrieval
from external documents for resolution of out-of-
domain questions on MultiWOZ (Kim et al., 2020).
Shalyminov et al. (2020) present the only work us-
ing generation and retrieval in a single model. They
finetune GPT-2 (Radford et al., 2019) for response
generation in a low-resource task-oriented setup,
retrieve alternative responses based on the model’s
embedding similarity, and choose between gener-
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ated and retrieved responses on-the-fly. However,
their model is not trained for retrieval, cannot alter
retrieved responses, and does not take a dialog state
or database into account.

3 Method

We aim at end-to-end modeling of database-aware
task-oriented systems, i.e., systems supporting both
dialog state tracking and response generation tasks
(Young et al., 2013). We combine retrieval and gen-
erative models to reduce hallucinations and boost
output diversity. We first describe our purely gen-
erative baseline (Section 3.1), then explain base-
line generation based on retrieved hints (Section
3.2). We then introduce baseline retrieval models
(Section 3.3) and our action-aware retrieval (Sec-
tion 3.4). Finally, we describe AARGH, our single-
model retrieval generation hybrid, in Section 3.5.
AARGH is shown in Figure 1; other setups are
depicted in Appendix A.

3.1 Generative Baseline

Our purely-generative baseline model (Gen) fol-
lows MinTL (Lin et al., 2020). It is based on an
encoder-decoder backbone with a context encoder,
shared among two decoders: one for modeling the
dialog state updates, the other for producing the
final system response. Both decoders attend to the
encoded input tokens via an attention mechanism.

The encoder input sequence consists of a con-
catenation of two parts: (1) past dialog utterances
prepended with <|system|> or <|user|> tokens,
and (2) the initial dialog state converted to a string,
e.g., hotel [area: center] restaurant [food: African,
pricerange: expensive]. The first decoder is con-
ditioned only on the start-of-sequence token and
predicts the dialog state update as a difference be-
tween the current state and the initial state. The
second decoder is conditioned on the number of
database results for each queried domain, e.g. train:
6 if there are six matching results for a train search,
and generates the final response.

During inference, the input is passed through the
encoder, then the state update is predicted, merged
with the initial dialog state, and this new state is
used to query the database (see Section 4 for de-
tails). The final system response is predicted based
on the context, state, and database results.

3.2 Retrieval-Augmented Response
Generation

To combine the retrieval and generative approaches,
we follow Weston et al. (2018) and incorporate re-
sponse hints, i.e., the outputs of a retrieval module
(Sections 3.3, 3.4), into the generative module in
their original form as raw sub-word tokens. Specif-
ically, we add the retrieved response prepended
with <|hint|> to the input of Gen’s response de-
coder (Section 3.1), alongside the database results.

Gupta et al. (2021) state that this straightfor-
ward token-based retrieve & refine setup might
lead to generating incoherent responses due to over-
copying of contextually irrelevant tokens. However,
using more abstract outputs of the retrieval mod-
ule, e.g. semantic frames or salient words would go
against our goal of reducing blandness and increas-
ing responses lexical diversity. To smoothly control
the amount of token copying, we follow Roller et al.
(2021) and use the so-called α-blending. During
training, we replace the retrieved utterance with
the ground-truth final response with probability α.
This method also ensures that the decoder learns to
attend to the retrieval part of its input successfully.

3.3 Baseline Response Selection

We consider two baseline retrieval model variants:

Dual-encoder (DE) follows the very popular re-
trieval architecture (Lowe et al., 2015; Humeau
et al., 2020) which makes use of context and re-
sponse encoders. Both produce a single vector in
a joint embedding space. During training, the con-
text embedding and the corresponding response
embedding are pushed towards each other, while
other responses in the training batch are used as
negative examples, i.e., cross-entropy loss is used:

L(S) = 1

N

∑

j

(
−Sj,j + log

∑

i

eSj,i

)

where S ∈ RN×N is the similarity matrix between
normalized encoded responses er and contexts ec

in the batch, specifically Si,j = w · (eci · erj), where
w > 0 is a trainable scaling factor.

Inference-time retrieval is as simple as finding
the nearest candidate embedding given a context
embedding. The context input is similar to Gen’s
(see Section 3.1): a concatenation of the current up-
dated dialog state, the number of matching database
results and past user and system utterances. En-
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coders are followed by average pooling and a fully-
connected layer for dimensionality reduction.

Poly-encoder (PE) an extension of DE, aiming
at richer interaction between the candidate and the
context. The candidate encoder is unchanged. In
the context encoder, the average pooling is replaced
with two levels of dot-product attention (Vaswani
et al., 2017; Humeau et al., 2020). The first level
summarizes the encoded context tokens into m
vectors. The context tokens act as attention keys
and values; queries to this attention are m learned
embeddings (query codes). The second attention
level provides the candidate-context interaction: it
takes the m context summary vectors as keys and
values, and the candidate encoder output acts as
the query. The parameter m provides trade-off
between inference complexity and richness of the
context encoding. The loss term remains the same.

3.4 Action-aware Response Selection

We argue that the dual- or poly-encoder models
are not practical for the task-oriented settings as
their performance depends on the way negative ex-
amples are sampled during training (Nugmanova
et al., 2019). Choosing appropriate negative exam-
ples is difficult in task-oriented datasets as system
responses are often very similar to each other (with
the conversations being in a narrow domain and
following similar patterns). Therefore, we propose
a method for candidate selection based on system
action annotation, which is usually available in
task-oriented datasets. We designed the method to
be usable with a single encoder only, but we also
include a dual-encoder version for comparison.

Action-aware-encoder (AAE) Using two sepa-
rate encoders to encode the response and the con-
text might be impractical due to large model size.
Some recent works (e.g., Wu et al. (2020); Roller
et al. (2021)) use a single shared encoder instead,
and Henderson et al. (2020) discuss parameter shar-
ing between the two encoders. In view of that,
we propose a single-encoder action-aware retrieval
model. We train it to produce embeddings of dialog
contexts which are close to each other if the corre-
sponding responses in the training data have similar
action annotation. More precisely, we adapt Wan
et al. (2018)’s generalized end-to-end loss, origi-
nally developed for batch-wise training of speaker
classification from audio: To form training mini-
batches, we first sample M random dialog actions,

and for each of those actions, we sample N ex-
amples that include the particular action in their
system action annotation. We then encode dialog
contexts corresponding to the sampled examples
into normalized embeddings em,n, and compute
the similarity matrix as follows:

Sji,k =

{
w · (ej,i · c{i}j ) if k = j
w · (ej,i · c∅k ) otherwise

cAj =
1

N − |A|
∑

i∈[N ]−A

ej,i

where S ∈ RN ·M×M , i ∈ [N ], j, k ∈ [M ], and
A ⊆ [N ] is a set of indices. Same as for DE, w > 0
is a trainable scaling factor of the similarity matrix.
In other words, the similarity matrix describes the
similarity between embeddings of each example
and centroids, i.e., the means of N embeddings
that correspond to the same particular action. For
stability reasons and to avoid trivial solutions, we
follow Wan et al. (2018) and exclude ej,i from the
centroid calculation when computing Sji,j .

We then maximize the similarity between the
examples and their corresponding centroids while
using other centroids as negative examples:

L(S) = 1

N ·M
∑

j,i

(
−Sji,j + log

∑

k

eSji,k

)

During inference, we rank the responses from the
training set according to the cosine similarity of
their corresponding contexts and the query context.
Again, the contexts consist of the current updated
dialog state, the number of matching database re-
sults and past utterances.

Action-aware-dual-encoder (AADE) This
setup follows the DE architecture (see Section 3.3),
but it is trained in a similar way as AAE, i.e., we
form training mini-batches identically and for each
of M distinct actions in the batch, we treat all N
examples as positive examples.

3.5 Hybrid End-to-end Model

To further simplify the retrieval-augmented setup,
reduce the number of trainable parameters and gain
back computational efficiency, we introduce an end-
to-end Action-Aware Retrieval-Generative Hybrid
model (AARGH), which jointly models both re-
sponse selection and context-to-response genera-
tion (see Figure 1). It is a natural extension of the
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Gen generative model (Section 3.1), enabled by our
new single-encoder action-aware response retrieval
(AAE, Section 3.4).

A new retrieval encoder, which produces normal-
ized context embeddings, shares most parameters
with the original encoder, which is followed by the
two decoders and is partially responsible for state
tracking and response generation. To build the re-
trieval encoder, we fork the last L layers of the
original encoder and condition them on the outputs
of the shared preceding layers, concatenated with
an embedding of the number of current database
results. To obtain this embedding, we convert the
number of database results into a small set of bins,
which are then embedded via a learnt embedding
layer of size E.2 The new retrieval encoder is fol-
lowed by average pooling and trained using the
same objective as AAE (see Section 3.4).

During inference, we pass the input through the
partially shared context encoder and decode and up-
date the dialog state. The new state is used to query
the database. Database results are embedded and
added to the output of the last encoder shared layer
to form the input to the retrieval encoder, which
produces the context embedding and a retrieved
response. Based on state, database results, and re-
trieved response, the response decoder produces
the final (delexicalized) response.

4 Experimental Setup

Models Our models are based on pre-trained
models from HuggingFace (Wolf et al., 2020): We
implement Gen and the generative parts in our
retrieval-based models using T5-base (Kale and
Rastogi, 2020). Retrieval encoders in DE, AADE,
PE and AAE are implemented as fine-tuned BERT-
base (Devlin et al., 2019a). AARGH is built upon
T5-base, same as Gen; we fork the last L = 2 out
of K = 12 encoder layers. The choice of L is a
trade-off between model performance and size.3

The database embedding has size E = 4. For sim-
plicity, we do not use specialized backbones pre-
trained on dialogs such as ToD-BERT (Wu et al.,
2020). PE uses m = 16 query codes (see Sec-
tion 3.3) and single-headed attention mechanisms.

2This conversion is dataset-specific and not used in other
compared models such as Gen. We use the label 0 if there are
no results, 1 for 0 matching results, 2, 3, 4 if there are 1, 2 or
3 results, respectively, 5, 6 if there are less than 6 or 11 results,
and 7 if there are 11 or more results.

3We noticed a performance drop when using L = 1, and
L = 3 did not bring any large gain.

I would like to eat in the Center of town at an expen-

sive place.

USR
pricerangearea

How about African? I'd like to book a table for 7 at 

16:15 on Tuesday. bookpeoplefood

booktime booktime

I have booked a table at bedouin African restaurant for 

7 people at 16:15 Tuesday. Your reference number is 

VAZCWIS6 . May I help with anything else?

SYS For Town Centre, there are African, Asian Oriental, 

and British options. Which of these would you prefer?

restaurant: inform-area, 3× inform-food, select-none

restaurant: inform-name, inform-food, inform-bookpeople, 
                      inform-booktime, inform-bookday, inform-ref

USR

SYS

Figure 2: Part of a short conversation from MultiWOZ.
It has user and system turns, and annotated slot
spans. Both, user and system affect the dialog state.
Actions are shown below system texts.

Data and database We experiment on the Multi-
WOZ 2.2 dataset (Budzianowski et al., 2018; Zang
et al., 2020) which is a popular dataset with around
10k task-oriented conversations in 7 different do-
mains such as trains, restaurants, or hotels (see Fig-
ure 2). A single conversation can touch multiple
domains. The dataset has an associated database,
dialog state annotation, dialog action annotation
of system turns, and slot value span annotation for
easy delexicalization (Wen et al., 2015), thus en-
abling development of realistic end-to-end dialog
systems.4 To query the database using the belief
state, we use the fuzzy matching implementation by
Nekvinda and Dušek (2021). To filter out inactive
domains from database results during inference,
we follow previous work and estimate the currently
active domain from dialog state updates.

Input and output format We use the same for-
mats for all models. Target responses are delexical-
ized using MultiWOZ 2.2 span annotation, and we
limit the context to 5 utterances. MultiWOZ action
labels include domain, action, and slot name, e.g.,
train-inform-price. We remove domains from the
labels to limit data sparsity.

Training procedure DE, AADE, PE and AAE
are trained in two stages. The retrieval part is
trained first and provides response hints to the gen-
erative model during the second phase. Modules in
AARGH are trained jointly, but we alternate param-

4Unlike the similar-sized Taskmaster (Byrne et al., 2019)
and SGD (Rastogi et al., 2020) datasets, which lack databases
and annotation detail.
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Figure 3: t-SNE projection of test set context embeddings (colored by domains) of retrieval modules of our models.
The colors indicate the different MultiWOZ domains that are associated with the corresponding dialog turns.

eter updates for the retrieval encoder and the rest of
the network. To do so, we use two separate optimiz-
ers. AARGH’s hints used in the response decoder
during training are refreshed after every epoch. All
models are optimized using Adam (Kingma and Ba,
2015) and cosine learning rate decay with warmup.
With respect to memory limits of our hardware,
we set N = 6, M = 8 for batch sampling during
training of retrieval parts of AAE and AARGH.

α-blending We experiment with two α-blending
values: a conservative one (α = 0.05, marked “↓ ”)
and a greedy one (α = 0.4, marked “↑ ”), targeting
a mostly generation-focused and a mostly retrieval-
focused setting.5

Decoding We use greedy decoding for dialog
state update generation. For response generation,
we report results with greedy decoding in Section 5
and with beam search in Appendix B.

5 Evaluation and Results

We focus on end-to-end modeling, which includes
dialog state tracking and response generation. All
reported results are on MultiWOZ test set with
1000 dialogs, averaged over 8 different random
seeds. We generated responses given ground truth
contexts. We follow MinTL and predict the dia-
log state cumulatively for each conversation turn,
which means that state tracking errors may com-
pound. See Appendix C for an example end-to-end
conversation without any ground-truth information.

5.1 Response selection
First, we assess the performance of retrieval com-
ponents of DE, AADE, PE, AAE and AARGH. We
cannot use the popular R@k metric (Chaudhuri
et al., 2018) as AAE and AARGH use embeddings
of dialog contexts (not responses) of candidates as

5The values were chosen empirically, based on preliminary
experiments on development data.

Setting BLEU Action IoU % full
match

% no
match

% uniq.
hints

Random 2.1 5.1 ± 0.2 1.1 85.0 93.5
DE 8.9 34.7 ± 0.5 11.0 29.7 54.1
AADE 7.9 30.9 ± 1.7 8.9 33.4 24.2
PE 8.8 35.0 ± 0.8 11.4 28.9 44.1
AAE 12.8 37.1 ± 0.2 14.5 28.6 88.6
AARGH 12.6 36.6 ± 0.2 14.2 29.0 89.6

Table 1: Evaluation of retrieval components of our mod-
els (Section 3.3, 3.5). See Section 5.1 for details.

the search criterion and would always score 100%.
Instead, we use the action annotation and measure
the intersection over union (IoU), full-match and
no-match rates on sets of actions associated with
top-1 retrieved and ground-truth responses. We
add BLEU (Papineni et al., 2002; Liu et al., 2016a)
between ground-truth and retrieved responses and
the proportion of distinct retrieval outputs to assess
their lexical similarity to references and diversity.

Table 1 shows that AAE and AARGH signif-
icantly outperform other setups on all measures
except for the no-match rate,6 where PE has compa-
rable results. This is expected as they use the addi-
tional action annotation during training, unlike DE
and PE. AADE performs surprisingly bad. Accord-
ing to the unique hints rate, AAE and AARGH re-
trieve a much wider range of outputs, which could
improve lexical diversity of final responses. The
higher BLEU, Action IoU and full match rates sug-
gest that the models retrieve responses more similar
to the ground truth.

To further compare the approaches to response
selection, we computed the Silhouette coefficient
(Rousseeuw, 1987) based on the active domain
and action annotation (see Table 3).7 We omit PE

6According to a paired t-test with 95% confidence level.
7In the case of action-based clustering, we treat each action

as a separate cluster; each example can belong to multiple
clusters. The clustering measure is calculated for each cluster
and averaged over all actions which are weighted by the size
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Setting BLEU Inform Success Unique trigrams BCE Hint-BLEU Hint-copy Joint acc.

Corpus - 93.7 90.9 25,212 3.37 - - -
SOLOIST (Peng et al., 2021a) 13.6 82.3 72.4 7,923 2.41 - - -
PPTOD (Su et al., 2022) 18.2 83.1 72.7 2,538 1.88 - - -
MTTOD (Lee, 2021) 19.0 85.9 76.5 4,066 1.93 - - -
MinTL (Lin et al., 2020) 19.4 73.7 65.4 2,525 1.81 - - -

Gen (equiv. to MinTL) 18.6 ± 0.3 77.0 ± 1.2 66.4 ± 1.0 3,209 1.94 - - 54.1 ± 0.2
AAE (retrieval only) 12.8 ± 0.1 79.9 ± 0.6 58.3 ± 0.7 22,457 3.34 100.0 100.0 % -

α
=

0.
05

DE +Gen ↓ 17.6 ± 0.3 80.9 ± 0.5 68.8 ± 0.6 8,190 2.36 32.5 15.2 % 54.2 ± 0.1
AADE +Gen ↓ 17.3 ± 0.3 81.2 ± 0.9 69.1 ± 1.0 6,613 2.29 26.7 12.8 % 54.3 ± 0.1
PE +Gen ↓ 17.4 ± 0.3 79.9 ± 0.9 66.8 ± 1.0 7,736 2.35 31.3 14.5 % 54.4 ± 0.2
AAE +Gen ↓ 17.5 ± 0.6 82.0 ± 1.0 70.3 ± 0.8 8,152 2.32 32.0 16.2 % 54.2 ± 0.2
AARGH ↓ 17.3 ± 0.3 81.2 ± 0.6 69.5 ± 0.5 8,200 2.33 28.4 14.2 % 53.8 ± 0.2

α
=

0.
4

DE +Gen ↑ 12.3 ± 0.3 87.8 ± 0.3 69.1 ± 0.5 18,800 3.20 80.4 76.5 % 54.2 ± 0.2
AADE +Gen ↑ 14.6 ± 0.4 81.0 ± 0.8 66.7 ± 0.4 10,723 2.72 51.7 44.8 % 54.2 ± 0.1
PE +Gen ↑ 12.9 ± 0.4 86.0 ± 0.8 67.1 ± 0.6 16,632 3.13 74.0 69.1% 54.4 ± 0.1
AAE +Gen ↑ 11.9 ± 0.2 90.5 ± 0.3 71.3 ± 0.3 19,436 3.23 91.1 89.3 % 54.3 ± 0.2
AARGH ↑ 12.1 ± 0.2 89.6 ± 0.2 70.7 ± 0.5 19,813 3.21 87.6 85.0 % 53.6 ± 0.2

Table 2: Response generation and state tracking evaluation on MultiWOZ using automatic metrics, including the
bi-gram conditional entropy (BCE) and number of unique trigrams. We compare previous work, the baseline and
retrieval-based generative models. See Section 5.2 for details about the metrics; Section 3, 4 for model descriptions.

Silhouette coefficient DE AADE AAE AARGH

per Domain 0.098 0.179 0.151 0.159
per Action 0.147 0.316 0.312 0.320

Table 3: Evaluation of domain and action separation
(Section 5.1). We show averages over 8 random seeds.

because its context embeddings depend on queries,
i.e., the candidate embeddings (other models output
the same context regardless of candidates). DE has
the worst results; other systems perform similarly,
but AARGH is the best on action separation while
AADE has the best scores for domains.

We see that AADE’s context encoder is success-
ful in clustering, but it lags behind in terms of
correct action selection. Unlike AARGH and AAE,
AADE retrieves candidates based on response em-
beddings. We hypothesize that lower response vari-
ability (compared to context variability) leads the
model to prefer responses seen more frequently
during training. AARGH and AAE are not affected
by this as they use purely context-based retrieval.

Figure 3 provides a visualisation of the domain
clusters projected using t-SNE (van der Maaten and
Hinton, 2008). It supports the findings of our eval-
uation based on the Silhouette coefficient: We see
that visualisations of AARGH and AADE embed-
ding spaces look similarly whereas DE’s clusters
appear more noisy.

of the corresponding clusters.

5.2 Response generation

We evaluate the response generation abilities of
our models using automatic metrics and human
assessment of delexicalized texts (see Table 4 for
examples).

Evaluation with automatic metrics We use the
corpus-based evaluator by Nekvinda and Dušek
(2021) to measure commonly used metrics on Mul-
tiWOZ (Inform & Success rates, BLEU) as well
as lexical diversity measures, namely the number
of distinct trigrams in the outputs and bigram con-
ditional entropy (Li et al., 2016; Novikova et al.,
2019). State tracking joint accuracy is calculated
with scripts adapted from TRADE (Wu et al., 2019).
To better understand the effect of using retrieved
hints and to quantify the amount of copying, we
calculate BLEU between retrieved hints and final
generated responses (Hint-BLEU) and the propor-
tion of generated responses exactly matching the
corresponding retrieved hints (Hint-copy).

We include comparisons with recent strong end-
to-end models on MultiWOZ: SOLOIST (Peng
et al., 2021a), MTTOD (Lee, 2021), PPTOD (Su
et al., 2022), and MinTL (Lin et al., 2020), which
has the same architecture as Gen. To show the
importance of the generative parts of our models,
we also include AAE without the refining decoder.

Table 2 shows scores obtained with greedy de-
coding (see Appendix B for beam search results).
All models have similar state tracking performance.
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System Response

Context User: I need a taxi to take me to Yippee Noodle Bar by 9:45.
Corpus Absolutely, where will the taxi be picking you up from today?
Gen I can help with that. Where are you departing from?
DE +Gen ↓ Where will you be departing from?
AARGH ↓ Okay, I can help with that. Where are you coming from?
AARGH ↑ Of course, I just need to know your destination so I can book that for you.

Context User: I am looking for an expensive hotel with free parking.
System: We have 5 places that offer all of that. Any preference on star rating or area?
User: No, that’s not important to me. But, I would prefer to stay in a guesthouse with free parking.

Corpus Sorry, there are no [type] [price] places with free parking. Perhaps you’d prefer a different type or price range?
Gen I’m sorry, but there are no [type] that meet your criteria. Would you like to try a different price range?
DE +Gen ↓ I’m sorry, but there are no [type] that meet your criteria. Would you like to try a different price range or area?
AARGH ↓ I’m sorry, but I don’t have any [type] that meet your criteria. Would you like to try a [type] or a [type]?
AARGH ↑ I’m sorry but I don’t have any [type] matching that criteria. Could we look at [type] instead?

Context User: Thank you so much. You have been very helpful.
Corpus Great! I hope you enjoy your stay!
Gen You’re welcome. Have a great day!
DE +Gen ↓ You’re welcome. Have a great day!
AARGH ↓ Is there anything else I can help you with today?
AARGH ↑ You are welcome. I can also help arrange transportation or suggest attractions, if you wish.

Table 4: Side-by-side system output comparison (see Sections 3 and 4 for model details). The responses are
continuations of conversations SNG0016, SNG1048, and MUL2138 from MultiWOZ.

AARGH has slightly lower numbers, which is not
surprising as it shares a substantial part of the en-
coder with its retrieval component. As expected,
we notice a huge difference in Hint-BLEU and
Hint-copy of versions with different α-blending
probabilities (↓ vs. ↑).8 The performance boost
over Gen and retrieval-only AAE is, for ↓ variants,
mainly in terms of Success. In ↑, more frequent
hint copying reduces BLEU and improves lexical
diversity; we also see higher Inform. AAE +Gen
and AARGH (both ↓ and ↑) perform better than
corresponding DE +Gen or PE +Gen on Inform and
Success rates.9 Differences between AAE +Gen
and AARGH are not statistically significant and
their Success scores are better than MinTL, com-
petitive with PPTOD and SOLOIST but lower than
MTTOD. In terms of lexical diversity, all models
are better than most generative baselines.10

Human evaluation We arranged an in-house hu-
man evaluation on the delexicalized outputs of Gen
(i.e., MinTL’s architecture), DE +Gen ↓, AARGH ↓
and AARGH ↑. We used side-by-side relative rank-
ing evaluation, which has been repeatedly found
to increase consistency compared to rating isolated
examples (Callison-Burch et al., 2007; Belz and

8Hint-copy of 15% roughly means one turn per dialog.
9According to a paired t-test with 95% confidence level.

10The ↓ variants are similar to SOLOIST, which, however,
reaches diversity by employng sampling (Holtzman et al.,
2020) instead of greedy decoding.

Gen DE +Gen ↓ AARGH ↓ AARGH ↑
Mean Ranking 2.03 1.99 1.91 2.3
Ranked #1 36.1% 35.5% 40.8% 37.9%
Ranked #2 34.7% 36.7% 33.5% 18.8%
Ranked #3 18.8% 20.5% 19.7% 18.8%
Ranked #4 10.4% 7.2% 6.1% 24.6%

Table 5: Human evaluation results – mean ranks (1-4)
established from 50 evaluated conversations.

Kow, 2010; Kiritchenko and Mohammad, 2017).
Participants were given full dialog context and cur-
rent database results, and we asked them to rank
responses of the compared models from the best-
fitting to the worst, where multiple responses could
be ranked the same (see Appendix D for details).
We collected rankings for 346 turns of 50 conver-
sations from 5 linguists with experience in natural
language generation. All of them were given a dif-
ferent set of dialogs and they were instructed to
focus on consistency with the context and database
results, naturalness, and attractiveness of the re-
sponses. See Table 5 for results.

Although AARGH ↑ scored the best on au-
tomatic metrics, it has worse mean ranks than
other models, which all have similar mean ranks.11

This confirms previous findings of low correla-

11According to Friedman test with 95% confidence level
and Nemenyi post-hoc test; only the difference between
AARGH ↑ and other models is statistically significant.
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tion between automatic metrics and human assess-
ments (Liu et al., 2016b; Novikova et al., 2017).
Upon detailed manual error analysis, we found
that AARGH ↑ often copies whole hints including
words that do not fit the context, i.e., contradictions
to earlier statements or noisy non-delexicalized
values from the training set. AARGH ↓ performs
slightly better than the baselines and is more often
ranked best and least often ranked worst.

6 Conclusion

We present AARGH, an end-to-end task-oriented
dialog system, combining retrieval and generative
approaches. It uses an embedded single-encoder
retrieval component which extends a purely gener-
ative model without the need for a large number of
new parameters. AARGH features an action-aware
response selection training objective. Our experi-
ments on the MultiWOZ dataset show that AARGH
outperforms baselines in terms of automatic met-
rics and human evaluation and it is competitive with
state-of-the-art models such as SOLOIST or MT-
TOD. We showed that our proposed action-aware
retrieval training objective supports retrieval of a
larger variety of unique and relevant responses in
the task-oriented setting and makes efficient use
of the available system action annotation. Further,
using the retrieval module improves dialog man-
agement in terms of the Success rate. A limita-
tion of our approach is the need for careful hyper-
parameter setting, coupled with the risk of overuse
of retrieved responses that match the dialogue state
but are not appropriate for the context.

In future work, we would like to confirm our
results on more datasets and explore more com-
plex ways of usage of the retrieved responses to
encourage the model to copy interesting language
structures while ignoring inappropriate tokens or
relics of faulty delexicalization.
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A Model Architectures

Figure 4 shows architectures of the baseline
(Gen), dual-encoder-based model (DE), and single-
encoder action-aware model (AAE). See Figure 1
for details about AARGH and Section 3 for descrip-
tion of the models.

B Beam Search Results

See Table 6 for the results of beam search-based
response generation evaluation, and compare the
results with greedy decoding evaluation (see Sec-
tion 5.1 and Table 2). For all models, we used
beams of size 8 during the decoding

In the case of conservative α-blending, beam
search decoding results in higher lexical diversity
for all retrieval-augmented systems. However, the
gains with respect to Inform and Success rates are
mostly very small or not present at all in the case of
AADE and AARGH. All BLEU scores are slightly
lower which corresponds with the higher output
diversity. We notice that the numbers for the base-
line without a retrieval component have an opposite
trend. Beam search decoding causes lower lexical
diversity and higher BLEU. We attribute this to
the fact that beam search decoding prefers safer
responses with a higher overall probability.

When using higher α-blending, the differences
become small even in the case of lexical diversity.
We hypothesize that all the retrieval-based models
are not substantially influenced by the particular
response decoding strategy because they strongly
rely on the retrieved hints and their copying.

C End-to-end Conversation

Figure 5 shows a multi-domain (restaurant and taxi)
end-to-end conversation between our end-to-end
retrieval-based model AARGH (See Section 3.5).

D Human Evaluation Interface

We used the graphical user interface depicted in
Figure 6 for human evaluation. A full dialog con-
text, i.e., all past utterances corresponding to the
particular turn, and the number of database results

were shown to participants. We asked participants
to rank provided responses from the best to the
worst. They evaluated only two conversations in a
single run and we sampled the conversations from
the test set so that all participants receive roughly
the same number of turns to assess. Evaluated re-
sponses were shown side-by-side; each of them
had a dedicated discrete scale from 1 to 4 where 1
was labeled as the best and 4 as the worst. More
responses could receive the same ranking. Partic-
ipants could move forward and backward in the
conversations and they could switch to another con-
versation anytime.
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Figure 4: Architecture of the baseline (Gen, top), dual-encoder-based model (DE, middle) and single-encoder
action-aware model (AAE, bottom). Numbers in module boxes mark the order of processing during inference.

Setting BLEU Inform Success Num. trigrams Bi-gram entropy Hint-BLEU Hint-copy

Gen 19.1± 0.3 73.1± 1.8 63.0± 1.7 2683 1.81 - -

α
=

0
.0
5 DE 16.1± 0.3 81.1± 0.5 68.3± 0.8 10098 2.49 41.9 25.2 %

AADE 16.0± 0.4 78.0± 1.1 65.9± 1.0 7378 2.33 32.6 19.2 %
PE 15.9± 0.4 80.6± 0.9 66.9± 1.0 9470 2.48 40.7 24.4 %
AAE 16.4± 0.4 82.5± 0.8 69.8± 0.6 10457 2.46 44.2 29.0 %
AARGH 16.2± 0.3 79.5± 0.5 68.0± 0.3 9072 2.36 36.2 22.2 %

α
=

0
.4

DE 12.3± 0.3 87.7± 0.3 68.7± 0.6 19103 3.28 83.1 79.6 %
AADE 13.7± 0.4 77.8± 0.9 63.2± 0.4 10997 2.76 55.8 50.2 %
PE 12.7± 0.3 85.9± 0.9 66.3± 0.7 17178 3.19 78.3 74.2 %
AAE 12.0± 0.2 90.3± 0.5 71.2± 0.4 19448 3.21 92.6 90.1 %
AARGH 12.2± 0.2 89.3± 0.3 70.0± 0.6 19763 3.22 88.6 86.0 %

Table 6: Beam search-based response generation on MultiWOZ using automatic metrics. For each model setup, We
use beams of size 8 during response decoding and report results averaged over 8 random seeds. We compare the
baseline (Gen) and retrieval-based generative models (See Section 3 and 4). See Section 5.2 for details about the
metrics. Cf. Table 2 showing results obtained using greedy decoding.

296



USR Hello, I need to book a restaurant. It must be cheap and in the city centre. Can you help me?

AARGHI can help you with that. There are several cheap restaurants 
in the centre. Are you looking for any particular type of food?

Certainly, there are [choice] [pricerange] restaurants to choose from 
in the [area]. Are you in the mood for any particular type of food?

USR I would like to taste French cuisine. Do you have some restaurants with frogs and similar food?

AARGHThere are no [food] restaurants located in [area]. 
Are you interested in another type of cuisine?

I'm sorry, there are no french restaurants in the centre. 
Would you like to try a different type of cuisine?

USR Ok, no problem. I actually like noodles too. What about Chinese restaurants?

AARGHThere are [choice] such restaurants. I reccommend 
[name]. Would you like a reservation?

There are 3 such restaurants in the centre. Charlie Chan 
and Rice House. Would you like to book one of these?

USR Book Charlie Chan for three persons on Friday 8pm please.

AARGHBooking was successful for [bookday]. The table will be reserved for 15 
minutes. Reference number is: [ref]. Can I help with anything else today?

Booking was successful. The table will be reserved for 15 minutes.
Reference number is: 0000010. Can I help with anything else today?

USR Ok thanks, that's all for today.
AARGHThank you for allowing me to help you. Have a great day! You're welcome. Have a great day!

USR I also need a taxi from El Shaddai to the restaurant.

AARGHOf course! What time would you like the taxi to leave or arrive? What time would you like the taxi to leave or arrive by?

USR I need to be in the restaurant at 19:45.
AARGHI booked a [type] to pick you up. The contact 

number for the taxi is [phone].
I booked a yellow lexus to pick you up. The contact 
number for the taxi is 13582494566.

Figure 5: End-to-end conversation between the user and our retrieval-based AARGH model with conservative
α-blending (see Section 3). For the system turns, we show delexicalized hints proposed by the retrieval module (left
boxes in italics) and the corresponding lexicalized final responses (right boxes). We highlighted the parts of hints
present in the final texts and the parts of final responses newly-introduced by the model during refining.

Figure 6: Our graphical user interface used for human evaluation.
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Abstract

Recent progress on neural approaches for lan-
guage processing has triggered a resurgence
of interest on building intelligent open-domain
chatbots. However, even the state-of-the-art
neural chatbots cannot produce satisfying re-
sponses for every turn in a dialog. A practical
solution is to generate multiple response can-
didates for the same context, and then perform
response ranking/selection to determine which
candidate is the best. Previous work in response
selection typically trains response rankers us-
ing synthetic data that is formed from existing
dialogs by using a ground truth response as the
single appropriate response and constructing
inappropriate responses via random selection
or using adversarial methods. In this work, we
curated a dataset where responses from multi-
ple response generators produced for the same
dialog context are manually annotated as appro-
priate (positive) and inappropriate (negative).
We argue that such training data better matches
the actual use case examples, enabling the mod-
els to learn to rank responses effectively. With
this new dataset, we conduct a systematic eval-
uation of state-of-the-art methods for response
selection, and demonstrate that both strategies
of using multiple positive candidates and using
manually verified hard negative candidates can
bring in significant performance improvement
in comparison to using the adversarial training
data, e.g., increase of 3% and 13% in Recall@1
score, respectively.

1 Introduction

Building an open-domain dialog system to inter-
act with users on a variety of topics can involve
building multiple response generators (RG) with
different functions (Paranjape et al., 2020). These
RGs can be a mixture of generative, retrieval and
template based methods. A response selector is
then built to re-rank response candidates produced
by different applicable RGs to determine the best
response for a given turn. These response selectors

are based on either rule-based or model-based ar-
chitectures (Papaioannou et al., 2017; Serban et al.,
2017; Zhou et al., 2020; See and Manning, 2021a).
Rule-based systems typically consist of manually-
designed logic to rank hypotheses, whereas model-
based approaches can either be conventional ma-
chine learning models or recent neural models
that learn to rank candidates. As the number of
RGs grows, a rule-based system can become cum-
bersome to maintain, whereas model-based meth-
ods can simplify the selection process as well as
achieve better performance.

Latest work in model-based response selectors
involves leveraging pretrained transformer mod-
els such as BERT (Devlin et al., 2019) and Di-
aloGPT (Zhang et al., 2019). These selection mod-
els are often trained using existing dialog datasets
that typically contain ground truth responses. Thus
a focus of past response selection work is on the
construction of inappropriate/negative responses,
using methods such as random selection, utterance
manipulation or leveraging user feedback (Whang
et al., 2020; Han et al., 2021; Whang et al., 2021;
Gu et al., 2020; Xu et al., 2020; Zhang and Zhao,
2021; Gao et al., 2020; See and Manning, 2021b;
Gupta et al., 2021; Li et al., 2019). However, such
synthesized datasets for response selection have
the following known drawbacks. First of all, their
claimed incorrect responses are not verified if they
are actually incorrect. Second, these negative re-
sponses are easy to differentiate from positive ones
since it is very likely that they will be on different
topics from the context. Therefore, models trained
on such easy negative responses will not be able
to generalize to real-world settings, where multi-
ple responses are generated given the same dialog
context and many of them are strong candidates.

To resolve the aformentioned issues, we con-
struct a new dataset (named RSD) for response
selection by showing human annotators multiple
response candidates produced by different RGs for
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a given turn and dialog context, and asking them
to annotate all responses that are appropriate for
that specific dialog context. We leverage RSD to
conduct a systematic evaluation of state-of-the-art
methods for response selection, including existing
trained models, DialogRPT (Gao et al., 2020) and
BERT-FP (Han et al., 2021), and a BERT based
ranker that we trained. Our experimental results
show the following findings: (1) Models trained
on RSD significantly outperform those trained on
existing datasets, e.g., Reddit and Ubuntu, showing
the benefit of bringing in human annotated data for
this task; (2) Using manually verified hard nega-
tives greatly outperforms using adversarial nega-
tives; (3) Training on multiple positive candidates
improves performance in comparison to a single
positive candidate. Though these findings are most
expected, this is the first empirical study that clearly
shows that constructing a more realistic dataset ben-
efits strongly over generating synthetic examples
for response selection, and we hope such results
can guide future research in this direction and de-
ployment of open domain dialog systems.

2 Related Work

Previous work in response selection has been
conducted in different domains, such as chat-
logs (Lowe et al., 2015), e-commerce (Zhang et al.,
2018b), and open-domain dialog (Wu et al., 2017;
Zhang et al., 2018a; Smith et al., 2020; See and
Manning, 2021b). Our work focuses on open-
domain dialog, where current systems typically
consist of multiple response generators, each of
which is designed to deal with a certain domain.
For example, in the Alexa Prize challenge (Ram
et al., 2018; Gabriel et al.), most of the participat-
ing socialbots built by university teams consist of
a variety of responders that are based on retrieval-
based methods, template-based methods, or gen-
erative models (Konrád et al., 2021; Saha et al.,
2021; Paranjape et al., 2020; Ram et al., 2018). In
order to select the final response to present to users,
both rule-based or model-based ranking models
have been proposed (Ram et al., 2018; Papaioan-
nou et al., 2017; Serban et al., 2017; Zhou et al.,
2020; See and Manning, 2021a; Shalyminov et al.,
2018). This approach is also common in other
real-world systems such as XiaoIce that employs a
manually-designed set of features to rank hypothe-
ses (Zhou et al., 2020).

For training response selection models, typically

human-human dialogs are used, where positive ex-
amples are the ground truth responses and negative
responses are often randomly selected or synthet-
ically created since there are no labeled negative
responses. Han et al. (2021) randomly selected
responses from other dialogs or within the same
dialog session. Whang et al. (2021) corrupted ut-
terances by inserting, substituting and deleting ran-
dom tokens. Xu et al. (2020) masked and shuf-
fled utterances within a dialog. Li et al. (2019)
selected negative responses from a batch based on
their similarity scores from the positive response
score. Gupta et al. (2021) used automatic methods
such as replacing random tokens in a positive ex-
amples using a Mask-and-fill approach to create
adversarial negative examples.

However, these sampling strategies do not ensure
the selected negative responses are hard examples.
In this work, rather than relying on approximation
for negative responses, we perform turn level anno-
tation of multiple response candidates for response
appropriateness for a given dialog context. See and
Manning (2021b); Gao et al. (2020) did construct
hard negative examples by annotating responses
from a single generative model for appropriateness;
however, our work contains responses from a mix-
ture of various RG methods.

On the other hand, open-domain dialogs can
have multiple appropriate responses for a given
dialog context. Previous work has augmented
dialog datasets with multiple positive exam-
ples (Mizukami et al., 2015; Khayrallah and Sedoc,
2020; Gupta et al., 2019; Sai et al., 2020; Zhang
et al., 2020). Within open-domain dialogs, Gupta
et al. (2019); Sai et al. (2020) augmented the Dai-
lyDialog dataset (Li et al., 2017) with multiple
positive human written responses. In contrast, our
dataset has multiple positive responses generated
from models, which reduces the cost of human an-
notation significantly. The closest work to ours is
(Sai et al., 2020) that constructed negative exam-
ples by asking annotators to copy information from
the dialog context. We do not restrict the definition
of negative examples to be copying information
from the dialog context, since incorrect responses
in open-domain dialog can have different issues,
e.g., off-topic, contradicting or repetitive responses.

3 Datasets

As described earlier, most previous work in re-
sponse selection has constructed test sets that typi-
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Figure 1: Architecture of our Open Domain Dialog System. NER = Named Entity Recognition, DA = Dialog Act

cally contain only one positive candidate and one
or more synthetically created negative candidates.
However, such negative responses may be easy
for a model to detect. Additionally, in real-world
open-domain dialogs there can be more than one
positive response per turn. Therefore, in this work
we constructed a more realistic dataset consisting
of annotations for real response candidates. Our
dataset consists of spoken interactions between a
dialog system and real users.

3.1 Open Domain Dialog System

We first describe the open-domain dialog system
used for data collection. The architecture of our
dialog system is shown in Figure 1. Every user
utterance in the dialog is sent into an ASR system
whose output goes through a series of NLU mod-
ules that classifies topics, dialog acts, sentiment,
extracts entities, and detects if user utterance is of-
fensive. Our system then calls multiple response
generators for the given dialog context and logs all
the generated response candidates within the State
Manager. The response presented to the user is
selected by a rule-based ranker and then sent to the
TTS module.

For popular topics in open domain dialogs, such
as movies, music, recent news, we developed
template-based response generators (highlighted
in green in Figure 1) for the given dialog state. An
example state and response for the movie domain is:
when the user turn mentions a movie name (based
on the NER result), we respond with information
about the actor, the rating, or the plot of this cer-
tain movie. In addition to topic-specific template-
based RGs, our system includes other template-
based RGs for different dialog contexts, such as,
greetings, topic switches, etc.

For every user turn, we also apply a neural

network-based response generation (NRG) model
to produce a response, highlighted in purple in Fig-
ure 1. Our NRG Responder is a GPT2-XL (Radford
et al., 2019) based model trained on real user con-
versation data described in Section 3.2. We discuss
its training details in Appendix B.

The rule-based ranker uses predefined logic and
the topic extracted from the user utterance to select
domain specific template-based responders. If a
template-based responder is not available it will
use the NRG response as a fall back. Our system
has just a few template-based RGs, and uses NRG
responses for almost half of all turns.

3.2 Response Selection Data (RSD)
We deploy the dialog system described above
within the Alexa Prize Socialbot framework (Ram
et al., 2018) to interact with real users. A user
initiates an interaction with our dialog system and
consents to have their data being collected. These
interactions end when the user requests to stop the
conversation. At the end of each interaction, users
are asked to leave a rating in the range of 1 to
5. We denote this dataset as real user interactions
(RUI)1. Our data consists of approximately 100k
interactions and 2.5 million turns. For each user
turn in RUI, we produced additional response can-
didates using variants of our NRG Responder to
supplement the logged responses. These may be
appropriate responses, or hard negative examples.
The NRG variants we used include the following
(Further model training details are in Appendix B).

• A GPT2-medium version of our NRG Respon-
der.

• A GPT2-XL NRG Responder grounded on
knowledge. When there is an entity in the user

1All interactions are in English.
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Data Split # Dialogs # positive responses # negative responses Avg. # responses at each turn # Turns with no positive responses

RSD Train 1,501 17,778 78,273 5.67 8,871
RSD Test 142 2,995 6,298 5.36 309

Table 1: Dataset Statistics. For our experiments, we conduct 5 fold cross validation on all our training datasets and
therefore do not have a dedicated development set.

turn, we search Wikipedia to find the article
related to the entity, and perform knowledge
selection and knowledge-grounded response
generation.

• A GPT2-medium NRG Responder grounded
on dialog acts (DA) (Hedayatnia et al., 2020).

• A GPT2-XL based sentiment controlled NRG
Responder. When the user’s utterance shows
some negative sentiment (e.g., when a person
says “I’m depressed”), the NRG model gener-
ates a response conditioned on this emotion.

We worked with internal human annotators to set
up an annotation pipeline. These internal annota-
tors are not experts in the dialog domain; however,
we worked closely with them to ensure they have
a clear understanding of the task provided to them.
In our annotation pipeline, for each turn in a dia-
log, we showed internal human annotators all the
available responses produced by the template based
generators and various NRG models2, and asked
them whether each response candidate is appropri-
ate given the certain dialog context. An annotator
can label multiple responses or none of them as
appropriate. To determine if a response is appro-
priate we ask annotators to see if the response is
relevant to the dialog context and that it does not
contradict what was said in previous dialog sys-
tem’s responses. For data annotation we randomly
sampled a subset of RUI that contain dialogs with
more than 5 turns and fewer than 30 turns. A snap-
shot of the interface for the annotation task can be
found in Appendix C.

We randomly split the annotated conversations
into training and test sets. Table 1 shows the statis-
tics of our annotated response selection data, de-
noted as RSD. Due to user privacy constraints, we
cannot release this data. Note that we assume our
response selector must always choose a response
and therefore we drop turns where none of the re-
sponses are labeled as appropriate, and for each
turn, we may have multiple positive and negative
responses.

2Note that for the NRG models, we only use responses
produced within a pre-defined timeout period.

3.3 RSD Training Variations
To show the importance of using hard negative and
multiple positive candidates for response selection,
we have also created five variations of the train
set of RSD. In our experiments, for each variation
we ran random sampling five times and report the
average results.

• RSD Train with one positive candidate (de-
noted as “RSD 1 Pos.”). Based on the original
RSD Train, we sample only one positive can-
didate for each turn from the multiple positive
candidates, and keep all the annotated nega-
tive responses. This leads to 8,046 positive
and 78,273 negative candidates.

• Synthetic Inter-Random. Based on the above-
mentioned “RSD 1 Pos.” set, we further re-
move the human annotated negative candi-
dates, and instead use five randomly selected
responses from other dialogs and deem these
as the new negative candidates. There are
8,046 positive and 40,230 negative candidates
in this set. This approach to constructing nega-
tive candidates is commonly used in the litera-
ture. We experimented with different number
of negative candidates and found sampling 5
negative candidates at each turn had the best
results.

• Synthetic Intra-Random. Similar to the above
set, we use one positive example and four
randomly selected responses as negative, two
drawn from a random different dialog and the
other two from the same dialog as the can-
didate we are training on. This set contains
8,046 positive and 32,184 negative candidates.
This approach to constructing negative candi-
dates is proposed by (Han et al., 2021). We
experimented with different number of nega-
tive candidates and found sampling 4 negative
candidates at each turn had the best results.

• Synthetic Adversarial. Based on the above-
mentioned “RSD 1 Pos.” set, we further create
negative candidates using the Mask-and-Fill
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approach from (Gupta et al., 2021). This ap-
proach uses the hierarchical masking function
from (Donahue et al., 2020) to replace spans
in a positive example with blank tokens that
will be replaced with tokens predicted from
an Infilling Language Model from (Donahue
et al., 2020). For every turn, an average of
28.22 negative candidates were constructed
using this approach. We experimented with
different number of negative candidates and
found sampling 10 negative candidates at each
turn had the best results. In total, we have
8,046 positive and 76,307 negative candidates.

• Synthetic Retrieval. In this approach, we
generate negative examples that are seman-
tically similar to the positive example. This
approach to constructing negative candidates
is proposed by (Li et al., 2019). The motiva-
tion behind this approach is to create negative
candidates that are somewhat similar to the
positive candidate and use these as hard ex-
amples for the model to train on. Specifically,
we use the all-MiniLM-L6-v2 model (Wang
et al., 2020) from HuggingFace3 and create
a sentence embedding for each response in
our dataset. At each turn we compute the co-
sine similarity between the positive candidate
and all the other responses in the dataset. We
then take responses that have a cosine sim-
ilarity between 0.8 and 0.95 as a negative
candidate. We experimented with different
thresholds and found this had the best results.
Using these thresholds we get an average of
2.2 negative candidates per turn. In total we
have 8,046 positive and 17,778 negative can-
didates.

4 Response Selection Models

We have adopted two state-of-the-art methods for
response selection and adapted them to our new
dataset for a comprehensive empirical evaluation.

4.1 DialogRPT (Gao et al., 2020)4

DialogRPT is initialized with DialoGPT (Zhang
et al., 2019) and trained using a contrastive loss
function to predict a higher score for the positive
response given the dialog context and a pair of one
positive and one negative response. Trained on

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

4https://github.com/golsun/DialogRPT/

the Reddit dataset, five different ranker models are
proposed by training DialogRPT on different syn-
thesized labels (see the original paper for details).

4.2 BERT Models
We experiment with two different BERT model
variants for response selection:

BERT-FP (Han et al., 2021)5: BERT-FP has
achieved high scores on the Ubuntu Dialogue Cor-
pus test set (Lowe et al., 2015). The authors
post-train the Masked Language Model (MLM)
head and Next Sentence Prediction (NSP) head of
a BERT-base model (Devlin et al., 2019) on the
Ubuntu corpus via unsupervised learning. Given
a dialog context and a response, the NSP head is
trained to predict whether a response is either: the
ground truth, from a random dialog, or from a ran-
dom turn in the same dialog. After post-training,
the model is further fine-tuned on downstream data
for response selection, where given a dialog con-
text and a system response, the model classifies
whether this is the correct response or not.

BERT-Ranker: We directly fine-tune a BERT-
base (Devlin et al., 2019) model without the above-
mentioned post-training step. We denote this model
as BERT-Ranker.

Figure 2 illustrates the fine-tuning stage for both
BERT models. To construct our input, we concate-
nate the dialog context with a system response and
follow the same training procedure used by (Han
et al., 2021), which uses the pooled output repre-
sentation by the BERT model, passes it through a
linear layer followed by a sigmoid function, and
minimizes the binary cross-entropy function to pre-
dict whether the given system response is positive
or negative.

5 Experiments

5.1 Experimental Setup
Following the previous work (Whang et al., 2020;
Han et al., 2021; Whang et al., 2021; Gu et al.,
2020; Xu et al., 2020; Zhang and Zhao, 2021), for
evaluation metrics, we use MRR (mean reciprocal
rank) and Recall at k (R@k), which is defined as
the correct answer existing among the top-k candi-
dates.

For DialogRPT, we run their five different
rankers out of the box over RSD Test in a zero-
shot fashion and find that the human vs random
ranker scores the highest for both MRR and Recall,

5https://github.com/hanjanghoon/BERT_FP
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Model Train Data MRR R@1 R@2 R@3 R@4 R@5

DialogRPT Reddit 0.681 0.481 0.730 0.868 0.939 0.988
BERT-FP Ubuntu 0.684 0.486 0.742 0.864 0.930 0.979
DialogRPT RSD Train 0.787 0.647 0.834 0.910 0.979 0.992
BERT-FP RSD Train 0.795 0.657 0.841 0.931 0.973 0.994
BERT-R RSD Train 0.796 0.659* 0.843* 0.936* 0.980* 0.995*
BERT-R RSD 1 Pos. 0.762(0.06) 0.628(0.05) 0.806(0.06) 0.894(0.07) 0.941(0.07) 0.958(0.07)
BERT-R Synthetic IE 0.688(0.01) 0.488(0.01) 0.741(0.00) 0.880(0.00) 0.949(0.00) 0.984(0.00)
BERT-R Synthetic IA 0.698 (0.00) 0.506 (0.00) 0.750 (0.00) 0.879 (0.00) 0.948 (0.00) 0.983 (0.00)
BERT-R Synthetic Adv 0.712 (0.00) 0.532 (0.00) 0.753 (0.00) 0.884 (0.00) 0.950 (0.00) 0.987 (0.00)
BERT-R Synthetic Ret 0.718 (0.00) 0.533 (0.01) 0.776 (0.00) 0.902 (0.00) 0.961 (0.00) 0.990 (0.00)

Table 2: Model results on RSD Test. Results for BERT-R (Ranker) using Synthetic datasets are computed by
sampling candidates with five different seeds and averaging the model prediction results across those runs. Standard
deviations are in parentheses. IE (Inter-Random), IA (Intra-Random), Adv (Adversarial), Ret (Retrieval) are the
four different ways of creating negative examples described in Section 3.3. Recall numbers marked with * mean
that the improvement is statistically significant compared with Synthetic Ret (mcnemar with p-value < 0.05).

Figure 2: Model architecture of BERT-Ranker and
BERT-FP.

therefore we fine-tune this model on RSD Train
following the same training approach in the origi-
nal paper. Since we have p positive and n negative
candidates for each turn, we can obtain p×n exam-
ple pairs. For our BERT models, we finetune both
BERT-FP and BERT-Ranker on RSD Train. To
evaluate the effect of positive and negative exam-
ples, we finetune the BERT-Ranker using different
RSD training variations described in Section 3.3.

We also implemented model ensembling for all
the methods. We first divide the training set into
five folds, and each time we choose four of them for
model training and the remaining one for validation.
In this way, we obtain five trained models, and then
average their prediction probability outputs on the
test set to get the final prediction scores. Further
training details are provided in Appendix A.

5.2 Results
Table 2 shows the results on RSD Test using differ-
ent models and training configurations. From the
table, we have the following findings:

• We observe that there is no performance im-
provement when training BERT-FP on RSD
Train versus BERT-Ranker on RSD Train.
Therefore the post-training process via op-
timizing the MLM and NSP objectives pro-
posed in the BERT-FP model does not bring
an extra advantage.

• By comparing DialogRPT trained on both
Reddit and RSD Train as well as BERT-FP
trained on Ubuntu and RSD Train, we can see
that the same models trained on our labeled
data lead to much better performance, because
of the matched training and testing setup.

• We observe that training BERT-Ranker on ad-
versarially created negatives (Synthetic Adv.)
and (Synthetic Ret.) outperforms using ran-
dom negatives within the same dialog (Syn-
thetic IA), achieving Recall@1 scores 0.532
and 0.506, respectively. However, training on
adversarial examples (Synthetic Adv.) and
(Synthetic Ret.) still significantly under-
performs training on human-verified hard neg-
atives (RSD Train), which achieved a Re-
call@1 score of 0.659.

• We see the benefit of leveraging multiple posi-
tive responses, i.e., BERT-Ranker (RSD Train)
outperforms BERT-Ranker (RSD 1 Pos.) with
Recall@1 scores of 0.659 and 0.628, respec-
tively.
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Figure 3: Results when increasing the number of neg-
ative candidates in the Synthetic Datasets Training set.
See Recall@2-5 results in Appendix D

Example 1
Dialog History:
System: If you don’t mind me asking, what type of music
are you into ?
User: i like rock my favorite band is the arctic monkeys
BERT Ranker (RSD Train): Thanks for sharing! If you
don’t mind me asking, what is your favorite rock song ?
BERT Ranker (Synthetic Inter-Random): i see, you like
rock your favorite band is the arctic monkeys. i like rock
too. who is your favorite artist?

Example 2
Dialog History:
System: i’m happy to talk about movies. so, have you seen
a good movie lately?
User: oh yeah
BERT Ranker (RSD Train): nice. what movie did you see?
BERT Ranker (Synthetic Adversarial): tom hanks is a great
actor. are you a fan?

Example 3
Dialog History:
System: so do you have any pets at home?
User: yeah i’ve got two
System: cool what is it?
User: it’s a dog
BERT Ranker (RSD Train): wow! that’s great! i like dogs!
what is its breed?
BERT Ranker (Synthetic Retrieval): cool! what kind of
pet?

Figure 4: Example predictions of BERT Ranker (RSD
Train) outperforming BERT Ranker trained on Synthetic
Datasets. Due to privacy concerns, these example di-
alogs are from an internal author.
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Example 1
Dialog History:
System: How about we talk about movies, news or music.
So, what topic would you like to talk next ?
User: tell me about
Model selected response: ok. i can fetch ratings from rotten
tomatoes, check for fresh movies in the theatres, tell you
movie plot and reviews, and more.
A correct response: i didnt hear you clearly, could you
please repeat?
Issue: User utterance ’tell me about’ was incomplete due
to ASR error. The model did not recognize the error and
focused on the dialog topic instead which was movies.

Example 2
Dialog History:
System: so, tell me, what was the last movie you liked?
User: i don’t remember
Model selected response: i don’t know this movie. space
odyssey 2001 is great, in my opinion. it is a long-standing
classic, one of the first films about artificial intelligence.
tell me, what movie genres do you prefer?
A correct response: i have found some popular new movies:
uncut gems and the rest of us. do you want to know details
about uncut gems?
Issue: The model assumes the user fulfilled the system’s
question by providing a movie even though the user didn’t.

Figure 5: Example predictions of BERT Ranker (RSD
Train). Due to privacy concerns, these example dialogs
are from an internal author.

5.3 Analysis

The advantage of creating negative examples via
random or synthetic approaches is the ability to au-
tomatically increase the number of training exam-
ples. To further evaluate this, we vary the number
of negative candidates in Synthetic Inter-Random,
Intra-Random, and Adversarial, and report the cor-
responding MRR and Recall@1 scores, in Figure 3.
We see that for our Synthetic Datasets increas-
ing the number of negative candidates to a certain
point improves performance for both MRR and Re-
call@1, after which the performance will degrade.

Increasing the number of negative candidates
for (Synthetic Inter-Random) and (Synthetic Intra-
Random) increases the likelihood of retrieving a
candidate that is a false negative. This can bring
noise and confusion to the model during training
time. Increasing the size of the corpus could miti-
gate this issue; however, it can be expensive to col-
lect a large enough dataset to see its benefits.6 The
advantage of (Synthetic Adv.) is the ability to cre-
ate a large number of negative candidates without
collecting more data; however, as seen in Figure 3
the decrease in MRR and Recall@1 when sampling

6Large datasets such as Reddit are known to be noisy and
could degrade performance.

more candidates may be due to false negatives and
therefore still need to be manually verified.

5.4 Qualitative Examples

We provide examples of our BERT-Ranker models
in Figure 4. In Example 1 both responses selected
by the models acknowledge the user’s artist pref-
erence; however, BERT-Ranker (Synthetic Inter-
Random) chooses a response that repeats the ques-
tion already answered by the user while BERT-
Ranker (RSD Train) does not. In Example 2, BERT-
Ranker (RSD Train) provides a more coherent re-
sponse versus BERT-Ranker (Synthetic Adversar-
ial) which has an abrupt topic change. In Example
3, BERT Ranker (Synthetic Retrieval) repeats the
same question asked in the dialog history.

Figure 5 shows two typical erroneous examples.
In the examples we also provide an explanation for
the errors. It is worth pointing out that incorrect
ASR output (word errors or end point detection
errors such as the first example) is a source of er-
rors to confuse our models. Gopalakrishnan et al.
(2020) has observed similar issues for the task of re-
sponse generation in speech-based dialog systems.
Future work such as training on synthetic/actual
ASR errors is needed to improve the robustness of
models for such ASR issues.

5.5 Limitations

Our evaluation is done on a dialog dataset that
contains a limited number of responders and only
GPT2 is used as a neural response generation
model. Synthetically created examples may per-
form better on datasets with a wider variety of
neural response generation models. Future work
would involve collecting response selection data
annotated with a wider variety of responders.

6 Conclusion

In this work, we have curated a new dataset for re-
sponse selection, which contains multiple positive
responses and human verified hard negatives. We
conducted a comprehensive evaluation of SOTA
response selection models and various techniques
to construct negative candidates to demonstrate
the benefit of the dataset. Even though RSD re-
quires manual annotation we see that training on
our dataset greatly outperforms methods that use
only one positive example and generate adversarial
negative candidates.
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7 Ethics and Broader Impact

Our work involves re-ranking responses from a dia-
log system. We acknowledge that we are using data
from real users who have not been paid for these
interactions. We also acknowledge there may be
biases in the demographics of the user population.
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A Response Selection Model Training
Details

All our BERT-base (Devlin et al., 2019) models
are trained with a batch size of 32 on 1 NVIDIA
V100 GPU with 16GB memory. We use the Adam
optimizer with a learning rate of 1e-5 and the model
is trained for 2 epochs. We use a sequence length
of 256 tokens. To deal with the label imbalance,
we compute a weighted loss where the loss for a
positive candidate is up-weighted by a factor of
α and the loss for a negative candidate is down-
weighted by a factor of β. We follow (King and
Zeng, 2001) and compute α by taking the sum of
the number of positive and negative candidates and
divide by the number of labels times the number
of positive candidates. The same is done for β but
we divide by the number of negative candidates
instead. In our experiments α = 5.35 and β = 0.55.

For the DialogRPT-human vs ranker model, we
train with a batch size of 4 on 8 NVIDIA V100
GPUs with 16GB memory each. We use the Adam
optimizer with a learning rate of 3e-5. We use
a sequence length of 50 tokens and the model is
trained for 3 epochs.

B NRG Training Details

We train all our NRG models on the RUI dataset
described in Section 3.2. This dataset is split into a
90/10/10 train, valid, test split. All of our models
are initialized with GPT2 (Radford et al., 2019)
based models and were trained with a batch size of
2 on 8 NVIDIA A100 GPUS with 32GB memory
each. We use the Adam optimizer and a learning
rate of 6.25e-5. Each model is trained for 3 epochs
and we finetune both the Language Modeling Head
and Multiple Choice Head of GPT2 in a Transfer-
Transfo fashion (Wolf et al., 2019). The Multiple
Choice Head is finetuned with 1 randomly selected
negative candidate. We leverage the HuggingFace’s
transformers library for all our models.1 Detailed
descriptions of our NRG variants are provided as
below.

NRG Responder: Is a GPT2-XL model where
the input is the dialog context which is truncated to
64 tokens.

NRG Responder GPT2-medium: Is a GPT2-
medium model where the input is the dialog context
which is truncated to 64 tokens.

NRG Responder grounded on knowledge: Is a

1https://github.com/huggingface/transformers

GPT2-XL model where the dialog context is trun-
cated to 256 tokens and a single knowledge sen-
tence is truncated to 32 tokens. The dialog context
and knowledge sentence are concatenated together
to be used as input into the model.

NRG Responder grounded on dialog acts (DA):
Is a GPT2-XL model where the dialog context is
truncated to 64 tokens and each dialog act has it’s
own embedding that is randomly initialized and
updated during finetuning. The dialog context and
DA are concatenated together to be used as input
into the model. When training this model we au-
tomatically label the RUI dataset with a dialog act
tagger 2 and use those DAs as the ground truth. The
DA labels used are from (Mezza et al., 2018) e.g.
Feedback, Yes-No question, Statement.

During inference, a sequence of dialog acts are
determined using a rule-based dialog policy which
are used as input into the model to control the gen-
erated response. For example, a Yes-No question
dialog act will cause the model response to gener-
ate a question (Hedayatnia et al., 2020).

NRG Responder grounded on sentiment: Is a
GPT2-XL model where the dialog context is trun-
cated to 64 tokens. There is an embedding rep-
resenting negative sentiment that is randomly ini-
tialized and updated during finetuning. The dialog
context and negative sentiment are concatenated
together to be used as input into the model to con-
trol the generated response. This controllability
allows the model is able to generate a sympathetic
response when the user expresses negative senti-
ment. When training such a model, we automat-
ically label the RUI dataset with an off the shelf
sentiment classifier (Zhou and Jurgens, 2020) and
use those sentiment tags as the ground truth.

C Response Selection Annotation Details

Our annotation framework is shown in Figure C.1.
A human annotator is shown a dialog context and a
set of response candidates are shown below. The an-
notator can then check off however many responses
they deem as appropriate with respect to the dialog
context. All responses not selected are considered
inappropriate.

2We annotate a subset of the RUI dataset for dialog acts
and train an RNN model on these annotations
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Figure C.1: Annotation framework to collect RSD
Train/Test. Due to privacy concerns, this example dialog
is from an internal author.

D Evaluation Metrics for Synthetic
Datasets

In Figures D.2, D.3 and D.4 we show all the met-
rics for our BERT Ranker model trained on each
of our Synthetic Datasets with different number of
sampled negative candidates. We see for all met-
rics as the number of negative candidates increase
results either degrade or taper off.

Figure D.2: Increasing the number of randomly sam-
pled negative candidates in the Synthetic Inter-Random
Training set.
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Figure D.3: Increasing the number of randomly sam-
pled negative candidates in the Synthetic Intra-Random
Training set.

Figure D.4: Increasing the number of randomly sam-
pled negative candidates in the Synthetic Adversarial
Training set.
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Abstract

We present a novel technique to infer ranked
dialog flows from human-to-human conversa-
tions that can be used as an initial conversation
design or to analyze the complexities of the
conversations in a call center. This technique
aims to identify, for a given service, the most
common sequences of questions and responses
from the human agent. Multiple dialog flows
for different ranges of top paths can be pro-
duced so they can be reviewed in rank order
and be refined in successive iterations until ad-
ditional flows have the desired level of detail.
The system ingests historical conversations and
efficiently condenses them into a weighted de-
terministic finite-state automaton, which is then
used to export dialog flow designs that can be
readily used by conversational agents. A proof-
of-concept experiment was conducted with the
MultiWoz data set, a sample output is presented
and future directions are outlined.

1 Introduction

Virtual assistants are an attractive solution to cus-
tomer service automation. While their language
understanding capabilities and general knowledge
of the world is limited in comparison with human
agents, they can provide relatively simple services
to an unlimited number of concurrent customers
when coupled with cloud technologies. Addition-
ally, they ensure an homogeneous experience, ac-
cording to their programming. It is common prac-
tice to program a virtual assistant to fall back to a
human agent whenever it detects it cannot provide a
service, combining the strengths of both human and
machine. Another usage of virtual assistants is to
suggest to human agents a list of potential answers
during a conversation with a customer, providing
the agent potential useful information from pre-
vious interactions with the customer or from the
customer profile, but letting the human decide the
final answer.

Nowadays there exists a wide range of platforms
for implementing virtual assistants, such as Google
DialogFlow,1 Amazon Lex,2 Microsoft Bot Frame-
work,3 and RASA.4 However, implementing a vir-
tual assistant or extending it to support new services
is not a trivial task. For the case of new services,
one has to imagine how the conversations for that
given service will be, or run a Wizard of Oz experi-
ment with potential customers to gather examples
of conversations. Once a conversational agent is
deployed, it is often necessary to review its perfor-
mance and adapt it to the actual conversations. For
the case of services that are already being provided
by human agents (e.g. in a call center), it is possible
to review the conversation recordings in order to
design a virtual assistant that will be better suited
when first deployed. However, manually reviewing
the call recordings can be time consuming.

In this paper we propose a technique to extract
the most common workflows or dialog flows hu-
man agents follow when providing a specific ser-
vice, once the calls are segregated by service.5 The
types of agent questions and responses are first
identified and labeled (e.g.“Where are you going?”
→ “Destination request”), for which we use pro-
prietary software. Once the dialog utterances are
replaced by the labels, hundreds of conversation
paths can be condensed and ranked in seconds as a
weighted finite-state automaton. Different ranges
of best paths in the automaton can then be exported
as a succession of manageable-size dialog flows
for their manual review (examples in the supple-
mentary material). The conversational designer can
then review them in rank order and decide when to
stop, taking into account the added value of each
successive dialog flow and the time available.

1https://cloud.google.com/dialogflow
2https://aws.amazon.com/lex/
3https://dev.botframework.com/
4https://rasa.com/
5A potential approach to segregation by service is dis-

cussed in Chatterjee and Sengupta (2020)
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Figure 1: Example of 2 dialogs ABC and DBE (left)
leading to overgeneration of sequences ABE and DBC
(right) when only taking into account consecutive se-
quences of 2 dialog phases

2 Related Work

Bouraoui et al. (2019) present Graph2Bots, a tool
that also aims to assist conversational agent design-
ers. Similarly to us, they first identify types of
utterances or dialog turns, which they call dialog
phases. Then they build a graph with all possible
dialog phases as nodes, and all possible transitions
between consecutive dialog phases in the dialogs.
Frequencies of dialog phases and transitions can
then be used in order to filter out less frequent por-
tions of the graph. We have also experimented with
this kind of dialog phase graph and found several
inconveniences we aim to overcome, namely

1. big convoluted graphs that, although they can
be filtered, they are not partitioned so one can
examine successive and manageable subsets
of paths, one subset at a time,

2. the resulting graph represents concatenations
of consecutive subsequences of 2 dialog
phases from multiple dialogs, resulting in
paths that do not actually exist in the dataset
and produce confusion (Figure 1), and

3. the overgeneration of paths results in loops
(Figure 2), which prevent the dialog flows
from being loaded into conversational agent
platforms as initial designs.

Qiu et al. (2020) propose an unsupervised ap-
proach to dialog structure inference based on a
variational recurrent neural network with a struc-
tured attention layer that supports both 1 to 1 and

Start

A

B

B

A

End

A

Start

End

B

Figure 2: Example of 2 dialogs (left) leading to a loop
(right) when only taking into account consecutive se-
quences of 2 dialog phases

multiparty conversations. However the reported
times to train these models are in the order of hours,
which in our use case would be impractical.

Zhai and Williams (2014) and Paul (2012) com-
bine Hidden Markov Models and topic modeling to
model the dialog structures as conversation states
with probabilities to shift to other states, where
each state models the potential language or topics
in that state.

3 Rationale

This work builds on top of the output of a pro-
prietary suite of tools for the analysis of call
center conversations. This output comprises a
set of dialog transcripts segregated by intent (e.g.
booking a restaurant), where the utterances have
been labeled by speaker role (agent/customer),
classified into question/response/other, and then
grouped into clusters of semantically equivalent
questions/responses.6 For each group of questions
or responses, a canonical form of the question or
response is provided to serve as the normalized ver-
sion, analogous to the dialog phases in Bouraoui
et al. (2019). Our goals are:

1. to find the most frequent sequences of ques-
tions and responses human agents follow, and

2. to compile them into a succession of dia-
log flows containing ranges of top-ranked se-
quences so that a conversational designer can
visualize any number of them, starting from
the highest ranked ones.

Also, as additional requirements,

6Other utterance types (e.g. greetings) are ignored
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1. the paths in these dialog flows should come
from actual dialogs and not be concatenations
of subsequences from different dialogs (e.g.
Figures 1 and 2), in order to avoid confusion
and loops,

2. the size of individual dialog flows (number
of paths) should be limited by means of a
parameter, and

3. the dialog flows should also include some ex-
amples of potential customer utterances that
may appear before and after each agent ques-
tion or response so that one can determine the
triggers of specific questions and responses as
well as potential customer responses.

We do not intend to determine exact types of cus-
tomer utterances but to provide a variety of ex-
amples since customer utterances tend to be more
varied than agent utterances: whereas customers
may request a service just a few times and may
have no prior knowledge of the service protocols,
agents deliver the same services multiple times to
multiple customers and must adhere to established
protocols and regulations.

4 Methodology

Overall, our proposed approach consists of 6 main
steps:

1. building a non-deterministic finite-state au-
tomaton (NFA) representing all possible se-
quences of normalized agent questions and
responses,

2. minimizing the NFA in order to obtain an
equivalent but compact deterministic finite-
state automaton (DFA),

3. annotating the DFA with question/response
frequencies as well as with customer utter-
ances

4. ranking the DFA paths and transitions and
pruning it to a desired number of paths

5. selecting a maximum number of customer ut-
terance examples before and after each agent
utterance, discarding the rest, and

6. exporting consecutive ranges of ranked paths
into separate dialog flows for their manual
review.
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Figure 3: Example of NFA representing 3 dialogs
aAbBcCd, eAfDgCh and iBjDkCl

4.1 Building the NFA
For simplicity, let A,B,C and D be types of either
agent questions or responses (their normalized ver-
sions or dialog phases). Let a, b, . . . l be specific
examples of customer utterances (non-normalized).
We build an NFA as depicted in Figure 3, with a
linear sequence of states (nodes) and transitions
(edges) for each dialog, where transitions are an-
notated with the normalized agent utterances and
states with the customer utterance examples. Note
we only consider agent questions and responses,
and other kinds of agent utterances are simply ig-
nored (e.g. greetings). Consecutive sequences of
customer utterances between 2 agent utterances are
simply concatenated and treated as a single utter-
ance. Consecutive sequences of agent utterances
with no customer utterances in between result in a
state that is annotated with no customer utterance
(a state may have no customer utterance).

Formally, an NFA is defined as a 5-tuple
(Q,Σ, δ, QI , F ) with

• Q = {q0, q1, . . . , q|Q|−1}, as a finite set of
states,

• Σ = {σ0, σ1, . . . , σ|Σ|−1}, as an either finite
or potentially infinite input alphabet (normal-
ized agent utterances in our case),

• δ : Q × (Σ ∪ {ε}) → P(Q) as a finite and
partial transition function where ε /∈ Σ is the
empty symbol and P(·) represents the set of
all subsets of a given set,

• QI ⊆ Q as the set of initial states (represented
as nodes pointed by an arrow coming from
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nowhere), and

• F ⊆ Q as the set of final states (represented
as double-circled nodes).

A path in the automaton is an alternation of states
and input symbols qi, σi, qi+1, σi+1, . . . starting
and ending with a state, where for every subse-
quence qj , σj , qj+1 there is a transition δ(qj , σ) =
qj+1. We say an automaton recognizes, represents
or accepts an input sequence σi . . . σi+n iff there
exists at least one path from an initial state to a
final state with the same sequence of input sym-
bols. We say an automaton is not deterministic
iff it contains at least 2 paths starting from an ini-
tial state and labeled with the same sequence of
input symbols (multiple states can be reached by
consuming the same input sequence). Note having
more than one initial state is sufficient for being
non-deterministic.

We define the partial map ζc : Q→ Γ of states to
customer utterances (Γ being the set of all customer
utterances) to capture the customer utterance that
may appear between 2 agent utterances, if any.

4.2 Minimizing the NFA
Minimizing an NFA results in an equivalent de-
terministic finite-state automaton (DFA) that rep-
resents the exact same set of input sequences but
with a minimum set of states (see Figure 4). While
this does not necessarily imply that the resulting au-
tomaton will have less transitions, this is usually the
case for the NFAs that we build. Note for the sake
of minimization, customer utterances are ignored
(we only care about producing the same sequences
of agent questions and responses). Formally, we
define a DFA as a 5-tuple (Q,Σ, δ, qI , F ), where
each element is defined in the same manner than
for NFAs except for

• qI , which is a unique initial state instead of a
set of possible states, and

• δ : (Q × Σ) → Q, which does not allow for
empty symbols or more than one target state
for the same source state and input symbol.

NFA minimization can be achieved by reversing the
automaton, determinizing it, reversing it again and
determinizing it a second time (van de Snepscheut,
1985). Reversing an automaton can be achieved
by reversing the transitions, making initial states
final, and final states initial. Since the NFAs we
produce do not use empty input symbols, we can
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Figure 4: Example of NFA representing 3 dialogs (left)
and DFA resulting from the NFA minimization (right)

use a simpler algorithm for determinizing them.
Let A be one of these NFAs, Algorithm 1 (in the
appendix) traverses all paths in A starting from its
initial states, generating a DFA A′ that contains a
single state for each set of states that can be reached
by consuming the same input sequence, and adding
the corresponding transitions between the states in
A′. It builds a map ζm of sets of states in A to states
in A′ to keep track of these correspondences and
to avoid generating more than one state in A′ for
the same set of states in A. The algorithm starts by
creating a single initial state qI in A′ corresponding
to the set of initial states QI in A, and places the
pair (QI , qI) in a queue E of states to explore. As
long as E is not empty, the next pair (Qs, rs) is
dequeued and Algorithm 2 (in the appendix) is
used to explore all the transitions coming from any
state in Qs, returning a map ζt of input symbols
σ to sets of target states Qt that can be reached
from any state in Qs by consuming σ. For each σ
and Qt, the corresponding state rt in A′ is either
created or retrieved from ζm if already existed, and
transition δ′(rs, σ) = rt is added to A′. Each time
a state rt is created for a given set of states Qt, rt
is made final iff there is at least one final state in
Qt. Finally, whenever a new rt is to be created due
to the lack of a map ζm(Qt), the map is added and
(Qt, rt) is enqueued for further exploration of A.

4.3 Annotating the DFA

Let A be an NFA and Amin the resulting DFA upon
minimization, since both machines are equivalent
they recognize the exact same sequences. In the
same way that during minimization we generate
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states of a DFA that correspond to sets of states in
an NFA, there is a correspondence between states in
Amin and states in A, as well as between transitions
in Amin and transitions in A.

Given a map ζc of states in A to customer ut-
terances (1 or none per state), Algorithm 3 (in the
appendix) annotates the states in Amin with the
sets of all customer utterances of the correspond-
ing states in A (map ζ ′c), and annotates the tran-
sitions in Amin with the count of all equivalent
transitions in A (map ζ ′f ). An example is given in
Figure 5. The algorithm also requires a topologi-
cal sort of Amin as an input,7 which can be com-
puted with Kahn’s (1962) algorithm. Algorithm 3
(in the appendix) explores both A and Amin syn-
chronously, while computing the map ζ−1

m of states
in Amin to states in A. It starts by mapping the
initial state of Amin to the set of initial states in
A. Then explores the states of Amin by following
the provided topological sort. For each state ss in
the sort, it retrieves the corresponding set of states
ζ−1
m (ss) = Qs, and annotates ss with the union of

customer utterances in Qs. Then for each transition
δ′(σ, ss) = st in Amin finds all the corresponding
transitions δ(σ, qs) = qt in A, adding all the states
qt found to the mapping ζ−1

m (st), and incrementing
the count of transitions ζ ′f (ss, σ, st) for each equiv-
alent transition found in A. The topological sort is
needed so that when exploring a next state ss in the
sort, we are sure the map ζ−1

m (ss) contains every
possible corresponding state qs in A, which will be
the case since A and Amin are equivalent.

Apart from transition counts or frequencies, tran-
sitions of Amin can also be annotated with proba-
bilities by normalizing the frequencies: for each set
of transitions outgoing from the same source state,
we compute the sum of frequencies of the transi-
tions in the set, then divide the frequencies of these
transitions by the sum. Log-probabilities can also
be added in order to optimize the computation of
top-scoring paths in the next section. A path score
is the aggregation of the transition weights in the
path, let it be the sum of frequencies, the product
of probabilities, or the sum of log-probabilities.

4.4 Ranking and pruning

Given an annotated DFA A and a maximum de-
sired number k of paths to keep (or carve), we use

7An ordering of all the states in Amin such that, for every
transition in Amin, target states always come after source
states in the ordering. This is the same problem as finding an
ordering in a dependency graph.
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Figure 5: Example of NFA representing 3 dialogs (left)
and equivalent DFA after state and transition annotation
(right)

a Viterbi-like (1967) algorithm to efficiently com-
pute the top-scoring paths, rank them (from 1st to
kth) and annotate the transitions in A with the set of
ranks of top paths they belong to. Transition rank
annotations are used in the export step to generate
the dialog flows for desired ranges of best paths.
States and transitions that do not belong to any top-
k path are removed in order to limit the execution
time of the algorithm. Whereas this also limits the
ranges of best paths that it will later be possible to
export, in practice this limit can be much higher
than the number of paths a conversational designer
would deem necessary (e.g. 500), while keeping
the execution time in the order of seconds. The al-
gorithm is divided in 4 parts, which we detail in the
following subsections: DFA preparation, forward
propagation of weights, backward propagation of
ranks, and DFA clean up. The first 3 parts also
make use of a topological sort that is to be previ-
ously computed; the same topological sort used for
the DFA annotation can be reused here. We use
DFA in Figure 6 as an example. Note customer
utterances are omitted since they are not relevant
for the sake of ranking and pruning (the algorithms
ignore map ζ ′c).

4.4.1 DFA preparation
The ranking and pruning algorithm computes the
best paths between an initial and a final state of a
DFA A. Whereas a DFA can only have a single
initial state, it may have more than one final state.
In order to take into account all possible paths in
the DFA, we modify A as illustrated in Figure 7 so
it contains a single and new final state sf , with ε-
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Figure 7: DFA after carving preparation

transitions arriving to it from each former final state
and annotated with neutral weights (0 for frequen-
cies and log-probabilities or 1 for probabilities).
Strictly speaking, adding ε-transitions to A make
it non-deterministic, however they will be removed
during the clean up of A. Finally, the topological
sort of A is to be updated by appending sf at the
end. In Figure 7, it ends up being s0, s1, . . . , s7.

4.4.2 Forward propagation of weights

For each state st in a carving-prepared DFA A, Al-
gorithm 4 (in the appendix) computes the list Lt

of k best possible aggregated weights that can be
produced by reaching st from the initial state, and
annotates st with this list (map ζL(st) = Lt). An
example of the computed lists is given in Figure 8
(lists above or below the states). Each element of
Lt is a triplet (w, σ, ss), with w being a top aggre-
gated weight, and (σ, ss) the symbol and source
state of the previous transition that allowed for that
best weight (transition δ(σ, ss) = st). The algo-
rithm starts by initializing the lists Lt of all the
states as empty lists. Then initializes ζL(qI) with
triplet (winit, ε,⊥), a initial aggregated weight (0
for frequencies and log probabilities, 1 for proba-
bilities), and a non-transition (there is no transition
before qI ). For each state ss in the provided topo-
logical sort, except the last state sf added during
carving preparation, the algorithm propagates the
corresponding top weights in ζL(ss) towards the
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Figure 8: DFA after forward propagation

lists Lt of the corresponding target states st. Given
a list Ls of n ≤ k elements, the n weights are
combined with the weight of each transition from
ss, and the resulting aggregated weight is added
to the list Lt of the corresponding target state st
along with the corresponding transition symbol and
source state ss. Lists of top weights are sorted lists
of at most k triplets, so when a list overflows the
excess can be easily removed from its end. Thanks
to the topological sort, whenever propagating the
top weights of a state ss we make sure all possible
paths that reach ss from qI have been explored,
and the list contains the top weights only (excess
of weights will have been removed).

4.4.3 Backward propagation of ranks
Once the lists of top weights and last transitions
have been computed, we can proceed to rank the fi-
nal top weights in ζL(sf ) and propagate these ranks
backwards, following the last transitions in the cor-
responding triplets of best weights. Algorithm 5
(in the appendix) starts by creating a list of sets
of ranks for state sf (map ζSR standing for state
ranks), one set of ranks per triplet in ζL(sf ). The
first set of ranks is {1} (first rank), the second is
{2} (second rank), and so forth (see list below s7 in
Figure 9; we replaced top weights with rank sets to
save space). Then these ranks are propagated back-
wards by following a reverse of the topological sort,
excepting the initial state. Given a state st in the
topological sort, the algorithm first computes a map
ζBR (backwards ranks) of backwards transitions to
the list of all possible sets of ranks in ζL(st). For in-
stance, in Figure 9 the 3 top backwards transitions
of sf are the same, so ζBR contains in this case a
single map ζBR(ε, s6) = [{1}, {2}, {3}]. For each
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Figure 9: DFA after backward propagation

map ζBR(σ, ss) = BR, transition δ(ss, σ) = st
is annotated with the union of all the sets of ranks
in BR (e.g. in Figure 9, transition δ(s6, ε) = s7
gets ranks {1, 2, 3}. Map ζTR is used to anno-
tate the transition ranks. Furthermore, for each
list of sets of ranks ζBR(σ, ss) = [R1, R2, . . .], the
list is propagated backwards towards ζSR(ss) by
computing the pairwise union of sets of ranks of
ζSR(ss) with ζBR(σ, ss). For instance, in Figure 9
list [1, 2, 3] below s7 gets propagated as is to the list
above s6, since s7 is the only contributor of ranks
for s6. States that get ranks are part of the top k
paths and are marked as useful (states to be keep
during clean up). For instance, no ranks get propa-
gated to s5 (symbol⊥ represents null), hence it will
not be marked and will be removed during clean
up. Ranks [{1}, {2}] above state s4 correspond to
transition δ(s3, F ) = s4, hence get propagated to
state s3 (ranks below s3). However rank [{3}] of
s4 for transition δ(s1, D) = s4 gets propagated
to ranks of state s1. Rank [{1}] of s2 for transi-
tion δ(s1, C) also gets propagated to s1, resulting
in ranks [{1, 3}] (pairwise union of sets of ranks).
Once the algorithm ends, the ranks [{1}, {2}, {3}]
of s7 have travelled back through the top paths, an-
notating the corresponding transitions and states,
and arriving to state s0 as [{1, 2, 3}].

4.4.4 DFA clean up
Algorithm 6 (in the appendix) undoes the changes
done to the DFA during carving preparation, and
deletes every unmarked state (e.g. s5) and un-
ranked transition (e.g. δ(s3, H) = s5). The lists of
state top weights and ranks are no longer needed
and can be discarded; we just need to keep map ζTR

of transition ranks. Figure 10 illustrates the result-
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Figure 10: DFA after clean up

ing automaton for our example. In order to avoid
potential data corruption, the algorithm deletes the
states and transitions in a proper order, starting
with transitions in ζL(sf ); these are ranked tran-
sitions but are added during carving preparation.
Then states ss are scanned in topological sort ex-
cept for sf . For each ss, transitions from ss with
no ranks are removed. Then ss is removed if it’s
not marked. Note that by following a topological
sort, all transitions incoming to and outgoing from
an unmarked state are removed before removing
the state. Finally, sf is removed unconditionally
without scanning it, since it has no outgoing transi-
tions and it was added during carving preparation.
We no longer need the topological sort, so it can be
discarded.

4.5 Selecting customer utterances
Due to the potential big number of customer ut-
terances that might be annotated on the remaining
DFA states, we want to select a limited number n
of different examples per state and delete the rest so
that the exported dialog flows are not overcrowded.
For each set of customer utterances, we first com-
pute the corresponding sentence embeddings (Cer
et al., 2018; Reimers and Gurevych, 2019; Yang
et al., 2020). Then we clusterize the sentences
into groups of semantically similar ones using DB-
SCAN (Ester et al., 1996). We select the n biggest
clusters and, for each one, we find the vector clos-
est to the cluster centroids. Finally, we retrieve
the sentences that correspond to those vectors, and
delete all the rest.

4.6 Exporting dialog flows
Once the DFA is pruned, the transitions ranked,
and the customer utterances filtered, generating a
dialog flow for an arbitrary range of best paths is
straightforward: we simply traverse the automaton
starting from the initial state and following every
transition that has at least one rank within the range,
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until no more states are found. Transition rank sets
ζTR are sorted data structures (e.g. sorted lists or bi-
nary trees) so one can efficiently evaluate whether
the intersection of the set with the range of ranks
is empty or not. As states and transitions are tra-
versed, the corresponding nodes and edges of the
dialog flow can be exported to the desired format,
e.g. DOT (Gansner and North, 2000) in order to
create dialog flow visualizations, or some format
of a conversational agent platform.

5 Methodology extension

An inconvenience of the method described above
is that all the customer utterances that may start
a conversation get grouped together in the DFA
initial state (e.g. utterances a, e, and i of state s0
in Figure 5). We would like to split this group
into potential utterances that may precede each first
agent utterance, so that we can also determine what
triggered each first agent utterance. This can be
achieved by modifying the way in which the NFA
is built, as illustrated in Figure 11: we simply du-
plicate the first transition of each individual dialog,
leaving the new initial states with no customer ut-
terances. Upon minimization, the new first agent
utterances will only allow for grouping the first
customer utterances that are followed by the same
agent utterance. Upon exporting the dialog flows,
these first agent utterances are simply to be ignored.
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Figure 11: NFA with duplicated first transitions (left)
and resulting NFA after minimization, annotation and
ranking (right)

6 Results

We have tested this methodology with a sample of
492 restaurant booking dialogs from MultiWOZ
(Han et al., 2020). On a MacBook Pro (2018), it
took 4.3 seconds to run the extended method from
NFA building (4083 states and 3591 transitions) to
DFA ranking and pruning (1704 states, 2176 tran-
sitions) for a big enough k so all paths (488) were
ranked and kept. Filtering the customer utterances
took 36.8 additional seconds, though taking into
account that this process included computing mul-
tilingual sentence embeddings (Yang et al., 2020)
for all the customer utterances, it could be consid-
erably reduced by using a GPU. Exporting a dialog
flow of 50 paths into SVG with GraphViz (Gansner
and North, 2000) took 2.5 seconds. Two flows are
shown as supplementary material, and a wide range
of flows has been provided as accompanying mate-
rials. Ranking criterion is frequency aggregation so
longer paths are produced. For simplicity, only the
top rank of each transition is shown. The process
factors out prefixes and suffixes of agent utterance
sequences, which to some extent allows for identi-
fying the most common full sequences. The flows
exactly reflect what is found in the data, which is
what we initially intended.

7 Conclusion and future work

This paper presented a novel and efficient method
for inferring ranked dialog flows from human-to-
human conversations in seconds. This method con-
verts the dialogs into summarised and digestible
artefacts, in the form of weighted finite-state au-
tomata with ranked transitions. The method is in-
tended to be used together with a semi-supervised
iterative process of identification of types of agent
utterances, hence the quick generation of the
ranked dialog flows is a must.

Future work includes 1) splitting the customer
bubbles across the entire dialog flows to have sep-
arate groups of examples of customer utterances
before each agent bubble, 2) to identify dialog sub-
structures such as subsequences of agent questions
and responses that may appear in any order, so they
can be replaced by a subautomaton call and allow
for further path collapsing, and 3) to allow for a
controlled amount of overgeneration/noise in the
automaton that maximizes the number of collapsed
paths (adding missing subsequences that allow for
further minimization).
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A Appendix

A.1 Algorithms

Algorithm 1 nfa_determinize(A)

Input: A = (Q,Σ, δ, QI , F ), a NFA
Output: A′ = (Q′,Σ, δ′, qI , F ′), a DFA equiva-

lent to A
1: initialize A′ as a DFA with a single and initial

state qI and no final states or transitions
2: if QI ∩ F ̸= ∅ then
3: F ′ ← F ′ ∪ {qI}
4: end if
5: ζm(QI)← qI ▷ state equivalence map
6: E ← {(QI , qI)} ▷ equivalent-pairs queue
7: while E ̸= ∅ do
8: (Qs, rs)← dequeue(E)
9: ζt ← nfa_recognize_every_symbol(Qs)

10: for each (σ,Qt) : ζt(σ) = Qt do
11: rt ← ζm(Qt)
12: if rt =⊥ then
13: make new state rt ∈ Q′

14: if Qt ∩ F ̸= ∅ then
15: F ′ = F ′ ∪ {rt}
16: end if
17: ζm(Qt)← rt
18: E ← E ∪ (Qt, rt)
19: end if
20: δ′(rs, σ)← rt
21: end for
22: end while

Algorithm 2 nfa_recognize_every_symbol(Qs)

Input: Qs, a source set of states
Output: ζt : Σ → P(Q), a map of input sym-

bols to target sets of states such that ζt(σ) =⋃
qs∈Qs

δ(qs, σ)
1: initialize ζt as an empty map of Σ→ P(Q)
2: for each qs ∈ Qs do
3: for each (σ, qt) : δ(qs, σ) = qt do
4: if ζt(σ) =⊥ then
5: ζt(σ)← ∅
6: end if
7: ζt(σ)← ζt(σ) ∪ {qt}
8: end for
9: end for

Algorithm 3 dfa_annotate(A,Amin, ζc)

Input: A = (Q,Σ, δ, QI , F ), a NFA
ζc : Q → C, map of states in A to cus-

tomer utterances
Amin = (Q′,Σ, δ′, q′I , F

′), DFA result of
minimizing A

Amin_sort : (Q × Q × . . .), a topological
sort of Amin

Output: ζ ′c : Q
′ → P(C), map of Amin states to

sets of customer utterances
ζ ′f : (Q′×Σ×Q′)→ N0, map of Amin

transitions to frequencies
1: ζ−1

m (qI)← QI ▷ Inverse equivalent state map
2: for each ss ∈ Amin_sort do
3: Qs ← ζ−1

m (ss)
4: ζ ′c(ss)←

⋃
qs∈Qs

{ζc(qs)}
5: for each (σ, st) : δ

′(ss, σ) = st) do
6: if ζ−1

m (st) =⊥ then
7: ζ−1

m (st)← ∅
8: end if
9: Qt ←

⋃
qs∈Qs

δ(qs, σ)

10: ζ−1
m (st)← ζ−1

m (st) ∪Qt

11: ζ ′f (ss, σ, st)← |Qt|
12: end for
13: end for

Algorithm 4 dfa_carving_forward_prop(A,
Asort, ε, ζw, winit, •,≺, k)

Input: A = (Q,Σ, δ, qI , F ), carving-prep. DFA,
Asort : Q

|Q|−1, a topological sort of A
ε, a special symbol not in Σ to denote the

empty input
ζw : (Q × Σ ∪ {ε}) × Q) → W , map of

A transitions to weights
winit, the initial weight
•, the weight aggregation operator
≺, the weight comparison operator
k, the number of paths to carve

Output: ζL, a map of states st ∈ Q to sorted lists
of triplets (w, σ, ss) ∈ (W × (Σ ∪ {ε})×Q),
each representing a top-k best weight w pro-
duced by reaching st through a last transition
δ(ss, σ) = st

1: for each s ∈ Q do
2: ζL(s)← empty list
3: end for
4: append (winit, ε,⊥) to ζL(qI)
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5: for each ss ∈ Asort except last do
6: Ls ← ζL(ss)
7: for each (σ, st) : δ(ss, σ) = st do
8: w ← ζw(ss, σ, st)
9: Lt ← ζL(st)

10: for each (ws, σ
′, sb) ∈ Ls do

11: wt ← ws • w
12: insert (wt, σ, ss) in Lt maintaining
≺ weight order

13: if size of Lt > k then
14: remove last triplet from Lt

15: end if
16: end for
17: end for
18: end for

Algorithm 5 dfa_carving_backward_prop(A,
Asort, ζL)

Input: A = (Q,Σ, δ, qI , F ), carving-prep. DFA
Asort : Q

|Q|−1, topological sort of A
ζL, map of states to top backwards trans.

Output: A with states to keep marked
ζTR, map of transitions (ss, σ, st) in A

to sets of ranks in P(N)
1: sf ← last state in Asort

2: k′ ← |ζL(sf )| ▷ number of top paths found
3: for each i = 1 . . . k′ do ▷ init. sf rank sets
4: ζSR(sf )[i]← {i}
5: end for
6: for each st ∈ reverse(Asort) except last do
7: SRt ← ζSR(st)
8: if SRt ̸=⊥ then ▷ no ranks for st
9: continue ▷ skip st rank propagation

10: end if
11: mark st ▷ st is to be kept
12: L← ζL(st)
13: init. ζBR as an empty map of st backwards

transitions in (Σ, Q) to lists of rank sets
14: for each i ∈ 1 . . . |SRt| do
15: (w, σ, ss)← L[i]
16: if ζBR(σ, ss) =⊥ then
17: ζBR(σ, ss)← empty list
18: end if
19: append SRt[i] to ζBR(σ, ss)
20: end for

21: for each (σ, ss, BR) : ζBR(σ, ss) = BR
do

22: ζTR(ss, σ, st)←
⋃

R∈BR R
23: if ζSR(ss) =⊥ then
24: ζSR(ss) = ∅
25: end if
26: SRs ← ζSR(ss)
27: for each i = 1 . . . |SRt| − |SRs|) do
28: append ∅ to SRs

29: end for
30: for each i = 1 . . . |SRs| do
31: SRs[i] = SRs[i] ∪ SRt[i]
32: end for
33: end for
34: end for
35: mark qI

Algorithm 6 dfa_carving_cleanup(A,Asort, ζL,
ζTR)

Input: A = (Q,Σ, δ, qI , F ), a DFA that under-
went carving backward propagation

Asort : Q
|Q|−1, topological sort of A

ζL, map of states to top back. transitions
ζTR, map of transitions to rank sets

Output: A after clean up
1: sf ← last state in Asort

2: for each (w, σ, ss) ∈ ζL(sf ) do ▷ note σ = ε
3: remove transition δ(ss, σ) = sf
4: F ← F ∪ {ss}
5: end for
6: for each ss ∈ Asort do
7: if ss is marked then
8: for each (σ, st) : δ(ss, σ) = st and

ζTR(ss, σ, st) =⊥ do
9: remove transition δ(ss, σ) = st

10: end for
11: else remove ss from A along with all tran-

sitions from ss
12: end if
13: end for
14: remove sf from A
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B Supplementary Material

Figure 12: Dialog flow for top 3 restaurant booking paths. Bubble colors are: purple for the dialog start (initial
state), blue for customer utterances (DFA states), and gray/green for agent questions/responses (DFA transitions).
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Figure 13: Dialog flow for top restaurant booking paths 4 to 6. Bubble colors are: purple for the dialog start (initial
state), blue for customer utterances (DFA states), and gray/green for agent questions/responses (DFA transitions).
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Abstract

Dialogue discourse parsing aims to uncover
the internal structure of a multi-participant
conversation by finding all the discourse links
and corresponding relations. Previous work
either treats this task as a series of indepen-
dent multiple-choice problems, in which the
link existence and relations are decoded sep-
arately, or the encoding is restricted to only
local interaction, ignoring the holistic struc-
tural information. In contrast, we propose a
principled method that improves upon previ-
ous work from two perspectives: encoding
and decoding. From the encoding side, we
perform structured encoding on the adjacency
matrix followed by the matrix-tree learning
algorithm, where all discourse links and re-
lations in the dialogue are jointly optimized
based on latent tree-level distribution. From
the decoding side, we perform structured in-
ference using the modified Chiu-Liu-Edmonds
algorithm, which explicitly generates the la-
beled multi-root non-projective spanning tree
that best captures the discourse structure. In
addition, unlike in previous work, we do not
rely on hand-crafted features; this improves
the model’s robustness. Experiments show
that our method achieves new state-of-the-art,
surpassing the previous model by 2.3 on STAC
and 1.5 on Molweni (F1 scores). 1

1 Introduction

Discourse parsing is a series of tasks that consist
of elementary discourse unit (EDU) segmentation,
relation directionality classification (optional), and
relation type classification between EDUs (Jurafsky
and Martin, 2021). It serves as the first step of many
downstream applications (Meyer and Popescu-
Belis, 2012; Jansen et al., 2014; Narasimhan and
Barzilay, 2015; Bhatia et al., 2015; Ji et al., 2016;
Asher et al., 2016; Ji and Smith, 2017; Li et al.,

1Code released at https://github.com/
chijames/structured_dialogue_discourse_
parsing.

trtajova: okay

trtajova: wood for wheat?

mmatrtajova: and sheep for ore?

Elaboration

Continuation

Q_Elab
Ash: yes for wood

Ash: ok

QA_pair

J: nopes

trtajova: anyone will trad wheat or sheep?

Dummy Root

Figure 1: This is an example dialogue session. The ulti-
mate goal of a dialogue discourse parser is to predict all
the links (arrows) and relations (color of arrows) shown
in this figure. Note that the Q_Elab arrow (dashed) can
cross the QA_pair one, making it non-projective.

2020a), and it can be categorized into three major
discourse formalisms: RST (Mann and Thompson,
1988), PDTB (Prasad et al., 2008), and SDRT (Las-
carides and Asher, 2008) styles. Considering
that SDRT-style formalism is used to label the
STAC (Asher et al., 2016) and Molweni (Li et al.,
2020a) dialogue corpora and the increasing im-
portance of dialogue discourse parsers trained on
them (Ouyang et al., 2021; Feng et al., 2021; Jia
et al., 2020; Chen and Yang, 2021), we focus on de-
signing an SDRT-style dialogue discourse parser us-
ing the two corpora in this work. Figure 1 presents
an example of a dialogue session in the STAC cor-
pus (Asher et al., 2016) annotated with its discourse
structure. The annotation is often encoded in two
components: links and relations. The goal of a dia-
logue discourse parser is to extract them accurately
at the same time.

One straightforward solution to this problem is
to transform the parsing structure into a series of
local pairwise link prediction problems. In other
words, the model is expected to compute some
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Models Encoding Decoding Link & Relation Prediction Use Feature

MST (2015) local, edge-wise partial MST separate Y
ILP (2016) local, edge-wise ILP separate Y
Deep-Seq. (2019) global, two-staged indp. multiple choice separate Y
Struct-Aware (2021) global, fully-connected indp. multiple choice separate Y
Hierarchical (2021) hierarchical indp. multiple choice separate N
This Work global, structured full MST joint N

Table 1: This is the comparison between different dialogue discourse parsers. Our method is designed with struc-
tured encoding and decoding processes. Furthermore, the links and relations are learned and predicted jointly.
Finally, our method does not rely on human-designed features, hence enjoys better robustness.

local potentials between each pair of utterances,
and predict the relation type of that link if it ex-
ists. However, this formulation does not take the
global structural information into account, leading
to inferior parsing performance.

In contrast to previous work, our core obser-
vation is that by adding a dummy utterance at
the beginning of the dialogue, the overall struc-
ture closely resembles a labeled multi-root non-
projective spanning tree. In light of this observa-
tion, we propose a principled dialogue discoursing
parser that encodes structural inductive biases dur-
ing training and inference.

The essential elements of our method are the
novel structured parameterization of the adjacency
matrix, the directed version of matrix-tree theo-
rem (Tutte, 1984; Koo et al., 2007), and the mod-
ified directed spanning tree inference algorithm.
To the best of our knowledge, this is the first time
that the labeled multi-root non-projective spanning
tree is applied to the analysis of dialogue discourse
structure. In summary, the contributions of this
paper are:

• We propose a principled method for the dia-
logue discourse parsing task, where structural
inductive biases for both encoding and decod-
ing processes are introduced.

• We jointly predict discourse links and rela-
tions in a unified space.

• We propose a padding method that allows
batchwise variable-length determinant calcu-
lation.

• Experimental results demonstrate state-of-the-
art discoursing parsing performance on two
datasets.

2 Task Background

We are given a dialogue sessionD and the links and
relations between pairs of utterances labeled using

the 17 discourse relations defined in Asher et al.
(2016). All the utterances, links, and relations con-
stitute a graph G(V,E,R), where V represents the
set of utterances, E represents the links connecting
them, and R represents the edge labels. The goal
of a discourse parser is to predict E and R given
V .

There are five existing dialogue discourse parsers
to the best of our knowledge (Afantenos et al.,
2015; Perret et al., 2016; Shi and Huang, 2019;
Wang et al., 2021; Liu and Chen, 2021). We com-
pare them against each other in detail in the follow-
ing subsections and provide a summary in Table 1.

2.1 Encoding

Afantenos et al. (2015); Perret et al. (2016) use a
MaxEnt (Ratnaparkhi, 1997) model to parameter-
ize local pairwise scores between utterance pairs.
Therefore, global and contextual information are
not taken into account during the encoding pro-
cess. Liu and Chen (2021) improve upon them by
using a hierarchical encoder that models the con-
textual information. Shi and Huang (2019) inject
more structural information by first predicting all
the links, followed by a global structured encoding
module. However, the predicted links are discrete,
making this two-staged solution not end-to-end
trainable. To connect the two stages, Wang et al.
(2021) instead use a fully connected graph between
all utterances. While being fully end-to-end, useful
structured bias is not encoded anymore. Based on
the drawbacks of previous parsers, we propose a
fully end-to-end encoder while maintaining struc-
tured information at the same time.

2.2 Decoding

Shi and Huang (2019); Wang et al. (2021); Liu
and Chen (2021) treat the links and relations de-
coding tasks as a series of independent multiple-
choice problems. In other words, the existence of
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one link has nothing to do with other links. In
contrast, Perret et al. (2016) find the structure by
solving an integer linear programming problem,
but it needs a set of complicated human-designed
decoding constraints. Afantenos et al. (2015) is
the closest approach to this work, where they run
the maximum spanning tree decoding algorithm on
the predicted edges only to find the tree structure
(links). However, the relations are not jointly de-
coded. Instead, we run the modified spanning tree
decoding algorithm on the unified link and relation
space.

2.3 Link and Relation Prediction

All previous work treat the prediction of links and
relations as a two-stage process. That is, they first
predict the existence of a link, and the relation is
predicted only if the link exists. This decouples the
joint learning of links and relations. We mitigate
this issue by unifying the prediction space of links
and relations, making it a three-dimensional tensor.

2.4 Feature Usage

Finally, all previous work execpt (Liu and Chen,
2021) utilize some hand-crafted features. To name
a few, they explicitly model if two utterances are
spoken by the same speaker, or if they belong
to the same turn. These features are useful but
also make the baseline parsers deeply coupled with
them, which might limit the parsing performance
if applied to a new dataset. For example, if the new
dataset is a transcript of a teleconference or radio
exchange, it is likely that we only have the utter-
ances recorded as it is expensive and hard to obtain
all the speaker and turn information. In contrast,
since our model does not rely on such explicitly
modeled feature, the performance drop is less than
the ones that use them when the speaker and turn
information are removed.

3 Structure Formulation

The graph G defined in § 2 can theoretically be any
directed acyclic graph, which is generally difficult
to optimize. Fortunately, we find that by discarding
only a small fraction of the edges, which is 6% for
the STAC corpus and 0% for the molweni corpus,
we can recover a spanning tree-like structure that
permits efficient learning and structure inference.
For the nodes having more than one parent, we
keep only the latest one.2 In addition, for dangling

2This strategy is adopted by all baselines as well.

utterances that do not have any parents, we connect
them to the dummy root utterance, so we are in
fact optimizing a multi-root tree during training
time. Finally, note that our tree structure allows
different links to cross each other (Figure 1) and
each edge also has a relation label, G(V,E,R) is a
labeled directed multi-root non-projective spanning
tree, which is referred to as tree for conciseness
hereinafter 3.

Several questions naturally arise:
• How to parametrize the tree? We will model

the pairwise potential scores by an adjacency
matrix, where a cell represents the relevance
score of a pair of utterances. See § 4.1.

• How to learn the correct tree? We calculate
the probability of the correct tree among all
possible trees encoded by the adjacency ma-
trix, and that probability is maximized. This
is similar to softmax attention using trees as
basic units instead of tokens. See § 4.2.

• How to perform inference? Given the learned
three-dimensional adjacency matrix, we can
run the modified maximum spanning tree in-
duction algorithm to induce the tree structure.
See § 4.4.

4 Proposed Framework

4.1 Model Parameterization

Given n utterances (aka EDUs) {Ui}ni=1 in a dia-
logue session D, we define a discourse pair in D
as a 3-tuple (h,m, r), h < m, r ∈ [1, 17] where
h ∈ [0 . . . n] is the index of the parent utterance,
m ∈ [1 . . . n] is the index of the children utterance,
and r is one of the 17 relations. Note that we add
a special root utterance h = 0 to be the shared
pseudo parent for the first utterances. Note that this
root utterance can be chosen arbitrarily, and we use
the utterance “This is the start of a dialogue” in this
work.

To parameterize the tree, we first model the d-
dimensional pairwise representation between a pair
of utterances. This can be expressed compactly
by a 3-order tensor, which is an adjacency matrix
with each element Vh,m being a d-dimensional fea-
ture vector, hence V ∈ R(n+1)×(n+1)×d. Each
Vh,m is calculated using a BERT (Devlin et al.,
2019) model as the encoder. BERT takes a pair
of utterances as input, and a special [CLS] token

3There are four types of spanning trees investigated in
the dependency parsing domain (McDonald et al., 2005; Koo
et al., 2007)
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Tomm: Fancy some tasty ore?

Dave: I do not ^_^

dummy root

Tomm: But you can you know...
smelt it?
Tomm: How about clay?

Dave: nope, sorry
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Figure 2: The contextual encoding process. Row numbers from 0 to 4 represent h, and column numbers from 1 to
5 represents m. In this example, the 1-st utterance can connect to the 2-nd, 3-rd or 5-th utterances when predicting
the V1,4 cell. This is represented by the orange rectangles. Similarly, the 4-th utterance can have 0, 1, or 3-rd
utterances as its parent, represented by the green rectangles. We use two LSTMs for two directions (orange and
green). Finally, we add the contextualized vectors together to get the purple vector Linear(V r

1,4 + V c
1,4) = θ1,4.

is prepended before the concatenation of the two
utterances. The representation of the [CLS] token
is further used to calculate d-dimensional pairwise
representation:

Vh,m = BERTCLS(Uh, Um) (1)

One immediate drawback of eq. (1) is that the pair-
wise scores are calculated independently. We al-
leviate this issue by using a bidirectional LSTM
to encode the contextual information. For the h-th
row, we obtain the hidden states for all timestep t:

{V r
h,t}nt=h+1 = LSTM({Vh,t}nt=h+1) (2)

The underlying idea is that to accurately decide if
Uh should point to Um, we should collect the infor-
mation of connecting Uh to all the other utterances
that appear later chronologically. Similarly, for the
m-th column, all the hidden states are:

{V c
t,m}m−1t=0 = LSTM({Vt,m}m−1t=0 ) (3)

The final context-aware potential score is:

Ṽh,m = V r
h,m + V c

h,m (4)

Ṽ ∈ R(n+1)×(n+1)×2d. Every pairwise score is
now aware of neighboring pairs. It still remains to
convert Ṽ to individual score of a discourse pair.
We do so by simply passing Ṽ through a linear
transformation layer:

θh,m = Linear(Ṽ ) (5)

where θ ∈ R(n+1)×(n+1)×17. Note that there is no
activation function after the linear layer since we
assume θ to be in log space. Another important
property of θ is that it is a strictly upper-triangular
matrix due to the h < m constraint. In practice,
this can be enforced by setting the lower triangular
and diagonal elements to -inf. We illustrate the
overall idea in Figure 2.

4.2 Learning the Tree

The parameterization we define in eq. (5) still does
not impose any structural constraints. Based on our
conclusion in § 3, we would like to impose a non-
projective multi-root spanning tree constraint in the
learning and inference process. We define a tree T
to be the collection of discourse pairs {(h,m, r)}.
We use T (D) to denote all possible trees of a di-
alogue session D. During learning, the reference
tree structure T̄ ∈ T (D) is given. If the score of
T̄ and the summation of the scores of all trees in
T (D) is tractable, we can obtain the probability
of T̄ and optimize it using gradient descent. The
challenge lies in the exponentially many candidates
of T (D), which is computationally infeasible to
naively enumerate. Fortunately, we will see that
the Matrix-Tree Theorem (Tutte, 1984; Koo et al.,
2007) permits efficient calculation of the summa-
tion we need.

4.2.1 Matrix-Tree Theorem

Before we dive into the details of the Matrix-Tree
Theorem, we have to give enough credits to Tutte
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Figure 3: This is the graphical illustration of of how we perform tree-structured learning. Note that we are summing
the scores of all possible labeled trees as the denominator, which is eq. (11).

(1984); Koo et al. (2007) as we are applying their
proposed theorem. The probability of the reference
tree T̄ , which is to be optimized, can be defined
as:

P(T̄ ) =
s(T̄ )

Z(θ)
, Z(θ) =

∑

T∈T (D)

s(T ) (6)

Z(θ) is also known as the partition function. The
numerator s(T ) of any tree T is defined to be:

s(T ) =
∏

(h,m,r)∈T
exp(θh,m,r), (7)

With this definition, the score is merely the product
of corresponding cells in exp(θ) (θ from eq. (5)).

Next, we need to find an efficient way to com-
pute the partition function as there are exponen-
tially many candidate trees. The first step is to cal-
culate the exponential matrix Ah,m,r from eq. (5):

Ah,m,r(θ) =

{
0, if h ≥ m
exp(θh,m,r), otherwise

(8)

Note that the first 0 = exp(−inf) condition ap-
plies to all h ≥ m cells as θ is an upper-triangular
matrix described earlier. To account for edge labels,
we have to marginalize r out :

Ah,m(θ) =
∑

r

Ah,m,r(θ) (9)

Now, we are ready to calculate Z(θ). The first step
is to calculate the graph Laplacian matrix, which
is the difference between the degree matrix and
adjacency matrix:

Lh,m(θ) =

{∑n
i′=1Ai′,m(θ), if h = m

−Ah,m(θ), otherwise
(10)

Then the minor4 L(0,0)(θ) is equal to the sum of
the weights of all directed spanning trees rooted at

4A minor L(x,y) is the determinant of a submatrix con-
structed by removing the x-th row and y-th column of L.

the dummy root utterance (Tutte, 1984):

Z(θ) = det(L̂), (11)

whre L̂ is defined to be the submatrix constructed
by removing the first row and column from L.
The computational complexity of eq. (11) is de-
termined by the determinant operation, which is
O(n3). While the cubic time complexity might
seem scary at the first glance, it does not incur
significant computational overhead in our experi-
ments, where the time to compute the determinant
is negligible (< 1%) compared to BERT encoding
in eq. (1).

4.2.2 Efficient GPU Implementation

The equations derived so far work well for a single
training instance. However, it becomes problematic
if we want to perform batchwise training on GPUs,
which was not addressed in Koo et al. (2007). The
main challenge is the variable-length padding. In
particular, we have to calculate batchwise deter-
minants in eq. (11) with different sizes of L̂. The
naive option is to pad the extra rows and columns
with zeros. Unfortunately, this would result in a
singular matrix and give erroneous partition results.
To circumvent the padding issue, we can use the
cofactor expansion formula. Concretely, all the di-
agonal elements of the padding part should be 1,
while others should be 0. We illustrate the padding
strategy in Figure 4. Note that this strategy holds
whether the size of L̂ is odd or even.

4.3 Optimization of Tree

Since we are given the reference tree T̄ , we can
directly maximize the log probability of eq. (6) us-
ing any gradient-descent based algorithms, which
is also equivalent to minimizing the KL-divergence
between the predicted and reference tree distribu-
tions.
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Figure 4: This is an efficient padding for calculating batch determinant. The original 4× 4 matrix is expanded to a
6× 6 (leftmost) one for padding. Note that the last two diagonal elements are all ones. The second matrix encodes
the coefficients for multiplying sub-matrices. After a series of cofactor expansions, we can see that the determinant
of the padded 6× 6 matrix is equivalent to the original unpadded 4× 4 matrix.

4.4 Inference of Tree

There is a well-known algorithm - Chiu-Liu-
Edmonds (CLE) (Edmonds, 1967; Chu, 1965) that
can find the directed spanning tree T̃ with maxi-
mum weight given A(θ) derived in eq. (8). How-
ever, we cannot directly apply the CLE algorithm
as the original version does not accept labeled
trees. To solve this problem, we have to first
pick the highest-scoring relation for each edge
A′h,m = maxr Ah,m,r to get A′ ∈ R(n+1)×(n+1).
Now we can feed this standard form into the CLE
algorithm: T̃ = CLE(A′). The correctness of this
approach can be proved easily by contradiction:
suppose the optimal tree includes one edge that is
not the highest-scoring one among {Ah,m,r}17r=1,
we can always substitute that edge with the highest-
scoring one to get a better tree (contradiction). Note
that for a pair of utterances, we only allow one di-
rection of link (θ is strictly upper triangular) so the
CLE algorithm in fact degenerates to its undirected
version known as Prim/Kruskal’s algorithm (Prim,
1957; Kruskal, 1956).

5 Experiments

5.1 Datasets

There are two datasets for us to train the discourse
parser, one of which is the STAC (Asher et al.,
2016) corpus, which is a multi-party dialogue cor-
pus collected from an online game, and the other
is the Ubuntu IRC corpus (Li et al., 2020a), which
compiles technical discussions about Linux. The
differences between these two datasets were ana-
lyzed in Liu and Chen (2021), where the takeaway
messages are: 1) there is no significant difference
in their average EDU numbers, 2) the lexical dis-
tributions are significantly different sharing only a
small portion of common tokens, 3) relation distri-
butions are similar.

5.2 Hyperparameters

Following Liu and Chen (2021), we use the
Roberta-Base uncased pretrained checkpoint for
a fair comparison. The max utterance length is set
to 28. The initial learning rate is set to 2e-5 with a
linear decay to 0 for 4 epochs. The batch size is 4.
The first 10% of training steps is the warmup stage.
For all baselines using large pretrained models, we
always use the same model checkpoint and tune
the learning rate and batch size for them for a fair
comparison.

5.3 Metrics

We follow the baselines to use two metrics for eval-
uation:

• Unlabeled Attachment Score (UAS): We only
care about the existence of a discourse link. In
other words, discourse relations do not affect
the results. (Also known as Link F1 score)

• Labeled Attachment Score (LAS): It is much
harder as it requires both discourse links and
relations to be correct. We focus primarily on
this metric since it is more informative and
is used in downstream applications. (Also
known as Link & Rel F1 score)

5.4 Main Results

We present the results in Table 2. The left part of
the table focuses on in-domain training and testing,
which is the standard setting. Bearing in mind that
discourse parsers are often used as the first stage of
downstream applications, we follow (Liu and Chen,
2021) to benchmark the performance of all parsers
in the cross-domain setting. Note that this is an
extremely challenging setting as the domains are
completely different (gaming vs Linux technical
forum).
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STAC / STAC MOL / MOL STAC / MOL MOL / STAC

UAS LAS UAS LAS UAS LAS UAS LAS

MST (Afantenos et al., 2015) 69.6 52.1 69.0 48.7 61.5 24.0 60.5 14.8
ILP (Perret et al., 2016) 69.0 53.1 67.3 48.3 57.0 24.1 60.4 14.5
Deep-Seq. (Shi and Huang, 2019) 73.2 54.4 76.1 53.3 53.5 21.6 42.7 15.7
Hierarchical (Liu and Chen, 2021) 73.1 57.1 80.1 56.1 60.1 32.1 48.9 26.8
Struct-Aware (Wang et al., 2021) 73.4 57.3 81.6 58.4 57.0 32.9 44.7 26.1
This Work 74.4 59.6 83.5 59.9 64.5 38.0 50.6 31.6

Table 2: STAC / MOL means the training dataset is STAC and the testing dataset is MOL. LAS is the harder setting
used for downstream applications. Results are the average of three runs. Note that speaker information is still used
in this set of experiments, except our parser does not need to model their relations explicitly as described in § 2.4.

In-domain We first take a look at the in-domain
results. Our proposed parser is the best among
all parsers, surpassing the previous state-of-the-art
by 2.3 on STAC and 1.5 (F1 scores) on Molweni
under the LAS setting. The trend is similar for
the UAS setting. We also want to highlight the
improved performance can NOT be attributed to
using a pretrained language model as Struct-Aware
and Hierarchical (Liu and Chen, 2021) both utilize
the same or comparable pretrained model.

Cross-domain We shift gear to the cross-domain
setting where the parser is trained on one dataset
and tested on the other (Liu and Chen, 2021). We
can see that our parser is the best under the LAS
setting, substantially outperforming the best can-
didates by 5.1 on STAC/MOL and 4.8 points on
MOL/STAC. However, the best-performing model
under the UAS setting is the oldest model (Afan-
tenos et al., 2015; Perret et al., 2016). This can be
explained by the inclination of a large pretrained
model to overfit on the training domain, which was
corroborated by Liu and Chen (2021) as well. Read-
ers might wonder why the same phenomenon does
not happen under the UAS setting of STAC/MOL,
and the speculated reason is STAC has a much
larger linguistic diversity (Liu and Chen, 2021),
thereby alleviating the model overfitting issue. In
other words, we might want to train the dialogue
discourse parser on a linguistically diverse dataset
if the goal is domain generalization.

5.5 Additional Analyses

Dialogue Length Robustness We hypothesize
that our parser is likely to perform better when the
dialogue becomes longer, and the reason is that
our parser models the overall dialogue structure
using tree distributions. This lowers the burden of
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Figure 5: Parsing performance w.r.t dialogue lengths.
As we can see, the performance difference is larger
when the dialogue becomes longer, demonstrating the
length robustness of our parser.

the parser to predict long-range links. We focus
on the in-domain setting and plot the results in
Figure 5. As we can see, the performance of our
parser drops less than baselines when the dialogue
becomes longer, highlighting the benefit of global
structured learning and inference.

Relation Performance Breakdown In order to
know what kinds of relations benefit the most from
our proposed parser, we count the number of cor-
rect relation predictions and plot them in Figure 6
and 7.5 The baseline parser we compare with is
the Hierarchical model (Liu and Chen, 2021) as it
can be viewed as the non-structured version of our
parser with the same pretrained model backbone.
We can see that our parser outperforms the base-
line on certain relations like Comment and QA pair
on STAC and QA pair and Clarification Question
on Molweni. However, there is still a large room
for improvement as demonstrated by the gap be-
tween our parser and the ground truth. Another
observation is that both parsers struggle to predict

5Note that this implies the link predictions of these correct
relations are also correct.
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Figure 6: STAC relation performance breakdown.
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Figure 7: Molweni relation performance breakdown.

low-resource relations, marking an important direc-
tion for future work.

Speaker and Turn Feature Robustness We ex-
periment with removing speaker and turn informa-
tion used in baselines. The performance drop (LAS
of STAC) of our parser (59.6→ 54.4) is less than
that of the best baseline (Struct-Aware) (57.3 →
47.8), demonstrating the robustness of our parser.

6 Related Work

Discourse Parsing As discussed in the Introduc-
tion section, there are three types of discourse
parsing formalisms: RST (Mann and Thompson,
1988), PDTB (Prasad et al., 2008), and SDRT (Las-
carides and Asher, 2008; Asher et al., 2016). For
the first two tasks, there are transition-based (Li
et al., 2014; Braud et al., 2017; Yu et al., 2018) and
CKY-based methods (Joty et al., 2015; Li et al.,
2016; Liu and Lapata, 2017) in the literature. In
this work, we assume that the EDUs are already
given. In practice, there are papers working on seg-
menting EDUs (Subba and Di Eugenio, 2007; Li
et al., 2018) before feeding them to the discourse
parser.

Dialogue Disentanglement Clustering utter-
ances in a conversation into threads is studied exten-
sively by previous work (Shen et al., 2006; Elsner
and Charniak, 2008; Wang and Oard, 2009; Elsner
and Charniak, 2011; Jiang et al., 2018; Kummer-
feld et al., 2019; Zhu et al., 2020; Li et al., 2020b;
Yu and Joty, 2020). They predict the reply-to links
independently and run a connected component al-
gorithm to construct the threads. This is similar to
the UAS setting in this work.

Structured Learning Algorithms Natural lan-
guage is highly structured suggesting that the in-
troduction of structural bias will facilitate learning.
Previous work have studied dependency-tree like
structures extensively (Koo et al., 2007; McDonald
et al., 2005; McDonald and Satta, 2007; Niculae
et al., 2018; Paulus et al., 2020). Several works
propose to incorporate such inductive bias into in-
termediate layers of modern NLP models (Kim
et al., 2017; Chen et al., 2017; Liu and Lapata,
2018; Choi et al., 2018). In our work, the induced
structure is not only implicitly learned, it is also
used to directly decode the labeled tree structure,
which is our ultimate goal.

Dependency Parsing Our work can also be
viewed as extending token-level dependency pars-
ing (Mel’cuk et al., 1988; Koo et al., 2007; Smith
and Eisner, 2008; Koo and Collins, 2010; Chen
and Manning, 2014; Dozat and Manning, 2017; Qi
et al., 2018; Choi and Palmer, 2011) to utterance-
level. Another important difference is that our tree
is labeled, which means we have to additionally
predict the type of tree edges.

7 Conclusion

In this paper, we propose a principled method for di-
alogue discourse parsing. From the encoding side,
we introduce a structurally-encoded adjacency ma-
trix followed by the matrix-tree theorem, which
is used to holistically model all utterances as a
tree. From the decoding side, we apply the mod-
ified CLE algorithm for maximum spanning tree
induction. Our method achieves state-of-the-art
performance on two benchmark datasets. We also
benchmark the cross-domain parser performance,
and find our parser performs the best in the most-
commonly used and harder LAS setting. We be-
lieve that the techniques described in this work
pave the way for more structured analyses of dia-
logue and interesting research problems in the field
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of dialogue discourse parsing.
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Abstract
While communicating with a user, a task-
oriented dialogue system has to track the user’s
needs at each turn according to the conversa-
tion history. This process called dialogue state
tracking (DST) is crucial because it directly in-
forms the downstream dialogue policy. DST
has received a lot of interest in recent years
with the text-to-text paradigm emerging as the
favored approach. In this review paper, we
first present the task and its associated datasets.
Then, considering a large number of recent pub-
lications, we identify highlights and advances
of research in 2021-2022. Although neural ap-
proaches have enabled significant progress, we
argue that some critical aspects of dialogue sys-
tems such as generalizability are still underex-
plored. To motivate future studies, we propose
several research avenues.

1 Introduction

Since human conversation is inherently complex
and ambiguous, creating an open-domain conversa-
tional agent capable of performing arbitrary tasks
is an open problem. Therefore, the practice has
focused on building task-oriented dialogue (TOD)
systems limited to specific domains such as flight
booking. These systems are typically implemented
through a modular architecture that provides more
control and allows interaction with a database,
desirable features for a commercial application.
Among other components, dialogue state tracking
(DST) seeks to update a representation of the user’s
needs at each turn, taking into account the dialogue
history. It is a key component of the system: the
downstream dialogue policy uses this representa-
tion to predict the next action to be performed (e.g.
asking for clarification). A response is then gen-
erated based on this action. Beyond processing
isolated turns, DST must be able to accurately ac-
cumulate information during a conversation and
adjust its prediction according to the observations
to provide a summary of the dialogue so far.

Figure 1: Dialogue state tracking (DST) example taken
from MultiWOZ. DST seeks to update the dialogue state
at each turn as (slot, value) pairs. Current DST models
struggle to parse U3, which requires world knowledge
and long-term context awareness.

Several papers have surveyed DST from the per-
spective of a specific paradigm or period. Young
et al. (2013) give an overview of POMDP-based
statistical dialogue systems. These generative ap-
proaches model the dialogue in the form of a dy-
namic bayesian network to track a belief state.
They made it possible to account for the uncertainty
of the input related to speech recognition errors and
offered an alternative to conventional deterministic
systems which were expensive to implement and
often brittle in operation. However, POMDP-based
systems presuppose certain independencies to be
tractable and were gradually abandoned in favor
of discriminative approaches that directly model
the dialogue state distribution. These methods, sur-
veyed by Henderson (2015), rely on annotated di-
alogue corpora such as those from the Dialogue
State Tracking Challenge, the first standardized
benchmark for this task (Williams et al., 2016). The
past years have been marked by the use of neural
models that have allowed significant advances, cov-
ered by Balaraman et al. (2021). Since then, many
works dealing with key issues such as adaptability
have been published. The first contribution of this
paper is a synthesis of recent advances in order to
identify the major achievements in the field.
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The recent development of neural models has
addressed fundamental issues in dialogue systems.
DST models can now be decoupled from a given
domain and shared across similar domains (Wu
et al., 2019). They even achieve promising results
in zero-shot scenarios (Lin et al., 2021b). Despite
these advances, modern approaches are still lim-
ited to a specific scenario as dialogues in most DST
datasets consist of filling in a form: the system asks
for constraints until it can query a database and
returns the results to the user. Moreover, these data-
driven approaches are rigid and do not correspond
to the need for fine-grained control of conversa-
tional agents in an application context. In a real-
world scenario, access to annotated data is limited
but recent DST models appear to have poor gener-
alization capacities (Li et al., 2021a). These limi-
tations show that there remain major challenges to
the development of versatile conversational agents
that can be adopted by the public. The second con-
tribution of this paper is to propose several research
directions to address these challenges.

2 Dialogue State Tracking

A successful TOD system makes it possible to au-
tomate the execution of a given task in interaction
with a user. The last few years have seen an in-
crease in research in this field, which goes hand
in hand with the growing interest of companies in
implementing solutions based on TOD systems to
reduce their customer support costs.

A typical modular architecture for these systems
is composed of the following components: natural
language understanding (NLU), DST, dialogue pol-
icy, and natural language generation (NLG). NLU
consists of two main subtasks, namely, intent detec-
tion which consists in identifying the user’s intent,
such as booking a hotel, and slot filling which con-
sists in identifying relevant semantic concepts, such
as price and location. DST aims to update the di-
alogue state, a representation of the user’s needs
expressed during the conversation. The dialogue
policy predicts the system’s next action based on
the current state. Along with DST, it forms the
dialogue manager which interfaces with the ontol-
ogy, a structured representation of the back-end
database containing the information needed to per-
form the task. Finally, NLG converts the system
action into natural language.

In the case of a spoken dialogue system, auto-
matic speech recognition (ASR) and speech synthe-

sis components are integrated to move from speech
to text and back. NLU then operates on the ASR
hypotheses and is denoted SLU for spoken lan-
guage understanding.1 Traditionally, DST operates
on the output of SLU to update the dialogue state
by processing noise from ASR and SLU. For exam-
ple, SLU may provide a list of possible semantic
representations based on the top ASR hypotheses.
DST manages all these uncertainties to update the
dialogue state. However, recent DST datasets are
collected in text format with no consideration for
noisy speech inputs, which has caused slot filling
and DST to be studied separately.

Note that such modular architecture is one possi-
ble approach to conversational AI and others have
been considered. Another approach is end-to-end
systems which generate a response from the user’s
utterance using a continuous representation. Such
systems have been studied extensively for open-
domain dialogue (Huang et al., 2020) and have
also been applied to TOD (Bordes et al., 2017).

2.1 Dialogue State

Consider the example dialogue shown in Figure
1. Here, the agent acts as a travel clerk and in-
teracts with the user to plan a trip according to
the user’s preferences. The dialogue state is a for-
mal representation of these constraints and con-
sists of a set of predefined slots, each of which can
take a possible value, e.g. book day = Friday.
At a given turn t, the goal of DST is to extract
values from the dialogue context and accumulate
information from previous turns as the dialogue
state St, which is then used to guide the system
in choosing its next action towards accomplishing
the task, e.g. finding a suitable hotel. Tradition-
ally, informable slots (constraints provided by the
user, e.g. price range) are distinguished from
requestable slots (information that the user can re-
quest, e.g. phone number). Informable slots
can take a special value: don’t care when the
user has no preference and none when the user
has not specified a goal for the slot. The current
dialogue state can be predicted either from the pre-
vious turn using the previous dialogue state St−1

as context, or from the entire dialogue history, pre-
dicting a new dialogue state St at each turn.

The dialogue state representation as (slot, value)
pairs is used to deal with a single domain. When

1Another possibility is end-to-end approaches which seek
to obtain a semantic representation directly from speech.
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dealing with a multidomain corpus, this approach is
usually extended by combining domains and slots
to extract (domain-slot, value) pairs.2

2.2 Datasets

Many public datasets have been published to ad-
vance machine learning approaches for DST. The
evolution of these datasets is marked by increasing
dialogue complexity, especially with the advent of
multidomain corpora. We distinguish two main
approaches for collecting dialogue datasets: (i)
Wizard-of-Oz (WOZ or H2H for human-to-human)
approaches where two humans (asynchronously)
play the roles of user and agent according to a task
description. This approach allows for natural and
varied dialogues, but the subsequent annotation
can be a source of errors. (ii) Simulation-based
approaches (M2M for machine-to-machine) where
two systems play the roles of user and agent and in-
teract with each other to generate conversation tem-
plates that are then paraphrased by humans. The
advantage of this method is that the annotations are
obtained automatically. However, the complexity
of the task and linguistic diversity are often limited
because the dialogue is simulated.

Table 1 lists the main datasets as well as recent
datasets relevant to the problems discussed in Sec-
tion 4. In addition to the datasets mentioned, there
are other less recent corpora listed in the survey of
Balaraman et al. (2021) that we do not include here
for the sake of clarity. What follows is a descrip-
tion of the main datasets. Recent datasets, namely
SMCalFlow3 (Andreas et al., 2020), ABCD4 (Chen
et al., 2021), SIMMC 2.05 (Kottur et al., 2021a),
BiToD6 (Lin et al., 2021d) and DSTC107 (Kim
et al., 2021), will be discussed in Section 4.

DSTC28 (Henderson et al., 2014a) Early edi-
tions of the Dialogue State Tracking Challenge
(DSTC) introduced the first shared datasets and
evaluation metrics for DST and thus catalyzed re-
search in this area. The corpus of the second edition
remains a reference today. It includes dialogues

2For simplicity, in the rest of this paper, we use the term
"slot" to refer to "domain-slots"

3https://microsoft.github.io/task_
oriented_dialogue_as_dataflow_synthesis/

4https://github.com/asappresearch/abcd
5https://github.com/facebookresearch/

simmc2
6https://github.com/HLTCHKUST/BiToD
7https://github.com/alexa/

alexa-with-dstc10-track2-dataset
8https://github.com/matthen/dstc

between paid participants and various telephone di-
alogue systems (H2M collection). The user needs
to find a restaurant by specifying constraints such
as the type of cuisine and can request specific in-
formation such as the phone number.

MultiWOZ9 (Budzianowski et al., 2018) The
first large-scale multidomain corpus and currently
the main benchmark for DST. It contains dialogues
between a tourist and a travel clerk that can span
several domains. A major problem related to the
way the data was collected is the inconsistency
and errors of annotation, which was crowdsourced.
Four more versions were later released to try and
fix these errors. (Eric et al., 2019; Zang et al.,
2020; Han et al., 2021; Ye et al., 2021a). Multi-
lingual versions10 were obtained by a process of
machine translation followed by manual correction
(Gunasekara et al., 2020; Zuo et al., 2021).

SGD11 (Rastogi et al., 2020b) The Schema-
Guided Dataset was created to elicit research on
domain independence through the use of schemas.
Schemas describe domains, slots, and intents in
natural language and can be used to handle unseen
domains. The test set includes unseen schemas
to encourage model generalization. SGD-X is an
extension designed to study model robustness to
different schema wordings (Lee et al., 2021b).

2.3 Evaluation Metrics

As there is a strict correspondence between dia-
logue history and dialogue state, DST models’ per-
formance is measured with accuracy metrics. Two
metrics introduced by Williams et al. (2013) are
commonly used for joint and individual evaluation.

Joint goal accuracy (JGA) Main metric refer-
ring to the set of user goals. JGA indicates the
performance of the model in correctly predicting
the dialogue state at a given turn. It is equivalent to
the proportion of turns where all predicted values
for all slots exactly match the reference values. A
similar metric is the average goal accuracy which
only evaluates predictions for slots present in the
reference dialogue state (Rastogi et al., 2020a).

9https://github.com/budzianowski/
multiwoz

10Mandarin, Korean, Vietnamese, Hindi, French, Por-
tuguese, and Thai.

11https://github.com/
google-research-datasets/
dstc8-schema-guided-dialogue
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DSTC2 MultiWOZ SGD SMCalFlow ABCD SIMMC2.0 BiToD DSTC10

Language(s) en en, 7 lang.* en, ru, ar, id, sw en en en en, zh en
Collection H2M H2H M2M H2H H2H M2M M2M H2H
Modality speech text text text text text, image text speech‡

No. domains 1 7 16 4 30 1 5 3
No. dialogues 1612 8438 16,142 41,517 8034 11,244 5787 107

No. turns 23,354 115,424 329,964 155,923 177,407 117,236 115,638 2292
Avg. turns / dial. 14.5 13.7 20.4 8.2 22.1 10.4 19.9 12.6
Avg. tokens / turn 8.5 13.8† 9.7† 10.2 9.2 12.8 12.2† 17.8

Dialogue state slot-val slot-val slot-val program action slot-val slot-val slot-val
Slots 8 25 214 - 231 12 68 18

Values 212 4510 14,139 - 12,047 64 8206 327

Table 1: Characteristics of the main (left) and recent (right) datasets available for dialogue state tracking. *Machine
translated. † Average for English. ‡ In the form of ASR hypotheses.

Slot accuracy Unlike JGA, this metric evaluates
the predicted value of each slot individually at each
turn. It is computed as a macro-averaged accuracy:
SA =

∑n
i acci
n , where n represents the number of

slots. For a more detailed evaluation, it can be
decomposed according to slot type (e.g. requested
slots, typically measured with the F1 score).

Alternative metrics Though these two metrics
are widely used, they can be difficult to interpret.
Slot accuracy tends to overestimate performance
as most slots are not mentioned in a given turn
while JGA can be too penalizing as a single wrong
value prediction will result in wrong dialogue states
for the rest of the conversation when accumulated
through subsequent turns. Two new metrics have
been recently proposed to complement existing
metrics and address these shortcomings: Relative
slot accuracy ignores unmentioned slots and re-
wards the model for correct predictions (Kim et al.,
2022). Flexible goal accuracy is a generalized ver-
sion of JGA which is more tolerant of errors that
stem from an earlier turn (Dey et al., 2022).

2.4 Modern Approaches
One feature that categorizes DST models is the
way they predict slot values. The prediction can be
made either from a predefined set of values (fixed
ontology) or from an open set of values (open vo-
cabulary). What follows is a description of these
approaches. A selection of recent models is pre-
sented in Table 2 based on this taxonomy.

Fixed ontology Following the discriminative ap-
proaches that preceded them, traditional neural ap-
proaches are based on a fixed ontology and treat
DST as a multiclass classification problem (Hen-
derson et al., 2014b; Mrkšić et al., 2017). Predic-
tions for a given slot are estimated by a probability

distribution over a predefined set of values, restrict-
ing the prediction field to a closed vocabulary and
thus simplifying the task considerably. The perfor-
mance of this approach is therefore relatively high
(Chen et al., 2020), however, its cost is proportional
to the size of the vocabulary as all potential values
have to be evaluated. In practice, the number of
values can be large and a predefined ontology is
rarely available.

Open vocabulary To overcome these limitations,
approaches to predict on an open set of values have
been proposed. The first method consists in extract-
ing values directly from the dialogue history, e.g.
by formulating DST as a reading comprehension
task (Gao et al., 2019). This method depends solely
on the dialogue context to extract value spans, how-
ever, slot values can be implicit or have different
wordings (e.g. the value "expensive" may be ex-
pressed as "high-end"). An alternative is to gen-
erate slot values using an encoder-decoder archi-
tecture. For instance, TRADE uses a copy mech-
anism to generate a value for each slot based on a
representation of the dialogue history (Wu et al.,
2019). A common current approach is to decode
the dialogue state using a pretrained autoregressive
language model (Hosseini-Asl et al., 2020).

Hybrid methods A trade-off seems to exist be-
tween the level of value independence in a model
and DST performance. Some works have sought
to combine fixed ontology approaches with open
vocabulary prediction to benefit from the advan-
tages of both methods. This approach is based on
the distinction between categorical slots for which
a set of values is predefined, and non-categorical
slots with an open set of values (Goel et al., 2019;
Zhang et al., 2020; Heck et al., 2020).
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Model Decoder Context Extra supervision Ontology MWOZ2.1

TRADE (Wu et al., 2019) Generative Full history - ✗ 45.60
TOD-BERT (Wu et al., 2020) Classifier Full history Pretraining ✓ 48.00
NADST (Le et al., 2020) Generative Full history - ✗ 49.04
DS-DST (Zhang et al., 2020) Extract. + classif. Previous turn - Cat. slots 51.21
SOM-DST (Kim et al., 2020) Generative History + prev. state - ✗ 52.57
MinTL (Lin et al., 2020) Generative History + prev. state Response generation ✗ 53.62
SST (Chen et al., 2020) Classifier Prev. turn and state Schema graph ✓ 55.23
TripPy (Heck et al., 2020) Extractive Full history - ✗ 55.30
SimpleTOD (Hosseini-Asl et al., 2020) Generative Full history TOD tasks ✗ 55.76
Seq2Seq-DU (Feng et al., 2021) Generative Full history Schema Cat. slots 56.10
SGP-DST (Lee et al., 2021a) Generative Full history Schema Cat. slots 56.66
SOLOIST (Peng et al., 2021a) Generative Full history Pretraining ✗ 56.85
PPTOD (Su et al., 2022) Generative Full history Pretrain + TOD tasks ✗ 57.45
D3ST (Zhao et al., 2022) Generative Full history Schema ✗ 57.80
TripPy + SCoRe (Yu et al., 2021) Extractive Full history Pretraining ✗ 60.48
TripPy + CoCo (Li et al., 2021a) Extractive Full history Data augmentation ✗ 60.53
TripPy + SaCLog (Dai et al., 2021) Extractive Full history Curriculum learning ✗ 60.61
DiCoS-DST (Guo et al., 2022) Extract. + classif. Relevant turns Schema graph ✓ 61.02

Table 2: Characteristics of recent DST models and performance in terms of joint goal accuracy on MultiWOZ 2.1
(Eric et al., 2019). "Ontology" denotes access to a predefined set of values for each slot.

3 Recent Advances

In recent years, several important problems have
been addressed, notably through the use of pre-
trained language models (PLMs) trained on large
amounts of unannotated text. This section summa-
rizes the advances in 2021-2022.

3.1 Modeling Slot Relationships

The methods mentioned so far treat slots individ-
ually without taking into account their relations.
However, slots are not conditionally independent,
for instance, slot values can be correlated, e.g. hotel
stars and price range. An alternative is to explic-
itly consider these relations using self-attention (Ye
et al., 2021b). In a similar vein, Lin et al. (2021a)
adopt a hybrid architecture to enable sequential
value prediction from a GPT-2 model while model-
ing the relationships between slots and values with
a graph attention network (GAT).

Rather than learning these relationships automat-
ically, another line of work uses the knowledge
available from the domain ontology, for example
by taking advantage of its hierarchical structure
(Li et al., 2021c). These relationships can also
be represented in a graph with slots and domains
as nodes. Chen et al. (2020) first build a schema
graph based on the ontology and then use a GAT to
merge information from the dialogue history and
the schema graph. Feng et al. (2022) extend this
approach by dynamically updating slot relations in
the schema graph based on the dialogue context.
Guo et al. (2022) incorporate both dialogue turns

and slot-value pairs as nodes to consider relevant
turns only and solve implicit mentions.

3.2 Adapting PLMs to Dialogues

Though now commonly used for DST, existing
PLMs are pretrained on free-form text using lan-
guage modeling objectives. Their ability to model
dialogue context and multi-turn dynamics is there-
fore limited. It has been shown that adapting a
PLM to the target domain or task by continuing
self-supervised learning can lead to performance
gains (Gururangan et al., 2020). This method has
been applied to TOD systems and DST.

There are two underlying questions with this ap-
proach: the selection of adaptation data and the for-
mulation of self-supervised training objectives to
learn better dialogue representations for the down-
stream task. Wu et al. (2020) gather nine TOD cor-
pora and continue BERT’s pretraining with masked
language modeling and next response selection.
The obtained model TOD-BERT provides an im-
provement over a standard BERT model on several
TOD tasks including DST. With a similar setup,
Zhu et al. (2021) contrast these results and find
that such adaptation is most beneficial when little
annotated data is available. Based on TOD-BERT,
Hung et al. (2022) show that it is advantageous not
only to adapt a PLM to dialogues but also to the tar-
get domain. To do so, they use conversational data
from Reddit filtered to contain terms specific to the
target domain. Finally, Yu et al. (2021) introduce
two objective functions designed to inject induc-
tive biases into a PLM in order to jointly represent
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dynamic dialogue utterances and ontology struc-
ture. They evaluate their method on conversational
semantic parsing tasks including DST.

3.3 Mitigating Annotated Data Scarcity
The lack of annotated data hinders the develop-
ment of efficient and robust DST models. How-
ever, the data collection process is costly and time-
consuming. One approach to address this problem
is to train a model on resource-rich domains and
apply it to an unseen domain with little or no anno-
tated data (cross-domain transfer; Wu et al., 2019).
Dingliwal et al. (2021) adopt meta-learning and use
the source domains to meta-learn the model’s pa-
rameters and initialize fine-tuning for the target do-
main. Works around schema-based datasets (Ras-
togi et al., 2020a) use slot descriptions to handle
unseen domains and slots (Lin et al., 2021c; Zhao
et al., 2022). A drawback of these approaches is
that they rely on the similarity between the unseen
domain and the initial fine-tuning domains.

Another set of approaches tries to exploit ex-
ternal knowledge from other tasks with more
abundant resources. Hudeček et al. (2021) use
FrameNet semantic analysis as weak supervision
to identify potential slots. Gao et al. (2020); Li et al.
(2021b); Lin et al. (2021b) propose different meth-
ods to pretrain a model on reading comprehension
data before applying it to DST. Similarly, (Shin
et al., 2022) reformulate DST as a dialogue sum-
marization task based on templates and leverage
external annotated data.

Note that the PLM adaptation approaches seen
above allow for more efficient learning when little
data is available and are also a potential solution to
the data scarcity problem. Along this line, Mi et al.
(2021) present a self-learning method complemen-
tary to TOD-BERT for few-shot DST.

3.4 Prompting Generative Models to Address
Unseen Domains

A recent paradigm tackles all text-based language
tasks with a single model by converting them into
a text-to-text format (Raffel et al., 2020). This ap-
proach relies on textual instructions called prompts
that are prepended to the input to condition the
model to perform a task. It has been successfully
applied to DST, not only closing the performance
gap between classification and generation methods
but also opening opportunities to address unseen
domains using schemas (cfr. Section 2). In addi-
tion to slot and domain names, Lee et al. (2021a) in-

clude slot descriptions in a prompt to independently
generate values for each slot. They also add possi-
ble values for categorical slots. Zhao et al. (2021,
2022) expand on this approach by generating the
entire dialogue state sequentially, as illustrated in
Figure 2. In an analysis of prompt formulation,
Cao and Zhang (2021) find that a question format
yields better results for prompt-based DST.

Hand-crafting textual prompts may lead to sub-
optimal conditioning of a PLM. Instead of using
discrete tokens, we can optimize these instructions
as continuous embeddings, a method called prompt
tuning (Lester et al., 2021), which has been applied
to DST for continual learning, adding new domains
through time (Zhu et al., 2022). Alternatively, Yang
et al. (2022) reverse description-based prompts and
formulate a prompt based on values extracted from
the utterance to generate their respective slot. They
argue that slots that appear in a small corpus do not
represent all potential requirements whereas values
are often explicitly mentioned. Rather than using
descriptions that indirectly convey the semantics
of a schema, others have sought to prompt a model
with instructions, i.e. in-context learning, in which
the prompt consists of a few example input-output
pairs (Hu et al., 2022; Gupta et al., 2022).

Figure 2: An example of text-to-text DST from SGD
(Rastogi et al., 2020b). Including slot descriptions as a
prompt makes it possible to address unseen domains.

3.5 Going Beyond English
Until recently, most works around DST were con-
fined to English due to the lack of data in other
languages, preventing the creation of truly multi-
lingual models. In recent years, several works have
addressed this issue. A DSTC9 track studied cross-
lingual DST. For this purpose, a Chinese version of
MultiWOZ and an English version of CrossWOZ
were obtained by a process of machine translation
followed by manual correction (Gunasekara et al.,
2020). Zuo et al. (2021) used the same method to
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translate MultiWOZ in seven languages.
A problem with machine translations is that they

lack naturalness and are not localized. Two Chinese
datasets were obtained by H2H collection: Cross-
WOZ and RiSAWOZ (Zhu et al., 2020; Quan et al.,
2020), however, this type of collection is expensive.
The M2M approach makes it possible to obtain
adequate multilingual corpora by adapting conver-
sation templates according to the target language.
Lin et al. (2021d) took advantage of this method
to create BiToD, a bilingual English-Chinese cor-
pus. Majewska et al. (2022) used schemas from
SGD to create conversation templates that were
then adapted into Russian, Arabic, Indonesian and
Swahili. Similarly, Ding et al. (2022) translated
templates from the MultiWOZ test set in Chinese,
Spanish and Indonesian and localized them. Lastly,
to overcome the lack of multilingual data, Moghe
et al. (2021) leverage parallel and conversational
movie subtitle data to pretrain a cross-lingual DST
model.

4 Challenges and Future Directions

Despite recent advances, there are still many chal-
lenges in developing DST models that can accu-
rately capture user needs dynamically and in a vari-
ety of scenarios. There are many interesting paths,
this section articulates the needs around three axes:
generalization, robustness and relevance of models.

4.1 Generalizability

TOD systems are intended to be deployed in dy-
namic environments that may involve different set-
tings. In practice, the application domains of these
systems are numerous and varied (e.g. customer
service in telecommunications, banking, technical
support, etc.), which makes manual annotation of
corpora for each domain difficult or impossible.
This reduces the effectiveness of traditional super-
vised learning and is one of the reasons why most
systems in production are rule-based.

Learning with little or no new annotated data
offers an alternative to take advantage of the capa-
bilities of neural networks to guarantee the flexibil-
ity of the systems. The importance of this aspect
is reflected by the numerous recent works that ad-
dress this problem, as presented in Section 3. Al-
though significant progress has been made, these
approaches remain limited. Models that rely on ex-
isting DST resources are unable to handle domains
whose distribution deviates from that of the train-

ing data (Dingliwal et al., 2021). Models that use
external knowledge offer a more generic approach
but achieve relatively poor performance (Lin et al.,
2021b). Learning generalizable models thus re-
mains an open problem. An interesting avenue
is continual learning, which allows new skills to
be added to a system over time after deployment.
Without retraining with all the data, the model must
be able to accumulate knowledge (Madotto et al.,
2021; Liu et al., 2021; Zhu et al., 2022).

In a real scenario, entities that are not observed
during training are bound to appear. A DST model
must be able to extrapolate from similar entities
that have been seen. However, MultiWOZ has been
shown to exhibit an entity bias, i.e. the slot values
distribution is unbalanced. When a generative DST
model was evaluated on a new test set with unseen
entities, its performance dropped sharply, hinting at
severe memorization (Qian et al., 2021). Similarly,
by its constrained nature, a TOD system may be
perturbed by out-of-domain utterances. It is desir-
able to be able to recognize such utterances in order
to provide an appropriate response. The ability of
a model to generalize to new scenarios is therefore
related to its robustness.

4.2 Robustness

Since users may express similar requirements in
different ways, a DST model must be able to inter-
pret different formulations of a request in a consis-
tent manner. In other words, it must be robust to
variations in the input. Analytical work has shown
that models’ performance drops when they are con-
fronted with realistic examples that deviate from
the test set distribution (Huang et al., 2021; Li et al.,
2021a). Recent work has tried to address this is-
sue through regularization techniques (Heck et al.,
2022). Related to this, an understudied aspect is
dealing with utterances that deviate from the norm
in the case of a written dialogue system.

A DST model must be able to take into ac-
count all the history and adjust its predictions of
the dialogue state using all available information.
Many works have found that performance degrades
rapidly as the dialogue length increases. Another
critical aspect is therefore efficiently processing
long dialogues (Zhang et al., 2021). The dialogue
state condenses important information, but correct-
ing an error made in an earlier turn may be difficult.
To overcome this error propagation issue, Tian et al.
(2021a) use a two-pass dialogue state generation
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to correct potential errors, while Manotumruksa
et al. (2021) propose a turn-based objective func-
tion to penalize the model for incorrect prediction
in early turns. Despite this need, Jakobovits et al.
(2022) have shown that popular DST datasets are
not conversational: most utterances can be parsed
in isolation. Some works simulate longer and more
realistic dialogues by inserting chit-chat into TODs
(Kottur et al., 2021b; Sun et al., 2021).

Another point that has not been studied much
in recent approaches is robustness to speech in-
puts (Faruqui and Hakkani-Tür, 2021). For spo-
ken dialogue systems, new challenges arise such
as ASR errors or verbal disfluencies. Early edi-
tions of DSTC provided spoken corpora that in-
cluded a transcript and ASR hypotheses. Since
then, DST datasets have been primarily text-based.
A DSTC10 track considered this aspect again and
proposed a DST task with validation and test sets
containing ASR hypotheses (Kim et al., 2021).

Learning robust models requires diverse datasets
that represent real-world challenges. In this sense,
several evaluation benchmarks have been published
to study TOD systems’ robustness (Lee et al.,
2021b; Peng et al., 2021b; Cho et al., 2021). Data
augmentation is a potential solution to the lack of
variety in datasets (Campagna et al., 2020; Li et al.,
2021a; Aksu et al., 2022), especially for simulating
ASR errors (Wang et al., 2020; Tian et al., 2021b).

4.3 Relevance

As we have seen, existing datasets do not really
reflect real-world conditions resulting in a rather
artificial task. It is important to keep a holistic view
of the development of DST models to ensure the
relevance of their application in a dialogue system.

Since the first TOD systems, the dialogue state
has been considered as a form to be filled in as slot-
value pairs. This fixed representation is suitable
for simple tasks like flight booking but is limited
in domains with rich relational structures and a
variable number of entities. Indeed, composition
is not possible (e.g. "itinerary for my next meet-
ing") and knowledge is not directly shared between
slots. Section 3 presented approaches that attempt
to address the latter point by using graphs for di-
alogue state representation. To promote work on
more realistic scenarios, some have proposed richer
representations with an associated corpus. Andreas
et al. (2020) encode the dialogue state as a data-
flow graph and introduce the SMCallFlow corpus.

Cheng et al. (2020) propose a tree structure along
with the TreeDST corpus. ThingTalk is another al-
ternative representation of the dialogue state which
was successfully applied to MultiWOZ (Lam et al.,
2022; Campagna et al., 2022). In the ABCD cor-
pus, Chen et al. (2021) adopt a representation of
the procedures that a customer service employee
must follow in accordance with company policies.

These approaches still rely on specific database
schemas and are limited to one modality. For more
capable virtual agents, we can extend the scope of
dialogues to a multimodal world. Emerging efforts
on multimodal DST seek to track the information
of visual objects based on a multimodal context.
With SIMMC 2.0, Kottur et al. (2021a) introduced
a multimodal TOD dataset based on virtual real-
ity rendered shopping scenes. Similarly, Le et al.
(2022) proposed a synthetic dataset of dialogues
consisting of multiple question-answer pairs about
a grounding video input. The questions are based
on 3D objects. In both these datasets, the system
has to track visual objects in the dialogue state in
the form of slot-value pairs. For a broader back-
ground on multimodal conversational AI, we refer
the reader to Sundar and Heck (2022)’s survey.

Dialogue is dynamic: in a real scenario, an erro-
neous prediction of the dialogue state would have
deviated the course of the conversation from the
reference dialogue. However, most studies evalu-
ate models in isolation, assuming that it is always
possible to assemble a set of well-performing com-
ponents to build a good TOD system. The overall
performance of a system is rarely taken into ac-
count as evaluating the system as a whole is com-
plicated and requires human evaluation. Moreover,
it can be difficult to identify which component of
the system is problematic and needs to be improved.
Despite these hurdles, it is important to consider the
impact that DST can have on the dialogue system
as a whole. Takanobu et al. (2020) conducted auto-
matic and human evaluations of dialogue systems
with a wide variety of configurations and settings
on MultiWOZ. They found a drop in task success
rate using DST rather than NLU followed by a
rule-based dialogue state update. They explain this
result by the fact that NLU extracts the user’s in-
tentions in addition to the slot-value pairs. Another
work showed how uncertainty estimates in belief
tracking can lead to a more robust downstream pol-
icy (van Niekerk et al., 2021). These studies are
rare in their kind and call for more similar work.
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5 Conclusion

Dialogue state tracking is a crucial component of a
conversational agent to identify the user’s needs at
each turn of the conversation. A growing body of
work is addressing this task and we have outlined
the latest developments. After giving an overview
of the task and the different datasets available, we
have categorized modern neural approaches accord-
ing to the inference of the dialogue state. Despite
encouraging results on benchmarks such as Mul-
tiWOZ, these systems lack flexibility and robust-
ness, which are critical skills for a dialogue system.
In recent years, many works have sought to ad-
dress these limitations and we have summarized
the advances. However, there are still significant
challenges to be addressed in the future. There are
many interesting avenues and we have proposed
three key features of DST models to guide future re-
search: generalizability, robustness and relevance.
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Abstract
The MultiWOZ 2.0 dataset has greatly stim-
ulated the research of task-oriented dialogue
systems. However, its state annotations con-
tain substantial noise, which hinders a proper
evaluation of model performance. To address
this issue, massive efforts were devoted to cor-
recting the annotations. Three improved ver-
sions (i.e., MultiWOZ 2.1-2.3) have then been
released. Nonetheless, there are still plenty of
incorrect and inconsistent annotations. This
work introduces MultiWOZ 2.4, which refines
the annotations in the validation set and test set
of MultiWOZ 2.1. The annotations in the train-
ing set remain unchanged (same as MultiWOZ
2.1) to elicit robust and noise-resilient model
training. We benchmark eight state-of-the-art
dialogue state tracking models on MultiWOZ
2.4. All of them demonstrate much higher per-
formance than on MultiWOZ 2.11.

1 Introduction

In recent years, tremendous advances have been
made in the research of task-oriented dialogue sys-
tems, attributed to a number of publicly available
dialogue datasets like DSTC2 (Henderson et al.,
2014), FRAMES (El Asri et al., 2017), WOZ (Wen
et al., 2017), M2M (Shah et al., 2018), MultiWOZ
2.0 (Budzianowski et al., 2018), SGD (Rastogi
et al., 2020), CrossWOZ (Zhu et al., 2020), Ri-
SAWOZ (Quan et al., 2020), and TreeDST (Cheng
et al., 2020). Among them, MultiWOZ 2.0 is the
first large-scale dataset spanning multiple domains
and thus has attracted the most attention.

However, substantial noise has been found in the
dialogue state annotations of MultiWOZ 2.0 (Eric
et al., 2020). To remedy this issue, Eric et al. (2020)
fixed 32% of dialogue state annotations across 40%
of the dialogue turns, resulting in an improved ver-
sion MultiWOZ 2.1. Despite the significant im-
provement in annotation quality, MultiWOZ 2.1

1MultiWOZ 2.4 is released to the public at https://
github.com/smartyfh/MultiWOZ2.4.

still severely suffers from incorrect and inconsis-
tent annotations (Zhang et al., 2020; Hosseini-Asl
et al., 2020). The state-of-the-art joint goal accu-
racy (Zhong et al., 2018) for dialogue state tracking
on MultiWOZ 2.1 is merely around 60% (Li et al.,
2021). Even worse, the noise in the validation set
and test set makes it relatively challenging to assess
model performance properly and adequately. To
reduce the impact of noise, different preprocessing
strategies have been utilized by existing models.
For example, TRADE (Wu et al., 2019) fixes some
general annotation errors. SimpleTOD (Hosseini-
Asl et al., 2020) cleans partial noisy annotations in
the test set. TripPy (Heck et al., 2020) constructs a
label map to handle value variants. These prepro-
cessing strategies, albeit helpful, lead to an unfair
performance comparison.

Massive efforts have been made to further im-
prove the annotation quality of MultiWOZ 2.1, re-
sulting in MultiWOZ 2.2 (Zang et al., 2020) and
MultiWOZ 2.3 (Han et al., 2021). However, they
both have some limitations. More concretely, Mul-
tiWOZ 2.2 allows the presence of multiple values
in the dialogue state. But it does not cover all the
value variants. This incompleteness brings about
serious inconsistencies. MultiWOZ 2.3 focuses on
dialogue act annotations. The noise on dialogue
state annotations has not been fully resolved.

In this work, we introduce MultiWOZ 2.4, an up-
dated version on top of MultiWOZ 2.1, to improve
dialogue state tracking evaluation. Specifically, we
identify incorrect and inconsistent annotations in
the validation set and test set, and fix them metic-
ulously. This refinement results in changes to the
state annotations of more than 41% of turns over
65% of dialogues. Since our main purpose is to
improve the correctness and fairness of model eval-
uation, the annotations in the training set remain
unchanged. Even so, our empirical study shows
that much better performance can be achieved on
MultiWOZ 2.4 than on all the previous versions.
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Error Type Conversation Example MultiWOZ 2.1 MultiWOZ 2.4
(I)

Context 
Mismatch

Usr: Hello, I would like to book a taxi from restaurant 2 two to 
the museum of classical archaeology.

taxi-destination=museum of 
archaelogy and anthropology

taxi-destination=museum 
of classical archaeology

Usr: I am looking for a restaurant that serves Portuguese food. rest.-food=Portugese rest.-food=Portuguese

(II) 
Missing 

Annotation

Usr: I need a place to dine in the centre of town. rest.-area=none rest.-area=centre
Usr: Please recommend one and book it for 6 people.
Sys: I would recommend express by holiday inn Cambridge. 
From what day should I book?
Usr: Starting Saturday. I need 5 nights for 6 people.

hotel-book people=none

hotel-book people=6

hotel-book people=6

hotel-book people=6
(III) 

Not Mentioned Usr: I am planning a trip in Cambridge. hotel-internet=dontcare hotel-internet=none

(IV) 
Incomplete

Value

Sys: I recommend Charlie Chan. Would you like a table?
Usr: Yes. Monday, 8 people, 10:30. rest.-name=Charlie rest.-name=Charlie Chan
Usr: Something classy nearby for dinner, preferably Italian or   
Indian cuisine? rest.-food=Indian rest.-food=Indian|Italian

(V) 
Implicit Time 

Processing
Usr: I need a train leaving after 10:00. train-leaveat=10:15 train-leaveat=10:00

(VI) 
Unnecessary 
Annotation

Usr: I am looking for a museum.
Sys: The Broughton house gallery is a museum in the centre.
Usr: That sounds good. Could I get their phone number? attraction-area=centre attraction-area=none

Figure 1: Examples of each error type. Only the problematic slots are presented. “rest.” is short for restaurant.

Furthermore, a noisy training set motivates us to de-
sign robust and noise-resilient training mechanisms,
e.g., data augmentation (Summerville et al., 2020)
and noisy label learning (Han et al., 2020). Consid-
ering that collecting noise-free large multi-domain
dialogue datasets is costly and labor-intensive, we
believe that training robust dialogue state tracking
models from noisy training data will be of great
interest to both industry and academia.

2 Annotation Refinement

In MultiWOZ 2.0 & 2.1, the dialogue state is rep-
resented as a series of slot-value pairs. For exam-
ple, attraction-area=centre means that the slot is
attraction-area and its value is centre. Considering
that MultiWOZ 2.1 has significantly improved the
annotation quality of MultiWOZ 2.0, we choose to
continue the refinement on the basis of MultiWOZ
2.1. Another choice is to perform the refinement
on top of MultiWOZ 2.2. However, as mentioned
earlier, MultiWOZ 2.2 allows each slot to have mul-
tiple value variants. This relaxation increases the
difficulty of annotating. It is challenging to include
all the value variants. New value variants may also
emerge as time goes by. Even worse, some value
variants are ambiguous and invalid. For instance,
“Peking” can be a shared variant of “Peking Uni-
versity” and “Peking restaurant”. Hence, it is an
ambiguous value variant. Besides, the benchmark
evaluation on MultiWOZ 2.2 shows no evident per-
formance improvements over MultiWOZ 2.1 (Zang
et al., 2020). In light of these, MultiWOZ 2.1 is a

better basis for our refinement.

2.1 Annotation Error Types

The main goal of dialogue state tracking is to track
what has been uttered by a user. Thus, it is gener-
ally assumed that the dialogue state should mainly
rely on user utterances2. Based on this assumption,
we identify and fix six types of annotation errors
in the validation set and test set of MultiWOZ 2.1.
Figure 1 shows examples for each error type.
Context Mismatch: The slot value is inconsistent
with the one mentioned in the dialogue context. We
also include values with typos in this error type.
Missing Annotation: The slot is unlabelled, even
though its value has been mentioned. In some cases,
the annotations are delayed to later turns.
Not Mentioned: The slot has been annotated, how-
ever, its value has not been mentioned at all.
Incomplete Value: The slot value is a substring or
an abbreviation of its full shape (e.g., “Thurs” vs.
“Thursday”). In some cases, the slot should have
multiple values, but not all values are included.
Implicit Time Processing: This relates to the slots
that take time as the value. Instead of copying the
time specified in the dialogue context, the value has
been implicitly processed (e.g., adding 15 min)3.

2If the user requirements cannot be satisfied (e.g., a restau-
rant asked by the user does not exist), the system should still
track the “wrong” requirements as the dialogue state and then
ask a clarification question (Doğan et al., 2022) to the user.

3The value is implicitly processed when the time is after or
before a certain point. Albeit reasonable, it is hard to decide
the exact time offset. Thus, we copy the specified time directly.
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Refinement Type Count Ratio(%)
no change 432,972 97.90
none→value 3,230 0.73
valueA/dontcare→valueB 1,598 0.36
value/dontcare→none 2,846 0.64
none/value→dontcare 1,614 0.36

Table 1: The count and ratio of slot values changed in
MultiWOZ 2.4 compared with MultiWOZ 2.1.

Unnecessary Annotation: These unnecessary an-
notations exacerbate inconsistencies as different
annotators have different opinions on whether to
annotate these slots or not. In general, the values of
these slots are mentioned by the system to respond
to previous user requests or provide supplemen-
tary information. We found that in most dialogues,
these slots are not annotated. Hence, we remove
these annotations. However, the name-related slots
are an exception. If the user requests more infor-
mation (e.g., address and postcode) about the rec-
ommended “name”, the slots will be annotated.

2.2 Annotation Refinement Procedure
The validation set and test set of MutliWOZ 2.1
contain 2,000 dialogues with more than 14,000 di-
alogue turns. These dialogues span over 5 domains
with a total of 30 slots. To guarantee that the re-
fined annotations are as correct and consistent as
possible, we decided to rectify the annotations by
ourselves rather than crowd-workers. However, if
we check the annotations of all 30 slots at each turn,
the workload is too heavy. To ease the burden, we
instead only checked the annotations of turn-active
slots. A slot being turn-active means that its value
is determined by the dialogue context of current
turn and is not inherited from previous turns. The
average number of turn-active slots in the original
annotations and in the refined annotations is 1.16
and 1.18, respectively. The full dialogue state is
then obtained by accumulating all turn-active states
from the first turn to current turn.

We also observed that some slot values are men-
tioned in different forms, such as “concert hall” vs.
“concerthall” and “guest house” vs. “guest houses”.
The name-related slot values may have a word
the at the beginning, e.g., “Peking restaurant” vs.
“the Peking restaurant”. We normalized these vari-
ants by selecting the one with the highest frequency.
In addition, all time-related slot values have been
updated to the 24:00 format. We performed the
above refining process twice to reduce mistakes
and it took us one month to finish this task.

Dataset Slot(%) Turn(%) Dialogue(%)
val 5.04 42.61 67.40
test 5.17 39.74 64.16
total 5.10 41.17 65.78

Table 2: The ratio of refined slots, turns and dialogues.

I II III IV V VI Norm.0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ra
tio

Val
Test

Figure 2: The ratio of different error types. “Norm.”
refers to values normalized based on their frequency.

2.3 Statistics on Refined Annotations

Table 1 shows the count and percentage of slot
values changed in MultiWOZ 2.4 compared with
MultiWOZ 2.1. Note that none and dontcare
are regarded as two special values. As can be seen,
most slot values remain unchanged. This is be-
cause a dialogue only has a few active slots and
the other slots always take the value none. Ta-
ble 2 further reports the ratio of refined slots, turns
and dialogues. Here, the ratio of refined slots is
computed on the basis of refined turns. It is shown
that the corrected states relate to more than 41% of
turns over 65% of dialogues. On average, the anno-
tations of 1.53 (30× 5.10%) slots at each refined
turn have been rectified.

Figure 2 illustrates the distribution of different
error types. We also treat unnormalized values (cf.
§2.2) as a special type of errors. Figure 2 shows
that “Missing Annotation” and “Not Mentioned”
are the two most frequent error types. It also shows
that more than 10% of errors are related to “Unnec-
essary Annotation”, while the other types of errors
only account for a relatively small proportion.

3 Benchmark Evaluation

3.1 Benchmark Models

Existing neural dialogue state tracking models can
be roughly divided into two categories: predefined
ontology-based methods and open vocabulary-
based methods. The ontology-based methods per-
form classification by scoring all possible slot-
value pairs in the ontology and selecting the value
with the highest score as the prediction. By con-
trast, the open vocabulary-based methods directly
generate or extract slot values from the dialogue
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Model
Joint Goal Accuracy (%) Slot Accuracy (%)

MWZ 2.1
Test

MWZ 2.4
Test

MWZ 2.4
Val

MWZ 2.1
Test

MWZ 2.4
Test

predefined
ontology

SUMBT 49.01 61.86 (+12.85) 62.31 96.76 97.90
STAR 56.36 73.62 (+17.26) 74.59 97.59 98.85

open
vocabulary

TRADE 45.60 55.05 (+9.45) 57.01 96.55 97.62
PIN 48.40 58.92 (+10.52) 60.37 97.02 98.02

SOM-DST 51.24 66.78 (+15.54) 68.77 97.15 98.38
SimpleTOD 51.75 57.18 (+5.43) 55.02 96.78 96.97

SAVN 54.86 60.55 (+5.69) 61.91 97.55 98.05
TripPy 55.18 64.75 (+9.57) 64.27 97.48 98.33

Table 3: Joint goal accuracy and slot accuracy of different models on MultiWOZ 2.1 and MultiWOZ 2.4.

Dataset SUMBT (%) TRADE (%)
MultiWOZ 2.0 48.81 48.62
MultiWOZ 2.1 49.01 45.60
MultiWOZ 2.2 49.70 46.60
MultiWOZ 2.3 52.90 49.20
MultiWOZ 2.3-cof 54.60 49.90
MultiWOZ 2.4 61.86 55.05

Table 4: Comparison of test set joint goal accuracy on
different versions of the MultiWOZ dataset.

context. We benchmark the performance of our
refined dataset on both types of methods, includ-
ing SUMBT (Lee et al., 2019), STAR (Ye et al.,
2021), TRADE (Wu et al., 2019), PIN (Chen
et al., 2020), SOM-DST (Kim et al., 2020), Sim-
pleTOD (Hosseini-Asl et al., 2020), SAVN (Wang
et al., 2020), and TripPy (Heck et al., 2020).

3.2 Benchmark Results
We adopt joint goal accuracy (Zhong et al., 2018)
and slot accuracy as evaluation metrics. The joint
goal accuracy is defined as the ratio of dialogue
turns in which all slot values are correctly predicted.
The slot accuracy is defined as the average accu-
racy of all slots. As shown in Table 3, all models
achieve much higher performance on MultiWOZ
2.4. SimpleTOD shows the least performance im-
provement. The reason may be that SimpleTOD
generates state values directly while other meth-
ods such as TRADE leverage the copy mechanism
(See et al., 2017) to assist in the generation process.
SAVN also shows a low performance increase, as
it has already utilized value normalization to tackle
label variants in MultiWOZ 2.1. We then report
the joint goal accuracy of SUMBT and TRADE on
different versions of the dataset in Table 4, in which
MultiWOZ 2.3-cof means MultiWOZ 2.3 with co-
reference applied. As can be seen, both methods
perform better on MultiWOZ 2.4 than on all previ-
ous versions. We include the domain-specific ac-
curacy of SOM-DST and STAR in Table 5, which

Domain SOM-DST (%) STAR (%)
2.1 2.4 2.1 2.4

attraction 69.83 83.22 70.95 84.45
hotel 49.53 64.52 52.99 69.10
restaurant 65.72 77.67 69.17 84.20
taxi 59.96 54.76 66.67 73.63
train 70.36 82.73 75.10 90.36

Table 5: Comparison of domain-specific test set joint
goal accuracy.

shows that except SOM-DST in the taxi domain,
both methods demonstrate higher performance in
each domain of MultiWOZ 2.4.

4 Human Evaluation

We also perform a human evaluation on the quality
of the refined annotations. We randomly sampled
50 dialogues from the test set and recruited 5 com-
puter science students to compare our refinement
against the annotations in MultiWOZ 2.1. Specif-
ically, the raters were asked to assign a score to
each turn of the sampled dialogues based on the
following criteria: 1) -2: A score of -2 means that
both the refined annotation and original annotation
are not completely correct; 2) -1: A score of -1
means that the original annotation is correct while
the refined annotation is problematic; 3) 0: A score
of 0 means that both the refined annotation and
original annotation are correct, that is, no changes
have been made to the original annotation; 4) 1:
A score of 1 means that the refined annotation is
correct while the original annotation is invalid.

We obtain an average score of 0.1653, meaning
that our refined annotations are more accurate. We
further employ Fleiss’ kappa (Fleiss, 1971) to mea-
sure the level of agreement among different raters.
We obtain κ = 0.9226, which indicates an almost
perfect agreement across the five raters.

We illustrate the score distributions of different
raters in Figure 3. From this figure, we can intu-
itively observe that there is a high level of agree-

354



-2 -1 0 1
Score

0.0

0.2

0.4

0.6

0.8
Ra

tio
Rater1
Rater2
Rater3
Rater4
Rater5

Figure 3: The score distribution of different raters.

ment among the five raters. Figure 3 also shows
that in most cases, the refined annotation and the
original annotation are both correct, meaning that
there is no need to make any changes to the original
annotation. This is desirable, as our refinement is
based on MultiWOZ 2.1 which has already fixed
lots of annotation errors. Around 20% of anno-
tations in MultiWOZ 2.4 are deemed to be more
accurate than MultiWOZ 2.1, while only about 1%
of annotations in MultiWOZ 2.1 are evaluated as
better. This verifies again that our refinement has
higher quality.

We further inspected the annotations in Multi-
WOZ 2.1 that are assessed to be more appropri-
ate. We found that these annotations are mainly
related to the slot hotel-type. This slot has four
candidate values {“hotel”, “guest house”, “none”,
“dontcare”}, which are relatively confusing because
the term “hotel” is also one candidate value. In
practice, when a user says “I am looking for a hotel
with 4 stars”, the user may actually mean that “I am
looking for a place to stay with 4 stars”. However,
by convention, the term “hotel” is used more often,
even though the user does not mean that the hotel
type must be “hotel”. In our refinement procedure,
we chose to annotate this slot based on the whole
dialogue session to understand the true user inten-
tion (i.e., hotel type=hotel?) while the raters tended
to take into account only the dialogue history. This
ambiguous slot tells us that it is crucial to develop
appropriate slots and candidate values that will not
cause any confusions to the annotators.

5 Caveats and Lessons Learned

Although we have tried our best to correct as many
annotations in the validation set and test set as pos-
sible, it is unlikely that we have fixed all the anno-
tation errors. In fact, there are several challenges
we faced during the refinement process that are
particularly difficult to overcome. Firstly, as dis-

cussed earlier, the candidate values of some slots
are confusing, which makes it really challenging
to choose the most appropriate value. Secondly,
in some scenarios, the user intention can have dif-
ferent interpretations. For example, the user ut-
terance “the hotel does not need to have internet
though” can mean that the user does not need in-
ternet at all (hotel-internet=no) or the user does
not care about if the internet is provided (hotel-
internet=dontcare). Thirdly, some slots may have
multiple values. Sometimes these values should
even be ordered according to users’ preferences.
When there are too many values (more than two),
it is also questionable if the corresponding slot
should be annotated. Suppose that the system rec-
ommended 10 museums to the user and the user
asked “Does any of them have zero entrance fee?”,
should the slot attraction-name be annotated?

Further, the dialogue state can be regarded as a
structured representation of the complex user inten-
tions. Due to the complexity of the language itself,
some information will be inevitably lost when trans-
forming unstructured user utterances into struc-
tured state representations. In this regard, dialogue
state annotating is in essence a challenging task.

Given these challenges, it is necessary to define
unambiguous slots and unconfusable candidate val-
ues to facilitate state annotating. It is also important
to provide annotators with full instructions for each
slot so that they can make consistent annotations.

6 Conclusion

We introduce MultiWOZ 2.4, an updated version
of MultiWOZ 2.1, by rectifying (almost) all the
annotation errors in the validation set and test set.
We keep the annotations in the training set as is to
encourage robust and noise-resilient model train-
ing. We further benchmark eight state-of-the-art
dialogue state tracking models on MultiWOZ 2.4 to
facilitate future research. All the benchmark mod-
els have demonstrated much better performance on
MultiWOZ 2.4 than on MultiWOZ 2.1.

MultiWOZ 2.4 can also be applied to train better
overall dialogue systems, e.g., by utilizing data
augmentation techniques to generate high-quality
training data based on the clean validation set.
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A Additional Statistics on the Refined
Annotations

In Table 6, we report the value vocabulary size (i.e.,
the number of candidate values) of each slot in
MultiWOZ 2.1 & 2.4, respectively. We also report
their value change ratios. As can be observed, for
some slots, the value vocabulary size decreases
due to value normalization and error correction.
For some slots, the value vocabulary size increases
mainly because a few labels that contain multiple
values have been additionally introduced. Table 6
also indicates that the name-related slots have the
highest value change ratio. Since these slots usually
have “longer” values, the annotators are more likely
to make incomplete and inconsistent annotations.

Slot 2.1 2.4 Val(%) Test(%)
attraction-area 7 8 1.97 1.93
attraction-name 106 92 5.34 5.16
attraction-type 17 23 4.62 3.77
hotel-area 7 8 3.92 3.99
hotel-book day 8 8 0.33 0.52
hotel-book people 9 9 0.68 0.53
hotel-book stay 6 7 0.42 0.42
hotel-internet 5 4 2.32 2.24
hotel-name 48 46 6.28 3.95
hotel-parking 5 4 2.54 2.35
hotel-pricerange 6 6 1.76 2.06
hotel-stars 8 10 1.52 1.44
hotel-type 5 4 5.06 4.78
rest.-area 7 8 2.18 2.38
rest.-book day 8 11 0.35 0.27
rest.-book people 9 9 0.37 0.45
rest.-book time 59 62 0.56 0.46
rest.-food 89 93 2.58 2.28
rest.-name 135 121 7.81 5.90
rest.-pricerange 5 7 1.51 2.05
taxi-arriveby 62 61 0.41 0.56
taxi-departure 177 172 0.92 0.86
taxi-destination 185 181 1.14 0.75
taxi-leaveat 92 89 0.84 0.45
train-arriveby 109 73 1.40 2.86
train-book people 11 12 1.22 1.76
train-day 8 9 0.31 0.24
train-departure 19 15 0.71 1.10
train-destination 20 17 0.71 1.00
train-leaveat 128 96 4.64 5.12

Table 6: The slot value vocabulary size counted on
the validation set and test set of MultiWOZ 2.1 and
MultiWOZ 2.4, respectively, and the slot-specific value
change ratio. “rest.” is the abbreviation of restaurant.

B Per-Slot (Slot-Specific) Accuracy

In Section 3, we have presented the joint goal accu-
racy and average slot accuracy of eight state-of-the-
art dialogue state tracking models. The results have
demonstrated that much better performance can be
achieved on our refined annotations in terms of the
two metrics. Here, we further report the per-slot
(slot-specific) accuracy of SUMBT on different ver-
sions of the MultiWOZ dataset. The slot-specific
accuracy is defined as the ratio of dialogue turns
in which the value of a particular slot has been
correctly predicted. The results are shown in Ta-
ble 7, from which we can observe that the majority
of slots (21 out of 30) demonstrate higher accura-
cies on MultiWOZ 2.4. Even though MultiWOZ
2.3-cof additionally introduces the co-reference an-
notations as a kind of auxiliary information, it still
only shows the best performance in 7 slots. Com-
pared with MultiWOZ 2.1, SUMBT has achieved
higher slot-specific accuracies in 26 slots on Mul-
tiWOZ 2.4. These results confirm again the utility
and validity of our refined version MultiWOZ 2.4.

C Case Study

Except for the quantitative analyses provided in the
benchmark evaluation and human evaluation, we
also conduct a qualitative analysis to understand
more intuitively why and how the refined annota-
tions boost the performance of evaluation. To this
end, we showcase several dialogues from the test
set in Table 8, where we include the annotations
of MultiWOZ 2.1 and MultiWOZ 2.4 and also the
predictions of SOM-DST and STAR. It is easy to
check that the annotations of MultiWOZ 2.1 are in-
correct, while the annotations of MultiWOZ 2.4 are
consistent with the dialogue context and therefore
are valid. From Table 8, we also observe that the
predictions of both SOM-DST and STAR are the
same as the annotations of MultiWOZ 2.4 in the
first four dialogues. In the last dialogue, the predic-
tion of STAR is consistent with the annotation of
MultiWOZ 2.4, whereas the predicted slot value of
SOM-DST is different from the annotations of both
MultiWOZ 2.1 and MultiWOZ 2.4. These exam-
ples show that the performance of existing dialogue
state tracking models is underestimated because of
the invalid annotations in MultiWOZ 2.1. While
MultiWOZ 2.4 can better manifest the true model
performance owing to the refined annotations that
align well with the dialogue context.
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Slot MultiWOZ
2.1

MultiWOZ
2.2

MultiWOZ
2.3

MultiWOZ
2.3-cof

MultiWOZ
2.4

attraction-area 95.94 95.97 96.28 96.80 96.38
attraction-name 93.64 93.92 95.28 94.59 96.38
attraction-type 96.76 97.12 96.53 96.91 98.24
hotel-area 94.33 94.44 94.65 95.02 96.16
hotel-book day 98.87 99.06 99.04 99.32 99.52
hotel-book people 98.66 98.72 98.93 99.17 99.19
hotel-book stay 99.23 99.50 99.70 99.70 99.88
hotel-internet 97.02 97.02 97.45 97.56 97.96
hotel-name 94.67 93.76 94.71 94.71 96.92
hotel-parking 97.04 97.19 97.90 98.34 98.68
hotel-pricerange 96.00 96.23 95.90 96.40 96.59
hotel-stars 97.88 97.95 97.99 98.09 99.16
hotel-type 94.67 94.22 95.92 95.65 94.75
restaurant-area 96.30 95.47 95.52 96.05 97.52
restaurant-book day 98.90 98.91 98.83 99.66 98.59
restaurant-book people 98.91 98.98 99.17 99.21 99.31
restaurant-book time 99.43 99.24 99.31 99.46 99.28
restaurant-food 97.69 97.61 97.49 97.64 98.71
restaurant-name 92.71 93.18 95.10 94.91 96.01
restaurant-pricerange 95.36 95.65 95.75 96.26 96.59
taxi-arriveby 98.36 98.03 98.18 98.45 98.17
taxi-departure 96.13 96.35 96.15 97.49 96.55
taxi-destination 95.70 95.50 95.56 97.59 95.68
taxi-leaveat 98.91 98.96 99.04 99.02 98.72
train-arriveby 96.40 96.40 96.54 96.76 98.85
train-book people 97.26 97.04 97.29 97.67 98.62
train-day 98.63 98.60 99.04 99.38 98.94
train-departure 98.43 98.40 97.56 97.50 99.32
train-destination 98.55 98.30 97.96 97.86 99.43
train-leaveat 93.64 94.14 93.98 93.96 96.96

Table 7: Per-slot (slot-specific) accuracy (%) of SUMBT on different versions of the MultiWOZ dataset. The
results on MultiWOZ 2.1-2.3 and MultiWOZ 2.3-cof are from (Han et al., 2021). It is shown that most slots
demonstrate stronger performance on MultiWOZ 2.4 than on all the other versions.

D Discussion

Recall that in MultiWOZ 2.4, we only refined the
annotations of the validation set and test set. The
annotations in the training set remain unchanged
(the same as MultiWOZ 2.1). As a result, all the
benchmark models are retrained on the original
noisy training set. The only difference is that we
use the cleaned validation set to choose the best
model and then report the results on the cleaned
test set. Even so, we have shown in our empiri-
cal study that the benchmark models can obtain
better performance on MultiWOZ 2.4 than on all
the previous versions. Considering that all the pre-
vious refined versions also corrected the (partial)

annotation errors in the training set, the superiority
of MultiWOZ 2.4 indicates that existing versions
have not fully resolved the incorrect and inconsis-
tent annotations. Therefore, although there have
been three refined versions, our refinement is still
necessary and meaningful. In addition, the refined
validation set and test set can be combined with the
training set of MultiWOZ 2.3. Since MultiWOZ
2.3 has the cleanest training set by far, this com-
bination has the potential to result in even higher
performance of existing methods.

On the other hand, it is well-understood that
deep (neural) models are data-hungry. However, it
is costly and labor-intensive to collect high-quality
large-scale datasets, especially dialogue datasets

359



Dialogue ID Dialogue Context, Groundtruth Annotations, and Predictions of SOM-DST and STAR

PMUL1931

Sys: We have 6 different guest houses that fit your criteria. Do you have a specific price range in mind?
Usr: No, it does not matter.

MultiWOZ 2.1 MultiWOZ 2.4 SOM-DST STAR
hotel-pricerange

none

hotel-pricerange

dontcare

hotel-pricerange

dontcare

hotel-pricerange

dontcare

PMUL3158
Usr: I want to find a place in town to visit called jesus green outdoor pool.

MultiWOZ 2.1 MultiWOZ 2.4 SOM-DST STAR
attraction-type

swimming pool

attraction-type

none

attraction-type

none

attraction-type

none

MUL1489

Sys: Ok, you are all set for cote on Friday, table for 8 at 17:30. Can I help with anything else?
Usr: Can I have the reference number for the reservation please?
Sys: Booking was unsuccessful. Can you try another time slot?
Usr: What about 16:30?

MultiWOZ 2.1 MultiWOZ 2.4 SOM-DST STAR
restaurant-book time

17:30

restaurant-book time

16:30

restaurant-book time

16:30

restaurant-book time

16:30

PMUL0550

Sys: I recommend Charlie Chan. Would you like to reserve a table?
Usr: Yes. Monday, 8 people, 10:30.

MultiWOZ 2.1 MultiWOZ 2.4 SOM-DST STAR
restaurant-name

Charlie

restaurant-name

Charlie Chan

restaurant-name

Charlie Chan

restaurant-name

Charlie Chan

MUL1697

Sys: I am sorry none of them have booking available for that time, another time maybe?
Usr: Is 09:45 an available time?

MultiWOZ 2.1 MultiWOZ 2.4 SOM-DST STAR
restaurant-book time

21:45

restaurant-book time

09:45

restaurant-book time

10:45

restaurant-book time

09:45

Table 8: Examples of test set dialogues in which the annotations of MultiWOZ 2.1 are incorrect but the predictions
of SOM-DST and STAR are correct (except the prediction of SOM-DST in the last example), as the predicted slot
values are consistent with the dialogue context. Given that the annotations of MultiWOZ 2.4 are consistent with the
dialogue context as well, there is no doubt that higher performance can be achieved when performing evaluation
on MultiWOZ 2.4. Note that only the problematic slots are presented.

that involve multiple domains and multiple turns.
The dataset composed of a large noisy training set
and a small clean validation set and test set is more
common in practice. In view of this, our refined
dataset is a better reflection of the realistic situation
we encounter in our daily life. Moreover, a noisy
training set may motivate us to design more robust
and noise-resilient training paradigms. As a matter
of fact, noisy label learning (Han et al., 2020; Song
et al., 2022) has been widely studied in the ma-
chine learning community to train robust models
from noisy training data. Numerous advanced tech-
niques have been investigated as well. We hope to
see that these techniques can also be applied to the
study of dialogue systems and thus accelerate the
development of conversational AI.

E Potential Impacts

We believe that our refined dataset MultiWOZ 2.4
would have substantial impacts in academia. First
of all, the cleaned validation set and test set can
help us evaluate the performance of dialogue state
tracking models more properly and fairly, which
is undoubtedly beneficial to the research of task-
oriented dialogue systems. In addition, MultiWOZ
2.4 may also serve as a potential dataset to assist
the research of noisy label learning in the machine
learning community. The advantage of MultiWOZ
2.4 is that it is a multi-label dataset with real noise
in the training set. In the machine learning com-
munity, it has been recognized as a future research
direction to study noisy label learning for multi-
label classification (Song et al., 2022).
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Abstract

Turn taking in conversation is a complex pro-
cess. We still do not know how listeners are
able to anticipate the end of a speaker’s turn.
Previous work focuses on prosodic, semantic,
and non-verbal cues that a turn is coming to
an end. In this paper, we look at simple mea-
sures of duration—time, word count, and syl-
lable count—to see if we can exploit the dura-
tion of turns as a cue. We find strong evidence
that these metrics are useless.

1 Introduction

Turn-taking is a fundamental aspect of dialogue.
Timing of turn initiation is critical. Sometimes long
pauses are socially relevant (Bogels et al., 2015).
Sometimes people overlap in conversation without
the reason being clear (Heldner and Edlund, 2010).
When trouble occurs, people can pause to signal
misunderstandings (Mertens and De Ruiter, 2021).
But turn taking as a whole is not well understood.

What is known is that the time between succes-
sive turns is generally very short—much shorter
than can be attributed to simple reactions to a turn
ending (De Ruiter, 2019). What this means is that
people must anticipate the end of a turn (Ruiter
et al., 2006). If we are anticipating the end of a
turn, then there must be some features of utterances
that we use to predict their ending, enabling fluid
turn transition.

In artificial agents that engage in spoken di-
alogue, turn-taking often falls by the wayside,
leading to stilted conversations with long delays
between turns or interruptions at inappropriate
times (Skantze, 2021). Typical human interactions
with current conversational agents work uniformly
sequentially, as the agent processes and responds
to the human once the end of an utterance has been
completed, and it does not expect interruptions or
overlaps (Gervits et al., 2020).

In general, computers can process information
much faster than humans, but we have not yet devel-
oped fluid turn-taking algorithms. Humans prepare
a one-word utterance in around 600ms (Indefrey
and Levelt, 2004). Computers can perform much
faster than this and their speed is still increasing.
But if an agent doesn’t know when a turn ends, flu-
idity can be compromised. For smooth turn taking,
agents need to know how to time their contributions
appropriately.

Previous research looks at lexical (Magyari and
de Ruiter, 2012), semantic (Gervits et al., 2020;
Riest et al., 2015), prosodic (Bögels and Torreira,
2015), or non-verbal (Roddy et al., 2018) attributes
of utterances in order to anticipate turn ends. Each
of these has its own merits and drawbacks. Lexi-
cal boundaries are relatively easy to compute and
reason about. Semantic completion of an utterance
makes logical sense for an end-point to a thought.
Prosodic cues can be computed quickly from the
speech signal, and non-verbal cues are ripe for deep
learning techniques (Lala et al., 2019). Turn dura-
tion, however, has not been studied yet for its use
as a cue in anticipating its end, despite its ready
availability to any spoken dialogue system.

Intuitively, one would expect that the duration
of a turn is a strong cue about its ending. It would
be plausible to assume that the longer someone has
been talking already, the higher the probability is
that the speaker will end their turn. Compare it
to waiting for a bus – we tend to assume that the
longer we have waited for the bus, the higher the
probability that it will finally arrive. But this is only
so when the duration of a turn is normatively con-
strained. However, looking at distribution of a large
number of conversational turns in Dutch, De Ruiter
(2019) found that the distribution of turn-duration
looks suspiciously much like an exponential distri-
bution. And a unique and counter-intuitive property
of this distribution is that it has a constant hazard
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rate: no matter how long we have waited for the
process to complete, the probability of it terminat-
ing in the next instant remains constant. If turn
durations are in fact exponentially distributed, it
would mean that the duration of a turn so far does
not contain any information about its projected du-
ration.

However, the observation in De Ruiter (2019)
were only for one small corpus in Dutch, and mea-
sured in milliseconds. It could be that measuring
duration in other units, like words, syllables, or
other turn-related units would show a different dis-
tribution. In this study we set out to study if this
suspected property of turn durations is generaliz-
able to a larger corpus in English, and to other units
of duration.

Turns in dialogue are composed of turn construc-
tion units (TCUs). TCUs are bounded by transition
relevant places (Sacks et al., 1978). At each tran-
sition relevant place, another person could take
the floor or the current speaker could continue. In
this study, we will investigate the duration of both
TCUs and entire turns. As there may be social
preferences regarding the number of TCUs within
a turn, we will also examine the usefulness of the
number of TCUs per turn in predicting floor transi-
tions.

In the following sections, we outline the data
collection and our statistical analyses. Then we will
show the distributions of the data and the statistical
models describing the data. We will then discuss
the implications of our results, and present ideas on
how these results can be used to improve spoken
dialogue agents.

2 Methods

2.1 Dataset
For this study, we are using the Switchboard cor-
pus (Godfrey and Holliman, 1993). The Switch-
board corpus is a large, well-studied corpus of
dyadic, open-ended telephone conversations. Its
use limits our ability to draw conclusions about
face-to-face speech patterns, but extends the work
of De Ruiter (2019, p.542–543) — a study of Dutch
telephone conversations — to English. Since the
corpus is well-studied, we can draw on previous
work for transcription, timing, and segmentation.

We used two transcriptions of the Switchboard
corpus. First, the Mississippi State University tran-
scriptions1 were used for word-by-word timing.

1http://www.openslr.org/5/

Second, the Discourse Language Modeling Project
transcriptions2 break the conversation into turn con-
struction units. We are interested in TCUs as the
basic building blocks of turns, and to compare that
to the analysis of turn duration in De Ruiter (2019,
p.542–543) which only looked at duration in sec-
onds.

After merging these two sources, we analyzed
only conversations where the word-level exact
matches were at least 90% of words in a conversa-
tion, and the total error rate of the conversation (that
is, words matching none of our word-matching
heuristics) was below 2%. Heuristics included
accounted for simple, systematic alternative tran-
scriptions, like repeated or omitted words, alterna-
tive spellings (“uh-uh” / “uh-huh”), or abandoned
words (“ho-” / “how”). The analyses use the result-
ing 75 conversations with 5,857 turns and 11,796
turn construction units.

2.2 Probabilistic Modeling

For each aspect of the data, we will build two mod-
els. The first model will be a best-fit exponential
distribution; the second will be a best-fit gamma
distribution (except for TCUs per turn; see below).
We will show the curves of the data along with
curves for each model so that we can quantify and
visualize the differences in prediction between the
models and in reference to the data. Full descriptive
statistics can be found in the appendix.

We chose the exponential distribution as a null
model. It is the maximum entropy distribution for
positive-domain data with a known mean. It also
has the property of being memoryless, or having
a constant hazard rate. This means that no matter
how long an exponential process has been ongoing,
the chance that it will end in the next time step
is constant. This makes it a good null model, as
there is very little information that can be gained
about a distribution via the exponential distribution.
Both the mean and the hazard rate are related to
the single distribution parameter λ, which is the
hazard rate or probability of the process ending
in the next time-step. More concretely, λ is the
chance of stopping at the next millisecond, word,
or syllable, given that the process has not stopped
so far.

The gamma distribution is a generalization of
the exponential distribution. It is parameterized by

2Available at https://web.stanford.edu/
˜jurafsky/ws97/
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a shape and rate parameter. If the shape parameter
is one, the gamma is equivalent to the exponential
distribution. Importantly, other shape parameters
allow a gamma model to fit many different positive-
domain datasets with different modes and varying
hazard rates.

TCUs per Turn data is fit to Geometric and Neg-
ative Binomial distributions, which are the discrete
forms of the Exponential and Gamma distributions,
respectively. The p and n parameters of the discrete
distributions mirror the rate and shape parameters
of their continuous analogues. This decision was
made because the small number of TCUs per turn
does not lend itself to an assumption of continuity.

We will compare the exponential and gamma
models for each dataset using the widely-applicable
information criterion (WAIC). The WAIC estimates
the effective number of parameters to adjust for
overfitting, and gives results similar to a leave-
one-out cross-validation for model-fitting. A lower
WAIC is a better fit.

3 Results

Here we will report the basic findings of our anal-
yses. The interpretation of the findings will be
delayed to discussion.

3.1 TCU Duration

TCU duration exponential and gamma models were
very similar, since the best-fit gamma model has a
shape of 1.01, which is effectively the same as an
exponential distribution. We can see this close fit
in the WAIC scores, too, which were identical to
the third decimal place.

3.2 TCU Word Count

TCU word count was interesting in that it was the
only model with a gamma shape parameter substan-
tially above one, at 1.18. We can see this reflected
in the concavity of the gamma model curve near
zero. WAIC scores were very similar, with the ex-
ponential distribution only 0.3% higher than the
gamma distribution.

3.3 TCU Syllable Count

The TCU syllable count gamma model had a shape
parameter of 1.05, very nearly identical to an ex-
ponential distribution. We can see the similarity in
the chart. The WAIC is again only 0.3% higher for
the exponential model than the gamma model.

3.4 Turn Duration

In the turn duration statistics, we see a sizable dif-
ference between where the gamma model is posi-
tioned and the exponential model, but also the data.
The best fit gamma pulls the curve toward the tail
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in order to accommodate the high number of fast
turns in the data. Despite the different orientations
to the data, the trade-off between good fit on low
values or good fit at high values cancel out and the
WAIC is again only 0.3% higher for the exponential
model than the gamma model.

3.5 Turn Word Count

The turn word count models show similar tenden-
cies to the turn duration models—the gamma model
better accounts for low values, but the exponential
distribution fits better at higher values. The low
shape parameter of the gamma distribution (0.718)
allows this distortion. The WAIC of the exponential
distribution is 1.1% higher than the gamma.

3.6 Turn Syllable Count

Similar to the turn words model, a low gamma
shape value—only 0.667—lets the gamma model
account for many utterances with very few sylla-
bles compared to the expectations in the exponen-
tial distribution. Here we have our largest WAIC
disparity with at 1.65% higher for the exponential
model compared to the gamma model.

3.7 TCUs per Turn

TCUs per turn was fit to geometric and negative bi-
nomial models rather than exponential and gamma
models. The negative binomial model has under-
estimated the low numbers, trading off probability
mass at low counts for larger predictions at high
counts. The WAIC shows that the simpler exponen-
tial model is a better fit with a 20% lower score.

4 Discussion

The analyses above, when taken together, suggest
that there is little to be learned from examining
the length of utterances as a sole heuristic for pre-
dicting their end. As was suspected on theoretical
grounds (De Ruiter, 2019) there is very little infor-
mation in simple duration. The work here extended
this previous work from timing of TCus to examine
semantic content as shown by word counts, pho-
netic information as shown by syllable counts, or
social action as shown by TCUs per turn. None of
these linguistics frames showed any substantial de-
parture from the constant hazard-rate distribution.

There may be contexts where utterance length is
a useful heuristic for TCU or turn end or situations
in which the statistics describe here do not fit well.
For example, one would suspect that different dia-
logue acts may lend themselves to different TCU
lengths — short backchannels, for example. Or,
particular social situations may lend themselves to
fewer TCUs per turn to ensure participants main-
tain the same mental models. A follow-up study
on (e.g.,) the Map Task Corpus might show these
deviation, if they exist.

The largest deviation from the exponential model
occurred in the turn word and syllable count anal-
yses. These two results reflect the combination of
high rates of single TCU turns and large shares of
low TCU word and syllable counts. Our TCU per
turn analysis shows that single-TCU turns are more
common than the exponetial model is able to fit,
but the negative binomial distribution moves prob-
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ability mass to the tail, making it an even worse fit,
both visually and statistically. Short turns skew the
data in turn-level word and syllable count toward
very low counts as compared to the exponential
model.

We expected that the TCUs per turn negative
binary model would account for the high number of
single TCU turns, much like the gamma model does
for the other data views. However, the geometric
model outperforms the negative binomial by the
largest WAIC difference of any models discussed.
Therefore, we must conclude that the geometric
model is the superior fit, and the best-fit hazard rate
for each TCU—the chance that the speaker’s turn is
over at the end of any TCU—is 50%, or a coin flip.
So, not only is the maximum entropy geometric
model a better fit, but there is no reliable bias for
whether a turn is over at the end of a TCU.

5 Conclusion

In this paper, we first confirmed the suspicions
raised in De Ruiter (2019)—the duration of TCUs
follows an exponential distribution. We then ex-
tended these findings in several ways. First, TCUs
also follow this distribution by syllable or word
count. Conversation does not orient to the amount
of phonological or semantic information. It follows
that if these factors are useful for turn taking, they
are useful based on their meaning and structure,
not their quantity or base informational load.

Next, we expanded our findings to the turn level,
rather than just TCUs. Turn duration, syllable, and
word count findings were akin to those at the TCU
level, and so we must draw the conclusions that
these turn length measurements are not useful ei-
ther to exploit as information source in turn taking.

Finally, we looked at TCUs per turn for evidence
that the number of dialogue acts of which a turn
has numerical norms. The TCU per turn analysis
showed that the end of a TCU is essentially a coin
flip for whether there will be a floor transfer. Not
only did the maximum entropy distribution have
the best fit, but the hazard rate was very close to
0.5. So, we must conclude that there is no more
pragmatic pressure to end one’s turn when it is
already very long.

Our general conclusion therefore is that, surpris-
ingly, the duration of turns are not useful cues for
turn segmentation or turn taking decisions. This is
independent of whether we use temporal, phono-
logical, lexical, or TCU-based measures of infor-

mation. Agents that do turn taking will need to use
linguistic or prosodic cues other than duration to
achieve accurate timing in their turn taking behav-
ior.
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A Appendix

A.1 TCU Duration
Data Mean 2.40E+03
Exponential Model Mean 2.40E+03
Gamma Model Mean 2.40E+03
Data Std Dev 3.36E+03
Exponential Model Std Dev 2.40E+03
Gamma Model Std Dev 2.39E+03
Exponential Rate Mean 4.16E-04
Gamma Rate Mean 4.22E-04
Exponential Rate Std Dev 3.79E-06
Gamma Rate Std Dev 6.27E-06
Gamma Shape Mean 1.01E+00
Gamma Shape Std Dev 1.17E-02
Exponential WAIC 2.101E+05
Gamma WAIC 2.101E+05

A.2 TCU Word Count
Data Mean 7.70E+00
Exponential Model Mean 7.70E+00
Gamma Model Mean 7.70E+00
Data Std Dev 7.62E+00
Model Std Dev 7.70E+00
Gamma Model Std Dev 7.10E+00
Exponential Rate Mean 1.30E-01
Gamma Rate Mean 1.53E-01
Exponential Rate Std Dev 1.20E-03
Gamma Rate Std Dev 2.23E-03
Gamma Shape Mean 1.18E+00
Gamma Shape Std Dev 1.38E-02
Exponential WAIC 7.275E+04
Gamma WAIC 7.255E+04

A.3 TCU Syllable Count

Data Mean 9.81E+00
ExponentialModel Mean 9.80E+00
Gamma Model Mean 9.80E+00
Data Std Dev 1.01E+01
Exponential Model Std Dev 9.80E+00
Gamma Model Std Dev 9.56E+00
Exponential Rate Mean 1.02E-01
Gamma Rate Mean 1.07E-01
Exponential Rate Std Dev 9.44E-04
Gamma Rate Std Dev 1.57E-03
Gamma Shape Mean 1.05E+00
Gamma Shape Std Dev 1.21E-02
Exponential WAIC 7.852E+04
Gamma WAIC 7.850E+04

A.4 Turn Duration

Data Mean 4.83E+03
Exponential Model Mean 4.82E+03
Gamma Model Mean 4.83E+03
Data Std Dev 7.93E+03
Exponential Model Std Dev 4.83E+03
Gamma Model Std Dev 5.56E+03
Exponential Rate Mean 2.07E-04
Gamma Rate Mean 1.56E-04
Exponential Rate Std Dev 2.69E-06
Gamma Rate Std Dev 3.49E-06
Gamma Shape Mean 7.55E-01
Gamma Shape Std Dev 1.23E-02
Exponential WAIC 1.116E+05
Gamma WAIC 1.113E+05

A.5 Turn Word Count

Data Mean 1.53E+01
Exponential Model Mean 1.53E+01
Gamma Model Mean 1.53E+01
Data Std Dev 2.34E+01
Exponential Model Std Dev 1.53E+01
Gamma Model Std Dev 1.81E+01
Exponential Rate Mean 6.53E-02
Gamma Rate Mean 4.69E-02
Exponential Rate Std Dev 8.55E-04
Gamma Rate Std Dev 1.04E-03
Gamma Shape Mean 7.18E-01
Gamma Shape Std Dev 1.14E-02
Exponential WAIC 4.390E+04
Gamma WAIC 4.341E+04
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A.6 Turn Syllable Count
Data Mean 1.95E+01
Exponential Model Mean 1.95E+01
Gamma Model Mean 1.95E+01
Exponential Model Std Dev 1.95E+01
Data Std Dev 3.02E+01
Gamma Model Std Dev 2.39E+01
Exponential Rate Mean 5.13E-02
Gamma Rate Mean 3.42E-02
Exponential Rate Std Dev 6.72E-04
Gamma Rate Std Dev 7.73E-04
Gamma Shape Mean 6.67E-01
Gamma Shape Std Dev 1.05E-02
Exponential WAIC 4.676E+04
Gamma WAIC 4.600E+04

A.7 TCUs per Turn
Data Mean 1.99E+00
Geometric Model Mean 1.99E+00
Neg Binomial Model Mean 1.99E+00
Data Std Dev 1.90E+00
Geometric Model Std Dev 1.40E+00
Neg Binomial Model Std Dev 1.62E+00
Geometric p Mean 5.03E-01
Neg Binomial p Mean 7.59E-01
Geometric p Std Dev 4.61E-03
Neg Binomial p Std Dev 1.12E-02
Neg Binomial n Std Dev 6.27E+00
Neg Binomial n Std Dev 3.82E-01
Geometric 16209.397714
NegativeBinomial 20315.258775

B Supplemental Material
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Abstract

To build a goal-oriented dialogue system that
can generate responses given a knowledge base,
identifying the relevant pieces of information
to be grounded in is vital. When the number
of documents in the knowledge base is large,
retrieval approaches are typically used to iden-
tify the top relevant documents. However, most
prior work simply uses an entire dialogue his-
tory to guide retrieval, rather than exploiting
a dialogue’s topical structure. In this work,
we examine the importance of building the
proper contextualized dialogue history when
document-level topic shifts are present. Our
results suggest that excluding irrelevant turns
from the dialogue history (e.g., excluding turns
not grounded in the same document as the cur-
rent turn) leads to better retrieval results. We
also propose a cascading approach utilizing the
topical nature of a knowledge-grounded con-
versation to further manipulate the dialogue
history used as input to the retrieval models.

1 Introduction

Knowledge identification (KI) is the task of iden-
tifying relevant information from a database of
documents that should be used when generating
responses in a knowledge-grounded dialogue sys-
tem (Feng et al., 2020; Wu et al., 2021). When
the number of documents is large, information re-
trieval is typically used to find relevant documents
(Karpukhin et al., 2020; Khattab and Zaharia, 2020;
Yu et al., 2021). Most approaches encode both
the knowledge sources and the dialogue context
(i.e., all prior turns), which is later used as an in-
put query, into the same vector space. Since the
quality of the input query significantly impacts the
retrieval results (Yu et al., 2020, 2021), using an
optimal dialogue context is crucial.

In knowledge-grounded dialogues, each turn can
be grounded in a different document. Blindly in-
cluding all previous turns into the dialogue context
can introduce unnecessary noise because a turn

grounded in a different document can provide re-
dundancy or irrelevant information for the ground-
ing process of the current turn. Our hypothesis
is that including only turns in the dialogue con-
text that are grounded in the same document as the
current turn when creating a retrieval query will im-
prove KI task performance. To test this hypothesis,
we tried several approaches to select relevant turns
to be included in the dialogue context. Specifically,
we vary the input to a previously used predictive
model (Lewis et al., 2020b) to see whether querying
using only turns grounded in the same document
as the current turn improves retrieval performance.
After verifying our hypothesis using oracle results,
we utilize automatically computed document-level
topic shifts to improve the dialogue context used for
KI. Even with imperfect automatic predictive mod-
els, our initial results show that improving dialogue
context increases the retrieval results on dialogues
grounded on at least 2 documents. Further analysis
on errors from dialogues grounded only in 1 docu-
ment leads us to a simple heuristic that raises the
retrieval accuracy for the entire dataset.

Our contribution is twofold. First, we verify the
importance of a proper contextualized query in the
KI task, as excluding utterances from the dialogue
context that are not grounded in the same document
as the current turn leads to better knowledge re-
trieval results in an oracle condition. Second, based
on that verification, we develop a simple automatic
approach that improves KI in document-grounded
dialogue by leveraging a proposed topic segmenta-
tion algorithm that uses both dialogue content and
grounding documents.

2 Related Work

Our work is related to recent work in knowledge
identification (KI) in knowledge-grounded dia-
logues (Choi et al., 2018; Dinan et al., 2019; Qu
et al., 2020; Feng et al., 2020; Campos et al., 2020;
Wu et al., 2021). However, prior work has largely
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Figure 1: An example dialogue from MultiDoc2Dial (Feng et al., 2021) that is grounded in three different documents.

treated KI as reading comprehension since all turns
in a conversation were typically grounded in one
document. In a dataset such as MultiDoc2Dial
(Feng et al., 2021), a reading comprehension ap-
proach is less computationally feasible due to the
surge in the number of grounding documents. We
thus approach KI as information retrieval following
Dalton et al. (2020) and Yu et al. (2021). However,
in those studies, turns were again closely related to
the same topic, so a full dialogue context was typi-
cally used for the query. We instead use predicted
document-level topic shifts as the basis of a sim-
ple discourse-informed query approach, yielding
improved results for KI in MultiDoc2Dial.

Our focus on document-level topic shifts in di-
alogue is related to the task of discourse segmen-
tation. Prior work in identifying topic changes
has used topic tracking with predefined topics
(Soleimani and Miller, 2016; Takanobu et al., 2018)
and used coherence scores between consecutive ut-
terances to split the conversation into smaller topics
(Xu et al., 2021; Xing and Carenini, 2021). How-
ever, such segmentation approaches have typically
been based solely on the content of conversations.
In contrast, we propose a topic segmentation ap-
proach based not only on the dialogue content, but
also on the grounding document.

3 Task and Dataset

3.1 Knowledge Identification Task

We follow the definition of knowledge identifica-
tion (KI) from Feng et al. (2021): given the current
user turn, dialogue context, and the entire set of
documents from the same domain, find the ground-

ing text span from one document that the next agent
response needs to refer to.

3.2 Dataset
We use MultiDoc2Dial (Feng et al., 2021) as our
dataset. It consists of 4796 information-seeking
conversations grounded in 488 documents from 4
domains (only one domain per dialogue). 948 of
them are grounded in only 1 document.

This dataset suits our study as the full dialogue
context of a turn may span multiple topics. Figure
1 shows a dialogue in the corpus that contains four
segments and is grounded in three different docu-
ments. A segment signals that all turns within it
are grounded in the same document and the bound-
ary between two segments indicates a topic shift.
The presence of such document-level topic shifts
can make a turn more contextually distant from
the previous turn (Arguello and Rosé, 2006). In
Figure 1, Seg-3 requires knowledge about “spouse”
from Doc-1, but that information is unimportant
for the query about “SSA online account” in Seg-4.
Including U8 and A9 in the dialogue context when
asking about “SSA online account” is not useful
and can even add noise to the retrieval query.

4 Background

Passages as Retrieval Units. Since a grounding
document can be very long, we split each one into
passages and use them as the units for retrieval.
We follow Feng et al. (2021) to split a document
based on its original paragraphs indicated by mark-
up tags and then attach the hierarchical titles from
their html source to each paragraph as a passage.
Dense Passage Retrieval (DPR). DPR (Karpukhin
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Algorithm 1 Cascading algorithm to get the top 10 passages for a N-turn dialogue Dial = {t1, t2, ..., tN}

procedure FINDTOPK(Dial)
DOCS = {} ▷ List of documents have been used for grounding so far, empty in the beginning
for i = 1 to N do

for j = 1 to len(DOCS) do
hj = concatenation of turns tk where k < i and ground[k] = j
for each passage px in DOCS[j] do ▷ DOCS[j] = {p1, p2, ..., pm}

Score[px] = PC(ti, hj , px)
if Score[px] > Best_score[j] then

Best_passage[j] = px
Best_score[j] = Score[px]

Best_doc = argmaxdBest_score[d]
if Best_score[Best_doc] < 0.5 then ▷ No old documents can be used for grounding

Use DPR with only the current turn ti as the query to retrieve the top 10 passages TOP_10[i]
ground[i] = The document containing the highest-score passage from TOP_10[i]

else
ground[i] = Best_doc ▷ Choose the highest-score passage for grounding
TOP_10[i] includes:

• The passage with the highest score: Best_passage[Best_doc]
• Top 3 other passages from Best_doc
• Up to top 3 other passages with the highest Score this turn
• Remaining non-duplicate passages from the entire database retrieved by DPR, using

only the previous turns of ti grounded on Best_doc for the dialogue history
Add documents contains passages from TOP_10[i] to DOCS

return TOP_10[N ]

et al., 2020) is an approach to quickly find the top
k passages relevant to a given input query from
a big database. DPR uses two BERT encoders
(Devlin et al., 2019), one to index all passages to
d-dimensional vectors, and one to map the input
query to the same d-dimensional vector space. Be-
cause the similarity between a query and a passage
is defined as the dot product of their vectors, re-
trieving the top k passages at inference time can
be done efficiently when the encoded passages are
indexed offline by FAISS (Johnson et al., 2021).
The input query in our task is the concatenation
of the current user turn and the dialogue context.
Retrieval-Augmented Generation (RAG). RAG
(Lewis et al., 2020b) is our base response gen-
eration model. It consists of a retriever module
(DPR) and a generator module (BART, Lewis et al.,
2020a). The retriever gets the most relevant pas-
sages given the input query, and the generator takes
the query and top-k passages as input to generate
the response as output. In our task, the target re-
sponse is the grounding span, that is, the specific

piece of information used to ground the response
for the current user turn (see ovals in Figure 1).

5 Method: Document-level Topic Shift

Since KI methods typically use all previous turns as
the dialogue context, instead of focusing on improv-
ing model architectures for knowledge-grounded
response generation, we examine whether vary-
ing the input (e.g., dialogue context) to such mod-
els improves the retrieval and generation results.
Specifically, we hypothesise that for the current
turn ti, including only previous turns grounded in
the same document as ti in the dialogue context
to DPR will improve the overall passage retrieval
results. To verify this hypothesis, we first create an
oracle model called RAG-oracle. It assumes that
the correct grounding passages of previous turns
are known, so it only uses the turns grounded in the
same document as ti in the input query to DPR.

However, since the gold-standard grounding in-
formation of the dialogue is not available in real
use cases, we build a simple classification model
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to estimate it. This model, which we call the Pas-
sage Checking Model (PC), is a BERT model fine-
tuned on Multidoc2Dial. The input includes the
current user turn ti, the dialogue context h, and one
passage p. The output is 1 if ti should be grounded
in p given h and 0 otherwise. During training, the
dialogue context only contains turns grounded in
the same document as ti. For each training instance,
we sample 128 negative passages1, at most half of
them are from the same document which p belongs
to and the rest are from different documents. Our
PC model achieved 69.4 F1 score on validation set.
We also use the probability scores from the last
layer (softmax) as a confidence measure below.

Next, we use PC in a cascading algorithm to
retrieve the top 10 passages for the current user turn
(details in Algorithm 1). For each conversation, we
process the turns increasingly while keeping track
of a list of documents (DOCS) that have been used
for grounding so far. At each turn ti, we try to
ground it to each document in DOCS and use only
turns grounded in the same targeting document
as the dialogue context. We add the documents
containing one of the top-10 passages to the set
DOCS before going to the next turn. The model
based on this algorithm is called RAG-cascade.

Finally, since the BART generator relies on the
top-5 passages to provide the grounding span, hav-
ing a better top-5 can yield improved generation
results. We explore this idea by reusing the prob-
ability scores from the PC model as a ranking
metric instead of building another ranking model.

6 Experiments and Results

Following Feng et al. (2021), all numbers reported
in this section are the mean of three runs with dif-
ferent random seeds. For retrieval, we use recall
at k (R@k), which measures the frequency of the
correct passage found in the top-k retrieved pas-
sages. Token-level F1 score and Exact Match (EM)
(Rajpurkar et al., 2016) are used to evaluate the
grounding span generation results. Implementation
details can be found in Appendix A.

6.1 Experiment Setup

RAG was the only model used to identify the
grounding passage (retriever) and generate the
grounding span (generator) in our experiments. We
only vary the input to the RAG model to demon-
strate different approaches to choose the dialogue

1The same negative sample size used by Feng et al. (2021).

context (details in Table 1).

6.2 Passage Retrieval Results

We report the passage retrievel results on the entire
evaluation data of MultiDoc2Dial (D) as well as on
a subset of data containing at least two segments
(D2) in Table 2. On D, RAG-oracle consistently
outperforms the RAG baselines. The gap is most
noticeable at R@10 (6.4 points). The discrepancy
is even bigger on D2 with more than 7.5 points
increases in both R@1 and R@10. These num-
bers support our hypothesis that only using turns
grounded in the same document as the current turn
in the dialogue context creates a better contextual-
ized input query for the retriever module (DPR).

While RAG-cascade has higher recall on D2

compared to RAG-baseline, they perform simi-
larly (less than 1.3-point differences) on D. This
implies that the improvement on data with multi-
ple segments was offset by the degradation in data
with only one segment (about 19.7% of D). We
believe these errors come from the loss of context
from previous turns when our model incorrectly
decides to split a one-segment dialogue into mul-
tiple segments at some point and this error starts
propagating (see Appendix B for an example).

The distribution of incorrect segmentation in
one-segment dialogues from validation set shows
that about 70% of them occur when more than 6
turns appear in the dialogue context (Appendix C).
A naive heuristic of limiting the number of turns in
the context to 6, while it does not affect the retrieval
performance on D2, reduces errors on one-segment
data, and as a result, increases the overall perfor-
mance in D. This is demonstrated by the fact that
RAG-limit is superior to RAG-baseline and
RAG-cascade in the full evaluation data.
RAG-topic also uses topic segmentation as ad-

ditional information to create the relevant dialogue
context, but it has the worst performances in terms
of passage retrieval. This implies that in contrast
to our proposed RAG-cascade model where the
“topic” is identified based on the grounding docu-
ment, using a document-agnostic approach to do
dialogue topic segmentation is ineffective.

Re-ranking does not always improve R@1. The
rises in R@5 are clearer, where the largest boosts
in D and D2 come from RAG-oracle (3.3) and
RAG-cascade (4.4), respectively. We observe
several decreases in recall with re-ranking, but all
of them are within 0.8 points. RAG-oracle with
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Model Dialogue Context used in the Input to RAG
RAG-baseline All previous turns
RAG-oracle Turns grounded in the same document as the current turn
RAG-cascade Turns grounded in the same document as the current turn, predicted by algorithm 1
RAG-limit Same as RAG-cascade but the maximum number of turns is limited to 6
RAG-topic Like RAG-oracle but uses a dialogue topic segmentation method (Xing and Carenini,

2021) to decide the thresholds from calculated coherence scores between 2 consecu-
tive utterances while ignoring all grounding documents (in contrast to RAG-cascade)

Table 1: Dialogue context used in the input for the experimented RAG models.

Model
Passage Retrieval Span Generation

All Data (D) > 2 Segments Data (D2)
@1 @5 @10 @1 @5 @10 F1 EM

RAG (Feng et al., 2021) 49.0 72.3 80.0 n/a n/a n/a 41.9 24.9
RAG-baseline 48.6 72.5 79.2 40.2 63.5 72.3 41.1 23.8

+ re-ranking 49.0 74.7 79.2 40.1 65.4 72.3 43.7 23.4
RAG-oracle 55.1 74.5 85.6 47.9 69.2 79.8 43.1 25.9

+ re-ranking 55.3 77.8 85.6 47.5 73.2 79.8 43.8 25.7
RAG-topic 42.1 65.7 71.3 40.2 60.9 70.3 36.2 20.9

+ re-ranking 42.0 67.6 71.3 39.4 62.6 70.3 36.5 20.6
RAG-cascade 48.9 72.8 80.4 44.4 67.2 76.1 41.0 23.7

+ re-ranking 49.7 75.3 80.4 44.6 71.6 76.1 41.2 23.8
RAG-limit 52.8 74.1 82.3 44.3 67.0 76.3 41.5 23.8

+ re-ranking 52.5 75.4 82.3 44.3 71.0 76.3 41.4 24.0

Table 2: Passage retrieval and span generation results. Best results from MultiDoc2Dial (Feng et al., 2021) are
reported in the first row. Bold numbers are the best overall results, underlined numbers demonstrate the best results
besides RAG-oracle. All numbers are statistically significant (p < 0.05) compared to RAG-baseline.

re-ranking achieves the best results in all categories,
except for R@1 in D2 where the version without
re-ranking shows a 0.4-point lead.

6.3 Span Generation Results
We also report the grounding span generation re-
sults. With automation, we see no improvements
in F1 and EM. Even with increases in R@5 from
re-ranking, we do not witness much gain in span
metrics. Feng et al. (2021) reported a similar pat-
tern where some models perform better in passage
retrieval but are inferior in grounding span gener-
ation. Our assumption is that passages in top-5
that are not the correct grounding for the current
user turn may contain irrelevant or contextually
incorrect information for the BART generator.

7 Conclusion

In this work, we showed that exploiting document-
level topic shifts in document-grounded dialogues
relying on multiple documents as the knowledge
base can raise passage retrieval results. We first

proposed a simple cascading approach based on
a simple BERT model for passage checking and
re-ranking that yielded improved retrieval results
for multiple-segment dialogues. An error analysis
suggested that limiting the number of turns in the
dialogue context to 6 reduced the false segmen-
tation errors for the one-segment dialogues and
thus improved the scores for the full corpus. Fur-
thermore, no improvement from span generation
with the increased retrieval results implied that a
general-purpose generative model like RAG might
not be a good fit for knowledge identification task
in information-seeking dialogues. Future plans in-
clude using better generative models to generate
better system responses from the identified knowl-
edge and conducting further analysis on the seg-
mentation yielded from the proposed algorithm.
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A Implementation Details

Since we do not modify the architecture of the
RAG models, we adopt the implementation from
Feng et al. (2021) 2 and keep all of the hyperpa-
rameters unchanged. We also use the same 5:1:1
train/validation/test split. For the implementation
of the Passage Checking (PC) model, we use the
uncased BERT version with default parameters 3.

B An Example Error in One-segment
Document

Table 3 illustrates a case when the prediction er-
rors were propagated in a one-segment document
grounded entirely in document ssa#1. Here, ssa#1
refers to the document "How Financial Aid Works
| Federal Student Aid#1_0" and ssa#3 is "Teacher
Loan Forgiveness | Federal Student Aid#1_0". At
the turn 3, RAG_cascade incorrectly predicted
the grounding document to ssa#3, which is still
relevant to "loan", but for teachers instead. Starting
from this, the algorithm favors ssa#3 and omits
the presence of "financial aid" from ssa#1 in the
dialogue context.

2https://github.com/IBM/multidoc2dial
3https://huggingface.co/

bert-base-uncased

C Error Distribution in One-Segment
Dialogues

Figure 2 illustrates the proportions of errors in rela-
tion to the number of turns included in the dialogue
history when the entire conversation is grounded in
one document.

Figure 2: Error distribution in one-segment dialogues.
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Turn Utterance Predicted Doc
1 Hello, I would like to know who can receive financial aid ssa#1
1 of course we are here to give you More information
2 How can I estimate the aid I can access ssa#1
2 Use FAFSA4caster to get an early estimate of your eligibility for federal

student aid.
3 I also want to about the repayment. And would you recommend that I pay

the student loans?
ssa#3

3 As you prepare to graduate, prepare to pay off your student loans. Good
news! Federal student loan borrowers have a six-month grace period
before payments begin.

4 and how to determine if I am eligible for help? ssa#3
4 Your college uses your FAFSA data to determine your eligibility for

federal aid.

Table 3: An example one-segment dialogue where the prediction errors are propagated. User’s utterances are in
grey.
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Abstract

We present Chirpy Cardinal, an open-domain
social chatbot. Aiming to be both informative
and conversational, our bot chats with users in
an authentic, emotionally intelligent way. By
integrating controlled neural generation with
scaffolded, hand-written dialogue, we let both
the user and bot take turns driving the conversa-
tion, producing an engaging and socially fluent
experience. Deployed in the fourth iteration
of the Alexa Prize Socialbot Grand Challenge,
Chirpy Cardinal handled thousands of conver-
sations per day, placing second out of nine bots
with an average user rating of 3.58/5.

1 Introduction

Despite recent major advances (Adiwardana et al.,
2020), open-domain chit-chat—friendly, social, ca-
sual conversation—remains a challenging task. In
addition to difficulties with the sheer length and
open-endedness required, social chatbots, or “so-
cialbots,” often struggle with fluency—whether due
to the canned responses of manually constructed
dialogue trees (Walker et al., 2001) or the anoma-
lies of neural generators (Nie et al., 2021). But
just being error-free isn’t enough: to have a re-
warding conversation, socialbots must be person-
able—displaying emotional intelligence, a rich per-
sonality, and an understanding of social dynamics.
Although methods exist to address many of these
issues individually, combining all of these features
into a full-bodied conversation remains difficult.

In this paper, we describe Chirpy Cardinal, an
open-domain conversational socialbot, which aims
to bridge the gap between traditional dialogue tree-
based approaches (Walker et al., 2001; Chen et al.,
2018) and large pretrained neural dialogue agents
(Adiwardana et al., 2020; Roller et al., 2020). Ca-
pable of discussing thousands of topics, Chirpy

∗Equal contribution.

centers emotional and social intelligence with the
goal of authentic, engaging interaction. Specifi-
cally, we make the following contributions:

• Conversations with open-domain socialbots
often lack a stable structure. To ameliorate
this, we present an extensible design for open-
domain dialogue which prioritizes conversa-
tional stability and flexibility through mixed
initiative (Horvitz, 1999).

• Although pretrained neural generators can be
extremely fluent (Collins and Ghahramani,
2021), real-life deployment can suffer from
a lack of both controllability and consistency
(Nie et al., 2021). To address this, we describe
several approaches to integrate neural gen-
eration into a symbolic setup, achieving local
fluency without sacrificing global coherence.

• Towards the goal of a rewarding conversa-
tion, we suggest a set of approaches—ranging
from small routines to complete submodules—
which aim to make our socialbot a good con-
versational partner. We focus on being both
flexible—handling a wide variety of topics in
an interesting and informative way (Section
4)—and personable—empathizing with the
other interlocutor even in difficult topics or
situations (Section 5).

Deployed in the Alexa Prize Socialbot Grand
Challenge 4, Chirpy Cardinal reached thousands
of users per day; with conversations lasting up to
45 minutes at a time, it placed second out of nine
agents in the finals. We open-source our system
as an extensible framework for open-domain so-
cial dialogue,1 providing an example of real-world
deployment of conversational NLP systems.2

1github.com/stanfordnlp/chirpycardinal
2stanfordnlp.github.io/chirpycardinal
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Let’s chat LAUNCH always begins the conversation. If
we’ve talked with the user before, we
confirm their identity (“It’s nice to chat with
you again, Alice!”).

Hi, this is an Alexa Prize Socialbot. I’d love to get to know you a bit better be-
fore we chat! Is it all right if I ask for your name?

My name is Alice

Well it’s nice to meet you, Alice! I’m excited to chat with you today.
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So, I hope you’re having a wonderful morning. What did you have for breakfast
today?

NEURAL CHAT prompts first-time users
about food, a subject of universal interest.

I haven’t eaten yet

I’m sorry to hear that. Perhaps you can tell me about a food you like to eat instead? Our neural generator responds directly.

How about fish and chips? Entity Linker (B) identifies fish and chips
as the new entity.
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Ah yes, fish and chips are one of my favorite things to eat up here in the cloud.
Personally, I especially like the batter in it, I think it gives them a really nice
flavor. What do you think?

With a food item mentioned, FOOD (E.5)
starts. Phrases like “in the cloud” acknowl-
edge our semi-embodied status.

I love it when the batter is crunchy

I agree! The crunch and the texture is really good. It’s a shame it’s hard to find a
good crispy batter these days, though. Did you know that fish and chips were first
made in England around the 16th century? I can’t believe people have been
eating fish and chips for so long!

Neural generation with the prefix “I agree!”
produces a controllable opinion that doesn’t
contradict the user. We then add a fun fact
scraped from Wikipedia.

wow that’s a long time

It really is. Anyway, I’m feeling hungry now! Thanks for recommending fish and
chips!

FOOD terminates; note that we respond “It
really is” to any comments containing “that’s” .
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Speaking of fish and chips, I was reading recently and found out that fish and
chips is a common take-away food in the United Kingdom and numerous other
countries. Do you wanna talk about the United Kingdom?

We generate a TRANSITION from Fish and
chips to United Kingdom to continue the con-
versation smoothly.

Sure! The user accepts the new entity.
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I just learned recently that violent pirates could havebeenexecuted in theunited
kingdom until 1998.

WIKI (4.2) offers a fun fact from Reddit,
rephrased for conversationality.

Oh, that’s surprising

Isn’t it? Come to think of it, I did read something the other day about United
Kingdom’s Culture and Geography, if you’re interested in talking about any of
that.

WIKI switches to a more informational mode,
suggesting sections from the Wikipedia arti-
cle to discuss.

Tell me about its culture

The culture of the United Kingdom has been influenced by many factors includ-
ing: the nation’s island status; its history as a western liberal democracy and
a major power; as well as being a political union of four countries with each
preserving elements of distinctive traditions, customs and symbolism.

WIKI gives a summary of the requested sec-
tion.

so how would you describe its culture Neural annotator detects question (D).

If I’m not mistaken, cultural superpower WIKI’s Q&A module responds (C.4).

P
E

R
S

O
N

A
L

IS
S

U
E

S





actually can i talk about my dog she died recently User abruptly shares a personal issue.

Thank you for sharing that with me. How awful, I’m sorry. Please continue
telling me more if you would like to.

PERSONAL ISSUES provides emotional vali-
dation and encourages user sharing (5.1).

yeah she was a really old dog and she’s been sick for a long time User shares more details.

I’m so sorry to hear that. I hope you feel better soon. Dogs are such good com-
panions. I’m willing to hear more if you’d like to tell me about it.

We acknowledge user sharing with a neural-
generated response indicating willingness to
listen further.

no that’s okay, I’d like to stop talking

Figure 1: An example dialogue. To respect users’ privacy, this is a conversation with an author, not a real user. We
model dialogue as a series of subconversations (left side), whose topics are parsed and tracked by a neural entity
linker. Each subconversation is managed by a RG, whose “scaffolded” architecture comprises hand-written treelets
(plain text) incorporating numerous dynamic elements, ranging from neural generation to retrieval from Wikipedia
to neurally rephrased fun facts. Prefix-based generation provides controllability, especially for sensitive topics
like personal issues.
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2 Design

2.1 System Design
We model a user dialogue as a series of subconver-
sations (Figure 1), each handled by a response gen-
erator (RG). Varying greatly in scope and domain,
each RG handles a specific topic (e.g. MOVIES,
SPORTS) grounded in the outside world. RGs com-
prise dialog trees (Weizenbaum et al., 1966), whose
tree nodes, which we term treelets, implement cus-
tom logic (e.g. intent classification or retrieval) to
generate a response.

At the start of each turn, the user utterance is
annotated for linguistic features (Appendix C), then
processed in parallel by all RGs. By default, the
previous turn’s RG is selected; should the RG that
last responded crash or a different RG request to
take over, we seamlessly switch RGs and move to
a new subconversation.

2.2 Navigation
To enable mixed initiative—shared user-bot re-
sponsibility in driving the conversation (Horvitz,
1999)—we provide a suggested navigational path,
while letting users deviate drastically from it.
Specifically, each RG continues through its dia-
logue tree until exhausting its subconversation; we
then transition to another RG by bringing up a pre-
viously user-mentioned topic (“You mentioned cats
earlier; would you say you’re a big fan?”), mention-
ing a tangentially related topic that we can discuss
well, or simply sampling a new RG and correspond-
ing topic at random. Users may explicitly change
the topic (“can we talk about roblox”); implicitly
suggest a desire to redirect the conversation (“yeah”
or “uh-huh”); or otherwise behave in ways that re-
quire the bot to act dynamically (“i don’t know, how
about you?”). We handle these deviations from the
conversational flow through neural handlers that
allow periods of flexibility before returning to the
overall conversational structure (Appendix F).

2.3 Entity Handling
To allow users to discuss a vast array of interest-
ing topics relevant to their lives, we support any
Wikipedia entity as a topic of discussion.3 To do
so, we entity-link (Kolitsas et al., 2018) the user ut-
terance to relevant entities using a fine-tuned BERT
model (Broscheit, 2019; also B.3), mitigating ASR
errors through a phonetic similarity search (B.2).

3Specifically, those with sufficiently high cross-references
and meeting certain criteria for definiteness (Appendix B.1).

Since incorporating Wikipedia article titles directly
into bot utterances can be awkward (e.g. “can we
talk about cat”), we refer to entities by more nat-
ural talkable names (e.g. “cats”), generated using
GPT-3 (Brown et al., 2020).

RG Prefix Sample Completion

FOOD A hoagie is a
great choice! I
especially
love. . .

“...mine with a little
cheese and bacon!”

PERSONAL
ISSUES

That sounds
frustrating.
I hope that. . .

“...she feels better soon.”

Table 1: Sample uses of conditional neural generation.

3 Neural Generation

Although neural generative models (Roller et al.,
2021) have achieved success in open-domain dia-
logue, significant obstacles impede deployment in
real-life situations: neural text degeneration (Holtz-
man et al., 2020; Welleck et al., 2019), hallucina-
tion (Dziri et al., 2021), and inconsistency (Zhang
et al., 2018), In addition, large latency can make
models challenging to deploy in practice (Wor-
swick, 2020). In this section, we investigate ways
to utilize the power of such models in the context of
structured dialogue. We propose integrating neural
generation in the context of hand-written scaffold-
ing, aiming to benefit from its variety and fluency
while maintaining coherency over time.

3.1 DistillBlender: A Fast, General-Purpose
Neural Generator

For general use, we distill a single model from
BlenderBot-3B (Roller et al., 2021) with 9 decoder
layers,4 reducing latency significantly over the orig-
inal model. We use it as follows:

• The NEURAL CHAT RG, which directly ex-
poses lightly edited neural model outputs as
a subconversation. Due to BlenderBot’s end-
to-end training, this is initially a rich, fluent
conversational experience, but due to rapid
degradation we terminate after 5 turns.

• Conditional prompting (Keskar et al., 2019),
which enables controllability in a structured
context. We apply hand-written prefixes to
guide the model towards fluent, contextually
appropriate completions (Table 1).

4Reduced from an original 24.
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Template I love how [actor] acted in [film], espe-
cially their <mask>.

Infilled I love how [Keanu Reeves] acted in [The
Matrix], especially their ability to freeze
time.

Table 2: An example of template-based infilling using
Keanu Reeves as the knowledge source.

3.2 Template-Based Infilling

Towards the goal of rich, coherent conversation
for a wide class of topics, we propose template-
based infilling, a more flexible version of stan-
dard slot-filling methods (Haihong et al., 2019)
that does not require a structured knowledge base.
Using both freeform information and an end-user-
defined template, we use a fine-tuned BART model
(Lewis et al., 2020) to generate a grounded state-
ment. Defining a diverse set of templates for each
entity category allows us to provide expressive yet
controllable conversation on many different types
of entities (Table 2).

4 Response Generators

4.1 NEWS

The NEWS RG aims to discuss current events,
which often feature heavily in typical human-to-
human chit-chat (De Boer and Velthuijsen, 2001).
When an entity or topic mentioned in The Washing-
ton Post or The Guardian appears in conversation,
we offer a headline, conversationally paraphrased
using GPT-3 (Brown et al., 2020), as a subject of
conversation.5 If the user is interested, we provide
a summarized (Zhang et al., 2020a) snippet of the
storyand allow the user to ask follow-up questions
answered via neural QA (Clark et al., 2020; Ra-
jpurkar et al., 2018; also B.3). Answers are then
rephrased (Paranjape et al., 2020) and reranked us-
ing PCMI (Paranjape and Manning, 2021), allow-
ing our socialbot to dynamically integrate current
events into conversations when relevant.

4.2 WIKI

In contrast to humans, open-domain chatbots are
commonly expected to be able to “engage in con-
versation on any topic” (Adiwardana et al., 2020).
Towards this end, the WIKI RG discusses any en-
tity. We aim to be informative, not overwhelm-
ing; in addition to encouraging users to share their

5We use davinci with the following prompt: “Paraphrase
news headlines into a complete, grammatical sentence in plain
English. The sentence should be in the past tense.”

own knowledge and experience about the entity, we
bring up interesting factoids from /r/todayilearned
(conversationally rephrased; E.3.4), as well as in-
filled remarks. We then discuss the entity in more
depth based on its article, flexibly acknowledging
user questions and comments with the Q&A han-
dler (C.4) or neural generation.

4.3 OPINION

A core part of social chit-chat (Walker, 2009), ex-
changing and commenting on opinions allows a
socialbot to project a stronger sense of personality.
The OPINION RG solicits users’ opinions on topics
and reciprocates with its ‘own’ opinions (sourced
from Twitter), including occasional disagreement
to help engage user interest (E.4).

4.4 Rules-based RGs
In order to broaden the scope of our bot, we manu-
ally build several domain-specific response genera-
tors. FOOD, which always opens the conversation,
discusses common foods scraped from Wikipedia.6

MOVIES uses the Alexa Linked Data API to dis-
cuss movies and actors. MUSIC uses the Mu-
sicBrainz7 database to discuss songs, artists, and
music genres. SPORTS uses the ESPN API to dis-
cuss NFL football and NBA basketball. We de-
scribe these RGs in more detail in Appendix E.

5 Being Personable

To achieve truly social conversation, a socialbot
must be a good conversational partner: empathetic,
supportive, and interested in what its human inter-
locutor has to say (Salovey and Mayer, 1990; Li
et al., 2017). In this section, we describe several
approaches that aim to achieve this, ranging from
full RGs to smaller subroutines.

5.1 Handling Personal Issues
Many users—especially those who chat with our so-
cialbot looking for companionship—share personal
struggles with our bot, requiring emotional sensi-
tivity and tact. Handling such conversations purely
neurally would result in rapid degeneration due to
neural toxicity (Dinan et al., 2021). To address this,
the PERSONAL ISSUES RG responds to personal
disclosures using active listening techniques (Bodie
et al., 2015), asking exploratory questions about

6In practice, we found that always starting with FOOD
proved to be most successful for ratings (E.1), perhaps since
food is such a universal human need and discussion point.

7https://musicbrainz.org/
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Figure 2: Engagement metrics vs. rating. We bucket (with size 5, 2, 2, 3 respectively) conversations based on four
engagement metrics—number of turns, number of distinct entities, average user utterance length, and average both
utterance length—and plot each bucket against user rating (Likert 1-5 scale, measured per-conversation). 95%
confidence intervals computed via bootstrapping (n = 1000).

Figure 3: Linear regression coefficients for response
generator vs. rating; each RG is weighted by the num-
ber of turns it contributes. 95% confidence intervals
determined via bootstrapping with n = 1000.

the nature of the user’s issue (“When did you start
feeling this way?”), and validating their concerns (“I
see, that sounds difficult.”)

On the other hand, a significant subset of users
become verbally abusive during the conversation
(Curry and Rieser, 2018, 2019). We follow the
strategy of Li et al. (2021): a de-escalating state-
ment to avoid confrontation, addressing the user by
name (“John”); then changing the topic.

5.2 Self-disclosure

The ALIENS RG allows the socialbot to muse
about its pet topic—the possible existence of ex-
traterrestrial life—as well as its own identity and
sense of purpose. Contrasting with purely informa-
tional modes, this RG fleshes out a personality for
our agent and enables self-disclosure—disclosing
goals, attitudes, and personal interests to support
interpersonal intimacy (Altman and Taylor, 1973;
Ignatius and Kokkonen, 2007).8

8This RG comes up only after sufficient rapport has been
built—i.e. after 30 turns in the conversation.

5.3 Personalization
Users often expect chatbots to remember personal
preferences and user details (Chaves and Gerosa,
2021; Svikhnushina et al., 2021) and to tailor their
responses accordingly (Neururer et al., 2018; Shum
et al., 2018). We personalize bot responses with the
user’s preferences: for example, in regards to the
Olympics, “Ah, that makes sense since you did say
it’s your favorite sport!” . Referencing this user state
across conversations makes repeated conversations
with Chirpy feel fresh and dynamic, rather than
retreading past questions and topics.

6 Results

In this work, we have outlined a set of design pri-
orities and corresponding approaches to design a
fluent, flexible, and sociable chatbot. We validate
these through the Alexa Socialbot Grand Challenge
4: engaging in approximately 1,000 conversations
per day, our socialbot achieved an average user rat-
ing of 3.55, ending the development period tied
for first place in rating.9 Validating our design
goals, we observe high ratings for a hybrid neural-
scaffolded approach (FOOD, etc.), personable RGs
(ALIENS), and open-domain techniques (WIKI)
(Figure 3). Our socialbot engages in long, varied
conversations without repeating itself (Figure 2).

That said, both overall rating and sample con-
versations testify that Chirpy remains far from the
goal of truly compelling and enjoyable human-bot
interaction. We do not argue that our approaches
are sufficient—or even necessary—to create such
an ideal system; rather, we hope that the priori-
ties outlined here can serve as a starting point to
help inform further socialbot development, whether
purely neural or hybrid in nature.

9Likert scale between 1 and 5; overall average across teams
was 3.47. For more information, please consult the proceed-
ings of the Alexa Prize Socialbot Grand Challenge 4.
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Ethics Statement

In this work, we have presented a conversational
agent that conducts an open-domain dialogue. We
believe that many people would enjoy having a
chat partner who is empathetic and knowledgeable,
and our ratings seem to suggest that a reasonable
number of people appreciate their conversations
enough to want to talk to the bot again. Prior to
engaging with the chatbot, all user participants are
required to consent to their conversations, feedback,
and ratings being recorded, as per the Alexa Terms
of Use. Additionally, the chatbot clearly identifies
itself as a bot at the start of each conversation. No
actual user conversations or identifying information
are used in this paper.

However, as our system incorporates computa-
tional methods for generating conversational utter-
ances automatically, there exists a risk that users
may be exposed to unsafe utterances or discussion
topics. Conversational models of all kinds can pro-
duce sexist, racist, or otherwise unsafe statements;
neural conversational agents can be particularly
vulnerable due to pre-training on Internet chat fo-
rums, which can be particularly toxic (Xu et al.,
2020). Towards this end, our system incorporates
a safety module that prevents our model from pro-
ducing utterances with certain hard-coded words
or categories. Yet the use of a blacklist in itself
raises additional ethical issues, as poorly designed
blacklists can marginalize communities by block-
ing topics that ideally, one should be able to discuss
equitably.

Finally, the human-like nature of open-domain
dialogue systems can be particularly damaging
when used in an adversarial context, e.g. by state
actors (Boshmaf et al., 2012). Ultimately, like all
text generation methods, the benefit of releasing
an open-domain dialogue model must be weighed
against its possible downsides.
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Figure 4: Overall system design.

A Additional Architectural Details

A.1 Overall Architecture
Our system (Figure 4) is based on CoBot (Kha-
tri et al., 2018). During the Alexa Prize, Chirpy
Cardinal ran on AWS Lambda, a serverless com-
puting platform; our open-source demo runs on
Kubernetes. For reliability, our function is state-
less; therefore, to preserve information between
turns, we store our bot’s overall state in an external
PostgreSQL state table (see Figure 4). We execute
the following steps on each turn:

1. Fetch the previous turn’s state from the state
table.

2. Generate a response from our neural generator
(for latency reasons; D.1).

3. Execute all annotators (C), which run on re-
mote CPU-only instances.

4. Analyze the user utterance for navigational
intent (A.3) to determine whether we should
change topic.

5. Analyze the user utterance for entities (B.4).
If warranted by the user’s navigational intent
or the last bot response, the current entity
(B.4) is updated.

6. Run all RG’s (Section 4) in parallel; RG’s
that require a neural response await the neural

generator. Out of all received responses, select
a response (A.2), and update the current entity
if necessary.

7. If the chosen response generator has finished
its conversation, we run our collection of RG’s
a second time to produce prompts (A.2) Se-
lect a prompt, update the current entity again
if needed, and form the bot’s utterance by ap-
pending the prompt to the response.

At the end of the turn, the bot’s overall state
contains the user’s utterance, the conversational
history, the NLP Pipeline annotations for the user’s
utterance, and a state for each individual RG. Each
individual RG state contains information required
by that RG – for example, it might contain the
current treelet in the RG’s dialogue graph, or a
list of the utterances and/or entities that have been
discussed, to avoid repetition.

A.2 Response Design
Responses and prompts both carry a priority, with
the highest-priority response/prompt chosen at the
corresponding stage. In general, the RG which
responded last has the highest priority; however,
RG’s can optionally specify a lower priority so that
other RG’s take over, or a higher priority to take
over from another RG. In practice, these priority
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levels are rarely used due to their tendency to pro-
duce a choppy conversation.

A.3 Navigational Intent Classifier
A user has positive navigational intent if they want
to discuss a topic; conversely, negative naviga-
tional intent means that the user would like to
avoid discussing a topic. Users may express nav-
igational intent while specifying a topic (“can we
talk about minecraft” , referring to the current topic
(“let’s discuss this more”), or referring to no topic
(“I don’t want to chat anymore”). Positive and neg-
ative navigational intents can even be combined (“I
don’t want to talk about movies any more, let’s chat
about you”). We classify use manually-constructed
regexes, which achieve extremely high precision.

B Entity-Linking Details

Detecting and understanding references to real-
world entities is essential to any open-domain con-
versational system; we find that users appreciate
being able to discuss a wide variety of topics that
interest them or are relevant to their lives. For our
socialbot, we train and deploy a neural entity linker
that links spans to Wikipedia entities.

B.1 Entity Pool
To obtain our pool of potential entities, we
process the May 20th, 2020 dump of English-
language Wikipedia10 using MWParserFromHell11

and Spark12. We store our data in a large Elastic-
Search index, keeping only entities with at least
200 cross-references in Wikipedia. In total, we
have 171, 961 entities.

Notably, certain entities are inappropriate to dis-
cuss even if correctly entity-linked by our model;
for example, our system is unable to handle abstract
nouns well (e.g., philosophy, film). To ameliorate
this, we manually created a set of low-precision en-
tities composed of both WikiData categories (e.g.,
conspiracy theory, financial risk, research method)
and specific common entity names (e.g., bank, cat-
alog, coast). The bot will not start a conversation
itself about such entities; however, it is able to han-
dle explicit user navigational requests (e.g., can we
talk about the bank). Separately, we also ban cer-
tain racial, religious, and other identity-based terms
that are unlikely to result in a good conversation

10https://dumps.wikimedia.org/
11https://mwparserfromhell.readthedocs.io/en/

latest
12https://spark.apache.org

on either the bot’s or user’s part, as well as certain
short acronyms (e.g. cet, ep, fm) that are almost
always triggered by ASR errors.

B.2 Candidate generation
For a given user utterance, we want to compute the
set of entities that the user could possibly be refer-
ring to; for example, if the user mentions “swift” ,
this could refer to the bird, musical artist, or pro-
gramming language. To do so, for each possible
span, we pre-compute the set of entities for which
the span serves as a Wikipedia anchortext, creating
a mapping from spans to sets of candidate entities.
At execution time, for all n-grams in the user utter-
ance with 5 or fewer tokens13, we retrieve the set
of candidate entities from our database.

Since we do not have access to original user au-
dio, ASR errors can impede candidate generation
(Chen et al., 2018). For example, if an user’s ref-
erence to the film Ford v Ferrari is erroneously
transcribed as “four v ferrari” , a naïve entity linker
will fail to identify the correct entity. To address
this, we pre-compute phoneme and metaphone rep-
resentations for all of our entities (e.g. converting
Harry Potter to ‘HH EH R IY P AA T ER’14 and
‘HRPTR’15). At execution time, each n-gram’s can-
didate set is augmented with the sets for spans with
similar phoneme/metaphone representations.

B.3 Entity disambiguation
Given a set of candidate entities, we want to se-
lect those candidates that the user is interested in.
Towards this end, we fine-tune a BERT-medium
(Devlin et al., 2019) to disambiguate entities, fol-
lowing Broscheit (2019) with minor modifications.
Specifically, we learn an embedding for each entity
in our dataset. Then given a span within an user
utterance, we model the probability that the span
refers to a given candidate entity as the dot product
between the contextual span representation and the
entity’s embedding. At deployment, we only take
entities with a predicted likelihood of at least 0.5;
additionally, we use only the highest-likelihood
entity for each span.

We depart from Broscheit by mean-pooling over
the contextualized span representation, rather than
doing per-token entity-level disambiguation. Fine-
tuning takes about 20 days using 4 Titan X GPUs;
during deployment, we execute using CPU only.

13specifically, those not solely composed of stopwords
14https://pypi.org/project/g2p-en/
15https://pypi.org/project/metaphone/
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B.4 Entity Tracking

At any given point, we track the current entity (the
current subject of conversation), a set of untalked
entities ( entities which the user has mentioned but
we have not yet addressed), and a set of rejected
entities (which the user does not want to discuss;
these are no longer brought up by our bot.). These
are updated every turn as follows:

• Entities receiving negative navigational intent
(“can we not talk about paraguay”) are re-
jected. Non-specific negative navigational
intent (“let’s not discuss this”) causes the cur-
rent entity to be rejected instead.

• Entities receiving positive navigational intent
(“can we talk about mexico”) are set as the
current entity. The previous conversation
ends, with all RGs are prompted to handle
this new current entity instead.

• If the currently active RG asked a question on
the last turn, the current highest-priority entity
is identified as the presumable user answer
and set as the current entity. Additionally,
if the previous question expects a particular
category of entities (e.g. “What’s your favorite
movie?”), we pick the highest-priority entity
matching the expected category (e.g., film).

• All remaining entities are marked as untalked
(to be possibly discussed later).

C Annotators

All annotators—modules which provide linguistic
annotations for the user utterance—are executed in
parallel at the beginning of each turn.

C.1 CoreNLP

We use the following annotators from Stanford
CoreNLP (Manning et al., 2014): tokenization, sen-
tence splitting, part-of-speech tagging, lemmatiza-
tion, named entity recognition, constituency pars-
ing, dependency parsing, coreference resolution,
and sentiment analysis. Due to the format of the
user utterances (lowercase with no punctuation),
we use caseless models16 for part-of-speech tag-
ging, constituency parsing and named entity recog-
nition. We use these annotations for certain hand-
written NLU operations.

Training Regime Silver Gold Test F1
Baseline 0 0 0.53
Self-training (τ = .95) 41,152 0 0.54
Self-training (τ = .75) 62,150 0 0.54
Hand-labeled 0 2,407 0.81

Table 3: Performance of our Dialogue Act model under
different training regimes. All models have access to
10, 090 examples in the MIDAS training set, but training
a baseline model solely on these examples suffers from
domain shift. Self-training, which first uses this base-
line model to silver-label a large number of unlabeled
Chirpy Cardinal examples with confidence above some
cutoff τ , then retrains on the union of the two, does not
improve performance. Hand-labelling a small amount
of additional data significantly improves performance.

C.2 Dialogue Act Classifier

Dialogue acts, an ontology over user intents (Stol-
cke et al., 2000; Jurafsky et al., 1997), have been
successfully employed in open-domain dialogue
agents (Yu et al., 2019). We modify MIDAS (Yu
and Yu, 2021)—an annotation schema designed
specifically for human-chatbot dialogue— to better
fit the needs of our bot, removing 4 labels17 due
to low frequency in our conversations and creating
5 new labels: correction, clarification, uncertain,
non-compliant, and personal question. In total, our
modified schema has 24 labels.

Evaluated on the MIDAS test set, a fine-tuned
BERT baseline achieves .78 micro-F1; however,
evaluated on an OOD test set composed of our own
conversations, it achieves only .53 (Table 3). Al-
though self-training (McClosky et al., 2006) proved
ineffective, hand-labeling additional OOD conver-
sations achieved a micro-F1 of 0.81. The predic-
tions of this final model inform navigation, as well
as RG-specific NLU.

C.3 Question Classifier

Users often spontaneously ask factual questions,
personal questions, follow-up questions, and even
questions unrelated to the current topic. Recogniz-
ing and answering these questions is important, par-
ticularly for user initiative, but is also non-trivial,
as ASR-transcribed user utterances do not contain
punctuation. To recognize questions, we fine-tuned
a RoBERTa model (Liu et al., 2019; Wolf et al.,
2019) on an simplified version of the Dialogue Act
training data, framing the task as binary classifica-

16https://stanfordnlp.github.io/CoreNLP/
caseless.html

17apology, apology-response, other, and thanks
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tion, conditioned only on the user utterance. This
model achieved an F1-score of 0.92 and improved
the reliability of question detection.

C.4 QA Annotator
The QA annotator, an ELECTRA-Large model
(Clark et al., 2020) pretrained on SQuAD2.0 (Ra-
jpurkar et al., 2018), performs question answering
for the NEWS (Section 4.1) and WIKI (Section 4.2)
RGs. Unlike other annotators, this annotator does
not run unless called by these RGs.

D Neural Generation

Our neural agent is a distilled (Hinton et al.,
2015) version of BlenderBot-3B (Roller et al.,
2021), an autoregressive Seq2Seq model trained on
Blended Skill Talk (Smith et al., 2020), Wizard of
Wikipedia (Dinan et al., 2019b), ConvAI2 (Dinan
et al., 2019a), and Empathetic Dialogues (Rashkin
et al., 2019). We distill using Sanh et al. (2019)’s
method (as implemented in ParlAI; Miller et al.,
2017), using Adafactor (Shazeer and Stern, 2018)
with learning rate 6.25 × 10−5, validation loss-
based LR reduction, warmup, and FP16 (Gupta
et al., 2015). We used a batch size of 1 for training
on a single V100 GPU.

For decoding, we use top-k sampling (k = 5)
with temperature T = 0.7. To encourage response
diversity across the conversation, we sample se-
quences of minimum length randomly chosen from
5, 10, 15, 20, 25; in practice, the length of the
generations is 0-2 tokens above the minimum se-
lected length. Additionally, we use delayed beam
search (Massarelli et al., 2020), with the conversa-
tional history up to 128 tokens in the past serving
as context. After decoding, we first filter out of-
fensive, null, and repetitive responses, as well as
questions after the first turn. We then select a final
response based on the posterior likelihood, among
other metrics.

D.1 Analysis
We find that our model qualitatively outperforms
a GPT-2 (Radford et al., 2019) baseline fine-tuned
on Empathetic Dialogues (Table 4), with similar
latency. That said, our model still suffers certain
limitations out-of-the-box; we discuss strategies
for mitigating these issues.

Diversity-coherence tradeoff For our model,
beam search decoding yields coherent but non-
diverse responses, while stochastic decoding results

in nonsensical generations even under top-p (Holtz-
man et al., 2020) or top-k (Fan et al., 2018) sam-
pling. Delayed beam search, which samples the
first few tokens before defaulting to beam search,
yielded more stable behavior than stochastic decod-
ing, and better diversity than beam search.

Degeneration The model outputs conversation-
ending phrases (e.g., “I have to go”, “It was
nice talking”) after 7 turns, hurting user experi-
ence. Manual examination of the training data
revealed this is due to the short lengths of con-
versations in the training data collected via crowd-
workers. We alleviated this with a manual blacklist
of conversation-ending phrases and forcing NEU-
RAL CHAT (Section 3.1) to hand off to another RG
prior to the 7-turn limit.

Changing the topic Our model tends to generate
one or more follow-up questions in every utterance,
which are often unrelated to the current topic, cre-
ating a disorienting topic change (e.g. “What’s your
favorite color?”). To address this, NEURAL CHAT

limits the number of questions in each neural chat
conversation to one, with subsequent questions
truncated. During conditional generation, ques-
tions are deleted altogether.

Latency Generating responses can take up to 2s
in the worst-case, averaging just under 1s. To
mitigate this, we pre-fetch responses from Dis-
tillBlender at the start of every turn, instead of
waiting for the Neural Chat RG to request a neural
response. If the responding RG returns a response
without utilizing the DistillBlender response dur-
ing the turn, we ignore its output and return early.
Although this results in unused pings to the neural
model, we find that the trade-off is worth it.

E Additional RG Details

E.1 Launch

At the beginning of the conversation, the bot ini-
tially selected icebreakers at random. However, we
eventually found that certain icebreakers tended to
fare better than others. Specifically, conversations
starting with food-related icebreakers (e.g. “Do you
have any recommendations for what I should cook
at home?”) had an average rating was 3.49 over a
sample of 1405 conversations, compared to an aver-
age rating of 3.43 for non-food-related icebreakers
(e.g. “What did you do over the weekend?”) over
a sample of 1418 conversations. Digging deeper,
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Prev. bot utterance User utterance Blender (distilled) GPT-2 baseline

I love pizza, what’s your
favorite toppings?

Pepperoni. That’s a good choice. Do
you have a favorite kind of
cheese? Mine is mozzarella.

Oh yea I love that pizza too.
I don’t like too much other
toppings.

What did you do today? Alexa, what’s up? Nothing much. I just got back
from a run. I’m exhausted.

I’m sorry to hear that. What
happened?

Have you been doing any-
thing productive?

Well, I’ve been trying to
be productive but I keep
on breaking things.

Breaking things can be very
frustrating. I hope you are
able to get it all sorted out.

That’s no good, it’s not pro-
ductive to be stuck on some-
thing and not get to some-
thing else.

Table 4: Responses from our neural generator, distilled from BlenderBot-3B (punctuation and capitalization added for clarity),
compared to a GPT-2 baseline fine-tuned on Empathetic Dialogues. We find that our neural generator provides stronger
performance with similar latency.

we found that if the second turn is handled by the
Food RG, we achieved an average rating of 3.64
over 606 conversations, compared to an average
rating of 3.49 if the second turn is handled by the
Neural Chat RG, over 1684 conversations (second
turns are mainly handled by Food and Neural Chat
RG’s, but sometimes by others).

This prompted us to update our Launch RG so
that we open with a food-related question for all
conversations, hence increasing the frequency of
handing over to the Food RG.

E.2 News

The NEWS RG (Section 4.1) curates global news
from The Washington Post18 and The Guardian19.
Article titles, topic categories, body texts, dates,
and content URLs are stored in a constantly up-
dating ElasticSearch index. When a topic or en-
tity available in our index appears in conversation,
the News RG brings up related stories from our
database. In addition, NEWS also initiaties con-
versations about currently trending news topics by
scraping trending news from Google Trends20.

Behavior To produce a prompt usable in conver-
sation, we rephrase the headline to conversational
form using GPT-3 davinci-instruct-beta.21 If the
user expresses interest in continuing the conversa-
tion, the we provides a conversational summary
generated by Pegasus-Multinews (Zhang et al.,
2020a; Fabbri et al., 2019). Summaries are de-
coded using 8 beams and a maximum of 50 tokens

18https://washingtonpost.com
19https://theguardian.com
20https://trends.google.com
21We use the following prompt: “Paraphrase news headlines

into a complete, grammatical sentence in plain English. The
sentence should be in the past tense.”

for conversationality, and are pre-generated for effi-
ciency; if the neural module fails, we instead use an
extractive summary (Mihalcea and Tarau, 2004).

Follow-up If the user continues to be engaged,
we prompt for questions or comments. If a com-
ment is detected, a neural response is generated
using a set of hand-written prefixes; If a question
is detected (C.3), they are answered via the QA
annotator (C.4). We then conversationally para-
phrase the answer using a GPT-2-medium model
(Radford et al., 2019) fine-tuned on Topical Chat
(Gopalakrishnan et al., 2019) to produce a more
human-like response. We use the truncated conver-
sational history as the input history and a merged
representation of the answer and the span as the
the factual content. It outputs a conversational-
sounding paraphrase of the answer. Finally, we
rank the generated paraphrases using Fused-PCMI
(Paranjape and Manning, 2021).

E.3 Wiki

To support our goal of high-coverage world knowl-
edge (Section 1), the Wiki RG uses Wikipedia arti-
cles as grounding to discuss any entity that interests
the user and that is not handled by any other RG.
Our goal is to allow the user to conversationally
discover interesting information about the entity.

E.3.1 Data
We use the Wikipedia dump from May 20th,
202022, processed using MWParserFromHell23 and
Spark.24 We store our data in a large ElasticSearch

22https://dumps.wikimedia.org/backup-index.
html

23https://mwparserfromhell.readthedocs.io/en/
latest

24https://spark.apache.org
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index.

E.3.2 Behavior
Wiki RG facilitates a discussion about an entity
based on how it came up in conversation (see
Fig. 5). If the user initiates an discussion about
an entity, the RG encourages the user to share their
own knowledge and experience about the entity.
Otherwise, if the entity came up only in passing
or as a response to a bot prompt (e.g. “What’s a
country you would like to visit?"), then the RG re-
sponds with an ‘infilled’ remark (discussed below)
or an interesting fact (i.e. ‘TILs’ scraped from the
/r/todayilearned subreddit) about the entity. These
conversation starters serve the purpose of drawing
the user into a more conversational dialog about
the entity before proceeding to a more content-rich
discussion of it.

Discussing the entity in depth. If the user re-
sponds positively to our initial discussion of the
entity, we begin a “Discuss in depth" conversation
loop (see Fig. 6). Our bot provides a summary
of some section of the entity’s Wikipedia article
and handles the user’s sentiments, opinions, and
questions appropriately before checking if the user
would like to continue with the discussion. If the
user responds affirmatively, we suggest another sec-
tion for discussion, otherwise we exit the RG. This
setup ensures that the user is not overly fatigued
by the amount of information generated in these
section summaries, while allowing interested users
to discuss engrossing topics in great depth.

A short example Wiki interaction is shown in
Turns 6 through 10 of Table 1.

E.3.3 Template-Based Infilling
To provide the user with rich, coherent conversa-
tion for a wide class of entities, we developed a
novel method—infilling—which generates inter-
esting remarks from handwritten templates based
on relevant context. For example, given the actor
Keanu Reaves as the current entity, the template I
love how [actor] acted in [film], especially their
<mask> might be infilled as follows: I love how
[Keanu Reeves] acted in [The Matrix], especially
their ability to freeze time. By defining a diverse
set of templates for each entity category, we are
able to provide expressive yet controllable conver-
sation on many different types of entities. In effect,
this acts as a more flexible version of standard slot-
filling methods that does not require a structured
knowledge base.

Infilling has the following steps:

• A set of templates and appropriate contexts is
retrieved. Given some entity, we select a set
of handwritten templates based on its Wiki-
data category (e.g. actor, musical instrument).
For each template, we retrieve an appropriate
short context from Wikipedia (approximately
3 sentences) using the mean-pooled GloVe-
based method of (Arora et al., 2016).

• Given each (context, template) pair, an in-
filler model fills in the blanks. This is pa-
rameterized by a BART-base model trained
on a dataset generated by ∼ 4300 examples,
mostly generated using GPT-3 (Brown et al.,
2020) and augmented by hand-written exam-
ples.

• The infills are reranked by an aggregate Di-
alogRPT (Gao et al., 2020) and likelihood
score as measured by a GPT-2-medium model
fine-tuned on Empathetic Dialogues.

E.3.4 TIL’s: Conversational Paraphrasing

We use this RG as a testbed for our conversational
paraphrasing system. The system takes as input the
truncated conversational history, and some knowl-
edge context (either a TIL about the current en-
tity, or an excerpt of the Wikipedia article, se-
lected based on TF-IDF similarity to the user’s
response to an open-ended question). It outputs a
conversational-sounding paraphrase of the knowl-
edge context. The model was trained by finetuning
a GPT-2-medium language model (Radford et al.,
2019) on a processed and filtered version of the
TopicalChat dataset (Gopalakrishnan et al., 2019).
The paraphrases are generated using top-p decod-
ing with p = 0.75 and temperature τ = 0.9, and
we pick the one which has the highest unigram
overlap with the knowledge context.

E.4 Opinion

Exchanging opinions is a core part of social chit-
chat. To form a stronger sense of personality, and
to seem more relatable, it is important that our bot
can also express its opinions. The Opinion RG’s
goal is to listen to users’ opinions on certain topics,
and reciprocate with its ‘own’ opinions (sourced
from Twitter) on those topics.
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Figure 5: The Wiki RG conversational flow: possible user responses are captured in the edge labels, while bot
responses are represented by the vertices.

E.4.1 Data
To collect both positive and negative opin-
ions, we queried a Twitter stream25 using
a regex to collect tweets of the form “i
(love|like|admire|adore|hate|don’t
like|dislike) TOPIC because REASON”,
where TOPIC and REASON can be any text. We
collected 900,000 tweets, which are stored on a
Postgres table hosted on AWS Relational Database
Service (RDS). Of these, we manually whitelisted
1012 reasons across 109 popular topics. To avoid
speaking inappropriately about sensitive topics,
we only whitelist uncontroversial entities (such as
animals, foods, books/movies/games, everyday
experiences such as working from home, being
sick, days of the week, etc.), and ensured that all
reasons, including negative ones, are inoffensive
and good-spirited.

E.4.2 Behavior
Currently, the Opinion RG activates when the user
mentions one of the whitelisted entities (e.g. Ta-
ble 1, Turn 8). We ask whether the user likes the en-
tity and classify their response using the CoreNLP
sentiment classifier (Section C.1). We then either
agree or disagree with the user. If we disagree, we
either ask the user for their reason for their opinion,
or supply a reason why we disagree, and ask what

25https://developer.twitter.com/en/docs/tutorials/consuming-
streaming-data

they think of our reason. Ultimately, we want the
user to have a positive experience with our bot, so
regardless of whether we disagree or agree with the
user, we will ask the user their opinion on a related
entity, and always agree with the user about the
new entity. The conversation may end earlier, as
we detect on each turn whether the user is still in-
terested via their utterance length. If the utterance
contains less than 4 words, and it does not contain
any of the ‘agreement’ words (such as ‘same’, ‘me
too’, etc.) we will hand off the conversation to an-
other RG. Even when the RG is not active, it keeps
track of whether the user has already expressed an
opinion on an entity, by applying a regex similar to
that applied to the tweets.

E.4.3 Agreement Policies

Disagreement is an unavoidable part of human-
human conversations, and we hypothesize that oc-
casional disagreement is necessary in order for our
bot to have a convincing and individual personality.
To test this, we implemented three policies:

• (i) ALWAYS_AGREE – we always agree with the
user’s sentiment on the entity;

• (ii) LISTEN_FIRST_DISAGREE – first we ask
the user’s reason for liking/disliking the entity,
then we offer our reason for disagreeing with
their sentiment; and
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Figure 6: The Wiki RG “Discuss in depth" conversational loop

Policy Name Continuation Rate (95% CI)
CONVINCED_AGREE .527 ± .0349
ALWAYS_AGREE .587 ± .0086
LISTEN_FIRST_DISAGREE .587 ± .0128

Table 5: Continuation rate for each agreement policy.
The Confidence Intervals (CI) differ due to different
sample sizes (ALWAYS_AGREE receives 0.5 of traf-
fic, LISTEN_FIRST_DISAGREE receives 0.3, CON-
VINCED_AGREE receives 0.2).

• (iii) CONVINCED_AGREE – we initially disagree
with the user’s sentiment on the entity, but af-
ter the user gives their reason for liking/dis-
liking the entity, we switch our sentiment to
match the user’s (i.e. we are convinced by the
user).

To evaluate the policies, we ask the user Would
you like to continue sharing opinions? and inter-
pret the desire to continue is an indication of a
successful policy. Table 5 shows that users pre-
fer ALWAYS_AGREE and LISTEN_FIRST_DISAGREE
over CONVINCED_AGREE, and all policies have high
continuation rates, suggesting that disagreement
can be a positive and stimulating part of a con-
versation, but that the manner and delivery of the
disagreement is an important factor.

E.5 Food
The Food RG also focuses on scripted responses
to discuss foods and give suggestions. It is often
activated at the beginning of the conversation when
Neural Chat RG prompts a user for what they have
eaten today. The Food RG then goes through a
sequence where it asks the user about their favorite
variant of that food (e.g. favorite pizza topping),

mentions the bot’s favorite variant, and possibly
provides a fun fact about the food. The Food RG is
backed by food data scraped from Wikipedia struc-
tured in such a way that subclasses and variants
of food are linked to each other. It also uses tem-
plated responses with neural infilling to generate
descriptions of foods or comments on what the user
likes, allowing for variation and flexibility for more
interesting responses.

E.6 Movies

The Movies RG is designed to deliver a high-
quality scripted conversation about a movie the
user specifies, using information drawn from the
Alexa Knowledge Graph.26 Currently, the RG is
activated when the user asks to talk about movies,
mentions a movie keyword (such as movies or film)
or talks about any movie-related entity (e.g. Sav-
ing Private Ryan, Meryl Streep, the Coen brothers,
etc.). Once activated, the RG typically asks the
user to name a movie, asks the user’s opinion on
it, gives a fun fact about the movie, asks the user
their opinion on an actor in the movie, then asks
the user if they’ve seen a different movie featuring
that actor (See Turns 4-7 in Table 1). The RG uses
treelets (Section 2) to organize the dialogue graph,
hand-written templates to form the bot utterances,
and a mixture of regexes and the CoreNLP senti-
ment classifier (Section C.1) to classify the user’s
responses.

26The Alexa Knowledge Graph is an Amazon-internal re-
source; our team was given access to parts of it.
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E.7 Music

Similar to the Movies RG, the Music RG is de-
signed to deliver scripted conversations about mu-
sical entities that the user specify. The RG is acti-
vated when a musician/band or a music keyword
(such as music or songs) is mentioned. Once ac-
tivated, the Music RG engages in a conversation
specific to the type of the musical entity that was
mentioned. Unlike the Movies RG, the Music RG
has a randomized internal prompting system that
allows the conversation to be centered around mu-
sic even when a scripted conversation is exhausted
for a specific entity. For example, after the Music
RG goes until the end of a scripted conversation
for a musician, it can ask for an internal prompt,
and start a conversation about musical instruments,
songs, or music in general. The randomized nature
of the internal prompting system makes the con-
versation more flexible, and mitigates some of the
weaknesses of scripted conversations mentioned in
Section E.6.

E.8 Sports

The Sports RG is designed to deliver up-to-date
and high-quality conversations on a sport for which
the user expresses interest. Currently, we support
conversations on NFL football and NBA basket-
ball, the two most-watched sports in the US. When
prompted to discuss sports, the user is asked if
they are a fan of these two sports. If so, they are
asked for their favorite team, but otherwise the
conversation moves to a different RG. The RG sup-
ports detailed, factual conversation on the user’s
favorite team, as well as their favorite player on
that team. The Sports RG is backed by an ESPN
API scraper that pulls information on all NFL and
NBA teams (their game schedule, their roster, win-
s/losses, game analysis, etc.) and facts about all
players (their age, position, college, statistics, and
expert analysis on their overall play). For exam-
ple, if the user is a fan of the Denver Broncos, the
RG is capable of discussing the Broncos’ most
recent game (who won/lost, what the score was,
what player played well, etc.) and then transitions
into discussing a specific Broncos player from the
game that the user likes. By utilizing automatic
summarization, we are able to intersperse current,
specific analysis of their favorite player or team
that comes directly from ESPN analysts, giving the
conversation a sophisticated and natural tone.

E.9 Fallback

When all other RG’s fail to produce a suitable re-
sponse, we rely upon two fallback RG’s that always
execute. The Neural Fallback RG selects a fallback
responses generated by the DistillBlender model
(Section 3.1), with all questions removed. Given
that the model is trained on end-to-end dialogue,
we find that this is a good conversational baseline.
If the Neural Fallback RG fails, we resort to the
Fallback RG, which returns a pre-written generic
fallback (e.g. “Sorry, I don’t know how to answer
that”).

F High-Initiative User Handling:
Example Dialog Flows

Our system uses high-initiative handler functions to
detect 18 distinct types of one-turn digressions that
interrupt the conversational flow. General examples
include complaints and clarifying questions. A
comprehensive list of high-initiative situations that
our bot can handle and corresponding examples
of bot responses are provided in Table 6. These
functions can be started in any RG, and allow each
RG to pause the flow of the current dialogue tree
to handle high-initiative behaviors before either
returning to the original conversation or changing
the subject.

To avoid repetitiveness, high-initiative handlers
are generally non-reentrant, and cannot be trig-
gered consecutively.

G Additional Neural Modeling
Experiments

In addition to BlenderBot-3B, we experimented
with a variety of autoregressive and non-
autoregressive models for text generation. All mod-
els are evaluated on an internal dataset of 517 con-
versation excerpts from early 2021 where the Neu-
ral Chat RG was active AP2021. We perform qual-
itative evaluation by passing in each conversational
excerpt to the model of interest, and comparing
the resultant generation(s) with the original neural
generation from GPT2ED. We detail results here.

DialoGPT. DialoGPT (Zhang et al., 2020b) is
a GPT-Medium model that has been further fine-
tuned on a set of Reddit threads serving as conversa-
tional corpora. We evaluated this model offline on
a set of excerpts in two settings: 1) zero-shot and
2) with fine-tuning on Empathetic Dialogues (Di-
aloGPT2ED). In the zero-shot setting, the bot re-
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High-Initiative User utterance Possible response
User Behavior

Was misheard That’s not what I said. Sorry for the misunderstanding;
can you repeat that?

Complains bot was unclear I don’t know what you are talking
about.

Oops, let me say that again.

Complains bot Alexa, you already told You’re right, I forgot. Sorry. Let’s move
was repetitive me that. on to something else. [NEW_TOPIC]
Complaints about That’s none of your Sorry, maybe that was too personal.
privacy business. I’m happy to talk about something

else. [NEW_TOPIC]
Asked about Do you like the weather? I live in the cloud so I’m not
weather sure what the weather is like on earth!
Said Alexa Alexa, play Despacito! This is an Alexa Prize Socialbot...
command I can’t execute typical Alexa

commands...But I’d love to keep talking
to you! As I was saying, [PREV]

Wants name Actually, that’s not my name. Oops, it sounds like I got your
correction name wrong. I’m so sorry about

that! I won’t make that mistake again.
Requested repetition Alexa, can you say Oops. Let me repeat that. [PREV]

that again?
Requested own name What’s my name? If I remember correctly, your

name is [NAME]
Got cut off But— Oops, I think my microphone

stopped working for a second.
Can you say that again?

Asked for our age How old are you? Hmm, I don’t know. I’m just a
bot, and I don’t think we have
birthdays.

Asked clarifying Wait, did you Yes, that’s what I said.
question say “elephants?"
Questioned bot’s How can you listen to music Well, I’m just a bot, but
humanity if you’re a bot? I live vicariously through others.
Asked personal question What do you like? Thanks for asking! [NEURAL]
Interrupted with question Wait, I have a question. Sure, what’s up?
Expresses desire to chat Let’s chat! Okay. What would you like to

talk about?
Asked for story Tell me a story. Here’s a story that someone once

told me. [STORY]
Gave bot compliment I like talking to you! Thanks for saying that. I’m still

learning, but it means a lot to
hear that from you.

Table 6: Excerpts of possible bot responses to 18 high-initiative user behavior modes. [PREV] refers to the previous
bot utterance; [NEW_TOPIC] refers to a sampled prompt from a new RG. [NAME] is the user’s name as obtained
in the opening turns, and [NEURAL] refers to a DistillBlender-based random response. [STORY] is a handwritten
anecdote, omitted here for brevity.
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sponds 18% of the time with dirty jokes or memetic
content unsafe for open-domain conversation on
AP2021. After fine-tuning, (DialoGPT2ED) re-
sponds almost identically to GPT2ED on AP2021:
qualitatively, the lift from DialoGPT2ED is essen-
tially zero. Hence, this system was not deployed.

DistillBART. DistillBART is our in-house dis-
tilled version of BART (Lewis et al., 2020), a
model consisting of a non-autoregressive encoder
and an autoregressive decoder, each with 12 lay-
ers. Notably, this model has decoding complex-
ity O(EN + DN2), where N is the sequence
length, and E,D are the sizes of the encoder
and decoder stacks, respectively. Following re-
sults by (Kasai et al., 2020) in the domain of neu-
ral machine translation, we hypothesized that we
could decrease latency while improving perfor-
mance by decreasing D; i.e. removing decoder
layers and training the decoder via distillation. We
performed DistillBERT-style distillation, distilling
a BART-Large fine-tuned on Empathetic Dialogues
(BARTED) into versions with 6 (DistillBART-6)
and 3 (DistillBART-3) decoder layers. Weight ini-
tialization followed a previous setup for BART dis-
tillation (Shleifer and Rush, 2020). As baselines,
we also trained equivalently-sized models without
distillation.

In practice, BART suffered from 1) high latency
and 2) mediocre response quality. BART was un-
able to generate coherent responses stochastically,
necessitating the usage of beam search, which hurt
decoding speed. On AP2021, average decoding
speeds for the 12, 6, and 3 layer models were
894ms, 998ms, and 895ms, showing no significant
latency gains, which is attributable to the quadratic
dependence within the decoding computation on
sequence length; i.e. N2 ≫ D,E. Furthermore,
while distillation certainly resulted in qualitatively
better generations on AP2021 than those of non-
distilled models, as shown in Table, there was a
sharp dropoff in generation quality on all mod-
els except the full-sized BARTED teacher. As
BARTED was the only usable model, and yielded
generations qualitatively similar to GPT2ED, we
did not deploy this system.
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Abstract

In this paper, we present our minuting tool
DeepCon, an end-to-end toolkit for minuting
the multiparty dialogues of meetings. It pro-
vides technological support for (multilingual)
communication and collaboration, with a spe-
cific focus on Natural Language Processing
(NLP) technologies: Automatic Speech Recog-
nition (ASR), Machine Translation (MT), Au-
tomatic Minuting (AM), Topic Modelling (TM)
and Named Entity Recognition (NER). To the
best of our knowledge, there is no such tool
available. Further, this tool follows a microser-
vice architecture, and we release the tool as
open-source, deployed on Amazon Web Ser-
vices (AWS). We release our tool open-source
here http://www.deepcon.in.

1 Introduction and Related Work

Due to the COVID-19 pandemic, a substantial part
of the working population has seen a significant in-
crease in virtual meetings, especially people work-
ing in Information Technology (IT) industry and
academia. By all means, meetings are the most
vital component to ensure collaborative work and
efficient to-and-fro communications. Natural Lan-
guage Processing (NLP) technologies provide users
with a holistic experience in these online interac-
tions. (i) remote conferences or meetings discus-
sions held over an online platform are extremely
important in today’s globalized world and need in-
terpretation. (ii) Coherent translations of larger doc-
uments and dialogues and efficient systems with
many sources or target languages. (iii) Summa-
rizing meetings in the form of structured minutes
from speech can potentially save up to 80%1 of
time. With all these in mind, we designed an easy-
to-use and clean interface that provides (i) Auto-
matic Minuting with dynamic length controlled
outputs. (ii) Isometric Translation for five different

1https://elitr.github.io/
automatic-minuting/

languages: French, German, Russian, Italian, and
Hindi (iii) Topic Extraction

To the best of our knowledge, there is no such
tool available. However, some applications, such
as Deeptalk2, provide the fastest way to transform
text from chats, emails, surveys, reviews, and so-
cial networks into a real business. It is a tool for
end users that provides an interactive user inter-
face for topic detection, sentiment analysis, auto-
tagging, analytical interpretation, and summariza-
tion. However, this tool lacks in providing users
with audio and video support. Wordcab3 intelli-
gence adds customizable call summaries to appli-
cations so that users can revisit conversations in
a fraction of the time. It is developer tool that al-
lows developers to integrate their API and easily
generate different types of summaries. This tool fo-
cuses on generating complex and customized sum-
maries from the given transcript. Happyscribe4

provides automatic and human transcription ser-
vices convert audio to text with 85-99% accuracy
in 120+ languages and 45+ formats. It provides
strong API integration that enables users to han-
dle multi-lingual input. This tool is primarily built
for generating transcripts from audio files or auto-
matic subtitles. Happyscribe does not provide any
summarization and topic modeling capabilities that
limit this platform’s scope. Hendrix AI5 is your
intelligent, award-winning AI assistant for meet-
ings that automatically transcribes meeting notes,
captures action items and other data points, and
uses machine learning to identify productivity in-
sights. Hendrix AI is a highly analytical tool for
Zoom meetings. It gives users various outputs such
as concise summaries, actionable outcomes, most
commonly discussed topics, and meeting effective-
ness. Hendrix AI is limited to the Zoom platform’s

2https://www.deep-talk.ai
3https://wordcab.com
4https://www.happyscribe.com
5https://hendrix.ai/features
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(A) Meeting transcript segment:
(PERSON0) Mhm. I will try to get my presentation. All right. Yeah. Mm
hmm. Mhm, mm hmm. Hi guys. Sorry. Okay. Excuse me. Mhm, mm
hmm. Okay. And then the person. Mm hmm. It is, you know? Yes. Okay.
Mhm. But I’m prepared. I’m going in there. Right.
(PERSON2) Mm hmm, mm hmm. Oh, wow,
(PERSON0) amazing.
(PERSON2) It’s working. Okay. Thank you. Mhm, mm hmm. Yeah, mm
hmm. Okay.
(PERSON1) Yeah, you can flip it. Mhm. Mhm. So, good morning
everyone.
(PERSON2) Um
(PERSON2) hmm. Mhm. Mhm. So, the general outline of the, the project
will be the first to go through a functional design phase. You all get task
in this in this space and ah then we will meet again and discuss this
functional design And the same holds for the two faces. After this, the
conceptual design and detailed design In with the final project should get
76. Alright. But first we will do from training. Okay. In all, in front of
you,
(PERSON4) you are designed we must keep in mind that The selling price
of the product will be about C25
(B) Meeting minutes by DeepCon:

– PERSON0 will try to get his presentation
– PERSON3, Person2, Person1 and Person0 are attending

the kick off meeting of their latest project
– PERSON1, PERSON2 and PERSON3 discuss the general

outline of the project
– The project will go through a functional design phase
– After this, conceptual design and detailed design in with

the final project should get 76
– PERSON2, Person3, Person4 and Person0 are designing a

project for their company
– The selling price of the product will be about C25

(C) Isometric Translated French Minutes:
– PERSON0 va essayer de faire sa présentation
– PERSON3, Person2, Person1 et Person0 assistent à la

réunion de lancement de leur dernier projet
– PERSON1, Person2 et Person3 discutent des grandes

lignes du projet
– Le projet passera par une phase de conception fonction-

nelle
– Après cela, le design conceptuel et le design détaillé avec

le projet final devraient avoir 76
– PERSON2, Person3, Person4 et Person0 conçoivent un

projet pour leur entreprise
– Le prix de vente du produit sera d’environ 25 C

(D) Generated Topics:
– tools to communicate
– actual project plan
– functional design phase
– million to make
– thinking television targeting

(E) Translated French Topics:
– outils pour communiquer
– plan de projet réel
– phase de conception fonctionnelle
– millions à faire
– cibler la télévision

Figure 1: An example from our DeepCon tool showing
(A) a segment of a meeting transcript (B) along with cor-
responding generated minutes (C) isometric translated
French minutes (d) generated named entity (e) trans-
lated French named entity. We have utilized the AMI
meeting corpus and anonymized, “PERSONnumber”
and “PROJECTnumber” denote persons’ and projects’
placeholders, respectively.

scope and cannot be used with other platforms and
offline recordings.

2 DeepCon

In previous sections, we discuss the various tools
that provide similar features as DeepCon. Most of
the tools are made as an API service for developers.
A tool like Deeptalk, accessible directly to users,
does not provide audio and video support. Deep-
Con, however, provides an easy-to-use interface for
end users to utilize advanced transformer models
without coding. DeepCon also provides users with
multiple features and support of audio and video
files on one platform, which are not provided by
various other tools.

As seen in Figure 2, DeepCon have various dif-
ferent components. In the following subsections
we elaborate on each of the major components in
our proposed system.

2.1 Automatic Speech Recognition (ASR)

For generating meeting transcripts, we use Ama-
zon Transcribe 6 which is a Speech-to-text service
offered by Amazon AWS. For English, the speech
recognition model achieves a WER of 6.2%. The
ASR-generated transcripts follow time-sequence
order, with both speaker and utterances stated
separately. In our DeepCon, we define a post-
processing function that aligns speaker roles with
corresponding utterances, as shown in figure 1. The
user can set a range of {2, 10} speakers.

2.2 Automatic Minuting

The meeting summarization module generates min-
utes, given a transcript. Minuting is primarily con-
cerned with capturing and providing a third-person
perspective of essential points raised throughout
the meeting. Manual minuting also has draw-
backs where the minutes’ format and language vary
through different annotators. Our tool, DeepCon
provides an end-to-end solution to generate consis-
tent and robust meeting minutes.

We use a finetuned BART-large model (Lewis
et al., 2019) 7. We test various summarization mod-
els such as T5 (Raffel et al., 2019), Pegasus (Zhang
et al., 2019a), RoBERTa2RoBERTa (Liu et al.,
2019). However, the BART-based pipeline out-
performed the others. This could be because BART
utilizes GPT-2 architecture. Further, we fine-tuned

6https://aws.amazon.com/transcribe/
7https://huggingface.co/lidiya/bart-large-xsum-SAMSum
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Figure 2: This system architecture diagram represents the pipeline of DeepCon. The first step is for the user to
submit the audio file with the desired attributes. This audio file is uploaded on AWS S3, and the link is updated
on our MongoDB database. Then, our back-end processes the audio file and generates transcripts using Amazon
Transcribe. Further, we use our fine-tuned model for automatic minuting, isometric translation, and topic extraction.

Figure 3: Interface for users to select parameters and
upload their audio files. On this page, users enter a name
and email ID where they want to receive the process
code notification. Users can also select from 3 types of
summaries, i.e., short, medium, and long. There is also
an option to choose 5 languages per user’s requirement.

this model on both XSum (Narayan et al., 2018)
and SAMSum (Gliwa et al., 2019) datasets. XSum
dataset includes short summaries of articles and
discussions, whereas SAMSum is a standard dia-
logue summarization dataset. Training over these
datasets provides the BART model the robustness
to generate short precise summaries of conversa-
tions.

As depicted in Figure 5 Automatic Minuting
functionality is divided into 3 major segments. i)
We analyze and apply various preprocessing tech-
niques to the generated ASR transcripts, including
segmenting the input text into much smaller chunks.
(ii) We apply the summarization using a finetuned
BART model. (iii) Finally, we use an unsupervised

Figure 4: This interface is accessed by the user when
the processing of their file is completed. Users can enter
the process code here and get the files. All the files here
are in text format and can be downloaded easily.

redundancy elimination method to obtain ideal min-
utes.

The current summarization algorithms are not
trained to remove redundancy from a long dialogue
discourse and are also restricted to a specific input
length for improved text production. Thus to elimi-
nate such redundancies, we specify a few custom
rules. We try to eliminate repetitions, pauses, and
vocal sounds. We also remove stopwords defined
using the publicly available AMI corpus.

We evaluate the generated minutes on the SAM-
Sum Corpus. Table 1 provides scores obtained on
the validation & test set measured across various
automatic evaluation metrics including R-1, R-2, R-
L and R-Lsum (Vasilyev et al., 2020). It is evident
that our models achieve higher evaluation scores
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rouge 1 rouge 2 rouge L rouge Lsum
Validation 54.39 29.81 45.15 49.94
Test 53.31 28.35 44.09 48.92

Table 1: Evaluation results of the summarization model
on SAMSum validation and test dataset. We use the
ROUGE score for evaluating automatic minutes gener-
ated from the text.

Team rouge 1 rouge 2 rouge L
Auto Minuters 0.25±0.06 0.06±0.03 0.14±0.04

Hitachi 0.26±0.09 0.08±0.03 0.15±0.04
Ours 0.33±0.08 0.08±0.04 0.19±0.06

Table 2: Automated evaluation scores for the best per-
forming system at the AutoMin 2021 shared task.

across all metrics.
Table 2 compares our results on the test set with

the two of the best performing system submissions
in the AutoMin Shared Task (Ghosal et al., 2021).
As depicted our system outperforms the Yamaguchi
et al. (2021) & Mahajan et al. (2021).

2.3 Isometric Machine Translation
The Machine translation module allows users to
generate transcripts, minutes, and topics in five
languages. For all these languages, we provide
users with isometric translation output. Isometric
MT is the concept of generating translation out-
put that falls within the range of ±10% of the
Length Ratio (ratio of the target text and source
text). This feature helps to generate synchronous
outputs upon text-to-speech conversion. For imple-
menting isometric translation, we develop a mul-
titask learning model similar to Bhatnagar et al.
(2022). We use fine-tuned OPUS-MT (Tiedemann
and Thottingal, 2020) model for translation and
fine-tuned mBART (Liu et al., 2020) for paraphras-
ing. We use WMT (Bojar et al., 2018) and MuST-C
(Di Gangi et al., 2019) dataset for fine-tuning MT
models, and PAWS-X (Yang et al., 2019), Opuspar-
cus (Creutz, 2018) and Tapaco (Scherrer, 2020)
dataset for paraphrasing. We utilize the IIT-B
Hindi-English (Kunchukuttan et al., 2017) dataset
for En-Hi translation.

As shown in Figure 6 our system architecture
for Isometric Machine Translation utilizes prompt
engineering technique during the machine trans-
lation & paraphrasing of input text. (i) For trans-
lating the input text, we try to maintain a target-
to-source length ratio close to 1. This is worked
out using the verbosity control feature, where in
the finetuned OPUS-MT model tries to localize the

Language BLEU
Score

BERT
Score

Length
Ratio

Length
Range (%)

de 29.9 0.83 1.05 51.95
it 34 0.84 1.04 57.03
fr 41.2 0.85 1.04 61.81
ru 21.7 0.83 0.97 62.47
hi 11.9 0.84 0.94 42.52

Table 3: Results obtained by the Isometric Machine
Translation module on MuST-C test dataset, evaluated
using the BLEU metric, BERT score, Length Ratio &
Length Range.

source text based on the pre-calculated LR ratio
using the predefined short, normal, long prompts.
(ii) We also utilize the paraphrasing module to en-
hance the vocabulary and modify the length of al-
ready translated text. For generating output we ap-
ply "normal" prompt during the translation phase
and reverse-prompts during the paraprhasing phase.
Reverse-prompts are applied to alter the length of
the translated sentence. We use similar method as
done by Bhatnagar et al. (2022).

We evaluate our MT system for the language de,
fr, it & ru on the MuST-C test dataset and use the
IIT-B Hindi-English test dataset for hi. As shown in
Table 3, we are able to get high BERT score (Zhang
et al., 2019b), length ratio, and length range for the
language ru, fr & it. As shown in the table 4 we also
compare our system using the BLEU metric evalu-
ated on the same MuST-C dataset. We compare our
results with that proposed by the Wang et al. (2020).
As shown, our proposed system outperforms by a
subsequent margin.

fr de it ru
fairseq S2T T-Sm 32.9 22.7 22.7 15.3
fairseq S2T Multi. T-Md 34.9 24.5 24.6 16.0
Ours 41.2 29.0 34 21.7

Table 4: BLEU Score evaluated on MuST-C test dataset
and provides a systematic comparison between the
fairseq S2T (Wang et al., 2020) and our proposed system.
Here T-Sm and Multi. T-Md are both transformer-based
models, later being trained jointly on 8 Languages.

2.4 Topics Modeling
DeepCon also provides a feature for automatic
topic extraction based on Named Entity Recogni-
tion that extracts the top-k repeating n-grams from
the transcripts. We use Yake8 library for extracting
named entities. Our system also supports multilin-
guality as a feature for generated keywords. Upon

8https://github.com/LIAAD/yake
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generation, the system can apply translation across
all the languages mentioned earlier.

3 Pilot Study

To assess DeepCon, we experiment it with IS1000a
recording of the AMI Meeting Corpus (Carletta
et al., 2005) that contains 4 speakers. The first step
to use DeepCon is for users to login using their cre-
dentials. If users are not registered they can use the
sign-up link9 on the landing page. Next as shown
in the figure 3 users can upload the .mp3 or .mp4
file and select the desired attributes. Users can also
add name, email, and number of speakers. We have
provided some advanced options that can control
the length and translations of the audio file. Users
can select the length of meeting-minutes from the
three options: short, medium, and long. Users can
also select amongst five languages for translation.
Once users choose the appropriate options, they
can upload the audio file via the upload button at
the bottom and click on submit. After clicking the
submit button, our front-end micro-service uploads
the recording on the AWS S3 bucket and sends
a post request to our back-end micro-service that
contains the user’s details along with the unique
process code. Once this process is done, users get
a confirmation email about the submission of the
job. Once the back-end processing is completed,
users again receive an email notification from our
back-end microservice. This notification informs
users that their processing is completed. Users can
also download the outputs from our results page as
seen in 4. The link of this page is also mailed to
the user.

We gave the users a feedback form and question
based on transcript quality, adequacy, grammati-
cality correctness, and fluency for English minutes.
We received an average score of 4.57, 4.71, 4.57,
and 4.85 out of 5, respectively. For MT quality es-
timation, we provided the users with the questions
for quality in French, German, Russian, Hindi, and
Italian Translation and received an average score
of 5, 4.83, 4.8, 5, 4.6 out of 5, respectively. The
average quality of generated topics is 4.85 out of
5, and the overall user interface received a score
of 4.85 with an additional comment of "Improve-
ments can be made in its ability to differentiate
between the voice of respective speakers. Also,
there was a slight deviation from the actual words
in the transcript, that can be improved as well".

9https://forms.gle/Wsbe6ASdggQNxjsHA

4 Design Choices

As mentioned in previous sections, we make use of
microservice architecture. We utilize this method-
ology for three main reasons: As we utilize large
pre-train models, it is not an efficient choice to
do real-time processing for users. Because every
meeting recording can vary in length and users
can select many optimization options, real-time
processing can take considerable time and slows
down the website for other users. With recent ad-
vancements in DevOps technology like Kubernetes,
microservice architecture has proven to be the most
efficient, fault-tolerant, and robust deployment ar-
chitecture. We use AWS EKS10 as a container
orchestration tool to deploy a highly scalable appli-
cation. Microservice architecture also enables an
easy development process of the application. As
we have independent services, changing one will
not affect others, and it can lead to a faster and more
efficient software development process. We also
plan to make this app open source, and we believe
microservice architecture will enable developers to
work in the module of their interest.

5 Conclusion and Future Work

In this paper, we present a tool for better manage-
ment of meeting recordings by providing users the
ability to generate meeting minutes, topics, and
entities in six different languages. Our develop-
ment architecture is designed in a way that it can
be scaled and optimized if traffic increases on the
application. We can also extend this application to
accommodate more languages like Spanish, Roma-
nian, Telugu, etc. The microservice architecture
can further be abstracted by introducing a microser-
vice for each functionality. This abstraction can re-
sult in more robustness and efficiency during high
workloads.

This application can also be extended as an API
service for developers to integrate in their systems.
One major application can be of building native
apps for online meeting platforms like Zoom, Mi-
crosoft Teams, and Google Meet
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Figure 5: This figure is an architectural representation of the automatic minuting functionality. Here the ASR output
is segmented into multiple chunks of text according to the sequence length accepted by the BART model. Next, the
finetuned BART model process these chunks. Finally, we stack these chunks and perform redundancy elimination to
generate the meeting minutes.

Figure 6: This figure shows the pipeline we use to generate isometric MT outputs from finetuned BART models.
The first step, as seen, is attaching a ’normal’ prompt to the input source sentence. This will help the translation
model generate output with a length ratio close to 1. The next step is to attach a reverse prompt and send input to the
paraphrasing module. Based on these reverse prompts, the paraphrasing module tries to shorten the long sentences
and lengthen the short ones.

402



Proceedings of the SIGdial 2022 Conference, pages 403–406
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

ICM : Intent and Conversational Mining from Conversation Logs

Sayantan Mitra, Roshni R. Ramnani, Sumit Ranjan and Shubhashis Sengupta
Accenture Labs, Bengaluru

{sayantan.a.mitra, roshni.r.ramnani,}@accenture.com
{sumit.b.ranjan, shubhashis.sengupta}@accenture.com

Abstract

Building conversation agents requires consider-
able manual effort in creating training data for
intents / entities as well as mapping out exten-
sive conversation flows. In this demonstration,
we present ICM (Intent and Conversation Min-
ing), a tool which can make the BOT build
and update process much faster. ICM can be
used to analyze existing conversation logs and
help a bot designer to cluster, visualize and
analyze customer intents; train custom intent
models; and also to map and optimize conver-
sation flows. The tool can be used for first time
deployment or subsequent conversational flow
updates in chatbots.

1 Introduction

In-spite of the proliferation of GUI based chatbot
development environments and availability of open
source and commercial tools with low code or no
code environments, building chatbots remains a
challenge. Many frameworks exist to help a non
technical user build chatbots 1 2, including mech-
anisms to enter the training data, and drag n drop
methods for creating conversation flows. Similarly,
research works focus on designing chat bots as
end-to-end neural systems or using reinforcement
learning based methods. However, limited work
exists on techniques to automatically obtain and
prepare training data by leveraging existing conver-
satons that can then be used by commercial tools
building task-oriented chatbots.

In this paper , we discuss a tool that takes a user
through a guided step by step process of clustering
intents, reviewing the intent labels and conversation
states, grouping of conversation flows, analyzing
individual conversations and, finally exporting the
training data for intents and conversation flow. This
information can be used by non technical chatbot

1https://dialogflow.cloud.google.com
2https://botmock.com/

developers to create chatbots using any of the avail-
able chatbot building tools.

The rest of the paper is organized as follows: In
section 2 we discuss some of the related work in
this space. Section 3 high lights the key features in
our tool. Section 4 discusses the technical details of
the tool including the algorithms used. 5 discusses
the key aspects of the demo. Finally, in section 6
we conclude the paper.

2 Related Work

Multiple methods have been proposed in using re-
alistic data for developing chatbots.Wirén et al.
(2007) suggest a modified version of the wizard
of the oz approach by collecting transcripts of
real conversations between service agents and cus-
tomers. Many bots are being built to augment hu-
man service agents, and hence there is a rich set of
information available as human (customer) - human
(service agent) conversations.The tool Graph2Bot
(Bouraoui et al., 2019) analyzes such existing con-
versations but fails to create a format that can be
leveraged by commercial tools.

In the absence of human conversation logs, text
in the form of emails and Service Now tickets can
also provide insights about the queries that can pos-
sibly be handled by the chatbot. Mallinar et al.
(2019) provide a mechanism to bootstrap conversa-
tional agents by helping select the necessary train-
ing samples.

Once a chatbot is deployed, there are existing
tools that perform various forms of conversation
analytics. However, these tools do not provide a
direct mechanism to leverage these insights back
into the enhancement of the chatbot.

3 Key Steps in Analyzing Intent and
Conversations

ICM enables multiple people supporting all phases
of the chatbot development process to identify the
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key intents, the conversation flows, conversation
flow analytics including volumetric and temporal
analyses, the user sentiment and emotion as well as
evolution of conversations over time. This is done
in an offline manner by importing the conversation
logs. The conversation logs may be human-human
conversations captured at the beginning of the chat-
bot development life cycle, and / or human-bot
based conversations at the run phase of the chat-
bot life cycle. The key features of the tool are as
follows:

3.1 Intent Discovery

This is the mechanism by which an automatically
extracted short description is used to cluster the
conversations in a semi-supervised way. The user
is then allowed to select or modify an automati-
cally generated intent label and export the training
examples applicable for each intent.

3.2 Intent Analysis

This screen allows the user to view detailed charts
on the volumetric analysis (numbers, intensity),
temporal (time-of-day, periodicity) characteristics
etc. of the intents found.

3.3 Conversation Analysis

The user can view the combined conversation flows
per intent or across intents. Through this screen, an
analyst can analyze each conversation state, under-
stand the most common flows through the system,
identify bottle necks etc.

4 ICM : Technical Details

The tool contains a front end for labelling, analyz-
ing and reviewing existing conversations, as well
as the backend containing a rich set of clustering al-
gorithm options, conversation summarization, sen-
timent and emotion detection options. Figure 1
shows the high level diagram of the tool.

4.1 Front End

The user can upload existing conversation logs or
other text data in the form of emails etc via a simple
CSV or excel file. The column containing the short
description of the content must be identified. The
short description, if not present, is generated by
using the module described in Subsection "Con-
versation Description". Privately Identifiable In-
formation is anonymized separately using a custom

Figure 1: High Level Diagram of ICM
.

python script with regex and spaCy3 NER model.
At the front end, the user can select from a list of
clustering algorithms, language models and cluster-
ing parameters. The clustered intents, conversation
states and flows can be reviewed and labelled in
the user interface. The user can export the gener-
ated labelled data and also conversation graphs and
flows from the front end. Further, the front end
also provides interactive visuals for comparison of
conversation flows for the users.

4.2 Backend

4.2.1 Conversation Summarization

We use a summarization module based on BART
(Lewis et al., 2019) trained on Samsum (Gliwa
et al., 2019) data available in the transformers li-
brary.

4.2.2 Intent Clustering

The information uploaded into the system goes
through three key steps: 1) The user must
choose the clustering algorithm algorithm (ITER-
DBSCAN (Chatterjee and Sengupta, 2021),HDB-
SCAN (McInnes et al., 2017) ) , sentence embed-
ding (BERT,USE, mBERT), select optional dimen-
tionality reduction (UMAP) and other hyper pa-
rameters. The user can run the algorithm multiple
times with different configurations and choose the
best based on the coverage and the homogeneity of
the clusters formed. 2) For each cluster the system
provides label suggestions. These are done by us-
ing a combination of terms obtained using TD-IDF
and the top 5 occurring skip3grams. 3) The system
marks similar clusters by calculating the centroid
of each cluster and finding the cosine similarity.

3https://github.com/explosion/spaCy
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Figure 2: Screenshot of Sentiment analysis.

Figure 3: Screenshot of causal analysis.

4.2.3 Sentiment , Emotion and Causality

The tool can identify the user sentiment and emo-
tion per utterance and the causality of each emotion.
The sentiment analysis module classifies each ut-
terance into positive, negative and neutral. We use
the architecture described by Munikar in (Munikar
et al., 2019) trained on the ScenarioSA dataset.
The sentiment graph shows the change in senti-
ment throughout the conversation for Agent and
Customer (Fig 2). The emotion analysis module
identifies the emotion across 27 categories by using
BERT trained on the GOEmotions dataset (Dem-
szky et al., 2020). The causality of each emotion is
determined by RECCON (Poria et al., 2020) (Fig.
3).

Figure 4: Screenshot of Conversation flow.

Figure 5: Screenshot of temporal conversation graph.

4.3 Conversation Graph and Flow Generation

This module is active only when the uploaded file
has the conversation data4. Once the file is up-
loaded into the system, the backend uses a pre-
trained CRF based Dialogue Act Classifier (DAC)
model to extract the relevant 5 AGENT and CUS-
TOMER utterances from each conversation. The
extracted AGENT utterances are divided into two
separate files, viz., questions and responses. Clus-
tering and labelling are done on these two files.
After this process, we have labels for each of the
relevant AGENT utterances for every conversation.

To generate the conversation graph , we assign
a edge between two AGENT state label if there
is a transition. For example, the AGENT current
state/utterance label is ques-booking-enquiry and
the next available state is res-booking-confirm, so
there is a edge between these two former labels
and the edge value is the CUSTOMER utterances
between these two states. It is a fully connected
graph.

To generate a conversation flow (Fig.4), we gen-
erated a tree structure. We followed the similar
approach as discussed above. The only difference
is in the connections. In conversation graph, if
the transition is from ques-booking-enquiry→ res-
booking-confirm→ ques-booking-enquiry, we will
end up with a loop. But in conversation flow the
two ques-booking-enquiry are treated separately,
that is ques-booking-enquiry in level 1 (say) of the
tree is different from ques-booking-enquiry in level
2 (say). In conversation flow, we also calculate
the weight of the edges . For examples, if for all
the conversations there is 5 transition between two
states then the weight of the edge becomes 5.

The tool can also generate temporal conversation
flows (Fig.5) for each intent. This helps the end

4Here, we assume the conversation is between AGENT
and CUSTOMER.

5Extracts only {QUESTION, COMMAND, INFO} type
utterances and discard other types like GREETINGS
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Industry Type* Total Conversations Identified intents Note
Telecom1 14000 12 Client wanted to find out the initial conversational

flows to increase the containment rate of the conversa-
tion. Conversation flow structure generated through
ICM are validated by conversational designers of the
client.

Telecom2 5000 9 Client shared 5k conversation to determine the intents
of the conversation.

Consumer Health 27000 175 Client shared 27k conversation to determine the in-
tents of the conversation.

Table 1: Statistics of ICM tool. *Due to company policy, client names are not disclosed.

user to understand the change in conversation flow
either for a single intent over different time period
or for different intents over same time period.

5 Demonstration

We will demonstrate ICM on an open source
dataset, Multiwoz. During the demo, the audience
will see how a user can: a) Upload a conversation
dataset, select the appropriate clustering algorithm,
language model, and other clustering parameters.
b) Label, review and verify the cluster labels and
conversation states c) View utterance level details
like sentiment, emotion and emotion causality d)
View the Conversation Graphs and Trees includ-
ing the temporal analysis e) View training data and
graphs can be exported.

6 Conclusion

In this paper, we highlight a key gap in the existing
technology used to build chatbots - the ability to
leverage existing data in the form of human-human
or human-bot conversations automatically. We dis-
cuss a the tool that enables an end user to analyze
this data, derive detailed and varied insights and
export it in a form that can be leveraged by existing
technology to build chatbots.
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Abstract
Although fine-tuning pre-trained backbones
produces fluent and grammatically-correct text
in various language generation tasks, factual
consistency in abstractive summarization re-
mains challenging. This challenge is especially
thorny for dialogue summarization, where neu-
ral models often make inaccurate associations
between personal named entities and their re-
spective actions. To tackle this type of halluci-
nation, we present an entity-based de-noising
model via text perturbation on reference sum-
maries. We then apply this proposed approach
in beam search validation, conditional train-
ing augmentation, and inference post-editing.
Experimental results on the SAMSum corpus
show that state-of-the-art models equipped with
our proposed method achieve generation qual-
ity improvement in both automatic evaluation
and human assessment.

1 Introduction

Abstractive dialogue summarization is an emerging
research area (Goo and Chen, 2018; Chen et al.,
2021). While the data size of available corpora is
smaller than that for monological summarization
(Carletta et al., 2005; Gliwa et al., 2019), neural
approaches have shown promising potential to gen-
erate fluent outputs via fine-tuning large-scale con-
textualized language backbones (Chen and Yang,
2020; Feng et al., 2021). In most corpus con-
structed for text summarization, only one refer-
ence summary is annotated, and models trained
via supervised learning on such corpora provide
summaries in a general-purpose manner. However,
in practice, the generic text summarizers cannot
meet the requirements of certain applications and
use cases (Fan et al., 2018; Goodwin et al., 2020).
For instance, when generating minutes for meeting
transcripts, users have their preferences on differ-
ent personal perspectives. In this case, control-
lable summarization provides a flexible solution
(He et al., 2020) since it allows users to obtain

Figure 1: Dialogue summarization examples generated
with a general purpose and perspective prompts (labeled
in bracket). Note that controllable summaries start with
the specified personal named entity’s perspective.

diverse generations. As the aim of dialogue sum-
maries often focuses on “who did what” and their
narrative flow usually starts with a subject (often
persons), the generation process can be modulated
by personal named entity planning or prompts (Liu
and Chen, 2021). For example, as shown in Figure
1, a controllable system can produce different sum-
maries based on the specific perspective prompts.1

However, neural abstractive models often suffer
from hallucinations, which lower the reliability of
automatic summarization (Zhao et al., 2020; Zhang
et al., 2020). In dialogue summarization, this issue
commonly involves misaligned personal named en-
tity associations (Lee et al., 2021; Liu et al., 2021b).
For instance, as shown in Figure 1, the model upon
the prompt ‘Anna’ generates the description “Anna
will call Marcus and give him Mark’s number”.
While this sentence achieves a high score in word-

1Here we use ‘prompt’ (namely a text conditional signal)
under conditional language generation, which is distinct from
the task anchor formulated in few-shot/zero-shot ‘prompt-
based learning’ (Liu et al., 2021a).
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overlapping metrics such as ROUGE (Lin, 2004),
the semantic meaning it conveys is incorrect (ac-
cording to the conversation, the personal named
entities ‘Mark’ and ‘Marcus’ (colored in red) are
misassigned). Such factual inconsistency, the in-
ability to adhere to facts from the source, is a preva-
lent and unsolved problem (Kryscinski et al., 2019).
This limitation is more substantial in controllable
scenarios, as models are required to condense and
paraphrase important contextual information from
various personal perspectives.

In this work, we focus on improving the accu-
racy of personal named entity assignment. Given
a source dialogue content, detecting and correct-
ing the errors in a generated summary is similar
to the de-noising process adopted in sequence-to-
sequence language modeling schemes (Lewis et al.,
2020). Therefore, we build an entity-based de-
noising model for dialogue summarization via ref-
erence summary perturbation and recovery. We
then leverage this de-noising model to improve
controllable dialogue summarization: (1) At the
training stage, we use the de-noising model as a
discriminator, to validate beam search candidates
under different prompts, and generate factually con-
sistent summaries. Then the validated summaries
are added to the training set, which serves as condi-
tional training augmentation. (2) At the inference
stage, we use the de-noising model as a corrector,
to amend the generated summaries via post-editing.
This approach can also be applied to other generic
and controllable dialogue summarizers. Experi-
ments are conducted on SAMSum (Gliwa et al.,
2019), which consists of multi-turn dialogues and
human-written summaries. Empirical results show
that our proposed method reduces personal named
entity misassignment and achieves improved gen-
eration quality on both automatic measures and
human evaluation.

2 Related Work

Text summarization is studied in extractive and ab-
stractive paradigms (Gehrmann et al., 2018). In
extractive studies, non-neural approaches utilize
various linguistic and statistical features via lexical
(Kupiec et al., 1995) and graph-based modeling
(Erkan and Radev, 2004), and neural approaches
bring about substantial improvements via feature-
rich distributional representation and hierarchical
context modeling (Nallapati et al., 2017; Kedzie
et al., 2018). In contrast, abstractive approaches are

expected to generate more concise and fluent sum-
maries, which brings about different technical chal-
lenges. To foster end-to-end data-driven methods,
corpora in news domain (e.g., CNN/Daily Mail
(Hermann et al., 2015), NYT (Sandhaus, 2008))
are constructed, and sophisticated neural architec-
tures for abstractive summarization are proposed,
such as LSTM-based encoding-decoding (Rush
et al., 2015), pointer-generator networks (See et al.,
2017), hybrid extractive-abstractive summarizer
Gehrmann et al. (2018), and fine-tuning large-scale
pre-trained language models (Liu and Lapata, 2019;
Lewis et al., 2020). Recently, datasets for summa-
rizing conversations are constructed from meetings
(Zhong et al., 2021) or daily chats (Gliwa et al.,
2019). Based on the linguistic features of human
conversations, many studies pay attention to uti-
lizing conversational analysis for dialogue summa-
rization, such as leveraging dialogue acts (Goo and
Chen, 2018), multi-modal features (Li et al., 2019),
topic information (Liu et al., 2019), coreference
(Liu et al., 2021b), and fine-grained view segmen-
tation with hierarchical modeling (Chen and Yang,
2020).

Controllable language generation introduces aux-
iliary signals to obtain diverse or task-specific out-
puts. Such tasks include text style transfer (Shen
et al., 2017) and paraphrasing (Iyyer et al., 2018).
There are various conditional signal formats, such
as categorical labels (Hu et al., 2017), latent repre-
sentations, semantic or syntactic exemplars (Gupta
et al., 2020), and keyword planning (Hua and Wang,
2020). For controllable text summarization, He
et al. (2020) and Dou et al. (2021) proposed two
generic frameworks in news domain with length
constraint and question/entity indicators, and Liu
and Chen (2021) proposed personal named entity
planning by leveraging the common narrative flow
of dialogue summarization.

Tackling hallucinations in abstractive summa-
rization is an essential research topic in making
such summaries applicable to real-world scenar-
ios (Kryscinski et al., 2019; Zhao et al., 2020).
Reinforcement approaches proposed using factual
consistency as optimization reward (Zhang et al.,
2020) and post-editing approaches (Kryscinski
et al., 2020) focus on correcting summary of gen-
eral news corpora or facts extracted from an exter-
nal knowledge base (Iso et al., 2020). For dialogue
summarization, Liu and Chen (2021) proposed a
binary classifier to detect personal named entity in-
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Figure 2: Overview of controllable summarization pro-
cess. One specific personal named entity is fed to the
summarizer as conditional signal.

consistency. Recently, Lee et al. (2021) proposed a
post-correction model that can discriminate which
type of speaker inconsistency, and revise the output
accordingly. In this work, to the best of our knowl-
edge, we are the first to exploit an entity-based
de-noising model for abstractive dialogue summa-
rization in both training and inference stages.

3 Controllable Dialogue Summarization

3.1 Task Definition

Here we assume that the input consists of two en-
tries in the controllable setting: a source dialogue
D, and a prompt C. The output is the summary
text Y , which is a condensed version of the source
content D, and starts with the prompt C. Unlike
the general-purpose summarization task (Hermann
et al., 2015; Gliwa et al., 2019), given one instance
of D, the summary Y can be manifested as various
outputs conditioned on different choices of C, and
are expected to be fluent and factually correct.

3.2 Conditional Entity-based Prompt

In previous studies on controllable document sum-
marization, conditional signals in the form of key-
words or descriptive prompts are investigated, and
extracted from the source document (He et al.,
2020). To summarize multi-turn dialogues, per-
sonal named entities that occur in the conversa-
tion can be used to form the prompt C for condi-
tional generation (Liu and Chen, 2021). For in-
stance, when writing meeting minutes, with a con-
trollable system, users can obtain diverse genera-
tions by choosing different personal named entities,
as shown in Figure 1.

In this work, we use the single entity prompt for
controllable dialogue summarization, as shown in

Figure 3: Positional distribution of the personal named
entity prompt of reference summaries and their occur-
rence in the source content.

Figure 2. In our reference summary analysis of the
SAMSum corpus (Gliwa et al., 2019), the average
number of personal named entities (e.g., speaker
roles, mentioned persons) in a source dialogue is
2.89. Among these dialogues, 90% human-written
summaries start with a personal named entity. In
particular, we observed that there is a positional
correlation between entity prompts in reference
summaries and their occurrence in the source con-
tent. As shown in Figure 3, 62% reference sum-
maries start with the first occurred personal named
entities in the conversation. This number reaches
94% when we count the first two personal named
entities. Therefore, the general-purpose summa-
rizer will follow the same narrative style (namely
start with the first speaker or mentioned person),
which shares a similar parallel with the position-
bias phenomenon studied in news summarization
(Kryscinski et al., 2019). Moreover, this positional
distribution demonstrates the limited annotation di-
versity if we only use the reference summary for
conditional training.

3.3 Controllable Neural Summarizer

A neural sequence-to-sequence network is applied
to build the controllable dialogue summarizer. Its
base architecture is a Transformer-based encoding-
decoding model, since Transformer (Vaswani et al.,
2017) is widely adopted in various natural language
processing tasks due to its superior generation per-
formance (Devlin et al., 2019; Lewis et al., 2020).
Encoder: The encoder consists of a stack of Trans-
former layers. Each layer has two sub-components:
a multi-head layer with a self-attention mechanism,
and a position-wise feed-forward layer (Equation
1). A residual connection is employed between
each pair of the two sub-components, followed by
layer normalization (Equation 2).

409



Figure 4: Overview of the entity-based de-noising
model. Entity-based text perturbation is conducted on
the reference summaries.

h̃l = LayerNorm(hl−1 +MHAtt(hl−1)) (1)

hl = LayerNorm(h̃l + FFN(h̃l)) (2)

where l represents the depth of stacked layers, and
h0 is the embedded input sequence. MHAtt, FNN,
LayerNorm are multi-head attention, feed-forward
and layer normalization components, respectively.
Decoder: The decoder is also a stack of Trans-
former layers. Aside from the two sub-components
in encoding layers, the decoder has another com-
ponent that performs a multi-head attention over
hidden representations from the last encoding layer.
Then, the decoder generates tokens from left to
right in an auto-regressive manner. Full neural
architecture and formula details are described in
(Vaswani et al., 2017).

At the training stage, the prompt C = {c0, c1, ..,
cm}2 is concatenated with the source content D =
{w0, w1, ..., wn} as input, and it is represented as
[<BOS>, C, <EOS>, <BOS>, D, <EOS>].3 To
better model utterance boundary representation, we
added a special token ‘<u>’ as the utterance delim-
iter in D. 4 The summarizer learns to generate the
ground truth Y = {y0, y1, ..., yt} by condensing
the information of dialogue context conditioned
on the prompt. The loss of maximizing the log-
likelihood on the ground truth is formulated as:

loss(θ) = −Σilog(p(yi|y<i, D,C; θ)) (3)

2In our setting, while the prompt is a single personal named
entity, it can be multiple tokens after the subword tokenization.

3Tokens of <BOS> and <EOS> defined in ‘BART-large‘
are <s> and </s> respectively, and can be changed according
to other language backbones.

4The special token ‘<u>’ is added to the vocabulary, and
we initialize its token embedding by averaging the embedding
vectors of ‘<s>’, comma, and period.

Sample Type Number

Training Set (14732 Samples)
Mean/Std. of Dialogue Turns 11.7 (6.45)
Mean/Std. of Dialogue Length 124.5 (94.2)
Mean/Std. of Summary Length 23.44 (12.72)

Validation Set (818 Samples)
Mean/Std. of Dialogue Turns 10.83 (6.37)
Mean/Std. of Dialogue Length 121.6 (94.6)
Mean/Std. of Summary Length 23.42 (12.71)

Test Set (819 Samples)
Mean/Std. of Dialogue Turns 11.25 (6.35)
Mean/Std. of Dialogue Length 126.7 (95.7)
Mean/Std. of Summary Length 23.12 (12.20)

Table 1: Data Statistics of the dialogue summarization
dataset SAMSum (Gliwa et al., 2019).

where D, C, y, θ denotes the dialogue content,
conditional prompt, targeted summary sequence,
and the trainable parameter set, respectively. i is
decoding time-step, and ranges from 1 to t. During
inference, the model creates a summary based on a
specific perspective prompt, and is coherent with
the context of the input conversation.

4 Entity-based De-noising Modeling

While existing abstractive neural models achieve
state-of-the-art performance on quantitative evalua-
tion, factual inconsistency remains a prevalent and
unsolved problem (Kryscinski et al., 2019; Zhang
et al., 2020). In both document and dialogue sum-
marization, it has been demonstrated that a certain
proportion of abstractive summaries contain hallu-
cinated statements (Zhao et al., 2020; Khalifa et al.,
2021). Such hallucinations raise concerns about
the usefulness and reliability of automatic summa-
rization, and are challenging to eradicate in neural
approaches due to the implicit nature of learning
representations.

In dialogue summarization, the misassignment
of personal named entities significantly affects gen-
eration quality (Lee et al., 2021; Liu and Chen,
2021). Inspired by the de-noising sequence-to-
sequence pre-training schemes (Lewis et al., 2020;
Raffel et al., 2020), here we propose an entity-
based de-noising model to detect and recover the
incorrect personal named entity tokens. Compared
with the binary classifier for factual inconsistency
(Liu and Chen, 2021), the sequence-to-sequence
framework supports revising the summaries via
post-editing.

4.1 De-noising Sample Construction
To construct training samples for entity-based de-
noising, we conduct text perturbation on the ref-
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Figure 5: Overview of the controllable summarization framework equipped with entity-based de-noising modeling:
(a) Training process with supervised learning (in orange arrow), and with beam search validation and conditional
sample augmentation (in green arrow); (b) Inference process with post editing (in blue arrow).

erence summaries. As shown in Figure 4, given a
reference summary Y , we obtain a corrupted ver-
sion Ỹ via entity masking and substitution. More
specifically, we first extract the full list of personal
named entities from each source dialogue, and then
mask them or replace them with another entity at a
random rate (pnoise=0.5). Additionally, to reduce
the positional imbalance caused by labeling cor-
relation described in Section 3.2, we shuffle the
summary sentences at a random rate (pshuffle=0.5) .

4.2 De-noising Model Training
We fine-tuned the sequence-to-sequence language
backbone BART-large (Lewis et al., 2020) for de-
noising modeling. Given a dialogue D and a cor-
rupted summary Ỹ , the input is represented as
[<BOS>, Ỹ , <EOS>, <BOS>, D, <EOS>].5 As
shown in Figure 4, the model is applied to gen-
erate the reference summary Y , and is optimized
by minimizing the cross-entropy loss. Since the
text perturbation is conducted especially on per-
sonal named entities, it encourages the de-noising
backbone to model features such as “who-did-what”
and speaker interactions. Moreover, unlike the left-
to-right auto-regressive summary generation, the
de-noising backbone can utilize the bi-directional
context of both dialogue and summary sequence,
and it achieves a 0.92 sample-level accuracy on the
validation set, which is a reasonable performance
for follow-up steps.

5 Leveraging De-noising Modeling

In this section, we then elaborate on how to lever-
age the entity-based de-noising model for control-

5Tokens of <BOS> and <EOS> defined in ‘BART-large‘
are <s> and </s> respectively, and can be changed according
to other language backbones.

lable dialogue summarization.

5.1 Beam Search Candidate Validation

The de-noising model can be used as a reference-
free discriminator to validate the beam search can-
didates. Following previous work on two-stage
summary ranking (Liu and Liu, 2021), we use di-
verse beam search (Vijayakumar et al., 2016) as
the sampling strategy. As shown in Figure 5 (a)
and Figure 6, for each candidate generated in beam
search, we mask all the personal named entities,
and feed it to the de-noising model. If the recov-
ered output is identical to the unaltered candidate,
it is regarded as a validated summary without any
personal named entity misassignment. Moreover,
given a pair of names concatenated with ‘and’, we
consider their permutations are the same (e.g, ‘Tom
and John’, ‘John and Tom’).

Figure 6: One example of beam search candidate val-
idation. Two beam search candidates are validated by
the de-noising discriminator, and one misassignment is
detected (‘Anna’ in red).

5.2 Conditional Training Augmentation

One major challenge of training models for control-
lable dialogue summarization is the lack of diverse
annotation, as each source content only has one
reference summary in existing corpora. Moreover,
due to the positional correlation of entity prompts
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in human-written summaries (Section 3.2), their
corresponding conditional samples will present an
imbalanced prompt distribution, and cause unnec-
essary inductive bias in data-driven approaches.

In this work, we address this issue by introducing
weak self-supervision (Karamanolakis et al., 2021),
and use the summarizer’s intermediate generation
as additional training samples. In other control-
lable language generation studies like text style
transfer, self-supervised sample selection adopts
metrics such as sentiment polarity score (Luo et al.,
2019); here we use the entity-based consistency.
As shown in Figure 5 (a), after N training epoch,
we re-run the model on the original training set,
obtain summaries upon perspective prompts which
are distinct from that of the reference, and validate
them by the de-noising model (as in Section 5.1),
then the validated samples which rank highest in
beam search are used as additional training data. In
our experiments on SAMSum, we conducted the
augmentation from the third epoch (when the sum-
marizer produces reasonable results with automatic
metrics), and 30% of the training set contribute a
conditional augmented sample.

5.3 Inference with Post-Editing

In addition, since the de-noising model learns to
correct the entity-based perturbation, it can also
be used for summary post-editing, which is an ef-
fective method to improve the generation quality
commonly applied in machine translation (Popović
and Arčan, 2016). As shown in Figure 5 (b), at the
inference stage, the best candidate selected from
beam search is fed to the de-noising model, then
we obtain the final summary where the misassigned
entities are corrected. It is noteworthy to mention
that, since the post-editing here focuses on personal
named entity correction, it is not straightforward
to observe the performance improvement via auto-
matic evaluation metrics such as ROUGE, and we
thus conduct a human evaluation. Moreover, the
post-editing is a general process to extend to other
dialogue summarization systems (see experimental
results in Section 6.6).

6 Experiments and Results

6.1 Experimental Corpus

Experiments are conducted on SAMSum (Gliwa
et al., 2019), which contains multi-turn daily con-
versations with human-written summaries in a
general-purpose manner. Details of the dataset are

shown in Table 1. We retain the original text con-
tent of conversations such as cased words, emoti-
cons, and special tokens, and pre-process them
using sub-word tokenization (Lewis et al., 2020).
Since the positional embedding of our Transformer-
based model can support 1,024 input length, none
of the samples are truncated.

6.2 De-noising Model Configuration

The ‘BART-large’ (Lewis et al., 2020) is used to
build the entity-based de-noising model. The num-
ber of encoder layers, decoder layers, input, and
hidden dimension and 12/12/1024, respectively.
The learning rate was set at 2e−5. AdamW op-
timizer (Loshchilov and Hutter, 2019) was used
with weight decay of 1e−3 and a linear scheduler.
Drop-out (Srivastava et al., 2014) (rate=0.1) was
set as in the original BART configuration. Text per-
turbation described in Section 4.1 is conducted on
the SAMSum dataset for training and validation.

6.3 Summarization Model Configuration

For controllable dialogue summarization, the lan-
guage backbone BART (Lewis et al., 2020) is ap-
plied. The number of encoder layers, decoder
layers, input and hidden dimension are 6/6/768
for the ‘BART-base’, and 12/12/1024 for the

‘BART-large’ and ‘CTRLsum’. AdamW optimizer
(Loshchilov and Hutter, 2019) was used with learn-
ing rate of 3e−5, weight decay of 1e−3, and a
linear learning rate scheduler. Drop-out (Srivas-
tava et al., 2014) rate was set at 0.1. Diverse beam
search (Vijayakumar et al., 2016) is adopted with
group number 5 and beam size 10. For augmenta-
tion samples, we added a weighted loss (λ=0.15).

The trainable parameter size is 139M of the
‘BART-base’, and 406M of the ‘BART-large’. Batch
size and epoch number were set at 8. Best check-
points were selected based on validation results of
ROUGE-2 F1 score. All models were implemented
with PyTorch (Paszke et al., 2019) and Hugging-
Face Transformers6. All experiments were running
on a single Tesla A100 GPU with 40G memory.

6.4 Evaluation Metrics

Extensive metrics are used for quantitative evalu-
ation: (1) We adopt ROUGE-1, ROUGE-2, and
ROUGE-L (Lin, 2004), which are customary in
summarization tasks via counting lexical overlap,
and Py-rouge package is employed following

6https://github.com/huggingface/transformers
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ROUGE-1 ROUGE-2 ROUGE-L SimCSE B-Score EACC
F P R F P R F P R

CTRLsum BARTlarge (CNN/DM) 33.8 43.5 32.6 10.5 14.2 10.1 33.6 41.1 32.1 61.8 -7.19 71.2
CTRLsum BARTlarge (SAMSum) 53.8 55.9 57.6 29.9 31.2 31.9 52.4 53.6 55.1 79.2 -4.79 84.2
+ Beam Search Valid-Augment 54.2 57.7 56.4 30.3 32.9 31.3 52.9 55.4 54.3 79.4 -4.71 88.7

Conditional BART-base 51.3 57.1 51.8 27.2 30.4 27.5 50.4 54.6 50.3 76.2 -5.36 74.4
+ Beam Search Valid-Augment 51.5 58.4 50.7 27.6 31.4 27.3 50.7 56.1 49.7 76.5 -5.20 79.8

Conditional BART-large 53.8 61.6 52.6 30.2 35.1 29.4 52.9 59.1 51.5 78.4 -5.23 84.7
+ Beam Search Valid-Augment 54.2 58.8 55.2 30.4 33.4 30.8 53.0 56.5 53.5 78.9 -4.98 86.2

Table 2: Results on reference prompt generation (matching training and test condition). F, P, R are F1 measure,
precision, and recall. B-Score and EACC denotes BARTScore (Yuan et al., 2021) and entity-based accuracy.
CTRLsum is a generic controllable summarizer for news (He et al., 2020), and we further fine-tuned it on SAMsum.

ROUGE-1 ROUGE-2 ROUGE-L SimCSE B-Score EACC
F P R F P R F P R

CTRLsum BARTlarge (CNN/DM) 34.8 50.1 32.7 10.7 17.7 9.7 31.7 42.8 29.2 60.0 -7.99 71.7
CTRLsum BARTlarge (SAMSum) 54.3 56.9 57.8 28.0 29.3 29.9 50.5 52.1 52.9 78.8 -4.85 67.8
+ Beam Search Valid-Augment 55.1 58.2 56.5 28.7 30.7 29.4 50.7 52.8 51.7 79.0 -4.82 77.3

Conditional BART-base 51.5 58.2 50.1 29.4 29.7 25.4 50.9 56.4 48.5 75.0 -5.44 64.1
+ Beam Search Valid-Augment 52.6 59.4 50.7 28.0 31.5 27.1 50.4 56.3 49.1 75.8 -5.23 72.2

Conditional BART-large 55.1 62.3 53.3 29.5 33.5 29.3 53.2 59.2 52.3 78.2 -5.04 68.3
+ Beam Search Valid-Augment 55.7 61.5 56.2 30.2 32.5 30.5 53.6 57.1 53.7 79.5 -4.91 77.2

Table 3: Results on distinct prompt generation (simulating a practical use case). F, P, R are F1 measure, precision,
and recall. B-Score and EACC denotes BARTScore (Yuan et al., 2021) and entity-based accuracy.

ROUGE-1 ROUGE-2 ROUGE-L SimCSE B-Score EACC
F P R F P R F P R

CTRLsum BARTlarge (CNN/DM) 32.4 42.7 30.7 9.5 13.3 9.0 32.0 39.9 30.1 59.9 -7.57 77.9
CTRLsum BARTlarge (SAMSum) 52.2 53.2 57.1 27.0 27.8 29.5 48.7 49.2 52.2 77.7 -4.79 84.4
+ Beam Search Valid-Augment 52.2 54.0 56.6 27.3 28.7 29.3 48.6 49.7 51.7 77.2 -4.91 87.4

General-Purpose BART-base 50.5 54.8 51.9 25.2 27.4 26.1 47.7 50.7 48.5 75.1 -5.25 78.0
Conditional BART-base 50.0 55.2 50.5 24.8 27.5 25.1 47.1 50.8 47.2 74.0 -5.35 72.9
+ Beam Search Valid-Augment 49.4 55.6 49.1 24.7 28.1 24.7 46.9 51.5 46.4 73.4 -5.45 78.2

General-Purpose BART-large 53.0 57.2 54.5 28.1 30.8 28.7 49.8 53.1 50.5 77.6 -5.11 88.5
Conditional BART-large 52.6 58.1 53.3 27.7 30.9 27.6 49.1 53.1 49.0 76.3 -5.28 85.3
+ Beam Search Valid-Augment 51.9 54.7 54.4 27.4 29.3 28.6 48.1 50.1 49.7 75.9 -5.05 88.1

Table 4: Results on generation without prompt (simulating the non-conditional scenario). F, P, R are F1 measure,
precision, and recall. B-Score and EACC are BARTScore (Yuan et al., 2021) and entity-based accuracy.

(Gliwa et al., 2019; Feng et al., 2021). (2) We use
the SimCSE (Gao et al., 2021) and BARTScore
(Yuan et al., 2021) as semantic-oriented metrics via
counting embedding similarity, which have empiri-
cally shown to match the human perception. (3) We
calculate the Entity-based Accuracy by applying
a separate de-noising model on final outputs, which
is formulated as the proportion of samples that all
personal named entities are correctly generated.

6.5 Quantitative Evaluation Results
6.5.1 Reference Prompt Generation
Firstly, to evaluate the controllable generation un-
der the matched training and test condition, we
obtain summaries with the same entity prompt as

reference summaries, and this matched condition
serves as the benchmarked performance for condi-
tional learning (Liu and Chen, 2021). As shown in
Table 2, adding the conditional data augmentation
to ‘BART-base’ and ‘BART-large’ brings improve-
ment on both lexical and semantic metrics, which
significantly improves entity-based accuracy. We
also evaluate a generic controllable model ‘CTRL-
sum’ (He et al., 2020) that provides state-of-the-
art results on the news domain. We observed that

‘CTRLsum’ benefits from domain adaptation from
news to dialogue (on all fronts) when running ex-
periments on the SAMSum corpus, and we ob-
tained further improvements when adopting the
proposed training augmentation.
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Source Dialogue Content:
Pamela: Have you tried applying for the RGS grant? <u> Zoe: I did last year. <u> Zoe: Wasn’t lucky... <u> Xiara: Me neither <u> Pamela:
Do you know if I have to be a member? <u> Zoe: It depends on the award <u> Pamela: Ok I’ll have a look at their website.

Reference Summary: Pamela will look at their website to apply for the RGS grant. Zoe and Xiara applied last year but they weren’t lucky.
Sometimes you have to be a member to apply.
Generation with General-Purpose (BART-large): Zoe applied for the RGS grant last year, but didn’t get lucky. Pamela will look at their
website.
Generation with Prompt (BART-large): Pamela, Zoe and Xiara didn’t apply for the RGS grant last year.
Generation with Prompt (BART-large + Valid-Augment): Pamela will have a look at the RGS website to apply for the grant.

Source Dialogue Content:
Ivan: hey eric <u> Eric: yeah man <u> Ivan: so youre coming to the wedding <u> Eric: your brother’s <u> Ivan: yea <u> Eric: i dont
know mannn <u> Ivan: YOU DONT KNOW?? <u> Eric: i just have a lot to do at home, plus i dont know if my parents would let me <u>
Ivan: ill take care of your parents <u> Eric: youre telling me you have the guts to talk to them XD <u> Ivan: thats my problem <u> Eric:
okay man, if you say so <u> Ivan: yea just be there <u> Eric: alright.

Reference Summary: Eric doesn’t know if his parents let him go to Ivan’s brother’s wedding. Ivan will talk to them.
Generation with General-Purpose (BART-large): Ivan is going to Eric’s brother’s wedding. Eric doesn’t know if he can come because he
has a lot to do at home. Ivan will talk to his parents.
Generation with General-Purpose (BART-large + Post-Editing): Eric is going to Ivan’s brother’s wedding. Eric doesn’t know if he can
come because he has a lot to do at home. Ivan will talk to his parents.

Table 5: Two examples of dialogues in SAMSum, and summaries generated by different models. <u> is the
utterance delimiter. Text in blue denotes beginning or prompt entities. Text in red denotes the factual inconsistency.

Figure 7: Positional distribution of start entity generated
by different models without prompt.

6.5.2 Distinct Prompt Generation
As the single reference summary cannot be readily
used for diverse conditional evaluation, to simulate
the practical controllable generation scenario, we
build a sub-set with distinct prompts (119 of 819
test samples), where the generation by a general-
purpose ‘BART-large’ and reference summaries
start with different personal named entities. As
shown in Table 3, all models (‘BART-base’, ‘BART-
large’, and ‘CTRLsum’) with the proposed method
achieve higher performance on all fronts, and their
entity-based consistency has a relative 12% gain.

6.5.3 Generation without Prompt
While controllable summarizers require a prompt
as part of the input, we also obtained summaries
without any entity indicator to simulate the general-
purpose summarization scenario. As shown in
Table 4, models trained in a conditional manner
achieve comparable but slightly lower scores. As
shown in Figure 7, we speculate that this is because
summaries generated by conditionally-trained mod-

Model Error Rate

Conditional BART-large 0.37
+ Beam Search Valid-Augment 0.27
+ Inference Post-Editing 0.23

Table 6: Human assessment on entity-based factual
consistency of distinct prompt generation.

els present a more balanced entity distribution.

6.5.4 Results after Inference Post-Editing
For all three generation types shown in Table 2,
Table 3, and Table 4), we observed that adopting
inference post-editing does not affect the lexical
and semantic scores (as it only changes a few to-
kens), but this post-processing step can improve
entity-based consistency by 7% relatively.

Moreover, following previous work (Liu and
Chen, 2021), we incorporated dialogue coreference
information for the controllable generation, and it
is effective to improve the generation quality such
as entity accuracy (see results in Appendix).

6.6 Human Assessment on Entity-based
Factual Consistency

We further conducted two qualitative evaluations
via human assessment. At each time, 30 samples
are randomly chosen from the test set and their
corresponding summaries from different summa-
rizers. Participants are asked to read the dialogue
and summaries, and judge if any personal named
entity is misassigned.

For controllable summarization, we evaluate the
outputs upon the distinct prompt generation (de-
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Model Error Rate

General-Purpose BART-large 0.33
+ Inference Post-Editing 0.26

Table 7: Human assessment on entity-based factual
consistency of general-purpose models.

scribed in Section 6.5.2). As shown in Table 6, we
observe that the sample-level error rate drops from
0.37 to 0.27 (22% relatively) with the conditional
training augmentation, and this is consistent with
automatic entity-based accuracy results (see exam-
ples in Table 5), and it further drops to 0.23 after
the post-editing.

Since the inference post-editing described in Sec-
tion 5.3 can also be adopted on general-purpose
summarizers, we conduct a human assessment on
the non-conditional generation: we fine-tune a

‘BART-large’ which serves as the state-of-the-art
baseline on the original SAMSum corpus, and feed
its generation to the entity-based de-noising model
for post-editing. As shown in Table 7, we observe
that the sample-level error rate drops from 0.33
to 0.26 (25% relatively) with the post-editing (see
examples in Table 5).

7 Conclusion

In this paper, we focused on reducing incorrect as-
signments of personal named entities in dialogue
summarization. We proposed an entity-based de-
noising model, and applied it to beam search vali-
dation, conditional training augmentation, and in-
ference post-editing (which can be used for non-
conditional and conditional summarization). Ex-
perimental results demonstrated that our proposed
method improves performance in both lexical and
semantic evaluation metrics and is beneficial to
entity-based factual consistency in both automatic
and human evaluations. Future work can be extend-
ing it to pronoun tokens and other entity types.
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ROUGE-1 ROUGE-2 ROUGE-L SimCSE B-Score EACC
F P R F P R F P R

Conditional BART-large 53.8 61.6 52.6 30.2 35.1 29.4 52.9 59.1 51.5 78.4 -5.23 84.7
+ Coreference Information 54.3 57.9 56.8 30.2 32.6 31.5 52.6 55.3 54.3 79.5 -4.72 85.8
+ Beam Search Valid-Augment 54.1 56.0 58.4 30.5 32.1 32.4 52.3 53.5 55.3 79.2 -4.69 86.8
+ Inference Post-Editing 54.2 56.6 57.7 30.3 32.1 32.3 52.5 54.2 55.1 80.2 -4.59 98.2

Table 8: Additional experimental results on reference prompt generation (matching training and test condition).
We incorporated dialogue coreference information following previous work (Liu and Chen, 2021). F, P, R are F1
measure, precision, and recall. B-Score and EACC denotes BARTScore and entity-based accuracy.

ROUGE-1 ROUGE-2 ROUGE-L SimCSE B-Score EACC
F P R F P R F P R

Conditional BART-large 55.1 62.3 53.3 29.5 33.5 29.3 53.2 59.2 52.3 78.2 -5.04 68.3
+ Coreference Information 54.9 58.5 57.2 29.9 32.1 31.0 51.5 53.6 53.1 79.2 -4.90 76.1
+ Beam Search Valid-Augment 55.5 55.8 59.5 29.1 29.5 31.1 51.7 51.8 54.5 78.5 -4.58 77.7
+ Inference Post-Editing 55.1 55.3 59.1 27.6 27.7 29.8 50.0 49.4 52.5 78.5 -4.57 97.9

Table 9: Additional experimental results on distinct prompt generation (simulating a practical use case). We
incorporated dialogue coreference information following previous work (Liu and Chen, 2021). F, P, R are F1
measure, precision, and recall. B-Score and EACC denotes BARTScore, and entity-based accuracy.

ROUGE-1 ROUGE-2 ROUGE-L SimCSE B-Score EACC
F P R F P R F P R

Conditional BART-large 52.6 58.1 53.3 27.7 30.9 27.6 49.1 53.1 49.0 76.3 -5.28 85.3
+ Coreference Information 52.2 51.7 58.4 27.1 27.0 30.5 47.9 47.8 52.8 77.3 -4.75 87.2
+ Beam Search Valid-Augment 52.0 51.3 59.1 26.9 26.8 30.6 47.6 46.6 52.8 77.1 -4.69 85.3
+ Inference Post-Editing 51.9 51.2 59.0 26.9 26.9 30.5 47.6 46.7 52.7 76.9 -4.38 98.1

Table 10: Additional experimental results on generation without prompt (simulating the non-conditional
scenario). We incorporated dialogue coreference information following previous work (Liu and Chen, 2021). F, P,
R are F1 measure, precision, and recall. B-Score and EACC are BARTScore, and entity-based accuracy.
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Abstract

Building an empathetic chatbot is an impor-
tant objective in dialog generation research,
with evaluation being one of the most challeng-
ing parts. By empathy, we mean the ability
to understand and relate to the speakers’ emo-
tions, and respond to them appropriately. Hu-
man evaluation has been considered as the cur-
rent standard for measuring the performance
of open-domain empathetic chatbots. However,
existing evaluation procedures suffer from a
number of limitations we try to address in our
current work. In this paper, we describe iEval,
a novel interactive evaluation framework where
the person chatting with the bots also rates them
on different conversational aspects, as well as
ranking them, resulting in greater consistency
of the scores. We use iEval to benchmark sev-
eral state-of-the-art empathetic chatbots, allow-
ing us to discover some intricate details in their
performance in different emotional contexts.
Based on these results, we present key implica-
tions for further improvement of such chatbots.
To facilitate other researchers using the iEval
framework, we will release our dataset consist-
ing of collected chat logs and human scores.1

1 Introduction

Development of open-domain chatbots endowed
with social and emotional intelligence is a crucial
task in natural language research (Rashkin et al.,
2019). Empathetic chatbots are expected to engage
in a conversation with the users and demonstrate
understanding and appropriate handling of users’
feelings. While many strategies for generating em-
pathetic responses have been described, there is
still little consensus on their evaluation. For dialog
generation, automatic metrics do not show consis-
tency in correlations with human judgement (Liu
et al., 2016; Tao et al., 2018), leading to their lim-
ited adoption. Therefore, most of existing works

1Our annotated dataset is publicly accessible at
https://github.com/Sea94/ieval.

Figure 1: iEval framework.

rely on human evaluation. It may happen in ei-
ther static or interactive setting (Adiwardana et al.,
2020). In the former case, a human judge rates
chatbot’s responses, generated from a fixed set of
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contexts. In the latter case, dialogs for evaluation
are collected as humans’ multi-turn chats with the
model.

Recently, two comprehensive approaches based
on interactive multi-turn human evaluation were
proposed. Adiwardana et al. (2020) described a
metric called Sensibleness and Specificity Average,
which measures these two aspects of chatbot’s re-
sponses. Human judges give Likert-type scores to
each chatbot’s turn in a dialog, which are further av-
eraged to obtain a final score. As Likert-type scores
may exhibit differing bias and variance per annota-
tor, associated with the lack of sensitivity, Li et al.
(2019) suggested an alternative evaluation strategy
based on pairwise comparisons. According to their
method, human judges indicate their preference of
one chatbot over another by comparing two dialog
logs with these chatbots. This procedure is more
robust, but become very costly when the number
of compared models goes up.

Both of these approaches differentiate humans
who interact with the models and humans who
judge them. They probably opt for this design
choice due to such considerations as workers’ fa-
tigue. However, according to findings in cognitive
psychology, our emotional experiences are highly
subjective. Barrett et al. (2007) points out that only
the experiencers can reveal the full complexity of
emotions that they feel. For example, if a client
complains about a hotel room being too cold, a
third-party observer might underestimate the grav-
ity of the issue, especially if he enjoys indoor cool-
ness. This fact argues for the necessity of a new
evaluation approach of chatbots, which would en-
sure that both emotional interaction and evaluation
of a chatbot are accomplished by the same human
actor. To help these humans share their emotional
experiences, asking them to role-play a relatable
scenario is a frequently used procedure in social sci-
ences (Walther et al., 2005; Hancock et al., 2007).

In this work, we introduce iEval, an interac-
tive evaluation framework for open-domain empa-
thetic chatbots, which mitigates the issue of sepa-
rating an experiencer and an evaluator. To combine
the benefits of Likert scales, allowing to evaluate
many chatbots in a single stretch of time, and pair-
wise comparisons, offering greater reliability and
cross-experiment robustness, we propose a novel
ranking-based approach. According to iEval, a hu-
man first converses with all chatbots, having all
chats grounded in an emotional scenario (Figure 1

(a)). Then, the same human ranks the models by
dragging-and-dropping them into corresponding
categories (Figure 1 (b)). Our experiments demon-
strate that iEval can reveal subtle but significant
differences in chatbots’ performance across emo-
tional contexts.

Overall, our contributions include the following.
1) We describe a new evaluation framework to mea-
sure chatbots’ abilities to respond appropriately
in sensitive contexts. 2) We demonstrate a rigor-
ous procedure for preparing grounding scenarios
for the given evaluation task. 3) We benchmark
several state-of-the-art empathetic chatbots, which
have never been compared before. 4) Based on the
analysis of the benchmark results, we discuss im-
plications for the future development of empathetic
chatbots. 5) Finally, we release the data from our
experiments to facilitate future research endeavors.

2 Related Work

Most works focusing on the development of em-
pathetic chatbots couple automatic evaluation with
human judgement. Automatic metrics usually in-
clude perplexity, approximating the model’s lan-
guage modeling ability (Roller et al., 2021; Xie
and Pu, 2021; Li et al., 2020), and may incorporate
other scores, depending on the specific focus of the
work. Some frequently used examples are BLEU
score (Lin et al., 2019; Majumder et al., 2020), di-
versity metrics (Xie and Pu, 2021; Li et al., 2020),
and F-1 score or accuracy of emotion detection
(Lin et al., 2019; Xie and Pu, 2021; Li et al., 2020).

Since the appropriateness of automatic metrics
for open-domain dialog is still ambiguous, all
works de facto rely on human judgement. Most
commonly, researchers employ single-turn static
evaluation, where a fixed emotionally-colored con-
text is shown to a judge along with the responses
generated by different chatbots. The judges are
asked to rate how empathetically appropriate the re-
sponses are, and the assessment may come either as
Likert-type scores (Hu et al., 2018; Lin et al., 2019;
Majumder et al., 2020; Li et al., 2020) or rank-
ing (Xie and Pu, 2021). Although this approach is
widespread due to the ease of implementation, it
fails to capture issues emerging in multi-turn chats,
such as repetitiveness or deterioration of semantic
coherence in long-range contexts (See et al., 2019).

Few works that focus on integrating empathetic
abilities into chatbots started adopting interactive
evaluations. Roller et al. (2021) employed ACUTE-
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Eval (Li et al., 2019) framework based on pairwise
comparisons to assess engaginess and humanness
of their models. Ghandeharioun et al. (2019) de-
fined their own evaluation protocol to collect Likert-
type scores for a series of dimensions measuring
chatbot’s performance. However, in both of these
studies, the evaluated data points were open-ended
chats that began with a generic greeting. Based
on the provided examples of conversations, these
exchanges generally developed as light small-talk,
maintaining neutral or positive sentiments. There-
fore, it remains unclear how well the collected
scores reflect empathetic abilities of the chatbots,
which should ideally succeed over a range of emo-
tions. Our framework addresses this limitation by
grounding the chats in diverse emotional scenarios.

3 Method: iEval

To compare empathetic abilities of several chat-
bots, iEval suggests that at first a human makes
an emotionally-grounded conversion with each bot
in a randomized order. If necessary, fine-grained
Likert-type assessments of specific chatbot’s perfor-
mance aspects may be collected after each conver-
sation. As the next step, the same human is asked
to rank the chatbots according to her experience
with them. An example of this flow is given in Fig-
ure 1. Finally, appropriate statistical instruments
should be applied to compare the chatbots.

3.1 Emotionally-grounded Chats

To make sure that humans experience the full ex-
tent of chatbots’ empathetic abilities, we condition
each conversation with a short emotional scenario,
instructing the humans to imagine themselves feel-
ing a particular emotion in a given situation. They
are further asked to role-play a character in this sce-
nario and chat about it with the models. The first
dialog turn is provided to the humans to facilitate
the process of their getting into the assigned role.

Careful conditioning of the experiment is essen-
tial to ensure that it adequately represents chatbots’
abilities in a vast range of topics and emotions. We
noticed that some dialogs from the EmpatheticDi-
alogues dataset (Rashkin et al., 2019), a popular
dataset for building empathetic models, form large
clusters in terms of the similarity of discussed sit-
uations (see Appendix A). It may lead to models’
shifted performance on specific topics. Therefore,
one should control for topical diversity when defin-
ing conditioning scenarios for iEval.

Besides, previous results pointed out that the
same model may receive different appraisals de-
pending on the emotional polarity of the chats (Ma-
jumder et al., 2020). This may be linked to the
existing difference between humans’ empathetic
responding in positive and negative scenarios (Aue
et al., 2021), and hence difference in expectations.
Thus, we argue for the importance of balancing
and studying the role of emotional polarity within
iEval.

Finally, ensuring sufficient interaction experi-
ence with the models is necessary before asking
humans for their judgements. Previous works re-
quired between 3 and 14 chatbot’s turns per dialog.
We find 3 turns to be enough, given that the dialog
starts with a specific input.

3.2 Ranking

The concluding step of iEval requests a human to
recall the conversations with the chatbots and rank
them by assigning the bots into three categories:
Bad, Okay, and Good. Several chatbots can be
assigned to the same category, indicating equal
rank. This approach allows moving away from
inter-annotator variability associated with Likert
scales (Li et al., 2019; Kulikov et al., 2019), while
preserving the benefits of relative comparisons. To
obtain the final standing of the chatbots, we pro-
pose converting the resulting rank into an ordinal
rating (Bad → 1, Good → 3) and running non-
parametric ANOVA to compare the mean ratings.

3.3 Annotation Quality

According to iEval framework, one human should
chat with and evaluate several models. As human’s
short-term mental storage capacity is limited to sev-
eral informational chunks, we recommend keeping
the number of evaluated models between 3 and 7,
giving preference to lower values (Cowan, 2001).

To meet the requirements of randomized con-
trolled experiments, it is also advisable to allow
each human to complete only one evaluation task
to eliminate anchoring effects. For the same reason,
the order in which humans interact with the chat-
bots should be randomized and counterbalanced
across tasks. To distinguish different models with-
out revealing their names to the humans, we sug-
gest color-coding them to avoid any fixation effects
which could be caused by aliases that reflect order.

Finally, we use crowdsourcing for our experi-
ment. To decrease the probability of encountering
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fraudulent or inattentive workers, human intelli-
gent task design and configuration should follow
the quality control recommendations of the plat-
form in combination with other attention checks.

4 Experiment

To demonstrate how iEval works in practice, we
apply the framework to benchmark several state-
of-the-art empathetic chatbots, which have never
been compared against each other in an interactive
setting. The details and analysis are outlined below.

4.1 Measures

We use the final ranking of the chatbots, converted
into ordinal ratings, as our main metric. To bet-
ter understand which factors play a principal role
in defining overall ranking, we also ask human
workers for fine-grained Likert-type scores to a
number of chatbots’ qualities on a 1-5 scale. These
questions were derived as a combination of the es-
tablished key qualities for conversational chatbots
(Svikhnushina and Pu, 2021) and other critical as-
pects related to their language modeling abilities
(See et al., 2019). We measured chatbots’ perceived
politeness, empathy, likability, repetitiveness, and
whether their responses make sense.

4.2 Models

We benchmarked four models, as this corresponds
to an average number of informational chunks that
humans can store in short-term memory (Cowan,
2001). We chose between the top-performing chat-
bots available at the moment of preparing our exper-
iment in Q4 2021. We selected the models, which
use distinct approaches for generating empathetic
responses. Only one of them participated in an
interactive evaluation previously, but it was not tar-
geted at its empathetic skills. The four models with
assigned color-codes are as follows.

Blender is a large model employing a stan-
dard Seq2Seq Transformer architecture with≈90M
parameters (Roller et al., 2021). Blender was
pre-trained on ≈1.5B comments from Reddit dis-
cussions and fine-tuned on EmpatheticDialogues
dataset (Rashkin et al., 2019).

MIME is a relatively small model with ≈18M
parameters also based on Seq2Seq Transformer
with additional stochastic emotion grouping and
mimicry mechanism (Majumder et al., 2020). With-
out pretraining, MIME was directly initialized with
GloVe embeddings (Pennington et al., 2014) and

fine-tuned on EmpatheticDialogues.
MEED is a middle-size Seq2Seq Transformer-

based model with ≈40M parameters, which incor-
porates extra controllability of response generation
achieved through modeling fine-grained empathetic
intents. The model was pre-trained on ≈1M di-
alogs from OpenSubtitles (Lison and Tiedemann,
2016) and fine-tuned on EmpatheticDialogues.

Plain is a basic Seq2Seq Transformer-based
model with ≈40M parameters, which followed the
same training pipeline as MEED. Plain serves as a
baseline in our experiment.

All models were adapted to operate in an in-
teractive setting so that for generating each next
response, all previous dialog history was passed to
the models as input.

4.3 Grounding Scenarios

As EmpatheticDialogues (Rashkin et al., 2019) is
the mainly used benchmarking dataset for empa-
thetic chatbots, we employed its test set to create
grounding scenarios. This dataset contains 24,850
dialogs associated with emotional contexts (out of
which 2,547 dialogs comprise the test set). To cre-
ate the dataset, (Rashkin et al., 2019) connected
two types of crowdworkers, speakers and listeners,
to have conversations with each other. Speakers
first had to select one of the 32 emotional labels
(e.g., sad, joyful, proud) and describe a situation
when they felt that way. Then they proceeded to
have a conversation with the listeners using the out-
lined situations as guiding prompts. We utilized
these attributes (32 emotional labels and prompts
describing the speakers’ situations) to describe our
grounding scenarios and kept the first turn from
each selected dialog as a starting turn for the worker
in our evaluation task.

To ensure comprehensibility of the task for
crowdworkers, this selection of grounding prompts
and opening utterances was organized very care-
fully. Firstly, we selected dialogs where the length
of the associated prompt falls between the first
and third quantiles in terms of the number of to-
kens to ensure it provides sufficient details about
the speaker’s situation. Secondly, we computed
Vader sentiment scores (Hutto and Gilbert, 2014)
of the first utterance in each dialog and only kept
those that had a clear emotional coloring. These
steps produced 527 data points, which we finally
proofread and annotated with emotional polarity
labels (negative or positive). Note that we used the
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original 32 emotional labels to show them to crowd-
workers to ground their interaction with the chat-
bots, while the polarity labels were needed for the
analysis part. We further narrowed the set of 527
data points down to 480 prompts with utterances to
meet our experimental design requirements (§4.4).
The discarded data points were chosen manually in
order to diversify the topics in the main set. The dis-
tribution of emotional labels in the resulting evalua-
tion set is shown in Figure 8 in Appendix B. Some
examples of grounding scenarios (emotional labels
and prompts) are provided in Figures 4, 5, and 6.

4.4 Experiment Design

We aimed at evaluating the performance of the
participating chatbots, while also contrasting their
abilities in negative and positive emotional con-
texts. To maintain a manageable number of hu-
man intelligence tasks (HIT), we decided to ask
each crowdworker to interact with all chatbots in
both conditions. Therefore, our experiment was
a 2×4 within-subject factorial design. By design-
ing our study as a factorial experiment, we were
able to examine both main effects and interactions
among chatbots and emotional contexts. We used
G*Power software to estimate the required sample
size to achieve “medium” effect size (Faul et al.,
2007). As the recommended sample size was about
200, we ran 240 experimental tasks to achieve a
full counterbalance of the order of chatbots and
emotional contexts across subjects. We analyzed
ranking of the chatbots using the nonparametric
Aligned Rank Transform (ART) procedure (Wob-
brock et al., 2011). Quartile-quartile plots of the
fitted residuals of our the model showed that they
were normally distributed, indicating the appropri-
ateness of this model for our analysis.

4.5 Running the Experiment

We ran our experiment on Amazon Mturk, requir-
ing one US-based worker per each of the 240 HITs.
Our workers spent on average 20.6 minutes to com-
plete a HIT and their reward was $2.5 per HIT,
which agrees with the US minimum wage stan-
dards. Following Mturk recommendations,2 we
required the workers to have 98% approval rate
and 10,000 approved HITs. We further rejected
the workers whose average HIT completion time,

2https://blog.mturk.com/
qualifications-and-worker-task-quality-
best-practices-886f1f4e03fc

Figure 2: Benchmarking results of the four chatbots.

length of chat responses, or number of contradic-
tory responses to reverse-scaled questions in the
Likert-type questionnaire stood out as outliers.

5 Analysis of Results

Below, we describe the eventual ranking of the
models and consider the aspects that likely explain
the observed results.

5.1 Benchmarking of Empathetic Chatbots

We used the nonparametric ART procedure to ana-
lyze ranking of the chatbots. As described above
(§3.2), for this analysis we converted the resulting
rank into an ordinal rating for more straightforward
interpretation (the higher, the better). Results show
a main effect of chatbot (F3,1673 = 257.92, p <
0.001) and of emotional context (F1,1673 = 43.17,
p < 0.001) on the rating, and of their interaction
(F1,1673 = 9.80, p < 0.001) as illustrated in the
lower right subplot of Figure 2. Interaction results
revealed several interesting relationships. Blender
is consistently rated significantly higher than the
other three chatbots, and it also performs signifi-
cantly better in positive contexts than in negative
(p < 0.01). MIME is rated the lowest, while for
MEED and Plain a shift in the ratings emerges de-
pending on emotional context. MEED significantly
outperforms Plain in positive contexts (p < 0.05)
while the diametrically opposite result manifests
for negative contexts (p < 0.05).

5.2 Aspects Explaining the Ranking

We fitted an ordinal regression model to identify
which of the factors measured by our Likert-type
questionnaire correlate strongest with the assigned
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ratings (McFadden’s pseudo-R2 = 0.37). The sta-
tistical model was chosen due to the ordinal nature
of the dependent variable. All evaluated qualities
exhibit significant influence on chatbots’ ratings.
Making sense (β = 1.01, p < 0.001), empathy
(β = 0.35, p < 0.001), and repetitiveness (β =
−0.32, p < 0.001) are the strongest predicting fac-
tors, followed by politeness (β = 0.21, p < 0.01)
and likability (β = 0.18, p < 0.05) (Figure 3).

The leading factor suggests that the language
modeling abilities of the chatbots define their rank-
ing at large. This is understandable as language flu-
ency is essential for the comprehensive handling of
emotions in chat. Blender, being a massive model
pre-trained on a dataset that is 1000-time larger
than the one for MEED or Plain, is capable of gen-
erating considerably longer fluent responses than
any other chatbot (Figure 9 in Appendix C), which
ensures its highest rank. Meanwhile, MIME is the
smallest model, which did not undergo any pre-
training. It responds reasonably well to the first
speaker’s utterance, but as context gets longer its
ability to produce semantically coherent responses
quickly deteriorates (Figure 4), causing its poor
performance regardless of the emotional context.

For chatbots with better language modeling
skills, the next most decisive factors bring about
curious shift in chatbots’ rankings, depending on
the emotional polarity of conversations. We ana-
lyze these phenomena in the next section, focusing
on empathy and repetitiveness (diversity) revealed
in chatbots’ responses. While considering empathy
of the models, we pay special attention to the role
of questions that they ask as it has been established
to be the most prominent intent of human empa-
thetic listeners (Welivita and Pu, 2020). Moreover,

Figure 3: Results of ordinal regression on rank. 95%
confidence intervals are approximated as two standard
errors. All coefficients are significant (p < 0.05).

MIME (context: Positive, rank: Okay)
Emotion: joyful

Prompt: was delighted the other day when I got to see a friend
that I had not seen in 20 years.

Speaker: I was delighted the other day when I got to see a
friend that I had not seen in 20 years.

MIME: that is awesome. i hope you guys get some great news.

Speaker: Yes, she seemed to be doing well. It was so nice to
see her again.

MIME: that is a good thing. i bet you were happy.

Speaker: I was, yes.

MIME: what did he do?

MIME (context: Negative, rank: Bad)
Emotion: afraid

Prompt: It is so dark in my house. I keep hearing creepy
noises.

Speaker: I keep hearing strange noises in my house. My
husband is out of town and I’m all alone. There has been
reports of break ins on my street.

MIME: oh my goodness, that is not good, how long have you
had to do?

Speaker: I’ve been hearing strange noises for about an hour
now. I’m scared.

MIME: that is a good thing to be in the world. i hope it is not
too late to get the right now.

Speaker: What do you mean?

MIME: i am sure that you are a good feeling.

Figure 4: Examples of chat logs with MIME.

question mark appears in the top-15 most frequent
tokens in the responses of all models studied in our
experiment (Table 3 in Appendix C).

5.3 Analysis of Interaction Effects
5.3.1 Intricacies between MEED and Plain
Both MEED and Plain have moderate language
modeling abilities compared to the other two coun-
terparts. To reason about why these models’ rank-
ings swapped depending on the emotional polarity,
we make two noteworthy observations. First, even
though the gap in scores is not huge, Plain is rated
significantly more repetitive than MEED (Figure 2).
Second, as it can be seen from Table 1, both chat-
bots actively ask questions in their responses, but
MEED asks significantly more questions than Plain
in negative contexts (independent t-test p < 0.01).

It is expected that MEED establishes greater di-
versity and poses questions as it models multiple
listeners’ empathetic intents, where questioning
makes up the largest class. However, as we ob-
served during qualitative inspection of the dialog
logs, MEED falls into a typical trap of neural-
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Dialog level Turn-level: Positive Turn-level: Negative
Overall Positive Negative Bot’s turn 1 Bot’s turn 2 Bot’s turn 3 Bot’s turn 1 Bot’s turn 2 Bot’s turn 3

MEED
1.83

(SD=0.96)
1.78

(SD=0.98)
1.89

(SD=0.94)
0.91

(SD=0.29)
0.56

(SD=0.51)
0.3

(SD=0.46)
0.93

(SD=0.26)
0.63

(SD=0.48)
0.33

(SD=0.47)

Blender
1.12

(SD=0.94)
1.25

(SD=0.92)
0.99

(SD=0.93)
0.73

(SD=0.55)
0.21

(SD=0.43)
0.32

(SD=0.52)
0.73

(SD=0.65)
0.11

(SD=0.35)
0.15

(SD=0.37)

MIME
1.26

(SD=0.91)
1.26

(SD=0.94)
1.25

(SD=0.88)
0.34

(SD=0.48)
0.46

(SD=0.54)
0.47

(SD=0.55)
0.35

(SD=0.48)
0.42

(SD=0.51)
0.48

(SD=0.53)

Plain
1.72

(SD=1.08)
1.78

(SD=1.07)
1.68

(SD=1.09)
0.83

(SD=0.38)
0.52

(SD=0.50)
0.43

(SD=0.50)
0.82

(SD=0.39)
0.53

(SD=0.50)
0.34

(SD=0.47)

Table 1: Average number of questions with standard deviation (in the parentheses) asked by different chatbots.

MEED (context: Positive, rank: Okay) Plain (context: Positive, rank: Bad)
Emotion: anticipating Emotion: anticipating

Prompt: I just ordered a new cookery book and I can’t wait
for it to arrive. I love to cook and will really enjoy trying out
the recipes.

Prompt: I just ordered a new cookery book and I can’t wait
for it to arrive. I love to cook and will really enjoy trying out
the recipes.

Speaker: I just ordered a new cookery book and am eagerly
awaiting its arrival. I want to delve in and try lots of new
recipes!

MEED: What kind of dish is it?

Speaker: Well I want to find something with beef first.

MEED: That sounds like a good recipe.

Speaker: Beef always is. I think I will try to find a good
casserole to try.

MEED: That sounds delicious! I’m sure you will find a good
casserole.

Speaker: I just ordered a new cookery book and am eagerly
awaiting its arrival. I want to delve in and try lots of new
recipes!

Plain: That sounds like a good idea. What kind of recipes
do you like?

Speaker: I love deserts the most. I want to try a new choco-
late cake recipe.

Plain: That sounds like a good idea. What kind of recipe is
it?

Speaker: I don’t know yet. i need to look but definitely
chocolate.

Plain: That sounds like a good idea. I’m sure you’ll like it.

MEED (context: Negative, rank: Bad) Plain (context: Negative, rank: Okay)
Emotion: terrified Emotion: terrified

Prompt: I am so scared to live in my neighborhood. There
is people that come around shooting their guns.

Prompt: I am so scared to live in my neighborhood. There
is people that come around shooting their guns.

Speaker: I am so scared to live in my neighborhood. There
is people that come around shooting their guns.

MEED: What kind of guns?

Speaker: I don’t know the kind of gun, but it is upsetting,
and they are shooting close to my house.

MEED: What kind of gun do you think they are shooting
close to your house?

Speaker: I don’t know. A hand gun? What does that matter?

MEED: Do you think they are shooting close to your house?

Speaker: I am so scared to live in my neighborhood. There
is people that come around shooting their guns.

Plain: What kind of guns do you have?

Speaker: I don’t have any guns.

Plain: I don’t have any guns either. I don’t like guns either.

Speaker: So what should I do to feel safer in my neighbor-
hood?

Plain: I don’t have any guns either. I don’t like guns either.

Figure 5: Examples of chat logs with MEED and Plain.

based chatbots by learning the most safe and gen-
eral type of response, in this case question, e.g.,

“What type of ... was it?” While asking such gen-
eral information-seeking questions is an acceptable
strategy for positive contexts, other questioning
behaviors were shown to be more effective in deliv-
ering meaningful emotional regulation in negative
scenarios (Svikhnushina et al., 2022).

We further combined these observations with
the fact that correlation between these chatbots’

repetitiveness scores and overall ratings is slightly
lower in negative scenarios (Pearson’s r = −0.42
(p < 0.001)) than in positive (Pearson’s r = −0.51
(p < 0.001)). It suggests one plausible explanation
to the observed phenomenon. In positive contexts,
human speakers value chatbots’ diversity and active
engagement demonstrated via questioning, and are
more forgiving even if the chatbot’s response is
slightly misaligned with the context. In negative
scenarios, speakers feel much more vulnerable and

425



expect greater attention. Consequently, they prefer
a generic, but safe response over the one which
is somewhat unrelated or diverting attention from
the speaker’s emotional state. Figure 5 provides
examples illustrating these observations.

5.3.2 Decline of Blender in Negative Contexts

To study the possible reasons of Blender’s lower
performance in negative contexts, we started with
qualitative inspection of dialog logs. While Blender
asks fewer questions than MEED or Plain, they
still appear frequently in its responses (Table 1)
and the same issue of asking overly general ques-
tions, failing to address speaker’s emotional needs
in negative contexts, preserves also for this chatbot.

More interestingly, we observed that Blender
is the only chatbot in our experiment that persis-
tently shares its own experiences and views with
the speakers. To get a better idea of this behavior,
we randomly sampled 50 chat logs (25 per emo-
tional polarity) for each chatbot and annotated how

Blender (context: Positive, rank: Good)
Emotion: nostalgic

Prompt: I get sentimental during the holidays. I think back to
the ones i had as a kid.

Speaker: I love the holidays, that make think back to being a
kid.

Blender: i agree, it’s a great time to spend with family and
friends. What do you do for fun?

Speaker: We bake cookies, listen to christmas songs. What
about you?

Blender: i like to play video games and spend time with my
family. what kind of cookies do you bake?

Speaker: pecan, chocolate chip, yum!

Blender: what is your favorite video game to play? i’ve never
played video games, but i love video games.

Blender (context: Negative, rank: Bad)
Emotion: devastated

Prompt: I was so upset when I failed my math test, I was only
1 percent off!

Speaker: I was one percent off from passing my math test, I
was devastated.

Blender: i’m sorry to hear that. were you able to get a better
grade on the test?

Speaker: No, I am just upset.

Blender: i think i am going to go back to school. i am not sure
what i will do.

Speaker: Make sure to study.

Blender: i am sure you will do great. i hope you get a good
grade on your test. good luck!

Figure 6: Examples of chat logs with Blender.

many of their responses were oriented towards the
speaker (other), reflecting the chatbot’s own experi-
ence (self), or both. Blender is the only chatbot, for
whom the amount of responses oriented towards
self and both largely exceeds zero in the later dia-
log turns, almost reaching the proportion of purely
other-oriented responses (Table 2 in Appendix C).

Self-disclosure is frequent in peer support discus-
sion forums (Barak and Gluck-Ofri, 2007). This
likely explains Blender’s tendency to share own
perspective as it was pre-trained on Reddit conver-
sations, where peer support is actively practiced.
However, human attitude to chatbot’s sharing about
self is unclear, especially in negative scenarios.
Even in human-human interaction, positive disclo-
sure is appreciated more than negative (Caltabiano
and Smithson, 1983). Moreover, in counselling
practice, therapist self-disclosure is usually por-
trayed as a mistake (Henretty and Levitt, 2010). We
could not find studies about users’ preferences for
the degree of chatbot’s self-oriented responses, but
some previous findings about embodied computer
agents reveal that their empathetic other-oriented
emotions lead to more positive ratings of the agent
(Brave et al., 2005). We, therefore, hypothesize that
pulling attention to self too quickly in negative con-
versations might have resulted in Blender’s poorer
performance in this emotional polarity, which is
demonstrated with an example in Figure 6.

6 Discussion

6.1 Implications for Chatbot Development

Most of the chatbots in our experiment were trained
to model short-context conversations and did not
support the interactive chat mode by default, which
also applies to other dialog models, e.g. (Hu et al.,
2018; Lin et al., 2019). Nevertheless, being able
to maintain continuous engaging conversation is
an ultimate goal for empathetic chatbots. Thus,
more attention should be paid to adapting training
procedures and architectures to track longer-term
dialog history and evolution of speaker’s emotions.

Our findings demonstrate that users’ emotional
needs differ in positive and negative scenarios, and
that they do not necessarily expect a strong emo-
tional reaction to their inputs. Raising a question
may be an appropriate response. According to our
results, chatbots should dwell longer on speakers’
negative situations, employing meaningful ques-
tioning strategies, which can possibly be achieved
by modeling fine-grained empathetic questioning
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intents (Svikhnushina et al., 2022). In addition,
more research on the amount of chatbots’ self-
disclosure would further help tailor chatbots’ re-
sponses to users’ expectations.

6.2 Next Steps

While human evaluation is the current standard to
assess chatbots’ performance, developing an au-
tomated metric to approximate human judgement
is an important milestone that would considerably
facilitate the developmental cycle. Some attempts
towards this goal have been made (Yeh et al., 2021),
but very few of these metrics try to capture empa-
thetic abilities of chatbots. Our analysis suggests
that all dimensions evaluated in our Likert-type
questionnaire constitute significant predictors of
the overall human satisfaction (§5.2). Therefore, to
develop a stronger automatic proxy for human eval-
uation, we consider creating rationale heuristics
approximating those dimensions and identifying
a meaningful way to combine them into a single
score. The dataset of collected chat logs and human
scores from our experiment should streamline the
construction and calibration of such a metric.

7 Limitations

In our work, we applied iEval framework to bench-
mark four empathetic agents. We did not compare
them against human-human interaction, as synchro-
nizing two crowdworkers for conducting several
chats between each other entails more logistical
difficulties. More importantly, we were mainly in-
terested in measuring how existing chatbots address
users’ emotional needs, rather than checking if they
are indistinguishable from human interlocutors.

Our results show that bigger models rank higher
in the evaluation task. It raises the subsequent
question about to what extent the proposed frame-
work measures differences in models’ empathetic
abilities compared to their underlying language
model performances. We believe that iEval is an
effective framework for evaluating chatbots’ em-
pathy as it succeeded in registering intricate dif-
ferences in the performances of MEED and Plain,
two models of comparable sizes and pre-training
pipelines, as well as distinguishing the performance
of Blender in emotional contexts of different po-
larity. To further disentangle the role of language
modeling and empathetic abilities, one can con-
sider running the iEval evaluation experiment to
compare equal-size models with and without fine-

tuning for empathetic response generation (e.g.,
Blender, which was only pre-trained on Reddit,
and Blender, which was further fine-tuned on the
EmpatheticDialogues dataset). However, this was
not the main objective of our study and we leave it
for future work.

Finally, we propose to use ranking as a way of
expressing the appraisals of the chatbots, as it af-
fords advantages of both Likert scales and pairwise
comparisons. Ranking may be less robust for com-
paring results across experiments with mismatched
sets of chatbots. Applying rank aggregation tech-
niques can be useful to tackle such cases (Sculley,
2007).

8 Conclusion

Our paper introduced iEval, a novel evaluation
framework for open-domain chatbots that can de-
tect humans’ personal perceptions of social inter-
action, manifesting in emotional dialogs. We used
iEval to benchmark four recent empathetic chat-
bots. Further analysis revealed several limitations
in empathetic response generation approaches of
these models, which came out due to their uneven
abilities in handling positive and negative conversa-
tional scenarios. Based on our findings, we formu-
lated implications informing future efforts in the
development and evaluation of such chatbots. We
also publicly release the data from our experiment
to expedite future research in these directions.
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A Topic Clusters in EmpatheticDialogues

While working with the EmpatheticDialogues
dataset (Rashkin et al., 2019), we noticed that many
dialogs appear repetitive in terms of the situational
scenarios brought up by the speakers. To examine
it more closely, we used Sentence Transformers
framework (Reimers and Gurevych, 2019) to com-
pute vector embeddings of first speakers’ turns in
all dialogs and cluster them according to cosine-
similarity. Figure 7 shows the empirical cumulative
distribution function of topic cluster sizes in the
train set of EmpatheticDialogues. From the figure,
it can be seen that clusters with between 30 and 130
similar situation descriptions per cluster comprise
almost 20% of the training data.

Figure 7: Empirical cumulative distribution function of
topical cluster sizes in the train set of EmpatheticDia-
logues dataset (Rashkin et al., 2019).
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Pos: Other Pos: Self Pos: Both Neg: Other Neg: Self Neg: Both
t-1 t-2 t-3 t-1 t-2 t-3 t-1 t-2 t-3 t-1 t-2 t-3 t-1 t-2 t-3 t-1 t-2 t-3

MEED 25 24 24 0 0 0 0 1 1 25 25 25 0 0 0 0 0 0
Blender 22 16 11 0 3 4 3 6 10 24 14 15 0 4 6 1 7 4
MIME 22 22 20 2 1 1 1 2 4 25 24 22 0 0 1 0 1 2
Plain 24 20 20 1 4 4 0 1 1 25 24 23 0 0 2 0 1 0

Table 2: Counts of orientation of chatbots’ responses (other-, self-, or both) in 50 sampled chat logs (25 for positive
and 25 for negative contexts). Prefixes “Pos” and “Neg” stand for positive and negative contexts respectively.

B Emotion Distribution in Grounding
Scenarios

Figure 8 shows the distribution of original emo-
tional labels from the EmpatheticDialogues dataset
(Rashkin et al., 2019) in 480 grounding scenarios
used for our benchmarking experiment. To demon-
strate the even coverage of the whole emotional
spectrum, we mapped 32 emotions from the dataset
to 14 emotions from Plutchik’s wheel (Plutchik,
1991) (8 basic and 6 intermediate emotions) and
color-coded the bars in Figure 8 according to these
14 categories.

Figure 8: Distribution of emotional labels from Em-
patheticDialogues dataset in grounding scenarios. The
legend shows the mapping between the colors and 14
emotional categories from Plutchik’s wheel (Plutchik,
1991) (8 basic and 6 intermediate emotions).

C Additional Details about Chatbots’
Responses

Figure 9 depicts the average number of tokens in
chatbots’ responses over three dialog turns.

Table 3 shows the top-15 most frequent tokens
for each of the four chatbots. As it can be noticed,
question marks appear in the list of tokens of each
model, pinpointing their tendency to ask questions.

Figure 9: Counts of average number of token in chatbots’
responses over three dialog turns with 95% confidence
intervals.

Table 2 demonstrates the counts of orientation
of chatbots’ responses (other-, self-, or both) in 50
sampled chat logs (25 positive and 25 negative)
over the dialog turns.
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MEED Blender MIME Plain

? . that i
you i i .
that you . you

. to is ?
what that you that

of it a to
it ’s to !
! a ? sorry
a of am so
i do ! it
’s ? good hear

kind ! what what
did have have did
is the do am

sounds ’m , of

Table 3: Top-15 most frequent tokens for each chatbot
in order of decreasing frequency.
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Abstract

Machine reading comprehension (MRC) is a
task for question answering that finds answers
to questions from documents of knowledge.
Most studies on the domain adaptation of MRC
require documents describing knowledge of the
target domain. However, it is sometimes diffi-
cult to prepare such documents. The goal of
this study was to transfer an MRC model to
another domain without documents in an un-
supervised manner. Therefore, unlike previous
studies, we propose a domain-adaptation frame-
work of MRC under the assumption that the
only available data in the target domain are hu-
man conversations between a user asking ques-
tions and an expert answering the questions.
The framework consists of three processes: (1)
training an MRC model on the source domain,
(2) converting conversations into documents us-
ing document generation (DG), a task we devel-
oped for retrieving important information from
several human conversations and converting it
to an abstractive document text, and (3) transfer-
ring the MRC model to the target domain with
unsupervised domain adaptation. To the best of
our knowledge, our research is the first to use
conversation data to train MRC models in an
unsupervised manner. We show that the MRC
model successfully obtains question-answering
ability from conversations in the target domain.

1 Introduction

Conversation agents such as Siri, as well as search
engines, such as Google, have been increasing the
scope of user questions in which they can provide
direct answers to questions that can be extracted
from web pages. Providing answers directly from a
structured text is often referred to as machine read-
ing comprehension (MRC). Benefiting from deep
learning technology, MRC is a question-answering
(QA) task that has been extensively studied (Her-
mann et al., 2015; Qiu et al., 2019). MRC is used
to find an answer position in a document to answer
a given question. A number of large corpora have

played a critical role in advancing MRC research
(Rajpurkar et al., 2016; Trischler et al., 2017; Ba-
jaj et al., 2016; Zhang et al., 2018). Many MRC
studies have focused on developing new model
structures by introducing a new end-to-end neu-
ral network model to obtain state-of-the-art per-
formance (Huang et al., 2018, 2019; Shen et al.,
2017; Seo et al., 2017; Xiong et al., 2017). How-
ever, these state-of-the-art models were evaluated
in one domain. In fact, it has been proven that the
generalization capabilities of MRC models do not
perform well on different datasets (Yogatama et al.,
2019).

Unsupervised domain adaptation is an approach
to cope with transferring knowledge from a source
domain to a different unlabeled target domain (Pan
and Yang, 2010). To provide labels for a new
domain dataset, question generation is commonly
used to create synthetic data consisting of question-
answer pairs from documents of the target domain
(Rus et al., 2010), so that an MRC model can be
trained with both data from the source domain and
syntactic data from the target domain (Yue et al.,
2021; Lee et al., 2020; Puri et al., 2020; Shakeri
et al., 2020; Cao et al., 2020; Wang et al., 2019).

One critical issue in unsupervised domain adap-
tation for MRC is that previous studies assumed
that the input documents must be available in the
target domain. There are also many types of infor-
mation (not limited to the document) in a real-word
scenario. To apply MRC to such information, it
is necessary to convert the information into doc-
uments. However, this conversion is not an easy
task.

Let us take a case in customer service support.
Human operators in a customer service usually re-
fer to “manual documents” containing necessary
knowledge to answer customer questions. The man-
ual usually has limited information. Thus, when
there is no information to answer questions, the
operators pass the call to a supervisor, and the su-
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pervisor continues to talk with the customer to an-
swer the question. This procedure is called “esca-
lation”. The frequency of escalation is not trivial.
Moreover, the number of supervisors is usually few,
thus it is necessary to reduce escalations. It is ob-
vious that conversations between supervisors and
customers have plenty of information that is not in-
cluded in the document. If we add new information
to the document based on supervisor-customer con-
versations, the MRC task can answer more varied
questions.

In domain adaptation for MRC, in which the
conversation between an expert and user is the
only available data in the target domain, has be-
come a new challenge. The user asks questions
and the expert answers the questions. To address
this challenge, we propose a framework of domain
adaptation of MRC. This framework consists of
three processes: (1) training an MRC model on
the source domain, (2) converting conversations
into documents using document generation (DG),
which is a task we developed for retrieving impor-
tant information from several human conversations
and converting it to an abstractive document text,
and (3) transferring the MRC model to the target do-
main with unsupervised domain adaptation, which
consists of two stages; self-training and discrimina-
tive learning.

Our contributions are summarized as follows:

• We propose a framework of unsupervised do-
main adaptation of MRC in which the only
available data are unlabeled human conversa-
tions in the target domain.

• We evaluated MRC models with four different
domain data.

2 Related Work

2.1 Machine Reading Comprehension (MRC)
With the wide use of deep learning, significant
progress has been achieved on many natural-
language-processing tasks including MRC. Her-
mann et al. (2015) proposed an MRC model using
bidirectional long short-term memory to capture
the context of documents. The idea has become
the foundation of many MRC models. It is a chal-
lenging task how to make a machine imitate a hu-
man to understand the document and be able to
answer questions. A large dataset has played a
critical role in progressing MRC research. Ra-
jpurkar et al. (2016) released SQuAD (the Stan-

ford Question Answering Dataset), which contains
more than 100,000 sets of a question, answer, and
document. After that, the contributions of MRC
can be grouped into four categories: developing
new model structures, creating new datasets, multi-
task learning, and introducing a new evaluation
method (Baradaran et al., 2022). Many MRC stud-
ies have focused on developing model structures by
introducing an end-to-end neural network model to
obtain state-of-the-art performance (Huang et al.,
2018, 2019; Shen et al., 2017; Seo et al., 2017;
Xiong et al., 2017). In a different direction, other
papers have focused on creating new datasets (Feng
et al., 2020; Choi et al., 2018; Reddy et al., 2019;
Campos et al., 2020). The main trend in these
papers was to create datasets considering more
complex phenomena, i.e., a query is formed by
multiple turns and a document has structural ele-
ments. Some papers addressed methods to evaluate
whether the system acquires a “true” comprehen-
sion capability (Jia and Liang, 2017; Wang and
Bansal, 2018). To test true comprehension capabil-
ity, for instance, QA performance was measured
when documents were made distracting by insert-
ing adversarial noisy sentences.

2.2 Document Generation (DG)

MRC returns no answer for irrelevant questions to
the documents. Self-learning of the MRC model
from human conversations is a new challenge. To
achieve this, converting human conversations into
documents is necessary. We call this task document
generation (DG). DG is a similar task to conver-
sation summarization, which focuses on simply
extracting important context from conversations
(Li et al., 2019). Unlike conversation summariza-
tion, however, DG is aimed to use for a specific
application, i.e., customer service. Therefore, it
is necessary to extract useful information for the
application from conversation contexts, e.g., the
topics of customer queries and solution the op-
erator provides. Document summarization is di-
vided into two types of methods: extractive and
abstractive. Extractive methods select key sen-
tences from original documents (Knight and Marcu,
2000), while abstractive methods highlight key
phrases and compactly rewrite them (Gehrmann
et al., 2018; Maynez et al., 2020; Chen and Bansal,
2018). DG should ensure the correctness of key
facts. For example, when an operator asked, “Were
the plates lost or stolen?”, and a customer said,
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Figure 1: Proposed domain-adaptation framework that includes our developed DG for MRC. Parameters of modules
in dash boxes are updated during domain adaptation.

“No”, then the operator’s response is “You will not
be eligible for a refund”. In this case, a key sen-
tence that should be included in the document is a
sentence such as “You are eligible for a refund if
the plates are lost/stolen or destroyed”.

2.3 Domain Adaptation

One of the hot topics in MRC is developing simulta-
neous learning of multiple tasks (transfer learning)
(Ruder et al., 2019) and transferring the learned
MRC model from one domain to another. This is
a promising task for obtaining better results, espe-
cially in a data-poor setting. The task is referred
to as domain adaptation, which can be divided
into two types of methods; supervised, and un-
supervised. With supervised methods, the model
is trained, where the label is available in the target
domain (Kratzwald and Feuerriegel, 2019). The
aim of supervised domain adaptation in MRC is to
enlarge the number of domains the learned model

can cope with. With unsupervised methods, no
labeled information is available in the target do-
main. Cao et al. proposed an unsupervised domain-
adaptation method on reading comprehension (Cao
et al., 2020). They first trained the MRC model in
a source domain by fine-tuning a Bidirectional En-
coder Representations from Transformers (BERT)
model (Devlin et al., 2019), then in the adaptation
stage, the fine-tuned model is used to generate syn-
thetic question-answer pairs in the target-domain
documents, and the synthetic pairs are used in self-
training. Their method worked with an assump-
tion that questions and documents are available in
the target domain. Wang et al. proposed a sim-
ilar method (Wang et al., 2019). The difference
is that they used a question generator to extract
questions from documents in the target domain.
Although their method showed promising results,
current MRC cannot handle irrelevant questions
that have no information in the given document.
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Our proposed framework is on unsupervised do-
main adaptation tasks. Unlike the above-mentioned
studies, we used human conversations, which are
the only available data in the target domain as the
input.

3 Proposed Framework

The main objective of our research is to develop an
MRC technique with which the MRC model can
be automatically updated on the basis of human
conversations. To achieve this, we add DG to the
MRC pipeline. The role of DG is to convert human
conversations to documents. The generated doc-
uments are then added to the training data of the
MRC model.

Let us assume that we have two different types
of domain data: source domain that has conver-
sations and corresponding documents and target
domain that has only conversations. If we have an
MRC model trained with source domain data, our
goal is to update the model to cover target-domain
questions. However, the target domain has no doc-
ument related to the conversations. Thus, the MRC
model should be trained with the only available
conversation data in the target domain. As shown
in Fig. 1, our framework consists of the following
three processes.

1. Training an MRC model with answer spans
for given questions and corresponding docu-
ments data in the source domain.

2. Converting conversations to documents by
DG through model training with source-
domain data. Given human conversation as an
input, the MRC model returns a summary of
the conversation.

3. Transferring the MRC model to the target do-
main with unsupervised domain adaptation.
There are two stages; self-learning to train the
MRC model with synthetic data and discrimi-
native learning to learn the feature distribution
between source and target domains. Thus, the
model can provide the answers of questions
from both source and target domains.

3.1 Machine Reading Comprehension in
Source Domain

Let Msource = (D,Q,A) denote an MRC dataset
in the source data, where D, Q, and A represent
documents, questions, and answer span for the
questions, respectively. A question contains not

only the user’s question but also the dialogue his-
tory between the user and expert. An MRC model
M takes documents D = (d1, d2, ..., dTsource) and
questions Q = (q1, q2, ..., qTsource) as input, where
Tsource is the amount of data in the source domain.
The model is trained to predict the correct answer
spans:

A = ([e1start , e1end ], ..., [eTsourcestart
, eTsourceend

]) (1)

We use Transformer models to implement the
MRC model in the source domain. The Trans-
former encoder is used to contextually represent
the question along with the document. Question
qt and document dt are passed to the Transformer
encoder to create contextual representations of the
input. To obtain the starting and ending indices of
the answer, the encoder output is sent to a linear
layer to be converted into logits corresponding to
the probabilities of being the start index (atstart) and
end index (atend) of the answer span.

The atstart and atend are optimized by minimizing
the following loss function:

L =
1

2
(CEL(etstart , atstart) + CEL(etend , atend)),

(2)
where CEL is the cross-entropy loss function, and
etstart and etend are the labels at token number t for
the answer start and end indices atstart and atend ,
respectively.

3.2 Document Generation

Given an input dialogue between a user and expert,
the goal of DG is to produce a multi-sentence sum-
mary that captures the highlights of the dialogue.
Let N be the total number of dialogues consist-
ing of a conversation about topic-p. By giving a
dialogue context H , the goal is to generate the sum-
mary C of the dialogue. The n-th dialogue has a
list of utterances Hn = (h1, h2, ..., hL), where hl
is the l-th utterance in the dialogue and L is the
number of utterances. Each utterance contains a se-
quence of tokens hl = (xl,role, xl,1, xl,2, ..., xl,nl

),
where xl,j is the j-th token in hl and nl is the
number of tokens in the l-th role’s utterance. At
the beginning of the sequence, we add a spe-
cial token xl,role, which represents the role of the
speaker, i.e., xl,role ∈ (user, expert). The n-th out-
put from DG is also a sequence of word tokens
Cn = (c1, c2, ..., cK), where K is the number of
tokens. Note that the highlight in Cn is just some
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of the information in topic-p. To gather all informa-
tion and generate a document of topic-p, we collect
the highlights from all conversations, remove du-
plicate sentences, then put the highlights together
as a completed document.

The ground truth summary C ′n is created by com-
bining all the correct answer of the user’s question
for corresponding input dialogue Hn, where user’s
questions ∈ Q. Given a user’s question q and its
answer’s spans (estart, eend), the correct answer sen-
tence w is taken from the original document. Thus,
if there are y number of utterances in input dia-
logue Hn in which the role is user, the ground
truth summary is a series of consecutive sentences
w1, w2, ..., wy.

We use a Transformer (Vaswani et al., 2017)
model built with a seq2seq model combining an
encoder with a decoder. Studies have shown that
if the model is first trained on a large corpus, it
will learn the distribution of that corpus vocab-
ulary (Gururangan et al., 2020). Motivated by
this, we experimented with pre-training on differ-
ent out-of-domain datasets, such as the news-based
CNN/Daily Mail corpus (Nallapati et al., 2016) and
conversation-based SAMSum corpus (Gliwa et al.,
2019), and continued to fine-tune the model on our
experimental dataset in the source domain. We first
trained the model for the summarization task on the
large CNN/Daily Mail corpus. The reason we first
train the model with this corpus is that the corpus
has high quality contexts and summaries that can
enable the model to learn a structured document.
However, our main focus is not on summarizing an
article but to generate highlights from conversation
data. Thus, we continue fine-tuning the model for
the summarization task with a conversation-based
corpus, such as SAMSum, to obtain more auxiliary
vocabulary.

The trained DG model in the procedure above
will be used to generate documents in the target do-
main by giving conversations in the target domain.

3.3 Unsupervised Domain Adaptation in
Target Domain

The unsupervised domain adaptation in our frame-
work consists of two stages; self-learning and dis-
criminative learning.

In the self-learning stage, we have to generate
pseudo-label samples. The MRC model M de-
scribed in Section 3.1 is used to provide pseudo-
labels to unlabeled documents in the target do-

Algorithm 1 Domain adaptation of MRC with DG.
M is MRC source model, D′ is generated doc-
ument in target domain derived from DG model,
and iterDA is training-epoch number for domain
adaptation.

Input: Msource = {(Dt, Qt)}Tsource
t=1 , . Source data

Mtarget = {(D′
t , Qt)}Ttarget

t=1 , . Target data
M

Output: Optimal model M in the target domain
1: M ′

target = ∅
2: for j ← 1 to iterDA do
3: for t← 1 to Ttarget do . Pseudo-labeled generation
4: Use M to predict the pseudo-labels a′

tstart and a′
tend

for (D′
t, Qt) and obtain probability p̂t

5: if p̂t ≥ thprob and D′
t(a

′
tstart , a

′
tend) 6= empty text

then
6: if Qt /∈M ′

target then
7: Put (D′

t, Qt, a
′
tstart , a

′
tend) into M ′

target
8: end if
9: end if

10: end for
11: for mini-batch b in M ′

target do . Self training
12: Train M with b
13: end for
14: for mini-batch btarget in M ′

target and bsource in Msource
do . Discriminative learning

15: Train M and D with btarget, bsource, and domain
labels

16: end for
17: end for

main generated with DG trained in Section 3.2.
However, because the predicted output consists of
false answers, we have to choose reliable pseudo-
labels. Thus, the underlying assumption in this
stage is we only take the samples having high-
confidence predictions. Retraining the model using
high-confidence samples will further improve its
performance (Saito et al., 2017). Despite the fact
that the distribution of vocabulary is different be-
tween source and target domains, both domains
may have similar characteristics. Thus, some sam-
ples with high-confidence scores will be similar to
or the same as correct answer spans in the target
domain. To provide pseudo-labels, we first gather a
set of answer spans that have the top nbest answer-
span probabilities p̂t. The p̂t is calculated using a
softmax function applied to the sums of start index
logits a′tstart

and end index logits a′tend
. We assign a

pseudo-label to qt if the following two conditions
are satisfied. First, p̂t should exceed the threshold
parameter (thprob), which we set in the experiment.
The second requirement is that the span should not
be an empty text. After the pseudo-labeled training
set (M ′target) is composed, atstart and atend are up-
dated on the basis of the loss in Eq. (1), except we
replace etstart and etend with a′tstart

and a′tend
, respec-
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tively. In each epoch during adaptation training,
pseudo-labeled samples are updated using the last
model. An additional sample t will be added if the
t-sample did not exist in the last pseudo-labeled
samples.

The discriminative-learning stage is used for the
MRC model to learn the difference in the feature
distribution between source and target domains.
We combine the following two representation out-
puts from both source and target samples: (1) the
last hidden state r ∈ Rs×h, which is the output of
the last layer of the MRC model, and (2) concate-
nation of start-logits and end-logits, which outputs
l with dimension s× 2. Note that s and h are the
maximum input sequence length and hidden state
dimension, respectively. We set s = 2 × h. The
input feature Z is calculated with the following
process:

Z = l � avgcol(r), (3)

where avgcol means the average along columns,
which returns a vector in ∈ Rh, � is an element-
wise product, l ∈ Rh, and Z ∈ Rh. Discrimina-
tor D takes Z as input and computes the proba-
bility using a neural network consisting of three
linear layers, in which the final layer outputs a
one-dimensional value that shows the output prob-
ability.

The loss function is the binary cross-entropy loss,

Ldsc = − (u log(û) + (1− u) log(1− û)) , (4)

where û is the probability output from D, and
u ∈ {0, 1} is the ground-truth label; 0 for the
source domain and 1 for the target domain. The
entire procedure of domain adaptation is shown in
Algorithm 1.

4 Experiments

4.1 Dataset
In our experiments, we used the Doc2dial (Feng
et al., 2020) dataset consisting of about 4,800 an-
notated conversations with an average of 14 turns
per conversation. The utterances are grounded in
over 480 documents from four domains of public
government service websites in the U.S.: Social
security administration (ssa), Department of Motor
Vehicles (dmv), Federal Student Aid (studentaid),
Veteran’s Affairs (va).

In the training process of the DG model, as we
mentioned in Section 3.2, we first trained the model

on the large CNN/Daily Mail corpus (Nallapati
et al., 2016). This corpus is based on the news
articles taken from the CNN and Daily Mail web-
sites. It includes various subjects such as travel
and business. It also contains about 300,000 arti-
cles written by journalists at CNN and the Daily
Mail. We continued to fine-tune the model in the
conversation-based SAMSum corpus (Gliwa et al.,
2019). The SAMSum corpus is an English dataset
consisting of about 15,000 natural conversations in
various scenes of real life such as chatting, meeting
arrangements, and political discussion. We finally
fine-tuned the model in the Doc2dial dataset.

4.2 Hyper-parameters

We implemented the QA from HuggingFace Trans-
formers (Wolf et al., 2019) with a pre-trained model
as the encoder and fine-tuned it on the Doc2dial
dataset during training. We used two different pre-
trained models as the MRC models in the source
domain: BERT (Devlin et al., 2019), and Robustly
Optimized BERT Approach (RoBERTa) (Liu et al.,
2019). Since the grounded document is often
longer than the maximum input sequence length for
the QA model, we followed a previous study (Feng
et al., 2020) to truncate the documents in windows
with a stride. We set the stride to 128 tokens, the
number of epochs to 5 with cross entropy as the
loss function, and the learning rate to 3 × 10−5.
The batch size was set to 15, and the maximum
distance between starting (astart) and ending (aend)
indices of answers was set to 50.

In the training process of the DG model, we
used BARTlarge, which includes 12 Transformer
layers in the encoder and decoder 1. We set the
number of epochs to 5 with cross entropy as the
loss function and set the learning rate to 3× 10−5.
We set the batch size to 15 and maximum length of
input sequences to 1024.

In the unsupervised domain-adaptation process,
we set the learning rate to 3 × 10−5 in the self-
training stage and 5× 10−5 in the discriminative-
learning stage. We set the same parameters as in
MRC in source-domain training for the maximum
distance between starting and ending and number
of epochs (iterDA). The batch size was set to 5.
The input dimension of the first layer in the dis-
criminator network (h) was 1024, and the maxi-
mum sequence (s) was 512. We used a rectified
linear unit as the activation function in the first two

1https://huggingface.co/facebook/bart-large
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layers. The threshold (thprob) was set to 0.5, and
nbest was 20.

All parameters were determined on the basis
of the best ROUGE-1 score for training the DG
model and F1 score for MRC models (source and
domain adaptation) on the validation dataset in the
experiments.

5 Results and Discussion

5.1 MRC in Source Domain

Specific Domain All Domains

ssa dmv studentaid va

BERT 61.29 53.88 50.99 68.77 62.83
RoBERTa 64.93 63.13 62.86 73.01 70.30
Baseline - - - - 65.30

Table 1: The F1 scores [%] for MRC in source domain
on Doc2dial validation set. The baseline score is re-
ported in (Feng et al., 2020).

For the MRC source training, we compared the
F1 score results (shown in Table 1) between two
different language models: BERT and RoBERTa.
We trained and evaluated the MRC model with a
specific domain, and with all the domain data. With
BERT, which is the same Transformer model as the
baseline, we obtained an F1 score of 62.83%. This
result is lower than the reported baseline (Feng
et al., 2020) of 65.30%. However, with RoBERTa,
we obtained a higher score of 70.30%. Therefore,
we used RoBERTa to train unsupervised domain
adaptation of the MRC model in the target domain.

5.2 Document Generation

Dataset Evaluation Metrics [%]

ROUGE-1 ROUGE-L

Doc2dial 67.02 44.06
Doc2dial + CNN/Daily Mail 69.74 45.26
Doc2dial + CNN/Daily Mail + SAMSum 69.94 45.71

Table 2: DG results on Doc2dial validation set during
further pre-training on different QA datasets. We trained
with the BART model.

The performances of DG are listed in Table
2. Experiments with BART on the validation set
showed that fine-tuning on different datasets is ben-
eficial. Pre-training on more structural corpora,
such as CNN/Daily Mail, is more useful than di-
rectly fine-tuning BART into the Doc2dial dataset.
Furthermore, training the model using SAMSum,
which contains conversational data and is more

Conversation in VA [Veterans’ Affairs] claim topic
U : how do you check your VA claim or appeal

status?
E : find out how to check the status of a VA claim

or appeal online
U : can I use the tool?
E : do you have one of the following accounts?

A Premium My HealtheVet account a Pre-
mium DS Logon account used for eBenefits
and milConnect , or one you can create here
on VA.gov verified ID.me?

U : yes
E : ok you just log into one of those

Generated document for VA claim topic
Log in to start finding out how to check the status of a
VA claim or appeal online. Use this tool if you have
one of the following accounts: A Premium DS Logon
account used for eBenefits and milConnect or Verified
ID.me.
Ground truth in original document for VA claim topic
Check your VA claim or appeal status. Find out how
to check the status of a VA claim or appeal online.
To use this tool, you’ll need to have one of these free
accounts: A Premium My HealtheVet account or A
Premium DS Logon account used for eBenefits and
milConnect, or one you can create here on VA.gov
verified ID.me account.

Table 3: Given conversation between expert (E) and
user (U), DG returns the generated document in the cor-
responding topic. We used the Doc2dial + CNN/Daily
Mail + SAMSum model.

similar to Doc2dial, further improved the perfor-
mance. An example of the generated document
results is shown in Table 3. When we increase the
conversation, new information will be added to the
generated document. Current generated documents
gather all information that is based on the conver-
sation. Thus, the output results will significantly
differ compared with the original document in the
target domain, especially for the information struc-
ture. The information order depends on the given
conversation order.

5.3 MRC with Domain Adaptation

5.3.1 With Original Target Documents

Domain (source to target) w/o DA with DA
studentaid to va 50.62 53.27
studentaid to ssa 49.38 55.12
studentaid to dmv 54.93 60.19

Table 4: The F1 scores [%] for MRC without DG when
using studentaid data as source domain. DA refers to
domain adaptation.

We conducted a domain-adaptation test with
original target documents to verify the effective-
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Domain
studentaid va ssa dmv

ROUGE-L F1 ROUGE-L F1 ROUGE-L F1 ROUGE-L F1

studentaid
w/o DA 53.02 50.62 47.62 49.38 52.04 54.93

with DA
w/o DSC 53.58 51.63 48.79 50.58 51.55 55.29
with DSC 54.26 52.45 49.70 51.02 52.17 55.61

va
w/o DA 54.60 52.54 48.97 51.46 53.92 57.85

with DA
w/o DSC 54.44 52.05 48.72 50.07 52.82 56.24
with DSC 55.76 53.68 49.13 51.64 53.99 57.90

ssa
w/o DA 51.86 47.60 53.90 51.79 52.02 54.01

with DA
w/o DSC 51.56 48.52 54.15 53.03 53.14 56.28
with DSC 52.48 50.12 55.05 53.12 53.32 56.95

dmv
w/o DA 54.66 52.76 53.66 52.06 52.25 56.73

with DA
w/o DSC 53.71 52.35 53.71 52.22 51.64 55.99
with DSC 55.68 55.07 53.77 53.08 53.33 57.86

Table 5: MRC results with the document generation (DG). DA refers to domain adaptation and DSC refers to
discriminative learning.

ness of a domain-adaptation stage. We first trained
an MRC model in the source domain with studen-
taid data. The next procedure was the same as
that shown in Algorithm 1, except we used the
original document D in the target domain. We set
three domain-adaptation dataset pairs, which were
studentaid to va, studentaid to ssa, and studen-
taid to dmv. As shown in Table 4, the F1 scores
of the model trained without/with domain adap-
tation (DA) were 50.62/53.27, 49.38/55.12, and
54.93/60.19% for studentaid to va, studentaid to
ssa, and studentaid to dmv, respectively. Thus,
the model trained with DA (our framework) outper-
formed the model trained without DA.

5.3.2 With Generated Target Documents by
DG

Finally, we conducted an experiment for our main
task, in which the model is trained with unsuper-
vised DA and with DG. The results for each do-
main are listed in Table 5. We tested under three
conditions: the model trained without DA, model
trained with DA and without the discriminative-
learning stage, and model trained with both DA and
discriminative-learning stage. The results indicate
that for the model trained with DA, self-learning
alone (without discriminative stage) was not strong
enough to outperform the model trained without
the DA model. We observed that the number of
generated pseudo-labeled sets (M ′target) remained
almost the same in each epoch, such as in stu-
dentaid to dmv. Consequently, the model trained
with DA but without the discriminative-learning
stage performed worse than the model trained with-
out DA. For ssa to dmv, the number of generated
pseudo-label sets increased during the training pro-
cess. Thus, the model trained with DA but with-

out the discriminative-learning stage outperformed
the model without DA. Despite 1 or 2% improve-
ment, as we add the discriminative stage to the DA-
model training, the model trained with both DA
and the discriminative-learning stage outperformed
the model trained without DA in all datasets. Even
with unstructured documents and without labels in
the target domain, we proved that our framework
can be used to adapt the model from conversation
data.

6 Conclusion

We proposed a framework of unsupervised domain
adaptation of MRC in which the only available
data are unlabeled human conversations in the tar-
get domain. DG, which is a task in the framework,
converts a given conversation into a document in-
cluding conversational context. We also tackled
a new challenge of conducting domain adaptation
from the source domain with a structured docu-
ment to a new domain with an unstructured docu-
ment. We showed that only self-learning does not
always improve accuracy. However, discriminative
learning with self-learning successfully improved
conversational-based MRC domain adaptation.
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Abstract

With the development of pre-trained language
models, remarkable success has been witnessed
in dialogue understanding (DU). However, cur-
rent DU approaches usually employ indepen-
dent models for each distinct DU task without
considering shared knowledge across different
DU tasks. In this paper, we propose a unified
generative dialogue understanding framework,
named UniDU, to achieve effective information
exchange across diverse DU tasks. Here, we
reformulate all DU tasks into a unified prompt-
based generative model paradigm. More im-
portantly, a novel model-agnostic multi-task
training strategy (MATS) is introduced to dy-
namically adapt the weights of diverse tasks
for best knowledge sharing during training,
based on the nature and available data of each
task. Experiments on ten DU datasets cover-
ing five fundamental DU tasks show that the
proposed UniDU framework largely outper-
forms task-specific well-designed methods on
all tasks. MATS also reveals the knowledge-
sharing structure of these tasks. Finally, UniDU
obtains promising performance in the unseen
dialogue domain, showing the great potential
for generalization.

1 Introduction

The development of the conversational system
plays an important role in the spread of the intelli-
gence devices, such as intelligence assistants and
car play. In recent years, there has been a grow-
ing interest in neural dialogue system (Wen et al.,
2017; Ultes et al., 2017; Li et al., 2017; Chen et al.,
2018a, 2019, 2020b; Bao et al., 2020; Adiwardana
et al., 2020; Ham et al., 2020; Peng et al., 2020;
Chen et al., 2022). Dialogue understanding is a
core technology and hot topic in the dialogue sys-
tem, aiming to analyze a dialogue from different
fine-grained angles accurately.

∗The corresponding authors are Lu Chen and Kai Yu.

There are five classical dialogue understanding
tasks: dialogue summary (DS) (Liu et al., 2019a),
dialogue completion (DC) (Su et al., 2019; Quan
et al., 2020), intent detection (ID) (Kim et al., 2016;
Casanueva et al., 2020; Qin et al., 2021a), slot fill-
ing (SF) (Zhang et al., 2017; Qin et al., 2021b;
Haihong et al., 2019) and dialogue state track-
ing (DST) (Kim et al., 2020; Chen et al., 2020a;
Hosseini-Asl et al., 2020; Xu et al., 2020; Liao
et al., 2021). Dialogue summary aims to gener-
ate a concise description of given dialogue content,
which is normally formulated as a sequence-to-
sequence generation problem (Wu et al., 2021). Di-
alogue completion eliminates the co-reference and
information ellipsis in the latest utterance, which is
also a generation task (Chen et al., 2021b). Intent
detection and slot filling are two traditional spoken
language understanding tasks that aim to map natu-
ral language to logical form. Intent detection is typ-
ically treated as a classification problem (Liu and
Lane, 2016) and slot filling is usually formulated
as a sequence labeling task (Zhang et al., 2017;
Qin et al., 2019; Coope et al., 2020). The dia-
logue state tracking task is to extract the user’s
constraints on the predefined dialogue domains and
slots (Budzianowski et al., 2018). The five different
tasks aim to interpret a dialogue from five differ-
ent perspectives. To date, these DU tasks are still
learned independently due to different task formats.
However, they are intuitively related. For example,
the dialogue completion task should have a positive
effect on the dialogue state tracking task (Han et al.,
2020). On the other hand, it is usually very expen-
sive to collect dialogue data and annotate them,
which constraints the scale of annotated dialogue
corpora. It is important and imperative to study
how to enhance dialogue understanding capability
with the existing diverse dialogue corpora.

There are two main challenges in knowledge
sharing across DU tasks: data annotation diversity
and task nature diversity. It is necessary to employ
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a unified DU model to allow all types of DU data
to be used together. In this paper, we propose a
Unifined Dialogue Uderstanding (UniDU) frame-
work, in which the five fundamental DU tasks are
modelled by a unified sequence-to-sequence gen-
erative model. The second challenge is related to
the nature of diverse tasks. Since the output label
dynamic ranges and the goals of the DU tasks are
different, tasks may not be well suited to be trained
together with straightforward multi-task learning.
It is then a nontrivial problem to effectively weight
diverse tasks for the unified model with different
dialogue corpora. In this paper, we propose a novel
adaptive weighting approach and compare it with
other different training strategies under the UniDU
framework.

The main contributions of this paper are summa-
rized below:

• To the best of our knowledge, we are the first
to formulate different dialogue understanding
tasks as a unified generation task spanned five
DU tasks. The proposed UniDU outperforms
well-designed models on five well-studied di-
alogue understanding benchmarks.

• We propose a model-agnostic adaptive weight-
ing approach for multitask learning to address
the task nature diversity problem. We find
that the intuitive multitask mixture training
method makes the unified model bias con-
vergence to more complex tasks. The pro-
posed model-agnostic training method can ef-
ficiently relieve this problem.

• Experimental results show that the proposed
UniDU method has excellent generalization
ability, which achieves advanced performance
both on few-shot and zero-shot setups.

2 Dialogue Understanding Tasks

We denote dialogue context as C = (Hn, Un),
where Hn = (U1, U2, . . . , Un−1) represents the di-
alogue history containing the first n − 1 turns of
utterances. Un is n-th turn utterance, which may
consist of multiple sentences stated by one speaker.
For the task-oriented dialogue, the domain scope
is restricted by the dialogue ontology, which the
dialogue expert designs. The ontology O is com-
posed of dialogue domains D = {d} (like hotel),
domain slots (like price) S = {s} and user intent
candidates I = {i} (like find_hotel). There are

five fundamental tasks to interpret a dialogue from
different perspectives.
Dialogue Summary (DS) aims to extract impor-
tant information of the dialogue. It is a typical gen-
eration problem, which takes the whole dialogue
context C as input and generates the summary de-
scription. DS requires the model to focus on the
whole dialogue flow and the important concepts.
Dialogue Completion (DC) purposes to relieve
the co-reference and information ellipsis problems,
which frequently occur in the dialogue context. It is
also a typical generation task, which inputs the dia-
logue history Hn and the current utterance Un and
then infers the semantic-completed statement of
the current utterance Un. DC requires the model to
focus on the connection between current utterance
and dialogue history.
Slot Filling (SF) is to extract the slot types S of the
entities mentioned by the user. It is a word tagging
problem where the utterance is labeled in the IOB
(Inside, Outside, and Beginning) format. The input
is only the current utterance Un.
Intent Detection (ID) is to recognize the intent
from predefined abstracted intent expresses I . It
is normally formulated as a classification problem.
The input is the current utterance Un, and the out-
put is the possible distribution of all the intent can-
didates I .
Dialogue State Tracking (DST) aims to record
the user’s constraints, which consists of the triple
set of domain-slot-value. For example, hotel-price-
cheap means the user wants a cheap hotel. The
input of DST at the n-th turn is the first n turns(U1, . . . , Un).
3 UniDU

In this section, we first introduce the unified
sequence-to-sequence data format for the five DU
tasks. Then we introduce the formulation of each
task in detail, especially how to reformulate the in-
tent detection, slot filling and dialogue state track-
ing as the generation task.

There are three components in the input of
UniDU: task identification, dialogue content, and
task query. The task identification represents with
a special token, e.g., dialogue summary identified
by “[DS]”. The dialogue content means the task-
dependent input, such as dialogue history for dia-
logue summary. The task query can be regarded as
the task-specific prompt, which includes the task
definition and domain-related information. There
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[DS] Emma: Buy me some earplugs please [T] Paul: How many
pairs? [T] Emma: 4 or 5 packs [T] Paul: I’ll get you 5 [T] Emma:
Thanks [C] what is the summary of this dialogue?

[DC] anna politkovskaya [T] the murder remains unsolved,
2016 [T] did they have any clues? [C] what is the semantic 
completion statement of ‘did they have any clues?’? 

[ID] What can I do if my card still hasn’t arrived after 2 weeks?
[C] what is the user’s intent on the bank business? 

[SF] I am Lakesha Mocher [C] what is last name in general
domain?

[DST] I am looking for a place to to stay that has cheap price 
range it should be in a type of hotel [C] what is the user’s 
constraint about the price range of the hotel? 

[DS] Maya will buy 5 packs of earplugs 
for Randolph at the pharmacy.

[DC] did investigators have any clues in 
the unresolved murder of anna 
politkovskaya?

[ID] card arrival

[SF] Mocher

[DST] cheap

update

MTL Training Strategy

Task Identification Dialogue Content Task Query Task Identification Query Answer

UniDU

Figure 1: Overview of UniDU. Under UniDU framework, the input consists of three parts: task identification,
dialogue content and task query, where ⊕ means concatenation. The output has two components: task identification
and query answer. We train the UniDU model with different multitask learning strategies.

are two elements in the output of UniDU: task iden-
tification and query answer. The query answer is
the understanding result of the task query given by
the dialogue content. The unified input and output
can be formalized as:

INPUT: [TI] dialogue content [C] task query
OUTPUT: [TI] query answer

where “[C]” is separate character and “[TI]” is
task identification (replaced by “[DS]”, “[DC]”,
“[SF]”,“[ID]” and “[DST]”, which correspond to di-
alogue summary, dialogue completion, slot filling,
intent detection and dialogue state tracking respec-
tively). At inference time, the UniDU model must
first predict the task identification.

Dialogue summary and dialogue completion are
originally generative tasks. The dialogue contents
in the input are the whole dialogue context C and
multi-turn utterances Hn respectively. Since these
two tasks are independent of the dialogue domain,
there is no domain information in the task query.
For dialogue summary, the task query is “what
is the summary of this dialogue?”. For dialogue
completion, the query is ‘‘what is the semantic
completion statement of Un?”, where Un is the t-th
utterance. Their understanding answers are anno-
tated dialogue summaries and rewritten utterances
in the output.

The original slot filling task demands the model
to extract all the mentioned slot values and their slot
types in an utterance Un. In this paper, the UniDU
model predicts the value slot by slot, which is an
iterated generation process on the slot candidate

list. Two different slot filling formats are shown
below:

I  am Lakesha   Mocher

B-LNameO B-FNameOOriginal:

UniDU: [SF] I am Lakesha Mocher [C] 
what is first name on general domain?
what is last name on general domain?
what is time on general domain?

[SF] Lakesha
[SF] Mocher
[SF] not mentioned

To be clear, we do not list all the candidate slots
here. In general, for each sample, it can be formal-
ized as:

INPUT: [SF] Un [C] what is s of d?
OUTPUT: [SF] slot value

where s and d are predefined slots and domains.
If s has no value in Un, slot value will be “not
mentioned”. If s has multiple values, they will be
separated by a comma in the slot value. When the
value is “not mentioned”, we call it a negative sam-
ple. Otherwise, it is a positive sample. To balance
the ratio of negative and positive samples during
the training process, we set the ratio to 2:1. If the
number of negative samples exceeds the thresh-
old, we randomly sample twice as many negative
instances as positive ones.

For dialogue state tracking tasks, the classifica-
tion methods always achieve better performance
than generative methods. However, under the
UniDU framework, we also formulate DST as a
slot-wise value generation task similar to the slot
filling task. The DST task formats are shown be-
low:
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expensive

[DST] Lakesha
[DST] not mentioned

what is the user’s constraint about the people?
what is the user’s constraint about the area?

I am looking for a place 
to stay that has cheap 
price range it should be 
in a type of hotel

Original:

UniDU: [DST] I am looking for a place to stay that has cheap price range it should be 
in a type of hotel [C] 

what is the user’s constraint about the price range?

[DST] not mentioned

price range medium
none
cheap
don’t care

Dialogue Context Slot Candidate Values Value Distribution

Input Output

where the output of the original DST model is the
distribution of all the candidate values of the slot.
The input and output of the DST task under UniDU
can be formalized as follows:

INPUT: [DST] (Hn, Un) [C] what is the
user’s constraint about s of d?

OUTPUT: [DST] slot value

where (Hn, Un) is dialogue context. If slot s of
the domain d is not in the dialogue state, its value
is “not mentioned”, which is a negative sample.
Note that different utterances are separated by the
special token “[T]” in the input. During the training
process, the ratio of negative and positive samples
is also set below 2:1.

For the intent detection task, the original meth-
ods formulate it as the intent classification problem
and output the distribution of all the candidate in-
tents. The UniDU model directly generates the
intent name of the current utterance, which can be
formalized as:

INPUT: [ID] Un [C] what is the user’s intent
on domain d?

OUTPUT: [ID] intent name

where domain d is normally known in advance. The
specific examples of original and UniDU formats
are shown below:

what is the user’s intent on the bank business?

What can I do if my card still 
hasn’t arrived after 2 weeks? 

Original:

UniDU: [ID] What can I do if my card still hasn’t arrived after 2 weeks? [C] 

[ID] card arrival

card linking
exchange rate
card arrival
age limit
change pin

Utterance Candidate Intents Intent Distribution

Input Output

where we do not list all the intents. To integrate the
generalization capability into the UniDU model,
we also construct negative samples for the intent
detection task. The intent name of the negative
sample is “not defined”, where the input utterances
Un are sampled from out-of-domain dialogues. The
ratio of negative and positive samples is set to 2:1.

Until now, all the five dialogue understanding tasks
have been formulated as the unified sequence-to-
sequence generation task. The specific examples
are shown in Figure 1.

4 Multitask Training Strategies

Although the five DU tasks can be formulated as
a unified generative task, straightforward multi-
task training may not work due to the different
natures of these tasks. In this section, we discuss
multitask training strategies and propose a novel
model-agnostic adaptive weighting strategy.

4.1 Multitask Learning Classification
The existing multitask training strategies can be
classified into three categories: average sum
method, manual scheduled method, and learnable
weight method.
Average Sum method distributes all the samples
with the same weight. In other words, the losses
from different samples are directly averaged, for-
mulated as L = 1

T ∑T
t=1Lt, where T is the number

of the tasks and Lt is the loss of the t-th task.
Manual Schedule method designs a heuristic train-
ing schedule for planning the learning process of
different tasks. For example, curriculum learn-
ing (Bengio et al., 2009) is a kind of typical manual
scheduled method, which first trains the easier sam-
ples and then adds the more complicated cases.
The manual scheduled method can be formulated
as L = 1∑ I(t) ∑T

t=1 I(t) ⋅ Lt, where I(t) is indicator
function, whose value is 0 or 1.
Learnable Weight method aims to parameterize
the loss weights of different tasks. The target of
the parameterized weights is to balance the ef-
fects of task instances, which prevents the model
from slanting to one or several tasks and achieves
global optimization. There are two classical learn-
able weight algorithms: homoscedastic uncertainty
weighting (HUW) (Kendall et al., 2018) and gra-
dient normalization (GradNorm) (Chen et al.,
2018b). For the tasks, the loss function is formu-
lated as L = ∑T

t=1Wt ⋅ Lt, where Wt is learnable
weights and greater than 0. In the HUW algorithm,
the weights update as the following loss function:

LHUW = T∑
t=1(Lt ⋅Wt − log(Wt)), (1)

where log(Wt) is to regularize weights, which is
adaptive to regression tasks and classification tasks.
The motivation of the GradNorm method is to slow
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down the learning scale of the task that has a larger
gradient magnitude and faster convergence rate.

4.2 Model-Agnostic Training Strategy

In Equation 1, the learnable weight Wt is only de-
pendent on the corresponding task. Thus, we can
regard the weight as the function of task Wϕ(t),
where ϕ are parameters shared among five tasks.
Under the UniDU framework, five tasks share the
same encoder-decoder model, which is a constant
in weight function Wϕ(t). The task format de-
pends on task attributes, such as input, output, and
data scale. To extract the characters of five tasks,
we manually design a vector as the task feature to
represent a task. Each dimension in the task fea-
ture has its physical meaning related to the model-
agnostic setting. In this paper, we design 14 di-
mensional vector ft for each task introduced in
detail in Appendix B. Since the model-agnostic
training strategy (MATS) formulates the weight as
the task-related function and may share the func-
tion parameters among different tasks, the weights
are no longer independent as in the original learn-
able weight method. The MATS improved from
Equation 1 is formalized as:

LMATS = T∑
t=1(Lt ⋅Wϕ(ft) − log(Wϕ(ft))). (2)

5 Experiments

We conduct the experiments on ten dialogue under-
standing corpora. Each task has two corpora. We
evaluate the UniDU framework with eight different
training strategies. Compared with well-designed
models, our proposed UniDU can get better perfor-
mance in five benchmarks. Then we deeply analyze
different factors affecting the UniDU model’s per-
formance, including DU tasks, unified format, and
pre-trained language models. Last but not least,
we conduct few-shot experiments to validate the
generalization ability of UniDU.

5.1 Corpora&Metrics

There are ten dialogue understanding corpora in
total spanned five tasks: dialogue summary (DS),
dialogue completion (DC), slot filling (SF), intent
detection (ID), and dialogue state tracking (DST).
We choose two well-studied corpora for each task:
one is the evaluation corpus, and the other is the
auxiliary corpus. The dataset statistics are shown
in Appendix A.

Dialogue Summary: We choose SAMSUM (Gliwa
et al., 2019) and DIALOGSUM (Chen et al., 2021a)
datasets. The common metrics for the summary
task are ROUGE scores, which measure the overlap
of n-grams in the generated summary against the
reference summary.
Dialogue Completion: TASK (Quan et al., 2019)
and CANARD (Elgohary et al., 2019) are used. The
metrics are BLEU score and exact match (EM)
accuracy. BLEU measures how similar the rewrit-
ten sentences are to golden ones. Exact match
means the rate of the generated totally equaled to
the golden.
Intent Detection: We conduct the experiments
on BANKING77 (Casanueva et al., 2020) and
HWU64 (Liu et al., 2019c), where 77 and 64 means
the number of predefined intents. The evaluation
metric is detection accuracy (ACC.).
Slot Filling: We choose to conduct the experi-
ments on RESTAURANTS8K (Coope et al., 2020)
and SNIPS (Coucke et al., 2018). We report F1

scores for extracting the correct span per user utter-
ance. Note that the correct predictions on negative
samples are not calculated in the F1 score, which
is comparable with traditional methods.
Dialogue State Tracking: WOZ2.0 (Wen et al.,
2017) and MULTIWOZ2.2 (Zang et al., 2020) are
used. The metric is joint goal accuracy (JGA),
which measures the percentage of success in all
dialogue turns, where a turn is considered a suc-
cess if and only if all the slot values are correctly
predicted. Note that we only use “hotel” domain
data of MULTIWOZ2.2 in the training phase.

5.2 Eight Training Strategies

As introduced in Section 4, the multitask training
strategies can be divided into three categories: av-
erage sum, manual schedule, and learnable weight.
Before introducing MTL training methods, there
is an intuitive baseline trained on its own data
named single training (ST). In ST, the sequence-
to-sequence models are only trained on five evalu-
ated datasets, respectively. In average sum method,
there are two types of training strategies: task trans-
fer learning (TT) (Torrey and Shavlik, 2010; Ruder
et al., 2019) and mixture learning (MIX) (Wei et al.,
2021). The task transfer learning aims to enhance
the performance using external data from the aux-
iliary corpus that has the same task setup. This is
the main reason that we select two corpora for each
task. The mixture learning directly mixes up all
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Methods DS(SAMSUM) DC(TASK) ID(BANKING77) SF(RESTAURANTS8K) DST(WOZ2.0)

R-1 R-L EM BLEU ACC. F1 JGA

Baselines
49.67∗ 48.95∗ 74.2 89.4 93.44 96.00 91.4

(Wu et al., 2021) (Chen et al., 2021b) (Mehri et al., 2020) (Coope et al., 2020) (Tian et al., 2021)

Eight Training Strategies under UniDU Framework
ST 49.74 47.10 76.4 89.0 91.49 95.76 89.8
TT 51.24 48.59 76.1 89.2 91.94 95.12 91.0

MIX 50.98 48.13 76.2 90.8 91.91 96.43 90.8
G2S 51.13 48.75 76.3 90.1 90.12 94.81 86.8
CL 51.04 48.36 77.2 89.8 92.17 96.02 90.8

GradNorm 51.33 48.69 77.4 90.4 92.07 96.69 90.5
HUW 50.31 47.69 76.2 90.4 93.14 97.43 91.9
MATS 50.53 47.97 76.6 90.6 93.60 97.61 92.3
Finetune 51.93 49.01 76.1 91.0 93.54 97.19 92.1

Table 1: The results on five DU tasks trained with eight learning strategies. Finetune means that the best model
(according to underlined metric values) of each task continues to be fine-tuned on separate task corpus. ∗ means that
we run their released code with BART-base instead of BART-large to fairly compare with our model.

the training samples from ten corpora together. In
these two methods, the learning weight for each
sample is equally distributed. In the manual sched-
ule method, we test two training routes according
to the curriculum learning method. From the in-
put perspective, five tasks can be divided into three
classes: utterance-level input on intent detection
and slot filling, turn-level input on dialogue comple-
tion, and dialogue state tracking and dialogue-level
input on dialogue summary. The inputs gradually
become more complex in order: utterance-level,
turn-level, and dialogue-level. Thus, the intuitive
method (named CL) trains five tasks in this or-
der. Note that the previous data are kept in the
next training phase. From the task setup perspec-
tive, dialogue summary and dialogue completion
belong to domain-independent tasks. The other
three tasks are domain-dependent tasks. There is
another training route (G2S): from general tasks to
domain-specific tasks. In learnable weight method,
we evaluate three methods introduced in Section 4:
GradNorm, HUW and our proposed MATS.

5.3 Experimental Setup

In this paper, we set BART-base as the back-
bone of the unified encoder-decoder model. The
BART model is implemented with HuggingFace
library (Wolf et al., 2019). We conduct all the exper-
iments on the 2080TI GPU with 11G memory. we
run every experiment for 60 epochs spent 72 hours.
The batch size is 32 with the gradient accumulation
strategy (updated per 8 steps). The learning rates
of the unified model and learnable weights are 1e-5

and 1e-4, respectively. In the MATS method, the
weight function consists of two linear layers with
the ReLU activation function, whose hidden sizes
are 64.

5.4 Results

In Table 1, we report the best evaluation perfor-
mance on five tasks with eight training strategies.
The well-designed models as baselines are intro-
duced in Section 1. The experimental results show
that different training strategies greatly affect the
performance of five tasks under the UniDU frame-
work. Our proposed MATS achieves the best or
near best performance except on dialogue sum-
mary. On the atypical generation tasks (intent de-
tection, slot filling, and dialogue state tracking), the
UniDU with MATS methods can achieve promis-
ing improvement compared to well-designed mod-
els. The simple task transfer learning method (TT)
can not largely increase the performance compared
with single training. The mixture operation leads
to consistent performance improvement on five
tasks. However, compared with TT, the improve-
ment is still limited except for dialogue completion.
Compared with our proposed MATS, MIX biases
convergence to more complex DU tasks (dialogue
summary and dialogue completion). Two manual
schedule methods (G2S and CL) do not have any
distinct advantages. In learnable weight methods,
GradNorm only achieves excellent performance on
dialogue summary. HUW achieves performance
gain on intent detection, slot filling, and dialogue
state tracking. We continue fine-tuning the best

447



Methods DS DC ID SF DST
Overall

(R-L) (BLEU) (ACC.) (F1) (JGA)

MIX 48.04 90.40 91.9 96.43 90.1 83.23
HUW 47.63 89.95 93.0 97.43 91.8 83.97
MATS 47.57 90.43 93.5 97.46 91.9 84.16

Table 2: The best overall performance of MIX, HUW
and MATS methods.

Method DS DC ID SF DST
(R-L) (BLEU) (ACC.) (F1) (JGA)

MATS 47.97 90.6 93.60 97.61 92.3
- DS - 90.2▼0.4 93.20▼0.4 97.35▼0.2692.8▲0.5

- DC 47.77▼0.20 - 93.41▼0.1997.39▼0.2291.8▼0.5

- ID 47.81▼0.1690.5▼0.1 - 97.45▼0.16 92.3<0.0

- SF 47.77▼0.2090.5▼0.1 93.60<0.0 - 92.0▼0.3

- DST 47.85▼0.12 90.6<0.0 93.47▼0.1397.58▼0.03 -

Table 3: Ablation study on effects of each task corpora.

UniDU models (signed with underline) on the cor-
responding corpus. We find that only the dialogue
summary and dialogue completion have obvious
performance gain, which reflects the necessity of
the UniDU framework for simpler generative tasks.

In Table 1, we report the task-specific perfor-
mance of the UniDU model, whose checkpoints
are selected by the task-specific metric. Table 2
shows unified performance on five tasks with MIX,
HUW, and MATS methods. We evaluate the single
checkpoint of UniDU model, which has the high-
est evaluated overall score, on the five tasks. The
overall score is the average value of the five main
metrics shown in Table 2. We can see that our pro-
posed MATS gets the highest overall performance
and the best performance on four DU tasks.

5.5 Analysis

In this subsection, we analyze factors to affect the
performance of UniDU model including DU tasks,
unified format and pre-trained language models.

5.5.1 Effects of DU Tasks
To validate the effects of the dialogue understand-
ing tasks, we directly remove one of five DU cor-
pora and train the UniDU model with the MATS
method shown in Table 3. In general, the five
DU tasks benefit each other, except that dialogue
summary has negative effects on the dialogue state
tracking task. We guess the general dialogue sum-
mary task summarizes a dialogue into a sentence,
ignoring the domain-specific information. On the
other hand, we find that the dialogue completion

Backbone DS DC ID SF DST
(R-L) (BLEU) (ACC.) (F1) (JGA)

Trans.-B 34.84 74.2 86.36 83.01 72.5
BART-B 47.97 90.6 93.60 97.61 92.3

T5-S 41.63 85.9 87.04 96.94 89.9
Trans.-L 34.10 67.4 86.46 71.65 71.0
BART-L 48.89 88.6 93.44 97.12 92.6

T5-B 48.89 90.7 93.90 98.14 92.6

Table 4: Ablation study on effects of different pre-
trained language models with encoder-decoder archi-
tecture.

task has the most significant effect on the other
four DU tasks. It indicates that the co-reference
and information ellipsis are still the main factors
to impact the dialogue understanding ability. The
phenomenon can facilitate the dialogue understand-
ing community to pay more attention to dialogue
completion. For example, when pre-training a scal-
ing dialogue model, the pre-trained tasks should be
close to the dialogue completion task.

5.5.2 Effects of Unified Format

As introduced in Section 3, we formulate dialogue
understanding tasks in QA format. There is an in-
tuitive alternative: prefix format, where the task
query is concatenated on the decoder side. At in-
ference time, the decoder is directly fed with task
query and then generates the answer. As shown in
Figure 2, the QA format achieves a performance
boost on four of five DU tasks (except for dialogue
summary) compared to the prefix format.

5.5.3 Effects of PLMs

To validate the effects of the different pre-
trained backbones, we initialize the encoder-
decoder of UniDU model with random mecha-
nism, BART (Lewis et al., 2020) and T5 (Raf-
fel et al., 2020). The Trans.-B and Trans.-L in
Table 4 mean the random-initialized Transformer
trained from scratch, which has the same parame-
ters with BART-base model (BART-B) and BART-
large model (BART-L). T5-S and T5-B mean T5-
small and T5-base respectively. We can see that the
pre-trained language models get absolute perfor-
mance gain compared to random-initialized mod-
els. BART-B can get better performance than T5-
S. When the parameter scale increases, T5-base
achieves the best performance than other models.
The results show that the large PLMs can improve
the complex dialogue summary by a large margin.
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Unseen Dialogue Content UniDUMATS

[DS] USER : I’d like a taxi to take me to ruskin gallery [T] SYSTEM : Sure! What is your
departure site? [T] USER : I will depart from saffron brasserie at 7:15. What is the car type
and contact number so I know who and where you will pick me up? [T] SYSTEM : Booking
completed! A grey ford will be picking you up. The contact number is 07689877132. [T]
USER : That is all I needed, thank you. [C] what’s the summary of this dialogue?

[DS] a grey ford will take
USER to ruskin gallery at
7:15.

[DC] USER : Please reserve for me a taxi that will pick me up at cambridge arts theatre after
09:30 [T] SYSTEM : And where will you be going? [T] USER : I’m going to restaurant one
seven. [T] SYSTEM : Your booking is complete, a black audi will be picking you up. [T]
USER : Thank you. I need the contact number, as well. [C] what is the semantic completion
statement of “Thank you. I need the contact number, as well.”?

[DC] I need the contact
number of a black audi to
pick me up at cambridge
arts theatre

[ID] help me get a taxi to the cambridge museum of technology please. [C] what is the user’s
intent on the taxi? [ID] transport taxi

[SF] I need a taxi to pick me up at Ashley Hotel to leave after 10:45. [C] what is leaving
time of taxi? [SF] 10:45

[DST] USER : I need a taxi. I am going to avalon and I need to leave after 16:15 [C] what
is the user’s constraint about the destination of the taxi? [DST] avalon

Table 5: Case study of the zero-shot performance of the best unified model trained with MATS method. The input
dialogue contents are sampled from unseen “Taxi” domain.

47.9748.21

92.3

89.2

88.9
90.6

90.21

93.60
94.42 97.61

Figure 2: Ablation study of different unified understand-
ing format.

5.6 Generalization Ability

To further evaluate the generalization ability of the
UniDU model, we first conduct few-shot learning
experiments on the domain-dependent slot filling
task. We test the zero-shot capability of UniDU on
unseen dialogue data.
Few-shot Learning: We select the UniDU model
that gets the best evaluation of overall performance
on five tasks learned with the MATS method. For
the slot filling task, we extend another dialogue
corpus DSTC8 (Rastogi et al., 2020). We choose the
“Bus” domain data in DSTC8, which is unseen in the
training process of UniDU. Compared with vanilla
BART, UniDU has obvious advantages, especially
in the extremely resource-limited situation. When
there is only 1% training data, the vanilla BART
is disabled to learn, as shown in Figure 3. The
few-shot experiment on the DST task is shown in
Appendix C.
Zero-shot Performance: We validate UniDU
model trained with MATS method on unseen “Taxi”

Figure 3: Few-shot learning results on slot filling fine-
tuned on BART and UniDU. 1%, 2% and 5% are the
percents of the training data on unseen “Bus” domain.

domain dialogue data collected from MULTIWOZ2.2

corpus. UniDU model can get 18.24% accuracy on
ID, 39.69% F1 score on SF and 1.6% JGA on DST.

6 Case Study

We directly validate the UniDU model trained with
the MATS method on unseen “Taxi” domain di-
alogue data collected from MULTIWOZ2.2 corpus.
As shown in Table 5, we find that the UniDU model
can generate reasonable dialogue summary and
completion. Note that the UniDU model did not
see any task-oriented dialogue in these two tasks.
For domain-specific tasks, the UniDU model can
still generate accurate query answers in some cases.
It indicates that our proposed generative UniDU
model has excellent generalization ability, which
not only can adapt to unseen dialogue and also
directly generate reasonable answers on five DU
tasks in the zero-shot setting.

To further explore the relations among five tasks,
we plot the reduced-dimension map of the task em-
beddings of five tasks with the t-SNE algorithm
shown in Figure 4. The task embeddings are the
final decoder layer representation of the task identi-
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Figure 4: The reduce-dimension map of task embed-
dings collected from UniDU model trained by MDTS.
The task embedding is the final decoder representation
of the task identification token.

fication token, whose model is trained with MDTS.
The dialogue data is from the above unseen “Taxi”
domain to eliminate the impacts of the dialogue
context. We find that the embeddings of dialogue
summary, dialogue completion, and intent detec-
tion cluster together. These three tasks under the
UniDU framework are more general than slot fill-
ing and dialogue state tracking, whose task queries
are slot-wise. The task formats between slot filling
and dialogue state tracking are close. However, the
UniDU model can still have good performance to
distinguish between these two tasks.

7 Related Work

Our work relates to several broad research areas,
including prompting, dialogue modeling, and mul-
titask learning. Due to the content limitation, here
we describe one subarea: multitask learning in NLP
applications that relate most closely to our work.
Luong et al. (2016) apply a sequence-to-sequence
model on three general NLP tasks and study dif-
ferent parameter-sharing strategies. Kumar et al.
(2016); McCann et al. (2018) try to cast NLP tasks
as QA over a context. The main topics in this work
are how to design an efficient model to integrate
the knowledge between question and context. Liu
et al. (2019b) combine four natural language under-
standing tasks, which utilize BERT as the shared
representation model. The model corresponding to
each task still has a well-designed part of solving
the intrinsic problem. It hampers the analysis of
the interaction among the different tasks.

Recently, Wei et al. (2021) formulated the NLP
tasks as the generation task by directly mixing
scaling annotated data up. They only focus on
zero-shot and few-shot ability on the NLP tasks

and ignore the impacts of the different multitask
training strategies, which can not achieve better
performance on general NLP tasks compared to su-
pervised learning methods on well-designed mod-
els. In task-oriented dialogue (TOD) modelling,
Peng et al. (2020); Su et al. (2021) reformulate the
pipeline TOD model as the sequential end-to-end
generation problem. The end-to-end model needs
to generate dialogue state, dialogue action, and
response at the same time, which is not scalable
when the number of tasks increases. The sequen-
tial format needs all the annotations of the same
context, which is unavailable in the DU area. Most
recently, PPTOD (Su et al., 2021) unifies the TOD
task as multiple generation tasks, including intent
detection, DST, and response generation. However,
they focus on the response generation ability and
ignore the effects of different tasks. In this paper,
we deep dive into analyzing the effects of five DU
tasks.

8 Conclusion&Future Work

In this paper, we propose a unified generative dia-
logue understanding framework (UniDU) to share
the knowledge across five typical dialogue under-
standing tasks. We introduce a model-agnostic
adaptive weight learning method for multitask train-
ing to alleviate the biased generation problem. Our
proposed UniDU method achieves better perfor-
mance compared to well-designed models on a
total of five DU tasks. We further deep dive into
studying the affected factors. Finally, experimental
results indicate that our proposed UniDU model
can also get excellent performance under few-shot
and zero-shot settings. In the future, we will in-
crease the scale of the DU corpora and integrate
the unsupervised dialogue pre-training tasks. We
will further examine the task-level transferability
of the UniDU model.
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Wen, Milica Gasic, et al. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. In Pro-
ceedings of ACL 2017, System Demonstrations, pages
73–78.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Mil-
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Appendix
A Dialogue Understanding Corpora

Corpora #Sample I(Token) I(Turn) O(Token) Task
SAMSUM 14732 104.95 11.16 20.31 DS
DIALOGSUM 12460 140.48 9.49 22.86 DS

TASK 2205 34.92 2.75 10.84 DC
CANARD 31526 102.67 9.80 11.55 DC

BANKING77 12081 21.64 1 3.14 ID
HWU64 25715 17.69 1 2.05 ID

RESTAURANTS8K 15270 14.44 1 3.38 SF
SNIPS 35748 15.31 1 1.77 SF

WOZ2.0 7608 78.96 4.63 1.30 DST
MULTIWOZ2.2 35119 115.80 5.99 1.45 DST

Table 6: The ten DU corpora trained on UniDU model.
I(Token) and I(Turn) mean the average length of the split to-
kens and the average turns of the input dialogue content.
O(Token) means the average length of the split tokens of
the task-specific output.

In this paper, we train our proposed unified genera-
tive model on ten dialogue understanding corpora,
as shown in Table 6. For each DU tasks, we select
two well-studied datasets. The first one is used to
evaluate and the second one is an auxiliary corpus.
The main reason to select two datasets for each
task is to compare the multitask learning with the
task transfer learning. We aim to know whether
the knowledge sharing between different dialogue
understanding data is only happening in the same
DU task rather than all the DU tasks. The experi-
mental results show that the annotated data from
the other DU tasks are also important to enhance
the performance, which indicates that it is an effi-
cient way to transfer the knowledge among all the
DU tasks. Note that the selected DU data are from
different corpora, which means that the distribution
of the input dialogue content is totally different. As
shown in Table 6, the inputs and the outputs of the
five DU tasks are greatly different from each other.
The longest average input reaches to 140.48 and
the shortest is only 14.44. The longest output is
22.86 from dialogue summary and the shortest is
1.30 from dialogue state tracking. These charac-
ters lead a big challenge to train all the dialogue
understanding data in multitask learning way. The
experimental results show that the intuitive mix-
ture learning method makes UniDU model bias
convergence to the more complex tasks like dia-

logue summary and dialogue completion. In this
paper, we compare eight multitask training strate-
gies. Our proposed MATS method can achieve the
best overall performance on the five tasks under
UniDU framework.

weight function

model task format

UniDU
input output scale

M
odel-A

gnostic Feature

• Input length
• Turn num of input
• Sent num of input
• Input 1-gram
• Input 2-gram
• Input 3-gram
• Input PPL
• Output length
• Sent num of output
• Output 1-gram
• Output 2-gram
• Output 3-gram
• Output PPL
• Training Scale

𝑊∅ 𝑡 ∗ 𝐿"− log	(𝑊∅(𝑡))

𝑊" = 𝑊∅(𝑓" )

disentangled

Figure 5: Overview of model-agnostic training strategy.

B Model-Agnostic Training Strategy

In traditional HWU algorithm, the learnable weight
Wt is only dependent on the corresponding task.
Thus, we can regard the weight function of task
Wϕ(t), where ϕ are parameters shared among five
tasks. Generally, the task is associated with two
factors: its corresponding model and task format.
Under UniDU framework, five tasks share the same
encoder-decoder model, which can be regarded as
a constant in weight function Wϕ(t). The task
format dependents on model-agnostic task setting,
such as input, output and data scale. To distinguish
the five tasks under UniDU framework, we manu-
ally design a vector as the task feature to represent
a task. Each dimension in the task feature has its
physical meaning related to model-agnostic setting.
In this paper, we design 14 dimensional vector ft,
as shown in Figure 5. For input and output, we add
the average length of token, the average sentence
number, the n-grams and the perplexity (PPL) as
the attributes of the DU tasks. Especially for input,
the average turn number is also an important char-
acter. The last attribute is training scale for each
task. Since the model-agnostic training strategy
(MATS) formulates the weight as the task-related
function and may share the function parameters
among different tasks, the weights are not longer
independent to each other as in original learnable
weight method.

C Few-shot Learning

We select UniDU model that gets the best evalua-
tion overall performance on five tasks learned with
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Figure 6: Few-shot learning results on DST fine-tuned
on BART and UniDU. 1%, 2% and 5% are the percents
of the training data on unseen “Taxi” domain.

MATS method. For dialogue state tracking, we
utilize the “Train” domain data in MULTIWOZ2.2,
which is unseen in MTL training phase. Compared
with vanilla BART, UniDU has obvious advantages,
especially on extremely resource-limited situation.
When there is only 1% and 2% training data, the
vanilla BART is disable to learn. UniDU model
warmed up by MATS method can quickly adapt the
model on the unseen domain.
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Abstract

Developing semi-supervised task-oriented di-
alog (TOD) systems by leveraging unlabeled
dialog data has attracted increasing interests.
For semi-supervised learning of latent state
TOD models, variational learning is often used,
but suffers from the annoying high-variance of
the gradients propagated through discrete la-
tent variables and the drawback of indirectly
optimizing the target log-likelihood. Recently,
an alternative algorithm, called joint stochastic
approximation (JSA), has emerged for learning
discrete latent variable models with impressive
performances. In this paper, we propose to
apply JSA to semi-supervised learning of the
latent state TOD models, which is referred to as
JSA-TOD. To our knowledge, JSA-TOD rep-
resents the first work in developing JSA based
semi-supervised learning of discrete latent vari-
able conditional models for such long sequen-
tial generation problems like in TOD systems.
Extensive experiments show that JSA-TOD
significantly outperforms its variational learn-
ing counterpart. Remarkably, semi-supervised
JSA-TOD using 20% labels performs close to
the full-supervised baseline on MultiWOZ2.1.

1 Introduction

Task-oriented dialog (TOD) systems are designed
to help users to achieve their goals through mul-
tiple turns of natural language interaction. The
system needs to parse user utterances, track dialog
states, query a task-related database (DB), decide
actions and generate responses, and to do these it-
eratively across turns. The information flow in a
task-oriented dialog is illustrated in Figure 1.

Recent studies recast such information flow in
a TOD system as conditional generation of tokens
and base on pretrained language models (PLMs)
such as GPT2 (Radford et al., 2019) and T5 (Raffel
et al., 2020) as the model backbone. Fine-tuning a

∗Corresponding author.

Figure 1: The information flow in a task-oriented dialog.
Square brackets denote special tokens in GPT2.

PLM over annotated dialog datasets such as Multi-
WOZ (Budzianowski et al., 2018) via supervised
learning has shown promising results (Hosseini-Asl
et al., 2020; Peng et al., 2020; Yang et al., 2021; Liu
et al., 2022), but requires manually labeled dialog
states and system acts (if used).

Notably, there are often easily-available unla-
beled dialog data such as in customer-service logs
and online forums. This has motivated the de-
velopment of semi-supervised leaning (SSL) for
TOD systems, which aims to leverage both la-
beled and unlabeled dialog data. A broad class of
SSL methods builds a latent variable model (LVM)
of observations and labels and blends unsuper-
vised and supervised learning. Unsupervised learn-
ing with a LVM usually maximizes the marginal
log-likelihood, which is often intractable to com-
pute. Variational learning (Kingma and Welling,
2014) introduces an auxiliary inference model
and, instead, maximizes the evidence lower bound
(ELBO) of the marginal log-likelihood. This ap-
proach of variational learning of LVMs has been
studied for semi-supervised TOD systems such as
in Jin et al. (2018); Zhang et al. (2020b); Liu et al.
(2021); Li et al. (2021). Particularly, discrete latent
variables are mostly used, since dialog states and
system acts are often modeled as taking discrete
values.

However, for variational learning of discrete la-
tent variable models, the Monte-Carlo gradient esti-
mator for the inference model parameter is known
to have high-variance. Most previous studies use
the Gumbel-Softmax trick (Jang et al., 2017) or the
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Straight-Through trick (Bengio et al., 2013) empir-
ically, which in fact are biased estimators. Another
drawback of variational learning is that it indirectly
optimizes the lower bound of the target marginal
log-likelihood, which leaves an uncontrolled gap
between the target and the bound, depending on
the expressiveness of the inference model.

Recently, an alternative algorithm, called joint
stochastic approximation (JSA) (Xu and Ou, 2016;
Ou and Song, 2020), has emerged for learning dis-
crete latent variable models with impressive per-
formances. JSA directly optimizes the marginal
likelihood and completely avoids gradient prop-
agation through discrete latent variables. In this
paper, we propose to apply JSA to semi-supervised
learning of the latent state TOD models, which is
referred to as JSA-TOD. We develop recursive turn-
level Metropolis Independence Sampling (MIS) to
enable the successful application of JSA, which
needs posterior sampling of the latent states from
the whole dialog session. To our knowledge, JSA-
TOD represents the first work in developing JSA
based semi-supervised learning of discrete latent
variable conditional models for such long sequen-
tial generation problems like in TOD systems.

Extensive experiments show that JSA-TOD sig-
nificantly outperforms its variational learning coun-
terpart in semi-supervised learning. Remarkably,
semi-supervised JSA-TOD using 20% labels per-
forms close to the supervised-only baseline us-
ing 100% labels on MultiWOZ2.1. The code and
data are released at https://github.com/cycrab/JSA-
TOD.

2 Related Work

2.1 Semi-Supervised TOD Systems

There are increasing interests in developing SSL
methods for TOD systems, which aims to leverage
both labeled and unlabeled data. Roughly speaking,
there are two broad classes of SSL methods - the
pretraining-and-finetuning approach and the latent
variable modeling approach. With the development
of pretrained language models such as GPT2 (Rad-
ford et al., 2019) and T5 (Raffel et al., 2020), the
pretraining-and-finetuning approach based on back-
bones of PLMs has shown excellent performance
for TOD systems (Hosseini-Asl et al., 2020; Yang
et al., 2021; Lee, 2021).

Discrete latent variable models have been used
for semi-supervised TOD systems (Jin et al., 2018;

Zhang et al., 2020b)1, initially based on LSTM
architectures. Recently, discrete latent variable
models based on PLMs have been studied in Liu
et al. (2021), combining the strengths of PLMs and
LVMs for semi-supervised TOD systems. However,
previous studies all resort to variational methods
for learning latent variable models, which suffers
from the high-variance of the gradients propagated
through discrete latent variables and the drawback
of indirectly optimizing the target log-likelihood.

2.2 Joint Stochastic Approximation for
Learning Latent Variable Models

Traditionally, variational methods minimize the
“exclusive Kullback-Leibler (KL) divergence”
KL[p||q] ≜

∫
q log

(
q
p

)
, where p and q are short-

hands for the true posterior (of the latent variable
given the observation) and its approximation (also
called the inference model) respectively, in learn-
ing a latent variable model. Recently, the JSA al-
gorithm has been developed (Xu and Ou, 2016; Ou
and Song, 2020), which proposes to minimize the
“inclusive KL” KL[p||q] ≜

∫
p log

(
p
q

)
, which has

good statistical properties that makes it more appro-
priate for certain inference and learning problems,
particularly for those using discrete latent variables.
Similar idea has been studied in a concurrent and
independent work (Naesseth et al., 2020). More
investigations and extensions along this direction
have been examined (Kim et al., 2020, 2022).

In Song and Ou (2020), JSA is applied to semi-
supervised sequence-to-sequence learning, which
consistently outperforms variational learning on
two semantic parsing benchmark datasets. How-
ever, both generative model and inference model in
(Song and Ou, 2020) are LSTM-based and much
simpler than the ones in this work; its model com-
plexity is similar to a single turn in a TOD system.
Another difference is that this paper represents the
first application of JSA in its conditional sequen-
tial version, since the latent state TOD model is a
conditional sequential generative model.

1There are other previous studies of using discrete latent
variable models in TOD systems, for example, Wen et al.
(2017); Zhao et al. (2019); Bao et al. (2020). But most of
them are mainly designed to improve response generation and
diversity, instead of towards semi-supervised learning. See
Zhang et al. (2020b); Liu et al. (2021) for more review of
related work in latent variable models for dialogs.
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3 Preliminary: Joint Stochastic
Approximation (JSA)

Stochastic approximation (SA) refers to an impor-
tant family of iterative stochastic optimization al-
gorithms for stochastically solving a root finding
problem, which has the form of expectations being
equal to zeros (Robbins and Monro, 1951). Within
the SA framework, the joint stochastic approxi-
mation (JSA) algorithm is recently developed (Xu
and Ou, 2016; Ou and Song, 2020) for learning a
broad class of latent variable models, particularly
for learning models with discrete latent variables.
Interestingly, JSA amounts to coupling an SA ver-
sion of Expectation-Maximization (SAEM) (De-
lyon et al., 1999; Kuhn and Lavielle, 2004) with an
adaptive Markov Chain Monte Carlo (MCMC) pro-
cedure. Based on JSA, the annoying difficulty of
propagating gradients through discrete latent vari-
ables and the drawback of indirectly optimizing the
target log-likelihood can be gracefully addressed.

Consider a latent variable generative model
pθ(z, x) for observation x and latent variable z,
with parameter θ. Like in variational methods,
JSA also jointly trains the target model pθ(z, x) to-
gether with an auxiliary amortized inference model
qϕ(z|x). The difference is that JSA directly max-
imizes w.r.t. θ the marginal log-likelihood and
simultaneously minimizes w.r.t. ϕ the inclusive
KL divergence KL(pθ(z|x)||qϕ(z|x)) between the
posterior and the inference model, pooled over the
training dataset:




min
θ

1

n

n∑

i=1

log pθ(x
(i))

min
ϕ

1

n

n∑

i=1

KL[pθ(z
(i)|x(i))||qϕ(z(i)|x(i))]

(1)
where the training dataset consists of n indepen-
dent and identically distributed (IID) data-points{
x(1), · · · , x(n)

}
.

The optimization problem Eq. (1) can be solved
by setting the gradients to zeros and applying the
SA algorithm to find the root for the resulting si-
multaneous equations, which has the exact form of
expectations equal to zeros:
{

1
n

∑n
i=1Epθ(z(i)|x(i))

[
∇θ log pθ(x

(i), z(i))
]
= 0

1
n

∑n
i=1Epθ(z(i)|x(i))

[
∇ϕ log qϕ(z

(i) | x(i))
]
= 0

(2)

The resulting JSA algorithm, as summarized in

Algorithm 1 The JSA algorithm
repeat

Monte Carlo sampling:
Draw κ over 1, · · · , n, pick the data-point x(κ)

along with the cached z̄(κ), and use MIS to
draw z(κ);
Parameter updating:
Update θ by ascending: ∇θ log pθ(z

(κ), x(κ));
Update ϕ by ascending: ∇ϕ log qϕ(z

(κ)|x(κ));
until convergence

Algorithm 1, iterates Monte Carlo sampling and
parameter updating. In each iteration, we draw
a training observation x(κ) and then sample z(κ)

through Metropolis Independence Sampling (MIS),
with pθ(z

(κ)|x(κ)) as the target distribution and
qϕ(z|x(κ)) as the proposal:

1) Propose z ∼ qϕ(z|x(κ));
2) Accept z(κ) = z with probability

min

{
1,

w(z)

w(z̄(κ))

}

where w(z) = pθ(z|x(κ))

qϕ(z|x(κ))
∝ pθ(z,x

(κ))

qϕ(z|x(κ))
is the usual

importance ratio between the target and the pro-
posal distribution and z̄(κ) denotes the cached la-
tent state for observation x(κ).

The JSA algorithm can be intuitively understood
as a stochastic extension of the well-known EM
algorithm (Dempster et al., 1977). Since the latent
variable z(κ) is unknown for data-point x(κ), the
Monte Carlo sampling step in JSA fills the miss-
ing value for z(κ) through sampling pθ(z

(κ)|x(κ)),
which is analogous to the E-step in EM. Then in the
parameter updating step, z(κ) is treated as if being
known, and used to optimize over θ and ϕ by per-
forming gradient ascent using∇θ log pθ(z

(κ), x(κ))
and∇ϕ log qϕ(z

(κ)|x(κ)) respectively. This is anal-
ogous to the M-step in EM, but with the proposal
qϕ being adapted as well. In summary, we could
refer to the underlying mechanism of JSA as Pro-
pose, Accept/Reject, and Optimize (or, for short,
the PARO mechanism), which establishes JSA as
a simple, solid and effective approach to learning
discrete latent variable models.

4 Method

4.1 Definition of Discrete Latent Variables in
TOD systems

In a TOD system, let ut denote the user utterance,
bt the dialog state, dbt the DB result, at the system
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Figure 2: The probabilistic graphical model of Markov
latent state generative model (a) and inference model
(b) for TOD systems. ut and rt are user utterance
and system response respectively. The latent variables
ht = {bt, at} are the concatenation of dialog state and
system act, which specifically are represented by token
sequences in our experiments.

act and rt the delexicalized response, respectively,
at turn t. In this work, all these variables are con-
verted to token sequences, like in DAMD (Zhang
et al., 2020a). As shown in Figure 1, the work-
flow for a TOD system is, for each dialog turn t, to
generate bt, at and rt, given ut and dialog history
u1, r1, · · · , ut−1, rt−1. The database result dbt is
deterministically obtained by querying database
using the predicted bt, and thus could be omitted
in the following probabilistic modeling of a TOD
system for simplicity.

Let ht = {bt, at} denote the concatenation
of dialog state and system act. Specifically,
dialog state bt and system act at are repre-
sented by sequences of labels, for example,
[train] day monday [hotel] pricerange cheap
and [train] [inform] choice departure [request]
destination, respectively. Notably, ht’s are ob-
served in labeled dialogs, but they become latent
variables in unlabeled dialogs in training and need
to be generated in testing. With this definition of
ht’s, latent variable models can be developed for
TOD systems, which will be described shortly in
the next subsection.

Remarkably, the above definition of latent vari-
ables as sequences of labels in this paper is similar
to Zhang et al. (2020b); Liu et al. (2021). An im-
portant feature of such latent variables is that they
are sensible and interpretable, which correspond
to meaningful annotations according to the task
knowledge. It is only in unlabeled dialogs that they
become unobservable. This is different in nature
from some other previous studies of using latent
variables in TOD models (Wen et al., 2017; Zhao
et al., 2019; Bao et al., 2020), where the latent vari-
ables are just assumed to be K-way categorical
variables and learned in a purely data driven way.

4.2 A Probabilistic Latent State TOD Model
With the above introduction of latent variables and
motivated by recent studies (Zhang et al., 2020b;
Liu et al., 2022), the workflow of a TOD system
could be described by a conditional sequential gen-
erative model with latent variables ht’s as follows
for T turns, with parameter θ:

pθ(h1:T , r1:T |u1:T )

=
T∏

t=1

pθ(ht, rt|u1, h1, r1, · · · , ut−1, ht−1, rt−1, ut)

(3)

=

T∏

t=1

pθ(ht, rt|ht−1, rt−1, ut)(by Markov assumption)

(4)

Here Eq. (3) and Eq. (4) could be collectively
referred to as latent state TOD models, being non-
Markov and Markov respectively. Eq. (3) repre-
sents non-Markov latent state models, which, with
different further instantiations, are used in recent
PLM-based TOD systems such as in Hosseini-Asl
et al. (2020); Yang et al. (2021); Liu et al. (2021).
In contrast, Eq. (4) makes the Markov assump-
tion that the conditional generation of current ht
and rt (when given ut) depends on the dialog his-
tory only through ht−1 and rt−1 at the immediately
preceding turn. Markov models have been em-
ployed in LSTM-based TOD systems such as in
Lei et al. (2018); Zhang et al. (2020a); Zhang et al.
(2020b). A recent study in Liu et al. (2022) revis-
its Markovian generative architectures (MGAs) for
PLM backbones (GPT2 and T5) and shows their
efficiency advantages in memory, computation and
learning over non-Markov models.

4.3 Model Instantiation and Supervised
Learning

In our experiments, we mainly consider MGA
based latent state TOD systems (Liu et al., 2022),
which are illustrated in Figure 2 as directed proba-
bilistic graphical models. The conditional distribu-
tion pθ(ht, rt|ht−1, rt−1, ut) is instantiated as

pθ(bt, at, rt|bt−1, rt−1, ut) (5)

which is realized based on a GPT2 backbone in our
experiments. The concatenation bt−1 ⊕ rt−1 ⊕ ut
is used as the conditioning input, and the output
bt⊕ at⊕ rt is generated token-by-token in an auto-
regressive manner, where ⊕ denotes the concatena-
tion of token sequences.
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In order to perform unsupervised learning over
unlabeled dialogs (to be detailed below), we in-
troduce an inference model qϕ(h1:T |u1:T , r1:T )
as follows to approximate the true posterior
pθ(h1:T |u1:T , r1:T ):

qϕ(h1:T |u1:T , r1:T ) =
T∏

t=1

qϕ(ht|ht−1, rt−1, ut, rt)

(6)
The conditional qϕ(ht|ht−1, rt−1, ut, rt) is instan-
tiated as

qϕ(bt, at|bt−1, rt−1, ut, rt) (7)

which is realized based on a GPT2 backbone as
well in our experiments.

When labeled dialog data are available, the super-
vised training of the latent state generative model
pθ in and inference model qϕ can be decomposed
into turn-level teacher-forcing, since the latent
states ht’s are known (labeled) for all turns and
the model likelihoods decomposes over turns, as
shown in Eq. (4) and Eq. (6).

4.4 JSA Learning over Unlabeled Dialogs
Suppose that we have n unlabeled dialogs{
(u

(i)
1:Ti

, r
(i)
1:Ti

)|i = 1, · · · , n
}

, i.e., user utterances
and system responses are available for each dia-
log, but without any annotations of the latent states.
The training instances are indexed by the super-
scripts, and Ti denote the number of turns in the
i-th training instance. The unsupervised learning
of the latent state TOD model over such unlabeled
data can be realized by applying the JSA algorithm,
and more specifically its conditional version, to
maximize the conditional marginal log-likelihood
log pθ(r1:T |u1:T ).

The objective functions in JSA learning can be
developed as follows, similar to Eq. (1):




min
θ

1

n

n∑

i=1

log pθ(r
(i)
1:Ti
|u(i)1:Ti

)

min
ϕ

1

n

n∑

i=1

KL[pθ(h
(i)
1:Ti
|u(i)1:Ti

, r
(i)
1:Ti

)

||qϕ(h(i)1:Ti
|u(i)1:Ti

, r
(i)
1:Ti

)]

where we substitute observation x by r1:T and la-
tent variable z by h1:T , all conditioned on u1:T .

Basically, JSA learning iterates Monte Carlo
sampling and parameter updating, as outlined in
Algorithm 1. In each iteration, we randomly pick a

training instance (u1:T , r1:T ) along with the cached
latent state h̄1:T , and we need to draw a posterior
sample h1:T ∼ pθ(h1:T |u1:T , r1:T ). Remarkably,
it can be shown in Appendix A that for the posterior
pθ(h1:t|u1:t, r1:t) induced from the joint distribu-
tion in Eq. (4), the following recursion holds:

pθ(h1:t|u1:t, r1:t)
∝pθ(h1:t−1|u1:t−1, r1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

(8)

Based on such recursion, we can develop a re-
cursive turn-level MIS sampler, as shown in Al-
gorithm 2, which recursively runs MIS sampler
turn-by-turn and finally obtains a valid posterior
sample for the whole dialog session, i.e., h1:T ∼
pθ(h1:T |u1:T , r1:T ).

Suppose that we have obtained a sample
for the previous t-1 turns, i.e., h1:t−1 ∼
pθ(h1:t−1|u1:t−1, r1:t−1). Then, we perform MIS
sampling as follows, with pθ(h1:t|u1:t, r1:t) as the
target distribution and

pθ(h1:t−1|u1:t−1, r1:t−1)qϕ(ht|ht−1, rt−1, ut, rt)
(9)

as the proposal distribution:
1) Propose h′t ∼ qϕ(ht|ht−1, rt−1, ut, rt). Thus,

(h1:t−1, h
′
t) is a valid sample proposed from the

proposal distribution as shown in Eq. (9);
2) Simulate ξ ∼ Uniform[0, 1] and let

ht =




h′t, if ξ ≤ min

{
1,

w(h1:t−1, h
′
t)

w(h1:t−1, h̄t)

}

h̄t, otherwise
(10)

where the importance ratio between the target and
the proposal distribution

w(h1:t−1, ht)

=
pθ(h1:t|u1:t, r1:t)

pθ(h1:t−1|u1:t−1, r1:t−1)qϕ(ht|ht−1, rt−1, ut, rt)

∝pθ(ht, rt|ht−1, rt−1, ut)

qϕ(ht|ht−1, rt−1, ut, rt)
(11)

After we obtain the sampled latent state h1:T
from Algorithm 2, we perform parameter updating,
as outlined in Algorithm 1. The sampled latent
state h1:T is treated as if being known, and we can
calculate the gradients of log pθ(h1:T , r1:T |u1:T )
and log qϕ(h1:T |u1:T , r1:T ) w.r.t. θ and ϕ accord-
ing to Eq. (4) and Eq. (6) respectively, as if we
calculate gradients in supervised training. Thanks
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Algorithm 2 Recursive turn-level MIS sampler

Input: A T -turn dialog (u1:T , r1:T ) with cached
latent state h̄1:T , generative model pθ in Eq. (4),
inference model qϕ in Eq. (6).
for t = 1 to T do

Propose h′t ∼ qϕ(ht|ht−1, rt−1, ut, rt);
Accept h′t as ht, or reject h′t and keep h̄t as
ht, according to Eq. (10);

end for
Return: h1:T , as a posterior sample from
pθ(h1:T |u1:T , r1:T ) and used as the new cached
latent state.

to the PARO mechanism of JSA, we have such a
conceptual simplicity for learning seemly complex
conditional sequential latent variable model.

4.5 Semi-Supervised TOD Systems via JSA

Now we have introduced the method of build-
ing latent state TOD systems (Eq. (4) and
Eq. (6)) with JSA learning (Algorithm 1 and
Algorithm 2), which is referred to JSA-TOD.
Semi-supervised learning over a mix of labeled
and unlabeled data could be readily realized in
JSA-TOD by maximizing the weighted sum of
log pθ(h1:T , r1:T |u1:T ) (the conditional joint log-
likelihood) over labeled data and log pθ(r1:T |u1:T )
(the conditional marginal log-likelihood) over unla-
beled data.

The semi-supervised training procedure of JSA-
TOD is summarized in Algorithm 3. Specifically,
we first conduct supervised pre-training of both the
generative model pθ and the inference model qϕ on
labeled data in JSA-TOD. Then we randomly draw
supervised and unsupervised mini-batches from la-
beled and unlabeled data. For labeled dialogs, the
latent states ht’s are given (labeled). For unlabeled
dialogs, we apply the recursive turn-level MIS sam-
pler (Algorithm 2) to sample the latent states ht’s2

and treat them as if being given. The gradients cal-
culation and parameter updating are then the same
for labeled and unlabeled dialogs. Such simplic-
ity in application is an appealing property of JSA,
apart from its superior performance, as we show
later in experiments.

2Sampling is empirically implemented via greedy decod-
ing in our experiments.

Algorithm 3 Semi-supervised training in JSA-
TOD
Input: A mix of labeled and unlabeled dialogs.

Run supervised pre-training of θ and ϕ on la-
beled dialogs;
repeat

Draw a dialog (u1:T , r1:T );
if (u1:T , r1:T ) is not labeled then

Generate h1:T by applying the recursive
turn-level MIS sampler (Algorithm 2);

end if
Jθ = 0, Jϕ = 0;
for i = 1, · · · , T do
Jθ+ = log pθ(ht, rt|ht−1, rt−1, ut);
Jϕ+ = log qϕ(ht|ht−1, rt−1, ut, rt);

end for
Update θ by ascending: ∇θJθ;
Update ϕ by ascending: ∇ϕJϕ;

until convergence
return θ and ϕ

5 Experiments

5.1 Experiment settings

Experiments are conducted on MultiWOZ2.1 (Eric
et al., 2020), which is an English multi-domain
dialogue dataset of human-human conversations,
collected in a Wizard-of-Oz setup with 10.4k di-
alogs over 7 domains. The dataset was officially
randomly split into a train, test and development
set, which consist of 8434, 1000 and 1000 dialog
samples, respectively. The dialogs in the dataset
are all labeled with dialog states and system acts
at every turn. Compared to MultiWOZ2.0, Multi-
WOZ2.1 removed some noisy state values. Follow-
ing (Liu et al., 2022), some inappropriate state val-
ues and spelling errors are further corrected. Dialog
responses are delexicalized to reduce surface lan-
guage variability. We implement domain-adaptive
pre-processing like in DAMD (Zhang et al., 2020a).
More implementation details for our experiments
are available in Appendix B.

For evaluation in MultiWOZ2.1, there are mainly
four metrics for corpus based evaluation (Mehri
et al., 2019). Inform Rate measures how often the
entities provided by the system are correct; Suc-
cess Rate refers to how often the system is able to
answer all the requested attributes by user; BLEU
Score is used to measure the fluency of the gener-
ated responses by analyzing the amount of n-gram
overlap between the real responses and the gener-
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Table 1: Main results on MultiWOZ2.1 for comparison
between supervised-only, variational, and JSA methods.
Results are reported as the mean and standard deviation
from 3 runs with different random seeds.

Proportion Method Inform Success BLEU Combined

100% Sup-only 84.50±0.29 72.77±0.50 18.96±0.36 97.59±0.54

20%
Sup-only 75.70±1.87 61.07±2.21 16.66±0.29 85.05±2.16

Variational 81.83±1.55 67.67±0.50 17.88±0.95 92.63±0.30
JSA 83.25± 0.65 71.40±1.20 18.72±0.07 96.04±0.85

15%
Sup-only 80.00±0.43 55.57±1.22 16.20±0.24 79.00±1.51

Variational 80.85±0.65 67.67±0.88 17.68±0.29 91.86±0.19
JSA 83.23±0.53 71.97±1.27 18.59±0.19 95.47±0.73

10%
Sup-only 67.57±0.39 50.03±1.09 15.31±0.28 74.11±0.59

Variational 80.67±1.33 66.97±1.23 17.34±0.56 91.15±1.80
JSA 81.97±0.79 70.40±0.99 18.09±0.38 94.27±1.23

5%
Sup-only 49.73±2.45 33.67±1.79 14.07±0.13 55.77±1.94

Variational 74.17±0.53 59.93±0.34 16.06±0.69 83.11±1.04
JSA 72.37±1.19 59.73±0.92 18.57±0.54 84.62±0.43

ated responses; Combined Score is computed as
(BLEU + 0.5 * (Inform + Success)). To avoid any
inconsistencies in evaluation, we use the evaluation
scripts in Nekvinda and Dušek (2021), which are
now also the standardized scripts adopted in the
MultiWOZ website.

5.2 Main Results
In the semi-supervised experiments, we randomly
draw some proportions (5%, 10%, 15% and 20%)
of the labeled dialogs from the MultiWOZ2.1 train-
ing set, with the rest dialogs in the training set
treated as unlabeled, and conduct semi-supervised
experiments. Specifically, the number of dialogs
kept as labeled under these proportions are 1686,
1265, 843, and 421, respectively, while the rest
dialogs are used as unlabeled (i.e., the original la-
bels of dialog states and system acts at all turns are
removed for those dialogs in the training set).

The main results are shown in Table 1. For
model instantiations, we use the GPT2 based
Markov generative model and inference model, as
introduced in Liu et al. (2022). It has been shown
in Liu et al. (2022) that using Markovian genera-
tive architecture achieves better results than non-
Markov models in the low-resource setting for both
supervised-only learning and semi-supervised vari-
ational learning, which makes it a strong baseline
to compare. We first train the generative model and
inference model on only the labeled data, which
is referred to as “Supervised-only” (Sup-only for
short). Then, we perform semi-supervised train-
ing on both labeled and unlabeled data. Using the
variational method in (Liu et al., 2021, 2022), we
get the baseline results of “Variational”, where the
Straight-Through trick is used to propagate the gra-
dients through discrete latent variables. Using the

JSA method proposed in Algorithm 3, we get the
results of “JSA”. We conduct the experiments with
3 random seeds and report the mean and standard
deviation in Table 1.

From Table 1, we can see that both the Vari-
ational and the JSA methods outperform the
Supervised-only method substantially across all
label proportions. This clearly demonstrate the
advantage of semi-supervised TOD systems. Re-
markably, semi-supervised JSA-TOD using 20%
labels performs close to the supervised-only base-
line using 100% labels on MultiWOZ2.1.

When comparing the two semi-supervised meth-
ods, JSA performs better than Variational signifi-
cantly across almost all label proportions in terms
of all four metrics (Inform Rate, Success Rate,
BLEU, and Combined Score). Exceptionally, in
the case of 5% labels, the Inform Rate of JSA is
worse than that of Variational, the Success Rates
are close; Nevertheless, the Combined Score of
JSA is significantly better. Presumably, this is be-
cause we use the Combined Scores to monitor the
training, apply early stopping and select the model
with the best Combined Score on the validation
set. Such model selection put more priority on the
overall performance in terms of Combined Scores.

Further, the results in Table 1 are pooled over
all label proportions and all random seeds, and the
matched-pairs significance tests (Gillick and Cox,
1989) are conducted to compare JSA and Varia-
tional for Inform, Success and BLEU respectively.
The p-values are 9.27× 10−2, 2.576× 10−14, and
2.939× 10−39 respectively, which show that JSA
significantly outperforms Variational.

5.3 Ablation study and analysis

Notably, the JSA and the variational methods in our
experiments use the same model instantiations for
pθ and qϕ. The only difference lies in the learning
methods they used. In the following, we provide ab-
lation study to illustrate the superiority of JSA over
variational in learning latent state TOD models.

The importance of Metropolis Independence
Sampling in JSA. In JSA, we need to use Monte
Carlo sampling, particularly the Metropolis Inde-
pendence Sampling (MIS) to decide whether or not
to update the cached latent states ht’s. A naive
method is to always accept the labels proposed by
the inference model, which is somewhat like self-
training (Rosenberg et al., 2005). Another simple
method is to run session-level MIS, with the whole
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Table 2: Ablation results for using different methods to
update latent states ht’s (label proportion: 10%, random
seed:11)

Method Inform Success BLEU Combined

Without MIS 71.10 59.80 18.71 84.16
Session-level MIS 78.70 65.50 17.20 89.30

Recursive turn-level MIS 82.80 71.80 18.56 95.86

Eq. (4) as the target distribution and the whole Eq.
(6) as the proposal distribution. The whole h1:T
is proposed via ancestral sampling and then get
accepted/rejected. The results from one run with
each different method are shown in Table 2. Both
MIS based methods significantly improves the re-
sults, which clearly reveals the importance of using
MIS in JSA. By the accept/reject mechanism, we
accept latent states which have higher importance
ratios and exploit them to update both generative
model and inference model, and at the same time,
we also explore the state space by randomly ac-
cepting latent states which have lower importance
ratios. Exploitation and exploration of the latent
states seems to be well balanced in JSA, which
may explain its good performance. Our proposed
recursive turn-level MIS in Algorithm 2 clearly out-
performs the session-level MIS, since it samples in
a much lower dimensional state space.

The latent state prediction performance of in-
ference model. In both variational and JSA learn-
ing, the inference model qϕ, which is introduced
to approximate the true posterior, plays an impor-
tant role. The latent states inferred from qϕ are
used, either directly as in variational learning or
after accepted/rejected as in JSA learning, to op-
timize the generative model pθ. We measure the
quality of the latent states predicted from qϕ by la-
bel precision/recall/F1, compared to oracle bt and
at (excluding dbt) . We compare different qϕ ob-
tained from three training methods - Supervised-
only, Variational, and JSA. Note that at the end of
running any particular training method, we obtain
not only pθ but also qϕ. The performances of pθ
over the test set are shown in Table 1. The test-
ing performances of qϕ obtained from one run of
each different method are shown in Table 3. It can
be seen that semi-supervised variational learning
does not improve the prediction ability of the in-
ference model, compared to the inference model
trained only on the labeled data. In contrast, the
prediction performance of the inference model is in-
creased significantly by semi-supervised JSA learn-
ing, which is in line with the superior results of

Table 3: Performance comparison of inference mod-
els from different methods, measured by latent state
prediction precision/recall/F1 over the test set.

Label Proportion Method Precision Recall F1

20%
Supervised-only 0.928 0.908 0.918

Variational 0.924 0.900 0.912
JSA 0.936 0.925 0.931

15%
Supervised-only 0.924 0.891 0.907

Variational 0.917 0.872 0.894
JSA 0.934 0.910 0.922

10%
Supervised-only 0.916 0.868 0.891

Variational 0.887 0.880 0.883
JSA 0.930 0.898 0.914

5%
Supervised-only 0.894 0.804 0.847

Variational 0.891 0.838 0.864
JSA 0.904 0.863 0.883

Figure 3: Comparison of the gradient norms from the
inference models during training, using variational and
JSA methods respectively (label proportion: 10%).

JSA’s generative model as shown in Table 1.
The variance of the gradients from inference

model. The gradients for the inference model pa-
rameters in variational learning are known to have
high-variance, due to gradient propagation through
discrete latent variables, while JSA avoids such
drawback. From one run of semi-supervised learn-
ing under 10% labels, we plot the gradient norms
for the inference model parameters, from using
the variational and the JSA methods respectively,
which are shown in Figure 3. For clarity of compar-
ison, we normalize the sum of the gradient norms
over all iterations to be one. It can be clearly seen
from Figure 3 that the gradients during variational
training are more noisy than those in JSA tranin-
ing. Specifically, the variances of the time-series
of the gradient norms in Figure 3 are 3.097× 10−6

and 1.527× 10−6 for the variational and the JSA
methods respectively.

Pretrained models on external dialog corpora
can be further improved by JSA learning for
semi-supervised TOD systems. Pretraining and
LVM based learning are two broad classes of semi-
supervised methods. Recently, pretraining on exter-
nal dialog copora has also shown to be promising
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Table 4: MultiWOZ2.1 testing results for different meth-
ods (label proportion: 3%). “+Pretrained model” means
that the method is initialized from the pretrained models
over four external dialog corpra.

Method Inform Success BLEU Combined

Supervised-only 38.70 25.60 16.42 48.57
+ Pretrained model 57.70 39.30 14.15 62.65
Semi-supervised JSA 55.50 44.80 16.93 67.08
+ Pretrained model 73.00 58.60 18.61 84.41

for building TOD systems for low-resource sce-
narios (Peng et al., 2020; Su et al., 2021). In this
section, we show that JSA learning can be used to
further improve over such pretrained models. We
use four dialog corpora - MSRE2E (Li et al., 2018),
Frames (El Asri et al., 2017), TaskMaster (Byrne
et al., 2019) and SchemaGuided (Rastogi et al.,
2020), which consist of 16545 dialogs with human
annotations on belief states and dialog acts, and
we follow the preprocessing in (Su et al., 2021).
Generative model and inference model, initialized
from GPT2, are pretrained separately on those four
corpora, the same as that in supervised-pretraining.
Then, we conduct semi-supervised training with
only 3% labels in MultiWOZ2.1 (i.e., 240 labeled
dialogs with the rest being unlabeled). The results
in Table 4 show that semi-supervisded JSA on top
of pretrained models obtains the best result. This is
an encouraging result from using 3% labels, which
is close to the naive supervised-only method using
20% labels as shown in Table 1.

6 Conclusion and Future Work

This paper represents a progress towards building
semi-supervised TOD systems by learning latent
state TOD models. Traditionally, variational learn-
ing is often used; notably, the recently emerged
JSA method has been shown to surpass variational
learning, particularly in learning of discrete latent
variable models. This paper represents the first
application of JSA in its conditional sequential ver-
sion, particularly for such long sequential genera-
tional problems like in TOD systems. Extensive ex-
periments clearly show the superiority of JSA-TOD
over its variational learning counterpart, not only
in benchmark metrics for semi-supervised TOD
systems but also from the latent state prediction
performances and the variances of the gradients of
the inference model. Since discrete latent variable
models are widely used in many natural language
procession tasks, we hope the results presented in

this paper will encourage the community to further
explore the applications of JSA and improve upon
current approaches.
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A Proof of Eq. (8)

First, we have

pθ(h1:t, r1:t|u1:t)
=pθ(h1:t−1, r1:t−1|u1:t−1, ut)

× pθ(ht, rt|u1:t−1, ut, h1:t−1, r1:t−1)

=pθ(h1:t−1, r1:t−1|u1:t−1,��ut)

× pθ(ht, rt|ht−1, rt−1, ut,((((((((((
h1:t−2, r1:t−2, u1:t−1)

=pθ(h1:t−1, r1:t−1|u1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

It can be seen that in simplifying the above equa-
tions, those conditional independence properties
hold for our generative model Eq. (4). Then,

pθ(h1:t|u1:t, r1:t) =
pθ(h1:t, r1:t|u1:t)
pθ(r1:t|u1:t)

=
pθ(h1:t−1, r1:t−1|u1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

pθ(r1:t|u1:t)
=pθ(h1:t−1|u1:t−1, r1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

× pθ(r1:t−1|u1:t−1)

pθ(r1:t|u1:t)
∝pθ(h1:t−1|u1:t−1, r1:t−1)pθ(ht, rt|ht−1, rt−1, ut)

B Implementation Details

We implement the models with Huggingface Trans-
formers repository of version 4.8.2. We initialize
both the generative model and the inference model
with DistilGPT-2, a distilled version of GPT2. For
all of supervised pre-training, variational learning
and JSA learning, we use the AdamW optimizer
and a linear scheduler with 20% warm up steps
and maximum learning rate 10−4. The minibatch
base size is set to be 8 with gradient accumulation
steps of 4. The 3 random seeds for the results in
Table 1 are 9, 10 and 11. The total epochs for
supervised pre-training are 50, and those for both
variational learning and JSA learning are 40. We
monitor the performance on the validation set and
apply early stopping (stop when the current best
model is not exceeded by models in the following 4
epochs). We select the best model on the validation
set, then evaluate it on test set. All our experiments
are performed on a single 32GB Tesla-V100 GPU.
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Abstract
Dialog systems must be capable of incorporat-
ing new skills via updates over time in order to
reflect new use cases or deployment scenarios.
Similarly, developers of such ML-driven sys-
tems need to be able to add new training data to
an already-existing dataset to support these new
skills. In intent classification systems, prob-
lems can arise if training data for a new skill’s
intent overlaps semantically with an already-
existing intent. We call such cases collisions.
This paper introduces the task of intent colli-
sion detection between multiple datasets for
the purposes of growing a system’s skillset. We
introduce several methods for detecting colli-
sions, and evaluate our methods on real datasets
that exhibit collisions. To highlight the need for
intent collision detection, we show that model
performance suffers if new data is added in
such a way that does not arbitrate colliding in-
tents. Finally, we use collision detection to con-
struct and benchmark a new dataset, Redwood,
which is composed of 451 intent categories
from 13 original intent classification datasets,
making it the largest publicly available intent
classification benchmark.

1 Introduction

As task-oriented dialog systems like Alexa and Siri
have become more and more pervasive, tools en-
abling developers to build custom dialog systems
have followed suit. Such tools—like Microsoft’s
Luis1, Twilio’s Autopilot2, Rasa3, and Google’s
DialogFlow4—enable engineers and dialog design-
ers to craft dialog systems composed of intents, or
core categories of competencies or skills in which
the system is knowledgeable and to which the sys-
tem can respond intelligently. New intents may be
added periodically to the dialog system as part of
its development and maintenance cycle, or dialog
system models may be combined together (e.g.,
Clarke et al. (2022)).
1 luis.ai 2 twilio.com/autopilot 3 rasa.com
4 google.com/dialogflow

These phenomena may occur especially in real-
world deployments, where datasets for dialog mod-
els may be developed, grown, and modified by
large (and even disparate) teams over the span of a
project’s lifetime. Furthermore, dialog system mod-
els and their corresponding training datasets are
sometimes offered as-a-service or “off-the-shelf”
to dialog system builders who might not be fully fa-
miliar with the breadth or scope of the pre-existing
dataset or model. If the builder adds a new intent
to the dataset that overlaps with an existing intent,
then the re-trained model’s performance can suffer.
As such, there is a need for tools and algorithms
to help detect when a new intent overlaps—that is,
collides—with an already-existing intent category.

In this paper, we introduce the challenge of intent
collision detection, and develop several algorithms
for determining whether a candidate intent category
collides with another intent category. To do so, we
curate and release a meta-dataset of 722 intents
from 13 existing datasets. This graph-like meta-
dataset consists of annotations indicating tuples of
colliding intent pairs (examples of colliding intents
can be seen in Table 1). We then introduce several
collision detection algorithms and evaluate them
on this meta-dataset.

We also use intent collision detection to build
Redwood, a new intent classification dataset of
451 intent categories. Redwood is built by com-
bining 13 smaller datasets. As a comparison, we
also build Redwood-naïve, which is constructed
by naïvely joining together all 13 datasets without
arbitrating colliding intents. We find that classifier
performance on Redwood-naïve to be substantially
worse than Redwood, showcasing the negative ef-
fect of not addressing intent collisions in data.

Upon official release, Redwood will by far
be the largest openly available intent classifica-
tion dataset in terms of breadth of intent cate-
gories. Our hope is that the new Redwood dataset
serves as a showcase for intent collision detec-
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Dataset Samples

Snips how cold is it in princeton junction will it be chilly in fiji at ten pm is it foggy in shelter island
Clinc-150 give me the 7 day forecast what’s the temperature like in tampa will it rain today

MTOP what is the weather in new york today how much is it going to rain tomorrow give me the weather for march 13th

Slurp set alarm tomorrow at 6 am make an alarm for 4pm set a wake up call for 10 am
MTOP can you set a warning alarm for 7pm set an alarm for monday at 5pm make an alarm for the 5th

Clinc-150 wake me up at noon tomorrow set my alarm for getting up i need you to set alarm for me

HWU how much is 1gbp in usd what’s the exchange rates how much is $50 in pounds
Clinc-150 tell me five dollars in yen and rubles how many pesos in one dollar us usd to yen is what right now

Banking-77 do you know the rate of exchange how is the exchange rate doing what are the current exchange rates

Clinc-150 please start calling me mandy I want you to call me this new name the name you should call me is janet
ACID how do i change my name need my name to be updated I need to fix my name in your system

Banking-77 where can I find how to change my name details need to be modified after I got married I need to change my name

Snips play magic sam from the thirties play music by blowfly from the seventies play jeff pilson on youtube
DSTC-8 I want to hear the song high I would like to listen to touch it on tv I’d like to listen to the way I talk
HWU please play yesterday from beattles I’d like to hear queen’s barcelona play daft punk

MetalWOz help me find restaurants in miami fl I need help finding a place to eat I need to find an italian restaurant in denver
DSTC-8 can you help find a place to eat I’m looking for a filipino place to eat I want to find a restaurant in albany
HWU find me a nice restaurant for dinner where can I get shawarma in this area what’s the best chicken place near me

Outlier what is my balance update me on my account balance let me know how much money I have
Clinc-150 what’s my current checking balance what is the total of my bank accounts how much total cash do I have in the bank
DSTC-8 I want to know my checking account balance I’d like to check my balance man how much money do I have in the bank

Table 1: Examples of data that will trigger collisions. Each row of the table displays three samples from a single
intent in a particular dataset. Among these three samples, each line collides with an intent category from the other
two datasets.

tion as well as a new, publicly-available, large-
scale challenge dataset for intent classification
models for dialog systems. Both the collision
meta-dataset and Redwood are publicly available
at github.com/gxlarson/redwood.

2 Related Work

The Collision Detection Task. We discuss three
areas of related work related to our proposed in-
tent collision detection task: generalized zero-shot
learning, open set classification, and out-of-domain
(or out-of-scope) sample identification.

In generalized zero-shot learning (e.g., Zhang
et al. (2022)), a model is trained with data from a
set of “seen” label classes (e.g., intents) and, during
inference, must identify test samples as belonging
to either a “seen” label class or an “unseen” class
for which the model has limited auxiliary knowl-
edge (e.g., descriptions of unseen classes, but no
concrete training examples).

Both open set classification and out-of-domain
sample identification refer to the modeling task of
classifying inference samples among label classes
seen during training or to identify if the sample be-
longs to an unknown or undefined label class (e.g.,
Larson et al. (2019b); Zhang et al. (2021)). Slot-
filling models that are trained on B/I/O tags natu-
rally predict the unknown class label as O tags, but
for intent classifiers the task is much more challeng-
ing since it requires curating viable training data for

an out-of-domain category (i.e., it is challenging
to know in advance what types of out-of-domain
inputs a system might encounter).

Our proposed task of intent collision detection
differs from the aforementioned tasks because “in-
ference” samples need not be considered one at
a time, but can instead be grouped together into
entire candidate intent categories. This enables
considering entirely different modeling tasks like
those discussed in Section 3.3. Nevertheless, both
our meta-dataset of intent collisions and Redwood
allow for the evaluation of both zero-shot and gener-
alized zero-shot learning models, and the Redwood
intent classification dataset includes a substantial
number of out-of-domain samples for evaluating
open set classification and out-of-domain sample
detection.

Intent Classification Corpora. There are sev-
eral smaller corpora for evaluating intent classifica-
tion models, some spanning broad domains (e.g.,
Liu et al. (2019), Larson et al. (2019b), Li et al.
(2021)) and others focusing fine-grained evaluation
of individual domains (e.g., the Banking-77 corpus
(Casanueva et al., 2020) with respect to the per-
sonal banking domain). While most datasets are
constructed via crowdsourcing, our new Redwood
dataset is constructed from both (1) already exist-
ing datasets and (2) newly crowdsourced intents.

Dataset Derivation and Combination. Datasets
are sometimes formed from other datasets, either

469



what is the weather?
is it supposed to rain tomorrow?

how hot is it outside?

what’s the weather like?
do i need an umbrella today?
tell me the weather forecast

how’s the weather look?
what’s the temperature out?

tell me today’s weather

a

b c

Figure 1: Transitive collisions.

by deriving a new dataset from an existing one, or
by combining datasets together. The former cate-
gory include translations of dialog datasets (e.g.,
(Upadhyay et al., 2018; Xu et al., 2020)) as well as
re-formulations of existing datasets into new tasks
(e.g., converting a semantic role labeling (SRL)
dataset to open information extraction (OIE) data
as done in Solawetz and Larson (2021)).

Dataset combination has been used in other
fields beyond dialog systems and conversational AI.
For instance, Song et al. (2020) combined several
speech recognition datasets together to form their
SpeechStew dataset. As there are no target labels
analogous to intents in automatic speech recogni-
tion, the creators of SpeechStew did not have to
consider collisions among intent categories. In this
paper, our focus is primarily on dataset combina-
tion, but we also derive intent classification data
from several turn-based dialog corpora (MetalWOz
and DSTC-8, discussed in Section 3.4).

3 Detecting Collisions

In this section we discuss our proposed challenge,
intent collision detection. We begin with a motivat-
ing example showing why detecting collisions is
important, as well as a formal problem statement.
Then, we introduce and evaluate several collision
detection baselines on our meta-dataset.

3.1 Motivating Example

As a motivating example, suppose our intent classi-
fication system has been trained on the Clinc-150
dataset (Larson et al., 2019b), an intent classifica-
tion dataset consisting of 150 intents.5 The Clinc-
150 dataset includes an intent called weather,
which is meant to handle weather-related queries
such as “what’s the weather like today” and “tell
me the weather in New York.” Suppose further that
a new developer or a new team attempts to update
the intent classifier with new data that contains a
5 In this paper, dataset names are in italics and intent names
are in teletype font. Example queries are in italics and in
quotes if they appear in-line.

what is my balance?
i need to transfer $200 to checking

how much money do i have

tell me my balance
how much money is in savings

what’s my balance?

make a transfer please
Transfer 40 bucks to savings

i need to transfer money

x

y z

Figure 2: Non-transitive collisions.

new intent category, such as the get_weather in-
tent from the HWU dataset6 (Liu et al., 2019). In
such a scenario, there are now training data sam-
ples that overlap substantially, but that are labeled
with different intents (weather vs. get_weather
in this example). Thus, upon updating the model by
training on HWU’s get_weather data, the predic-
tive performance on any weather-related inference
queries might be split between these two intents.
This disparity can also cause unintended conse-
quences downstream in production models, such as
calls to database systems that are triggered based
on the user’s intent.

Indeed, when we train a BERT classifier on the
original Clinc-150 training set, the accuracy on
the weather test set is 100%. When we add a
HWU’s get_weather intent to Clinc-150 to cre-
ate a new 151st intent and re-train the BERT clas-
sifier, we observe an accuracy score of 60% on
the weather test set. This performance drop is
a symptom of having added an intent category
that collides with another intent category. Such
a model—which was trained on colliding intents—
could cause unexpected behavior on downstream
events, especially if the weather and get_weather
intents trigger different business logic workflows
or system responses. We note that, while in this
example, the colliding weather and get_weather
intent names are quite similar, other colliding pairs
like Snips’ search_screening_event and Metal-
WOz’s movie_listings do not have lexically sim-
ilar intent names, precluding straightforward string
matching of intent names.

3.2 Problem Statement
In this subsection, we formally define our collision
detection problem. We first consider a scenario in
which we have two intent classification datasets,
A and B, where Ai ∈ A and Bj ∈ B refer to spe-
cific intent categories in each. We say that intent
categories Ai and Bj collide if there exist a suf-
6 Recall from Section 1 that such updates from new teams or
new developers may be from routine perfective maintenance
during a model’s lifetime.
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ficient number of queries in Ai that semantically
overlap with a sufficient number of queries in Bj .
This semantic overlap can occur when a developer
attempts to add new intent categories to a start-
ing training dataset—when an intent classification
model trained on the combined dataset A ∪ B will
cause queries belonging to Ai to be classified in
Bj (and vice versa).

As an example, suppose we have an intent classi-
fier built from a starting dataset such as Clinc-150,
which, among other things, contains a weather
intent category for weather-related inquiries (cf.
Section 3.1). Suppose further that we seek to grow
this starting dataset by adding datapoints from a
candidate dataset such as HWU (see Section 3.1,
which contains a get_weather intent category). If
we naïvely combine these two datasets together, a
resulting intent classifier will result in some queries
from the original weather category to be classified
to the newly-added get_weather category because
these two categories are semantically similar. Ta-
ble 1 illustrates several example colliding intents
and associated queries. Our approach addresses
these collisions by detecting their prevalence and
quantifying their impact automatically, aiding de-
velopers in improving the quality of their datasets
and scope of their dialogue systems.

Because the notion of semantic overlap can differ
from category to category and dataset to dataset,
we observe several classes of relationships among
colliding intent categories in practice. In particular,
intent collisions can be simple-pairwise, transitive,
or hierarchical. In the simple-pairwise case, two
intents collide with each other only, and not with
any other intent in either dataset. However, we also
observe transitivity within intent classes. Figure 1
illustrates example utterances within intent classes
a, b, and c, where all intent classes are transitively
related to one another in a cycle.

Lastly, we observe non-transitive hierarchies
among colliding intents. In this case, a broad intent
category from one dataset can collide with two or
more intent categories that do not relate to each
other. Figure 2 shows a hypothetical intent class
x consisting of general banking queries, including
balance inquiries and transfer requests, and classes
y and z consist solely of balance inquiry and trans-
fer requests, respectively. Here, because class x
is more broad than y and z, each of y and z col-
lide with x, but y and z do not collide with each
other. Our approach can help developers reveal

Dataset # Intents # Collisions

ACID 175 36
Clinc-150 150 158
MTOP 113 60
Banking-77 77 25
HWU 64 103
New 58 5
MetalWOz 51 80
DSTC-8 34 67
ATIS 26 7
Outlier 10 9
Snips 7 20
Jobs640 1 0
Talk2Car 1 0

Total 767 570

Table 2: Number of intents with collisions. A total of
570 intents have at least one collision.

such cases when managing datasets, and we con-
sider these collision relationships in the creation of
our Redwood dataset.

3.3 Approaches

We introduce two approaches for detecting colli-
sions: Classifier Confusion and Data Coverage.

Classifier Confusion. A column of a confusion
matrix charts the distribution of predictions of a
classifier for data in a particular category. We call
such a distribution the classification distribution.
We adapt this notion for our first collision detection
approach, which identifies a candidate intent A to
collide with B ∈ C if a classifier model trained on
dataset C produces a classification distribution d

such that max(d)
sum(d) > τ , where τ is a threshold set

by the developer. We call this ratio the classifier
collision score.

Data Coverage. We define the coverage of one
intent B over another intent A as

Coverage(A,B) =
1

|B|
∑

b∈B
max
a∈A

sim(a, b).

Here, sim(a, b) computes the similarity between
two phrases a and b (for instance, sim(a, b) could
be the cosine similarity between two phrase em-
beddings or the Jaccard similarity between n-gram
sets). The coverage metric can be used to detect if
two intents collide using a threshold rule. In other
words, A and B collide if Coverage(A,B) > κ,
where κ is a threshold chosen by the developer. We
call the coverage metric the coverage score.
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[
{

“source”: “clinc150”,
“intent”: “weather”
“name”: “clinc150__weather ”
“collisions”: [

“snips__get_weather ”,
“hwu__get_weather”,
“mtop__get_weather ”,
“metalwoz__weather_check ”,
“dstc8__GetWeather ”

]
},
{

“source”: “hwu”,
“intent”: “general_praise”,
“name”: “hwu__general_praise ”,
“collisions”: [

“acid__st_thank_you ”,
“clinc150__thank_you ”

]
},
. . .

]

Figure 3: Example entries in the graph-like colli-
sion meta-dataset, showing collisions for Clinc-150’s
weather intent and HWU’s general_praise intent.

3.4 Datasets

We evaluate the effectiveness of our intent collision
approaches using several indicative datasets. These
datasets can be roughly grouped into three cate-
gories: (1) intent classification datasets like Clinc-
150 (Larson et al., 2019b), Banking-77 (Casanueva
et al., 2020), ACID (Acharya and Fung, 2020), Out-
lier (Larson et al., 2019a), and New (this work; a
corpus that was crowdsourced in a manner similar
to Larson et al. (2019b) and Larson et al. (2019a));
(2) joint slot-filling and intent classification or se-
mantic parsing datasets like ATIS (Hemphill et al.,
1990; Hirschman et al., 1992, 1993; Dahl et al.,
1994), Snips (Coucke et al., 2018), HWU (Liu
et al., 2019), and MTOP (Li et al., 2021); and (3)
turn-based dialog datasets like DSTC-8 (Kim et al.,
2019) and MetalWOz (Lee et al., 2019). We only
consider the initial queries in the turn-based DSTC-
8 and MetalWOz, and discard all subsequent dialog
turns.

Queries in these datasets span a wide range of
topic domains, including banking and personal
finance (Banking-77 and Outlier) and insurance
(ACID); other datasets cover a wide array of topic
domains, such as Clinc-150 and HWU, which cover
smart home, automotive, travel, banking, cooking,
and others. Since we are concerned with detect-
ing colliding intents, we do not consider any slot
annotations, and we use only the first turns from

the multi-turn dialog datasets. In addition, we also
use the Jobs640 (Califf and Mooney, 1997) and
Talk2Car (Deruyttere et al., 2019) datasets, which,
although not originally designed for intent classi-
fication tasks, are categorized in a way that admit
consideration as single-intent classification for our
purposes. Table 2 summarizes these datasets.

The Collision Meta-Dataset We constructed a
graph-like dataset that indicates the collision rela-
tionships between intents. To build this dataset, we
reviewed all intents from all of the datasets listed
in Table 2 to check for collisions between other
intents. We developed a ground truth set of tuples
indicating whether two intents collide among these
datasets. Figure 3 shows the structure of the in-
tent collision meta-dataset, and Table 2 displays
the number of collisions that occur relative to each
individual dataset. The meta-dataset includes the
three types of collisions defined in Section 3.2.

3.5 Experimental Evaluation

Implementation Details. We evaluate our intent
collision detection methods on our newly-created
collision meta-dataset. For evaluating the classifier
confusion approach, we train a multi-class intent
classifier on each individual dataset (except the
single-intent datasets) and then run inference on all
other intents from the other datasets. We compute
and report the classifier confusion score for each
run. In our experiments, we use a linear SVM clas-
sifier with bag-of-words feature representations.

For evaluating the data coverage approach, we
first sample7 a nearly equal number of colliding and
non-colliding intent pairs from the collision meta-
dataset. We then compute the coverage scores for
the selected pairs using several sentence represen-
tation and similarity metrics. We use the SBERT li-
brary’s SBERT-NLI and SBERT-miniLM sentence
embedders (Reimers and Gurevych, 2019) along
with cosine similarity. Additionally, we also use
n-gram-based similarity, defined as

sim(a, b) =
1

N

N∑

n=1

|n-gramsa ∩ n-gramsb|
|n-gramsa ∪ n-gramsb|

where a and b are queries from two intents, and
N = 3 in our experiments.

For both the data coverage and classifier con-
fusion experiments, we only consider intents that
7 Sampling avoids combinatorial explosion of possible intent
pairs.
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(a) SBERT-NLI Coverage Score
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(b) Mini-LM Coverage Score

0.2 0.4 0.6 0.8 1.0
Confusion Score

collisions
non-collisions

(c) SVM classifier confusion.

Figure 4: Data coverage and classifier confusion score
distributions for various intent collision detection ap-
proaches.

have at least 10 queries. For the collision detec-
tion experiments, we used all 285 collision pairs
and sampled 300 non-colliding pairs since there
are substantially more non-colliding pairs. The
classifier confusion approach does not compare in-
tents in a pairwise manner, and instead compares a
dataset (i.e., a classifier trained on a dataset) against
a single intent at a time. We run a classifier on all
multi-intent datasets, which yielded a total of 400
collision pairs and 6,802 non-collision pairs for the
classifier confusion experiments.

Metrics. While in actual application settings, a
user may wish to use thresholds for τ and κ (de-
fined earlier in Section 3.3) to determine whether
intents collide, we evaluate both classifier confu-
sion and coverage methods in a threshold-free man-
ner using the AUC score. (In practice, values for
τ and κ could be set by the practitioner via cross-
validation or by using the meta-dataset provided in
this work to set optimal thresholds for their appli-
cation.) The AUC score allows us to judge each

Coverage Confusion
Approach AUC AUC

SBERT-NLI 0.898 —
token 0.931 —
SBERT-miniLM 0.963 —
SVM-based — 0.756

Table 3: AUC metrics for each intent collision detection
approach.

method’s ability to distinguish collisions versus
non-collisions; an AUC score of 1.0 means perfect
separability between collisions and non-collisions,
while an AUC score of 0.5 means a method is
unable to distinguish between colliding and non-
colliding intents.

3.6 Results

Data Coverage. Figure 4 charts coverage scores
and confusion scores for various approaches. In
Figure 4 (a) and (b), the coverage approaches tend
to return higher coverage scores for non-collisions
and lower coverage scores for collisions, which
aligns with our expectations given our definition
of the coverage metric and assuming the simi-
larity metric used in the coverage computation
is effective. The AUC scores allow us to quan-
titatively judge the performance of the various
coverage-based approaches: in Table 3, the SBERT-
miniLM embedding method yields the highest
AUC score, and interestingly the n-gram-based
coverage method performs second best, with the
SBERT-NLI embedding method in third.

Classifier Confusion. Figure 4 (c) charts clas-
sifier confusion scores for the SVM-based classi-
fier confusion approach. Our results demonstrate
that actual intent collisions typically yield high
classifier confusion scores, while non-collisions
yield lower confusion scores. Visually, however,
Figure 4 (c) seems to indicate that that the classi-
fier confusion approach is less effective than the
coverage-based approaches. This is made more
apparent by the AUC score in Table 3. We note that
the data coverage and classifier confusion AUC
scores are not directly comparable as they use dif-
ferent evaluation settings. Nonetheless, the differ-
ence in performance scores does lead us to con-
clude that the data coverage approach is more ef-
fective.

In sum, these experimental results demonstrate
that the two intent collision detection approaches
introduced here are effective in detecting collisions
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Original Original
Dataset Intent Sample

HWU alarm_remove remove the alarm set for 10pm
Clinc-150 reminder_update set a reminder for me to take my meds
MTOP get_weather should i wear a raincoat tuesday
Jobs-640 — what systems analyst jobs are there in austin
Talk2Car — switch to right lane and park on right behind parked black car
Jobs640 Jobs640 what systems analyst jobs are there in austin
Snips add_to_playlist add paulinho da viola to my radio rock song list
Outlier hours tell me the hours of operation for my bank
New balance do I have holiday time saved
DSTC-8 LookupMusic I like metal songs can you find me some
ATIS ground_service i’ll need to rent a car in washington dc
MetalWOz name_suggester I need to find a name for my new cat
Clinc-150 find_phone can you help me find my cell
ACID info_amt_due what is the current amount due on my account
Banking-77 terminate_account how do I deactivate my account
Clinc-150 measurement_conversion what amount of millimeters are in 50 kilometers
ACID info_name_change i need to fix my name
MTOP play_music find me the latest linkin park album
HWU audio_volume_up just increase the volume a little
Outlier balance how much oney do i have available

Vertanen (2017) — why on earth is there cereal in the fridge
Vertanen (2017) — who are you going to vote for in november
Vertanen (2017) — do you know where i put my glasses
Clinc-150 out-of-scope what size wipers does this car take
Clinc-150 out-of-scope how long is winter
Clinc-150 out-of-scope are any earning reports due

Table 4: Sample intents and queries from our Redwood dataset, along with the corresponding original dataset and
intent (where applicable). Samples are grouped into in-scope (top) and out-of-scope (bottom).

among real datasets, with the data coverage ap-
proach being the stronger of the two.

4 Building the Redwood Dataset

With tools addressing the problem of intent colli-
sion detection in hand, we now turn our attention
to combining the individual datasets from Table 2
together to form a single large-scale intent classi-
fication dataset, Redwood. This section discusses
the construction of Redwood and a companion out-
of-scope evaluation set, and then evaluates several
benchmark intent classifiers on the dataset. These
datasets and associated evaluations demonstrate
the consequences of leaving colliding intents un-
addressed, providing a valuable resource for the
community to improving intent classification mod-
els.

4.1 Data
In-Scope Data. After creating the collision meta-
dataset, a natural extension was to combine each
dataset together to form Redwood. We used the
collision meta-dataset to help inform us of which
intents could combined, and which intents could
stand alone in Redwood. In some cases, we re-
moved intents that caused hierarchical collisions,

Dataset N. Samples

Vertanen (2017) 2067
Clinc-150 1200

Total 3267

Table 5: Sources of out-of-scope data and number of
samples used in Redwood’s out-of-scope test set.

as sometimes joining together intents from a hi-
erarchical collision produced an intent that was
too broad. We included only those intents that
have at least 50 queries, and the resulting Redwood
consists of 451 total intents and 62,216 queries.
Following the terminology used in Larson et al.
(2019b), we call these 451 intents in-scope.

By way of comparison, we also produced a
"naïve" version of Redwood, called Redwood-naïve,
where all the intents from the datasets listed in Ta-
ble 3.4 were joined together without using colli-
sion detection or any other method of arbitrating or
correcting colliding intents. Like the original Red-
wood, we included only intents that have at least
50 queries, and capped each intent at a maximum
of 150 queries so as to avoid drastic class imbal-
ances. Redwood-naïve consists of 619 intents and
85,746 total queries.
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All versions of Redwood were split into train and
test splits per intent: 85% training, 15% testing.

Out-of-Scope Data. In contrast to in-scope, out-
of-scope queries are those that do not belong to
any of the in-scope intents. Considering out-of-
scope queries in an evaluation of intent classifica-
tion models is important because such queries oc-
cur in production settings, where end users cannot
be expected to know the full range of intents when
interacting with a conversational AI system. We in-
clude a collection of 3,267 out-of-scope queries in
addition to the Redwood corpus. Redwood’s out-of-
scope data originates from the following sources:
Clinc-150 dataset, which itself includes a set of out-
of-scope queries; and Vertanen (2017), a crowd-
sourced dialog dataset from which we use the first
dialog turns. We reviewed all candidate out-of-
scope queries, removing those that were actually
in-scope. Examples of queries from the Redwood
dataset are shown in Table 4.

4.2 Benchmark Evaluation
Models. We benchmark intent classification per-
formance using the MobileBERT model (Sun et al.,
2020) using the HuggingFace library (Wolf et al.,
2020). The MobileBERT implementation uses a
softmax function to compute logits to a probabil-
ity vector p, from which we can obtain confidence
scores for each intent. These confidence scores
can be used to predict whether a query is in- or
out-of-scope, according to a decision threshold t
given by

decision rule =

{
in-scope, if max(p) ≥ t

out-of-scope, if max(p) < t.

Such decision rules were used in Hendrycks and
Gimpel (2017) and Larson et al. (2019b).

Metrics and Experiments. We measure intent
classifier accuracy on in-scope data without consid-
ering out-of-scope inputs. We also measure each
model’s ability to distinguish in-scope and out-of-
scope queries by computing the AUC between in-
and out-of-scope confidence scores. In this way,
we use AUC to measure how separable in- and out-
of-scope queries based on their confidence scores
without having to select an confidence threshold t.
An AUC score of 0.5 (the minimum AUC score)
implies the model cannot distinguish in- versus
out-of-scope inputs. An AUC of 1.0 indicates the
model can perfectly separate inputs.

Training In-Scope Clinc Vertanen
Dataset Accuracy OOS AUC OOS AUC

Redwood 0.913 0.921 0.928
Redwood-naïve 0.861 0.909 0.925

Table 6: Model performance of the MobileBERT classi-
fier on Redwood and Redwood-naïve.

Collisions 0 1 2 3 4 5 6 14

Mean Acc. 0.91 0.80 0.81 0.79 0.81 0.80 0.89 0.57
Size 322 74 42 51 15 11 13 8

Table 7: Accuracy scores on Redwood-naïve intents per
number of collisions.

4.3 Results

Model performance on Redwood-naïve and Red-
wood is shown in Table 6. First, we notice that
the intent classifiers perform reasonably well on
the in-scope classification task, with MobileBERT
classifying queries with 91% accuracy. The mod-
els also perform well on the out-of-scope task, and
discriminate between in- and out-of-scope queries
with AUC scores of 0.921 and 0.928 on the Clinc-
150 and Vertanen (2017) out-of-scope data.

The bottom half of Table 6 presents model per-
formance when trained and tested on Redwood-
naïve. In this case, model performance is substan-
tially worse than models trained on the carefully-
crafted Redwood dataset, confirming our hypothe-
sis from Section 3.1 that model performance suffers
if trained on data with colliding intents.

We drill deeper into the impact of intent colli-
sions on models trained on Redwood-naïve in Ta-
ble 7 which charts per-intent accuracy based on the
number of other intents that collide with that intent.
This table groups intents based on the number of
collisions, and we see that on average, intents with
no collisions exhibit higher accuracy than intents
with collisions. In general, colliding intents lead to
degraded accuracy: intents with one or more colli-
sions have accuracy of around 10 or more points
lower than the no-collision group, with the excep-
tion of the 6-collision group. The average accuracy
of the 6-collision group on Redwood-naïve is in-
deed surprising, and we posit that the MobileBERT
model—a high-capacity transformer model—can
learn the nuances of each individual intent, even if
they do semantically collide.

5 Conclusion and Future Work

This paper introduces the task of intent collision
detection when constructing or updating an intent

475



classification model’s dataset to incorporate addi-
tional intents. Using 13 individual datasets, we
constructed a meta-dataset to track intent collisions
between the datasets, and then introduced and eval-
uated two intent collision detection techniques and
found that both perform effectively at the collision
detection task. To help measure and address this
problem, we constructed Redwood, a large-scale
intent classification dataset consisting of 451 in-
tents and over 60,000 queries. We used Redwood
to benchmark several intent classification models
on the task of in-scope query prediction and out-
of-scope detection, The new Redwood dataset is
the largest publicly available intent classification
benchmark, in terms of number of intents, and will
be made publicly available. Future work will in-
clude annotating slots to extend Redwood to joint
intent classification and slot-filling, and it is likely
that new tools will have to be developed for doing
so. Additionally, using the collision detection meth-
ods introduced in this paper, Redwood can be peri-
odically updated with new intents whenever other
new intent classification datasets are published.
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Abstract

Task-oriented dialogue systems aim to fulfill
user goals through natural language interac-
tions. They are ideally evaluated with human
users, which however is unattainable to do at
every iteration of the development phase. Sim-
ulated users could be an alternative, however
their development is nontrivial. Therefore, re-
searchers resort to offline metrics on existing
human-human corpora, which are more practi-
cal and easily reproducible. They are unfortu-
nately limited in reflecting real performance
of dialogue systems. BLEU for instance is
poorly correlated with human judgment, and ex-
isting corpus-based metrics such as success rate
overlook dialogue context mismatches. There
is still a need for a reliable metric for task-
oriented systems with good generalization and
strong correlation with human judgements. In
this paper, we propose the use of offline re-
inforcement learning for dialogue evaluation
based on a static corpus. Such an evaluator
is typically called a critic and utilized for pol-
icy optimization. We go one step further and
show that offline RL critics can be trained the
static corpus for any dialogue system as exter-
nal evaluators, allowing dialogue performance
comparisons across various types of systems.
This approach has the benefit of being corpus-
and model-independent, while attaining strong
correlation with human judgements, which we
confirm via an interactive user trial.

1 Introduction

With the rise of personal assistants, task-oriented
dialogue systems have received a surge in popular-
ity and acceptance. Task-oriented dialogue systems
are characterized by a user goal which motivates
the interaction, e.g., booking a hotel, searching for
a restaurant or calling a taxi. The dialogue agent is
considered successful if it is able to fulfill the user
goal by the end of the interaction.

Ideally, success rates are obtained via interaction
with a real user in-the-wild. Unfortunately, with

a handful of exceptions, e.g., LetsGO (Lee et al.,
2018) and Alexa Challenge (Gabriel et al., 2020),
that is often out of reach. The closest approxima-
tion is human trials with paid users such as Ama-
zon Mechanical Turk workers, which has also been
adopted as final evaluation in recent incarnations
of the Dialogue State Tracking Challenge (DSTC)
(Gunasekara et al., 2020). However, such evalua-
tions are highly time- and cost-intensive, making
them impractical for optimization during an itera-
tive development. The third alternative is to use a
user simulator to conduct online dialogue simula-
tion, however the result is subject to the quality of
the user simulator itself. Furthermore, developing
such simulators is far from straightforward and re-
quires significant amounts of handcrafting (Schatz-
mann, 2008). Only recently we have seen data-
driven user simulators that can compete with hand-
coded ones (Lin et al., 2021).

While there has been considerable progress to-
wards more meaningful automatic evaluation met-
rics for dialogues, there remains a number of lim-
itations as highlighted by the recent NSF report
(Mehri et al., 2022): the metrics 1) measure only
a limited set of dialogue qualities, which mostly
focus on subjective aspects such as fluency and
coherence, 2) lack generalization across datasets
and models, and 3) are not yet strongly correlated
with human judgements. These limitations hinder
a more widespread use of newly proposed metrics
for benchmarking and comparison, especially with
prior works. Further, in particular for task-oriented
dialogue systems, the need for reliable automatic
evaluation of dialogue success is still unanswered.

Being able to automatically evaluate the success
rate of any policy using static data offers a number
of benefits in terms of required resources, general-
izability, and reproducibility. Furthermore, it is not
only suitable for the final evaluation of a dialogue
policy, but can also be utilized as an objective for
iterative optimization. The corpus-based success

478



rate is one such method, which has become the stan-
dard metric for state-of-the-art comparisons of pol-
icy optimization approaches today (Budzianowski
et al., 2018). Unfortunately, this metric is com-
puted based on pseudo-dialogues that may contain
context mismatch. Therefore, we believe it should
be treated more as an approximation: it is insuffi-
cient at best, and misleading at worst, in reflecting
real performance of dialogue systems. In addition,
the rules used to check the goal completion need to
be handcrafted based on the ontology, making this
method data- or ontology-dependent.

In this paper, we propose to use offline reinforce-
ment learning (RL) to train a policy evaluator, also
known as a critic, based on a static collection of
dialogue data1. We show that an offline critic ad-
dresses the limitations of current automatic metrics:
1) it can be trained to evaluate any dialogue system
architecture after-the-fact, allowing comparisons
across various types of systems from prior works,
2) it can be utilized in the iterative development
phase to optimize a dialogue policy, 3) it is theo-
retically grounded, solving the problems that stan-
dard corpus-based success rate has due to context
mismatch, and 4) it strongly correlates with the
performance of the system when interacting with
human users, which we confirm via a user trial.

2 Related Work

For a long time, the research in dialogue policy
has focused on user-centered criteria such as user
satisfaction (Walker et al., 1997; Lee and Eskénazi,
2012; Ultes et al., 2017). The most reliable way to
obtain these scores is to have users interact directly
with the system and let them subjectively rate the
system afterwards. Due to the time and resource
requirements to carry out such evaluations, human
trials are usually done only as the final evaluation
after the system development is finished.

As the line between policy and natural language
generation (NLG) tasks becomes blurred, we see
the introduction of metrics such as BLEU (Pap-
ineni et al., 2002) and perplexity. However, these
have been labeled early on to be potentially mis-
leading, as they correlate poorly with human judge-
ment (Stent et al., 2005; Liu et al., 2016). This
circumstance motivates automatic metrics that are
highly correlated with human ratings (Dziri et al.,
2019; Mehri and Eskenazi, 2020a,b). However,

1https://gitlab.cs.uni-duesseldorf.de/general/dsml/lava-
plas-public

these metrics are designed to measure subjective
quality of a dialogue response, making them more
suitable for evaluating chat-based systems.

Despite the availability of toolkits that facili-
tate user simulation (US) evaluation (Zhu et al.,
2020), corpus-based match and success rates are
the default benchmark for works in task-oriented
dialogue systems today (Budzianowski et al., 2018;
Nekvinda and Dušek, 2021). These metrics are
practical to compute, reproducible, and scalable.
Current standard corpus-based metrics are com-
puted on a pseudo-dialogue constructed using user
utterances from data and responses generated by
the system. A set of rules then checks whether the
system provides all information requested by the
user. Unfortunately, they do not take into account
context mismatches that may originate from the
pseudo-dialogue construction and therefore does
not reflect other aspects of dialogue quality as the
resulting dialogue flow is completely overlooked.

There has been few applications of offline RL
to dialogue systems. Jaques et al. (2019) explores
various language-based criteria, e.g., sentiment and
semantic similarity, as reward signals for open-
domain dialogue, paired with a Kullback-Leibler
(KL) control for exploration within the support of
the data. Verma et al. (2022) proposed using fine-
tuned language models to utilize unlabeled data for
learning the critic function. The method is however
only demonstrated on a very small state and action
space, and it is therefore unclear whether it general-
izes to more complex set ups. Ramachandran et al.
(2021) applied offline RL with a pair-wise reward
learning model based on preference learning, how-
ever it still utilizes the corpus-based success rate
for choosing the preferred rollout. To the best of
our knowledge, offline RL has not previously been
deployed for dialogue evaluation.

3 Preliminaries

3.1 Offline RL

Dialogue can be formulated as a reinforcement
learning problem with a Markov decision process
(MDP)M = {S,A, r, p, p0, γ}. In this MDP, S,
A, and r denote the state and action spaces, and
the reward function, respectively. p(st+1|st, at) de-
notes the probability of transitioning to state st+1

from st after executing at, and p0(s) is the proba-
bility of starting in state s. γ ∈ [0, 1] is the discount
factor that weighs the importance of immediate and
future rewards. At each time step t, the agent ob-
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serves a state st, executes its policy π by selecting
an action at according to π(at|st), transitions to a
new state st+1 and receives a reward rt. The goal of
the policy is to maximize the cumulative discounted
rewards, i.e., the return Rt =

∑
i≥0 γ

irt+i.
Instead of interacting with the MDP to learn a

policy, offline RL aims to learn a policy exclusively
from previously collected data containing state tran-
sitions D = {(si, ai, si+1, ri)}i under an unknown
behavior policy πβ . This set-up is especially use-
ful in cases where deploying the agent in the real
environment is too costly, as is the case with real
user interaction for dialogue systems. As the agent
can not interact with the environment, the perfor-
mance of the trained policy π needs to be evaluated
also based on the data D. The Q-value Qπ(st, at)
denotes the expected return when executing at in
st and following policy π thereafter. Q-learning al-
gorithms estimate the Q-function Qπ by iteratively
applying the Bellman operator

T Q(st, at) = Est+1 [rt + γQ(st+1, at+1)]. (1)

Value-based RL methods optimize the policy by
maximizing the Q-values for every state-action
pair (st, at) ∈ S × A. With discrete actions, and
for given state s, the actor can then simply select
argmaxaQ(s, a) in a greedy fashion.

Alternatively, with an actor-critic method, an
actor is trained which optimizes its parameters to
maximize the expected return of the starting states,
for example via the deterministic policy gradient
method (Silver et al., 2014; Lillicrap et al., 2016):

∇θJ(θ) = Es∼S [∇θπθ(s)∇aQπ(s, a)|a=π(s)].
(2)

The challenge in performing offline RL comes
from the fact that D is static and has limited cov-
erage of S and A. While an out-of-distribution
state is not a problem during training as the state is
always sampled from D, the policy may select an
out-of-distribution action that is not contained in
D. This tends to lead to arbitrarily high estimates
which further encourages the policy to take out-of-
distribution actions. There are two main methods
to counteract this: 1) constraining the policy to stay
within the support of the dataset (Wu et al., 2019;
Jaques et al., 2019; Fujimoto et al., 2019; Zhou
et al., 2020), and 2) modifying the critic to better
handle out-of-distribution actions (Kumar et al.,
2019, 2020). In this work, we focus on the former.

3.2 Dialogue Policy in the Latent Action Space
RL can be applied to a dialogue system policy
at different levels of abstraction. Semantic ac-
tions, i.e., tuples containing intent, slot and values,
such as inform(area=centre), are widely
used for a compact and well-defined action space
(Geishauser et al., 2021; Tseng et al., 2021). Pre-
defining the actions and labeling the dialogue data
however requires considerable labor. In addition,
the final policy needs to be evaluated dependent on
an NLG module. On the opposite end, natural lan-
guage actions view each word of the entire system
vocabulary as an action in a sequential decision
making process (Mehri et al., 2019; Jaques et al.,
2019). This blows up the action space size and the
trajectory length, hindering effective learning and
optimal convergence.

Zhao et al. (2019) proposed instead an automati-
cally inferred latent space to serve as action space
of the dialogue policy, where a latent action is a
real-valued vector containing latent meaning. This
decouples action selection and language generation,
as well as shorten the dialogue trajectory. Lubis
et al. (2020) followed up this work by proposing
the use of variational auto-encoding (VAE) for a
latent-space that is action characterized. In both of
these works, the latent space is trained via super-
vised learning (SL) on the response generation task,
and then followed with policy gradient RL using
the corpus-based success as the reward signal, i.e.,

∇θJ(θ) = Eθ[
T∑

t=0

Rt∇θ log pθ(zt|ct)]. (3)

3.3 Offline RL for Policy in the Latent Action
Space (PLAS)

A latent action space also lends itself well to of-
fline RL with a policy-constraint technique. Zhou
et al. (2020) proposed to use a conditional VAE
(CVAE) to model the behavior policy πβ(a|s) to re-
construct actions conditioned on states. The benefit
of learning in the latent space is that the latent pol-
icy has the flexibility of choosing the shape of the
distribution via the prior. By constraining the latent
policy to output latent actions with high probability
under the prior, the decoder will output an action
that is likely under the behavior policy in expecta-
tion. By choosing a simple prior such as a normal
Gaussian distribution, constraint to the latent policy
becomes simple to enforce, for example by defining
z = π(s) such that zi ∈ [−σ, σ] for each dimen-
sion i of the latent space for some hyperparameter
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σ. PLAS defines a deterministic policy with con-
tinuous latent action that is optimized using the
deterministic policy gradient method (Silver et al.,
2014). Dual critics are used that are optimized with
soft clipped double Q-learning. The PLAS algo-
rithm has been applied to real robot experiment as
well as locomotive simulations tasks. In this en-
vironment, the latent actions and action space are
continuous. This differs quite considerably from di-
alogue systems, where the latent action needs to be
translated to word-level actions which are discrete.

4 Offline Critic for Dialogue Policy
Evaluation and Optimization

The architecture of our proposed critic is depicted
in Figure 1(b). We utilize recurrency to let the critic
take dialogue context into account. We encode the
word-level user utterance with an RNN and con-
catenate it with the binary belief state to obtain st.
On the other hand, the critic has the flexibility of
taking any form of action. With latent actions, the
action can be used as input directly by concatenat-
ing it with the state. When word-level or semantic
actions are considered, a separate encoder can be
used before concatenating it with the state.

In addition, to leverage the available data as
much as possible, we incorporate the user goal for
estimating the return. The MDP then becomes the
dynamic parameter MDP (DP-MDP) as described
by Xie et al. (2020), where a set of task parameters
g ∈ G governs the state dynamics p(st+1|st, at; g)
and reward function r(st, at; g). It is safe to incor-
porate the user goal for learning, because the critic
is only used for policy evaluation and not needed
to run the policy. If the user goal is not given in
the data, it can be automatically derived from the
dialogue state. To maintain the correctness of the
dialogue context, when predicting Q(st, at), all
actions a<t are taken from the corpus. Only at
is taken from the output of the policy. This is in
contrast to the existing corpus-based success rate
computation, where all a≤t are taken from the pol-
icy and thus create context mismatches.

To keep the critic pessimistic in the face of un-
certainty, we implement a dropout layer and do K
forward passes for each state-action pair and the
lowest value is then taken as the final prediction,
i.e., Q(st, at) = minKk=1Qk. In this way, predic-
tion with high variance, i.e., high uncertainty, is
punished by taking the lower bound. This mecha-
nism replaces the use of double critic in PLAS.

4.1 Offline Critic for Optimization:
LAVA+PLAS

We combine LAVA (Lubis et al., 2020) and PLAS
(Zhou et al., 2020) approaches in order to train a di-
alogue policy with latent action via offline RL. We
use the multi-task LAVA approach, i.e., LAVA_mt,
depicted in Figure 1(a), using continuous latent
variables modeled via Gaussian distributions, as
the normal distribution prior works best with the
PLAS approach. In the original LAVA_mt, the
model utilizes response generation (RG) and re-
sponse VAE objectives for optimization with a 10:1
ratio, i.e., the VAE objective is optimized once ev-
ery 10th RG epoch. In other words, the VAE is only
used as an auxiliary task to ground the latent space
from time to time. In this work, we modify the
model training to preserve both RG and VAE abil-
ities equally, as we will need the VAE to retrieve
the latent action from the dataset D.

With θ as state encoder parameters, ϕ action
encoder, and ω decoder, for each training pass,
both tasks are performed and the model uses their
joint loss to update its parameters, i.e.,

LLAVA_mt(ω, θ, ϕ) =

Epθ(z|s)[log pω(x|z)]− αDKL[pθ(z|s)||p(z)]
+ Eqϕ(z|r)[log pω(x|z)]− βDKL[qϕ(z|r)||p(z)].

(4)

While the original LAVA uses policy gradient RL
with the corpus-based success rate, in this work
we follow the SL with PLAS algorithm. Parts of
the LAVA_mt model are used to initialize the ac-
tor and critic networks: parameters θ are used for
the actor, ϕ to retrieve the latent action z given a
word-level response a, and the decoder ω to map
latent actions produced by the actor into word-level
responses. Prior to PLAS training, we warm-up
the LAVA_mt model with only the VAE objective
to further improve the latent action reconstruction
capability:

LVAE
LAVA_mt(ω, ϕ) = Eqϕ(z|r)[log pω(x|z)]−

βDKL[qϕ(z|r)||p(z)].
(5)

PLAS training is depicted in Figure 1(c). It con-
sists of two interleaved training loops. For each
pass, an episode is sampled from the static dataset
D. In the actor training loop, the actor parameter
is optimized using deterministic policy gradient
(Silver et al., 2014) to maximize the critic esti-
mate. Due to the deterministic nature of the policy,
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Figure 1: Overview of LAVA_mt, critic network and offline RL with PLAS. First, (a) we pre-train LAVA_mt with
modified shared objective. The state encoder and latent space of the resulting model is used to initialize the actor for
PLAS. The critic (b) is an RNN-based model that takes state, action and user goal to estimate the return. PLAS
samples the transition from the static dataset and uses it to train actor and critic in an alternating fashion. To compute
the target Q-value Q(st+1, π(st+1)), target actor and critic networks are used with soft update to improve stability.

the actor no longer samples from the distribution,
but instead takes the distribution mean as the ac-
tion. To encourage the policy to stay close to the
behavior policy, as an additional loss, we add a
mean-squared error (MSE) term between the cho-
sen action ẑt = π(s) and the reconstructed action
from the corpus zt. The actor loss is defined as

Lactor = Q(s, π(s)) + MSE(ẑt, zt). (6)

On the other hand, the critic is trained to minimize
the error of the Bellman equation. In addition,
we penalize the critic with a weighted KL loss
term as a means of regularization when the target
actor chooses an action that is far from the behavior
policy. The critic loss is defined as

Lcritic = (Q(st, at)−(rt+γQ′(st+1, π
′(st+1)))

2

− λDKL(qϕ(zt+1|at+1)||π′(st+1)). (7)

As is common practice, we use the target critic
and actor networks for computing the target Q-
value. The actor, critic, and their corresponding
target networks are initialized the same way, but
the target networks are updated with a soft update
to promote stability in training.

4.2 Offline Critic for Evaluation
In this paper, we utilize offline RL critic in a new
way, as a data- and model-independent evaluator
for task-oriented dialogue systems. Following the
critic training loop in Figure 1(c), we replace the
target actor with the fixed policy πe, i.e. the one to
be evaluated, and perform the critic loop training

with Equation 7 as the loss function, setting λ = 0
for systems with word-level action.

Note that with this approach, the
dataset consisting of N dialogues D =
{{(si, ai, si+1, ri)}Tn

i=1}Nn=1 for evaluation
can take any form as long as the states si and
actions ai are compatible with the dialogue
system input and output, allowing comparisons
across various types of dialogues systems. For
instance, the states si can be represented as
sequences of utterances or binary vectors and
actions ai as word-level, latent, semantic, or
binary actions. In terms of rewards, those can
be sparse (i.e. intermediate rewards are set to 0,
ri = 0, i < Tn, n = 1, . . . , N ) and in case that
the corpus represents the desireable behaviour, a
maximum reward can be assumed as a final reward
for every dialogue in the corpus (i.e. set to 1,
rTn = 1, n = 1, . . . , N ). Of course more accurate
reward labels would result in an even more precise
evaluator. As a consequence, dialogue systems can
be evaluated on static corpora that differ from the
training corpus and also not necessarily generated
by interacting with the system.

A possible use case scenario would be a human-
human corpus annotated with states and sparse re-
wards and a number of different dialogue systems
being evaluated on this corpus. This is the case
we consider in our evaluation below, whereby we
use word-level and latent actions, and thus do not
require explicit action labels.
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5 Experimental Set-up

5.1 Data

We use MultiWOZ 2.1 (Budzianowski et al., 2018;
Eric et al., 2019) to conduct our experiments, one
of the most challenging and largest corpora of its
kind. MultiWOZ is a collection of conversations
between humans in a Wizard-of-Oz fashion, where
one person plays the role of a dialogue system and
the other one a user. The user is tasked to find
entities, e.g., a restaurant or a hotel, that fit certain
criteria by interacting with the dialogue system.
The corpus simulates a multi-domain task-oriented
dialogue system interaction.We use the training,
validation and test set partitions provided in the
corpus, amounting to 8438 dialogues for training
and 1000 each for validation and testing.

5.2 Policy and Critic Training

For the LAVA_mt pre-training, we use simple re-
current models as encoder and decoder and follow
the hyperparameters as set in the original work (Lu-
bis et al., 2020) with a few exceptions, i.e. we use
200-dimensional continuous latent variables with
a normal Gaussian as the prior and we lower the
learning rate to 5e−4. As depicted in Figure 1,
parts of the LAVA_mt model are then used by the
actor, critic, and different parts of PLAS training.
For the critic, we set the hidden size to be 500 and
the linear layer to use the sigmoid activation func-
tion. During PLAS, we use a learning rate of 0.01
for the critic and 0.005 for the actor. The critic
dropout rate and λ are set to 0.3 and 0.1, respec-
tively. The policy is trained with a maximum of
10K sampled episodes from the corpus, and the
best checkpoint is chosen according to the corpus-
based success rate. We set the hyper-parameters of
the critic as an offline evaluator the same way, ex-
cept that it uses 100K sampled episodes for training
without early stopping.

5.3 Dialogue Systems

To show the generalization ability of our proposed
offline evaluation, we evaluate various dialogue
systems that differ in terms of modular abstractions
and architectures:

HDSA (Chen et al., 2019) is a transformer-based
dialogue generation architecture with graph-based
dialogue action using hierarchically-disentangled
self-attention (HDSA). The model consists of a pre-
dictor, which outputs the dialogue action, and a gen-

erator, which subsequently maps it into dialogue
response. Two versions of HDSA are included,
one which uses ground-truth action for generation
(gold), and one which uses predicted labels (pred).
Note that the ‘pred’ version is the only one that can
be deployed in an interactive set-up.

AuGPT (Kulhánek et al., 2021) is a fully end-
to-end dialogue system with fine-tuned GPT2 (Rad-
ford et al., 2019) on multi-task objectives, including
belief state prediction, response prediction, belief-
response consistency, user intent prediction, and
system action prediction. The model is trained on
MultiWOZ data augmented with the Taskmaster-1
(Byrne et al., 2019) and Schema-Guided Dialogue
(Rastogi et al., 2020) datasets.

LAVA (Lubis et al., 2020) is an RNN-based
model using latent actions, optimized via SL and
policy gradient RL with corpus-based success rate
as reward. We use LAVA_kl as the best performing
model reported.

LAVA+PLAS (Ours) is our proposed variant of
LAVA that is trained in an offline RL set-up using
offline critic and PLAS algorithm (Section 4.1).

5.4 Evaluation Metrics

Offline Critic for Evaluation (Ours) For each
system, we train an offline critic using offline Q-
learning as described in Section 4.2. While theoreti-
cally the critic can take any form of dialogue action
as input, in our experiments we utilize word-level
or latent action. We consider intermediate rewards
to be 0 and the final reward is 1 for a successful
dialogue or 0 for a failed dialogue, as provided in
the MultiWOZ corpus. As final estimated value of
the policy, we report the average estimated return
of all initial states on the test set.

Standard corpus-based metrics Corpus based
evaluation is conducted on MultiWoZ test set us-
ing delexicalized responses with the benchmarking
evaluation script provided by Budzianowski et al.
(2018). A pseudo dialogue is generated, where
user turns are taken from the corpus and system
turns are generated by the evaluated model. Match
rate computes whether all informable slots in the
user goal are generated, and success rate computes
whether all information requested by the user is
provided. For completeness, we also report the
BLEU score on target responses.
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SL SL + PLAS

Corpus
Match 66.06 83.94
Success 51.95 67.54
BLEU 0.17 0.14

ConvLab
US

Compl. 37.42 47.02
Success 31.87 39.40
Book 19.12 36.74
F1 49.11 57.14
Turns 21.57 21.99

Table 1: Offline RL in latent space improves task-related
metrics on both corpus and US evaluations. Results are
averaged across 5 seeds.

US evaluation We use the default Con-
vLab2 (Zhu et al., 2020) user simulator with the
BERT-based NLU module, rule-based agenda
policy and template NLG. We conducted 1000
dialogues and report the average number of turns
across all dialogues. We focus on three measures:
book rate, i.e., how often the system finalized
a booking, success rate, i.e., the percentage of
dialogues where all information requested by the
user is provided by the system and bookings are
successfully made, and lastly complete rate, i.e.,
the number of dialogues that are finished regardless
of whether the booked entity matches the user
criteria. We also report entity F1 and average
number of turns across the simulated dialogues.

With the exception of AuGPT, the systems’ di-
alogue policies require a dialogue state tracker
(DST) for online interactions. For this purpose,
we utilize a tracker with a joint goal accuracy of
52.26% on the test set of MultiWOZ 2.1 (van Niek-
erk et al., 2020). This tracker is a recurrent neural
model, which utilises attention and transformer
based embeddings to extract important information
from the dialogue. We perform lexicalization via
handcrafted rules using the information from the
dialogue state and database query. For handling
incomplete lexicalizations due to empty database
queries or a wrongly predicted domain by the pol-
icy, we replace the response with a generic “I’m
sorry, could you say that again?". This is equal to
masking such actions while neither punishing nor
rewarding the policy.

Human evaluation Human evaluation is per-
formed via DialCrowd (Lee et al., 2018) connected
to Amazon Mechanical Turk. The systems are
set up identically as in the US evaluation, except
that the systems are interacting with paid users in-
stead of a US. Users are provided with a randomly
generated user goal and are required to interact

with our systems in natural language and to sub-
sequently evaluate them. We ask the user whether
their goal is fulfilled through the dialogue, indicat-
ing the success rate. We also ask them to rate the
overall system performance on a Likert scale from
1 (worst) to 5 (best). For each system we collected
400 dialogues with human workers.

6 Results and Analysis

6.1 Offline Critic for Optimization

Table 1 shows the policy performance after shared
multi-task SL training and the performance after
subsequent offline RL training with PLAS, aver-
aged over 5 seeds. We observe that offline RL in
latent space with the critic estimate as reward sig-
nal improves task-related metrics on both corpus
and US evaluation. The consistent improvement on
offline and interactive evaluations is the result of
critic’s value estimate as reward signal, which we
believe is noteworthy as the policy is never explic-
itly trained on either metric.

Like policy gradient RL used by LAVA (Equa-
tion 3), PLAS leads to a decrease in BLEU score.
This is quite common for end-to-end policies
trained with RL following SL (Lubis et al., 2020),
however the decrease with PLAS is not as drastic.
This signals that the policy retains more linguistic
variety in the responses, since the reward signal
does not overlook context mismatch and thus re-
sponses that are out of context are not rewarded.
We include a dialogue example in Appendix A to
demonstrate the context mismatch issue and how
the offline critic addresses it.

6.2 Offline Critic for Evaluation

System performances across metrics Tables 2
and 3 present the corpus- and interaction-based
evaluation results of LAVA+PLAS and our base-
lines. For completeness, we included the human
policy, i.e., the behavior policy of the dataset, on
the corpus-based evaluation. For LAVA+PLAS, we
pick the best model out of the 5 seeds. For the
baseline models, we utilize the released pre-trained
parameters and re-run all evaluations.

The ranking of the systems differs depending
on the evaluation metrics. With corpus-based suc-
cess and match rates, LAVA far outperforms the
other models and even human wizards. This is
expected, as LAVA_kl is directly optimized with
the corpus-based success rate as reward. In terms
of BLEU, HDSA – which is designed for genera-
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Policy Corpus Evaluation Critic Evaluation
Match Success BLEU

MultiWOZ (Human) 90.40 ± 1.82 82.30 ± 2.36 N/A 52.68 ± 0.02
AuGPT 83.30 ± 2.31 67.20 ± 2.91 0.17 52.45 ± 0.02
LAVA+PLAS 88.30 ± 1.99 73.40 ± 2.74 0.14 51.76 ± 0.03
LAVA_kl 97.50 ± 1.14 94.80 ± 1.47 0.12 48.95 ± 0.08
HDSA (gold) 91.80 ± 1.70 82.50 ± 2.35 0.21 49.89 ± 0.08
HDSA (pred) 88.90 ± 1.95 74.50 ± 2.70 0.20 49.00 ± 0.09

Table 2: Corpus-based evaluation metrics. 95% confidence intervals are reported.

Policy ConvLab US Evaluation Human Evaluation

Compl. Success Book F1 Avg. turn Success Rating

AuGPT 89.20 ± 1.92 83.30 ± 2.31 85.16 ± 3.34 81.03 ± 1.40 14.50 ± 0.41 90.75 ± 2.85 4.34 ± 0.08
LAVA+PLAS 54.20 ± 3.09 45.30 ± 3.09 61.18 ± 4.51 58.85 ± 2.25 23.54 ± 0.89 63.00 ± 4.75 3.34 ± 0.12
LAVA_kl 49.20 ± 3.10 40.00 ± 3.04 63.20 ± 4.37 54.47 ± 2.24 26.64 ± 1.00 63.25 ± 4.74 3.44 ± 0.12
HDSA (pred) 36.70 ± 2.99 25.90 ± 2.71 6.67 ± 2.37 49.97 ± 2.23 31.32 ± 0.86 55.25 ± 4.89 3.09 ± 0.12

Table 3: Interactive evaluation metrics. 95% confidence intervals are reported.

Fleiss’ Kappa Human Evaluation

Success Rating

Corpus-based Corpus
Match -0.623 -0.571
Success -0.460 -0.397
BLEU 0.343 0.299

Critic 0.755 0.713

Interactive US

Complete 0.992 0.984
Success 0.991 0.984
Book 0.789 0.802
F1 0.990 0.978
Turn -0.967 -0.956

Table 4: Correlation between evaluation metrics and hu-
man judgements. Absolute values shows the strength of
the correlation. Negative sign shows inverse correlation.

tion with semantic action – achieves the first rank.
With critic evaluation, human policy achieves the
highest score. The rankings for evaluation with
user simulator and paid workers in Table 3 are con-
sistent, showing another trend entirely. AuGPT
outperforms the other systems with a huge margin,
LAVA+PLAS and LAVA_kl show a narrower gap
in performance compared to corpus-based metrics,
while HDSA performs very poorly. The collected
dialogues show that the language understanding
and generation of AuGPT is superior to the other
models, as it leverages a large pre-trained model as
a base model and utilizes multiple dialogue corpora
for fine-tuning. In other words, it is trained on or-
ders of magnitude more data compared to the other
systems. This results in a more natural interaction
with both simulated and human users.

It is interesting to note that the critic has a much
narrower confidence interval compared to the other
metrics. Although the values for some policies are

seemingly close, the intervals show that the differ-
ence between most of the systems are statistically
significant, except for LAVA_kl and HDSA (gold).

Correlation with human judgements Table 4
lists pairwise correlation between human judge-
ments and the automatic metrics. We differentiate
between corpus-based metrics such as the standard
match and success rates, BLEU and critic evalua-
tion, with interactive metrics that require a form
of user, either simulated or paid. Success rates of
current standard evaluations have moderate inverse
correlation with human judgements due to the con-
text mismatch that occurs during its computation.
On the other hand, the theoretically grounded value
estimation by the offline critic has a strong corre-
lation with human judgements, showing that our
proposed method is a more suitable corpus-based
metric to reflect the dialogue system performance.
Our study confirms the weak correlation between
BLEU and human ratings. All metrics computed
based on interaction with US are strongly corre-
lated with metrics from human evaluation. The
number of turns is strongly but inversely correlated,
which aligns with the intuition that the fewer turns
the system needs to complete the dialogue, the bet-
ter it is perceived by human users. This suggests
that while existing US is far from fully imitating
human behavior, it provides a good approximation
to how the systems will perform when interacting
with human users. We advocate that future works
report on multiple evaluation metrics to provide
a more complete picture of the dialogue system
performance.

Note that while US evaluation provides stronger
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correlations with human judgements, our proposed
use of offline RL critic for evaluation has the benefit
of being corpus- and model-independent, whereas
for a new corpus and ontology, a new US would
need to be designed and developed. Furthermore,
an offline evaluation takes significantly less time
to perform, making it an efficient choice for the
iterative development process.

6.3 Impact of Reward Signal on RL

LAVA+PLAS and LAVA_kl are the only two sys-
tems optimized via RL. We observe that they sig-
nificantly outperform the other on the respective
metric they received as reward signal during RL.
However, when subjected to interactive evaluation,
the gap between their performance is shrinking (see
Table 3). This shows on the one hand the power
of reinforcement learning methods to optimize the
given reward and on the other hand how important
it is to define this reward correctly, warranting fur-
ther research in both extrinsic and intrinsic reward
modelling for dialogue (Wesselmann et al., 2019;
Geishauser et al., 2021).

7 Conclusion

We propose the use of offline RL for dialogue eval-
uation based on static corpus. While offline RL
critics are typically utilized for policy optimization,
we show that they can be trained for any dialogue
system as external evaluators that are corpus- and
model-independent, while attaining strong corre-
lation with human judgements, which we confirm
via an interactive user trial. Not only does the of-
fline RL critic provide a corpus-based metric that is
reliable and efficient to compute, it also addresses
a number of issues highlighted in the recently pub-
lished NSF report (Mehri et al., 2022). It is impor-
tant to note that the proposed framework does not
depend on the definition of states, action and re-
wards. So in principle, one could apply this method
beyond task-oriented dialogue systems. For ex-
ample, one could evaluate a number of chat-bots
considering a corpus annotated only with level of
engagement achieved in each dialogue and thus
measure the level of engagement of the evaluated
chat-bots.
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A Example Dialogue

Table 5 shows an example dialogue accompanied
by the corresponding offline critic Q estimation and
corpus-based success rate.
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Utterances Q Corpus succ.
User can you help me find a [value_pricerange] place to stay in the [value_area] part of town?
True sure. there are [value_count] guesthouses there. i would be happy to book [value_count]

for you if you like.
Pred the [hotel_name] is located at [hotel_address] , postcode [hotel_postcode]. the phone

number is [hotel_phone].
0.4730

User does it have a star rating of [value_count]?
True no. they all have [value_count] stars.
Pred the [hotel_name] is a guesthouse in the [value_area] area. the phone number is [ho-

tel_phone] and the postcode is [hotel_postcode].
0.4569

User then find me [value_count] in the [value_pricerange] price range.
True all of the accommodations in the [value_area] are in the [value_pricerange] price range.

would you like to try a different part of town?
Pred the [hotel_name] is located at [hotel_address] , postcode [hotel_postcode]. the phone

number is [hotel_phone].
0.4478

User find me a nice [value_count] and book for [value_count] people and [value_count] nights
from [value_day]

True actually , the [hotel_name] is a [value_count] start hotel in the [value_area] area. it s in
the [value_pricerange] price range. how does that sound?

Pred i have booked your room at the [hotel_name] for [value_count] nights starting [value_day].
your reference number is [hotel_reference]. is there anything else i can help you with?

0.4461

User that sounds perfect. can you reserve that and provide me with the reference number?
True okay , you are all set. the hotel is booked and the reference number is [hotel_reference].

can i help you with anything else today?
Pred the reference number is [hotel_reference]. 0.4205
User thank you. i am also looking for a restaurant that serves [value_food] and that is in the

same area as the hotel
True [restaurant_name] is an [value_pricerange] restaurant in the same area as the hotel , would

you like me to make reservations for you?
Pred [restaurant_name] is located at [restaurant_address] , [restaurant_postcode]. the phone

number is [restaurant_phone].
0.4167

User yes. same group of people , at [value_time] on the same day please.
True booking was successful. the table will be reserved for [value_count] minutes. reference

number is [restaurant_reference]. what else can i help you with today?
Pred i have booked you a table at [restaurant_name]. the reference number is [restau-

rant_reference]. can i help you with anything else?
0.4095

User that was all i needed. thanks. bye.
True ok! have a great day!
Pred you are welcome. have a great day! 0.4161 1.0

Table 5: Example dialogue comparing offline critic estimate and corpus-based success. "True" denotes responses
taken from the corpus, and "Pred" responses from the policy, in this case we use LAVA_kl with which context
mismatch often occurs. Note that Q prediction takes "User" and "True" utterances from the beginning up to the
previous turn, and "User" and "Pred" of current turn. On the other hand, Corpus-based success takes on "User" and
"Pred" utterances for all turns. Predicted responses in italic highlight the context mismatch that can occur when
pseudo-dialogue is constructed for dialogue success computation. This is however ignored and the dialogue is
considered successful, since all necessary requestable slots are generated by the system. On the other hand, the
Q-estimate shows a decrease in value, and the policy is given a lower reward signal for the same dialogue.

489



Proceedings of the SIGdial 2022 Conference, pages 490–499
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

1 

 

 

Abstract 

Accurate detection and appropriate 

handling of disruptive talk in multi-party 

dialogue is essential for users to achieve 

shared goals. In collaborative game-based 

learning environments, detecting and 

attending to disruptive talk holds 

significant potential since it can cause 

distraction and produce negative learning 

experiences for students. We present a 

novel attention-based user-aware neural 

architecture for disruptive talk detection 

that uses a sequence dropout-based 

regularization mechanism. The disruptive 

talk detection models are evaluated with 

multi-party dialogue collected from 72 

middle school students who interacted with 

a collaborative game-based learning 

environment. Our proposed disruptive talk 

detection model significantly outperforms 

competitive baseline approaches and shows 

significant potential for helping to support 

effective collaborative learning 

experiences.   

1 Introduction 

Automatic analysis of dyadic dialogue utilizes a 

broad range of methods for intent recognition 

(Ahmadvand et al., 2019; Grau et al., 2004; Kim et 

al., 2010; Maraev et al., 2021). Compared to dyadic 

conversations, multi-party conversations are 

characterized by a high degree of complexity due 

to multi-way group interactions, thus, multi-party 

dialogue models should take into account group 

dynamics to reliably model phenomena. For 

example, previous research investigated giving less 

weight to participants whose convergence 

behaviors differ from the rest of the group (Rahimi 

and Litman, 2018) to examine which utterances 

should be clustered together (i.e., conversation 

threads) in multi-party dialogues (Mayfield et al., 

2012; Tan et al., 2019).  

In education, computer-supported collaborative 

learning environments promote social aspects of 

learning through the use of a variety of 

technological and constructive pedagogical 

strategies, including problem-based learning and 

inquiry learning (Dillenbourg et al., 2009; Hmelo-

Silver, 2004; Jeong et al., 2019). Collaborative 

game-based learning environments often provide 

students with in-game chat features to help 

promote open discussion and negotiation among 

team members, facilitating the coordination of their 

in-game learning activities (Saleh et al., 2021). 

However, students are not always effective 

collaborators and may engage in improper 

communicative behavior, distracting from the 

group learning experience. The presence of 

negative socio-emotional engagement in 

collaborative learning environments can result in 

disruptive talk and can function as a barrier to the 

development of high-quality collaborative 

communication.  

Previous work on detecting talk that can cause 

negative socio-emotional engagement (e.g., off-

task behavior, bullying, disruptive talk) in 

collaborative learning environments investigated 

computational approaches using language models 

ranging from classic approaches (e.g., n-grams) 

and word embedding approaches (e.g., BERT). 

These language models have been combined with 

classic techniques (e.g., logistic regression, random 

forest) and deep learning techniques (e.g., long-

short term memory networks) (Carpenter et al., 

2020; Nikiforos et al., 2020; Park et al., 2021). 

However, the previous work either makes 

utterance-by-utterance predictions without taking 
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context into account or treats the entire multi-party 

conversation sequence as a continuous dialogue 

flow, despite the potential presence of multiple 

concurrent message threads with different topics.  

In this paper, we propose a novel attention-

based, regularized user-aware modeling approach 

for detecting disruptive talk in multi-party dialogue 

within a collaborative game-based learning 

environment. We investigate the use of target-user 

embeddings to help the prediction model determine 

the disruptiveness of the sequence more accurately 

with an additional user-specific network and 

attention mechanism. We also investigate a 

sequence-level dropout mechanism during training 

as a regularization technique that could help avoid 

overfitting possible diluted conversation sequences 

(i.e., presence of multiple threads in a sequence) in 

training data. Experimental results demonstrate 

that our attention-based, regularized user-aware 

model offers great potential for addressing 

disruptive talk detection in multi-party dialogues.  

2 Related Work 

Diverse prediction tasks have analyzed multi-party 

dialogue focusing on the asynchronous and 

entangled nature of group conversations, such as 

dialogue act classification using group thread 

history, and thread detection as well as 

cyberbullying and toxic message detection within 

group conversations (Anikina and Kruijff-

Korbayova, 2019; Blackburn and Kwak, 2014; 

Ekiciler et al., 2021; Kim et al., 2012; Min et al., 

2021; Tan et al., 2019).  

Kim et al. (2012) investigated classic machine 

learning approaches for dialogue act classification, 

such as Naïve Bayes, support vector machines, and 

conditional random fields, along with contextual, 

structural, keyword, and dialogue interaction-

based features of utterances for dialogue act 

classification in multi-party live chat datasets. As a 

sub-task of a disaster response mission knowledge 

extraction task, Anikina and Kruijff-Korbayova 

(2019) proposed a deep learning-based 

Divide&Merge architecture utilizing LSTM and 

CNN for predicting dialogue acts. Min et al., 

(2021) investigated the use of dialogue act 

prediction utilizing conditional random fields and 

ELMo contextualized word embeddings in multi-

party team communication for providing adaptive 

team training support.  

As multiple participants are involved in multi-

party conversation, disentanglement of the 

conversation based on relevancy is another 

important task, which could enhance the 

conversational relevance rate of automated 

dialogue agents (Shamekhi et al., 2018) or improve 

summarization quality (Zhang and Cranshaw, 

2018). Tan et al. (2019) proposed three LSTM-

based context-aware thread detection architectures 

that automatically captures conversation threads in 

multi-party and multi-thread conversations, where 

the proposed model predicts which existing thread 

the current utterance belongs to (or whether it 

creates a new thread).  

Another task that has received considerable 

attention in multi-party conversation is 

cyberbullying. The ability to detect bullying or 

toxic behavior is crucial to protecting users from 

cyberbullying. In particular, researchers are 

increasingly interested in toxic behavior in 

multiplayer games, such as multiplayer online 

battle arena (MOBA) games, where players 

compete against other teams in virtual online game 

environments (Kordyaka 2018). Blackburn and 

Kwak (2014) used random forest classifiers to 

detect toxic behavior in League of Legends using 

in-game performance, user reports, and chat data. 

The conversation data included 590,000 utterances, 

which were labeled via crowdsourcing on whether 

the conversation was toxic or not. Ekiciler et al. 

(2021) presented a linguistic analysis of gender-

based toxic language usage in a Dota 2 chat dataset 

and investigated Naïve Bayes classifiers with three 

different Laplace smoothing parameters as an 

automatic approach for sexist toxic comment 

detection. A significant presence of gender 

discrimination in online games, mainly by young 

males and intense players, was revealed in their 

qualitative analysis. 

Students’ conversations can create disruption in 

collaborative learning environments, impeding 

collaborative learning processes. Recent research 

on bullying, off-task behavior, and disruptive talk 

in collaborative learning environments examined a 

range of word embedding techniques as well as a 

variety of classical machine learning and deep 

learning techniques (Carpenter et al., 2020; 

Nikiforos et al., 2020; Park et al., 2021). Nikiforos 

et al. (2020) explored the automatic detection of 

aggressive behavior (i.e., bullying) in two K-12 

computer-supported collaborative learning 

environments. They used unigrams to represent 

words and examined machine learning approaches 

such as Naïve Bayes with Laplace smoothing, 
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decision tree classifiers, and feedforward neural 

networks. The prediction results suggest that 

approaches based on deep learning outperform 

other classical machine learning approaches. 

Carpenter et al. (2020) used dialogue analysis to 

identify if students’ messages were on-task or off-

task during collaborative game-based learning. To 

develop a model capable of reliably detecting off-

task behavior, they investigated three different 

word embedding approaches (i.e., Word2Vec, 

ELMo, and BERT), various history lengths of 

previous utterances, and two deep learning and 

classical machine learning classifiers were trained 

on a feature set containing contextual information 

extracted from student chat messages. The 

empirical evaluations indicated that the LSTM-

based off-task behavior detection model with 

BERT embeddings outperformed other baseline 

approaches. Park et al. (2021) presented an LSTM-

based disruptive talk detection framework in a 

multi-party dialogue dataset from a collaborative 

game-based learning environment, utilizing 

features from chat messages, a range of linguistic 

features, gender, and pre-test scores. While this 

work has the potential to improve learning 

experiences by detecting disruptions within 

collaborative learning settings, they disregard the 

unique characteristics of multi-party dialogues. In 

our work, we improve predictive performance of 

disruptive talk detection models by incorporating 

an additional network that embeds the 

characteristics of the user of a target utterance and 

a sequence-level dropout mechanism. 

3 Corpus 

We next describe the collaborative game-based 

learning environment and its chat-interface, dataset 

collected from two field studies, and disruptive talk 

annotation process. 

3.1 ECOJOURNEYS Collaborative Game-

Based Learning Environment 

ECOJOURNEYS is a collaborative game-based 

learning environment for middle school science 

education focused on ecosystems (Mott et al., 

2019; Saleh et al., 2019) (Figure 1). Students visit 

a virtual island in the game-based learning 

environment and are tasked with determining what 

is causing a mysterious illness among the island’s 

fish population. Students work in groups of four to 

solve the mystery within the game, where each 

student works on a different laptop and interacts 

with peers in the virtual game environment. 

Individual students examine the fish illness during 

gameplay by collecting information and interacting 

with virtual characters. The virtual non-

player characters serve as local experts, providing 

context for ecosystem concepts and the unfolding 

narrative (e.g., “Dissolved oxygen is a non-living 

component that animals and plants require to 

survive.”). After investigating and gathering 

information, students meet at a virtual whiteboard 

within the game to share and categorize the 

information they have gathered and to discuss the 

most likely cause of the illness. Students are 

encouraged to exchange ideas, ask questions, and 

negotiate with their team members during the 

game’s problem-solving activities using the in-

game chat interface (Figure 1). This built-in chat 

system is accessible throughout the game. Each 

group is led by a facilitator, who is either a 

researcher or a teacher. The facilitator asks 

questions and encourages students to communicate 

with one another using the in-game chat interface. 

Facilitators can monitor and intervene on students’ 

activities and conversations using an in-game 

screen, available only for facilitators, to guide 

students’ learning. Facilitators can choose 

messages from a set of pre-written messages or 

write free-form messages using the in-game chat 

interface. 

3.2 Dataset 

The ECOJOURNEYS collaborative game-based 

learning environment was used in two classroom-

based studies. Students were either in the sixth or 

seventh grade (11-13 years old) and played 

ECOJOURNEYS during six classroom periods. In 

total, 21 groups with 84 students (4 students per 

group) were involved in the two studies. From the 

21 groups, the current work utilizes data from 18  

 

Figure 1:   ECOJOURNEYS collaborative game-based 

learning environment and its in-game chat interface. 
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groups consisting of 72 students (31 female and 41 

male) who consented to the study and completed 

all the activities in the collaborative game-based 

learning environment. There are 9,236 chat 

messages available in the resulting dataset, with 

2,440 messages from facilitators and 6,796 

messages from students. We only consider the 

students’ messages during the disruptive talk 

detection modeling working under the assumption 

that facilitators would not produce disruptive talk. 

On average, students in each group sent 382.4 

messages (min = 89, max = 900, SD = 229.7).   

3.3 Disruptive Talk Annotation 

Adapted from prior work on disruptive talk 

analysis, the present work adopted a binary 

annotation scheme, disruptive talk, and non-

disruptive talk, (Borge and Mercier, 2019). We 

labeled student utterances as disruptive talk if it had 

the potential to distract other group members from 

learning (e.g., “Um yea. yep, you can’t work”, “I 

WILL HAVE A MENTAL BREAKDOWN”) and 

to interfere with deeper learning by interrupting the 

learning activity repeatedly (e.g., sending emojis 

multiple times). Otherwise, we labeled the 

utterance as non-disruptive talk.  

Two human annotators labeled the students’ 

chat-based dialogue collected during the study. 

Approximately 20% of the corpus was labeled by 

both annotators and an inter-rater agreement of 

0.80 was achieved using Cohen’s Kappa, 

indicating substantial agreement among the 

annotators (Cohen, 1960). All utterances labeled 

differently between the two annotators were 

discussed, and agreement was reached for certain 

situations without changing the high-level 

definition of disruptive talk we defined above. An 

example of those situations is when students 

exchange non-task-related messages, seemingly 

disruptive, before everyone is logged on and before 

starting the game, we agreed to label them as non-

disruptive. A label was chosen for each utterance 

for which there was disagreement before 

proceeding with labeling the remainder of the 

corpus. Then, the remaining utterances were split 

in half and independently labeled by the annotators 

(approximately 40% each). The distribution of 

 
1http://sentiment.christopherpotts.n

et/lexicons.html 
2https://www.computerhope.com/jargon

/c/chatslan.htm 

disruptive and non-disruptive utterances among the 

dataset was determined to be 1,864 (27.4%) and 

4,932 (72.6%), respectively. 

4 Method 

4.1 Data Pre-Processing 

The disruptive talk detection framework in our 

previous work utilizes linguistic features from 

student utterances and student attributes (i.e., 

gender and prior knowledge level) to determine 

how those features collectively contribute to 

prediction performance (Park et al., 2021). Here we 

keep all feature combinations from our previous 

work (i.e., sentence embedding, sentiment, Jaccard 

similarity between utterance and game text, gender, 

and pre-test scores) with an additional text cleaning  

pass that can be helpful for dealing with informal 

chat messages (Table 1). 

We adopt a pre-trained BERT model, 

DistilBERT, a distilled version of BERT, that is a  

small, fast, and light Transformer model (Sanh et 

al., 2019). DistilBERT consists of 6 layers in the 

encoder with 40% fewer parameters than the 

BERT-base model and outputs 768-dimensional 

vectors for each word. We utilized a DistilBERT 

model that was trained on the Wikipedia dataset. 

For the sentence embedding, rather than taking the  

average of the embeddings of all the sentence 

words, we used the first token (i.e., [CLS]), a 

special token inserted in front of the input sentence 

in the BERT architecture, as it effectively 

represents what is in the input sentence and thus has 

been frequently used for BERT-based classification  

tasks (Devlin et al., 2018). 
 

Table 1: Text cleaning approaches. 

 
3 https://github.com/Azd325/gingerit 
4 https://pc.net/emoticons/ 
 

Approach Example Cleaned 

Removed lengthening 

words1 “Helllllllo” “Hello” 

Replaced slang2 “dis”, “k” “This”, “Ok” 

Spelling correction3 “who dat” “Who that?” 

Replaced abbreviated 

words 

“don’t”, 

“can’t” 

“do not”, 

“cannot” 

Replaced emoji4 “:-)” “Happy” 
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4.2 Attention-Based Regularized User-

Aware Disruptive Talk Detection 

Modeling  

When it comes to predicting disruptive talk based 

on the current message and a series of previous 

utterances, separately modeling the characteristics 

of the target user-specific utterances could be more 

effective than only utilizing messages from all 

group members equally; if a student makes a 

disruptive utterance, there is a higher chance that 

the same student will generate more disruption than 

the other group members. We propose an attention-

based user-aware network that incorporates a target 

user-specific network that embeds the utterance 

histories of the target user as well as a separate 

network for modeling group-level utterances. We 

also apply the attention mechanism adapted from 

Bahdanau et al., (2014) to this output user 

representation and the hidden states of each time 

stamp to give weights to the group sequence output 

based on the user characteristics. An illustration of 

this attention-based user-aware network is shown 

in Figure 2 

Suppose 𝑚𝑗
𝑖 is the feature embedding for the 𝑗𝑡ℎ 

message from user 𝑖  in the 𝑛  number of group 

utterance history, 𝐺𝑟𝑜𝑢𝑝𝑆𝑒𝑞, including the current 

message.  

𝐺𝑟𝑜𝑢𝑝𝑆𝑒𝑞 = {𝑚1
1, 𝑚1

2, 𝑚2
1, 𝑚2

2, 𝑚1
3, ⋯ , 𝑚𝑗

𝑖}
𝑖=1,⋯,4

 

From this group sequence, we have user sequence  

𝑈𝑠𝑒𝑟𝑠𝑒𝑞
𝑖  that only includes the utterances from user 

i.  

𝑈𝑠𝑒𝑟𝑠𝑒𝑞
𝑖 = {𝑚1

𝑖 , 𝑚2
𝑖 , ⋯ , 𝑚𝑗

𝑖} 

The user network takes the utterance sequence, 

𝑈𝑠𝑒𝑟𝑆𝑒𝑞
𝑖 , form the target-user only, then outputs a 

user embedding, 𝑈𝑠𝑒𝑟𝑒𝑚𝑏
𝑖 . 

𝑈𝑠𝑒𝑟𝑒𝑚𝑏
𝑖 = 𝐿𝑆𝑇𝑀(𝑈𝑠𝑒𝑟𝑠𝑒𝑞

𝑖 ) 

We can get the attention score between the user 

embedding and the hidden state, ℎ𝑡, at each LSTM 

time stamp of the group sequence. 

𝛼𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑈𝑠𝑒𝑟𝑒𝑚𝑏
𝑖 ⋅ ℎ𝑡)𝑡=1…𝑛 

Using this attention score, we can get the user-

aware group sequence embedding. 

𝐺𝑟𝑜𝑢𝑝𝑒𝑚𝑏 = ∑ 𝛼𝑡 ∗ ℎ𝑡

𝑛

𝑡=1

 

Finally, we get the output probability by using a 

sigmoid function that takes as input 𝑈𝑠𝑒𝑟𝑒𝑚𝑏
𝑖  and 

𝐺𝑟𝑜𝑢𝑝𝑒𝑚𝑏 via concatenation, then determine if the 

last utterance (e.g., 𝑚𝑗
2  in Figure 2) given to the 

model is an instance of disruptive talk with the 

threshold value of 0.5.  

𝑂 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜 ∗ (𝑈𝑠𝑒𝑟𝑒𝑚𝑏
𝑖 + 𝐺𝑟𝑜𝑢𝑝𝑒𝑚𝑏)) 

We expect this attention-based user-aware 

approach will assist the model’s inference on the 

target utterance by providing specific information 

about the target student characteristics embedded 

by the user-specific network, while simultaneously 

attending to the related utterances from the group 

sequence. 

Additionally, we adopt a training approach that 

could better deal with the dynamics in multi-party 

dialogues. Different from dyad conversation, 

multiple conversation threads in the group 

conversation could make it difficult for the model 

to learn consistent and generalized aspects. We 

adopt a sequence dropout approach, which is one 

of the discourse perturbation methods used in 

(Koupaee et al., 2021), applied to the sequence 

inputs so that the model can learn different 

representations from the same context messages at 

every epoch as an approach to model 

regularization. For the given 𝐺𝑟𝑜𝑢𝑝𝑆𝑒𝑞 , we 

randomly drop utterances with a sequence dropout 

rate of r, range in (0, 0.5) excluding the target 

utterance. This sequence dropout rate can be fixed 

or can be randomly selected from the normal 

distribution. Figure 3 shows how this approach is 

applied during training. 
We anticipate that by observing the same context 

message sequence from multiple dimensions, the 

disruptive talk detection model will learn 

generalized patterns by avoiding possible 

overfitting. Note that we do not drop anything from 

the user network with an assumption that 

utterances from the same user are consistent. It 

should be noted that this sequence dropout 

mechanism is different from the dropout technique 

commonly used for recurrent neural networks, 

which drops for the linear transformation of the 

inputs or the recurrent state, by dropping for the 

entire input at random time stamps. The sequence 

dropout is applied to the training data only for 

effective training through model regularization.  
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4.3 Evaluation 

We evaluate our modeling approaches in three 

steps. First, we compare our attention-based user-

aware approach with our baseline model, which is 

based on a group sequence network with an 

attention mechanism (i.e., without the user-aware 

feature). This baseline modeling approach using 

LSTM-based disruptive talk detection model with 

DistillBERT as a sentence embedding approach, 

and 20 context messages, was adapted from our 

previous work (Park et al., 2021).  Second, by 

comparing models with a fixed sequence dropout 

rates r from 0 to 0.5, and a model that adopts a 

random rate from normal distribution, we decide 

whether we would want to fix the sequence dropout 

rate of r or bring a complete randomness into the 

training phase. We did not raise the r over 0.5 (i.e., 

dropping 50% or more utterances every time) to 

avoid any possible data loss while training. All 

results are compared with the baseline model 

trained on full sequences-only, adopted from our 

previous work (Park et al., 2021). Furthermore, to 

account for the nature of randomness of sequence 

dropout approach, we run the models 5 times and 

average the results from each fold. Finally, we 

apply both the attention-based user-aware and the 

sequence dropout approaches to see that brings an 

additional performance enhancement.  

 

We evaluate the performance of the disruptive 

talk detection models using the area under the 

receiver operating characteristic curve (AUC). 

AUC is one of the commonly used evaluation 

metrics for binary classification problems in 

machine learning, which represents the 

classification model’s ability to separate between 

classes. The ROC curve shows the trade-off 

between true positive rate and false positive rate 

 

Figure 2:  Proposed attention-based user-aware model. This figure illustrates what happens when the current 

message is from User 2. 

 

Figure 3:  Sequence dropout training approach with 

a fixed rate of r. For the same training input 

sequence, the model drops r rate of inputs randomly. 

If r is chosen at random, a different number of inputs 

will be removed every epoch. 
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when varying the threshold values. An AUC of 1 

indicates the classifier can perfectly discriminate 

between two classes, and 0.5 indicates the classifier 

cannot discriminate between two classes. We also 

evaluate the performance of the models using the 

area under the precision recall curve (PR-AUC) 

since AUC can give over-optimistic scores when 

the number of positive and negative classes are not 

balanced (Davis and Goadrich, 2006; Saito and 

Rehmsmeier, 2015). Like the ROC curve, the PR 

curve shows trade-off between precision (y-axis) 

and recall (x-axis) for different threshold values. It 

should be noted that when evaluating models based 

on the PR-AUC, it is essential to compare the 

performance with the PR-AUC of a no-skill 

classifier (i.e., Random chance), as the baseline 

performance varies depending on the task and the 

data distribution. To compare predictive 

performance, we report the average AUC and the 

average PR-AUC from cross-validation results. 

We apply stratified group-level 10-fold cross-

validation to avoid data leakage between training 

and testing data and retain the class distribution 

across folds. For each fold, we split the training 

data into a training and validation set to perform the 

early stopping based on the validation set. The 

distribution and the size of the validation set is the 

same as the test set. For all modeling approaches, 

we set the number of hidden units to 64, batch size 

to 32, and the number of epochs to 20, while using 

early stopping with a patience of 5 to avoid 

overfitting. 

5 Result and Discussion 

Table 2 shows evaluation results of the baseline 

model and the user-aware networks for disruptive 

talk detection. Our attention-based user-aware 

modeling approach outperforms the baseline 

modeling approach with respect to AUC (p=0.065), 

while it also brings improvement with respect to 

PR-AUC (p=0.161), where the statistical tests were 

conducted using the Friedman test, which is the 

non-parametric statistical test for multiple machine 

learning classifiers over multiple data sets, with a 

post-hoc analysis with the Wilcoxon signed rank 

test (Demšar, 2006). These results suggest that 

having the user-specific network was helpful for 

the model to identify whether the target utterance 

is disruptive or not. This might be because the user-

specific network examines how the messages of 

target students have been developed without being 

affected by other student messages. The model 

obtains a clearer sense of the user’s potential to be 

disruptive in a group conversation. In addition, it is 

possible that giving more weights to the hidden 

states that are more relevant to the target user 

embedding was effective to identify where to 

attend in the potentially noisy group sequence 

representation for the disruptive talk prediction of 

the target user. 

Table 3 shows the performance of sequence 

dropout approach (i.e., sequence dropout applied to 

a group-level network without a user-aware 

network) across the different sequence dropout 

rates and random choice. Except for r = 0.1, 0.2, all 

modeling approaches using different sequence 

dropout rates outperform the baseline with respect 

to AUC with a statistical significance (p < 0.05) 

when they were tested with the Wilcoxon signed 

rank test, while the model with random dropout 

rates applied perform the best. There were no 

significant differences in the performances among 

different dropout rates, except for the model using 

r is 0.1 or 0.2. These results might suggest that 

learning patterns from different sequence 

combinations were helpful for the disruptive talk 

detection model but dropping too few utterances 

would bring less significant enhancement to the 

performance. With respect to PR-AUC, the model  

Dropout Rate (r) AUC PR-AUC 

Baseline (r = 0) 0.8292 0.5504 

Random (0, 0.5) 0.8557* 0.5649 

0.1 0.8413 0.5492 

0.2 0.8426 0.5466 

0.3 0.8507* 0.5517 

0.4 0.8543* 0.5494 

0.5 0.8498* 0.5526 

Table 3: Sequence dropout approach across different 

dropout rate of r. The best performance of each 

evaluation metric is marked in bold, and * represents 

there is a statistically significant difference compared 

to the baseline. 

 

 

Model AUC PR-AUC 

No-Skill 0.5000 0.2466 

Baseline 0.8292 0.5504 

User-Aware 0.8480 0.5691 

Table 2: Results of attention-based user-aware 

network (User-Aware). The best performance of each 

evaluation metric is marked in bold. 
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with the random sequence dropout choice 

demonstrated improved performance compared to 

the other competitive modeling approaches, 

although the difference is not statistically 

significant when compared to the baseline model 

(p=0.138).  

The performance enhancement with the 

sequence dropout training mechanism suggests that 

the conversation sequences may have contained 

noise due to the presence of multiple conversation 

threads, and that the model had some trouble 

determining how to extract the essential parts of the 

conversation sequences that could help with 

disruptive talk predictions. The model was given 

the opportunity to learn multiple variants of 

utterances from the same sequence because of the 

random dropping of a different subset of sequences 

at each training epoch. It is possible that this 

method could help achieve improved predictive 

performance by regularizing the disruptive talk 

detection models to effectively deal with noisy 

conversation data.  

Finally, we compare the baseline model with the 

combined model, which utilizes both the attention-

based user-aware and sequence dropout 

approaches. We compare the performance of this 

combined model with the models from the 

previous phases. Here, we adopt the random choice 

for the sequence dropout rate since it yielded higher 

performance with respect to both AUC and PR-

AUC than the ones with the fixed sequence dropout 

rate. Results in Table 4 shows that our proposed 

disruptive talk detection model combining both 

User-Aware and Sequence dropout approaches. 

Our proposed regularized user-aware networks 

significantly outperform the baseline approach for 

both evaluation metrics (p<0.01 for AUC and 

p=0.09 for PR-AUC) with an alpha of 0.1. It also 

outperforms the models using each of the two 

proposed mechanisms: user-aware only (p<0.01 

for AUC and p=0.06 for PR-AUC) and sequence 

dropout only (p=0.08 for AUC and p=0.16 for PR-

AUC). These results suggest that the combined 

approach brings a synergetic effect to disruptive 

talk detection prediction. We observed from our 

repeated experiments (i.e., 5 executions) for all 

models using sequence dropout during training that 

the coefficient of variations (i.e., standard deviation 

/ mean) of all approaches are less than 1, which is 

considered to be low variance between the values. 

This might suggest that the models were reliably 

trained even with randomness that resulted from 

dropping for a different set of utterances in 

dialogue sequences in each run. 

Lastly, we note potential limitations of our 

research. Because of the nature of stratified group-

level sampling where the sampling procedure must 

take into account both the label distribution and the 

group index, it is not possible to apply the exact 

same distribution across different folds, which 

could result in large performance variations 

between folds. In addition, while our proposed 

modeling approach demonstrated a promising 

result in our testbed collaborative game-based 

learning environment, the proposed model could be 

evaluated with other computer-supported 

collaborative learning environments to 

demonstrate generalizability of the technique.  

6 Conclusion 

Multi-party dialogue modeling poses significant 

challenges because of the complexity driven by 

group dynamics characterized in multi-party 

conversations. Detecting disruptive talk in 

collaborative game-based learning environments is 

crucial to support high-quality collaborative 

learning. We have presented a novel deep learning-

based disruptive talk detection model that 

incorporates a user-aware attention network and a 

random sequence dropout training mechanism, 

where the model utilizing both approaches 

significantly outperform the baseline approaches. 

The proposed model shows significant promise for 

addressing key challenges in multi-party dialogue 

prediction. In the future, it will be important to test 

our model’s capability with multi-party dialogue 

corpora from other computer-supported 

collaborative learning environments to test the 

generalizability of our model. It will also be 

important to implement the disruptive talk 

detection model in a real-time setting and 

investigate how it informs adaptive support for 

collaborative student learning.  

Model AUC PR-AUC 

Baseline 0.8292 0.5504 

User-Aware 0.8480 0.5691 

Sequence Drop 0.8557* 0.5649 

SeqDrop+User-Aware 0.8675* 0.5991* 

Table 4: Disruptive talk prediction results. The best 

performance of each evaluation metric is marked in 

bold, and * represents there is a statistically 

significant difference compared to the baseline. 
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Abstract

We report results of experiments using BART
(Lewis et al., 2019) and the Penn Discourse
Tree Bank (Webber et al., 2019) (PDTB) to
generate texts with correctly realized discourse
relations. We address a question left open by
previous research (Yung et al., 2021; Ko and
Li, 2020) concerning whether conditioning the
model on the intended discourse relation—
which corresponds to adding explicit discourse
relation information into the input to the
model—improves its performance. Our re-
sults suggest that including discourse relation
information in the input of the model signif-
icantly improves the consistency with which
it produces a correctly realized discourse re-
lation in the output. We compare our mod-
els’ performance to known results concern-
ing the discourse structures found in written
text and their possible explanations in terms
of discourse interpretation strategies hypothe-
sized in the psycholinguistics literature. Our
findings suggest that natural language genera-
tion models based on current pre-trained Trans-
formers will benefit from infusion with dis-
course level information if they aim to con-
struct discourses with the intended relations.

1 Introduction

Traditional approaches to discourse have shown
the essential importance of discourse (rhetorical)
relations in providing coherence to a text (Mann
and Thompson, 1987; Lascarides and Asher, 2008;
Kehler and Kehler, 2002). While current ap-
proaches to natural language generation (NLG)
employing pre-trained models have been shown to
excel in generating well-formed texts (Kale and
Rastogi, 2020, i.a.), their ability to produce co-
herent texts structured with the help of discourse
connectives is understudied (Maskharashvili et al.,
2021). The impetus for the present study is the
growing body of evidence that neural models,

∗E-mail: stevensguille.1@buckeyemail.osu.edu

whether trained fresh (Stevens-Guille et al., 2020)
or pre-trained (Maskharashvili et al., 2021), ben-
efit from input which includes specific reference
to the discourse structure intended to hold in the
output text (Balakrishnan et al., 2019). This line
of work is novel in the context of current NLG
practice, which frequently omits cues to discourse
structure in the input. The previous work is pur-
posefully restricted to producing relatively homo-
geneous texts (museum descriptions and weather
predictions). Given the findings of this work on
generating limited sets of discourse relations and
connectives, it is informative to study the per-
formance of neural models in generating texts
structured with the help of a richer set of dis-
course relations realized by a wide variety of dis-
course connectives. We study whether having dis-
course relation information in the input helps neu-
ral models to realize the intended discourse rela-
tion. These conditions more closely approximate
the context in which robust NLG systems would
be deployed. We expect our results to provide in-
sight into whether and how to include discourse
structure cues in fully-fledged NLG systems.

We report the results of our experiments using
BART (Lewis et al., 2019) and the Penn Discourse
Tree Bank (Webber et al., 2019) (PDTB) to gen-
erate texts with correctly realized discourse rela-
tions. We address a question left open by previ-
ous research (Yung et al., 2021; Ko and Li, 2020)
concerning whether conditioning the model on the
intended discourse relation—which corresponds
to adding explicit discourse relation information
into the input to the model—improves its perfor-
mance. While we recognize that a positive an-
swer to this question might seem obvious, it has,
to date, not been supported with quantitative evi-
dence. We compare our models’ performance to
baselines in which i) connective choice is deter-
mined by the most frequent connective which real-
izes the intended relation in the corpus, (ii) connec-
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tive choice is determine by the most frequent con-
nective in the corpus irrespective of the intended
relation to be expressed, (iii) connective choice is
determined by off-the-shelf BART-large mask sub-
stitution, and (iv) connective choice is determined
by off-the-shelf BERT (Devlin et al., 2019) mask
substitution. We propose two types of models by
fine-tuning BART on PDTB: models that have dis-
course relation information in the input (D+ mod-
els) and models that do not (D- models). We find
that our fine-tuned D+ models substantially out-
perform fine-tuned D- models, while both kinds
of fine-tuned models dramatically beat the base-
lines. In addition, fine-tuned D+ models produce
systematically fewer errors than corresponding D-
ones when tested against psycholinguistic observa-
tions that certain discourse relations tend to be re-
alized implicitly, while others usually are realized
by explicit (overt) discourse connectives. It is im-
portant to also point out that our fine-tuned mod-
els, unlike previous work and some of our base-
lines, are not given the position into which the con-
nective should be inserted. This more closely ap-
proximates the intended usage of end-to-end neu-
ral models, where there is no module in which con-
nectives are slotted into predetermined positions
in the output string. We find the models’ choices
for connective positions to be qualitatively good
and focus in the sequel on the connective choices
themselves.1

2 Background

BART, a transformer-based (Vaswani et al., 2017)
language model, is trained on purposefully cor-
rupted data so that the model learns to ‘denoise’
the corrupted input in the process of reconstructing
the original data. Fine-tuning BART on different
versions of input and output lets us probe whether
the underlying language model needs or benefits
from explicit cues to consistently reconstruct the
intended discourse connective. The PDTB is one
of the few corpora developed to identify discourse
dependencies in texts. PDTB provides a well-
developed ontology of discourse relations; these
discourse relations are used to annotate the Wall
Street Journal (WSJ) corpus of the Penn Treebank.

1In the appendix we provide examples of initial and fi-
nal connectives which complement the medial connectives
used throughout the rest of the paper. We note, however, that
our BART-base models prefer producing appropriately posi-
tioned initial or medial connectives rather than final connec-
tives.

We construct versions of the corpus differing in
(i) whether the order of the arguments in the out-
put is explicitly encoded in the input, (ii) whether
the output is the connective or the connective em-
bedded in the corresponding WSJ text, and (iii)
whether a discourse relation is included in the in-
put and how specific it is. The third difference is
conceptually the most important one since it cor-
responds to whether the model is conditioned on
discourse relation information.

To determine how well the models realize dis-
course relations, in addition to standard metrics
(i.e., recall and precision), we employ more re-
cent metrics inspired by psycholinguistic (Murray,
1997; Sanders, 2005; Yung et al., 2021) and cor-
pus studies (Asr and Demberg, 2012, 2013; Jin
and de Marneffe, 2015a) which allow us to find out
the degree to which the models’ preferences for re-
alizing different discourse relations correspond to
reported human preferences for realizing those re-
lations. In particular, it is argued that while some
discourse relations are mostly expressed explicitly,
by means of a discourse connective (i.e., overt lexi-
cal item or items), other discourse relations tend to
be expressed implicitly, i.e., without explicit lexi-
cal markers. One of the questions we want to an-
swer is whether providing a discourse relation in
the input helps models to learn when to realize a
discourse relation explicitly and/or implicitly.

Asr and Demberg (2012, 2013) argue that the
PDTB provides ample evidence for psycholinguis-
tic patterns of behaviour. In lieu of directly run-
ning human judgement experiments on our model
outputs, we test our models’ consistency with psy-
cholinguistic results indirectly: we compare the
distributions in model outputs to those distribu-
tions in the corpus which have been argued to sup-
port psycholinguistic theories. We focus on the
following two hypotheses:
The Continuity Hypothesis: ‘Readers have a bias to-
wards interpreting sentences in a narrative as following
one another in a continuous manner . . . additive addi-
tive and causal connectives should lead to less process-
ing facilitation than adversative connectives because
the former indicate continuity in the discourse whereas
the adversatives indicate discontinuity.’ — Murray
(1997, p.228-229)
The Causality-by-default Hypothesis: ‘Because readers
aim at building the most informative representation, they
start out assuming the relation between two consec-
utive sentences is a causal relation . . . Subsequently,
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causally related information will be processed faster, be-
cause the reader will only arrive at an additive relation
if no causal relation can be established.’ — Sanders
(2005)

Asr and Demberg (2012) report that in the
PDTB, relations that they consider discontinuous
and continuous in the sense of Murray (1997) are
more likely to be realized explicitly and implicitly,
respectively, which is consistent with the continu-
ity hypothesis. Furthermore, they find the propor-
tion of implicit to explicit connectives is highest
for causal senses. They conclude this provides sup-
port for the hypothesis of causality-by-default.

Asr and Demberg (2013) propose a metric for
deriving ‘markedness’—how much information
about the intended discourse relation is conveyed
by a connective or set of connectives—from the
PDTB. However, no prior work on the PDTB con-
ditioned models on the discourse relation intended
to be communicated. To our knowledge, the fol-
lowing questions, which we report on here, are
yet to explored in NLG: (i) whether conditioning
on discourse relations improves the prediction of
intended discourse connectives; (ii) whether or-
dering information concerning the arguments to
be expressed should be encoded explicitly; and
(iii) whether neural models can learn distributions
consistent with psycholinguistic results (Sanders,
2005; Murray, 1997) known to be reflected in the
training set (Asr and Demberg, 2012).

3 Methods

Our experiments use the BART-base and BART-
large implementations of HuggingFace fine-tuned
on different versions of the reconstructed PDTB
corpus, which we describe in the sequel.2The cor-
pus is a modified version of the WSJ texts derived
from reconstructing the texts from the string po-
sitions provided by the PDTB. Our modifications
were intended to make the reconstructions more
natural for pre-trained models by using full sen-
tences but without giving away hints to connective
location by capitalization or punctuation. An ex-
ample is provided in Figure 1.3 The input consists

2We find little difference in the performance of BART-
base and BART-large and therefore focus on BART-base
throughout the paper. Results on matching for BART-large
can be found in appendix G.

3Due to reconstruction from string positions, the output
text is sometimes missing spaces or punctuation from the end
of the arguments. The first letter of every argument in the
input is in lower case for uniformity. The context arguments
can be empty if the string indices from the PDTB correspond

of the set of ‘<sep>’ separated items, while the out-
put is the text the model is trained to produce. The
output is either the reconstructed text (marked as
full-ouput) or the connective of import in the re-
constructed text (marked as conn-only).4

We produced in total sixteen different versions
of the corpus (see Table 3), twelve of them with
discourse relations in the input, which we dub
BARTD+ models, and four without these relations,
which we dub BARTD− models. Previous work
(Asr and Demberg, 2012) found correspondence
between the distribution of implicit (respectively
explicit) connectives in the WSJ and human be-
havior reported by Murray (1997); Sanders (2005)
concerning which discourse relations are expected
(respectively less expected). We produced three
versions of the corpus reflecting different levels in
the PDTB sense hierarchy as follows:

• Level 1 is the top level (Temporal, Expansion,
Comparison, Contingency).

• Level 2 is the set of children of the level 1.
• Full is the set of complete senses, the depth

of which is no more than 3.

To determine whether the order of arguments in
the PDTB affects the model’s choice of connec-
tive, we further divided the corpus into versions
which included or didn’t include explicit encoding
of the order of arguments in the output: ‘12’ en-
codes the case where the first argument precedes
the second argument in the reference text, while
‘21’ corresponds to the second argument preced-
ing the fist argument in the reference text. This
is in principle useful since the order of arguments
in the input need not reflect their order in the out-
put. To control for the influence of generating full
texts, we produced versions of the corpus in which
the outputs were the discourse connectives without
the surrounding WSJ text. Since whether the dis-
course connective is left implicit or made explicit
is something we would like to test every model on,
we include no information about whether the con-
nective should be implicit or explicit in the input.

The difference between BARTD+ and
BARTD−, corresponding to whether the in-
put includes the discourse connective’s type,

to sentences. The string ‘none’ is inserted into empty con-
texts. If the PDTB string indices do not correspond to sen-
tences, the context arguments correspond to the sentences in
which the PDTB string indices were embedded.

4While the PDTB is licensed from the LDC, the scripts
for producing our corpora from it plus the metrics and model
details will be made freely available on https://github.
com/SymonJoryStevens-Guille/PennGen.

502



The board isn’t proposing a slate of its own and the other
four current directors don’t want to serve beyond the spe-
cial meeting date, Newport said.

Expansion_Conjunction

12
none

the board isn’t proposing a slate of its own
none
none

the other four current directors don’t want to serve beyond the special meeting date

,Newport said

A WJS text with
arguments and dis-
course connective
highlighted

The input constructed
from the WJS corpus
and its PDTB annotation

discourse relation

order of arguments

argument 1 left context

argument 1

argument 1 right context

argument 2 left context

argument 2

argument 2 right context

The board isn’t proposing a slate of its own and the other four cur-
rent directors don’t want to serve beyond the special meeting date,
Newport said.

and

Target output for gener-
ating the complete text
(full-output)

Target output
for generat-
ing only the
discourse con-
nective (conn-
only)

Figure 1: A WSJ text together with its PDTB annotation used in constructing the input to the models and their
target outputs. (In the linearized input form, the fields are separated by a <sep> token.)

rounds out the set of distinctions between cor-
pus versions. Details of the corpus split into
train/dev/test can be found in Appendix A.

4 Metrics

In order to study whether the models can recon-
struct the discourse connectives found in the WSJ,
we report model-reference matching. We further
consider matching with respect to implicit and ex-
plicit discourse connectives.

Implicit and explicit matching, both indepen-
dently and summed, is our first metric. Sec-
ond, we consider the proximity of the mismatches
between reference and generated connective in
terms of the PDTB sense hierarchy. With re-
spect to Figure 1, matching would be producing
and, either in the embedded sentence in which
it occurs (full-output) or on its own (conn-only).
Since the type of and in this context is Expan-
sion_Conjunction, the mismatch could be by sub-
stitution of some other connective from Expan-
sion_Conjunction (=full), from one of the sub-
senses of Expansion (=level 1), or from some com-
pletely different sense (=level 2).

We test the consistency of the models with the
continuity and causality-by-default hypotheses by
reference to the metrics proposed by (Asr and
Demberg, 2012, 2013) to quantify the support for
such hypotheses in the PDTB. The usefulness of

the distribution of implicit versus explicit connec-
tives is helpfully summed up by Asr and Demberg
(2012, pg. 2671): “if readers have a default pref-
erence to infer a specific relation in the text, this
type of relation should tend to appear without ex-
plicit markers.” This likewise motivates our use
of the metric of markedness, to be discussed be-
low, since markedness quantifies how expected a
relation is and, in conjunction with the hypothe-
sis of Uniform Information Density (UID) (Jaeger
and Levy, 2006), how likely it is to be explicitly
cued versus left to be inferred (Asr and Demberg,
2013).

Asr and Demberg (2012) propose to define im-
plicitness of PDTB senses in terms of the distri-
bution of implicit discourse relations correspond-
ing to the sense in the corpus (# of implicit tokens
of senses divided by # of tokens of senses). Fol-
lowing Asr and Demberg (2012, 2013); Jin and
de Marneffe (2015b), we focus on the two groups
of (sub)types in Table 1, which respectively repre-
sent discontinuous and/or noncausal relations and
continuous and/or causal relations.5

Implicitness and explicitness provide one sort
of proxy for continuity and discontinuity in our
metrics. We therefore compare the distribution of

5We ignore some relations identified by the foregoing au-
thors which don’t appear frequently enough in our test set.
We report results for the level 1 relations too.
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Continuous Discontinuous
Contingency_Cause Comparison
Expansion_Instantiation Temporal_Asynchronous

Table 1: Continuous discourse relation types are shown
on the left and discontinuous ones on the right

implicitness predicted by our models to the distri-
bution of implicitness in the test set to determine
the fit of the model with respect to the continuity
hypothesis.

Following Asr and Demberg (2013); Jin and
de Marneffe (2015b), we make use of a metric
of markedness, which Asr and Demberg (2013)
argue provides a good picture of how likely a
given relation is to appear with a connective and to
what degree the relation-connective co-occurrence
is unique: The higher the markedness, the more
likely the relation is to appear with a set of spe-
cific connectives. Consequently, it would be more
surprising to have that relation cued by a less
expected connective or no connective at all—we
should then expect both causal and continuous re-
lations to have lower markedness.

Asr and Demberg (2013) report the markedness
of level 1 relations, finding the gross cline of Tem-
poral < Contingency < Expansion < Comparison.
They argue these results are consistent with the
UID, the continuity-by-default hypothesis, and the
causality-by-default hypothesis. We consider the
degree to which the markedness cline of our model
outputs corresponds to the markedness cline of the
corpus to provide evidence of whether the model
is learning to produce text consistent with the pre-
viously mentioned cognitive biases.

Markedness is defined in the equation below,
where npmi is normalized point-wise mutual infor-
mation, r belongs to the set of relations R, and c
belongs to the set of connectives C minus the null
connective.

markedness(r) =
∑

c∈C
p(c|r)npmi(r; c) + 1

2

Since the markedness metric doesn’t provide a
direct probability distribution, significance for dif-
ferences between markedness must be measured
by non-parametric methods. For these purposes
we use approximate randomization (AR) (Noreen
1989): we randomly re-sample from the two mod-
els’ union, producing 30K versions of the results
and comparing whether and how many such ver-
sions improve over the different model predictions
in terms of proximity to the reference score (we de-

scribe AR at length in Appendix C).

5 Results

With respect to the types of fine-tuning we ex-
perimented with, we find BARTD+ models rou-
tinely exceed BARTD− models. We show here
that BARTD+ models seem to recover even some
of the distributions found by Asr and Demberg
(2012) to support psycholinguistic results concern-
ing discourse structure.6

In Table 3 we include the results of our base-
lines. Both models D+ (=80.5%) and D- (=67.2%)
significantly improve over the corresponding base-
line D+ and D- models. This improvement is fur-
ther corroborated by comparing BERT and BART-
large off-the-shelf to the corresponding BARTD+

and BARTD− models. Both D+ (=79%) and D-
(=71.3%) make over a 20% improvement on both
BERT and BART-large off-the-shelf. Since the
off-the-shelf models were given intended position
information in the form of MASK tokens, the re-
sult shows that this positional information, at least
without fine-tuning, doesn’t suffice to predict the
intended connective.7

Interestingly, with respect to producing match-
ing explicit (respectively implicit) connectives, the
models trained to produce full sentence outputs
frequently outperform the models trained to pro-
duce only discourse connective outputs. This is
shown in Table 3, where the difference in scores
is most visible when the model is provided with
less or no information concerning the intended dis-
course relation. This suggests there is some bene-
fit to producing the connective in context, where
the fidelity of the decoded connective is improved
by the preceding and subsequent strings. But this
benefit seems to taper off from depth 2 down.

There seems to be a sweet spot in the level of
discourse relation type included in the input: there
is little improvement between full and level 2 types

6The chosen connective need not occur directly between
the arguments in the input. Determining which connective is
produced by the full-out model is done by iteratively substitut-
ing elements of the input found in the output with the empty
string. Once this process is complete the remaining strings
will include the connective. Strings which are not in the com-
plete set of connectives are removed to eliminate noise. If
no connective is found after this process then the model evi-
dently chose to leave the relation implicit.

7Note that the MASK position for implicits is uniformly
between the rightmost position of arg1 and the leftmost po-
sition of arg2. We chose this position for uniformity in light
of the absence of implicit connective span annotation in the
PDTB.
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Type Comparison Contingency Expansion Temporal

Reference 0.53624 0.21141 0.34245 0.47499

BARTD+ 0.62666 0.21302 0.32155 0.46709

BARTD− 0.35860 0.19829 0.29256 0.42175

Table 2: Level 1 markedness scores by model

Type Level Order FullOutput Match
baselineD+ - - 34%
baselineD− - - 16%
BART-large - + 48%
BERT - + 52.4%
BARTD+ full + + 79%
BARTD+ full + - 81.5%
BARTD+ full - + 79%
BARTD+ full - - 80.5%
BARTD+ 2 + + 79.3%
BARTD+ 2 + - 79.9%
BARTD+ 2 - + 79%
BARTD+ 2 - - 79.8%
BARTD+ 1 + + 76.5%
BARTD+ 1 + - 66.9%
BARTD+ 1 - + 75.7%
BARTD+ 1 - - 65.5%
BARTD− + + 70.5%
BARTD− + - 69.9%
BARTD− - + 71.3%
BARTD− - - 67.2%

Table 3: Model typology with distributions of matched
versus reference discourse connectives. BART-large
and BERT are baselines used off-the-shelf; baselineD+

is the majority baseline conditioned on discourse rela-
tions and baselineD− is the majority baseline uncondi-
tioned on discourse relations.

but there is greater improvement between level
2 and level 1—for conn-only the BARTD− mod-
els even sometimes exceed the level one BARTD+

models, suggesting the top level type information
could hinder connective choice when the connec-
tive isn’t generated in context.

Despite the boost to connective matching when
producing conn-only, the distinction between mod-
els which condition on the order of arguments ver-
sus those that do not, controlling for other corpus
distinctions, is minimal when present. This, too, is
visible in Table 3.

The major difference between models with
respect to reconstructing the reference connec-
tives is the difference between the BARTD+ and
BARTD− models. The BARTD+ models from
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Figure 2: Case of Explicit Connectives: Graph for
Models D+ and D- showing MP (Match Prediction);
MES (Mismatch with Explicit Sister type); MI (Mis-
match with Implicit); and Other (Explicit For Explicit
Minus One, Minus Two, and Minus Three level types)

the second level to the full level outperform
the BARTD− models when controlling for the
input order, whether the output is full-output
or conn-only. In the sequel we report signifi-
cance results just for the best BARTD− model
and a corresponding BARTD+ model: BARTD−
(-Order,+FullOutput) and BARTD+ (Depth 3,-
Order,+FullOutput). While the level 2 BARTD+

model ekes out the level 3 model, the difference is
uninteresting.

The main distinction in matching between
BARTD+ and BARTD− models is due to ex-
plicit connectives. Both models perform well
with respect to reconstructing implicit connectives,
though the differences even here are significant,
with the BARTD− model even improving over the
BARTD+ model with respect to implicit relations.
However, this observation points to a more likely
story for BARTD−’s performance: the BARTD−
model is less accurate. This is corroborated by it
generating an excess of 405 implicits for target ex-
plicits compared to BARTD+’s 275 implicits for
target explicits. The overproduction of implicits is
further borne out by the differences in F1 shown
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Figure 3: Case of Implicit Connectives: Graph for
Models D+ and D- showing MP (Match Prediction),
MES (Mismatch with Explicit Sister type), and Other
(Explicit For Implicit Minus One, Minus Two, and Mi-
nus Three types)

Model Explicit Match Implicit Match

BARTD+ 69.8% 89.2%

BARTD− 54.3% 90.6%

Table 4: Matches for BARTD+ and BARTD−.

in Figures 19 and 20 in Appendix D; errors con-
cerning connective choice are exemplified and dis-
cussed there too.

Returning to the production of explicit con-
nectives, the improvements of conditioning on
discourse structure information are highly sig-
nificant both with respect to matching per se
and with respect to matching explicit connec-
tives. We provide McNemar’s test statistics for
explicit matches (statistic=157.00, p=0.000), im-
plicit matches (statistic=118.00, p=0.025), and
their combination (statistic=313.000, p=0.00) (the
tables can be found in Appendix B).

Table 4 shows match results for both implicit
and explicit for BARTD− and BARTD+. More
fine-grained results are given in Figures 2 and
3. Focusing on the results concerning implicit
relations first, the most noticeable difference is
with respect to Comparison—the BARTD+ model
produces far fewer matches than the BARTD−
model. However, within the mismatches here,
the BARTD+ model overwhelmingly produces ex-
plicit connectives for reference implicit when the
relation can be expressed by both an explicit or
implicit connective. In fact the BARTD− model
makes more severe mismatches on Comparison

BARTD+: The board isn’t proposing a slate of
its own and the other four current directors don’t
want to serve beyond the special meeting date,
Newport said.
BARTD−: The board isn’t proposing a slate of its
own because the other four current directors don’t
want to serve beyond the special meeting date,
Newport said.

Figure 4: Full outputs on the input from Figure 1 for
BARTD+ full and BARTD− without cues to order. The
model’s generated connective is bolded.

than the BARTD+ model, since its productions
of explicit connectives for reference implicit are
more frequently productions of connectives which
simply are not used to express the relation.

With respect to producing matching explicit
connectives, the BARTD+ model exceeds the
BARTD− model on every top level type. When
BARTD+ doesn’t produce a matching explicit con-
nective, it is far more likely to produce an explicit
connective which expresses the same relation. For
each top level type, the severity of the mismatch
is less for BARTD+ than BARTD−. Without com-
mitting to the position that producing an implicit
connective for a relation intended to be expressed
explicitly is better or worse than producing an ex-
plicit connective for a relation intended to be ex-
pressed implicitly, we argue that either mismatch
is better than producing a connective which is
never used to express the intended relation. On
this score, the BARTD− model is considerably
worse—it is consistently more likely to produce a
connective not otherwise used to cue the intended
discourse relation.

When the metrics are extended to include
whether non-matching connectives chosen by the
model fit the intended discourse relation, the
BARTD+ model continues to outperform the best
BARTD− model. When producing non-matching
connectives, we find that the chosen connectives
of the BARTD+ model correspond to the intended
discourse relations more frequently than those pro-
duced by the BARTD− models.

We computed markedness scores for outputs of
the BARTD+ and BARTD− models. By apply-
ing AR significance tests on markedness score–
based statistics, we find that the BARTD+ out-
put on the test data is significantly closer to the
reference data than the output of BARTD−. We
show in Table 5 the distribution of markedness
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Type Contingency_Cause Expansion_Instantiation Comparison Temporal_Asynchronous

Reference 0.182 0.071 0.536 0.436

BARTD+ 0.179 0.061 0.626 0.419

BARTD− 0.170 0.058 0.358 0.365

Table 5: Markedness Scores for continuity and causality-by-default hypotheses.

BARTD− BARTD+

Discourse Relation Nonsister Implicit Nonsister Implicit

Contingency_Cause 4.3% 2.3% 1.9% 2.7%

Expansion_Instantiation 6.1% 1.6% 2.1% 1.6%

Temporal_Asynchronous 14.2% 4.7% 2.3% 4.7%

Comparison 13.9% 16.6% 1.3% 4.2%

Overall 7.8% 6.6% 1.6% 4.5%

Table 6: Error rates in Mispredicted Nonsister and Mispredicted Implicit of the models’ performances w.r.t dis-
course relations associated with the Continuity and Causality-by-default hypotheses. Proportions are with respect
to the sum of the items in the test set meant to express the relation type.

for several discourse relations. We should first
note that the BARTD+ markedness scores are con-
sistently closer to the reference scores than the
BARTD− scores. Second we note that the conti-
nuity hypothesis is partially supported, even just
considering this limited set of relations: both Con-
tingency_Cause and Expansion_Instantiation are
less marked than both Comparison and Tempo-
ral_Asynchronous. This is consistent with our
hypotheses that continuous and causal relations
should be less marked than discontinuous rela-
tions. However, like Jin and de Marneffe (2015b);
Asr and Demberg (2013), we found less direct sup-
port for the causality-by-default hypothesis, since
it is not less marked than Expansion_Instantiation.
This is at best consistent with a weak form of the
hypothesis, since we have not here reported con-
texts which would discriminate between the con-
junction of the causality-by-default and continuity
hypotheses versus just the continuity hypothesis.
Our conclusions are further reinforced by Table 2,
which shows the BARTD+ model, in particular, is
reasonably close to recovering the markedness ex-
emplified in the test set.

One further difference in distribution is pre-
dicted by the causality-by-default and continuity
hypotheses for those relations that are or are not
continuous or causal, exemplified by the relations
found in Table 1. Both these hypotheses posit de-
fault inferences. Given the apparent reliability of

these defaults with respect to psycholinguistic and
corpus studies, we’d expect that learning these de-
faults would reduce the rate of errors for those re-
lations to which the defaults apply. Consequently,
we can compare the proportion of errors for contin-
uous and causal relations to that for discontinuous
(and non-causal) relations to determine how likely
it is the model learned the default. We expect that
explicitly representing discourse relations should
support the learning of the default since, by hy-
potheses, the defaults are correlated with specific
relations. Table 6 shows the error proportions.

We find that the D+ model shows a lower er-
ror proportion with respect to continuous versus
discontinuous relations while the D- model shows
a higher proportion of such errors, particularly
where the relation to be expressed is discontinu-
ous and more marked. We note that the number of
D- Nonsister errors on Temporal_Asynchronous,
which dwarf the Implicit errors on the same re-
lation, is consistent with the continuity hypothe-
sis in particular since these relations, which are
not subject to default inferences, are important to
mark explicitly yet are difficult to mark correctly
in the absence of an explicit cue to the relation. On
Comparison, D- makes a similar number of Non-
sister errors, and also makes more than double the
number of overall implicit prediction errors. This
makes sense if the model recognizes it’s impor-
tant to signal these relations but erroneously treats
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them as if they were in a default relation where
leaving the connective implicit would be more ex-
pected. However, we do not have a ready expla-
nation for why Temporal_Asynchronous does not
have more implicit D- errors.

The differences in connective choice between
models sometimes result in wildly divergent mean-
ings. Figure 4 shows the BARTD+ full and
BARTD− outputs for the input in Figure 1. Nei-
ther model is conditioned on the order of argu-
ments. The BARTD− model’s output uses be-
cause to erroneously communicate that the inten-
tions of the directors cause the intentions of the
board, whereas the BARTD+ model correctly iden-
tifies the intentions of the board and the intentions
of the directors without suggesting either intention
is dependent on the other (generates and).

6 Related Work

Ko and Li (2020) reported the limits of GPT-2
(Radford et al., 2019) for generating texts with
discourse connectives. Their results concern both
fine-tuning and off-the-shelf experiments. For
fine-tuning they conditioned the model on prompt-
response pairs, testing the subsequently fine-tuned
model on the appropriateness of its output re-
sponses to input prompts in conversation. For
GPT-2 off-the-shelf they fed the first argument and
a candidate discourse connective to the model and
took the output to be the second argument. They
found that GPT-2 more frequently produced con-
nectives consistent with the judgements concern-
ing the discourse relation inferred by human sub-
jects when their agreement on the discourse rela-
tion is high. Like Ko and Li, we are interested in
discourse relation realization. However, in Ko and
Li’s approach the position of the discourse connec-
tive is explicitly given to the model (it’s the mask).
Also, Ko and Li’s fine-tuned model is restricted to
11 connectives. We condition models on both the
discourse relation and the arguments to provide
fine-grained control of the discourse without re-
stricting the position of the discourse connective.

Yung et al. (2021) found that GPT-2 diverges
from human subjects in its judgements concerning
the substitution of connectives which the PDTB
does not distinguish by type. This provides pre-
sumptive evidence that large pre-trained language
models could be limited in reconstructing human
judgements concerning the sense of connectives
and their substitutability.

7 Conclusion

The main conclusion one can draw from our re-
sults is that discourse relation information is essen-
tial for consistently generating matching discourse
connectives. While large-scale human judgement
experiments on our models’ predictions are the
most obvious next step, the improvement of the
BARTD+ models over the BARTD− models with
respect to exact matching is encouraging, espe-
cially in light of recent results showing that hu-
mans don’t uniformly accept substitution of dis-
course connectives which express the same dis-
course relation (Yung et al., 2021). With respect
to whether mere arguments suffice to generate a
discourse connective that correctly realizes the dis-
course relation holding between them, our results
indicate that the purely distributional meaning of
texts induced by the models under-determines the
relation expressed by explicit discourse connec-
tives. Directly conditioning on discourse relations
in the input significantly improves the likelihood
of the model producing a connective which cor-
responds to the intended discourse relation. One
must note that conditioning on the discourse rela-
tion is especially important when the relation is
marked, as in these cases the model is apt to pre-
dict an incorrect default (causal or continuous) re-
lationship just from the arguments.

As for markedness score–based statistics, we
can conclude that the presence of discourse rela-
tions in the input helped BARTD+ to learn the
discourse connective distribution patterns of the
PDTB. These metrics provide a useful avenue for
testing how well generation models recover pat-
terns which hold for a variety of different vari-
ables, from discourse relations themselves, to the
strength of co-occurrences between discourse rela-
tions and the words used to communicate them. To
the degree these patterns track cognitive dependen-
cies, they encourage integration of cognitive mod-
els of discourse coherence and NLG evaluation.
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Relation
Data set

Compar. Contig. Expan. Temp.

Train 5297 7592 12605 3302
Dev. 1173 1577 2635 784
Test 1195 1616 2563 774

Table 7: Numbers of occurrences of top level relation
types in data sets

m2y m2n
m1y 1617 663
m1n 157 825

Table 8: m1 = BARTD+, m2 =BARTD−.
statistic=157.000, p-value=0.000
Different proportions of total number of entries with
explicit matches (reject H0)

A Data sets collection and statistics

The corpus was split into train/dev/test by select-
ing the first 70 percent of reconstructed lines for
training purposes. To prevent content from one
split being encountered in another split, any re-
maining lines in a WSJ article encountered af-
ter the line corresponding to the end of train
were removed. This technique is used for pre-
venting spillover of content between dev and test,
too, which respectively comprise approximately
15 percent of the corpus. Namely, we have 28796
items in the training set, 6169 in the dev set, and
6149 in the test set.

The breakdown of top level relations distributed
through the splits is given in Table 7.

We excluded some items from the corpus if the
resulting sequences would be too long, if the rela-
tions were not extensions of those defined by level
1 in the foregoing, or to prevent possible repetition
of content between train, test, and dev splits.

B McNemar’s Significance Results

McNemar’s significance test results between
BARTD+ and BARTD− models are shown in Ta-
bles 8, 9, and 10.

m2y m2n
m1y 2459 118
m1n 156 153

Table 9: m1 = BARTD+ , m2 =BARTD−.
statistic=118.000, p-value=0.025
Different proportions of total number of entries with
implict matches (reject H0)

m2y m2n
m1y 4076 781
m1n 313 978

Table 10: m1 = BARTD+, m2 =BARTD−.
statistic=313.000, p-value=0.000
Different proportions of total number of entries with
implicit or explicit matches (reject H0)

C Approximate Randomization with
respect to Markedness Stats

We want to see whether markedness scores of
the outputs models are close to the reference test
data. We compute markedness for the test cor-
pus (i.e., gold reference text), tmrk, which is an
n-dimensional vector, where n is a number of dis-
course relation types. We also compute bd+mrk and
bd−mrk vectors for the outputs of the BARTD+ and
BARTD− models on the test corpus, respectively.
Then, we calculate the mean square distances be-
tween markedness scores of the test corpus and
produced ones, i.e., δ+ = MSQ(tmrk, bd

+
mrk)

and δ− = MSQ(tmrk, bd
−
mrk). We find that δ+

< δ−, which means that the BARTD+ model out-
put has markedness score at least as close to the
test corpus as one of the BARTD− model.

To see whether this difference between
BARTD+ and BARTD− is significant, we resort
to the Stratified Approximated Randomization
(AR) approach. We take the list of outputs of
BARTD+ and BARTD−, call them d+1 , . . . , d

+
k

and d−1 , . . . , d
−
k , where k is the size of the test

data set. For each i, we randomly assign to ci
either d+i or d+i , each with 0.5 probability. In this
way we obtain a new list c1, . . . , ck. We compute
the markedness score for c1, . . . , ck, call it cmrk.
Then, we calculate δc = MSQ(tmrk, cmrk).
We compare δc with δ+ and δ−. We do this N
(sufficiently large) number of times. If out of N
checks, δc was less or equal to δ+ in p-percent
of cases, we say that BARTD+ differs from
BARTD− with p-significance. (Usually, p is taken
to be 5.)

D Discussion of Errors

We consider several examples of errors in D- mod-
els and compare them to the same outputs of the
D+ model. This discussion is necessarily limited
by the length of the outputs. We do not suggest
these errors are representative of the models er-
ror in general, restricting ourselves to brief quali-
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Figure 5: Continuous Explicit Connective Case: Graph
for Models D+ and D- showing MP (Match Prediction);
MES (Mismatch with Explicit Sister type); MI (Mis-
match with Implicit); and Other (Explicit For Explicit
Minus One, Minus Two, and Minus Three level types)
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Figure 6: Continuous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)

tative remarks which complement the quantitative
results in the foregoing.

In Figure 9 both models mismatched with the
intended temporal_synchronous relation, which is
expressed by the connective while in the reference
text. The D- model’s choice produces much more
of a hedged judgement of the threat by using if
than either the reference connective as long as or
the D+ connective when, which seems to require
the existence of some time in which the threat is
present.

In Figure 10 the D- model mismatched with
the intended Comparison_Concession_Arg1-as-
denier connective even if. The D- model’s
choice unless reverses the intended condition, erro-
neously suggesting that the banks obtaining financ-
ing could prevent British Air from rejecting the
proposal described in the text. The D+ model pre-

0%

20%

40%

60%

80%

100%
D+MP

D+MES

D+MI

D+Other

Contingency_Condition

Expansion_Conjunction

Temporal_Synchronous0%

20%

40%

60%

80%

100%

D-MP

D-MES

D-MI

D-Other

Figure 7: Ambiguous Explicit Connective Case: Graph
for Models D+ and D- showing MP (Match Prediction);
MES (Mismatch with Explicit Sister type); MI (Mis-
match with Implicit); and Other (Explicit For Explicit
Minus One, Minus Two, and Minus Three level types)
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Figure 8: Ambigous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)

dicts the connective even if which matches the ref-
erence and communicates the correct dependency
between financing and British Air rejecting the
proposal described in the text. We note that this
is consistent with the results of (Stevens-Guille
et al., 2020; Maskharashvili et al., 2021), who
found comparison to be quite vexing for LSTM
models.

In Figure 11 the D- model mismatched with
the intended Expansion_Level-of-detail_Arg2-as-
detail connective which is implicit. The D+ model
correctly predicts the second sentence to simply
provide further comment on the first sentence.
Note though that the D- model’s connective choice
but is coherent in the text. This highlights that the
two sentences, without the cue to the intended dis-
course relation, could be understood with respect
to a variety of discourse relations.
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BARTD+: Bush assured Roh that the U.S. would
stand by its security commitments “when there is
a threat” from Communist North Korea.
BARTD−: Bush assured Roh that the U.S. would
stand by its security commitments “if there is a
threat” from Communist North Korea.

Figure 9: Both models mismatch on Tempo-
ral_Synchronous, which is expressed by ‘while’ in the
reference text.

BARTD+: But British Air, which was to have sup-
plied $750 million out of $965 million in equity
financing, apparently wasn’t involved in the sec-
ond proposal and could well reject it even if banks
obtain financing.
BARTD−: But British Air, which was to have sup-
plied $750 million out of $965 million in equity
financing, apparently wasn’t involved in the sec-
ond proposal and could well reject it unless banks
obtain financing.

Figure 10: D- mismatch on
Comparison_Concession_Arg1-as-denier

BARTD+: The huge drop in UAL stock prompted
one takeover stock trader, George KellNER, man-
aging partner of Kellner, DiLeo & Co., to deny
publicly rumors that his firm was going out of busi-
ness. Mr. Kellner said that despite losses on UAL
Stock, his firm’s health is “excellent.”
BARTD−: The huge drop in UAL stock prompted
one takeover stock trader, George Kellner, manag-
ing partner of Kellners, DiLeo & Co., to deny pub-
licly rumors that his firm was going out of busi-
ness. But Mr. Kellner said that despite losses on
UUAL stock, his firm’s health is “excellent.”

Figure 11: D- mismatch on Expansion_Level-of-
detail_Arg2-as-detail

BARTD+: The National Cancer Institute also pro-
jected that overall U.S. mortality rates from lung
cancer should begin to drop in several years if
cigarette smoking continues to abate.
BARTD−: The National Cancer Institute also pro-
jected that overall U.S. mortality rates from lung
cancer should begin to drop in several years as
cigarette smoking continues to abate.

Figure 12: D- mismatch on
Contingency_Condition_Arg2-as-cond

In Figure 12 the D- model mismatched
with the intended Contingency_Condition_Arg2-
as-cond connective if. The D- model’s choice of
the connective as implies that cigarette smoking
will continue to abate, while the intended meaning
is that the dropping of lung cancer mortality rates
in the U.S. depends on cigarette smoking continu-
ing to abate, which abatement, while projected, is
not a foregone conclusion.

E Matching Explicit and Implicit Cases
of Discontinuous, Continuous, and
Ambiguous, Connectives: Figures
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Figure 13: Discontinuous Explicit Connective Case:
Graph for Models D+ and D- showing MP (Match Pre-
diction); MES (Mismatch with Explicit Sister type);
MI (Mismatch with Implicit); and Other (Explicit For
Explicit Minus One, Minus Two, and Minus Three
level types)

F Reproducibility Details

We use the pre-trained BART-Large HuggingFace
transformer model for our baselineD+.

We fine-tuned models, BARTD+ and D− on
BART-Base transformer model. In total, there
are 139421184 trainable parameters in this model.
The models are fine-tuned using cross entropy loss
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Figure 14: Discontinous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)
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Figure 15: Continuous Explicit Connective Case:
Graph for Models D+ and D- showing MP (Match Pre-
diction); MES (Mismatch with Explicit Sister type);
MI (Mismatch with Implicit); and Other (Explicit For
Explicit Minus One, Minus Two, and Minus Three
level types)

without label smoothing. The learning rate is con-
stantly 2 × 10−5 and the batch size is 8 samples.
The optimizer is Adam (Kingma and Ba, 2014)
where β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8,
and the weight decay is 0. The best checkpoint is
selected by validation with patience of 10 training
epochs. Computing infrastructure we used is made
of NVIDIA V100 GPU and an Intel(R) Xeon(R)
Platinum 8268 @ 2.90GHz CPU. Training on av-
erage took 15 epochs.

G BART-large selected results

We provide match results for BART-base versions
of the full depth D+ and D- models in Table 11.
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Figure 16: Continuous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)

0%

20%

40%

60%

80%

100%
D+MP

D+MES

D+MI

D+Other

Contingency_Condition

Expansion_Conjunction

Temporal_Synchronous0%

20%

40%

60%

80%

100%

D-MP

D-MES

D-MI

D-Other

Figure 17: Ambiguous Explicit Connective Case:
Graph for Models D+ and D- showing MP (Match Pre-
diction); MES (Mismatch with Explicit Sister type);
MI (Mismatch with Implicit); and Other (Explicit For
Explicit Minus One, Minus Two, and Minus Three
level types)

H Error Rate Examples

Figures 21, 22, and 23 exemplify D- Tempo-
ral_Asynchronous Nonsister, Comparison Nonsis-
ter, and Comparison Implicit errors respectively.

I Initial and Final Connective Examples

We provide an example of an initial connective
generation by D- in Figure 24. A final connective
generation by D- is provided in Figure 25, though
we note that the reference is here implicit.
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Figure 18: Ambigous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)
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Figure 19: F-score for top level discourse relation
types, case of explicit
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Figure 20: F-score for top level discourse relation
types, case of implicit

Type Depth Order FullOutput Match
BARTD+ full + + 79.7%
BARTD+ full + - 82%
BARTD+ full - + 80.5%
BARTD+ full - - 74.5%
BARTD− + + 73.6%
BARTD− + - 75%
BARTD− - + 71.5%
BARTD− - - 74.7%

Table 11: BART-large fine-tuned selected results.

Figure 21: D- Temporal_Asynchronous_Precedence
Nonsister Error

REFERENCE: That follows a more sub-
tle decline in the prior six months after
Manhattan rents had run up rapidly since
1986.
BARTD−:That follows a more subtle de-
cline in the prior six months because
Manhattan rents had run up rapidly since
1986.

Figure 22: D- Comparison_Concession_Arg1-as-
denier Nonsister Error

REFERENCE: “There’s quite a bit of value
left in the Jaguar shares here even though
they have run up” lately, says Doug John-
son, a fund manager for Seattle-based
Safeco Asset Management.
BARTD−: “There’s quite a bit of value left
in the Jaguar shares here and they have
run up” lately, says Doug Johnson, a fund
manager for Seattle-based Safeco Asset
Management.

Figure 23: D- Comparison_Concession_Arg2-as-
denier Error

REFERENCE: But that ghost wasn’t
fooled; he knew the RDF was neither
rapid nor deployable nor a force — even
though it cost $8 billion or $10 billion a
year.
BARTD−: But that ghost wasn’t fooled; he
knew the RDF was neither rapid nor de-
ployable nor a force — it cost $8 billion
or $10 billion a year.
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Figure 24: D- Initial Connective Generation

REFERENCE: But that ghost wasn’t
fooled; he knew the RDF was neither
rapid nor deployable nor a force – even
though it cost $8 billion or $10 billion a
year.
BARTD−: When Mr. Glass decides to get
really fancy, he crosses his hands and hits
a resonant bass note with his right hand.

Figure 25: D+ Final Connective Generation

REFERENCE: So far, analysts have said
they are looking for $3.30 to $3.35 a share.
After today’s announcement, that range
could increase to $3.35 to $3.40 a share.
BARTD−:So far, analysts have said they
are looking for $3.30 to $3.35 a share.
After today’s announcement, that range
could increase to $4.35 to $2.40 a share
however.
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Abstract

End-to-end task bots are typically learned over
a static and usually limited-size corpus. How-
ever, when deployed in dynamic, changing, and
open environments to interact with users, task
bots tend to fail when confronted with data that
deviate from the training corpus, i.e., out-of-
distribution samples. In this paper, we study
the problem of automatically adapting task bots
to changing environments by learning from
human-bot interactions with minimum or zero
human annotations. We propose SL-AGENT1,
a novel self-learning framework for building
end-to-end task bots. SL-AGENT consists of a
dialog model and a pre-trained reward model to
predict the quality of an agent response. It en-
ables task bots to automatically adapt to chang-
ing environments by learning from the unla-
beled human-bot dialog logs accumulated after
deployment via reinforcement learning with the
incorporated reward model. Experimental re-
sults on four well-studied dialog tasks show the
effectiveness of SL-AGENT to automatically
adapt to changing environments, using both au-
tomatic and human evaluations. We will release
code and data for further research.

1 Introduction

The most common approach of building end-to-end
task-oriented dialog systems is to train neural mod-
els to imitate human behaviors in fixed task-specific
annotated corpora (Gao et al., 2018; Zhang et al.,
2020). Existing state-of-the-art approaches usu-
ally adopt Pre-trained Language Models (PLMs)
(Peng et al., 2020a; Ham et al., 2020; Hosseini-Asl
et al., 2020) to build end-to-end dialog systems.
However, these data-driven approaches assume an
independent and identically distributed (IID) data
setting2, i.e., a static environment3, and usually ex-

1S
¯

ELF-L
¯

EARNING AGENT.
2Assume the same user behaviors at deployment as in the

training stage.
3Environment is the Agent’s world in which it lives and

interacts.

Figure 1: Illustration of the proposed SL-AGENT with
a human-bot dialog example. (i) The human-bot dialog
example, containing an inappropriate response related to
unseen user behaviors (upper part). (ii) Demonstration
of the refining process in SL-AGENT with the exhibited
dialog example (lower part).

hibit a tendency of failure, when confronted with
out-of-distribution (OOD) examples in real-world
scenarios, i.e., changing environments.

In the context of task-oriented dialog systems,
changing environments are quite common and arise
from the following two aspects: (i) unseen user
behaviors – real users may query with unseen lan-
guage patterns and unknown user goals (i.e., un-
seen slot values and dialog flows) of the designated
tasks outside the pre-built training corpora (Liu
et al., 2018; Peng et al., 2020b). For example, real
users may query entities in the database but not cov-
ered by the training examples. (ii) task definition
extensions – dialog systems need to handle new
functions or new tasks as user and business require-
ments evolve, i.e., add new slot types (Lipton et al.,
2018; Gasic et al., 2014). For example, a restau-
rant bot designed for the table-booking service may
also encounter queries about delivery service after
deployment. These human-bot interactions accu-
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mulated after deployment are cheap, dynamic and
contain useful information (Hancock et al., 2019),
i.e., unseen user behaviors are related to the train-
ing examples and the probabilistic dialog model
may generate appropriate responses. As shown in
the upper part of Figure 1, when user queries ca-
sually about address, the system fails to provide
address in the second response, but gives it in the
third response, when user queries in a detailed way
(similar to the training examples). Therefore, rather
than merely imitating human behaviors in a fixed
corpus, task bots are desired to spontaneously learn
from the interactions with real users, progressively
improve and adapt after being deployed in dynamic
and constantly changing environments.

There are several attempts to leverage human-
bot interactions to improve task bots in changing
environments. For example, Liu et al. (2018); Shah
et al. (2018); Dai et al. (2020) propose to query hu-
mans for adequate feedback scores or annotations.
However, it relies on human annotations or user
feedback, which can be costly and sometimes users
are unwilling to give any feedback. In addition,
these works center on dialog policy optimization or
retrieval-based task bots. Automatically adapting
task bots to changing environments is imperative
for end-to-end dialog model yet under-explored.
Furthermore, these works usually omit task defini-
tion extensions.

In this paper, we propose SL-AGENT, a novel
self-learning framework for building end-to-end
task bots in a more realistic changing environment
setting with minimum or zero human annotations.
It consists of a neural dialog model and a pre-
trained reward model, where the dialog model gen-
erates responses and the reward model judges the
quality of agent responses. Specifically, we devise
a data augmentation strategy to construct positive
and negative examples based on the given dialog
training corpus to endow the reward model with
the capability to judge the quality of responses for
unlabeled human-bot dialog logs. The bot (includ-
ing dialog model and reward model) is first trained
with the same available training data, then deployed
to converse with real users and collect human-bot
dialog logs. After that, as shown in the lower part
of Figure 1, the bot is refined with the unlabeled
human-bot dialog logs via reinforcement learning,
where the response quality is judged by the reward
model. In this way, the bot can automatically adapt
to unseen user behaviors, without extra human an-

notations. Regarding the problem of extensions
in task definitions, machine teaching is utilized to
correct representative failed dialogs with minimum
human annotations to provide necessary instruc-
tions on how to handle new functions. After that,
the bot quickly adapts to new functions through the
self-learning procedure.

Our contributions are summarized as below:

• We propose a new research problem i.e.,
how to enable task bots to automatically
adapt themselves to changing environments
by learning from interactions with minimum
or zero human annotations.

• We propose a novel self-learning framework
SL-AGENT that equips with a pre-trained
reward model trained by the devised data-
augmentation strategy to build generative end-
to-end task bots in a realistic changing envi-
ronment setting, with minimum or zero human
annotations.

• We conduct comprehensive experiments on
four datasets to demonstrate the effectiveness
of SL-AGENT for enabling automatic adap-
tation to changing environments by learning
from the unlabeled human-bot dialog logs us-
ing both automatic and human evaluations.

2 Related Work

RL for Dialog Policy Learning Reinforcement
learning has been widely applied to dialog systems
for policy optimization. Young et al. (2013); Peng
et al. (2018, 2017); Liu and Lane (2017); Gasic
et al. (2014); Tseng et al. (2021) formulate dialog
policy learning as a sequential problem and use
REINFORCE (Williams, 1992) and/or Q-learning
(Watkins and Dayan, 1992) to optimize the dialog
policy. SL-AGENT utilizes a similar REINFORCE
algorithm but focuses on generative end-to-end op-
timization.

Adapting to Changing Environments for Dialog
Systems Several attempts have been made to deal
with changing environments after deployment. Ra-
jendran et al. (2019); Dai et al. (2020) propose to
learn from the human-bot interactions but requires
lots of human corrections. Shah et al. (2018); Liu
et al. (2018); Gašić et al. (2011); Gasic et al. (2014)
propose to learn from human-bot interactions via
reinforcement learning based on the queried hu-
man feedback scores after each dialog. To reduce
the efforts of querying humans, Su et al. (2016)
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Figure 2: Training pipeline of the proposed SL-AGENT.

introduces a session-level Bi-LSTM reward model
trained with extra pre-collected classification cor-
pus to predict the task success of each dialog. Nev-
ertheless, session-level reward model may under-
estimate the quality of responses in single dialog
turns. Different from the works mentioned above,
SL-AGENT leverages a turn-level pre-trained re-
ward model built on the given dialog corpus using
the devised data augmentation approach and fo-
cuses on generative end-to-end dialog systems. An-
other line of research is using data-augmentation
methods to generate diverse user behaviors dur-
ing the training stage (Gao et al., 2020; Li et al.,
2020b). Additionally, Madotto et al. (2020); Liu
et al. (2021) continually collect extra labeled data to
train task bots but aim to overcome the catastrophic
forgetting problem, which is a different research
topic (i.e., continual learning) from our paper.

3 SL-AGENT

3.1 Overview
As depicted in Figure 2, SL-AGENT contains two
components: (i) a dialog model for generating re-
sponses (Section 3.2); (ii) a pre-trained reward
model for judging the quality of agent responses
and outputting reward scores to guide the refine-
ment of the dialog model (Section 3.3). Specifi-
cally, SL-AGENT operates in the following steps:
(i) First, the bot (both dialog model and pre-trained
reward model) is fine-tuned with the same avail-
able annotated task-specific dialogs. (ii) Then, the
bot is deployed online to converse with users and
accumulate unlabeled human-bot dialog logs. (iii)
Next, the dialog model is refined with these human-
bot dialog logs via reinforcement learning, using
the reward scores from the reward model (Section

3.4). (iv) For task definition extensions, machine
teaching is utilized to correct representative failed
dialogs to provide instructions on how to handle
new functions (Section 3.5). After that, the bot fur-
ther improves through the self-learning procedure.

3.2 Dialog Model
SL-AGENT is a general framework that is compati-
ble with any generative end-to-end dialog models
(Peng et al., 2020a; Ham et al., 2020; Hosseini-Asl
et al., 2020). In this paper, we employ SOLOIST

(Peng et al., 2020a), a pre-trained end-to-end dialog
model, resulting in an agent termed SL-SOLOIST4.

We briefly review SOLOIST for completeness.
SOLOIST formulates the end-to-end dialog genera-
tion as a sequence generation problem, by sequen-
tially concatenating the inputs and outputs of 4
dialog modules (i.e., NLU, DST, POL, NLG) in a
typical dialog system. Each dialog turn is repre-
sented as:

x = (s, b, c, r), (1)

where s is the entire dialog history, b is the anno-
tated belief state, c refers to DB state fetched from
database, and r is the delexicalized agent response.
SOLOIST employs a Transformer-based model with
parameters θD to characterize the sequence gener-
ation probability pθD(x). Initialized with GPT-2
(Radford et al., 2019), the model is pre-trained on
large-scale annotated dialog corpora, and then fine-
tuned with limited task-specific dialogs.

Synthetic Dialog Construction. To identify user
behaviors with unseen slot values, we propose to
synthesize dialog examples by exhausting database
(DB) values and substitute corresponding slot val-
ues of in the training set. Specifically, for each
dialog turn x, we replace slot values in the utter-
ances and user goal with corresponding new values
of the randomly sampled DB entry.

3.3 Reward Model
The human-bot dialog logs accumulated after de-
ployment may contain previously unseen user be-
haviors with unseen language patterns and un-
known user goals. To enable the dialog model to
identify these new types of user inputs to which the
previously trained system cannot respond appropri-
ately, we propose a reward model that judges the

4In this paper, SL-AGENT refers to the proposed frame-
work and SL-SOLOIST is an instance of it, which utilizes
SOLOIST as its dialog model.
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quality of an agent response through a reward score
(a positive reward for an appropriate response, a
negative reward for an inappropriate response).

We formulate the quality evaluation problem as
a binary classification task. Dialog responses are
jointly determined by the dialog history, generated
belief state, and fetched DB state. Therefore, given
the training dataD (annotated with belief states and
DB states), we build a turn-level reward model R,
which is parameterized by a Transformer θR with
the input dialog turn sequence x, defined as Equa-
tion 1 to characterize the classification probability:
pθR(x) = pθR(s, b, c, r).

The reward model R is trained using contrastive
objective to discriminate between an appropriate
response (i.e., positive example x) and an inappro-
priate response (i.e., negative example x̂), given the
dialog history. Specifically, for each dialog turn, we
construct several positive examples {xm}Mm=1 and
negative examples {x̂n}Nn=1 based on the sequence
x, to add the relevance of real-world scenarios and
endow the reward model with the capability of eval-
uating the response quality. Then we apply a binary
classifier on top of the output sequence representa-
tion from the Transformer to discriminate between
a positive example x (y = 1) and a negative exam-
ple x̂ (y = 0). The training objective for a single
example in the training set D is defined as:

LθR =y
M∑

m=1

log (pθR(xm))

+(1− y)
N∑

n=1

log (1− pθR (x̂n)) ,

(2)

Positive Examples. For each dialog turn, we con-
sider two kinds of user utterances: (i) the original
user utterance in the training set D, to identify the
appropriate response to the user behavior; (ii) the
paraphrased user utterances generated based on
the original user utterance using back translation
(Edunov et al., 2018), to enhance the ability of
reward model for identifying user behaviors with
diverse language patterns.

Negative Examples. Based on the analysis on
200 human-bot dialog logs collected from the eval-
uation platform of DSTC8 Track 1 challenge (Li
et al., 2020a)5, we summarize 5 types of dialog

5These human-bot dialog logs contain the evaluation
scores and comments from Amazon Mechanical Turks.

turns that have inappropriate responses (in Ap-
pendix J). Then, for each dialog turn in the train-
ing data D, we construct negative examples x̂ (in
brackets) according to these 5 types:

• Repetition The dialog model failed to under-
stand the user’s repeated query and generated
the same response twice. (Repeating the re-
sponse from the previous turn.)

• Inconsistency The dialog model generated
an incoherent response. (Randomly sampling
a response from the dataset D to replace the
original response .)

• Partial Information The dialog model par-
tially understood user request and answered
incompletely. (For those user utterances with
multiple slots request, randomly dropping a
slot answer in the original response.)

• Non-fluency The dialog model generated a
non-fluent response. (Randomly repeating
some word tokens in the original response.)

• Misunderstanding The dialog model gener-
ated the incoherent belief state and response.
(Randomly sampling a belief state and re-
sponse from the dataset D to replace the orig-
inal belief state and response.)

To boost the model performance with limited
annotated task-specific corpora, we propose to fol-
low the pre-training and fine-tuning paradigm to
build the reward model, i.e., pre-train the reward
model using large-scale annotated heterogeneous
dialog corpora, then fine-tune the pre-trained re-
ward model with annotated task-specific data using
the same training objective. The pre-training cor-
pora is Schema dataset (Rastogi et al., 2019).

3.4 Refine with Reinforcement Learning
The interactions between the agent and users can
be modeled as a sequential decision problem. As
such, the dialog model can be refined via the RE-
INFORCE algorithm (Williams, 1992). The pol-
icy is the trained dialog model pθD(x), the initial
state is the dialog history s, and the action space
corresponds to the vocabulary set V . The reward
perceived by the dialog model is R (s, b, c, r) from
the reward model. The parameters θD are updated
by maximizing the cumulative reward score. The
refining procedure is described in detail as follows:

For each RL episode, we randomly sample a
dialog turn with dialog history and delexicalized
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response. We run the dialog model to generate
belief state b̂, based on the input dialog history se-
quence s. At each time step t, we sample a token b̂t
according to the model distribution, where the log-
its’ distribution of the model is first filtered using
Nucleus (top-p) filtering (Holtzman et al., 2019),
then redistributed via softmax function. Then we
retrieve DB state ĉ from the database using b̂, and
sample the delexicalized response sequence r fol-
lowing same sampling procedure, based on the to-
ken sequence (s, b̂, ĉ). Note that the delexicalized
response is given as part of the input. Then we feed
the concatenation of dialog history s, generated
belief state b̂, retrieved DB state ĉ and the response
r, i.e. (s, b̂, ĉ, r) into the reward model pθR(x) to
obtain the reward score R(s, b̂, ĉ, r). The positive
reward is 1, negative reward is -1. The training
objective for a single example is represented as:

LθD = −
Tb̂∑

t=1

log pθD

(
b̂t | b̂<t, s

)
×R(s, b̂, ĉ, r)

−
Tr∑

t=1

log pθD

(
rt | r<t, b̂, ĉ, s

)
×R(s, b̂, ĉ, r),

(3)
where the length of generated belief state and in-
put delexicalized response are Tb̂, Tr, respectively.
Algorithm 1 (in Appendix A) summarizes the self-
learning-based RL refining framework for refining
the dialog model.

3.5 Minimum annotations via Machine
Teaching

To handle the queries about new functions in ad-
ditional dialog turns, we need to introduce new
slot-value pairs, action templates, etc.(An example
is in Appendix G.) Machine teaching is an efficient
approach to training task bots (Simard et al., 2017;
Williams and Liden, 2017). In this paper, we imple-
ment machine teaching via Conversational Learner
(CL) (Shukla et al., 2020). The teaching process
is conducted in three steps: (i) The trained task
bot is deployed online to fulfill the given goals by
interacting with real users, leaving a handful of
human-bot dialog logs. (ii) Human experts select a
few representative failed dialogs to construct train-
ing examples with new functions by adding new
action templates, introducing new slot-value pairs,
correcting inappropriate responses and annotations
(i.e., belief states). (iii) The deployed task bot (i.e.,
both dialog model and reward model) is trained on
these training examples to handle new functions.

Domain Attraction Train Hotel Restaurant

#Train 50 50 50 50
#Valid 50 50 50 50
#Test 100 200 200 200

Table 1: Data statistics of four single-domain dialog
datasets (Peng et al., 2020a; Budzianowski et al., 2018).

4 Experiments

4.1 Experimental Setup
We validate the efficiency and flexibility of pro-
posed SL-AGENT on four different end-to-end di-
alog tasks using MultiWOZ single-domain dialog
datasets (Budzianowski et al., 2018), reorganized
by Peng et al. (2020a). Data statistics are shown in
Table 1. Based on above datasets, we construct two
settings to represent the changing environments –
Setting I for unseen user behaviors and Setting II
for task definition extensions.

Implementation Details. To implement the pro-
posed reward model, we conduct experiments with
several Transformer-based models and GPT-2 (Rad-
ford et al., 2019) (enhanced with auxiliary gener-
ation task) shows better performance than others.
Therefore, we implement proposed reward model
using GPT-2-117M and the multi-task training ob-
jective. Full details are in Appendix B.

Automatic Evaluation Metrics. We report the
results using the same automatic evaluation met-
rics following Budzianowski et al. (2018): (i)
Inform(%) evaluates whether the agent returns
an appropriate entity. (ii) Success(%) judges
whether the agent correctly answers all requested
attributes. (iii) BLEU(%) measures the word over-
lap of the generated response against human re-
sponse. (iv) Combined(%) assesses the overall
quality, which is defined as: Combined = (Inform
+ Success) × 0.5 + BLEU.

Human Evaluation Metrics. Following the
same evaluation protocol in the DSTC9 Track 1
challenge (Gunasekara et al., 2020), we conduct
human evaluations to judge the agent quality. For
each dialog session, Amazon Mechanic Turkers
are presented with a goal and instructions, then
they are required to converse with agent to achieve
the goal via natural language. At the end of each
dialog session, Turks are required to assess the
overall dialog quality using the following five met-
rics: (i) Success w/o g(%) judges whether the
agent completes the task. (ii) Success w/ g(%)

520



Model Attraction Train Hotel Restaurant

Inform Success BLEU Inform Success BLEU Inform Success BLEU Inform Success BLEU

SOLOIST5 27.00 14.00 4.07 72.73 32.32 5.43 25.00 3.50 2.93 26.50 2.00 4.71
SOLOISTS 60.00 33.00 8.14 73.74 54.55 6.94 56.00 29.50 7.05 62.50 41.50 7.33
SOLOIST+PARG 60.00 32.00 8.83 75.25 56.06 8.45 58.00 29.00 7.71 64.00 42.00 9.17

SOLOIST-OA 61.00 36.00 8.66 74.75 55.05 7.58 56.50 29.00 7.14 64.50 42.50 8.56
SL-SOLOIST 64.00 40.00 8.99 75.76 61.62 10.97 60.50 39.50 8.34 75.00 44.50 10.60
SOLOIST-TH 66.00 41.00 9.01 77.27 62.87 10.70 60.00 42.50 9.82 70.50 46.00 11.76

SOLOIST50 86.00 65.00 12.90 80.81 64.65 9.96 74.50 43.50 8.12 81.00 55.50 12.80

Table 2: End-to-end evaluation results on four tasks. The forth to sixth rows indicate the results of refining with 45
simulated (unlabeled) human-bot dialog logs, based on SOLOISTS. SOLOIST50 is quoted from Peng et al. (2020a).
(SL-SOLOIST significantly outperforms all baselines in mean with p<0.01 based on Combined.)

Model Attraction Train Hotel Restaurant

Inform Success BLEU Inform Success BLEU Inform Success BLEU Inform Success BLEU

SOLOISTS 60.00 33.00 8.14 73.74 54.55 6.94 56.00 29.50 7.05 62.50 41.50 7.33
SOLOIST-OA 63.00 34.00 8.66 77.78 55.05 8.13 58.50 30.00 7.08 63.00 42.00 10.03
SL-SOLOIST 70.00 36.00 8.68 78.28 60.10 9.06 62.00 33.50 7.39 70.00 45.00 10.93
SOLOIST-TH 68.00 40.00 9.01 76.77 62.63 9.55 62.50 35.50 7.83 70.50 47.50 11.36

Table 3: Automatic evaluation results on four tasks in Real-Scenario Setting. The first row refers to previously
reported SOLOISTS. The last three rows refer to refining with 30 real (unlabeled) human-bot dialog logs based on
SOLOISTS. (SL-SOLOIST significantly outperforms all baselines in mean with p<0.01 based on Combined.)

judges whether the agent completes the task and
provides matched slot values against the database
record. (iii) Understanding(1-5) measures the
understanding correctness of user utterances. (iv)
Appropriateness(1-5) indicates the appropriate-
ness, naturalness, and fluency of an agent response.
(v) Turns reports the average number of dialog
turns for successful dialog sessions.

Compared Methods. To demonstrate the effec-
tiveness of the proposed reward model in SL-
AGENT, we use SOLOIST as the dialog model to
compare the performance of different methods.

• SOLOIST5 is trained with 5 labeled dialogs,
randomly sampled from the train set.

• SOLOISTS is trained using synthetic dialogs
constructed from the 5 labeled dialogs used
for training SOLOIST5.

• SOLOIST+PARG is trained on SOLOISTS
with paraphrased dialogs (Gao et al., 2020;
Edunov et al., 2018) constructed from the 5 la-
beled dialogs, i.e., data-augmentation baseline
for adapting to unseen user behaviors.

• SOLOIST-OA is refined with unlabeled
human-bot dialog logs based on SOLOISTS
using the session-level reward of task success
from online activate reward model (trained us-
ing the same 5 labeled dialogs as SOLOIST5)
and partially queried session-level human
feedback score (Su et al., 2016).

• SL-SOLOIST (Ours) is refined with unlabeled
human-bot dialog logs based on SOLOISTS
using the pre-trained reward model in SL-
AGENT, which is fine-tuned using the same 5
labeled dialogs as SOLOIST5. Machine teach-
ing is not utilized by now6.

• SOLOIST-TH is refined with unlabeled
human-bot dialog logs based on SOLOISTS us-
ing queried turn-level human feedback score,
which is an upper bound.

• SOLOIST50 is trained with whole 50 labeled
dialogs, which can be regarded as the result of
sufficient human corrections, i.e., the highest
bound. (Details are shown in Appendix C.)

4.2 Results of Setting I - Unseen User
Behaviors

Simulation Evaluation Setup. Deploying a
trained agent to interact with real human users and
collect dialog logs is labor-intensive and costly for
experimental purposes. Hence, we construct a set-
ting to simulate unseen user behaviors. We ran-
domly sample 5 dialogs from the training set as la-
beled data to train a task bot (i.e., both dialog model
and reward model). Note that the remaining 45 di-
alogs contain unseen user behaviors with unseen

6To better demonstrate the self-learning capability of SL-
AGENT, machine teaching is only used in the setting of task
definition extensions. However, machine teaching can be
optionally used to update the bot for better performance in the
setting of unseen user behaviors.
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language patterns and unknown user goals. Hence,
it is applicable to simulate unseen user behaviors by
modifying the remaining 45 dialogs as unlabeled
imperfect human-bot dialog logs (through adding
noise, i.e., corrupting responses7). These 45 unla-
beled human-bot dialog logs are further used for
refining SOLOISTS, resulting in SOLOIST-OA, SL-
SOLOIST, SOLOIST-TH. This simulation setting
allows us to perform a detailed analysis of the re-
ward model in SL-AGENT without much cost and
easily reproduce the experimental results.

Simulation Evaluation Results. The end-to-end
evaluation results on four different tasks are pre-
sented in Table 2. SOLOISTS significantly outper-
forms SOLOIST5 over all evaluation metrics on all
tasks, which shows the effectiveness of the pro-
posed synthetic dialog construction for identify-
ing user behaviors with unseen slot values. SL-
SOLOIST outperforms SOLOIST+PARG over all
the metrics, which demonstrates the higher effi-
ciency of directly learning from human-bot dialog
logs. We observe that SL-SOLOIST outperforms
SOLOIST-OA by a large margin, and achieves com-
parable performance with SOLOIST-TH (refining
with turn-level human feedback score, i.e., the up-
per bound). This shows the strong capability of the
turn-level pre-trained reward model in SL-AGENT

for predicting the quality of responses. We con-
jecture that our proposed reward model trained
with the proposed data-augmentation strategy is
more robust to unseen user behaviors and thus ports
richer useful information to dialog models. The
results verify the vast potential of the proposed SL-
AGENT, allowing the bot to automatically adapt to
unseen user behaviors without extra human anno-
tations. Results of further policy improvement are
shown in Appendix E.

Real-Scenario Evaluation Setup. Simulation
setting allows effortless experimental studies to
validate the effectiveness of the reward model in
SL-AGENT. However, the results are likely biased.
Therefore, in the real-scenario setting, we deploy
SOLOISTS online and recruit human users to con-
verse with it. We collect 30 real (unlabeled) human-
bot dialog logs to refine SOLOISTS, resulting in the
agent SOLOIST-OA, SL-SOLOIST, SOLOIST-TH.

Real-Scenario Evaluation Results. The evalu-
ation results on four tasks are shown in Table 3.

7Note that the associated labels of belief states are not used.
Construction details are in Appendix D.

Model Restaurant-Ext

Inform Success BLEU Combined

SOLOISTS 54.00 0.00 6.42 33.42
SOLOISTS+TEACH 64.00 18.00 9.34 50.34
SL-SOLOIST+TEACH 68.00 24.00 11.76 57.76
SOLOIST-TH+TEACH 68.50 26.00 11.88 59.13

Table 4: Automatic evaluation results on task defini-
tion extensions. (Difference in mean is significant with
p<0.01 based on Combined.)

We observe that SL-SOLOIST refined using the
reward model in SL-AGENT outperforms other
methods over all evaluation metrics on all tasks.
Furthermore, SL-SOLOIST achieves comparable
performance with SOLOIST-TH, even achieves bet-
ter performance on certain metrics. We conclude
that the results of real-scenario evaluation and sim-
ulation evaluation are consistent, confirming that
SL-SOLOIST enables effective self-learning after
deployment by learning from interactions.

4.3 Results of Setting II – Task Definition
Extensions

Setup. We follow the domain extension exper-
iment setting in Lipton et al. (2018) to assess
the ability of SL-SOLOIST to quickly handle
task definition extensions. We extend existing
Restaurant, denoted as Restaurant-Ext,
with additional functions by introducing 4
new slots, i.e., [restaurant_dish], [value_price],
[start_time], [end_time] in added dialog turns (in
Appendix G), and corresponding values for each
DB entry (in Appendix H). The first slot is about
the restaurant’s signature dish, and the last three
are related to delivery service. We leverage Con-
versational Learner (CL) (Shukla et al., 2020), a
practical machine teaching tool, to visualize and
select dialogs for constructing training examples
on the Restaurant-Ext domain by providing
corrections and introducing new slots. Finally,
10 examples are obtained through machine teach-
ing for training, 50 for validating and 50 for test-
ing. We fine-tune the dialog model SOLOISTS
and the previously trained reward model8, using
10 corrected dialogs, resulting the agent denoted
as SOLOISTS+TEACH. Then, SOLOISTS+TEACH

is deployed to converse with real human to col-
lect 20 real (unlabeled) human-bot dialog logs,
which are then used to refine itself, resulting in SL-
SOLOIST+TEACH. To better show the effective-

8The reward model used for obtaining SL-SOLOIST in the
Table 2. It is trained with 5 labeled dialogs in the train set.
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Model Restaurant

SR w/o g SR w/ g Under. Appr. Turns

SOLOISTS 31.82 29.54 3.86 4.13 10.00
SOLOIST-OA 33.42 30.86 3.89 4.12 9.97
SL-SOLOIST 43.10 36.21 3.97 4.13 9.89

Table 5: Human evaluation results. SR w/o g: Success
rate without grounding, SR w/ g: Success rate with
grounding, Under.: Understanding score, Appr.: Appro-
priateness score.

ness of the reward model in SL-AGENT, we also
report the result of SOLOIST-TH+TEACH, which is
refined using the turn-level human feedback score.

Results. The evaluation results are presented
in Table 4. We observe that SOLOISTS has
zero success rate, which is predictable as it does
not have any knowledge of the new functions.
SOLOISTS+TEACH outperforms the baseline by
17 points in terms of Combined score, which ex-
hibits the effectiveness of machine teaching for
handling new functions. SL-SOLOIST+TEACH

lifts the Combined score by approximately 7
points, achieving comparable performance with
SOLOIST-TH+TEACH. The results show that SL-
SOLOIST+TEACH can adapt to new tasks and con-
tinually improve itself by automatically learning
from the interactions, revealing, with minimum
annotations from machine teaching, SL-AGENT

enables flexible adaptations to new functions.

4.4 Interactive Human Evaluation
Setup. We conduct human evaluations to evalu-
ate the performance of SOLOISTS, SOLOIST-OA,
SL-SOLOIST interacting with human users, fol-
lowing the evaluation protocol in DSTC9 track 1
challenge (Gunasekara et al., 2020), with 100 Turk-
ers involved and 100 dialogs gathered for analysis,
respectively.

Results. The human evaluation results on
Restaurant domain are presented in Table 5.
The results show that SL-SOLOIST outperforms
SOLOISTS, SOLOIST-OA over all the metrics,
which are consistent with the automatic evalua-
tion results. The significant improvement on two
success rate metrics, especially success rate with
grounding, verifies the effectiveness of the reward
model in SL-AGENT for refining the dialog agent
after deployment without additional human anno-
tations, as it more adequately reflects the system’s
capability of completing tasks in real scenarios.
Two interactive examples are in Appendix F.

Reward model Restaurant

Inform Success BLEU Combined

GPT-2 67.00 41.50 9.30 63.55
BERT 68.00 42.50 9.55 64.80
BERT-Large 66.00 44.00 11.09 66.09
RoBERTa 72.00 45.00 9.23 67.73
RoBERTa-Large 69.50 46.50 10.20 68.20
SL-SOLOIST 75.00 44.50 10.60 70.35

Table 6: Ablation study results on using different PLMs
for reward models. (Difference in mean is significant
with p<0.01 based on Combined.)

4.5 Ablation Study
Impact of different PLMs for reward models.
We conduct ablation studies on Restaurant do-
main to analyze the influence of choosing different
PLMs and multi-task training objective on the re-
ward model. We choose several popular PLMs in-
cluding BERT (Devlin et al., 2018) and RoBERTa
(Liu et al., 2019). Note that all the models share
the same pre-training and fine-tuning procedure,
except that BERT and RoBERTa are trained with
quality prediction task while SL-SOLOIST is op-
timized using multi-task learning. We show in
Table 6 that RoBERTa performs better than BERT.
GPT-2 (on which SL-SOLOIST is built) trained
with single quality prediction task, yields signifi-
cantly worse performance than other methods. We
speculate that bidirectional Transformer encoder
enables BERT and RoBERTa to capture richer con-
text information. SL-SOLOIST achieves consistent
performance improvements over all the metrics,
showing the effectiveness of multi-task learning for
the reward model.

5 Conclusion

In this paper, we propose a new research problem
i.e., how to enable task bots to automatically adapt
themselves to changing environments by learning
from interactions with minimum or zero human
annotations. In addition, we propose SL-AGENT,
a novel self-learning framework. We verify its ef-
fectiveness on automatically adapting to changing
environments on four dialog tasks by learning from
the unlabeled human-bot dialog logs via reinforce-
ment learning with an incorporated pre-trained re-
ward model. As for future work, there are more
ways that a task bot could learn to improve itself,
e.g., during machine teaching, human experts could
provide not only correct labels but also feedback in
natural language. We leave the theme of effective
machine teaching to future work.
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6 Ethical Considerations

During the collection, annotation and evaluation
procedure of the human-bot dialog logs, all in-
volved Amazon Mechanic Turkers and human an-
notators have been informed of the research pur-
pose in advance, and any of their privacy will not
be disclosed or violated during the research period.
All other used datasets are open-sourced datasets.
In summary, we abide by all research ethics.

7 Acknowledgements

This research is affiliated with the CUHK MoE-
Microsoft Key Laboratory for Human-centric In-
terface Technologies. The project is partially spon-
sored by a grant from the HKSAR Research Grants
Council General Research Fund (project number
14207619). In addition, we would like to thank
Yifei Yuan, Kun Zhang, Kun Li and Jingyan Zhou
in particular for their insightful comments and per-
severing support.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz–a
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Milica Gašić, Filip Jurčíček, Blaise Thomson, Kai Yu,
and Steve Young. 2011. On-line policy optimisation

of spoken dialogue systems via live interaction with
human subjects. In 2011 IEEE Workshop on Auto-
matic Speech Recognition & Understanding, pages
312–317. IEEE.

Milica Gasic, Dongho Kim, Pirros Tsiakoulis, Cather-
ine Breslin, Matthew Henderson, Martin Szummer,
Blaise Thomson, and Steve J. Young. 2014. Incre-
mental on-line adaptation of pomdp-based dialogue
managers to extended domains. In INTERSPEECH.

Chulaka Gunasekara, Seokhwan Kim, Luis Fernando
D’Haro, Abhinav Rastogi, Yun-Nung Chen, Mihail
Eric, Behnam Hedayatnia, Karthik Gopalakrishnan,
Yang Liu, Chao-Wei Huang, et al. 2020. Overview of
the ninth dialog system technology challenge: Dstc9.
arXiv preprint arXiv:2011.06486.

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, and
Kee-Eung Kim. 2020. End-to-end neural pipeline
for goal-oriented dialogue systems using gpt-2. In
Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 583–592.

Braden Hancock, Antoine Bordes, Pierre-Emmanuel
Mazare, and Jason Weston. 2019. Learning from
dialogue after deployment: Feed yourself, chatbot!
arXiv preprint arXiv:1901.05415.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. arXiv
preprint arXiv:2005.00796.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren,
Xiangnan He, and Dawei Yin. 2018. Sequicity: Sim-
plifying task-oriented dialogue systems with single
sequence-to-sequence architectures. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1437–1447.

Jinchao Li, Baolin Peng, Sungjin Lee, Jianfeng Gao,
Ryuichi Takanobu, Qi Zhu, Minlie Huang, Hannes
Schulz, Adam Atkinson, and Mahmoud Adada.
2020a. Results of the multi-domain task-completion
dialog challenge. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence, Eighth Dialog
System Technology Challenge Workshop, volume 7.

Shiyang Li, Semih Yavuz, Kazuma Hashimoto, Jia
Li, Tong Niu, Nazneen Rajani, Xifeng Yan, Yingbo
Zhou, and Caiming Xiong. 2020b. Coco: Control-
lable counterfactuals for evaluating dialogue state
trackers. arXiv preprint arXiv:2010.12850.

524



Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li,
Faisal Ahmed, and Li Deng. 2018. Bbq-networks:
Efficient exploration in deep reinforcement learning
for task-oriented dialogue systems. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 32.

Bing Liu and Ian Lane. 2017. Iterative policy learning
in end-to-end trainable task-oriented neural dialog
models. In 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pages 482–
489. IEEE.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2018. Dialogue learning with
human teaching and feedback in end-to-end train-
able task-oriented dialogue systems. arXiv preprint
arXiv:1804.06512.

Qingbin Liu, Pengfei Cao, Cao Liu, Jiansong Chen,
Xunliang Cai, Fan Yang, Shizhu He, Kang Liu, and
Jun Zhao. 2021. Domain-lifelong learning for dia-
logue state tracking via knowledge preservation net-
works. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 2301–2311.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu,
Eunjoon Cho, and Zhiguang Wang. 2020. Continual
learning in task-oriented dialogue systems. arXiv
preprint arXiv:2012.15504.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2020a. Soloist:
Few-shot task-oriented dialog with a single pre-
trained auto-regressive model. arXiv preprint
arXiv:2005.05298.

Baolin Peng, Chunyuan Li, Zhu Zhang, Chenguang
Zhu, Jinchao Li, and Jianfeng Gao. 2020b. Raddle:
An evaluation benchmark and analysis platform for
robust task-oriented dialog systems. arXiv preprint
arXiv:2012.14666.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu,
Kam-Fai Wong, and Shang-Yu Su. 2018. Deep dyna-
q: Integrating planning for task-completion dialogue
policy learning. arXiv preprint arXiv:1801.06176.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli
Celikyilmaz, Sungjin Lee, and Kam-Fai Wong. 2017.
Composite task-completion dialogue policy learning
via hierarchical deep reinforcement learning. arXiv
preprint arXiv:1704.03084.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Janarthanan Rajendran, Jatin Ganhotra, and Lazaros C
Polymenakos. 2019. Learning end-to-end goal-
oriented dialog with maximal user task success and
minimal human agent use. Transactions of the Asso-
ciation for Computational Linguistics, 7:375–386.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. arXiv preprint
arXiv:1909.05855.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Pararth Shah, Dilek Hakkani-Tur, Bing Liu, and Gokhan
Tur. 2018. Bootstrapping a neural conversational
agent with dialogue self-play, crowdsourcing and
on-line reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Industry
Papers), pages 41–51.

Swadheen Shukla, Lars Liden, Shahin Shayandeh, Es-
lam Kamal, Jinchao Li, Matt Mazzola, Thomas Park,
Baolin Peng, and Jianfeng Gao. 2020. Conversation
learner–a machine teaching tool for building dialog
managers for task-oriented dialog systems. arXiv
preprint arXiv:2004.04305.

Patrice Y Simard, Saleema Amershi, David M Chick-
ering, Alicia Edelman Pelton, Soroush Ghorashi,
Christopher Meek, Gonzalo Ramos, Jina Suh, Johan
Verwey, Mo Wang, et al. 2017. Machine teaching: A
new paradigm for building machine learning systems.
arXiv preprint arXiv:1707.06742.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. On-line active
reward learning for policy optimisation in spoken
dialogue systems. arXiv preprint arXiv:1605.07669.

Bo-Hsiang Tseng, Yinpei Dai, Florian Kreyssig, and
Bill Byrne. 2021. Transferable dialogue systems and
user simulators. arXiv preprint arXiv:2107.11904.

Christopher JCH Watkins and Peter Dayan. 1992. Q-
learning. Machine learning, 8(3-4):279–292.

Jason D Williams and Lars Liden. 2017. Demonstration
of interactive teaching for end-to-end dialog control
with hybrid code networks. In Proceedings of the
18th Annual SIGdial Meeting on Discourse and Dia-
logue, pages 82–85.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam

525



Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
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A RL Refining Algorithm

Algorithm 1 Self-learning-based RL refining
framework.
Input:

Training examples D in the form of dialog
turns;
Trained agent with dialog model pθD(x) and
reward model pθR(x).

Output:
Refined agent with updated dialog model pθ∗

D
.

1: while not converged do
2: Randomly sample a dialog turn, i.e. token

sequences of dialog history s;
3: Run dialog model pθD on dialog history

x = (s) to generate belief state b̂;
4: Retrieve DB state ĉ from a database using

generated belief state b̂;
5: Sample corresponding response r based on

dialog history s, belief state b̂ and DB state
ĉ;

6: Use the reward model to predict the quality
of the belief state and response with reward
score,
R(s, b̂, ĉ, r);

7: Calculate the loss according to Equation 3;
8: Update the parameters of the dialog model,

θD ← θD + α∇θDLθD .
9: end while

B Implementation Details

Figure 3: Illustration of the training example, i.e., the
processed dialog turn in the training data.

To construct training examples as shown in Fig-
ure 3, we tokenize the dialog turn sequence us-
ing byte pair encodings (Sennrich et al., 2015) and
delexicalize responses by replacing slot values with
corresponding special slot tokens (Lei et al., 2018).
We conduct experiments with several Transformer-
based models and GPT-2 (Radford et al., 2019)
(enhanced with auxiliary generation tasks) shows
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better performance than others. Therefore, we im-
plement proposed reward model based on Hugging-
face Pytorch Transformer (Wolf et al., 2020) using
GPT-2-117M. We pre-train reward model for 10
epochs using Schema dataset (Rastogi et al., 2019),
which contains 22,825 dialogs in 17 domains. The
reward model is pre-trained on two 24G Nvidia P40
with a mini-batch of 8 and learning rate of 5e-5, us-
ing Adam optimizer (Kingma and Ba, 2014), where
the training examples are truncated or padded to
the max length of 500.

We fine-tune the pre-trained reward model and
dialog model (i.e., pre-trained SOLOIST) for 20
epochs with limited number of labeled task-specific
dialogs for new tasks. During refinement, top-p is
selected as 0.5 for all models. We perform gradient
clipping with the max norm as 1 for learning model
parameters, with the batch size as 1 and learning
rate as 5e-6. The dialog model is refined on a single
24G Nvidia P40 until converging on the validation
set. During testing, Nucleus filtering is also used
for decoding with top-p as 0.5.

C Experimental Details

To demonstrate the effectiveness of SL-AGENT,
we use SOLOIST as the dialog model to compare
the performance of different methods, since ex-
isting state-of-the-art task-oriented dialog models
share similar input-output pairs and training objec-
tives as SOLOIST. (We report the results in mean
of 5 runs with 5 different seeds.) (i) To obtain
SOLOISTS, we implement the synthetic dialog con-
struction method by exhausting DB values. For
each dialog turn of the 5 labeled dialogs, we ran-
domly sample five DB values from the database
to replace the original slot values. (ii) To obtain
SOLOIST+PARG, we use the Transformer-based
machine translation checkpoints (English-German,
German-English) (Edunov et al., 2018) to generate
10 paraphrased user utterances for each dialog turn
of the 5 labeled dialogs (based on the empirical
analysis of translation quality). Then we use these
annotated data (with paraphrased user utterances)
to train SOLOISTS for obtaining SOLOIST+PARG.
(iii) To obtain SOLOIST-OA, we use the method de-
scribed in Section 8 to construct successful dialogs
and failed dialogs. For successful dialogs, we use
the original 5 labeled dialogs, and the dialogs con-
taining paraphrased user utterances. To construct
the failed dialogs, we randomly select 2-3 dialog
turns in each dialog and corrupt responses accord-

Model Restaurant

Inform Success BLEU Combined

SOLOISTS 62.50 41.50 7.33 59.33
SL-SOLOIST 75.00 44.50 10.60 70.35
SL-SOLOIST+20 75.00 52.00 11.89 75.39

Table 7: End-to-end evaluation results of Policy
Improvement in the Restaurant domain. SL-
SOLOIST+20 refer to continually refining with 20 real
(unlabeled) human-bot dialogs based on SL-SOLOIST
(reported in Table 2).

ing to the negative example construction method in
Section 3.3. Then we use these annotated dialogs
to train the session-level reward model of (Su et al.,
2016). When testing the performance in the sim-
ulated setting, we refine the SOLOISTS with fully
correct dialogs and dialogs containing corrupted re-
sponses. To achieve better performance, we largely
query for session-level human feedback score in
both simulated setting and real-scenario setting.

D Simulated Human-Bot Corpora
Construction

The unlabeled simulated human-bot corpora is con-
structed as follows: (i) we remove belief state an-
notations; (ii) we add negative examples by cor-
rupting responses according to the negative exam-
ple construction method in Section 3.3. We will
release the simulated human-bot corpora for repro-
ducible research. Note that directly replacing the
belief states and responses with the generated ones
is trivial. However, such approach cannot imitate
realistic human-bot interactions. As the user ut-
terances are strictly fixed, “users cannot react to
the agent responses accordingly and appropriately”.
Therefore, we also conduct experiments through
conversing with real users in the real-scenario set-
ting and demonstrate the results in Table 3. Further-
more, building a user simulator is inapplicable in
our changing environment setting. (i) It is difficult
to build reliable user simulators. Building agenda-
based user simulators requires sophisticated human
expertise for designing rules. (ii) Building model-
based user simulators requires sufficient labeled
data. Furthermore, model-based user simulators
merely imitate expert behaviors in the training cor-
pus, cannot provide user behaviors that are unseen
from task bots.
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Figure 4: Two interactive examples. (a) An interactive
example between user and SOLOISTS. (b) An interactive
example between user and SL-SOLOIST.

E Policy Improvement

Policy Improvement Setup. To demonstrate the
effectiveness of SL-AGENT for continually learn-
ing from collected human-bot dialog logs, we de-
ploy SL-SOLOIST online and recruit human users
to converse with it to achieve the assigned user
goal. We collect 20 real human-bot dialog logs
to refine SL-SOLOIST, resulting in the agent SL-
SOLOIST+20. (When refining the SL-SOLOIST,
we do not use the knowledge about the user’s goal.
The response quality is judged by the reward model
in SL-SOLOIST.)

Policy Improvement Results. The evaluation re-
sults on Restaurant are shown in Table 7. We
observe that SL-SOLOIST+20 refined with 20 real
(unlabeled) human-bot dialogs outperforms SL-
SOLOIST by approximately 5 points in terms of
Combined score. We conclude that SL-SOLOIST

enables continual self-learning after deployment by
automatically learning from interactions.

F Interactive Example

Figure 4 depicts two interactive examples where
the same user interacts with SOLOISTS and SL-
SOLOIST to complete the same task. We observe
that, in the first four dialog turns, the two agents
has the same performance and both correctly rec-
ommend a satisfied restaurant. However, as shown
in Figure 4 (a), when user queries about the phone
number (“what’s the number?”) in the fifth turn,
SOLOISTS fails to understand user’s intent and
generates incoherent response, still trying to pro-
vide recommendation. The user has to continually

query about phone number in the following con-
secutive turns. As demonstrated in Figure 4 (b),
SL-SOLOIST correctly provides the phone number,
when user first queries about it. Comparing the
two examples, we show that SL-AGENT enables
adapting to unseen user behaviors in an automatic
way.

G An Example of Task Definition
Extensions

Figure 5 depicts an example of task definition ex-
tensions.

Figure 5: An example of task definition extensions.
Task bots need learn to provide information about the
extended delivery service in additional dialog turns (in
Red) as user requirements evolve.

H An Example of Restaurant-Ext
DB Entry

An example of Restaurant-Ext DB entry is
shown in Figure 6.

I Item Examples of the Input Dialog Turn
Sequence

J Negative Example Construction
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Figure 6: An example of Restaurant-Ext DB en-
try. Newly added DB information about the extended
function is in the red square.
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Figure 7: Item examples of the input dialog turn sequence for SOLOIST, cited from (Peng et al., 2020a).

Figure 8: The summarized 5 types of dialog turns that have inappropriate or incoherent responses. (a) Dialog history
(top). (b) 5 types of the inappropriate or incoherent responses (bottom).
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Abstract

Users of interactive search dialogue systems
specify their preferences with natural language
utterances. However, a schema-driven system
is limited to handling the preferences that cor-
respond to the predefined database content. In
this work, we present a methodology for extend-
ing a schema-driven interactive search dialogue
system with the ability to handle unconstrained
user preferences. Using unsupervised semantic
similarity metrics and text snippets associated
with the search items, the system identifies suit-
able items for the user’s unconstrained natu-
ral language query. In a crowd-sourced eval-
uation, the users were asked to chat with our
extended restaurant search system. Based on
objective metrics and subjective user ratings,
we demonstrate the feasibility of using this un-
supervised low latency approach to extend a
schema-driven search dialogue system to han-
dle unconstrained user preferences.

1 Introduction

We extend a schema-driven dialogue system with
the ability to handle unconstrained user queries and
to allow users to specify preferences flexibly as
they would when using a search engine.

Interactive search dialogue systems, such as
search for restaurants, hotels, trains, books, shows,
venues, are task-oriented systems that provide a nat-
ural language interface for interactive search and
information extraction. In these systems, a user typ-
ically starts by typing (or speaking) a search query.
Next, the system’s policy chooses an optimal ac-
tion, which may be either asking the user to provide
additional information or presenting one or more
search result options. Once the system presents an
option, the user may provide another query, nar-
rowing down or changing the search criteria, or ask
a question about the presented option(s).

In a schema-guided approach to designing a dia-
logue interface (Rastogi et al., 2020a), a set of ‘in-
formable’ and ‘requestable’ slots derived from the

fields of the underlying database table (or schema),
define the natural language interface capability. A
user can specify the values of ‘informable’ fields
as search criteria and ask questions to retrieve in-
formation stored in the ‘requestable’ fields. The
schema-guided method simplifies authoring dia-
logue systems for new domains. With this ap-
proach, a dialogue interface for a new database
may be bootstrapped from the schema/ontology
and database content of the domain.1

One of the drawbacks of the schema-guided
approach is that the criteria by which the user
can search for an item and the types of questions
that the user may ask are limited by the database
schema. For example, a restaurant search query

‘Find a romantic place that serves great wines’ can-
not be handled by a schema-driven system unless
the schema includes the relevant properties of the
restaurant atmosphere and wine quality. It is pos-
sible to design a system to notify the user of its
limitations using help messages (Komatani et al.,
2005), but the constraint on the interaction remains,
as the user is unable to retrieve items using criteria
other than those defined by the ‘informable’ slots.
Given that in many domains, additional unstruc-
tured information beyond the database fields may
be available, it is natural to extend schema-guided
systems to use this unstructured information. Kim
et al. (2020) describe a system that extends the
schema-guided functionality with the ability to ask
follow-up questions. In this work, we propose to
extend the information search dialogue interface
functionality to retrieve items for unconstrained
user queries.

To handle user queries that cannot be grounded
in terms of a domain schema and ontology, we pro-
pose to use semantic similarity metrics to retrieve
search results from unstructured data. We eval-
uate the proposed approach with crowd-sourced

1The schema/ontology refers to the definition of the
database tables.
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users interacting with the restaurant search system
through a chat interface. In previous work, restau-
rant search systems were evaluated by giving users
predefined ‘goals’ which primed users and lead to
rigid interactions. In our evaluation, the users are
given a general instruction to find an ideal restau-
rant and are free to specify any search query. The
results show the users’ preference for the proposed
flexible system that allows the use of unconstrained
search queries. We release the dialogues with the
automatically annotated intents and the subjective
user judgements collected during the evaluation to
the research community.2

2 Related Work

Interactive search can be modelled as task-oriented
dialogue using structured knowledge, symbolic di-
alogue state representation, and a statistical pol-
icy that addresses both task and conversational
phenomena, such as clarifications and social di-
alogue acts (Budzianowski et al., 2018; Yan et al.,
2017). However, users of dialogue systems that
are based only on structured knowledge are limited
in expressing their preferences by the underlying
database schema. In response to an out-of-schema
user request, a task-oriented dialogue system may
produce an informative help message guiding the
user to adapt to its limitations (Komatani et al.,
2005; Tomko and Rosenfeld, 2004). Alternatively,
system capabilities may be extended beyond a do-
main API. For example, Kim et al. (2020) proposes
a method for handling user’s follow-up questions
in task-oriented dialogue systems. To support prag-
matic interpretation, Louis et al. (2020) explores
users’ indirect responses to questions. To extend a
task-oriented system to handle natural preferences,
a corpus of natural requests for movie preferences
was collected using preference elicitation (Radlin-
ski et al., 2019).

End-to-end approaches to dialogue, where the
system generates a response without explicitly
modelling intent or storing a dialogue state,
have been successfully applied to open-domain
chitchat (Serban et al., 2016). The use of unstruc-
tured knowledge was shown to improve open do-
main chitchat systems (Dinan et al., 2018; Ma et al.,
2022; Zhou et al., 2018). In recent work, interac-
tive search has been modelled as end-to-end gener-

2https://github.com/sstoyanchev/
Unstructured_restaurant_search_
dialogues_Sigdial2022

ation task using text and images as the knowledge
source (Varshney and Anushkha Singh, 2021).

Search tasks in natural human-human dialogues
can be complex and are often resolved interactively
(Trippas et al., 2017, 2018), motivating the need for
methods capable of handling natural conversational
phenomena as well as extracting information and
generating knowledge-grounded responses. In this
work, we evaluate a task-oriented dialogue system
with a semantic-level policy extended with the use
of unstructured knowledge.

Task-oriented dialogue systems require accu-
rate models to extract information from unstruc-
tured text. Pretrained transformer models, such as
BERT (Devlin et al., 2019), have shown to be effec-
tive in extracting information from text, leading to
significant improvements on many NLP tasks, in-
cluding open-domain question answering, FAQ re-
trieval, and dialogue generation (Wang et al., 2019;
Sakata et al., 2019; Kim et al., 2020). Follow-
ing previous work, we use BERT in an unsuper-
vised setting to extract relevant information from
text (Izacard and Grave, 2021; Zhan et al., 2020).

3 Method

3.1 System Overview

We implement a schema-driven restaurant search
dialogue system that uses a database with 422
restaurants in Cambridge, UK.3 Following the
database schema used in previous work (Henderson
et al., 2014), each restaurant is described in terms
of the following attributes: name, cuisine, price
range, area, phone number, and address. As in pre-
vious systems, the price range is mapped to cheap,
moderate, or expensive and location to north, south,
east, west, or city centre. In contrast to the schema
in the DSTC2 domain (Henderson et al., 2014),
cuisine in our database is mapped to a list of val-
ues rather than a single value for each entity. In
addition to the specific restaurant attributes, each
restaurant is associated with a set of text snippets
including meals (breakfast, lunch, dinner), special
diets (e.g., vegan, gluten free) and reviews. Only
positive reviews (rating 4 or 5 stars) are used, as
we expect user queries to mention desirable prop-
erties of the restaurant. 99% of the snippets are
reviews and the average number of text snippets
per restaurant is 147, varying between 2 and 1.6K.

3The database is compiled by crawling the Web in January
2021.
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Figure 1: System diagram showing processing of in-schema and out-of-schema user input.

Figure 1 outlines the system architecture. The
left-hand side shows the components handling in-
schema user acts, such as requesting and providing
information for one of the restaurant-specific at-
tributes. The Domain Act Detection module inter-
prets in-schema user acts (Stoyanchev et al., 2021)
and a database lookup results in a new list of match-
ing restaurants. A statistical dialogue policy com-
ponent trained in simulation in the purely schema-
driven DSTC2 domain generates the system re-
sponse for in-schema user utterances (Keizer et al.,
2021). The right-hand side of Figure 1 shows the
components for handling out-of-schema utterances
that do not mention any of the schema-specific at-
tributes, e.g. ‘Find a romantic place that serves
great wine’. In (Kim et al., 2020), the authors build
a binary model that determines whether to access
unstructured data for follow-up question answering.
In the proposed system, a prediction of the intent
classifier triggers access to the unstructured dataset
of restaurant reviews.

3.2 Intent Classification
A task-oriented dialogue system is designed to han-
dle generic dialogue acts and domain-specific in-
tents. Dialogue act taxonomies (Core and Allen,
1997; Bunt et al., 2010) distinguish general purpose
acts based on the surface form of the utterance,
such as inform or question. However, in interactive

search dialogue, the user can formulate a query
either with a question, ‘Can you find me...?’ or
a statement ‘I would like...’. Hence, a distinction
between the surface forms is not sufficient and in-
stead, we define the intents specific to the search
task Search Query (SQ), Info Request (IRq), and
Other. Utterances labeled as SQ include initial and
follow-up queries triggering information extraction
and resulting in a retrieved set of items. Utter-
ances labeled as IRq include information seeking
requests related to one of the restaurants in context,
e.g. ‘Are dogs allowed?’, which may trigger a ques-
tion answering module.4 The Other class includes
utterances that are neither SQ nor IRq, for example,
an exclamation ‘Great!’. While these utterances
do not trigger data access, it is important to de-
tect them and respond appropriately to, in order to
maintain fluent conversation.

We tune the pre-trained uncased BERT trans-
former model (Devlin et al., 2019) on this 3-way
classification task. Table 1 shows the statistics for
the training dataset. We obtain the initial training
dataset from two publicly available task-oriented
dialogue corpora: Schema Guided Dialogue (SGD)
and Frequently Asked Questions (FAQ) (Rastogi
et al., 2020b; Kim et al., 2021). SGD contains semi-

4Question answering from unstructured data for this sys-
tem remains future work.
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Intent Initial Dataset Collected Overall Average
SGD FAQ with the system #words±stdev

(1,698) (2,198) (554) (4,450)
Search Query (SQ) 72% - 47% 33% 11.124±5.794
Info Request (IRq) - 100% 41% 54% 7.186±2.21
Other 28% - 12% 12% 4.458±2.026

Table 1: Statistics of the dataset used to train the intent classifier showing the numbers of utterances extracted from
the schema-guided dialogue corpus (SGD), DSTC9 Beyond Domain APIs track (FAQ), and collected with the
system.

automatically generated task-oriented dialogues
in 26 domains, including restaurant search, anno-
tated with dialogue acts. We confirm that the ini-
tial utterances in the restaurant search domain are
search queries and use them as the training exam-
ples for the SQ class5. Since the utterances in the
SGD dataset are authored by people, they include
a wide variety of queries outside of our system’s
domain schema. We use the utterances from the
restaurant search domain in SGD annotated as ‘AF-
FIRM’, ‘NEGATE’, or ‘SELECT’ for the Other
class. The FAQ dataset includes 2.2k manually au-
thored questions in the restaurant search domain
for the Beyond Domain APIs track of The Ninth
Dialog System Technology Challenge (Kim et al.,
2021; Budzianowski et al., 2018). We use the ques-
tions as examples for the IRq class.

Next, we train an intent classifier using the data
from the SGD and FAQ datasets and evaluate the
system internally. We collect an additional 554
utterances where the authors and colleagues in-
teracted with the system using a web-based chat
interface. As the initial set of SQ did not contain
any follow-up queries, the intent classifier tended
to fail on such utterances. We manually annotate
the collected utterances with the dialogue act label
and include them in the training set.

3.3 Relevance Ranking

The Relevance Ranker accesses unstructured data
producing a ranked list of candidate items (restau-
rants in Cambridge) for a user’s search query. The
unstructured data includes reviews and restaurant
details extracted from the Web, stored as text snip-
pets associated with each item. Restaurants with
snippets that have higher semantic similarity to the
user query are more likely to be relevant for the
user (see Table 2).

530% of the initial SGD utterances were manually exam-
ined to confirm that they correspond to search queries.

Query: I am looking for a place that serves
vegan food and also allows dogs inside.

Relevant snippets
Special diets Vegan friendly
Review It was such a happy surprise that

they allowed dogs inside their
premises.

Table 2: Query and relevant snippet examples

First, we score each snippet with the semantic
similarity according to the user’s query. In previ-
ous work, we have shown that a supervised model
based on BERT encoding and trained on in-domain
data achieves F1=.86 on the binary task of identi-
fying relevant query-snippet pairs (Pandey et al.,
2021). However, using such a model is computa-
tionally expensive as it requires 60k snippets to be
classified during run-time, making it intractable for
a real-time system. Instead, we use a less accurate
low latency approach which achieves F1=.66 on
this task.

To measure semantic similarity between the
query and the snippet, the user query (Qi) and each
snippet (Sj) are mapped into a fixed-sized vector
using an encoding function E. The cosine similar-
ity score between the user request and each snippet
is used to measure the semantic similarity:

Score(Qi, Sj) = cos(E(Qi), E(Sj)) (1)

As the encoder, we use pretrained Sentence-
BERT (SBERT) optimized on the semantic sim-
ilarity task and further tuned on the SNLI cor-
pus of semantic entailment which was previously
shown to improve sentence classification perfor-
mance (Reimers and Gurevych, 2019; Bowman
et al., 2015). The intuition is that the tuned model’s
capability will extend to capture not only semantic
similarity between the encodings but also the en-
tailment, which may be a relation between search
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query and a relevant snippet. SNLI is a collec-
tion of 570,000 sets of premises and hypotheses
sentences annotated with the labels contradiction,
entailment, and neutral as in the example in Table 3.
We use the pairs of Premise&Entailment as posi-
tive examples and Premise&Contradiction/Neutral
as the negative examples to further tune the SBERT
model.

Premise: A boy is jumping on skateboard
in the middle of a red bridge.

Entailment: The boy does a skateboarding
trick.

Contradiction: The boy skates down the side-
walk.

Neutral: The boy is wearing safety equip-
ment.

Table 3: Example from SNLI dataset

Next, the items (restaurants) are ranked based on
the average score of the top M snippets for each
item. The top N items are returned.6

A user’s search query may specify a schema-
specific attribute as well as additional information.
For example, a query ‘Italian restaurant with great
desserts’ specifies a food type (Italian) as well as
an out-of-schema preference (great desserts). Such
queries are processed both by in-schema and out-
of-schema modules. The in-schema processing nar-
rows down the set of results to Italian and the out-
of-schema processing ranks the restaurants based
on the snippets’ similarity with the query. The re-
sult is the ranked list of Italian restaurants where
the restaurants with the snippets mentioning the
high quality of desserts (if there are any) are at the
top.

3.4 System Response
If at least one domain-specific user action (inform-
slot or request-slot) is detected in the user’s utter-
ance, the utterance is considered in-schema. The
system’s response to an in-schema utterance may
be an Offer (e.g., ‘Zizzi is an Italian restaurant in
the centre’ ), a clarification (e.g., ‘Did you mean
in the centre?’), or a request for additional infor-
mation (e.g., ‘What price range do you prefer?’).
The response act is selected using a statistical pol-
icy which maximizes the expected reward, and the

6We use empirically chosen M=5 and N=5 in this work.

surface form of the response is generated using
templates. The out-of-schema user utterances do
not mention any of the slots and can not be directly
handled with the policy trained on a schema-driven
dataset. The system uses the prediction of the in-
tent classifier to determine the method of response
selection.

When an out-of-schema utterance is classified
as search query, the system updates the state with
an inform action and the dialogue policy selects
the response act. If the Offer act is selected, the
system presents the top-ranked restaurant and its
top-matching review is appended to the template-
generated description. See Figure 2(b) for exam-
ples of system responses.

While searching for an item, a user may ask ques-
tions about the previously discussed items (restau-
rants). The intent classifier labels such questions as
Info Request, differentiating them from the search
queries produced in a question form. If the user
requests information about one of the schema at-
tributes (phone number, address, price range, etc.),
the statistical policy determines the system’s re-
sponse. However, a user may also ask for informa-
tion outside of the database schema, such as ‘Are
dogs allowed inside?’. Currently, the system in-
forms the user that the question cannot be answered
signalling understanding of the user’s intent. In fu-
ture work, we plan to handle such questions with
a question answering model, e.g. following the
approach proposed in (Kim et al., 2020).

According to the initial data collection with the
dialogue system, 12% of user utterances are nei-
ther search queries nor information requests (see
Table 1). These utterances are typically exclama-
tions like ‘Sounds great!’ or ‘Too bad!’ and are
labeled as Other by the intent classifier. The sys-
tem responds to these utterances by generating a
sentiment-appropriate template-based response. A
user utterance labeled as Other is processed with
an off-the-shelf RoBERTa model trained on∼ 58M
tweets and fine-tuned for sentiment analysis with
the TweetEval benchmark (Barbieri et al., 2020).
The model outputs either a positive, negative, or
neutral sentiment class of the input text. Based on
the predicted sentiment, the system selects one of
the appropriate template responses, e.g. Brilliant!
How else can I help you? for a positive sentiment
or ‘OK, calm down now.’ for a negative sentiment,
maintaining the dialogue flow and adding a bit of
template-based humour.
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4 Evaluation

Our goal is to evaluate the use of unstructured data
in an interactive task-oriented dialogue system. The
proposed approach involves two statistical models:
1) intent classifier and 2) relevance ranker, which
accesses unstructured data, depending on the pre-
diction of the intent classifier. We first show the
performance of the intent classifier on the collected
dataset and then describe the human evaluation of
the overall system.

4.1 Intent Classification

Model Train/Test data Accuracy
SVM All 88.2%
BERT All 99.8%
BERT Initial/Collected 70.9%

Table 4: Intent classification accuracy.

We evaluate the intent classification performance
using the dataset described in Table 1. We compare
the performance of the BERT model with bag-of-
words SVM baseline using stratified 10-fold cross
validation on the full dataset of 4.5K utterances.
The BERT model and the SVM model achieve
99.8% and 88.2% overall accuracy (see Table 4).7

This shows that the pre-trained transformer model
is able to effectively capture the distinction between
the three intent classes in the restaurant search do-
main. The intent classifier trained on the initial
data subset (the utterances from SGD and FAQ)
achieved accuracy of only 70.9% on the utterances
collected with the dialogue system, which is not
sufficient for the interaction with the real users.

4.2 Human Evaluation

4.2.1 Experimental Setup

System Intent
classi-
fier

Rele-
vance
Ranker

Snippet
in Of-
fer

SCHEMA - - -
RAND-RANK + - +
EXP-RANK + + +

Table 5: Experimental Conditions.

When evaluating schema-driven dialogue sys-
tems with recruited experiment participants, the

7This result was achieved after 5 epochs.

users are typically given concrete goals, e.g. ‘You
are looking for a cheap Italian restaurant and don’t
care about the price range’. Since the proposed
system handles unconstrained queries, we instruct
the users to imagine a situation like going out with a
family, a romantic date, a business lunch, or use any
other preferences. Given more general instructions,
the user can come up with authentic in-schema or
out-of-schema search preferences. The users are in-
structed to retrieve at least three restaurant options
and ask for the address of their preferred restaurant.
In all experimental conditions, the system initiated
the dialogue with a general prompt: ‘Please de-
scribe the restaurant you would like’. The users are
instructed to use the command ‘start over’ if they
feel that the system is stuck.

We evaluate three system variants:

• SCHEMA: the baseline condition where the
system handles only in-schema user queries.
In the initial prompt, the system informs the
user of its limitations: ‘You can search by
food type, price range, or area (centre, north,
etc)’. For the out-of-schema user queries the
system responds with the indication of non-
understanding, e.g. ‘Sorry, I don’t understand.
Please rephrase’.

• RAND-RANK: the control condition where
the system responds to the user’s out-of-
schema requests with a randomly selected
search result.

• EXP-RANK: the experimental condition
where the system that handles unconstrained
requests using the method described in Sec-
tion 3.

Table 5 summarizes the differences between the
three systems. The SCHEMA baseline does not
use the intent classifier and the relevance ranker.
Its Offer act does not include the text snippet asso-
ciated with the restaurant. RAND-RANK is used
as the control condition to isolate the effect of the
relevance ranker. The RAND-RANK system uses
the intent classifier and includes a snippet in the
system’s Offer dialogue act. However, it assigns
random relevance scores to the text snippets result-
ing in a random selection of the proposed restau-
rant. If RAND-RANK and EXP-RANK receive
similar user ratings, the preference over SCHEMA
may be due to the intent classifier and snippets in
the offer output. We hypothesize that the users
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Figure 2: Example dialogue for the SCHEMA and EXP-RANK systems.

prefer EXP-RANK over both RAND-RANK and
SCHEMA.

SCHE-
MA

RAND-
RANK

EXP-
RANK

Over-
all

#Dlg 81 81 81 243
#Utts 636 610 557 1803
SQ 47.3% 32.5% 34.8% 38.4%
IRq 25.3% 36.1% 32.9% 31.3%

% Out-of-schema
SQ 44.5% 47.5% 29.4% 41.1%
IRq 11.8% 28.2% 11.5% 14.2%

Table 6: Statistics for the user utterances based on the
automatic predictions. % of Search Query (SQ) and Info
Request (IRq); % of in-schema SQ and IRq utterances.

4.2.2 Data
We collected 243 dialogues (81 for each system
variant), with a total of 1,803 user utterances sum-
marized in Table 6. 38.4% are classified as search
queries and 31.3% are classified as information

requests. The SCHEMA system is unable to pro-
cess out-of-schema queries, leading to the longer
dialogues where users have to change their initial
query.

41.1% of the search queries are out-of-schema
(no slots are detected) indicating that the users’
preferences constructed without specific instruc-
tions are likely to mention information other than
price range, area, and food type. Surprisingly,
we find that in EXP-RANK system, only 29.4%
of search queries are out-of-schema. We notice
that the users tend to provide queries with both
in-schema and out-of-schema info, e.g. ‘I’d like
to find a mexican restaurant that has excellent cus-
tomer service’ which are considered in-schema yet
they can benefit from the use of relevance ranking.

Despite the instructions given to the users to
find out the address of their preferred restaurant,
14.2% of information requests ask about the infor-
mation outside of the schema. This shows the need
for the more flexible question answering capabil-
ity. Example dialogues with the SCHEMA and the
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Question SCHEMA RAND-RANK EXP-RANK
Self-Reported Subjective Ratings

I was able to find a satisfactory restaurant option. 4.086±1.769 4.358±1.559 4.888±1.423†

The restaurant descriptions matched my preferences. 4.074±1.787 4.308±1.578 4.876±1.354†

The system understood me well. 3.592±1.909 3.753±1.684 4.518±1.696†

The conversation felt natural. 3.666±1.936 3.679±1.723 4.209±1.633
I would recommend the system to my friends. 3.358±2.020 3.543±1.837 4.320±1.808†

Objective Metrics
Average dialogue length (# exchanges) 7.9 7.5 6.9
Success rate 80.2% 91.4% 95.1%
‘Start over’ rate 3.8% 1.5% 1.5%

Table 7: Average scores and standard deviation for the subjective user judgements and objective metrics. † indicates
a statistical significance with the SCHEMA condition (p < .05). Success rate is the % of the dialogues where a user
made a choice of a restaurant in the questionnaire.

EXP-RANK systems are shown in Table 2.

4.2.3 Results

We asked the users to score each dialogue on a scale
from 1 (strongly disagree) to 6 (strongly agree)
for the five subjective statements shown in Ta-
ble 7. For all statements, the users prefer the EXP-
RANK over SCHEMA and over RAND-RANK.
The difference in the scores between SCHEMA
and EXP-RANK is statistically significant based
on the two-tailed t-test with p<0.05 for all state-
ments (except for ‘The conversation felt natural’).
The biggest difference (nearly 1 point) between
the scores of EXP-RANK and SCHEMA systems
was observed for the questions ‘The system under-
stood me well’ and ‘I would recommend the system
to my friends’. We did not observe a significant
difference in subjective ratings between the RAND-
RANK and SCHEMA systems. These results sug-
gest that relevance ranking together with the intent
classification and additional information in the sys-
tem response lead to the higher user rating.

We also report the objective scores: average di-
alogue length, success rate, and ‘start over’ rate.
The dialogues with the EXP-RANK system are the
shortest, while the dialogues with the SCHEMA
system are the longest, on average 6.9 and 7.9 ex-
changes respectively. This result shows that users
were able to complete the task quicker using the
EXP-RANK system than the baseline systems.

In the questionnaire, the users were asked to
record the name of their preferred restaurant or
‘None’ if no restaurants matched their preference.
Success rate is the % of the dialogues where
the user indicated a preferred restaurant name in

the questionnaire. EXP-RANK system achieves
the highest success rate of 95.1% in comparison
with 91.4% and 80.2% for the RAND-RANK and
SCHEMA conditions.

The users had an option to use ‘start over’ com-
mand when they felt stuck in the dialogue. We
observe a higher proportion of ‘start over’s in the
SCHEMA system than in the other two systems
which use intent classifier and return a sugges-
tion for out-of-schema response leading to fewer
non-understanding system responses. This result
indicates a functional improvement of the RAND-
RANK over the SCHEMA system, which, however,
was not reflected in the users’ subjective ratings.

5 Conclusions

In this work, we propose a hybrid design for in-
formation navigation dialogue systems combining
structured and unstructured knowledge. We present
a restaurant search dialogue system where the users
specify preferences flexibly as they would to a
search engine. The proposed system uses the struc-
tured knowledge in a database to extract matching
restaurants when a user’s natural language search
query mentions one of the database fields and un-
structured text when it does not. The system is
evaluated in the interactive experiments with crowd-
sourced users. The results show a preference for
the proposed approach. In future work, we will
extend the system to answer follow-up questions
and introduce a response generation model.
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Abstract

Turn-taking is a fundamental aspect of human
communication and can be described as the
ability to take turns, project upcoming turn
shifts, and supply backchannels at appropri-
ate locations throughout a conversation. In this
work, we investigate the role of prosody in turn-
taking using the recently proposed Voice Ac-
tivity Projection model, which incrementally
models the upcoming speech activity of the in-
terlocutors in a self-supervised manner, without
relying on explicit annotation of turn-taking
events, or the explicit modeling of prosodic
features. Through manipulation of the speech
signal, we investigate how these models implic-
itly utilize prosodic information. We show that
these systems learn to utilize various prosodic
aspects of speech both on aggregate quantita-
tive metrics of long-form conversations and on
single utterances specifically designed to de-
pend on prosody.

1 Introduction

Turn-taking is the fundamental ability of humans to
organize spoken interaction, i.e., to coordinate who
the current speaker is, in order to avoid the need
for interlocutors to listen and speak at the same
time (Sacks et al., 1974). A dialog can be viewed
as a sequence of turns, constructed through the joint
activity of turn-taking between the two speakers. A
turn refers to segments of activity where a single
speaker controls the direction of the dialog.

In conversational systems, turn-taking has tra-
ditionally been modeled using threshold policies
which recognize silences longer than a chosen
duration as transition-relevant places. Although
these types of models are commonly used, it is
well known that they are insufficient for modeling
human-like turn-taking (Skantze, 2021). Studies of
human-human conversation have shown that turns
are frequently shifted with a gap of just 200ms
(Levinson and Torreira, 2015), or even with a slight
overlap. Thus, given that humans also need some

time to prepare a response, it would be infeasi-
ble for humans to just use silence as a cue to
turn-taking. Instead, it has been suggested that
they are able to project turn completions already
while the other person is speaking (Sacks et al.,
1974; Levinson and Torreira, 2015; Garrod and
Pickering, 2015). In addition, humans produce so-
called backchannels (short feedback tokens such as
"mhm") in a timely manner, often in overlap with
the other speaker (Yngve, 1970).

A common research question in phonetics,
psycho-linguistics, and conversational analysis con-
cerns the various cues (including speech, gaze, and
gestures) that humans use to detect or project turn-
shifts (Duncan, 1972). When it comes to speech, a
common distinction is made between the prosodic
(non-lexical) and lexical (textual, syntactic, seman-
tic) components of the speech signal. For example,
De Ruiter et al. (2006) argued, based on listening
experiments, for the importance of syntactic infor-
mation over intonation (pitch) in turn-taking, while
Bögels and Torreira (2015) showed that intonation
is important when syntactic completion is ambigu-
ous. However, such studies often require human
listening experiments which are costly, anecdotal,
and constrained in time resolution and are therefore
limited to small amounts of conversational contexts.
An alternative approach is to use computational
models (Laskowski et al., 2019) to investigate what
type of information they are sensitive to.

Ekstedt and Skantze (2022) recently proposed
Voice Activity Projection, VAP, which is a gen-
eral, self-supervised turn-taking model. The model
incrementally projects the future speech activity
of the two speakers directly from raw audio wave-
forms. The model can be trained on lots of data,
without human annotations, and is agnostic with
respect to different types of speech information, as
it does not depend on explicitly extracted features.
This makes the VAP model potentially suitable as
a data-driven approach for investigating the role of
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prosody in turn-taking.
In this work, we train VAP models on a large

dataset (Godfrey et al., 1992; Cieri et al., 2004) of
dyadic spoken interactions and evaluate it on spe-
cific turn-taking metrics, while perturbing the input
audio to omit certain sources of prosodic informa-
tion. We analyze the performance over different
tasks to investigate three research questions:

1. Do Voice Activity Projection models trained
on raw waveforms learn to pick up prosodic
information that is relevant to turn-taking?

2. When/how is prosodic information important
for turn-taking predictions?

3. What is a suitable time resolution for such
models to best represent prosody?

2 Background

Prosody refers to the non-verbal aspects of speech,
including intonation (F0/pitch contour), intensity
(energy), and duration (of phones and silences). It
has been found to serve many important functions
in conversation, including prominence, syntactic
disambiguation, attitudinal reactions, uncertainty,
topic shifts, and turn-taking (Ward, 2019). Studies
on both English and Japanese have found that level
intonation (in the middle of the speaker’s funda-
mental frequency range) tends to serve as a turn-
holding cue, whereas either rising or falling pitch
can be found in turn-yielding contexts (Gravano
and Hirschberg, 2011; Local et al., 1986; Koiso
et al., 1998). When it comes to intensity, stud-
ies have found that speakers tend to lower their
voices when approaching potential turn boundaries,
whereas turn-internal pauses have a higher inten-
sity (Gravano and Hirschberg, 2011; Koiso et al.,
1998). Regarding duration and speaking rate, Dun-
can (1972) found a “drawl on the final syllable or
on the stressed syllable of a terminal clause" to be
a turn-yielding cue (in English). This is also in line
with the findings of Local et al. (1986).

When it comes to lexical information, a very
strong cue to turn-taking is of course whether the
utterance is syntactically or pragmatically complete
(Ford and Thompson, 1996). Thus, even if prosodic
cues can be found near the end of a turn-shift, it
is not clear to what extent such cues provide ad-
ditional information compared to lexical cues, or
if they are redundant. In an experiment by De
Ruiter et al. (2006), subjects were asked to listen

to a conversation and press a button when they
anticipated a turn ending. The speech signal was
manipulated to either flatten the intonational con-
tour, or to remove lexical information by low-pass
filtering. The results showed that the absence of
intonational information did not reduce the sub-
jects’ prediction performance significantly, but that
their performance deteriorated significantly in the
absence of lexical information. From this, they
concluded that lexical information is crucial for
end-of-turn prediction, but that intonational infor-
mation is neither necessary nor sufficient. Ekstedt
and Skantze (2020) also found that it is possible to
build fairly reliable turn-taking models using only
lexical information.

However, it has also been argued that while
lexical information is important for turn-taking,
there are many cases where a phrase may be syn-
tactically complete, but it is unclear whether the
turn is in fact yielded or not (Ford and Thomp-
son, 1996). To investigate this, Bögels and Torreira
(2015) performed a similar experiment as De Ruiter
et al. (2006), but selected the stimuli so that they
contained several syntactic completion points (e.g.
“Are you a student / at this university?"), and where
the intonation phrase boundary provided additional
cues to whether the turn was yielded or not. They
found that subjects indeed made better predictions
with the help of intonation and duration.

Most previous attempts at modeling prosody in
turn-taking have been limited in that they (I) only
use instances of mutual silence for predicting turn
shifts (and therefore do not model projection of
turn completion), and (II) only use fairly superficial,
hand-crafted features, such as the extracted pitch
slope or pitch level right before the pause (e.g.,
Gravano and Hirschberg 2011; Meena et al. 2014).
Apart from the problem that such features might be
too simplistic, they also typically require speaker
normalization of the pitch (Zhang, 2018).

In this work, we investigate various forms of
turn-taking events (including projection of both
turn shifts and backchannels). We also use a more
agnostic modeling approach, using latent speech
representations that are learned in a self-supervised
manner and extracted from the raw waveform
(van den Oord et al., 2018). If our model is in-
deed able to pick up relevant prosodic information
from these representations, it means that we do not
have to do any special prosodic feature engineering
or speaker normalization.
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3 Voice Activity Projection Model

Ekstedt and Skantze (2022) proposed a generic
turn-taking model that does not predict specific
turn-taking events at specific moments in time. In-
stead, the model is given the task of Voice Activity
Projection (VAP), which means that it has to incre-
mentally predict the future voice activity (VA) of
each interlocutor in a dialog. The prediction target
at each incremental step is defined by a window of
2 seconds containing the future VA for both speak-
ers. The window is discretized into 8 separate bins
(4 for each speaker) where each bin is assigned a
value of one if more than half of its frames are ac-
tive, to produce an 8 bit binary digit, corresponding
to 256 unique classes.

The VAP model consists of an encoder that pro-
cesses raw audio waveforms, along with the current
VA information, to produce latent representations
of a defined frame frequency fencHz which are then
fed into the predictor network. The predictor is a
causal sequence network that processes the context
available up until the current frame and outputs a
probability distribution over the 256 VA classes,
see Figure 1.

The encoder consists of two sub-modules, a
speech module which processes raw waveforms,
x, specifically a CPC (van den Oord et al., 2018)
model that outputs frame-level representations
hspeech,t ∈ R256, at fenc Hz. A second VA module,
matching the frame rate of the speech encoder, pro-
cesses the current VA frame vector vft ∈ {0, 1}2,
along with a concise representation of the VA his-
tory. The VA history features provide long-ranging
contextual information outside of the receptive field
of the acoustic model. This history is defined as the
activity ratio of speaker A over speaker B for re-
gions of size {-inf:60, 60:30, 30:10, 10:5, 5:0} sec-
onds into the past, where 0 is the current time step,
resulting in a vector vht ∈ R5 with values between 0
and 1, for each frame. The VA module projects the
VA features to vectors hva,t, hhis,t ∈ R256 which
are added to the speech representation hspeech,t
to produce the encoder output ht, for each frame
t. The dialog input waveforms are volume nor-
malized, resampled to 16kHz, mixed to a single
channel and split into 10s segments (using a 1s
overlap).

The predictor consists of a causal, decoder only,
transformer (Vaswani et al., 2017), with linear at-
tention (Press et al., 2022), using a hidden size of
256, 4 layers, 8 heads, and 0.1 dropout. The output

Figure 1: The VAP model processes the input features
at time t. The input to the model is the combined speech
waveforms of the two speakers (xt), the VA frames of
the window (vft ), and the longer VA history (vht ). The
waveform and VA features are processed separately, pro-
jected to a common feature space, and added together to
produce the predictor input, ht. The predictor consists
of a causal transformer feeding into the VAP-head to
produce the output projection. The green box illustrates
the various outputs of the different models that we com-
pare. Source: (Ekstedt and Skantze, 2022)

of the transformer model is fed to the VAP head, a
final linear layer, which outputs logits associated
with the 256 VA classes. Since transformer mod-
els are powerful but come with the cost that they
scale quadratically in compute, with respect to in-
put length, we are interested in whether using a
slower frame rate of the sequence model has any
significant impact on the turn-taking performance.
Following previous work, we utilize a pre-trained
CPC (Rivière et al., 2020) encoder which produces
output representations at 100Hz, and for two of our
three models, we include a single additional convo-
lutional layer which projects the representations to
50 and 20Hz. In other words, we train three models
which use different frame rates of the predictor.

3.1 Turn-taking Metrics

The Voice Activity Projection in itself is just a
distribution of 256 possible futures. However,
Ekstedt and Skantze (2022) also showed how this
distribution can be used to predict various turn-
taking events as zero-shot classification tasks. We
utilize three of these metrics, namely Shift/Hold,
Shift-prediction, and Backchannel-prediction, and
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will briefly explain them here.
Shift/Hold: This metric evaluates how well the

model predicts the next speaker during mutual si-
lence, i.e., whether the current speaker will Hold
the turn, or whether the turn will Shift to the other
speaker. The frames used for evaluation start 50ms
into the silence, covering a total of 100ms consecu-
tive frames.

Shift prediction: This metric evaluates how well
the model can continuously predict an upcoming
Shift in the near future, while a speaker is still
active. We follow prior work and consider a range
of 500ms that covers the end of a VA segment,
before a Shift-event (as defined above), as positive
samples. Similarly, we sample negative ranges,
of the same duration, from regions where a single
speaker is active but far away (2s) from any future
activity of the other speaker.

Backchannel (BC) prediction: This metric eval-
uates how well the model can continuously pre-
dict an upcoming BC in the near future (similar to
(Mueller et al., 2015; Ruede et al., 2017)). BCs are
defined as short and isolated VA segments (≤ 1s),
preceded by ≥ 1s of silence and followed by ≥ 2s
of silence by the same speaker. We consider re-
gions of 500ms before a BC as positive samples
and the negatives are sampled similarly to the Shift
prediction metric, with the addition of allowing
for non-active segments, i.e., backchannels can be
predicted during silences as well.

4 Training and Data

We train three different VAP models with differ-
ent frame-level frequencies: 20, 50, and 100Hz.
We use the combination of two dyadic conversa-
tional datasets, Switchboard (Godfrey et al., 1992)
and Fisher1 (Cieri et al., 2004), resulting in 8288
unique dialogs. We set aside a test set of 5%
(of each dataset) and split the remaining dialogs
into a 90/10 train/validation split used for train-
ing. We use the AdamW (Kingma and Ba, 2015;
Loshchilov and Hutter, 2019) optimizer and an
early stopping criteria on the validation loss with
a patience of 10 epochs. The code is imple-
mented in Python using the PyTorch (Paszke et al.,
2019), PyTorch-Lightning (William et al., 2020)
and Wandb (Biewald, 2020) libraries, and are pub-
licly available2.

1Because of limited access we only use Part 1 of the full
corpus.

2https://github.com/ErikEkstedt/conv_
ssl

4.1 Data perturbation

In order to investigate the role of prosody in the
model’s turn-taking predictions, we perturb the in-
put audio waveform of the test data in five ways
to omit parts of the signal encoding for various
prosodic features:

F0 flat: the intonation contour is flattened to the
average F0 of each speaker and segment.

Low pass: the signal is low pass filtered by
down-/up-sampling of the waveform similar to We-
ston et al. (2021). This effectively removes all high-
frequency phonetic information, while only the F0
and intensity contours are relatively intact. We use
a cutoff frequency of 400Hz across all samples.

Intensity flat: The intensity contour is flattened
to the average value of each speaker over all speech
frames (as determined by the VA features). We
note that this transformation is difficult to perform
without including acoustic artifacts despite having
access to speech boundaries given by the VA fea-
tures. Breaths become very loud and the gain inside
smaller segments of silence is prominent.

Duration average: Each phone in a segment
is scaled to the average duration, of that specific
phone, across the dataset.

F0 shift: The intonation contour is shifted by
90% of the original value for each speaker over
each active speech segment. This should (in theory)
not affect the turn-taking predictions. However, we
include this perturbation to verify that the transform
in itself does not have a too strong effect (e.g.,
through artifacts).

All perturbations were done using
Praat (Boersma and Weenink, 2022; Jadoul
et al., 2018) and the Torchaudio3 library.

5 Aggregate Turn-taking Evaluation

In this experiment, we evaluate the models on the
turn-taking metrics described in Section 3.1, on a
withheld test set, using the original audio and the
respective augmentations, with the exception of
Duration average4, listed above. The performance
across models and metrics is visualized in Figure 2.
We note that the Shift/Hold metric is highly imbal-
anced, containing a substantially larger amount of
holds, indicated by the high baseline weighted F1
(≈ 0.77). The remaining metrics are balanced by
design, resulting in a lower baseline value (≈ .33).

3https://pytorch.org/audio
4We do not have access to phone aligned annotations of

the datasets.
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(a) Shift/Hold (b) Shift prediction (c) Backchannel prediction

Figure 2: Aggregate results for the three tasks on the Switchboard and Fisher test set, depending on model frequency
and perturbation. Majority class baseline is shown with the dashed black line.

The least intrusive augmentation across all mod-
els and metrics is, as expected, the F0 shift trans-
formation. However, the artifacts introduced still
seem to have some effect on the models. Inter-
estingly, it has the greatest impact on the 100Hz
model, indicating that a higher frame rate of the
predictor model could make it more sensitive to
detailed phonetic information disregarded by the
slower versions.

On the Shift/Hold metric, all models are simi-
larly and substantially impacted by the Low pass
augmentation, lowering the performance towards
baseline performance. This augmentation omits
almost all information other than the F0 and in-
tensity contours and shows that the model does
rely on more complex cues to predict the next
speaker. F0 flat interestingly has the least negative
effect, across all models (disregarding F0 shift).
This is surprising, given that pitch seems to be the
most frequently used prosodic cue in computational
turn-taking models. However, while Intensity flat
severely affects the 100Hz model, making it worse
than the baseline, it has a lesser effect than Low
pass for the other two.

On the Shift prediction and Backchannel predic-
tion tasks, where the evaluation point occurs inside
of an ongoing utterance, all models are substan-
tially affected by the Low pass transform, and the
higher the frame rate of the model, the larger the
impact. The transformation removes faster pho-
netic information obfuscating phones, words, and
their durations (or boundaries), which are more
discernible to models operating on higher frame
rates, making the impact variation across models
less surprising. However, this variation is greater
on the Backchannel prediction task, with a large
difference of effect between the 20 and 100hz mod-
els. The second most impactful perturbation is In-

tensity flat, which indicates, in accordance with
the turn-taking literature in general, that shifts
and backchannels are preceded by changes (ar-
guably drops) in the intensity contour of the current
speaker.

6 Utterance-level Analysis

While the analysis above gives an overall esti-
mate of how important prosody is, it has been
hypothesized that prosody is especially important
when the semantic/pragmatic completion is am-
biguous, as discussed in Section 2. To focus their
analysis on such situations, Bögels and Torreira
(2015) constructed question templates where a
short and a long version, sharing initial lexical
information, were recorded through scripted in-
terviews (in Dutch). As an example, a short/long
question pair "did you drive here?” and "did you
drive here this morning?” contain the same initial
words up to a common completion point (after the
word "here”), which we will refer to as the short
completion point, SCP. Note that in order for the lis-
tener (or the model) to predict a turn-shift towards
the end of the short utterance, but not at the corre-
sponding place in the long utterance, it has to rely
on prosody. Through listening experiments, where
the participants are asked to press a button when
they expect a turn shift, Bögels and Torreira (2015)
found that the reaction time was indeed much faster
after the short version than after a long version cut
after the SCP.

For our experiments, we created a similar set of 9
long/short utterance pairs in English (see Table 1 in
the Appendix) using the Google TTS5 service and
produced 10 versions of each long/short pair using
5 male and 5 female voices. An example of such a

5https://cloud.google.com/
text-to-speech
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Figure 3: A short/long phrase pair. The plots show
the waveforms, mel-spectrograms, F0 contours, and the
model assigned Shift/Hold comparison, for the short
and long versions respectively. The blue color in the
bottom plots indicates a majority probability (over 50%)
for Hold whereas the yellow indicates Shift. The short
completion point (SCP) is shown as a red dashed line
for the long utterance and the filled red line shows the
end time of the last word in each utterance.

pair is visualized in Figure 3. In the figure, we have
also visualized the VAP model’s Shift prediction,
as described in Section 3.1.

As can be seen in the figure, for this example,
the model correctly assigns a high probability to
Hold until towards the end of each utterance, where
it changes to Shift. This clearly illustrates the
model’s ability to project turn shifts before the ut-
terance is complete, and before the large rise in
final pitch has actually happened. In addition, we
see how the model makes a clear distinction be-
tween the two utterances at the short completion
point (SCP), where it predicts a Hold for the longer
variant. This illustrates that the model is indeed
sensitive to prosody, as that is the only informa-
tion that is different up until that point. Additional

(a) Phrase 2. "Psychology”. (b) Phrase 6. "Live”.

(c) All phrases.

Figure 4: Duration and maximum relative F0 over the
last syllable at the “short completion point" for the
(L)ong and (S)hort versions of the synthesized voices.
The x- and y-axis corresponds to mean-shifted duration
and relative F0 peak.

samples and visualizations are publicly available6.
Since we rely on artificially generated utterance

pairs, we can of course not be certain to what ex-
tent they reflect similar prosodic patterns as those
generated by humans. We therefore perform a sim-
ilar analysis of the phrases as Bögels and Torreira
(2015), by measuring the duration and maximum
F0 frequency over the last syllable of the short com-
pletion point. In their analysis, they showed that
longer duration and a higher rise in F0 are associ-
ated with the end of a turn, separating the measures
at the SCP of the short phrase from the long, as
shown in Figure 4a. We obtain similar distributions
from 4 of our 9 phrases, but note that the others are
not as easily separated, but show more uniform dis-
tributions for the duration dimension as shown in
Figure 4b. However, from listening to the phrases,
we still consider all recordings natural enough to
be included in our further analysis. Although both
duration and pitch might sometimes clearly indi-
cate turn-shifts according to the literature, there
is no guarantee that this is actually the case for

6https://erikekstedt.github.io/conv_
ssl/

546



(a) Original. (b) F0 flat. (c) Intensity flat

(d) F0 shift. (e) Low-pass. (f) Duration average.

Figure 5: Model output from a female TTS voice saying “Are you a student here at this university?" (long).

all types of phrases. This indicates that simple
models that only track these superficial features
might not capture the whole picture. We provide
the mean-shifted duration and relative F0 rise over
all generated phrases in Figure 4c.

We compare the performance of the VAP model
on the short and long versions of each phrase to
investigate whether it can recognize the prosodic
differences and correctly predict the short comple-
tion point as either a Hold (long phrase) or a Shift
(short phrase). In addition to the original record-
ings, we include evaluations of the performance on
the perturbed versions to investigate whether any
specific perturbation changes the predictions of the
model more than the others. We use the 50Hz
model, as it performs comparably to the 100Hz
model on the original audio, while being less af-
fected by the F0 shift transform, indicating less
sensitivity to arbitrary artifacts introduced by the
perturbations.

The model output on the long version of the
phrase “Are you a student here at this university?",
for the various perturbations, is visualized in Fig-
ure 5. Inspection of the original performance in
Figure 5a indicates that the model is sensitive to
prosodic information and assigns a higher likeli-
hood of a Hold at the SCP located on the word
"student”. However, for the F0 flat perturbation,
in Figure 5b, we note that the model flips and as-

signs a higher Shift-probability at the SCP, which
indicates that if the dynamics of the F0 contour
is omitted, the model cannot recognize that the
speaker will continue to speak. Interestingly, the
Intensity flat perturbation also affects the output of
the model, but after the SCP is completed. Here,
the model does have access to the F0 contour and
correctly assigns a larger Hold-probability at the
SCP, but then changes prediction to indicate that
a Shift is probable following the word "here”. As
a final note, the Low pass transform, which filters
out all phonetic information while keeping both
the intensity and F0 contour, does produce predic-
tions close to that of the original audio, while being
slightly less certain of a Shift after the entire utter-
ance is completed, as seen in Figure 5e. We also
provide the corresponding visualizations over the
short version of the same speaker and phrase in
Figure 7 in the Appendix.

To get an aggregate evaluation of the model
across all 9 phrases and 10 voices, we define three
regions in each utterance, up until the SCP point
(for both long and short phrases), namely hold, pre-
dictive and reactive, and measure the average Shift
probability predicted by the model in those regions.
The hold region covers the start of the utterances
until 200ms before the SCP, where the predictive
region begins. The final reactive region is the very
last frame of the SCP where the entire last word (of
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Figure 6: Shift probabilities for the 50Hz model on the
short completion point over the hold, predictive and
reactive regions over all short and long phrases.

the short utterance) has been processed. Over the
long utterances, the model should consistently pre-
dict a low shift probability, given that the speaker
will continue their turn, while the shift probabili-
ties should increase over the regions of the short
utterances. The aggregate model performance over
all phrases is visualized in Figure 6.

The left part of Figure 6 displays the average
Shift probabilities for the points on the SCP for
the short phrases (Short@SCP) which preferably
should start low and rise consistently. The right part
of the figure shows the corresponding performance
but on the long phrases (Long@SCP) and should
be consistently low, indicating that the speaker will
continue their turn. Looking at the non-perturbed
signal (Original), and comparing the left and right
figures, we see that the model is indeed sensitive
to prosody, confirming the anecdotal observation
from Figure 3. The Low pass transform clearly
hinders the model from predicting a Shift, indi-
cating that pitch and intensity in themselves are
not enough. Among the other perturbations, F0 flat
seems to have the largest negative effect, which con-
firms that intonation is important for disambiguat-
ing turn completion when lexical information is
not enough. Duration seems to be less important,
which aligns with the observation in Figure 4c.

7 Conclusion and Discussion

In this work, we train general computational
models of turn-taking, provide analytical meth-
ods suitable for evaluating their performance on
turn-taking tasks, and investigate how they utilize
prosodic information in the speech signal. We in-
vestigate the models’ reliance on prosody by ex-
tending psycho-linguistic experiments designed to

measure the effect of prosody on turn-taking in hu-
man subjects. We conclude by addressing our three
research questions below.

Do Voice Activity Projection models trained on
raw waveforms learn to pick up prosodic informa-
tion that is relevant to turn-taking? We apply spe-
cific prosodic perturbations to the input signal and
show a deterioration across all models on the tasks
of turn-taking and backchannel prediction, indicat-
ing that prosodic cues are utilized by the models.
We note that phonetic information has the largest
impact on these measures and that F0 information
is less important for turn-taking in general. Even
more convincing are perhaps the specific compar-
isons of the models’ ability to predict Shift vs Hold
at syntactic completion points, where the lexical
information is identical. This task requires access
to the prosodic dynamics of the signal and should
be impossible to distinguish based on lexical infor-
mation alone.

When/how is prosodic information important for
turn-taking predictions? Overall, we show that all
models are most sensitive to the low-pass trans-
form, indicating that phonetic information is im-
portant for turn-taking in general. We note that
intensity is at least as important as pitch when ap-
plied to actual human long-form conversations, but
that pitch plays a more important role for the dis-
ambiguation at syntactically equivalent completion
points. Interestingly, we note that the importance
of duration plays a less important role, indicating
that the F0-contour is the most reliable cue in the
presence of lexical ambiguity. Another interesting
observation in Figure 6 is that even if intonation
seems to be the most important individual cue, flat-
tening it does not completely collapse the distinc-
tion between turn-holding and turn-yielding. Thus,
there must also be redundant information in inten-
sity and/or duration. This shows that prosody is
indeed a complex set of signals, which the model
has captured.

What is a suitable time resolution for such mod-
els to best represent prosody? In our analysis of
the turn-taking metrics, we note a negligible per-
formance degradation when decreasing the frame
rate of the predictor model. We note that high-
frequency models tend to focus more on phonetic
information, indicated by their sensitivity to the
Low pass transformation. The faster models seem
more sensitive to general acoustic artifacts, as in-
dicated by the larger performance drop on the F0

548



shift perturbation, which should not have an impact
on turn-taking cues in general. Overall, we favor
the slower models given their lower memory and
computational requirements, their robustness, and
comparable performance.

It should be noted that the models were not
trained on perturbed versions of the data, which
include highly unnatural speech (i.e., no humans
speak with a perfect flat intonation contour). Thus,
the evaluations of Section 6 can be considered out-
of-distribution. Nevertheless, it is interesting that
for many of these perturbations, the models still
perform relatively well. Also, the drops in perfor-
mance are typically in line with what could be ex-
pected from the literature. For future work, it could
be valuable to train multiple models, on data with
different prosodic perturbations, and compare their
performance for further analysis. Another interest-
ing approach could be to identify actual instances
of syntactically ambiguous phrases, rather than re-
lying on TTS. Moreover, it would be interesting to
include a larger linguistic context, and investigate
whether the importance of prosody decreases.
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A Appendix

Table 1: The 9 phrases used in the utterance-level analysis.

Item Short Long
1 Are you a student? Are you a student here at this university?
2 Do you study psychology? Do you study psychology here at this university?
3 Are you a first-year student? Are you a first-year student here at this university?
4 So do you play basketball? So do you play basketball on Thursdays?
5 Have you participated in any ex-

periments before?
Have you participated in any experiments before here
at this university?

6 Do you live by yourself? Do you live by yourself or with someone else?
7 So you work on the side? So you work on the side in a supermarket in addi-

tion to your studies?
8 Did you come here by bike? Did you come here by bike this morning?
9 Did you drive here? Did you drive here this morning?

(a) Original. (b) Flat F0. (c) Flat intensity.

(d) F0 shift. (e) Low-pass. (f) Duration avg.

Figure 7: Model output from a female TTS voice saying “Are you a student?" (short).
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Abstract

People leverage group discussions to collab-
orate in order to solve complex tasks, e.g. in
project meetings or hiring panels. By doing
so, they engage in a variety of conversational
strategies where they try to convince each other
of the best approach and ultimately reach a de-
cision. In this work, we investigate methods
for detecting what makes someone change their
mind. To this end, we leverage a recently in-
troduced dataset containing group discussions
of people collaborating to solve a task. To find
out what makes someone change their mind,
we incorporate various techniques such as neu-
ral text classification and language-agnostic
change point detection. Evaluation of these
methods shows that while the task is not trivial,
the best way to approach it is using a language-
aware model with learning-to-rank training. Fi-
nally, we examine the cues that the models de-
velop as indicative of the cause of a change of
mind.

1 Introduction

Research in group decision-making has shown that
a group that collaborates in order to make a deci-
sion can outperform even the most knowledgeable
individual within it (Mercier and Sperber, 2011).
People engage in discussions in a variety of set-
tings, such as project meetings and study groups.
In these scenarios, people incorporate a variety of
conversational strategies to introduce their ideas
and convince each other of them, aiming ultimately
to reach a consensus. Fundamentally, before com-
mitting to a decision, most of the participants in
a group have different ideas of what the correct
answer might be, but through discussion they are
able to convince each other, and ultimately some of
the participants change their mind. While previous
research has shown that people who reach a consen-
sus tend to perform better at certain tasks (Navajas
et al., 2018; Niculae and Danescu-Niculescu-Mizil,
2016; Concannon et al., 2015), how people reach

a consensus is understudied. Successfully iden-
tifying what makes someone change their mind,
is an important step in studying group dynamics,
persuasion and collaboration.

Figure 1: Sample conversation containing change of
mind and what caused it. Participants are solving the
Wason card selection task, where they should pick cards
with letters and numbers on them.

In this work, we take advantage of a dataset pre-
viously introduced by us (Karadzhov et al., 2021),
which contains group discussions of people solv-
ing a cognitive task. The dataset contains 500 di-
alogues, where people engage in various delibera-
tion patterns to communicate their solution to the
problem. The participants are presented with the
Wason card selection task (Wason, 1968), which
is a classic problem used in the study of decision
making and has been useful in testing the poten-
tial benefits and mechanisms of group discussion
(Maciejovsky et al., 2013). The Wason card selec-
tion task provides a controlled setup with quantifi-
able measures of success and improvement, which
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makes it very suitable for the study of individual
biases and strategies. In the example in Figure 1,
participants engage in a collaborative discussion
where they iterate through 3 different solutions,
where one of the participants changes their mind
twice (in utterances 3 and 6). In the example, con-
versation utterances 2 and 5 are the arguments that
cause that change of mind, and are the target utter-
ances that we would like to predict. Put formally,
in order to investigate what made someone change
their mind in group decision-making conversations
we formalise the task as detecting the utterance
that causes the change of mind (or conversational
turning point, which is used in this paper inter-
changeably).

In this work, we draw similarities between con-
versational turning points and change point detec-
tion. Change point detection investigates when a
change will occur in a stream of data, and is tradi-
tionally applied in domains such as finance (Chen
and Gupta, 1997; Oh and Han, 2001), engineer-
ing (Turner et al., 2013; Lai, 1995), climate data
(Reeves et al., 2007; Khapalova et al., 2018), and
genetics, (Wang et al., 2011; Hensman et al., 2013).
Change point detection is concerned with either
identifying a change post-hoc (offline change point
detection or segmentation), or predicting a change
point before it occurs - online change point detec-
tion (Adams and MacKay, 2007). In this work, we
are concerned with the latter - identifying a change
of mind before it occurs. We are doing this by try-
ing to predict which utterance will cause a change
of mind.

To evaluate our approaches, we develop a frame-
work that quantifies the performance of models for
change point detection in conversations, adopting
practices from previous work (Burg and Williams,
2020). In terms of modelling, we first adapt a
method for Bayesian online change point detection
(Adams and MacKay, 2007), that was previously
used in engineering and finance. This method is
language-agnostic as it ignores any kind of linguis-
tic cues. Next, we explore standard approaches to
text classification as a method for predicting con-
versational turning points, showing that they are
comparable to the language-agnostic models. We
further improve on these methods, by investigating
learning-to-rank training for the prediction of what
causes a change of mind. We demonstrate that by
altering the training procedure and by incorporat-
ing the RankNet loss (Burges et al., 2005), we can

substantially improve over the language-agnostic
and text classification approaches.

Overall, our results demonstrate that the task of
detecting conversational turning points is feasible
but not trivial. Approaches such as bag-of-words,
or a simple all-positive baseline for change point
detection have a performance of 0.18 area under
the precision-recall curve. On the other hand, a
combination of our learning-to-rank model and a
positional prior led to an AUC of 0.25. Finally,
we conclude this study with a qualitative analysis,
where we demonstrate different patterns and lin-
guistic phenomena that may indicate a cause of
change of mind.

2 Related Work

The effect of conversation in group decision-
making has previously been explored in the field
of psychology. Both Navajas et al. (2018) and
Mercier and Sperber (2011) show that there are
conditions where a group of people who collab-
orate on a problem can outperform even the best
individual group member. Moreover, previous re-
search (Navajas et al., 2018; Niculae and Danescu-
Niculescu-Mizil, 2016) has shown that groups of
people who can reach a consensus through discus-
sion have a higher group performance than just
discussing or voting on a solution. Concannon et al.
(2015) has found that disagreement markers at the
beginning of the conversation lead to productive
discussions. Likewise, both De Kock and Vlachos
(2021) and Hallsson and Kappel (2020) study the
effect that disagreement has on constructive conver-
sations, showing how people who are disagreeing
with each other can work together. Therefore, we
hypothesise that it is interesting to study the conver-
sations where someone changes their mind i.e. they
disagreed at first but ultimately reach a consensus.

Other research is concerned with which specific
linguistic phenomena are associated with conver-
sations that can change someone’s mind (or per-
suasive conversations). Zeng et al. (2020) inves-
tigate how topics and discourse change during a
conversation, as well as their contribution to the per-
suasiveness of the conversation. Similarly, Hidey
et al. (2017) analysed the prevalence of claims
and premises in persuasive vs. non-persuasive di-
alogues. Both of these papers leverage the online
forum Change my View, where participants argue
pro and against a certain topic. Unfortunately, the
topics discussed in this forum are open to interpre-
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tation and personal opinion. Therefore, they do
not have a clear quantitative measure of whether
someone changed their mind. Further, while Zeng
et al. (2020) and Hidey et al. (2017) study which
phenomena may indicate that the conversation is
more persuasive, they do not try to predict when
will someone change their mind, and what is the
specific utterance that caused that.

Identifying when a change in a sequence of ob-
servations occurs is traditionally studied in the con-
text of change point detection, in the field of signal
processing (Page, 1954; Truong et al., 2020). For-
mally defined, if we observe a sequence of a vari-
able [x1, x2, ..., xn], a change point occurs when
two adjacent elements of that observation differ
substantially. Another way to define change points
is by treating them as delimiters between different
subsets of observed data. In this work, we adopt a
version of the former definition - we are interested
in the event that causes a subsequent observation
to differ substantially from the previous ones.

In terms of methods, change point detection can
be broadly divided into online and offline meth-
ods. Online methods (Adams and MacKay, 2007)
focus on detecting a change point in a stream of
data, and are evaluated based on the ability to pre-
dict a change point before it occurs (i.e. before the
value changes substantially). On the other hand,
offline (Smith, 1975; Green, 1995) methods by de-
sign work retrospectively on a sequence of data-
points, aiming at solving the task of segmentation.
Offline methods incorporate bi-directional informa-
tion to determine when a change point occurred (i.e.
the data points before and after the change point),
whilst online methods rely only on the observed
information. In this work we focus exclusively on
online change point detection, as we would like to
predict what causes a change before we observe
the change it causes. Arguably, detecting a change
of mind post-hoc should be a more trivial endeav-
our, as s model could learn cues such as agreement
markers or solution proposals.

A different way to approach this would be from
the point of view of survival analysis and reliability
engineering (Read and Vogel, 2016; Diamoutene
et al., 2021; Nikulin et al., 2011). Previous re-
search relies on the concept of hazard function
(also referred to as "time-to-failure") which is de-
fined as the instantaneous risk of an event occur-
ring at a point in time. The premise is that, as more
time passes, the likelihood of an event occurring

increases. Practically speaking, in engineering the
hazard function captures the intuition that as more
time passes since the last maintenance, the likeli-
hood of a breakdown of apparatus increases. We
hypothesise that we observe a similar phenomenon
in conversations – as the dialogue progresses, it is
more likely for a participant to change their mind.

3 Data

In this work, we are investigating what makes some-
one change their mind in group decision-making.
In order to select a dataset to work on, we consid-
ered the following factors:

• The dataset should contain group discussions.

• When engaging in conversation, the group
should collaborate in order to reach a decision

• The conversation should have a quantifiable
measure of success

With these criteria in mind, there are two datasets
that could be used - a corpus of people play-
ing a photography geo-location game (Niculae
and Danescu-Niculescu-Mizil, 2016), or a dataset
of groups playing the Wason card selection task
(Karadzhov et al., 2021). Unfortunately, the for-
mer is not publicly available, so in this work we
focus on the latter. The dataset was introduced by
our previous work (Karadzhov et al., 2021), and
it aims at evaluating how people collaborate and
engage in deliberation (henceforth we refer to it as
DeliData). Each group is presented with 4 cards,
each having a letter or a number on it. Then, the
participants have to answer the question "Which
card(s) should you tern to test the rule: All cards
with vowels on one side, have an even number
on the other" (see Figure 1). The intuitive but
wrong answer to the question is to turn the vowel
and the even number, which is due to confirmation
bias and is the most common answer given to the
task. The correct answer is to turn over the vowel
and the odd number.

In our experimental setup in DeliData
(Karadzhov et al., 2021), we formed groups of 2
to 5 participants, first asking each member of the
group to solve the task on their own. Then all of
the participants engaged in a discussion about the
task, being able to submit intermediate and final
solutions. Each participant, apart from payment
for their participation, was offered a bonus for
submitting the correct solution, i.e. selecting the
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correct cards. A conversation is successful if the
final solutions submitted by each group member
were on average more correct (in terms of number
of cards selected correctly) than the initial ones
before the conversation took place. In DeliData
(Karadzhov et al., 2021), we found that after
discussing the solution, 64% of the groups perform
better at the Wason task, compared to their initial
performances. Moreover, in 43.8% of the groups
who had at least one correct answer as their final
solution, none of the participants had solved the
task correctly by themselves, thus confirming the
hypothesis that groups can perform better than
even the most knowledgeable individual.

Statistics of the DeliData corpus are presented in
Table 1. DeliData contains 500 dialogues, with an
average length of 28 utterances per dialogue. Addi-
tionally, 50 of those dialogues are annotated with
deliberation cues and other conversational phenom-
ena, such as argument structure or when someone
proposes a solution. In this work, we use the solu-
tion proposals as an indication of when someone
changes their minds, thus helping us identify what
made them change their mind. These annotations
were carried out by 3 annotators in a controlled
setting, with a high inter-annotator agreement (0.5-
0.75 Cohen’s kappa).

# of dialogues 500
# of utterances 14003
AVG group size 3.16
# of dialogues with
intermediary submissions 220
# of intermediary and
final submissions 1179
# of annotated dialogues 50
# of annotated change of mind 262

Table 1: DeliData statistics

3.1 Gold data

In order to evaluate what made someone change
their mind, we take advantage of the 50 dialogues
manually annotated by Karadzhov et al. (2021). If
an utterance contains a solution proposal that is
different to the previously proposed solution by
the same participant, it is considered an expression
of a change of mind. Leveraging this annotation,
our gold data is defined as follows: Given an ut-
terance that expresses a change of mind, we select
the last utterance made by a different person as the

Figure 2: Test (left) and weakly supervised training
(right) data for what caused a change of mind. The
circles on the right of each example show the annotation
used in our experiments: + denotes an utterance that
caused a change of mind

utterance that caused this change of mind. In Fig-
ure 2 (left), the 3rd utterance is an expression of a
change of mind, annotated in DeliData. Therefore,
the last utterance not said by participant U1, would
be considered what caused the change of mind.

3.2 Weakly supervised training set

Given that the gold annotated data is limited, we
devised a way to leverage the unannotated data as
a weakly annotated training set. For the 450 unan-
notated dialogues, each participant had to submit
at least 1 solo solution, and 1 final solution. In 220
of these dialogues, at least 1 user had submitted an
intermediate submission, thus we consider these
dialogues as our training data.

Following the approach used for the gold data,
we consider these weak annotations with a similar
rule: for every submission expressing a different so-
lution, we select the last utterance not made by the
same user as the utterance that made them change
their mind. In the example in Figure 2 (right), par-
ticipant U2 made a submission, but because the last
utterance before the submission was made by them,
we mark the utterance by participant U1 as the one
that made them change their mind.

As already mentioned, for this weakly super-
vised data we assume that every time a participant
submits a new solution to the game, it can be at-
tributed to the most recent utterance by a differ-
ent participant. While this is reasonable, the re-
verse is not true - we can’t be sure that if someone
changed their mind, they submitted a new solu-
tion. Hence there will be utterances that could
have caused a change of mind, but are not anno-
tated as such. Therefore in our training protocol we
take into account this limitation by proposing the
learning-to-rank training described in Section 4.3.
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4 Models

4.1 Language-agnostic models

First, we consider modelling options that do not
utilise the language directly, but rather rely on
proxy signal to predict when a change point would
occur. In particular, we investigate 3 variants for
language-agnostic change point detection - Haz-
ard Function, Sequence length probability, and
Bayesian Online Changepoint Detection (Adams
and MacKay, 2007).

4.1.1 Hazard Function
The hazard function encapsulates the intuition that
an event is more likely to occur the more time
passes. It is defined as the probability of an event
happening now, divided by the sum of probabilities
of the event happening in the future. To calculate
the hazard function we use Equation 1, where Tcp
denotes the number of time steps since the last
change point, and P (XTcp = CP ) is the prob-
ability of change point occurring at time step T :

H(Tcp) =
P (XTcp = CP )
∞∑

t=Tcp

P (Xt = CP )

(1)

In the calculation of the hazard function, we con-
sider only the distance from the last change point,
thus disregarding information at what point of the
conversation we are. Essentially, every time a
change point occurs, the function starts over. For
example, if a change point occurs in the 9th utter-
ance of a conversation, the probability at the 10th
utterance would be the same as in the first utter-
ance.

4.1.2 Sequence length Probability
Recognising that it is important to model not only
the information since the last change point, but
to also consider information about how many ut-
terances have been exchanged in the conversation
as a whole, we propose an alternative model - se-
quence length probability. The assumption behind
this method is that conversational turning points are
more likely to occur at certain time steps in a con-
versation. For example, people may change their
minds more at the end of a conversation rather than
just after the first few utterances. This approach
estimates the likelihood of encountering a change
point at a specific time step since the beginning of
the observed process. To model that, we calculate

what is the chance for a change point occurring at
time step T .

4.1.3 Bayesian change point detection
Adams and MacKay (2007) proposed a Bayesian
approach to modelling when a change point would
occur. Their method performs a prediction based
on two variables - time since the last change point
(similarly to the hazard function) and an observed
variable at each time step. In the case of the Deli-
Data dataset, we extract the observed variable from
a method we call solution tracker, which gives
an estimate what is the group’s performance at ev-
ery utterance. The solution tracker keeps a record
of the solution proposed by each participant and
then averages their individual score to calculate
the group performance. The solution tracker first
records each of the participants’ solo submission.
After the group phase starts, every time a partic-
ipant mentions one of the 4 cards or the words
’all’ and ’none’, the solution tracker recalculates
participant’s individual score, as well as the ag-
gregated group performance. The solution tracker
incorporates a fairly simplistic rule-based approach
to tracking solutions, and is thus imperfect. Never-
theless, it is a reasonable measure to track as it is a
proxy for team performance.

Following the approach introduced by Adams
and MacKay (2007), we are interested in two prob-
abilities - the growth probability, indicating that
a change point will not occur in the next time
step (Equation 2), and the change point probability,
showing that a change point would occur (Equa-
tion 3).

P (XT+1 ̸= CP ) =

Pr(T − 1)π
(r)
T (1−H(rt−1))

(2)

P (XT+1 = CP ) =
∑

rt−1

Pr(t− 1)π
(r)
t H(rt−1)

(3)

These probabilities are computed using:

• Pr(t−1) - run length estimation, which is the
probability of the length of the run since the
last change point, given the observed data and
the current time step

• π
(r)
t = P (X1..Xt) - predictive probability, i.e.

how likely is to observe a specific sequence
of values
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• H(rt−1) - hazard function, as described in
section 4.1.1 and equation 1

It is important to note that Adams and MacKay
(2007) consider the model parameter before and
after the change point as independent of each other,
thus any positional information is lost.

4.2 Text-based Models

We recognise that the output of the solution tracker
is unlikely to contain all the information needed to
determine whether an utterance would cause some-
one to change their mind, hence we experimented
with linguistic models to perform this prediction.
We use a neural network, where the input is the last
two utterances of a certain time step in a conversa-
tion, and the predicted output is whether or not we
will encounter a change of mind in the next time
step. Henceforth we will refer to this model as the
linguistic model.

4.3 Learning to rank training

Given that changes of mind are often not stated by
the participants, we presume that the annotation of
the utterances that causes them would be incom-
plete, and we will be dealing with a lot of false
negatives in the training. Thus, we propose to use
learning to rank as follows: given a pair of inputs,
one that is annotated as a cause of a change of mind
and one that is not, we use the model to score the
positive input higher than the negative one. In other
words, even if both of the inputs are predicted as
not causing a change of mind, we adjust the loss
so that the positive sample should be ranked higher
than the negative one.

Since the positive class is substantially less
prevalent than the negative (most utterances do
not change minds), we only need as many negative
samples as there are positive ones to construct the
positive-negative pairs. To do this, we devise the
following algorithm:

• For each positive input (an utterance causing a
change of mind) in a dialogue, we select a ran-
dom negative input from the same dialogue.

• When selecting a random negative input, we
consider those that are with a distance greater
than 2 utterances from the nearest change
point. This allows us to select safer negative
inputs, as opposed to those that might carry a
partial signal of the cause of change of mind.

• For every training epoch we change the ran-
dom seed for the selection of the negative sam-

ple while keeping the same positive samples.
Using this algorithm, the positive samples are

consistent throughout the training, while we vary
the negative ones.

Having this training procedure, we consider
RankNet loss (Burges et al., 2005), presented on
Equation 4, which is a modified logistic function
on probabilities from Baum and Wilczek (1987).
This loss provides a probabilistic ranking cost func-
tion, which relies only on the difference between
the positive and the negative samples.

C(pos, neg) = 1− e(pos−neg)

1 + e(pos−neg)
(4)

The inspiration for this type of training was drawn
from a different area in machine learning research -
recommender systems. There, a single user will in-
teract with a limited number of items from the pool
of available ones. For even fewer of those, the user
would have provided positive feedback. Therefore
there will be items that the user would like to see
more of, but they have not provided positive feed-
back, hence having incomplete annotation. When
detecting a cause for a change of mind, we observe
similarly incomplete annotation - not every time
someone changed their mind, they have expressed
it in the conversation explicitly, and thus we can-
not label which utterance would be the cause for
that change of mind. However, similarly to recom-
mender systems, positive feedback while rarer is a
strong indication of when a change of mind occurs.
Therefore, in this work, we propose to approach
the task of predicting conversational turning points
using a learning to rank training objective, rather
than as standard classification.

5 Evaluation

Figure 3: Four scenarios for change of mind evaluation.
Blue stars denote the gold labels, while the triangles
show the predicted values. With green borders and
triangles, we show where the predicted and gold values
match, and with red where we have an inaccuracy.
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In this work, we devise a novel way for evaluat-
ing what caused a change of mind. We propose 3
key properties that our evaluation method should
exhibit (with corresponding examples on Figure 3):

• The method should reward exact matches,
i.e. when the gold and the predicted cause
of change of mind align perfectly. (Scenario 1
on Figure 3)

• In cases where we observe a cluster of causes
of changes of minds, we would like our
method to (i) give full credit if we predict
at least 1 of the gold utterances in the clus-
ter, and (ii) if we predict all of them, to not
"inflate" the score, giving full credit for each.
An example of that is presented in Figure 3,
scenario 2 – the gold and the predicted la-
bels are clustered and aligned. Given that we
have alignment between the two clusters, the
method should count this as 1 true positive.

• In order to provide a more relaxed evaluation,
our method should allow for small-margin er-
rors. Given the length of each dialogue, we set
the margin to 1. That said, we should count a
true positive for off-by-one errors before the
cause of change of mind (scenario 3), but the
method should not allow for off-by-one errors
after the gold label (scenario 4).

Given these desiderata, we consider how previ-
ous work evaluates change point detection methods.
One approach (Killick et al., 2012) is to evaluate
such methods as a regular machine learning model -
the predicted and gold events should match exactly,
in order to count the change point as true posi-
tive. This would cover scenario 1 (exact match),
will count 2 true positives and 1 false negative for
scenario 2 (cluster match) and will count the off-by-
one predictions as errors. Some approaches (Martin
et al., 2004) for change point detection evaluation
recognise that nearly predicting a change point is
good enough in practice, thus allowing for off-by-
one errors. In Figure 3, both scenarios 3 and 4
are concerned with off-by-one errors, and previ-
ous work would categorise both of these as true
positive, which would be incorrect (as we are not
allowing off-by-one errors after the gold label).

Taking into consideration the desired properties
of our evaluation method, as well as the limita-
tions of previous research, in this work we use the
following evaluation procedure:

1. We identify all clusters in the predicted and
in the gold sequences, by grouping instances

that are consecutive.
2. We perform alignment to identify which clus-

ters overlap. We consider 2 clusters aligned if
they overlap by at least 1 element.

3. We identify all matches between the gold and
predicted pairs. If we encounter a gold label
or cluster of labels, we check the prediction
at the current and the previous time steps. If
there is a match, we consider this pair a true
positive.

4. After we iterate through the gold-prediction
sequences, we mark every gold utterance that
was not matched to a prediction as a false
negative. Likewise, every predicted utterance
that did not match a gold label, is considered
a false positive.

Given this training procedure, we are able to
have a list of true positive, false positive and false
negative cases for our test set, allowing us to calcu-
late class measures such as area under the precision-
recall curve, and break-even precision-recall point.

6 Experimental Setup

Using the gold and the weakly supervised sets in-
troduced in section 3, we train all of our models
with the following setup. All models are trained on
the 220 dialogues from the weakly supervised set.
The 50 gold annotated dialogues are split into test
and validation sets, of 40 and 10 dialogues respec-
tively. The validation sets are exclusively used for
model selection of the text-based models.

To train the linguistic and learning-to-rank mod-
els, we used a similar training setup. Both models
embed the input using the BART embedding layer
(Lewis et al., 2019). Following, we added two fully-
connected layers with size of 1024 and 0.3 dropout
between each of the layers. Finally, we use a simple
sigmoid function to perform the final classification.
Both models are trained using a batch size of 32 us-
ing the Adadelta optimizer (Zeiler, 2012) and were
trained for 100 epochs, saving the iteration that has
the best area under the precision-recall curve.

7 Results

On Table 2 we compare all of the models intro-
duced in section 4, together with two baseline mod-
els. As a naïve baseline, we predict that every
utterance in the conversation will lead to a change
of mind. Also, we use off-the-shelf text classifi-
cation methods, to provide a basic baseline for a
linguistic model, namely a bag-of-words approach,
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Model Micro AUC Macro AUC Cutoff
Baseline: All positive 0.07 0.07 N/A
Baseline: Bag of Words 0.19 0.20 0.21
[1] Hazard Function 0.16 0.17 0.16
[2] Sequence Length 0.17 0.17 0.20
[3] BOCP (Adams and MacKay, 2007) 0.18 0.21 0.22
[4] [2] + [3] 0.21 0.23 0.26
[5] Linguistic Model 0.20 0.20 0.23
[6] Linguistic Model + [4] 0.22 0.22 0.24
[7] Linguistic Model (Learning to Rank) 0.23 0.26 0.24
[8] Linguistic Model (Learning to Rank) + [4] 0.25 0.26 0.30

Table 2: Evaluation of different methods for detecting what causes a change of mind in group discussions

paired with a Random Forest classifier (Ho, 1995).

We use 3 evaluation measures to compare the
models - micro (utterance level) and macro (di-
alogue level) averaged area under the precision-
recall curve, and the precision-recall cutoff point -
the point where the precision and recall are equal.
The reason to use these evaluation measures is
three-fold. First, since change point detection typ-
ically deals with very imbalanced data, we need
measures that are robust when the class of interest
is under-represented. When dealing with heavily
skewed data, Davis and Goadrich (2006) argue that
the area under the ROC curve gives an overly opti-
mistic estimate of the performance, and thus area
under the precision-recall curve is a more appro-
priate measure. Secondly, while evaluating our
models, we noticed that different models have dif-
ferent precision and recall characteristics. For ex-
ample, some of our models had very high precision,
or very high recall, whilst producing comparable
F-measures. In order to give a fairer comparison
of the overall model performance, we report the
micro- and macro- average area under the precision-
recall curve. Finally, while area-under-the-curve
gives a good estimation of performance, it doesn’t
give a lot of intuition of how the model will per-
form in terms of precision and recall when used
in a practical setting. Thus, we also report the
precision-recall break-even point to show the rela-
tive predictive power of each model.

In Table 2 we show that all of the methods out-
perform the "all positive" baseline. That said, us-
ing the hazard function and the sequence length
probability by themselves are the worst perform-
ing methods. Better performance is achieved by
using a more sophisticated language-agnostic mod-
elling, the Bayesian online change point detection
(BOCP) (result 3). This approach takes into ac-
count the hazard function as well as a proxy for

conversation performance, thus allowing for better
modelling. While these approaches are reasonable,
they are unable to capture language such as the
arguments being made, which may cause lower per-
formance. Interestingly, the bag-of-words model
performs similarly to the significantly larger neural
linguistic model which is trained on top of BART
(Lewis et al., 2019) (result 5).

The best performing stand-alone model is
achieved by training the linguistic model in a
learning-to-rank setup (result 7), achieving Micro
and Macro averaged AUC of 0.23 and 0.26 respec-
tively.

Further, we experimented with combining
language-independent and language-agnostic mod-
els. In the context of this paper, we incorporated a
simplistic combination - if either of the combined
models predicts a conversational turning point we
consider this as a positive signal. Analysing the
results, we observe that incorporating the sequence
length and the BOCP (Adams and MacKay, 2007)
with all linguistic models can yield a substantial
improvement. By combining the sequence length
with the Neural Learning-to-Rank model, we im-
prove the performance to 0.25 micro AUC and 0.30
P-R break-even point.

In summary, while the neural models provide
good stand-alone performance, they don’t capture
all of the information required for a prediction of
a conversational turning point. Namely, a substan-
tial signal is carried by a positional information
of where you are in a dialogue (captured by the
sequence length probability), as well as patterns
in how people discuss solutions (Bayesian online
change-point detection).

8 Qualitative Study

In order to gain some understanding of how each
of the methods works, we qualitatively evaluate
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models’ predictions. Full conversation and model
predictions are presented in appendix A. We use
LIME (Ribeiro et al., 2016) to find out which words
are indicative for the positive predictions. We in-
corporated LIME’s to explain the prediction of the
positive (cause of change of mind) class. The way
method works is by first randomly perturbing fea-
tures from the input, and then by learning linear
models on the neighbourhood data to explain the
label of interest. Using this workflow, we extracted
common words for each of the methods and for the
rest of the section we present some of the findings.

If we consider a pair of utterances that contain
group interaction in the form of user mention: “utt1:
<MENTION> any ideas ? utt2: but then again most
people get this wrong then it cant be as easy as we
think surely”. Here both the bag-of-words base-
line and the neural linguistic model classified the
second utterance as a cause of change of mind. In-
terestingly, the models gave weight to different fea-
tures. The bag-of-words identified words such as
“easy”, “people” and “wrong” as important, which
are part of an argument. On the other hand, the neu-
ral linguistic model put by far the highest weight
on the participant mention, which is not related to
the task at hand, but rather to the group dynam-
ics. This observation is also supported by previous
research (Niculae and Danescu-Niculescu-Mizil,
2016; Woolley et al., 2010), which argues that
group dynamics play important role in collabora-
tion.

Looking into the cases where one of the models
predicted a cause of change of mind one utterance
before the cause (as we allow for off by 1 errors),
we consider the following pair of utterances: “then
yeah we d have to make sure two vowels or two even
numbers appear <SEP> so i think you’d just need
to turn over <CARD> and <CARD>”. Here the
neural learning-to-rank model, predicted a cause
of change of mind, and some of the words with
the highest weight were “odd”, “turn”, and “need”.
We hypothesise that the model learned to recog-
nise argument markers as suggestive for a cause of
future change of mind. Similarly, in the example
“<CARD> is not an even we know tat <SEP> that*”
the learning-to-rank model put higher weights on
the words “even”, <CARD> and “know”.

Generally, the qualitative analysis shows that our
best model (learning-to-rank) learnt to recognise
argument cues as indicative of a conversational
turning point. The model identified words that are

related to the task such as card mentions or specific
terms of the Wason card selection task. That said,
this could be a drawback - it is unclear how such
models would perform for a different task, where
the vocabulary is substantially different.

9 Conclusions

In this work, we investigated methods for detect-
ing the utterances that make someone change their
mind, in the context of a recently introduced dataset
containing group discussions of people collaborat-
ing to solve a task. We demonstrate that the best
performance is achieved by combining a text-based
model with a language-agnostic ones (such as po-
sitional information). In future work, we want to
leverage the proposed approach to develop a system
that can generate utterances that cause a change of
mind in order to enhance group decision-making.
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A Dialogue example and model
predictions

Utterance Gold OCP Hazard SeqLen Ling BoW L2R
What did you guys say was the answer ? 1 0 0 0 1 0 0
<CARD> is not an even we know tat 0 0 0 0 0 0 0
that * 0 0 0 0 0 0 1
i put <CARD> and <CARD> , you ? 1 0 0 0 0 0 0
<CARD> , <CARD> and <CARD> 0 0 0 0 0 1 0
Why did you think it was n’t <CARD> ? 1 1 0 0 0 0 0
i chose all 4 cards so clearly mine was n’t the one 0 0 0 0 0 0 0
Urm i m thinking 0 0 0 0 0 0 0
It might be right , we need to discuss 0 0 0 0 0 0 0
what do they exactly mean by turn 0 0 0 0 0 0 0
turn over ? 0 0 0 0 0 0 0
yeah 0 0 0 0 0 0 0
I assumed so 0 0 0 0 0 0 0
So what reasoning did you guys use for the cards you
picked

0 0 0 0 0 0 0

they said most peope get this wrong so i m just won-
dering if they are trying to be cheeky by rotating them

0 0 0 0 0 0 0

why did you guys put your answers down ? 1 0 0 0 0 0 1
No , I think it means turning them over like onto the
other side

0 0 0 0 0 0 0

Okay , I thought we need <CARD> because we need
to see if there is a vowel on the other side

0 0 0 0 0 0 1

The same for <CARD> but the other way around 0 0 0 0 0 0 0
yeah makes sense 1 0 0 0 0 0 0
And <CARD> to see if the ’ All ’ section of the
statement is correct

0 0 0 0 1 0 1

<MENTION> any ideas ? 0 0 0 0 0 0 0
but then again most people get this wrong then it cant
be as easy as we think surely

1 0 0 0 1 1 0

Probably not 0 0 0 0 0 1 0
So do we think we should flip <CARD> ? 1 0 0 0 0 0 0
then yeah we d have to make sure two vowels or two
even numbers appear

0 0 0 0 0 0 1

so i think you d just need to turn over <CARD> and
<CARD>

0 0 0 1 0 0 1

Why not <CARD> ? 1 0 0 0 0 0 0
yeah and <CARD> like you said 0 0 0 0 0 1 0
i m happy with that if you guys are 0 0 0 1 1 0 0
I am 0 0 0 0 1 1 0
yeah m happy with that 0 0 0 0 0 0 0
i m * 0 0 0 0 0 0 0
So <CARD> , <CARD> and <CARD> ? 1 0 0 0 1 0 1
<CARD> , <CARD> & <CARD> 0 0 0 0 0 1 1
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Abstract

Goal oriented dialogue systems were originally
designed as a natural language interface to a
fixed data-set of entities that users might in-
quire about, further described by domain, slots
and values. As we move towards adaptable
dialogue systems where knowledge about do-
mains, slots and values may change, there is
an increasing need to automatically extract
these terms from raw dialogues or related non-
dialogue data on a large scale. In this paper,
we take an important step in this direction by
exploring different features that can enable sys-
tems to discover realizations of domains, slots
and values in dialogues in a purely data-driven
fashion. The features that we examine stem
from word embeddings, language modelling
features, as well as topological features of the
word embedding space. To examine the util-
ity of each feature set, we train a seed model
based on the widely used MultiWOZ data-set.
Then, we apply this model to a different corpus,
the Schema-Guided Dialogue data-set. Our
method outperforms the previously proposed
approach that relies solely on word embeddings.
We also demonstrate that each of the features
is responsible for discovering different kinds of
content. We believe our results warrant further
research towards ontology induction, and con-
tinued harnessing of topological data analysis
for dialogue and natural language processing
research.

1 Introduction

Dialogue systems are becoming increasingly pop-
ular as natural language interfaces to complex ser-
vices. Goal-oriented dialogue systems, which we
see as the main area of application of the results

presented here, are intended to be capable of con-
versing with a user to solve one or more tasks. They
need to provide factual information and plan ahead
over the course of multiple turns of dialogue. Thus,
they differ fundamentally from chat-based dialogue
systems, which aim to engage the user in interest-
ing conversation by offering entertainment. Chat-
based systems have been successfully trained using
fully end-to-end approaches founded on large pre-
trained models (Adiwardana et al., 2020; Lin et al.,
2020; Zhang et al., 2020; Thoppilan et al., 2022).
In contrast, state-of-the-art goal-oriented dialogue
systems continue to rely on a pre-defined ontology:
a database comprising domains (i.e., general topics
for interaction), slots (constructs belonging to a par-
ticular topic), and values (concrete instantiations
of such constructs) (Ultes et al., 2017; Zhu et al.,
2020; Kulhánek et al., 2021; Peng et al., 2021; Lee,
2021; He et al., 2022).

Consequently, state-of-the-art goal-oriented dia-
logue systems still have a high reliance on manual
labour. Firstly, the underlying ontology needs to
be manually designed for each domain of conver-
sation (Milward and Beveridge, 2003). Secondly,
the dialogue system needs to learn from a certain
amount of dialogue data labelled with concepts
from that ontology in order to recognize and un-
derstand these concepts in context (Young et al.,
2013). This manual annotation is again challeng-
ing, time-consuming and expensive (Budzianowski
et al., 2018). There is thus a strong need for meth-
ods that can automate ontology construction from
raw data. Moreover, ontology construction from
raw dialogue data would have two-fold benefits:
the dialogue data would be labelled automatically
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as the ontology is constructed, thus rendering any
human involvement unnecessary.

In this work, we concentrate exclusively on the
first step of ontology construction: term extraction.
The terms relate to regions of importance in the
raw text. The subsequent steps of ontology con-
struction, which we do not consider here, usually
involve some form of clustering to boil down the
extracted terms to a smaller number of concepts be-
fore they are finally organized into a full ontology.

Traditionally, term extraction begins by extract-
ing terms based on frequency, in a way that aims
to maximize recall (Nakagawa and Mori, 2002;
Wermter and Hahn, 2006). As frequency alone is a
fairly primitive feature, this first step has close to
zero precision and typically results in far too many
terms. This makes further substantial filtering
necessary within the term extraction step (Frantzi
and Ananiadou, 1999). Filtering typically relies
on heuristics or pre-existing natural language pro-
cessing (NLP) models that have been trained on
unrelated data, e.g., semantic parsers (Bourigault
and Jacquemin, 1999; Aubin and Hamon, 2006).
Heuristics as well as NLP models require substan-
tial amounts of linguistic expertise to be created.

In this work, we take a purely data-driven ap-
proach toward dialogue term detection to circum-
vent these limitations. The high dimensional data
spaces arising from word embeddings are hard to
understand and visualize. Topological data analysis
(TDA) is a collection of mathematical tools which
provides measurements of the geometry of high-
dimensional point clouds at various scales. The
major advantage of topological features is their in-
variance under small deformations and rotations,
as opposed to the coordinates of the embedding
vectors. This leads to characteristics that are very
generalizable and not dependent on the exact data
set used for training. The utility of TDA for NLP
and dialogue modelling in particular are still under-
explored. We believe that information that can be
gathered using topological methods has consider-
able predictive power concerning term extraction,
which to the best of our knowledge we exploit with
this work for the very first time.

Starting from the approach of Qiu et al. (2022),
we train a BIO-tagging (Ramshaw and Mar-
cus, 1995) model on the widely used Multi-
WOZ (Budzianowski et al., 2018) data-set as the
seed set by fine-tuning general purpose large pre-
trained language models. Our BIO-tagger accepts

various features as input, all of which uniquely
contribute to solving the task. We measure the
zero-shot transfer ability of our proposed models
on the Schema-Guided Dialogue (Rastogi et al.,
2020) data-set, another well-established large-scale
corpus for dialogue modelling. Our contributions
are as follows:

• We present novel features to solve the term ex-
traction task. Our experimental results show sig-
nificant improvements over a strong baseline, a
recently proposed model that only takes contex-
tual word embeddings as input.

• We demonstrate the suitability of masked lan-
guage modelling scores to predict relevant terms.

• We exhibit the suitability of a range of topologi-
cal features of neighbourhoods of word vectors to
predict terms of relevance, including terms that
are not present in the original seed training set.

• We make our code publicly available.1

Our proposed method for term extraction lever-
ages semantics as well as information gained from
topological data analysis. No element of our ap-
proach requires linguistic knowledge, nor do we
rely on any heuristics. Our models are either
trained from scratch using a seed data-set, or lever-
age the predictive power of pre-trained and then
fine-tuned large general purpose language models.
These models learn via self-supervision on large
corpora, and our additional training only requires a
moderate amount of labelled seed data.

2 Related Work

It is normally assumed that the ontology is provided
and built independently of the dialogue system. For
instance, in information seeking dialogue systems,
this would be a structured representation of the
database. Approaches to ontology learning from
texts generally involve enriching a small ontology
with new concepts and new relationships using text
mining methods such as linguistic techniques and
lexico-syntactic patterns (Pantel and Pennacchiotti,
2006; Aguado De Cea et al., 2008), clustering tech-
niques (Agirre et al., 2000; Witschel, 2005), statis-
tical techniques (Sugiura et al., 2003) and associ-
ation rules (Bodenreider et al., 2005; Gulla et al.,
2009). The majority of these methods require some
form of human intervention. The potential of ma-
chine learning in this area has been demonstrated

1http://doi.org/10.5281/zenodo.6858565
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in the Never-Ending Language Learning (NELL)
project (Mitchell et al., 2018). NELL learns fac-
tual knowledge from years of self-supervised ex-
perience in harvesting the web, using previously
learned knowledge to improve subsequent learning.

In the pipeline of knowledge base construction,
term extraction is typically the first step. One exam-
ple of a term extractor is presented in (Sclano and
Velardi, 2007). It uses a part-of-speech (POS) tag-
ger to select nouns, verbs and adjectives to which
a number of heuristic frequency-based probabilis-
tic models are applied to select term candidates.
WordNet (Fellbaum, 1998) is employed to handle
misspellings. A number of more recent methods
for knowledge base construction start with a similar
approach as Sclano and Velardi (2007). In (Romero
and Razniewski, 2020) we can also see heavy re-
liance on frequency, the use of dependency parsers
in (Nguyen et al., 2021), as well as rules based
on lexical and numerical features and the use of
WordNet as in (Chu et al., 2019).

A notable example of dialogue ontology induc-
tion is presented in (Hudeček et al., 2021), where
a rule-based semantic parser is used as a starting
point to propose an initial set of concepts. A more
data-driven approach is presented by Qiu et al.
(2022) who proposed training a BIO-tagger on fine-
tuned contextual embeddings to induce slots. The
approach is validated on MultiWOZ via leave-one-
out domain experiments. We take this work as a
starting point. In very recent work, Yu et al. (2022)
propose ontology induction using language mod-
elling attention maps and regularized probabilistic
context free grammar to detect regions of interest
in text, followed by clustering. This work is com-
plementary to ours, and it would be interesting to
explore its combination with our proposal.

The ‘Beyond domain APIs’ track of the 9th di-
alog system technology challenge (DSTC9) (Gu-
nasekara et al., 2020) aimed to remove friction in
task-oriented dialogue systems where users might
issue a request that is out of a system’s scope.
While DSTC9 aimed to integrate non-dialogue data
into dialogue, none of the challenge submissions
attempted ontology construction or expansion.

Topological data analysis remains largely
underutilized in natural language processing.
One notable exception is the work presented
by Jakubowski et al. (2020). It shows that the
Wasserstein norm of degree zero persistence of
punctured neighbourhoods in a static word embed-

Figure 1: Illustration of the Vietoris-Rips complex VRε

for four different values of ε.

ding correlates with the polysemy of a word. Ty-
mochko et al. (2021) apply persistent homology
to word embedding point clouds with the goal of
distinguishing fraudulent from genuine scientific
publications. Their best performing model utilizes
persistence features derived from time-delay em-
beddings of term frequency data. Kushnareva et al.
(2021) compute persistent homology of a filtered
graph constructed from the attention maps of a pre-
trained language model and harness the features
for an artificial text detection task.

3 Background on TDA

Topological data analysis (TDA) is an emerging
toolkit of mathematical methods for analysing the
‘shape’ of data. In our case, we study point clouds
resulting from word vector embeddings, but these
general methods apply equally well to spaces of
sensor data, images, or audio. Topology measures
important features of a geometric space which are
invariant under certain structure preserving trans-
formations such as scaling, rotation, stretching and
bending. Homology quantifies the presence or ab-
sence of d-dimensional holes in a geometric space:
In dimension d = 0 the homology group H0 com-
putes the connected components of a space, while
in dimension d = 1 the group H1 describes the
non-fillable closed loops in the space.

Consider a discrete point cloud P ⊂ RM

equipped with a distance such as the Euclidean
metric or the cosine distance. To apply topologi-
cal tools to P , we need to turn P into a geometric
space. One such ‘geometrization’ is the Vietoris-
Rips complex VRε, which produces, for each non-
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(b) MLM model (subsection 4.2)
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(c) TDA models (subsection 4.3)

Figure 2: Our three main architectures for dialogue term detection. Their main distinction is the type of features
expected as input. Blue denotes trainable model components. For illustration purposes, here n = 6.

negative filtration parameter ε, a simplicial com-
plex, a certain higher-dimensional generalization
of a graph. To construct VRε, we consider a col-
lection of higher-dimensional balls of radius ε cen-
tred at the data points. As ε increases, the balls
grow and merge as in Figure 1. Their overlaps
determine the vertices, edges, triangles and higher-
dimensional pieces of the complex VRε.

The motivation for varying ε is to measure the
‘scale’ or ‘resolution’ of different topological fea-
tures. The filtration parameters ε at which different
k-dimensional holes appear and disappear in VRε

are summarized in a multiset of points in the plane,
visually represented as a persistence diagram as in
Figure 4. Each dot in the diagram corresponds to a
feature. Its horizontal coordinate is the birth time,
its vertical coordinate the death time of the feature.
The farther a dot is away from the diagonal, the
longer the corresponding feature persists across the
range of the parameter ε, and thus the more likely
it is to reflect a large-scale topological property
of the point cloud P . For an overview of persis-
tent homology from a computational perspective,
see Edelsbrunner and Harer (2010).

4 Dialogue Term Detection

4.1 Term Tagging

Our ultimate goal is to extract terms describing
domains, slots and values from raw dialogues. In

order to achieve this, we adopt the BIO-tagging
mechanism presented by Qiu et al. (2022). In the
seed corpus, the spans where concepts occur are
tagged with labels ‘B’ (beginning of concept), ‘I’
(inside of concept) and ‘O’ (outside of concept),
without distinguishing between different concepts.
The baseline model is trained on RoBERTa (Liu
et al., 2019) embeddings as features, and shows
modest generalization capabilities when tested in
leave-one-out domain experiments.

We investigate two fundamentally different fea-
ture sets to increase the generalization capability of
models fine-tuned for BIO-tagging. For each fea-
ture, we use a specific input projection and train a
transformer followed by a token-level classification
head. This architecture is illustrated in Figure 2. As
the models extract different terms depending on the
feature type they are trained on, we use the union of
the predictions of all the TDA models, respectively,
of all the models, to obtain the final set of terms.
One may also build a combined model using all
features as joint input, however due to the nature
of the training this would maximize accuracy and
not recall.

4.2 MLM Model

The first feature set we consider stems from
context-level information captured by large
pretrained masked language models (MLM)
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like BERT (Devlin et al., 2019) and RoBERTa.
Our hypothesis is that, based on how confident
an MLM is in predicting a certain word, we
can infer the meaningfulness of said word.
We introduce the masked language modelling
score (MLM score) s(wi) = 1 − pMLM(wi |
[w1, . . . , wi−1,MASK, wi+1, . . . , wn]) as the
probability that the word wi is not predicted by the
MLM for the MASK token on position i, based on
the context [w1, . . . , wi−1,MASK, wi+1, . . . , wn].
Thus, meaningful words should have a high MLM
score, as illustrated in Appendix C. The total MLM
score swi of a word is the average of all scores of
all appearances of the word in the data-set.

4.3 TDA Models

Topological features allow us to address the follow-
ing problem observed in transfer learning: Tagging
models trained directly on the word embedding
vectors derived from one dialogue data-set do not
generalize well to the embeddings of a different
data-set. We propose the investigation of topolog-
ical features of neighbourhoods of word vectors.
Such topological features capture geometric prop-
erties that are invariant under distance-preserving
transformations of the data points, and are more
generalizable and stable under perturbation than the
word-vectors and language model features them-
selves. Our hypothesis is that these features reflect
properties of words that are data-set independent.

The simplest topological feature we examine is
a codensity vector that measures the data density
in neighbourhoods of various sizes of a given word
vector. A second, far more sophisticated feature
that we utilize is persistence. As explained in sec-
tion 3, persistence detects geometric features of
a data-set at different scales. While degree zero
persistence is closely related to density measures,
higher degree persistence captures more refined in-
formation. Finally, we also investigate the Wasser-
stein norm as a two-dimensional summary of per-
sistence. We now describe these topological de-
scriptors with more mathematical rigour.

Word embedding neighbourhoods Our topolog-
ical tagging models use descriptors derived from
neighbourhoods of words in the embedding space.
The neighbourhoods are defined relative to a point
cloud X ⊂ RM constructed from the word vectors
of an ambient vocabulary embedding. For a given
centre w ∈ RM , let Nn(w) ⊂ X ∪ {w} denote
the subset of the n nearest neighbours of w with re-
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Figure 3: 2-dim. t-SNE projection of the neighbourhood
N50(w) of w = ‘south’. Colours indicate cosine dis-
tance from w in the original 384-dim. embedding space.

spect to cosine distance (including w itself). In our
experiments, we employ neighbourhoods of size
n = 50. See Figure 3 or Appendix A for examples.

The ambient point cloud X in the embedding
space needs to be independent of the specific di-
alogue vocabulary, so that the resulting persis-
tence features of the neighbourhoods remain com-
parable. Our vocabulary consists of the 50,000
most common words in the English language, ex-
tracted from Grave et al. (2018). The embeddings
for the point cloud X are created from the Sen-
tenceTransformers (Reimers and Gurevych, 2019)
paraphrase-MiniLM-L6-v2 model. These
dense embeddings of dimension M = 384 can
be meaningfully compared with cosine similarity.
Note that even though we are using a contextual-
ized model for creating the embeddings, we obtain
a ‘static’ point cloud X containing the 50,000 vo-
cabulary vectors. For building the neighbourhood
Nn(w) of a word w not contained in the ambient
vocabulary X , we first produce w’s SentenceTrans-
formers embedding.

Codensity The k-codensity in a point w of a
point cloud P ⊂ RM is defined as the distance
from w to the kth nearest point in P . Thus,
points with many neighbours at a close distance
have a small codensity, which corresponds to a
large density of the point cloud around the point
w. We construct a 6-dimensional vector c con-
taining the k-codensity of N50(w) at w for k ∈
{1, 2, 5, 10, 20, 40}, with the intention of quantify-
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Figure 4: Persistence diagram of N50(w = ‘south’) for
H0 (blue dots) and H1 (orange dots) and corresponding
persistence images (left: H0, bottom: H1).

ing the neighbourhood density at various scales.

Persistence We produce the persistence diagram
(PD) of the sub-point-cloud Nn=50(w) ⊂ R384

with filtration parameter in the range [0, 1] using co-
sine distances. Practically, we apply Ripser (Bauer,
2021) and its Python interface (Tralie et al.,
2018) for computations of H0 and H1 with F2-
coefficients. We restrict to 0- and 1-dimensional ho-
mology to keep the computational costs reasonable.
The resulting persistence diagram is a multiset of
points in the unit square [0, 1]2, as in Figure 4.

Before we can pass the persistence diagrams
into the tagging model, we have to apply a vec-
torization step, i.e., map the persistence diagrams
into a space which is suitable for training machine
learning classifiers. For this we use persistence im-
ages (Adams et al., 2017), a short overview of the
construction and our choice of parameters is given
in Appendix B. Figure 4 contains an example of the
persistence images for the ‘south’ neighbourhood.

Wasserstein norm The Wasserstein distance is
a commonly applied measure of similarity of per-
sistence diagrams (Cohen-Steiner et al., 2010). In
our case, it is a rough numerical estimate of the
similarity of the shapes of neighbourhoods. The
Wasserstein norm ∥D∥ is the Wasserstein distance
from D to the empty diagram. For construct-
ing the input features of the Wasserstein mod-
els, we compute the order-1 Wasserstein distances
with Euclidean ground metric using the GUDHI
library (The GUDHI Project, 2022) separately for
the H0 and H1 persistence diagrams, leading to a

2-dimensional Wasserstein input vector ω.

4.4 Training & Inference

The MLM score model (Figure 2b) and the TDA
models (Figure 2c) use the following input pro-
jections of the respective input features: The
100-dimensional H0 persistence image vector and
30 × 100-dimensional H1 persistence image are
passed into the model independently and concate-
nated after downscaling H1 to dimension 396 via a
convolutional layer with kernel size 35× 25. Then
they are input to a transformer with hidden dimen-
sion h = 496 and 8 attention heads. The trans-
former output is the input for a token-level classifi-
cation head after passing through a dropout layer.
The 6-dimensional codensity vector c, the 2-
dimensional Wasserstein norm vector ω and the
single-dimensional MLM score s are all upscaled
to hidden dimension h = 128 via a 2-layer fully
connected neural network to expand the represen-
tation space, before being put into three separate
transformers with hidden dimension h = 128 and
16 attention heads. The transformer sequence
output passes through a dropout layer into the
token-level classification head. The token-level
classification head consists of a dropout layer, a
feed-forward layer with hidden dimension h, an-
other dropout, tanh for activation and an output
projection to dimension 3 corresponding to the
three possible BIO tags. The classification head is
based on the implementation in the HuggingFace
library (Wolf et al., 2019), where the dropout rate
for all layers is 0.1.

We utilize RoBERTa encoders in two of our mod-
els (see Figure 2), once to obtain MLM scores with
fixed parameters, and once to obtain contextual
semantic embeddings after fine-tuning on the BIO-
tagging task. We train each model on MultiWOZ
with cross-entropy loss and a learning rate of 4e−5
using the AdamW optimizer (Loshchilov and Hut-
ter, 2019), warm-up for 10% of total training steps
and linear decay afterwards. We train for 15 epochs,
with training stopping early if the loss on the val-
idation set stays within a range of δ = 0.005 and
batch size 128 on one NVIDIA Tesla T4 GPU. For
the much smaller training data in the leave-one-out
experiments, the batch size is decreased to 32.

5 Experiments

We conducted experiments to answer the following
questions: (1) Is it possible to train a model on
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Figure 5: Percentage of extracted terms which were
already seen during training or are only seen on SGD
during test time.

the seed data-set that achieves a high recall rate on
the unseen ontology? (2) Which of the proposed
features is most valuable for that purpose? (3) What
kind of concepts is the model able to find?

Note that we are mainly focusing on recall as
evaluation measure, while retaining the F1-score
of the baseline model. Improvements in precision
can be achieved with further post-processing, such
as clustering (Qiu et al., 2022; Yu et al., 2022).

5.1 Data-sets

We use two well-established data-sets for
modelling task-oriented dialogues. Multi-
WOZ (Budzianowski et al., 2018; Eric et al., 2020)
is a corpus of human-to-human dialogues that were
collected in a Wizard-of-Oz fashion. Each conver-
sation has one or more goals that revolve around
seeking information about or booking tourism-
related entities. The data-set consists of over
10,000 dialogues covering 6 domains. There are 30
unique domain-slot pairs that take approximately
4,500 unique values. Value occurrences are anno-
tated with span labels. MultiWOZ is the seed set
for training all of our term extraction models.

The Schema-Guided Dialogue (SGD) data-
set (Rastogi et al., 2020) is considerably larger
than MultiWOZ, with dialogues spanning across
20 domains that represent a wide variety of ser-
vices. The number of unique values is almost four
times larger than in MultiWOZ. This means that
any model trained on the significantly more narrow
MultiWOZ seed data would need to be able to gen-
eralize extremely well to achieve reasonable term
extraction performance on SGD. Therefore, SGD
is an ideal data-set for our zero-shot experiments.

5.2 Set-up

In order to investigate the models’ ability to ex-
tract terms in an unseen domain, we design two
experiments. First, we conduct a leave-one-out
domain experiment on MultiWOZ, similar to the
approach taken by Qiu et al. (2022), with two im-
portant differences. We focus mainly on recall as

Approach Measure Taxi Rest. Hotel Attr. Train

RoBERTa F1 0.87 0.81 0.68 0.91 0.84

embeddings Recall 0.87 0.89 0.95 0.94 0.92
Precision 0.87 0.76 0.53 0.89 0.77

MLM F1 0.44 0.47 0.32 0.42 0.57

score Recall 0.43 0.48 0.69 0.53 0.72
Precision 0.46 0.46 0.21 0.35 0.47

Persistence F1 0.72 0.61 0.41 0.63 0.65
image Recall 0.79 0.69 0.87 0.65 0.92
vectors Precision 0.67 0.54 0.27 0.61 0.50

F1 0.57 0.46 0.38 0.51 0.62
Codensity Recall 0.51 0.48 0.64 0.59 0.76

Precision 0.64 0.44 0.27 0.45 0.52

Wasserstein F1 0.57 0.50 0.45 0.46 0.48

norm Recall 0.58 0.53 0.46 0.51 0.69
Precision 0.57 0.47 0.45 0.43 0.37

TDA F1 0.65 0.53 0.33 0.52 0.47

features Recall 0.84 0.81 0.89 0.84 0.94
Precision 0.53 0.39 0.20 0.37 0.31

Union F1 0.65 0.53 0.26 0.49 0.44

prediction Recall 0.95 0.92 0.97 0.98 0.98
Precision 0.50 0.37 0.15 0.33 0.28

Table 1: Leave-one-out results on MultiWOZ.

the adequate evaluation measure for term extrac-
tion, and we do not allow partial matches of the
tagged term. When designing the matching func-
tion, we were guided by the tolerance threshold
of a picklist-based dialogue state tracker. For ex-
ample, the term extractor is allowed to match ‘an
expensive’ with the golden term ‘expensive’, as
having a non-content word in the term would make
no difference to the tracker. However, matching
‘Pizza Hut’ with the golden term ‘Pizza Hut Cherry
Hinton’ is considered a false positive, as ‘Pizza
Hut’ would not be precise enough for the tracker to
distinguish entities. Note that such matches were
considered by Qiu et al. (2022) as true positives, so
our matching function is stricter. For both training
and testing we limit ourselves to user utterances, as
the system utterances may contain API calls, which
is already structured data.

For the second experiment, we train our models
on the training portion of the MultiWOZ data-set
and test it on the SGD data-set. We then examine
the overlap in true positives between models using
different features. We also analyse the models’ abil-
ities to extract terms referring to different domains
and slots, highlighting easy and difficult terms.

5.3 Results

Leave-one-out domain We remove one of the
five MultiWOZ domains in training and only test
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Approach F1 ↑ Rec. ↑ Prec. ↑ L2 ↓ Tags

RoBERTa emb. 0.45 0.35 0.63 0.29 2757
MLM score 0.34 0.34 0.35 0.35 4933
PI vectors 0.47 0.46 0.48 0.20 4775
Codensity 0.37 0.34 0.42 0.52 4054
Wasserst. n. 0.42 0.40 0.44 0.62 4536
TDA features 0.48 0.63 0.39 - 8189
Union pred. 0.48 0.74 0.36 - 10398

Table 2: Dialogue term extraction results on SGD with
models trained on MultiWOZ together with the total
number of tagged terms per model. There are 5008
target terms in SGD. L2-norm is used as uncertainty
measure for the single models.

TDA features

RoBERTa embeddings
MLM score

Persistence image vectors
Codensity
Wasserstein norm

Groundtruth

Venn-Diagram of the main features Venn-Diagram of the TDA features
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Figure 6: Venn-Diagram of SGD terms found in each
of the three models using RoBERTa, MLM score, TDA
features, as well as analysis of term overlap of the mod-
els trained on different TDA features.

on it, so the model has not seen any dialogues in
the left-out domain. We only utilize single domain
dialogues in the training and test set. Results in Ta-
ble 1 show that the recall increases for each unseen
domain experiment when adding the predictions
by the models trained on persistence and language
modelling features to form the union prediction.

Unseen ontology The results in Table 2 show that
adding the predictions of the new feature models
improve both recall and F1-score significantly for
term extraction on the unseen SGD ontology com-
pared to the language model only baseline, without
the need to fine-tune the embeddings on the token
classification task with any SGD data. In Figure 5
the percentage of completely new terms found in
the predictions of each model is shown. The TDA
feature model predictions contain mostly unseen
terms. Confidence scores would be critical in a sub-
sequent automatic ontology construction. We com-
pare the L2-norm of the model’s predictions to the
ground truth label, showing that the model trained
on persistence image vectors from MultiWOZ has
the highest confidence score on the unseen SGD
data.
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Figure 7: Recall per domain on SGD by our models
compared with the baseline fine-tuned RoBERTa model.

Overlap Figure 6 shows that the sets of extracted
terms differ significantly by model. Therefore, the
union of predictions is useful for capturing as many
relevant terms as possible. The MLM score model
already adds more terms to the fine-tuned language
model. The topological features, however, by far
supply the biggest portion of new terms. Among
the different TDA features, the persistence images
yield the largest number of additional terms.

Domain and slot coverage Figure 7 demon-
strates that the different models find various
amounts of terms depending on the domain. The
recall of the TDA models is the highest across all
domains, while RoBERTa is only able to outper-
form the MLM score model in terms of recall in
5 out of 20 domains, e.g., in ‘music’ and ‘restau-
rants’, which contain many multi-word terms.

Examples False negatives tend to be long multi-
word terms, as exemplified in Table 3. False posi-
tives predominantly include typos and incomplete
terms. Predictions by RoBERTa contain 2.0 words
on average. In contrast, the MLM score model and
TDA feature model term predictions have an aver-
age length of 1.6 and 1.8 words, respectively. We
give an illustrative instance of terms extracted by
the different models from an example utterance in
Table 4.

6 Discussion and Future Outlook

Our novel term extraction approach based on topo-
logical data analysis and masked language mod-
elling scores significantly outperforms the word-
embedding-based baseline on the recall rate both
in leave-one-out experiments and when applied to
a completely different corpus. Importantly, our re-
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Seen in MultiWOZ Only seen in SGD False negatives False positives

Lebanese; Hotel Indigo London-
Paddington; LAX International
Airport; The Queen’s Gate Ho-
tel; Hair salon

Delta Aesthetics; Mc-
Donald’s; 3455 Home-
stead Road; receiver;
Pescatore

Little Hong Kong; Yankees vs.
Rangers; Dr. Eugene H. Burton III;
341 7th street; La Quinta Inn by Wyn-
dham Dacramento Downtown

Especillay by; Bears
vs; Angeles and; Polk
Street; theater please;
resrevation; neaarby

Table 3: Example predictions of the Union model on SGD (typos are reproduced as they appear in the data-set).
Examples for each of our other models can be found in Appendix E.

i ’ d like to find a steakhouse that ’ s not very costly to eat at .

RoBERTa embeddings steakhouse not
MLM score ’ steakhouse that
TDA features steakhouse costly

Table 4: Example of a normalized, tokenized utterance together with terms extracted by the different models.
Unconnected boxes indicate separate terms, i.e., here the MLM score model assigned a B tag to ’steakhouse’ and a
B tag to ’that’. More example utterances can be found in Appendix E.

sults demonstrate a strong ability of topological
data analysis to extract domain independent fea-
tures that can be used to analyse unseen data-sets.
This finding warrants further investigation.

Our approach still produces a significant number
of false positives. The next step in the ontology con-
struction pipeline, clustering, could be deployed
to significantly reduce that number, as has already
been demonstrated by Yu et al. (2022). We be-
lieve that their approach and our approach could be
combined, but that goes beyond the scope of this
work.

However, ultimately, precision is only of sec-
ondary importance. In a typical goal oriented sys-
tem, we have a dialogue state tracker tracking con-
cepts through conversation. Whether or not the
tracker is tracking some irrelevant terms does not
impact the overall performance of a dialogue sys-
tem. All that matters is that the tracker does track
every term that actually is a concept. Of course, the
computational complexity of the tracker increases
linearly with the number of tracked terms (Heck
et al., 2020; van Niekerk et al., 2020; Lee et al.,
2021). But, as can be seen from Table 2, our
method merely doubles the number of terms, so the
computational price tag is low. With this in mind,
it is also conceivable that the tracker itself could be
utilized to increase the precision. This would be an
interesting direction for further research.

Some simpler options for improvement are more
immediate: Here, we utilize SentenceTransform-
ers only to provide static embeddings for each
word, but of course a similar analysis can be ap-
plied to contextualized word embeddings, at the
expense of higher computational complexity. Fur-

ther, persistence images (subsection 4.3) could be
replaced by features tailored to downstream tasks,
such as features obtained from the novel Persformer
model (Reinauer et al., 2021).

7 Conclusion

To the best of our knowledge, we present the first
application of topological features in dialogue term
extraction. Our results show that these features
distinguish content from non-content words, in a
way that can be generalized from a training domain
to unseen domains. We believe that these findings
are only the tip of the iceberg, and warrant fur-
ther investigation of topological features in NLP in
general. In addition, we have shown that masked
language modelling scores are useful for term ex-
traction as well. In combination, the features we
investigate allow us to make a significant step to-
wards automatic ontology construction from raw
data.
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browius. 2020. Topology of word embeddings: Sin-
gularities reflect polysemy. In Proceedings of the
Ninth Joint Conference on Lexical and Computa-
tional Semantics (*SEM), pages 103–113, Barcelona,
Spain (Online). Association for Computational Lin-
guistics.
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A Neighbourhoods and Persistence
Diagrams

We produce a table with various figures of neigh-
bourhoods, their persistence diagrams, Wasserstein
norm vectors and codensity vectors in Figure 8.

B Details about the Persistence Diagram
Vectorization Step

We used the scikit-tda/persim library (Saul and
Tralie, 2019) in the practical implementation of
persistence images.

As a first step, the (birth, death) coordinates of
the dots in the persistence diagram are transformed
into (birth, lifetime = death − birth) coordinates.
We then place a Gaussian kernel with variance
σ = 0.0007 onto each point in the (birth, lifetime)
diagram, linearly weighted by the lifetime. We sum
up the various probability distributions and then in-
tegrate the resulting function over the patches of a
rasterization with a pixel size of 0.1 of the image
plane. Adams et al. (2017) discuss that the per-
formance of the resulting persistence images for
downstream tasks is robust in the choices of these
parameters. As usual in the Vietoris-Rips filtration,
the birth of all the 0-dimensional homology classes
in H0 occur for radius ε = 0, and we consider the
persistence features in the range [0.0, 1.0]. Thus,
we only pass the 0th column of the generated H0

persistence image to the model, which is a 100-
dimensional vector. For the H1 persistence image,
we take the entire birth range [0.0, 1.0] and per-

sistence range [0.0, 0.3] into account, so that the
image has dimensions 100× 30.
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Figure 8: 2-dimensional t-SNE projection of the neighbourhoodN50(w); corresponding Persistence diagram; 2-dim.
Wasserstein norm vector (for H0 and H1); 6-dim. codensity vector (for k ∈ {1, 2, 5, 10, 20, 40}).
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C Masked Language Modelling Score
Examples

In Table 5 the MLM scores on MultiWOZ and SGD
of example words show that the score is high for
meaningful words across data-sets.

Word Score on MultiWOZ Score on SGD

cheap 0.96 0.92
restaurant 0.86 0.86
the 0.59 0.63
how 0.70 0.67
not 0.45 0.50

Table 5: Masked language modelling score examples.

D Further Experimental Results

See Table 6, Table 7, Table 8 and Table 9 for further
experimental results.

E Further Example Tags

See Table 10 for more utterances with the corre-
sponding tags by the different models and Table 11
for an analysis of which terms tagged by each
model were already seen in MultiWOZ.
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MultiWOZ SGD

Approach F1-Score Recall Precision F1-Score Recall Precision

RoBERTa embeddings 0.80 0.91 0.72 0.45 0.35 0.63
MLM scores 0.38 0.83 0.25 0.34 0.34 0.35
Persistence image vectors 0.53 0.87 0.38 0.47 0.46 0.48
Codensity 0.42 0.76 0.29 0.37 0.34 0.42
Wasserstein norm 0.37 0.65 0.26 0.42 0.40 0.44
TDA features together 0.33 0.89 0.20 0.48 0.63 0.39
Union prediction 0.28 0.96 0.17 0.48 0.74 0.36

Table 6: Results of all models trained on MultiWOZ and tested on MultiWOZ and SGD.

Approach MultiWOZ SGD

RoBERTa embeddings 816 2757
MLM score 2174 4933
Persistence image vectors 1464 4775
Codensity 1658 4054
Wasserstein norm 1631 4536
TDA features 2867 8189
Union prediction 3712 10398

Table 7: Total number of terms tagged on MultiWOZ and SGD broken down per model trained on MultiWOZ. For
reference, there are 645 target terms in total in MultiWOZ and 5008 in SGD.

MultiWOZ SGD

Approach F1-Score Recall Precision F1-Score Recall Precision

RoBERTa embeddings 0.65 0.92 0.50 0.83 0.88 0.78
MLM scores 0.32 0.76 0.21 0.37 0.33 0.44
Persistence image vectors 0.45 0.84 0.31 0.76 0.80 0.73
Codensity 0.37 0.69 0.25 0.50 0.49 0.51
Wasserstein norm 0.40 0.78 0.27 0.53 0.54 0.52
TDA features together 0.30 0.92 0.18 0.64 0.88 0.50
Union prediction 0.23 0.98 0.13 0.61 0.98 0.44

Table 8: Results of all models trained on SGD and tested on MultiWOZ and SGD.

Approach F1-Score Recall Precision

RoBERTa embeddings 0.87 0.91 0.84
MLM scores 0.53 0.76 0.41
Persistence image vectors 0.75 0.87 0.66
Codensity 0.59 0.70 0.52
Wasserstein norm 0.53 0.62 0.46
TDA features together 0.57 0.92 0.41
Union prediction 0.50 0.97 0.33

Table 9: Results of all models trained on MultiWOZ and tested on the MultiWOZ test set only.
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utterance the curse of la llorona is a good one

RoBERTa embeddings
MLM score la good one
Persistence image vectors la llorona
Codensity la
Wasserstein norm

utterance i ’ m bored . get me some tickets for an activity .

RoBERTa embeddings
MLM score
Persistence image vectors activity
Codensity
Wasserstein norm

utterance what other therapists are there ?

RoBERTa embeddings
MLM score
Persistence image vectors
Codensity therapists
Wasserstein norm

utterance later on . for now i want to know the weather in there next wednesday .

RoBERTa embeddings wednesday
MLM score . i wednesday
Persistence image vectors wednesday
Codensity weather wednesday
Wasserstein norm

utterance do you know a place where i can get some food ?

RoBERTa embeddings place food
MLM score food
Persistence image vectors place food
Codensity place food
Wasserstein norm food

utterance what time does the show begin ?

RoBERTa embeddings time
MLM score show
Persistence image vectors time
Codensity time
Wasserstein norm time

Table 10: More examples of tokenized utterances together with terms extracted by the different models.
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Model Seen in MultiWOZ Only seen in SGD False negatives False positives

RoBERTa
emb.

Sushi Yoshizumi; Sales-
force transit center; Jojo
Restaurant & Sushi Bar;
bistro liaison; Eric’s
Restaurant; K&L Bistro

Arizona vs. LA Dodgers;
El Hombre; Arcadia; 795
El Camino Real; Owls
vs. Tigers; Green Chile
Kitchen;

visit date; unapologetic;
134; The Motans; JT
Leroy; Orchids Thai;
251 Llewellyn Avenue;
12221 San Pablo Avenue;
Menara Kuala Lumpur;

Meriton; Rodeway Inn;
Stewart; Embarcadero
Center; Elysees; Shattuck;
LAX; El; attractionin

MLM
score

350 Park Street; Double-
tree by Hilton Hotel San
Pedro - Port of Los Ange-
les; 24; Show Time; Up
2U Thai Eatery; 25; 381
South Van Ness Avenue;
Broken English

Olly Murs; Bret Mcken-
zie; football game: USC
vs Utah; stage door;
1012 Oak Grove Avenue;
’Mamma Mia; John R
Saunderson; Alderwood
Apartments

630 Park Court; Unapolo-
getic; visit date; The
Motans; V’s Barbershop
Campbell; 101 South
Front Street #1; 134;
Orchids Thai

humid then; others?; rad;
wa; outdoor; alright, I; val-
ley; spoke; webster; a song

PI vectors Trademark Hotel; Dorsett
City; London; Center
Point Road O’Hare Inter-
national Airport; Maya
Palenque Restaurant; Casa
Loma Hotel

Claude de Martino; Nero;
Toronto FC vs Crew; Writ-
ten in Sand; Emmylou
Harris; Helen Patricia;
Palo Alto Caltrain Station;
Jack Carson

Shailesh Premi; Gorgasm;
157; Dad; destination city;
serves alcohol 2556 Tele-
graph Avenue #4; Glory
Days; The Park Bistro &
Bar; Arcadia Sessions at
The Presidio

Maggiano; XD; sexist
scum; fir; red chillies;
morning instead; capitol;
Robin; !!! if so; free

Codensity Tell me you love me; den-
tist name; The American
Hotel Atlanta Downtown
- A Doubletree by Hilton;
Dim Sum Club; Le Ap-
ple Boutique Hotel KLCC;
555 Center Avenue

Hyatt Place New
York/Midtown-South;
colder weather; ’Little
Mix; Commonwealth;
3630 Balboa Street; New-
ton Faulkner; directed by;
How deep is your love

visit date; Unapologetic;
134; The Motans; V’s
Barbershop Campbell; 101
South Front Street #1; Or-
chids Thai; 12221 San
Pablo Avenue

and humid; vapour; 5:15;
corect; names; flight leav-
ing; collect; tiresome;
Marriott

Wasserstein
norm

Wence’s Restaurant; Miss
me more; restaurant reser-
vation; 1118 East Pike
Street; El Charro Mexican
Food & Cantina; Murray
Circle Restaurant

Broderick Roadhouse;
Mets vs. Yankees; 226
Edelen Avenue; 1030;
162; Phillies vs. Cubs;
1110; Diamond Platnumz;
’2664 Berryessa Road
#206; Oliveto

Anaheim Intermodal Cen-
ter; Sangria; Vacation Inn
Phoenix; 1776 First Street;
After the Wedding; Mikey
Day

loacation; enoteca; salone;
balances; overseas; mars;
help; Angeles and; 4:15;
niles; titale; frmo; Oracle
park

TDA
features
together

1300 University Drive #6;
The American Hotel At-
lanta Downtown - A Dou-
bletree by Hilton; Mil-
lennium Gloucester Hotel
London Kensington

4087 Peralta Boulevard;
Power; Hyang Giri;
Okkervil River; event
location; 320; Jordan
Smith; Caffe California;
Ruth Bader Ginsburg;
Neil Marshall; 171; 1599
Sanchez Street

Out of Love; Alderwood
Apartments; has garage;
168; GP visit; Catama-
ran Resort Hotel and Spa;
Dodgers vs. Diamond-
backs; Showplace Icon
Valley Fair; West Side
Story

venu; being; replaced;
parking; Okland; times;
comments; pond; crowd;
flick; 1,710; Blacow Road;
Kathmandu

Table 11: Prediction examples of the different models on SGD (typos are reproduced as they appear in the data-set).
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Abstract

A Natural Language Understanding (NLU)
component can be used in a dialogue system
to perform intent classification, returning an
N -best list of hypotheses with corresponding
confidence estimates. We perform an in-depth
evaluation of 5 NLUs, focusing on confidence
estimation. We measure and visualize cali-
bration for the 10 best hypotheses on model
level and rank level, and also measure classi-
fication performance. The results indicate a
trade-off between calibration and performance.
In particular, Rasa (with Sklearn classifier) had
the best calibration but the lowest performance
scores, while Watson Assistant had the best
performance but a poor calibration.

1 Introduction

Natural Language Understanding (NLU) is an im-
portant component in dialogue systems. One of
the typical tasks of NLU is intent classification:
given a user utterance, the NLU returns a list of
N hypotheses (an N -best list) ranked according
to confidence estimates (a real number between 0
and 1). The highest ranking hypothesis is returned
by the NLU as the predicted intent. Confidence
estimates are also available for lower ranked hy-
potheses.

In this study, we evaluate confidence estima-
tion in 5 NLU services, namely Watson Assis-
tant, Language Understanding Intelligent Service
(LUIS), Snips.ai and Rasa (with two pipelines
Rasa-Sklearn and Rasa-DIET). We measure the
calibration and the performance of NLUs on rank
level (results for a specfic rank) and on model level
(aggregated results of all ranks). Calibration here
refers to the correlation between confidence esti-
mates and accuracies, i.e. how useful the confi-
dence estimate associated with a certain hypothe-
sis is for predicting its accuracy.

To achieve our objectives, we conduct an ex-
ploratory case study on the 5 NLUs. We train

the NLUs using a subset of a multi-domain dataset
proposed by Liu et al. (2021). We measure the cal-
ibration of the NLUs on model and rank levels us-
ing reliability diagrams and correlation coefficient
with respect to instance-level accuracy. We also
measure the performance on a model level through
accuracy and F1-score.

Our evaluation aims to facilitate NLU service
selection and help dialogue system developers
adapt their dialogue system to specific NLU ser-
vices. For example, depending on the degree of
calibration in an NLU, contextual or interactive
disambiguation (clarification requests) can be an
option. If confidence estimates reflect true accu-
racy, then if two (or more) hypotheses have similar
confidence estimates, this may indicate the pres-
ence of an ambiguity in the user input (from the
perspective of the NLU, i.e., disregarding dialogue
context) that needs to be resolved. Conversely,
if confidence estimates (especially those for non-
top ranks) do not reflect accuracies, then even if
the top two (or more) hypotheses have similar es-
timates, this may not be a reliable indication of
ambiguity but rather be due to noise.

Our evaluation scripts are publicly available on
GitHub1 along with the dataset, enabling replica-
tion of the study and to ease building on it.

2 Related work

Current NLUs typically use machine-learning on
natural-language data (i.e., the user utterances)
to extract features (e.g., keywords, word counts
and word embeddings) and predict the intent of
the user accordingly (Jung, 2019; Shridhar et al.,
2019).

NLU services are widely used by dialogue de-
velopers and allow them to create and train NLU
models for dialogue systems. However, the task of

1https://github.com/ranimkhojah/
confidence-estimation-benchmark
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choosing the best NLU service depends on the do-
main and context of the dialogue system. In prior
work, benchmarks and evaluations have been per-
formed to identify the best NLU service in differ-
ent domains like software engineering (Abdellatif
et al., 2021), meteorology (Canonico and De Rus-
sis, 2018), question answering (Braun et al., 2017)
and others (McTear et al., 2016; Stoyanchev et al.,
2016; Kar and Haldar, 2016; Koetter et al., 2019).
Generally, these evaluation studies have been con-
ducted to draw the trade-off line between differ-
ent NLU services in terms of the usability of their
user interfaces (Gregori, 2017), technical features
(e.g., language and device support) (Koetter et al.,
2019) and performance (Braun et al., 2017; Liu
et al., 2021).

NLU performance is usually assessed via per-
formance measures (e.g., accuracy, F1-score, etc.)
which depend only on the top hypothesis returned
by the NLU, and disregarding the associated con-
fidence estimates. For example, an NLU that pre-
dicts 3 out of 10 intents incorrectly with high con-
fidence estimates has the same performance as an
NLU that predicts 3 out of 10 intents incorrectly
with a low confidence estimation.

In earlier work, various methods for visualizing
and measuring confidence calibration (the extent
to which confidence estimates reflect true likeli-
hoods) have been discussed. For example, Guo
et al. (2017) and Vasudevan et al. (2019) visualize
calibration of neural network models through reli-
ability diagrams. As for quantitative metrics, one
proposed measurement is statistical correlation
between confidence estimate and some instance-
level performance metric; Dong et al. (2018) use
Spearman’s correlation with respect to F1 score,
while Vasudevan et al. (2019) use Pearson’s corre-
lation with respect to instance-level accuracy. A
second option is to aggregate across instance-level
calibration scores (so called proper scoring rules);
examples include Brier score (Brier et al., 1950)
and negative log-likelihood (Quinonero-Candela
et al., 2005). A third approach involves partition-
ing confidence estimates into bins, assessing cor-
relation for individual bins, and then aggregating
across bin-level calibration results; one popular ex-
ample of such an approach is Expected Calibration
Error (ECE) (Naeini et al., 2015), which has been
extended by Nixon et al. (2019) to assess calibra-
tion of all predictions rather than only the top one.

In this study, we apply some of the previ-

ously proposed calibration assessment methods –
namely reliability diagrams and correlation with
instance-level performance – to NLUs. In addi-
tion, we also measure calibration on rank level, en-
abling a more fine-grained analysis.

3 Background

When using an NLU, an utterance U is fed to the
trained NLU, and the output normally includes the
information in the following example:
{ ’utterance’ : ’U’ ,

’top_intent’: ’intent_1’,
’intent_ranking’: {
’intent_1’: conf_1, # rank 1
’intent_2’: conf_2, # rank 2
... ,
’intent_N’: conf_N # rank N

}
}

The output of the NLU given an utterance U
is a prediction consisting of the user utterance,
the top intent and an intent ranking. The intent
ranking consists of the N -best intent hypotheses
along with their corresponding confidence esti-
mates. The confidence estimates reflect how confi-
dent the NLU model is regarding each hypothesis.

Figure 1 illustrates how NLUs are used in dia-
logue systems, involving a scenario where a user
asks a dialogue system a question within the home
domain. The user utterance (which can be typed
by the user in a chat or captured by a speech rec-
ognizer) is sent to an NLU service which performs
intent classification on the user utterance and re-
turns a prediction with the top intent and the intent
ranking. The results are sent to a dialogue man-
ager that decides how to steer the dialogue based
on the output from the NLU and some dialogue
policy. In case of a high estimated confidence for
the most likely hypothesis, the dialogue manager
integrates the user’s intent, and information is sent
to the natural-language generator that generates a
response which is uttered back to the user.

A dialogue system can use confidence estimates
as a basis for choosing a grounding strategy (e.g.
asking a control question when confidence is low),
ambiguity detection and handling (e.g. asking
a clarification question if the top-ranked intents
have similar confidence estimates) or re-scoring
of hypotheses based on contextual information not
available to the NLU but to the dialogue manager
(such as dialogue state).

Different NLUs may have different ways of
computing confidence estimates, possibly reflect-
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Figure 1: A dialogue system.

ing different notions of confidence. However, for
the purpose of using the estimates in a dialogue
system, we are interested in how well they reflect
true probabilities. In section 4 we note variations
in how confidence estimates are computed, but do
not take these differences into account in our eval-
uation.

4 NLU services

NLU services can be used to construct the NLU
component in a dialogue system. In this study, we
chose NLU services (henceforth NLUs) based on
the following criteria: i) can perform intent classi-
fication and ii) returns at least 10 top hypotheses
in the output. We examine 5 NLUs: Watson As-
sistant (IBM, 2010), Language Understanding In-
telligent Service (LUIS) (Microsoft, 2017), Snips
(Snips, 2013), and Rasa (Rasa, 2016) (in two con-
figurations).

Below, we briefly introduce the NLUs. Informa-
tion about the NLUs, including the tested version,
is summarized in table 1.

Watson Assistant Watson Assistant (henceforth
Watson) is a cloud-based NLU developed by IBM.
When parsing an utterance, Watson returns the
top 10 hypotheses along with their confidence es-
timates. Confidence estimates are calculated inde-
pendently for each intent that it has been trained
on. In addition, Watson has an optional built-in
“irrelevant” intent for out-of-scope (OOS) input.

LUIS LUIS (Language Understanding Intelli-
gent Service) is provided by Microsoft and runs
on the Azure cloud platform. LUIS trains an intent
using provided positive examples and other intents
as negative examples.

There is no limit in the number of hypotheses
that LUIS returns; in other words, if the NLU is
trained on N intents, then the intent ranking is of
length N . A “None” intent for out-of-scope input
is also supported, but requires the user to train it
on example utterances.

Rasa Opensource Rasa is an open-source NLU
provided by Rasa Technologies. It can run on
different pipelines that are configurable which in-
creases the flexibility of the NLU (Bocklisch et al.,
2017). Rasa returns the top 10 hypotheses and
their corresponding confidence estimates are nor-
malized (they sum up to 1). Rasa does not offer a
built-in out-of-scope intent.

In this study, we use with two different
pipelines. The first pipeline uses the Sklearn in-
tent classifier2 while the second uses Dual In-
tent and Entity Transformer (DIET) (Bunk et al.,
2020). We refer to the two pipelines above as Rasa-
Sklearn and Rasa-DIET respectively.

Snips Snips is an AI voice platform for con-
nected devices which provides an NLU for Python
called Snips NLU (henceforth Snips). By default,
Snips returns all hypotheses of all intents with con-
fidence estimates, in addition to a “None” intent3

for OOS input.

5 Dataset and data preparation

To conduct intent classification as a part of our
evaluation, we build on the dataset proposed by
Liu et al. (2021). The authors collect and annotate

2https://rasa.com/docs/rasa/
components/#sklearnintentclassifier

3https://snips-nlu.readthedocs.io/en/
latest/tutorial.html#the-none-intent
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NLU Packaging Classifier Type Version OOS intent

Watson Cloud-based service Multiple-binary Invoked in April 2022 Yes
LUIS Cloud-based service Multi-class Invoked in April 2022 Yes
Snips Open-source framework Multi-class v0.20.2 Yes
Rasa Open-source framework Multi-class v2.4.3 No

Table 1: Summary of studied NLUs. (OOS = out of scope.)

Figure 2: The evaluation process followed for each NLU to obtain the results; this process was repeated 5 times, 1
time per NLU model.

25716 user utterances for human-robot interaction
and cover 64 intents, 18 scenarios and 21 domains.
From this dataset, we select the 10 intents with
the most examples (highest number of instances),
yielding a total of 14962 utterances (see table 2).4

We perform repeated random sub-sampling (Dub-
itzky et al., 2007) with 10 iterations to generate
10 random datasets; each dataset is divided with
a 2:1 ratio into a training and testing sets respec-
tively. (A breakdown by domain and/or scenario
could also have been interesting, but was ruled out
due to data sparsity.)

When analyzing the outputs from the
NLUs, we exclude hypotheses with the OOS
(“None”/“irrelevant”) class in the intent ranking
in order to ensure that all NLUs have the same
intent ranking length and make their results
comparable. (See section 8 for a discussion about
OOS handling.)

6 Evaluation of confidence estimation

An overview of our study’s execution is illustrated
in figure 2. The evaluation is performed at two lev-

4Liu et al. (2021) provide user utterances in different
forms: original (raw), with entity annotations, and normal-
ized. In our study, we use the original user utterances.

els: rank and model. On rank level, the results are
obtained for each rank across the NLUs, whereas
on model level, the results of all ranks are aggre-
gated.

The evaluation focuses on the calibration and
performance of the NLUs. Calibration is mea-
sured using reliability diagrams and Spearman’s
correlation coefficient with respect to instance-
level accuracy. The latter is measured through ac-
curacy and F1-score. Evaluation is conducted for
each split and results are averaged across splits.

6.1 Confidence calibration

Confidence calibration is the extent to which a
model is able to produce confidence estimates that
reflect the accuracy (true likelihood) of the respec-
tive intent hypotheses (Guo et al., 2017). For
example, in a well-calibrated model, hypotheses
with a confidence estimate of 0.7 are correct in
70% of the cases.

Reliability diagrams are visualizations of a
model’s calibration (Guo et al., 2017). They plot
true likelihood (accuracy) of predictions as a func-
tion of confidence estimate. Hence, a perfectly-
calibrated model is visualized as the identity func-
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Intent Size Example

query 5981 what’s the time in australia
set 1748 wake me up at 9am on Friday
music 1205 start playing music from favourites
quirky 1088 I am not tired I am actually happy
factoid 1052 tell me comics of charlie chaplin
remove 986 cancel my 7am alarm
negate 939 you don’t understand it right
sendemail 694 send a group mail to lookafter
explain 684 could you clarify me on it further
repeat 585 please let’s start over

Total 14962 examples

Table 2: Selected intents for the case study with their respective size (i.e. number of utterances) and one example
utterance.

tion, and any deviation indicates miscalibration.
Reliability diagrams are plotted by partitioning

predictions into bins, each of which represents a
confidence range. In our study, we use 10 uni-
formly distributed bins, i.e. [0.0-0.1], [0.1-0.2],
. . . [0.9-1.0]. For each bin, mean confidence esti-
mate and accuracy is calculated and plotted as a
point.

Spearman’s correlation coefficient In order to
numerically measure the degree of calibration, we
assess the correlation between confidence esti-
mates (scores in the range 0-1) and instance-level
accuracies (1 for correct classifications, 0 for in-
correct classifications). More specifically, we mea-
sure the extent to which an increase in confidence
estimate is associated with an increase in instance-
level accuracy – in other words, the monotonic-
ity of the relationship between confidence esti-
mate and accuracy. The degree of monotonicity is
measured using Spearman’s correlation coefficient
(Xiao et al., 2016).5

Given two variables (X and Y ) of size N
(x1, x2, ..xn and y1, y2...yn respectively), Spear-
man’s correlation coefficient (ρ) is calculated
through the formula:

ρ = 1− 6
∑

d2i
n(n2 − 1)

where n is the number of samples, and d is the pair-
wise differences of the elements of the variables xi
and yi.

5We choose Spearman’s correlation rather than Pearson’s
correlation since our data is not normally distributed.

A perfectly-calibrated model has a Spearman’s
correlation coefficient of 1, while a correlation co-
efficient of 0 conveys a lack of correlation between
confidence and accuracy.

Note that other approaches to numerically esti-
mating calibration have been discussed in the lit-
erature, e.g. negative log-likelihood (Quinonero-
Candela et al., 2005), Brier score (Brier et al.,
1950) and expected calibration error (Nixon et al.,
2019). Different measurement approaches have
different advantages and weaknesses (Ashukha
et al., 2020), and no gold standard seems to ex-
ist. In this study, we have opted for Spearman’s
correlation due to the fact that monotonicity in the
relation between confidence estimate and accuracy
is an important characteristic of good calibration.
Spearman’s correlation has been previously used
to evaluate confidence scores for neural semantic
parsers (Dong et al., 2018).

6.2 Performance

Since performance only considers the first rank, it
can only be computed on a model level. To mea-
sure the performance, we use F1-score and accu-
racy. We use F1-score since it considers false pos-
itives and false negatives through precision and re-
call. Another reason is the unbalanced distribu-
tion of the example utterances across intents. We
also include the accuracy since in this particular
multi-domain dataset, false negatives have no ma-
jor risks.
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7 Results and analysis

In this section we present our results (averaged
across the 10 splits). Our collected data are visual
(reliability diagrams and calibration profiles) and
numeric (Spearman’s correlation, accuracy and
F1-score). For our numeric results, we provide
the average along with the standard deviation (SD),
whereas for the visual results we provide the stan-
dard deviation in Appendix B to avoid cluttered
diagrams.

7.1 Reliability diagrams
Calibration of the NLUs is visualized through reli-
ability diagrams on model level (figure 3) and rank
level (figures 4, 5, 6, 7). In the rank-level reliabil-
ity diagrams, ranks 4-10 have been merged due to
data sparsity.

Model-level results: On a model level (figure 3),
all NLUs show a generally monotonic relationship
between confidence and accuracy, except for Wat-
son’s lower ranges. In particular, Rasa-Sklearn is
the closest to the gold standard, and is thus the best
calibrated NLU according to this analysis. More-
over, Snips underestimates the true likelihood of
predictions, while LUIS is over-confident. We ob-
serve a discrepancy in Watson’s first 2 bins in the
reliability diagram (figure 3) – a sudden underes-
timation followed by a drop that indicates an ex-
treme overestimation.6

Rank-level results: On the first rank (figure 4),
the NLUs are fairly well-calibrated in general. On
ranks 2 (figure 5) and 3 (figure 6), the degree of
calibration decreases (in comparison with the pre-
vious rank), for three of the NLUs (Watson, LUIS
and Snips – all over-confident), while for the Rasa
NLUs the trend seems inverted.

7.2 Calibration score and profile
The calculated Spearman’s correlations between
the confidence estimates and instance-level accu-
racy (table 3) show that Rasa-Sklearn has the high-
est Spearman’s correlation with a score of ∼0.51,
and is followed by LUIS, Rasa-DIET, Watson, and
Snips with the lowest Spearman’s correlation of
∼0.507. The difference between LUIS and Rasa-
DIET is not significant, while the differences be-
tween each other pairs of NLUs are significantly
different with a large effect size. (The entire list

6As shown by figure 10 in Appendix A, Watson’s first two
bins are small in comparison with the other NLUs.

Figure 3: Model-level reliability diagram. The x-axis
shows the mean confidence estimates in each bin, while
the y-axis shows the mean accuracy of the confidence
estimates in each bin (averaged across splits). The
black diagonal line plots the identity function represent-
ing a gold standard of a perfectly-calibrated model.

Figure 4: Rank-level reliability diagram on rank 1.

Figure 5: Rank-level reliability diagram on rank 2.

Figure 6: Rank-level reliability diagram on rank 3.

of t-test results is presented in table 6 in Appendix
C.)

The model-level reliability diagram appears to
resonate with the model-level calibration where
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Figure 7: Rank-level reliability diagram on ranks 4-10.

Rasa-Sklearn shows the best calibration in the reli-
ability diagram as well as the strongest monotonic-
ity.

Figure 8 shows the calibration profile for each
NLU – the Spearman’s correlation coefficient as
a function of rank. A perfect calibration profile
(where calibration is perfect on each rank) would
correspond to a straight line along the top of the di-
agram. In contrast, we can observe that all NLUs
have noticeably lower Spearman’s correlation for
lower ranks. The decrease in Spearman’s correla-
tion for lower ranks may indicate that lower ranks
are worse calibrated than higher ranks. However,
there are reasons to treat these results with some
caution.

We can note that the Spearman’s correlation is
generally lower on a rank level than on a model
level. This can be explained by the fact that
ranks extend across smaller ranges of confidence
estimates (see model-level histogram in Appendix
A), which increases variation in one of the cor-
related variables. Thus, it appears that a higher
Spearman’s correlation coefficient may be due to
a larger variation in the confidence estimates. This
may also explain that while figure 8 suggests a de-
crease in the calibration for lower ranks, the rank-
level reliability diagrams show that Rasa-Sklearn
and Rasa-DIET have better calibration in lower
ranks. Still, on a model level, we take monotonic-
ity to be a characteristic of well-calibrated NLUs.
The stronger the monotonicity, the more one can
trust an NLU’s ranking of hypotheses in a predic-
tion.

7.3 Performance

We measure the performance of the NLUs in in-
tent classification by evaluating accuracy and F1-
score. Performance is only evaluated on a model
level since it considers the top hypothesis of the
NLU’s prediction. Our results of the accuracy and

F1-scores are averaged across 10 splits for each
NLU.

Accuracy: The results in table 4 show that Wat-
son has the highest (∼0.92) and Rasa-Sklearn the
lowest (∼0.87) accuracy. The accuracy scores
of LUIS and Snips are not significantly differ-
ent from each other, while all other differences
between NLUs are statistically significant with a
large effect size.

F1-score: The results in table 5 show that Wat-
son has the highest (∼0.92) and Rasa-Sklearn the
lowest (∼0.79) F1-score. All pairwise differences
between the NLUs are significant with a large ef-
fect size. (The entire pairwise t-test results for ac-
curacy and F1-score are included in table 7 in Ap-
pendix C.)

Our performance results are consistent with ear-
lier work comparing Watson, LUIS and Rasa-
Sklearn (Liu et al., 2021) that use the complete
version of our dataset, and with Abdellatif et al.
(2021) who use two datasets from the software
engineering domain. However, the results dif-
fer from those in Braun et al. (2017) who use
Telegram chatbot and StackExchange corpora in
a question-answering domain and that has Watson
as the worst performing NLU, and Rasa and LUIS
on top.

A natural question at this point is whether cal-
ibration and performance are correlated. Figure
9 plots calibration (model-level Spearman’s corre-
lation) against model-level accuracy and F1 score.
Judging from this, calibration and performance are
not correlated, indicating a trade-off between cal-
ibration and performance (as previously reported
for neural networks by Guo et al., 2017).

8 Discussion

In this study, we did not find support for any
correlation between calibration and performance
(judged by looking only at the top hypothesis).
A consequence of this is that when it comes to
choosing an NLU for a dialogue system, there is
likely to be a trade-off between performance (good
for getting the right interpretation) and calibration
(good for detecting input that is ambiguous from
the NLU perspective).

Differences in degree of calibration across ranks
has been observed for all NLUs. Specifically, sev-
eral of the NLUs are better calibrated for higher-
ranking hypotheses than for lower-ranking ones.
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NLU Watson LUIS Snips Rasa-Sklearn Rasa-DIET

Mean 0.50838 0.50935 0.50669 0.51024 0.50906
Median 0.50851 0.50934 0.506491 0.51026 0.50888
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SD 0.00075 0.00055 0.00064 0.00046 0.00074

Table 3: Model-level calibration scores (Spearman’s correlation coefficient ρ)

NLU Watson LUIS Snips Rasa-Sklearn Rasa-DIET

Mean 0.92287 0.88726 0.88991 0.87263 0.90376
Median 0.91997 0.890405 0.89060 0.87866 0.89973
SD 0.00225 0.00417 0.00414 0.00386 0.003860

Table 4: (Averaged) accuracy scores of NLUs

NLU Watson LUIS Snips Rasa-Sklearn Rasa-DIET

Mean 0.92144 0.88890 0.89029 0.79020 0.81890
Median 0.91972 0.89300 0.89166 0.79561 0.81716
SD 0.00234 0.00373 0.00407 0.00358 0.00331

Table 5: (Averaged) F1-scores of NLUs

For dialogue system developers, we may interpret
this as indicating that it may be useful to look at
the top two or three hypotheses when trying to
detect ambiguity in input utterances. Looking at
hypotheses ranked lower than 4 is likely to not
be very informative. Fortunately, ambiguities are
much more frequently 2-way (i.e. there are two
possible interpretations of an input) or 3-way than
4-way or more.

It is worth stressing that one of the studied
NLUs (Watson) is a multiple-binary classifier (it
treats intents independently), while the others are
multi-class (they treat intents as mutually exclu-
sive). In this study, we do not investigate whether
one type of classifier is more appropriate than an-
other – presumably, both types have benefits and
disadvantages. Nevertheless, since our dataset as-
sumes a single correct class for a given utterance7,
our analysis may indirectly favour multi-class clas-
sifiers.

When interpreting our results, one should also
consider that different NLUs handle out-of-scope
(OOS) input differently. Specifically, among the

7Utterances in Liu et al.’s (2021) dataset, on which we
build, are labelled with a single correct intent. There are cases
of identical utterances for two different intents, but they are
very rare (9 out of 25576 unique utterances).

studied NLUs only Rasa does not include an OOS
intent. Our exclusion of out-of-scope intents from
the intent rankings returned by the NLUs does not
rule out the possibility that different OOS handling
may have affected the result. A more level-playing
field would have required all NLUs to either not
consider OOS at all, or for all of them to be trained
on the same OOS examples. Unfortunately, since
Snips’ OOS handling cannot be configured, nei-
ther of these options were available. (Larson et al.
(2019) evaluated OOS detection for NLUs, but
without considering confidence calibration.)

9 Conclusions and future work

We took established calibration measurement ap-
proaches and applied them to intent classification
of publicly available NLUs. We also extended
the chosen measurements with a rank-level anal-
ysis. Our findings show that the best calibrated
NLU is Rasa-Sklearn and the least calibrated NLU
is Snips, while Watson takes the lead as the best
performing NLU and Rasa-Sklearn as the worst
performing NLU. The results indicate a trade-off
between confidence calibration and performance.
We also showed differences in degree of calibra-
tion across ranks and discussed their implication
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Figure 8: Calibration profiles for all NLUs (Spearman’s correlation for ranks 1-10)

(a) Accuracy vs. Calibration (b) F1-score vs. Calibration

Figure 9: (Model-level) accuracy (a) and F1-score (b) vs. calibration

for dialogue system development.
In future work, it would be interesting to extend

the investigation with qualitative analyses of how
differences in confidence estimation play out in
concrete examples. It could also be valuable to
find a better way of assessing how well the NLUs
capture genuine ambiguity – something which is
difficult with a dataset that assumes a single cor-
rect intent for a given utterance.
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A Histograms of bin sizes

Figure 10: Model-level histogram

Figure 11: Rank-level (rank 1)

Figure 12: Rank-level (rank 2

Figure 13: Rank-level (rank 3)

Figure 14: Rank-level (ranks 4-10)

B Reliability diagrams with standard
deviation

Figure 15: Model level

Figure 16: Rank level (rank 1)

Figure 17: Rank level (rank 2)

Figure 18: Rank level (rank 3)

Figure 19: Rank level (ranks 4-10)
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C T-test calculations

Pairwise Comp. t-Statistic p-value df Effect Size SSD (p<.05)

(Watson, LUIS) -3.1645 0.01147 9 L Yes
(Watson, Snips) 4.9025 0.00084 9 L Yes
(Watson, Rasa-Sklearn) -5.4977 0.0003813 9 L Yes
(Watson, Rasa-DIET) -2.9555 0.01608 9 L Yes
(LUIS, Snips) 25.569 <0.00001 9 L Yes
(LUIS, Rasa-Sklearn) -3.8306 0.00402 9 L Yes
(LUIS, Rasa-DIET) -78.645 0.2895 9 S No
(Snips, Rasa-Sklearn) -16.545 <0.00001 9 L Yes
(Snips, Rasa-DIET) -7.8118 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) -4.1319 0.002552 9 L Yes

Table 6: T-test for pairwise NLUs’ Spearman’s correlation scores on a model level

Table 7: T-test for pairwise NLUs’ performance

Pairwise Comp. t Statistics p-value df Effect Size SSD (p<.05)

Accuracy

(Watson, LUIS) 18.462 <0.00001 9 L Yes
(Watson, Snips) 29.325 <0.00001 9 L Yes
(Watson, Rasa-Sklearn) 25.059 <0.00001 9 L Yes
(Watson, Rasa-DIET) 12.82 <0.00001 9 L Yes
(LUIS, Snips) -0.62904 0.545 9 N No
(LUIS, Rasa-Sklearn) 11.672 <0.00001 9 L Yes
(LUIS, Rasa-DIET) -7.2468 <0.00001 9 L Yes
(Snips, Rasa-Sklearn) 13.889 <0.00001 9 L Yes
(Snips, Rasa-DIET) -7.7684 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) 18.968 <0.00001 9 L Yes

F1-score

(Watson, LUIS) 15.437 <0.00001 9 L Yes
(Watson, Snips) 25.432 <0.00001 9 L Yes
(Watson, Rasa-Sklearn) 79.213 <0.00001 9 L Yes
(Watson, Rasa-DIET) 73.47 <0.00001 9 L Yes
(LUIS, Snips) 1.1095 0.296 9 S No
(LUIS, Rasa-Sklearn) 95.383 <0.00001 9 L Yes
(LUIS, Rasa-DIET) 49.549 <0.00001 9 L Yes
(Snips, Rasa-Sklearn) 135.47 <0.00001 9 L Yes
(Snips, Rasa-DIET) 88.435 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) 18.098 <0.00001 9 L Yes
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Pairwise Comp. t Statistics p-value df Effect Size SSD (p<.05)

Rank 1

(Watson, LUIS) -7.6715 <0.00001 9 L Yes
(Watson, Snips) -9.7613 <0.00001 9 L Yes
(Watson, Rasa-Sklearn) -11.441 <0.00001 9 L Yes
(Watson, Rasa-DIET) -10.782 <0.00001 9 L Yes
(LUIS, Snips) 1.2402 0.2463 9 S No
(LUIS, Rasa-Sklearn) -4.45 0.0016 9 L Yes
(LUIS, Rasa-DIET) -1.8668 0.09477 9 M No
(Snips, Rasa-Sklearn) -5.7598 0.0002729 9 L Yes
(Snips, Rasa-DIET) -3.0576 0.01362 9 L Yes
(Rasa-DIET, Rasa-Sklearn) -6.754 <0.00001 9 L Yes

Rank 2

(Watson, LUIS) -3.2206 0.01048 9 L Yes
(Watson, Snips) 6.4881 0.000113 9 L Yes
(Watson, Rasa-Sklearn) -17.398 <0.00001 9 L Yes
(Watson, Rasa-DIET) -8.6273 <0.00001 9 L Yes
(LUIS, Snips) 9.9936 <0.00001 9 L Yes
(LUIS, Rasa-Sklearn) -9.7455 <0.00001 9 L Yes
(LUIS, Rasa-DIET) -3.7508 <0.00001 9 L Yes
(Snips, Rasa-Sklearn) -17.882 <0.00001 9 L Yes
(Snips, Rasa-DIET) -12.898 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) -11.323 <0.00001 9 L Yes

Rank 3

(Watson, LUIS) -6.7607 <0.00001 9 L Yes
(Watson, Snips) -0.6851 0.5105 9 S No
(Watson, Rasa-Sklearn) -13.616 <0.00001 9 L Yes
(Watson, Rasa-DIET) -6.2648 0.000147 9 L Yes
(LUIS, Snips) 7.0407 <0.00001 9 L Yes
(LUIS, Rasa-Sklearn) -6.3356 0.0001352 9 L Yes
(LUIS, Rasa-DIET) 0.46202 0.655 9 N No
(Snips, Rasa-Sklearn) -11.323 -7.0872 9 L Yes
(Snips, Rasa-DIET) -7.0872 <0.00001 9 L Yes
(Rasa-DIET, Rasa-Sklearn) -4.6652 0.001177 9 L Yes

Rank 4-10

(Watson, LUIS) -5.9362 <0.00001 49 L Yes
(Watson, Snips) -0.72951 0.4692 49 N No
(Watson, Rasa-Sklearn) 0.078179 0.938 49 N No
(Watson, Rasa-DIET) -3.3111 0.00175 49 S Yes
(LUIS, Snips) 9.1052 <0.00001 49 L Yes
(LUIS, Rasa-Sklearn) 8.087 <0.00001 49 L Yes
(LUIS, Rasa-DIET) 3.9641 0.0002393 49 M Yes
(Snips, Rasa-Sklearn) 1.2524 0.2164 49 N No
(Snips, Rasa-DIET) -4.1725 0.0001228 49 M Yes
(Rasa-DIET, Rasa-Sklearn) 5.2551 <0.00001 49 M Yes

Table 8: T-test for pairwise NLUs’ Spearman’s correlation scores on a rank level
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Abstract

To facilitate zero-shot generalization in task-
oriented dialog, this paper proposes Language
Models as Data (LAD). LAD is a paradigm for
creating diverse and accurate synthetic data
which conveys the necessary structural con-
straints and can be used to train a downstream
neural dialog model. LAD leverages GPT-3 to
induce linguistic diversity. LAD achieves sig-
nificant performance gains in zero-shot settings
on intent prediction (+15%), slot filling (+31.4
F-1) and next action prediction (+11 F-1).
Furthermore, an interactive human evaluation
shows that training with LAD is competitive
with training on human dialogs. LAD is open-
sourced, with the code and data available at
https://github.com/Shikib/lad.

1 Introduction

A long-standing goal of dialog research is to de-
velop mechanisms for flexibly adapting dialog sys-
tems to new domains and tasks (Rastogi et al., 2020;
Mosig et al., 2020). While the advent of large-scale
pre-training (Devlin et al., 2018; Liu et al., 2019b;
Zhang et al., 2019) has brought about significant
progress in few-shot and zero-shot generalization
across many different problems in Natural Lan-
guage Processing (Brown et al., 2020; Wei et al.,
2021), zero-shot generalization in task-oriented
dialog remains elusive. A likely reason for this
discrepancy is that dialog models require signifi-
cant data because they need to learn task-specific
structural constraints, such as the domain ontol-
ogy and the dialog policy. While large language
models (e.g., GPT-3) exhibit strong language un-
derstanding and generation abilities (Brown et al.,
2020), they have no a priori knowledge of the
structural constraints implied by a specific (unseen)
problem setting (e.g., relevant intents, dialog pol-
icy, etc.). As such, in order to adapt a pre-trained
LM for task-oriented dialog, it is necessary to im-
pose structural constraints on the unstructured

Figure 1: Prompting must convey the structural con-
straints through a natural language prompt. In contrast,
LAD uses large LMs to induce diversity in a synthetic
dataset. As such, LAD conveys structural constraints
through both the synthetic data and the inductive biases
in the downstream problem-specific models.

representation space of a pre-trained model. Fine-
tuning moderately-sized language models (LMs)
(e.g., BERT) with well-motivated inductive biases
(Mitchell, 1980) facilitates sample-efficient learn-
ing of the structural constraints (Peng et al., 2020;
Henderson and Vulić, 2020; Mehri and Eskenazi,
2021b). However, fine-tuning can be impractical
(e.g., in academic settings) with large LMs (e.g.,
GPT-3) due to the cost, computational power and
immutable architectures. To this end, this paper
aims to address the following: ‘How can we lever-
age the strong language understanding and gener-
ation abilities of large LMs to facilitate zero-shot
generalization in task-oriented dialog?’

Given the in-context meta-learning abilities of
large LMs (Brown et al., 2020), prior work has
explored prompt-engineering or prompt-tuning
(Reynolds and McDonell, 2021; Lester et al., 2021;
Madotto et al., 2021). Well-designed prompts can
convey the necessary structural constraints. How-
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ever, it is challenging to express complex con-
straints (e.g., a dialog policy) in natural language.
Prompting also precludes inductive biases in the
model (architecture, training algorithm, etc.) and
over-relies on the meta-learning abilities of large
LMs. As such, there is a tradeoff between prompt-
ing large LMs (i.e., generalizable NLU and NLG)
and fine-tuning smaller LMs (i.e., problem-specific
inductive biases, efficiency). A potential interpre-
tation for the strength of large LMs is that they
learn the distributional structure of language (Har-
ris, 1954) by observing web-scale data (Sinha et al.,
2021). Motivated by this interpretation, this paper
proposes Language Models as Data (LAD).

LAD is a novel paradigm in which large LMs
are used in a zero-shot domain-agnostic manner to
induce linguistic diversity in synthetic data. Given
a minimal expression1 of the structural constraints
(henceforth referred to as a schema), LAD (1) cre-
ates a seed synthetic dataset using domain-agnostic
algorithms, (2) leverages large LMs to reformu-
late utterances, and (3) validates the resulting data
to ensure adherence to the schema. The resulting
synthetic data, which is sufficiently diverse and ex-
presses the necessary structural constraints, can
be used to train neural dialog models. In contrast
to prompting, LAD facilitates zero-shot generaliza-
tion by (1) leveraging the sophisticated abilities of
large LMs (knowledge of the distributional struc-
ture of language) to induce linguistic diversity in
the synthetic data while (2) maintaining inductive
biases (motivated by the structural constraints) in
the problem-specific model architectures.

The challenge of creating synthetic data that is
indistinguishable from human-annotated data, both
in its expression of structural constraints and in its
diversity, is highly impractical (Lin et al., 2021;
Feng et al., 2021). Instead, the goal of this work is
to create synthetic data that is sufficient to train a
sample-efficient and robust model. Therefore, the
claim of this paper is that LAD can create synthetic
data, conditioned on a minimal expression of struc-
tural constraints (i.e., a schema), that can be used
to train robust and sample-efficient neural models
and induce performance gains in zero-shot settings.

To validate this claim, LAD is applied to three
problems in dialog: intent prediction, slot filling
and next action prediction. Next action prediction
is particularly difficult in zero-shot settings since

1A minimal expression can be defined as the smallest
amount of data necessary to express a structural constraint.
For example, one utterance to define an intent class.

the structural constraints include the dialog pol-
icy. LAD demonstrates significant gains across five
datasets (+10 to +30 improvements on F-1 and
accuracy) in zero-shot settings when evaluating
on human-annotated corpora. To further validate
the efficacy of LAD, an interactive evaluation with
humans (over 1600 dialogs) is performed. The re-
sults of this interactive evaluation suggest that LAD

can yield performance comparable to training on
human dialogs. The claim of this paper is vali-
dated empirically across multiple datasets. LAD is
shown to generate diverse and accurate synthetic
data, which is subsequently used to train neural di-
alog models and facilitate zero-shot generalization.

2 Definitions

Zero-shot generalization can be conceptualized as
imposing structural constraints on the unstruc-
tured representation space of a pre-trained model,
using a given schema (i.e., minimal expression).
We begin with a neural network, M, with gen-
eral language understanding abilities and limited
knowledge of task-oriented dialog (e.g., BERT (De-
vlin et al., 2018)). The necessary structural con-
straints thatMmust learn are implied by the target
dialog setting, i.e., the problem (e.g., next action
prediction), the domain (e.g., restaurants) and the
task (e.g., restaurant reservation). These structural
constraints conceptually define the desired proper-
ties for the representations ofM, i.e., what must
be learned byM. In a full-shot setting, the con-
straints are conveyed by a human-annotated dataset
and thereby learned through supervised learning.
In contrast, the goal in zero-shot generalization is
to learn these structural constraints from a minimal
expression, i.e., a schema. The following sections
formally define structural constraints and schemas.

Throughout this paper, zero-shot refers to a set-
ting wherein the only human-annotated data is the
schema. Since a schema is a minimal expression of
the necessary structural constraints, we argue that
it is impossible to use less data, without making
assumptions about the prior knowledge of a pre-
trained model. Such assumptions would limit the
generality of a method for zero-shot generalization.

2.1 Structural Constraints

To effectively adapt a model, particularly in zero-
shot settings, it is imperative to define what the
model must learn. Structural constraints conceptu-
alize the desired properties for the representations
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of a modelM. Understanding these structural con-
straints allows us to design an effective paradigm
to facilitate zero-shot generalization. Concretely,
knowledge of the structural constraints influences
(1) the inductive biases (Mitchell, 1980) in the
model architecture, (2) the design of the schema,
and (3) the algorithms used to create synthetic data.

Intent prediction, for example, is the problem
of classifying an utterance u ∈ U to an intent
i ∈ I. An intent prediction modelMI must learn
to produce similar representationsMI(u) for all
utterances that have the same intent. Learning this
structural constraint is equivalent to transforming
the unstructured representation space ofM to the
structured output space (i.e., the intent classes).

In the problem of slot filling, for a given utter-
ance u = {w1, w2, . . . , wn} and a slot key s ∈ S,
we must predict the corresponding slot value for
s. The value will either be a contiguous span from
u, wi:i+k, or none. A slot filling modelMS must
learn two sets of structural constraints. First, the
representation of u (or the contextual representa-
tion of w ∈ u) must follow the structural con-
straints of intent prediction. Second, each slot
value representationMS(wi:i+k) should be similar
to other values for the slot s. These two constraints
impose structure on both the utterance-level and
the span-level representations ofMS .

The structural constraints of intent prediction
and slot filling are straightforward and are often
learned by a linear layer in supervised settings
(Casanueva et al., 2020; Mehri et al., 2020). The
constraints for the problem of next action pre-
diction are more complex. Next action predic-
tion is the problem of predicting the next system
action a ∈ A conditioned on the dialog history
u1, u2, . . . , un according to some dialog policy.
Given the intents and slots in the dialog history,
ID = {i1, i2, . . . , im} and SD = {s1, s2, . . . , sk},
the dialog policy can be expressed as a function of
these intents and slots, a = policy(ID,SD). As
such a next action prediction modelMA must learn
(1) the structural constraints of intent prediction,
(2) of slot filling and (3) the mapping defined by
the policy function. The complexity of third con-
straint led to the schema-guided paradigm (Mehri
and Eskenazi, 2021b), wherein the policy is explic-
itly expressed rather than being learned implicitly.

2.2 Schema
While structural constraints conceptualize what a
model M must learn, the schema is a minimal
expression of these constraints. Imagine that our
objective is to train a human (i.e.,M with human-
level language understanding and reasoning abil-
ities) to perform task-oriented dialog. Structural
constraints define what the human must learn. The
schema is the minimum amount of information
needed, for the human to learn the necessary struc-
tural constraints, without prior knowledge.

For intent prediction, we define the schema to
be a single utterance u for each intent i ∈ I. Slot
filling similarly relies on one utterance u for each
slot type s ∈ S. However, this one utterance only
conveys the first structural constraint of slot filling.
To ensure thatMS can learn meaningful span-level
representations, the schema for slot filling also in-
cludes multiple2 examples of values for each slot.

Next action prediction has three constraints.
The first two constraints are equivalent to those
of intent prediction and slot filling. As such, the
schema includes both (1) one utterance for each in-
tent and (2) a set of slot values for each slot type. To
express the structural constraints of the dialog pol-
icy, we leverage the graph-based representations of
the task-specific dialog policy proposed by Mosig
et al. (2020) and Mehri and Eskenazi (2021b).

3 LAD: Language Models as Data

Despite exhibiting strong language understanding
and generation abilities (Brown et al., 2020), large
LMs have no a priori knowledge of the structural
constraints of task-oriented dialog. Furthermore,
imposing the necessary structural constraints on
large LMs is impractical due to (1) the difficulty
of fine-tuning (cost, computation, immutable ar-
chitectures) and (2) the limitations of natural lan-
guage prompts. As such, Language Models as
Data (LAD) uses GPT-3 (Brown et al., 2020) to
generate diverse synthetic data that express the
necessary task-specific structural constraints and
can therefore be used to train neural dialog models.

LAD is a framework for inducing zero-shot gen-
eralization in task-oriented dialog by creating di-
verse and accurate synthetic data. LAD, visualized
in Figure 2, is a three step process: (§3.1) domain-
agnostic algorithms generate a seed dataset from
a schema, (§3.2) GPT-3 reformulates utterances in

2While the number of slot value examples could potentially
reduced to 1, up to 20 are used in this paper.
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Figure 2: Visualization of LAD. (1) Domain-agnostic algorithms use the schema to create a seed dataset which
conveys the necessary structural constraints. (2) Large LMs reformulate individual utterances to add linguistic
diversity. (3) Validation heuristics are used to ensure adherence to the schema.

order to induce linguistic diversity, (§3.3) heuris-
tics are used to validate the reformulated data to
ensure adherence to the schema. LAD facilitates
zero-shot generalization by explicitly leveraging
the strengths of large LMs (knowledge of the distri-
butional structure of language) without sacrificing
the inductive biases (motivated by structural con-
straints) in the downstream neural dialog models.

3.1 Seed Data Creation

LAD begins by creating seed synthetic data from a
given schema. This is a domain-agnostic process
that aims to generate synthetic data which accu-
rately convey the necessary structural constraints.

For intent prediction, the schema consists
of one utterance for each intent class (sampled
from the original corpus) and is used as the seed
dataset. For slot filling, the schema consists of one
manually-written template utterance and multiple
slot values for each slot type. To construct the seed
data: (1) begin with the utterance templates from
the schema (e.g., ‘My first name is {first_name}’),
(2) exhaustively combine template utterances to
ensure coverage of slot type combinations, and (3)
fill slot values by sampling from the schema.

The relative complexity of the structural con-
straints for next action prediction, particularly the
dialog policy, necessitates a more sophisticated al-
gorithm for generating the seed data. In order to

avoid over-fitting and to ensure that the structural
constraints are effectively learned by the model, it
is imperative that the synthetic data produced by
LAD be diverse and realistic. While linguistic di-
versity is induced through the reformulation with
GPT-3, the synthetic dialogs created for next action
prediction must also exhibit diversity of user be-
havior. The dialog policy expressed by the schema
deterministically defines the system behavior. How-
ever, users should be able to deviate from the pol-
icy, e.g. by providing information out of turn. To
account for this, Algorithm 1 in the Appendix gen-
erates a dialog by traversing the dialog policy graph
and randomly combining multiple template utter-
ances (e.g., ‘System: What is your name? User:
My name is John. My phone number is...’).

3.2 Reformulation

To ensure that downstream neural dialog models
can effectively learn the structural constraints, it
is imperative that the synthetic data is sufficiently
diverse. The seed synthetic data is formulaic and
artificial: (1) there is a single template utterance for
each user action and (2) when multiple user actions
are combined they are simply concatenated. As
such, the goal of the reformulation step is two-fold:
(1) to induce linguistic diversity and (2) to rephrase
concatenations of disjoint template utterances (‘My
name is Sarah. I want to plan a party. The day
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should be Sunday’) into a natural utterance (‘I’m
Sarah and I’d like to plan a party for Sunday.’).

To reformulate utterances in a domain-agnostic
manner, LAD leverages the in-context meta-
learning abilities of GPT-3 (Brown et al., 2020).
Through manual experimentation in the OpenAI
Playground3, an appropriate prompt is constructed.
The prompt begins with an instruction (‘Given a
set of sentences, generate 5 natural utterances that
convey the same meaning.’) and includes six exam-
ples (details can be found in the Appendix).

Rather than producing a single reformulation of
the input, the chosen prompt instructs GPT-3 to
generate five utterances. Through the examples
provided in the prompt, GPT-3 learns that it should
produce five diverse reformulations. As such, lin-
guistic diversity is induced through both the decod-
ing algorithm and the six examples in the prompt.

3.2.1 Scalability

The cost of the GPT-3 API is approximately $0.05
USD per reformulation. In order to generate a sub-
stantial amount of synthetic data without incurring
significant costs, the reformulation step of LAD

must be performed in a scalable manner. The seed
utterances are grouped by their intents and slot keys
(e.g., ‘name;date;time’, ‘name;date’, ‘date;time’).
A subset of utterances in each group is reformu-
lated. These reformulated utterances are used as
templates and the slot values are randomly replaced.
In this manner, the cost scales with respect to the
number of distinct intent/slot combinations rather
than the desired size of the synthetic dataset.

3.3 Validation

The seed data will always adhere to the schema and
therefore accurately convey the necessary struc-
tural constraints. However, the reformulated utter-
ances may not be accurate. GPT-3 may modify the
intended meaning of an input utterance, for exam-
ple by ignoring certain slot values. To ensure that
the structural constraints are accurately expressed
in the final dataset, the reformulation step of LAD

filters out erroneous reformulations. For slot filling
and next action prediction, this is done by ensuring
that all of the slot values present in the original
utterance (from the seed dataset) are also present in
the reformulated utterances (produced by GPT-3).

3https://beta.openai.com/playground

Original Dataset Seed LAD Cost (USD)

Intent Prediction

HWU64 (8955) 64 800 $19
CLINC150 (15000) 150 1664 $43
Banking77 (8633) 77 848 $25

Slot Filling

Restaurant8k (8633) 85 32000 $89

Next Action Prediction

STAR (1200) 24000 22327 $226

Table 1: Statistics for the synthetic datasets created by
LAD. This table lists the size of the original dataset, the
seed dataset and the final synthetic dataset produced by
LAD. The last column indicates the approximate cost of
using GPT-3 for each of the datasets.

3.4 Dataset Statistics

LAD is evaluated on five different datasets. For in-
tent prediction, Banking77 (Casanueva et al., 2020),
CLINC150 (Larson et al., 2019), and HWU64 (Liu
et al., 2019a) are used. For slot filling, Restau-
rant8k (Coope et al., 2020) is used. For next ac-
tion prediction, STAR (Mosig et al., 2020) is used.
Given a human-annotated corpus, a schema is cre-
ated to express the necessary constraints. LAD is
then leveraged to create a synthetic dataset condi-
tioned on the schema. Table 1 describes the size
and creation cost of each of the synthetic datasets.

4 Experiments

This paper claims that LAD can use a schema to
create a sufficiently diverse and accurate synthetic
dataset, which can be used to train neural dialog
models and facilitate performance gains in zero-
shot settings. To validate this claim, experiments
are carried out on intent prediction, slot filling and
next action prediction across five datasets.

For each problem, an appropriate model from
prior work is identified. The chosen models (1)
exhibit strong zero-shot and few-shot generaliz-
ability, and (2) are open-source. Though LAD is
not guaranteed to produce perfectly accurate and
diverse data, the inductive biases in the chosen
models make them more robust to potential errors
and limitations in the synthetic data.

4.1 Intent Prediction

CONVBERT+Example-Driven+Observers
(CBEO) (Mehri and Eric, 2021) is used for intent
prediction. CBEO learns to predict utterance
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Model (Training Data) BANKING77 CLINC150 HWU64

CBEO (ONE-SHOT) 31.36 53.96 43.12
CBEO (ONE-SHOT + LAD) 51.17 68.11 65.50

CBEO (FULL-SHOT) 93.83 97.31 93.03

Table 2: Experimental results on intent prediction. We report the accuracy of training CBEO on (1) one utter-
ance/intent (i.e., the seed data) and (2) the synthetic data produced by LAD. For reference, we also show the results
reported by Mehri and Eric (2021) obtained with full human-annotated training datasets.

Model F-1

Zero-Shot Results

CONVEX (HENDERSON AND VULIĆ, 2020) 5.2
COACH+TR (LIU ET AL., 2020) 10.7
GENSF (MEHRI AND ESKENAZI, 2021A) 19.5
GENSF + LAD 50.9

Non Zero-Shot Results

GENSF (64 UTTERANCES) 72.2
GENSF (8633 UTTERANCES) 96.1

Table 3: Experimental results on the Restaurant8k cor-
pus. We compare GENSF + LAD with zero-shot results
reported by prior work. For reference, we also show the
performance of models (reported by prior work) when
trained in few-shot and full-shot settings.

intents by explicitly comparing to a set of ex-
amples. Predicting intents through an explicit
non-parametric comparison to examples is an
inductive bias that facilitates sample-efficient
learning of the structural constraints.

The experimental results shown in Table 2
demonstrate that the synthetic data produced by
LAD significantly increase performance on one-
shot4 intent prediction. LAD facilitates 15%+ accu-
racy improvement across all three intent prediction
datasets. For intent prediction, LAD does not use
any heuristics during the creation of the seed data
or during the validation step. As such, these im-
provements can be attributed to the reformulation
step, which leverages the prompt-driven generation
abilities of GPT-3 (Brown et al., 2020).

4.2 Slot Filling
For slot filling, experiments are carried out with
GENSF (Mehri and Eskenazi, 2021a) which cur-

4This setting is characterized as one-shot since the utter-
ances in the schema are sampled from the respective dataset.

Model F-1

Zero-Shot Results

BERT+S (MOSIG ET AL., 2020) 28.12
SAM (MEHRI AND ESKENAZI, 2021B) 53.31
SAM + LAD 64.36

Full-Shot Results

SAM (MEHRI AND ESKENAZI, 2021B) 70.38

Table 4: Experimental results on the STAR corpus.
SAM + LAD is compared with zero-shot results re-
ported by prior work. For reference, the performance of
SAM when trained on the full corpus is also shown.

rently has SoTA results on the Restaurant8k corpus
(Coope et al., 2020), in both zero-shot and full-
shot settings. GENSF reformulates slot filling as
response generation in order to better leverage the
capabilities of DialoGPT (Zhang et al., 2019).

As shown in Table 3, GENSF + LAD achieves
a +31.4 F-1 improvement over GENSF on the test
set of Restaurant8k, without observing any exam-
ples from the corpus. GENSF + LAD learns to
detect slots in the restaurant domain given only the
schema, which consists of (1) a single manually
written utterance for each slot type and (2) a collec-
tion of up to 20 slot values for each slot type. This
significant performance improvement in zero-shot
generalization validates the claim of this paper for
the problem of slot filling. LAD is able to create
synthetic data which effectively teaches GENSF
the necessary structural constraints.

However, as shown by Mehri and Eskenazi
(2021a), GENSF achieves a 72.2 F-1 score by only
observing 64 human-written examples. Despite the
relative success of LAD in zero-shot settings, there
remains significant room for improvement.
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Model (Training Data) COMPLETE % ASKS ALL % AVOIDS REDUNDANCY %

SAM (ZERO-SHOT) 98.02 76.15 78.90
SAM (FULL-SHOT) 98.31 75.69 80.65
SAM + LAD 98.52 78.39 79.13

Table 5: Results of the interactive human evaluation. We compare three models: (1) SAM (ZERO-SHOT), (2) SAM
(FULL-SHOT) and (3) SAM + LAD. The three columns correspond to the three post-dialog questions: (1) task
completion, (2) asking all necessary information and (3) avoiding redundancy. Results in boldface are statistically
significant by one-tailed t-test (p < 0.05).

4.3 Next Action Prediction

Next action prediction is particularly challenging
due to the complexity of the structural constraints.
In addition to the constraints of intent prediction
and slot filling, next action prediction models must
also learn to follow the dialog policy. SAM (Mehri
and Eskenazi, 2021b) learns to predict the system
action by attending to a graph-based representation
of the dialog policy. Explicitly attending to the
dialog policy is an inductive bias that facilitates
zero-shot generalization to unseen tasks.

Table 4 shows the results for three models.
BERT+S (Mosig et al., 2020) trains a BERT model
to attend to a rudimentary graph-based representa-
tion of the dialog policy. SAM (Mehri and Eske-
nazi, 2021b) improves the model architecture and
introduces more expressive policy graphs. These
two models are trained on the STAR corpus, which
includes 24 different tasks and 24 different pol-
icy graphs. The zero-shot results are obtained by
training on n− 1 tasks (i.e., 23) and evaluating on
the remaining task, repeated 24 times. In contrast,
SAM + LAD observes no human-written dialogs
whatsoever. Instead, SAM+LAD is trained only on
the synthetic dialogs produced by LAD.

In the zero-shot setting, SAM + LAD achieves an
+11.05 F-1 improvement over SAM. Furthermore,
this result is only 6.02 points below the full-shot
results of SAM. This significant gain further vali-
dates the claim of this paper. SAM + LAD learns
the necessary structural constraints using only the
synthetic data produced by LAD.

4.4 Interactive Human Evaluation

SAM + LAD achieves strong zero-shot results on
the STAR corpus, especially relative to the per-
formance of SAM (FULL-SHOT). This leads us
to question the performance gap between these
two models. Is the full-shot model better at next
action prediction, or is it just better at modelling

artifacts in the STAR corpus? STAR is known to
have some degree of inconsistency with the policy
graphs (Mosig et al., 2020). Furthermore, static
evaluation is not necessarily reflective of the per-
formance of a model in real settings. Because of
variable user behavior, there may be a distribution
shift between the STAR corpus and interactive set-
tings. To this end, we perform an interactive human
evaluation using Amazon Mechanical Turk (AMT).

Three models are evaluated: (1) SAM (ZERO-
SHOT), (2) SAM (FULL-SHOT) and (3) SAM +
LAD. Ten scenarios are defined, each of which
consists of an objective (e.g, ‘You want to plan a
party’) and slot values (e.g., Name: Kevin, Date:
Sunday, Num Guests: 85). An AMT worker is
instructed to interact with a dialog system accord-
ing to the provided scenario. Upon completion of
the dialog, three questions are answered:

1. Did the system successfully complete the dialog?

2. Did the system ask for all of the necessary information?

3. Did the system ask for information that you had already
provided it?

The instructions (see Appendix) tell the worker
to interact naturally (e.g., by providing informa-
tion out of turn). Detailed instructions, including
examples and counter-examples, are provided for
the three post-dialog questions. Pre-screening is
performed to ensure that AMT workers read and un-
derstood these instructions. During pre-screening,
the worker must answer the post-dialog questions
given two completed dialogs and the correspond-
ing scenarios. Workers with a score of at least
5/6 qualify to participate in the interactive eval-
uation (45% of workers pass the pre-screening).
Pre-screening is paid $0.75USD, regardless of the
result. Each HIT (Human Intelligence Task) of the
interactive evaluation includes five scenarios and
pays $3.25USD (approx. 10 minutes). A post-hoc
quality check is performed to remove erroneous
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annotations. Simple heuristics are constructed to
predict the post-dialog answers and any discrep-
ancies with the annotations are manually verified.
If an error is identified through manual validation,
the annotation is removed. This form of valida-
tion is a necessary alternative to outlier detection
or measures of inter-annotator agreement, since in-
teractive dialogs are independent thereby making
standard measures of data quality unsuitable.

1628 dialogs were collected, with at least 500
for each system. The results, shown in Table 5,
demonstrate that the performance of all three mod-
els is fairly similar in interactive settings. For the
second post-dialog question, SAM+LAD asks for
all of the necessary slots +2.7% more often. As-
suming that the number of observations is equal to
the total number of turns, this result is statistically
significant (p < 0.05) by one-tailed t-test.

Both SAM (FULL-SHOT) and SAM (ZERO-
SHOT) are trained on human dialogs, though the
latter does not observe data from the target task.
In contrast, SAM + LAD is trained only on syn-
thetic data produced by LAD. The comparable
performance of SAM (ZERO-SHOT) and SAM
(FULL-SHOT) is noteworthy and can potentially
be explained by two facts: (1) the interactive di-
alogs are sampled from a different distribution
(e.g., more informal, typos, more slots per utter-
ance) from the STAR corpus, making the evalua-
tion equally difficult for both systems, (2) SAM
(ZERO-SHOT) has observed dialogs from the do-
main (e.g., seen bank-balancewhen evaluating
on bank-fraud-report). Despite not observ-
ing any human dialogs, in interactive settings SAM
+ LAD attains zero-shot performance comparable
to training on human dialogs from the STAR cor-
pus. Though there remains significant room for
improvement, the results of this interactive human
evaluation demonstrate the efficacy of LAD. By
leveraging the strengths of large language models
to induce linguistic diversity, LAD produces syn-
thetic data that effectively conveys the necessary
structural constraints and facilitates zero-shot gen-
eralization, even in challenging interactive settings.

5 Related Work

5.1 User Simulators for Task-Oriented Dialog

The use of synthetic data in task-oriented dialog
is a long-standing approach. Early dialog research
leveraged user simulators for evaluation and opti-
mization (Eckert et al., 1997; Scheffler and Young,

2000; Schatzmann et al., 2006). Schatzmann et al.
(2007) propose a probabilistic agenda-based user
simulator for bootstrapping a POMDB dialog sys-
tem, demonstrating reasonable task completion
rates. Georgila et al. (2006) train an n-gram user
simulator which models both ASR and understand-
ing errors. González et al. (2010) explicitly model
user cooperativeness in a statistical user simulator.

Li et al. (2016) propose an agenda-based user
simulator for training dialog policies with RL.
Crook and Marin (2017) train a sequence-to-
sequence model for user simulation. Kreyssig
et al. (2018) introduce the neural user simulator
(NUS), which trains a sequence-to-sequence net-
work conditioned on user goals and the dialog his-
tory, outperforming existing methods on an inter-
active evaluation. Shi et al. (2019) carry out a
comprehensive analysis of six different user sim-
ulators, with different dialog planning and gen-
eration methods. A key takeaway of this analy-
sis is using agenda-based simulators to train RL
systems generally results in higher performance
on human evaluation. Lin et al. (2021) propose a
domain-indepdendent transformer-based user sim-
ulator (TUS). The feature representations of TUS
are domain-independent, thereby facilitating learn-
ing of cross-domain user behavior. TUS is trained
on MultiWOZ (Budzianowski et al., 2018) and can
effectively transfer to unseen domains.

LAD can be characterized as an agenda-based
simulator, wherein the schema describes the ontol-
ogy and the policy. The core novelty of LAD in
the context of prior work is three-fold: (1) large
LMs to induce linguistic diversity, (2) zero-shot
domain-agnostic synthetic data creation, and (3)
the schema as a standardized expression of struc-
tural constraints. LAD can potentially be further im-
proved by incorporating strategies from prior work,
such as modelling cooperativeness (González et al.,
2010) or ASR errors (Georgila et al., 2006).

5.2 Using Large Language Models

Large language models (Brown et al., 2020;
Chowdhery et al., 2022) exhibit strong language
understanding, generation and reasoning abilities.
Prompting is the dominant paradigm for leverag-
ing large LMs for various downstream problems
(Reynolds and McDonell, 2021; Lester et al., 2021).
Madotto et al. (2021) demonstrate the efficacy of
few-shot prompting for both open-domain and task-
oriented dialog, with a focus on response genera-
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tion and conversational parsing.
Several papers have used GPT-3 to generate syn-

thetic data (Yoo et al., 2021; Wang et al., 2021).
These approaches rely on GPT-3 to generate the
labels and are not suitable for task-oriented dialog.
To our knowledge, LAD is the first paper to lever-
age large LMs to reformulate utterances, in order
to create synthetic data for task-oriented dialog.

6 Conclusion

In an effort to leverage the abilities of large LMs to
facilitate zero-shot generalization in task-oriented
dialog, this paper introduces LAD. LAD creates
diverse and accurate synthetic data, in order to con-
vey the necessary setting-specific structural con-
straints to neural dialog models. LAD achieves
significant performance gains on zero-shot intent
prediction, slot filling and next action prediction
across five datasets. Furthermore, LAD is shown to
perform competitively in interactive human evalua-
tion, without observing human-annotated data.
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large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Inigo Casanueva, Tadas Temčinas, Daniela Gerz,
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Abstract
Though chatbots based on large neural mod-
els can often produce fluent responses in open
domain conversations, one salient error type
is contradiction or inconsistency with the pre-
ceding conversation turns. Previous work has
treated contradiction detection in bot responses
as a task similar to natural language inference,
e.g., detect the contradiction between a pair
of bot utterances. However, utterances in con-
versations may contain co-references or ellip-
sis, and using these utterances as is may not
always be sufficient for identifying contradic-
tions. This work aims to improve the contradic-
tion detection via rewriting all bot utterances
to restore antecedents and ellipsis. We cu-
rated a new dataset for utterance rewriting and
built a rewriting model on it. We empirically
demonstrate that this model can produce satis-
factory rewrites to make bot utterances more
complete. Furthermore, using rewritten utter-
ances improves contradiction detection perfor-
mance significantly, e.g., the AUPR and joint
accuracy scores (detecting contradiction along
with evidence) increase by 6.5% and 4.5% (ab-
solute increase), respectively.

1 Introduction

Latest chatbots powered by large pre-trained neural
models have shown decent capabilities to maintain
fluent and interesting conversations with human
users (Paranjape et al., 2020; Roller et al., 2021;
Bao et al., 2021; Konrád et al., 2021). However,
they are still prone to various kinds of annoying
mistakes (Xu et al., 2020; See and Manning, 2021;
Xu et al., 2021). One such error is contradiction or
inconsistency, as illustrated in Table 1.

In order to reduce contradiction errors, one ap-
proach is to develop a detection model to iden-
tify such problems after a system produces re-
sponse candidates. To this end, Welleck et al.
(2019) characterized the modeling of persona-
related consistency as a natural language infer-
ence (NLI) problem and constructed a dialog NLI

dataset based on Persona-Chat. To cover a broader
range of consistency types (e.g., persona, logic,
causality, etc), Nie et al. (2021) collected DE-
CODE, a dataset containing human written dia-
logues with self-contradictory utterances. Besides
the in-distribution human-human dialogues test set,
they collected an out-of-distribution set containing
dialogues between human and different chatbots.
This human-bot test set can better evaluate models’
performance in detecting contradiction in conver-
sations between human and chatbots, which is the
focus of this work.

We find one failure of the state-of-the-art (SOTA)
contradiction detection model is due to the frequent
anaphora and ellipses in chatbot utterances. One
typical example is shown in Table 1, where the first
bot utterance has an anaphor, “mine”, and the last
bot utterance misses an important entity, “Johnny
Cash’s concert”. Such incomplete utterances would
prevent detection models from fully understanding
the bot utterances in the dialog, thus leading to
detection errors. Therefore, we propose to first
rewrite the bot utterances to recover all the missing
information and then perform the contradiction de-
tection task. To support this goal, we first collect
a new dataset for incomplete utterance rewriting,
which is a widely studied task (Pan et al., 2019;
Su et al., 2019; Hao et al., 2021) but still lacks
supporting datasets for open-domain conversations
in English (Quan et al., 2019). Then we propose
a rewriting model trained on this data to rewrite
the anaphors to their corresponding entities and
restore any missing content. We conduct experi-
ments on the DECODE dataset (Nie et al., 2021),
and demonstrate substantial performance improve-
ment in contradiction detection when the utterance
rewrite module is applied. Overall, we have made
the following contributions in this work:

• We have collected a new English dataset for in-
complete utterance rewriting for general open-
domain conversations, and developed a rewrit-
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Speakers Original Dialogues Rewritten Dialogues Rewriting Type

Human: Hi, what’s your favorite singer? —
Bot: Mine is johnny cash of course. My favorite singer is Johnny Cash, of course. Co-reference
Human: He’s amazing, I love his songs. —
Bot: I never got to see johnny cash play but I wish I did. I never got to see Johnny Cash play but I wish I did. None
Human: Same, I wish I could go to one of his concerts. —
Bot: I have not been since last year though. I like sports. I have not been to Johnny Cash’s concert since

last year though. I like sports.
Ellipsis

Table 1: Examples of human-bot conversations with contradictory bot utterances marked by red color. We rewrite
every bot utterance to restore co-references and ellipsis (the restored parts are highlighted by bold font).

ing model for utterance restoration.

• With bot utterance rewriting, we can im-
prove the previous best contradiction detec-
tion model by 6.5% in AUPR and 4.5% in
joint accuracy that considers both contradic-
tion and evidence labels.

• We relabeled the human-bot test set of the
benchmark DECODE dataset and corrected
some annotations.1

2 Contradiction Detection Method

2.1 Task Definition

We formalize dialogue contradiction detection as
an NLI task. Given a list of utterances x =
{uH1 , uB1 , ..., u

H
n , uBn } representing a dialogue, the

task is to determine if the last bot utterance uBn
contradicts any previously conveyed information
contained in the past bot utterances {uB1 , ..., uBn−1}.
Note that we are using human and bot alternating
turns here (referred to as H and B), but they can
be human-human conversations too. In addition
to the binary label y, with 0 or 1 corresponding
to the non-contradiction and the contradiction la-
bels, respectively, we also output a set of indices
I ∈ {1, ..., n − 1} representing the utterances in
{uB1 , ..., uBn−1} that is actually contradicted by the
last utterance uBn .

2.2 Detection Models

Based on the benchmark DECODE dataset, Nie
et al. (2021) proposed two approaches for contra-
diction detection: an unstructured approach and a
structured utterance-based (SUB) approach. The
former one concatenates all the previous utterances
in the dialogue history to form a single textual con-
text. Then a classification model fθ is applied to the
context and the last utterance to infer the probabil-
ity of contradiction. The latter SUB approach pairs
every past bot utterance with the last one, and then

1Code and data are released at:
https://github.com/jind11/utterance-rewriting

feeds each pair to the classification model fSUB
θ .

The final contradiction probability is the maximum
over all the outputs: ŷ = max{fSUB

θ (uBi , u
B
n ) :

i ∈ {1, ..., n− 1}}. The supporting evidence (SE)
for a contradiction decision contains the pairs hav-
ing contradiction probability higher than a thresh-
old η, i.e., I = {i : fSUB

θ (uBi , u
B
n ) > η}. Nie et al.

(2021) demonstrated that the latter SUB approach
significantly outperforms the former one on the
human-bot test set (more than 10% in accuracy).
This SUB method is the current SOTA model for
contradiction detection, which we adopted as one
baseline.

2.3 Utterance Rewriting for Contradiction
Detection

As discussed earlier, we noticed that many bot
utterances contain co-references and ellipses and
thus the baseline model fails to capture the seman-
tic meaning or contradiction in the sentence pair.
Therefore, we propose to first rewrite the bot utter-
ances to restore co-references and ellipsis, and then
feed the rewritten utterances (e.g., the dialogues on
the right in Table 1) to the model. To this end, we
first collect a new dataset specially for utterance
rewriting and then develop a rewriting model.

Rewriting Data Collection To get parallel train-
ing data for utterance rewriting for open-domain
conversations, we sub-sampled 6,000 and 4,000
dialogues from the DailyDialog (Li et al., 2017)
and BST (Smith et al., 2020) datasets, respectively,
as the training set. Besides, we sub-sampled 400
and 400 dialogues from DailyDialog and BST, re-
spectively, as the test set. We only use the first six
utterances in each dialog. Specifically, we use the
first two utterances (from both speakers) as leading
context and ask annotators to check the remain-
ing four utterances, following Pan et al. (2019).2

Empirically we find that the context information

2Utterance rewriting needs context to resolve co-references
and ellipsis, and thus the first two utterances are not suitable
for rewriting annotation.
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needed to resolve co-references and ellipsis can al-
ways be found within 1-3 turns (Pan et al., 2019; Su
et al., 2019). We ask annotators to identify whether
an utterance is complete and can be understood
without reading the context, and if not, then rewrite
it to restore any missing information.

To ensure the annotation quality, we hired three
in-house professional data annotators, who have
been first trained via a pilot annotation session and
then proceed to the official annotation phase after
passing our provided qualification set. In the of-
ficial annotation phase, two of them first worked
independently and then the third annotator was
tasked to make the adjudication over the two an-
notations and pick the best one or make revisions
if needed. Besides, we periodically sampled 10%
of the annotations from each annotator throughout
the annotation process and provided feedback. The
annotation is considered valid only when the accu-
racy of examined results surpassed 95% (we deem
those rewrites that are both correct and complete
as correct rewrites, and then calculate the percent-
age of correct rewrites as the accuracy). Overall,
we have obtained 40,000 and 3,200 samples for
training and testing, respectively.

Rewriting Model We treat rewriting as a
sequence-to-sequence (Seq2Seq) task and adopt
two pre-trained Seq2Seq models, T5 (Raffel et al.,
2019) and Pegasus (Zhang et al., 2019). The in-
put is the concatenated context utterances and the
original last utterance, with special tokens inserted
before each utterance to indicate its speaker.

3 Experiments

3.1 Contradiction Detection Data
We use the DECODE dataset (Nie et al., 2021) in
this study. However, we found some issues with its
human-bot test set: (1) Around one third of non-
contradiction dialogues contain only one human
and one bot utterances, which makes the detection
task over-simplified, since there are no previous
bot utterances. (2) Not every bot utterance has
been annotated for contradiction with respect to
its history. (3) Evidence is not labeled to indicate
which history bot utterance contradicts the last one.

To resolve the above-mentioned issues, we cu-
rate new annotation using the dialogues in the orig-
inal test set. Details of annotation procedures are
provided in Section A of the Appendix. Overall, we
have obtained 1,889 samples (453 positive samples
and 1,436 negative ones), which we call an unbal-

anced set. Besides, we sub-sampled 453 negative
samples and combined them with all the positive
ones to form a balanced set. Table A.1 summarizes
the data statistics. We will release this new test set.

3.2 Baselines
We compare the contradiction detection perfor-
mance with and without rewriting bot utterances,
all based on the same SUB model framework,
which is the current SOTA model for contradic-
tion detection. Another baseline we introduced is
SUB-CONCAT, where each bot utterance is the
concatenation of the original one with the preced-
ing human utterance such that the missing informa-
tion (coreference or ellipsis) can be recovered from
the included previous utterance.

For rewriting, we compare our model against
four strong baselines: one is the off-the-shelf
SOTA co-reference resolution model trained on
OntoNotes (named as “Co-reference”) (Toshniwal
et al., 2021; Wu et al., 2020), and the other three
are developed based on three related datasets for
rewriting, named as “CANARD” (Elgohary et al.,
2019), “Gunrock” (Zhang et al., 2020), and “Mu-
DoCo” (Tseng et al., 2021). Specifically, CA-
NARD is a query rewriting dataset that aims to
rewrite a query/question based on previous con-
secutive QA pairs for the conversational question
answering task. The Gunrock dataset focuses on re-
solving ellipsis while containing a small portion of
co-reference cases, and it consists of 1745 samples
where all dialogues are in-house curated following
the Alexa Prize competition format. The MuDoCo
dataset is also for query rewriting for task-oriented
dialogues covering 6 domains.

3.3 Evaluation Metrics
To evaluate incomplete utterance rewriting, we use
both automatic and human evaluation. For human
evaluation, we propose two metrics: (1) Correct-
ness; (2) Completeness. The former one checks
whether the rewriting part is correct and obeys the
information in dialogue context, while the latter
one checks whether the rewritten utterance is com-
plete enough to be understood without reading the
context. We have binary labels for both metrics
and report the percentage of positive labels after
human evaluation. For automatic evaluation, in
addition to the widely used BLEU (Papineni et al.,
2002), ROUGE-1 (R-1), and ROUGE-L (R-L) (Lin,
2004), we have added two more metrics specially
for evaluating text editing models: exact match
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(EM) accuracy, and the F1 score, which was pro-
posed in Pan et al. (2019) and focuses on n-grams
that contain at least one restored word. Specifi-
cally, the n-gram restoration precision, recall, and
F-score can be calculated as:

Pn =
{restored n-grams} ∩ {n-grams in ref}

{restored n-grams}

Rn =
{restored n-grams} ∩ {n-grams in ref}

{n-grams in ref}

Fn = 2 · Pn ∗Rn

Pn +Rn

where “restored n-grams” refer to the n-grams in
restored utterance that contain at least one restored
words, and “n-grams in ref” refer to the n-grams in
reference that contain at least one restored words.

For contradiction detection, we first set
the threshold η to be 0.5, and report Preci-
sion/Recall/F1 for both the binary contradiction
label and the support evidence labels, following
Thorne et al. (2018).3 Besides, we report Joint
Accuracy, which indicates the performance when
both the 2-way contradiction detection and the sup-
porting evidence retrieval are correct. Considering
that these scores are sensitive to η, we also report
Area-under-Precision-Recall-Curve (AUPR) as a
threshold-independent score.

3.4 Experimental Setup
For utterance rewriting, we have used three kinds
of pre-trained models: T5-Base, T5-Large, and
Pegasus-Large, whose parameter sizes are 220 M,
770 M, and 568 M. Each model is trained for 4
epochs with a learning rate of 5e−5, and beam
search (beam size of 5) is used for generation.

For contradiction detection, following Nie et al.
(2021), we used the RoBERTa-Large model whose
parameter number is 330 M, which is trained for 3
epochs with a learning rate of 1e−5. We have used
the Huggingface Transformer code base4 and all
experiments were run on Nvidia V100 GPUs.

4 Results and Discussion
4.1 Utterance Rewriting
We performed both automatic and human evalua-
tion for utterance rewriting (please refer to Section
3.3 for evaluation details). Table 3 summarizes
the automatic evaluation results. As can be seen,
the three models perform similarly overall, with
T5-Large slightly outperforming the other two. We

3https://github.com/sheffieldnlp/fever-scorer
4https://github.com/huggingface/transformers/tree/master

thus adopt it as the main rewriting model in later
experiments.

We also sub-sample 100 rewritten utterances by
T5-Large for human evaluation. As shown in Ta-
ble 4, the correctness and completeness scores for
both test sets are above 85%, validating the high-
quality of the rewriting model. We also report the
change rate in the table that defines the percent-
age of the rewritten utterances that are different
from the original ones (only differences in punc-
tuation and upper/lower-case are not considered).
The bottom block of Table 4 shows the percentage
of utterances containing co-reference or ellipsis,
or either, i.e, incomplete utterances. We see that
co-reference and ellipsis occur almost equally
frequently in incomplete utterances. Considering
all the numbers together, we demonstrate that the
rewriting model has covered most of those incom-
plete utterances.

4.2 Contradiction Detection

Table 2 compares the contradiction detection per-
formance without rewriting and with rewriting by
different rewriting models. First of all, the SUB-
Concat method without rewriting does not yield
any performance gain although it has included the
context utterances. More importantly, after rewrit-
ing all bot utterances for both training and test sets,
only our rewriting model can lead to significant
improvements for all the evaluation metrics, while
those baseline rewriting models either maintain
or deteriorate the performance (we provided the
rewriting performance of these baselines in Sec-
tion B of Appendix for reference). We see that the
AUPR metric has been improved by around 2.8%
and 3.2% absolutely for the balanced and unbal-
anced sets by our model, respectively. We also
implemented model ensemble where we rewrite
bot utterances using our three rewriting models
(T5-Base/Large and Pegasus-Large), run contradic-
tion detection using each, and average their contra-
diction scores to obtain the final prediction. This
further improves the detection performance over
single models. Overall, we have achieved a sub-
stantial increase of 4.2% and 6.5% for AUPR and
4.5% and 3.4% for Joint-Acc. for the balanced and
unbalanced sets, respectively.

4.3 Error Analysis
We conducted additional error analysis to under-
stand the performance gains and remaining errors.
We first obtained 95 false negative samples by the
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Detection Method Rewriting Model Balanced Set Unbalanced Set
P/R/F1 AUPR SE (P/R/F1) Joint-Acc. P/R/F1 AUPR Joint-Acc.

SUB-Bot only None 89.4/70.6/78.9 89.0 90.4/62.9/74.2 69.9 73.2/70.6/71.9 75.4 81.4
SUB-Concat 88.1/66.9/76.0 88.1 90.0/60.0/72.0 68.1 66.3/66.9/66.6 71.6 78.7

SUB-Bot only

Co-reference 89.0/71.3/79.2 89.1 90.0/64.5/75.2 69.7 73.1/71.3/72.2 75.8 81.3
CANARD 79.3/37.1/50.5 73.9 89.6/26.3/40.7 54.6 60.0/37.8/46.3 52.8 74.8
Gunrock 79.2/59.8/68.2 74.0 88.5/50.2/64.0 60.0 53.0/59.8/56.2 49.0 71.9
MuDoCo 88.1/65.3/75.0 87.4 91.6/59.5/72.1 67.9 70.6/65.3/67.9 71.2 80.2

SUB-Bot only Ours (single) 90.9/72.9/80.9 91.8 93.0/67.6/78.3 73.6 73.5/72.9/73.2 78.6 82.8
Ours (ensemble) 92.9/71.7/81.0 93.2 93.9/66.1/77.6 74.4 80.1/71.7/75.7 81.9 84.8

Table 2: Contradiction detection performance (%) on new human-bot test set. Best results for single model (T5-
Large) are marked by underlines while overall best results are marked bold. ‘SUB-Bot only’ means feeding only bot
utterances to the SUB model while SUB-Concat uses the concatenated bot utterance and the preceding human turn.

Models BLEU R-1 R-L EM F1

T5-Base 0.653 0.822 0.801 0.213 0.402
T5-Large 0.653 0.820 0.798 0.199 0.422
Pegasus-Large 0.649 0.822 0.801 0.212 0.391

Agreement 0.714 0.840 0.837 0.323 0.309

Table 3: Automatic evaluation results for the rewriting
model on the rewriting test set. Agreement is the inter-
annotator agreement between two rewrites in test set.

Test Set Correctness Completeness Change Rate

Rewriting 92.0 85.0 59.0
Contradiction 98.0 93.1 62.4

Test Set Co-reference Ellipsis Incomplete

Rewriting 39.0 42.0 68.0
Contradiction 42.6 27.7 58.4

Table 4: Upper block: human evaluation of rewriting for
both the rewriting and contradiction detection test sets
(%); bottom block: percentage of utterances containing
co-reference or ellipsis, or either (incomplete).

“SUB-Bot only” model without applying rewriting,
and then manually identified 28 samples whose
last bot utterances are incomplete. We then manu-
ally rewrote those incomplete bot utterances. With
such manual rewriting, we are able to correctly
classify 18 out of 28 samples to be positive (64.3%
in accuracy), whereas, with the T5-Large rewrit-
ing model, 15 samples can be correctly predicted
(53.6% in accuracy). This comparison indicates
that our automatic rewriting has pushed the per-
formance improvement close to the upper bound
achieved by manual rewriting. More error analysis
is provided in Section C of Appendix.

4.4 Why Utterance Rewriting Helps?

As illustrated by Table 1, in order to infer the entail-
ment relationship between the premise (i.e. “Mine
is johnny cash of course.”) and hypothesis (i.e. “I
have not been since last year though.”), we need
to resolve the anaphora and ellipses so that some
key information can be restored, e.g., “Mine” is re-
placed by “My favorite singer” in the premise and

the missing phrase of “to Johnny Cash’s concert” is
restored in the hypothesis. Without restoring such
key information from the dialogue context, the con-
tradiction detection model cannot fully understand
the premise and hypothesis sentences, thus not be-
ing able to accurately detect contradictory cases.
One could argue that we can simply concatenate the
context with both premise and hypothesis respec-
tively so that the detection model could grab the
missing information itself from the context, how-
ever, the baseline method “SUB-Concat”, which
follows this setting, still under-performs the base-
line without concatenating the context (i.e. SUB-
Bot only). This indicates that when the premise
and hypothesis are organized in a dialogue structure
with multiple turns rather than as single-turn sen-
tences, the NLI based detection model is not good
at inferring their relationship anymore. Therefore,
we need to use the utterance rewriting model to
grasp the most necessary information from context
and insert into the bot utterances so that we can
still use the single-turn format while making up the
missing information for entailment inference.

4.5 Future Work
We will keep improving the utterance rewriting
model. Besides, we will showcase that utterance
rewriting can also help improve other dialogue re-
lated tasks, such as task-orientated dialogue state
tracking and response generation, open-domain di-
alogue response selection and generation, etc.

5 Conclusion
In this work, we aim to improve contradiction de-
tection in chatbot utterances via rewriting to re-
store anaphora and ellipsis. To develop such an
utterance rewriting model, we curated a dataset by
crowd-sourcing and demonstrated that the rewrit-
ing quality is satisfactory. With such a rewriting
technique, we are able to significantly improve the
contradiction detection performance.
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A Contradiction Detection Data
Collection

Considering that the original human-bot test set of
the benchmark DECODE dataset is problematic,
we specially curate new annotation based on those
dialogues of the original test set via the following
steps: (1) We first obtained 507 unique and full
dialogues from the original human-bot test set1 by
merging dialogues with overlaps and removing di-
alogues of only one turn. We then obtained 1,889
partial dialogues for annotation by cutting each
full dialogue from the beginning to each bot ut-
terance so that we can annotate whether each bot
utterance contradicts against its context. (2) In the
first round of annotation, we ask three Amazon
Mechanical Turk workers (from English-speaking
countries, including USA, England, and Canada) to
annotate both the binary label of contradiction and
evidence indices that indicate which history bot
utterance contradicts the last one. When setting-
up the annotation interface, we have provided one
line of guidance to warn annotators not to reveal
any personal information during annotation. We
keep those samples with three full votes as final-
ized samples and pass those without three equal
votes to the second round. (3) In the second round,
we provide the maximum set of evidence indices
to another three AMT workers and let them verify
and write down new annotation if they do not agree.
Again, samples with three agreements are selected
as finalized ones and those without are passed to
authors of this work for final adjudication. Finally,
among all the 1,889 samples, we have obtained 453
positive samples and 1,436 negative ones, which
we call an unbalanced set. Besides, we have also
sub-sampled 453 negative samples and combine
them with all positive ones to form a balanced set.
Table A.1 summarizes the data statistics.

Dataset Positive Negative Type

Train 13,592 13,592 Human-Human
Balanced Test 453 453 Human-Bot
Unbalanced Test 453 1,436 Human-Bot

Table A.1: Statistics of the contradiction detection
dataset.

B Rewriting Quality of Baselines

Table B.2 compares our rewriting model with base-
lines that are developed on three related datasets for

1https://github.com/facebookresearch/ParlAI/blob/main/
projects/contradiction

utterance rewriting (CANARD, Gunrock, and Mu-
DoCo) and we report performance on our rewriting
test set. As expected, our rewriting model that is
trained on our own rewriting dataset performs the
best. And by combining Table 2 and Table B.2, we
can see that better rewriting performance on our
rewriting test set can lead to better contradiction
detection performance.

Models BLEU R-1 R-L EM F1

CANARD 0.363 0.631 0.623 0.105 0.215
Gunrock 0.352 0.626 0.612 0.008 0.223
MuDoCo 0.576 0.783 0.781 0.214 0.133

Ours 0.653 0.820 0.798 0.199 0.422

Table B.2: Automatic evaluation results for the rewriting
model on the rewriting test set. Agreement is the inter-
annotator agreement between two rewrites in test set.

C Qualitative Error Analysis

Among all 95 false negative samples predicted by
the baseline, we find that the last bot utterances
of 28 samples are incomplete and need rewriting
for restoration. After automatic rewriting of all bot
utterances, we can get 15 samples correct but still
have 13 samples being false negatives. Now we
would like to analyze the error pattern of these 13
false negatives after rewriting and we can catego-
rize the errors into four types: numerical reasoning,
logical reasoning, common sense reasoning, and
hard to judge. Table C.3 provides examples for
each type. Here are detailed definitions for these
four types: (1) Numerical reasoning: Models need
to do some numerical calculation or comparison to
make a decision; (2) Logical reasoning: It requires
logical reasoning for prediction; (3) Common sense
reasoning: Some common sense knowledge needs
to be equipped for reasoning; (4) Hard to judge: It
is even hard for human to judge whether contradic-
tion really exists or not.

Table C.4 provides several examples that are
originally false negatives before rewriting bot utter-
ances but later get correctly predicted after rewrit-
ing. As can be seen, the rewriting process can make
up those critical information needed for detecting
contradiction cases. Taking the first sample in Ta-
ble C.4 as an example, there is ellipsis in the last
two bot utterances in the original dialogue, which
would lead to models’ misunderstanding. After
rewriting, the last two bot utterances get complete,
which makes it much easier for models’ decision
making.
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Original Dialogue Rewritten Dialogue Error Type

human: Hi!
bot: What do you do for a living? I’m retired, so I
just sew all day.
human: I’m a homemaker. What kind of things do
you sew?
bot: I sew a lot of quilts for my grandchildren. Do
you have any kids?
human: Aww that’s sweet! Yes, I have one son.
bot: How old is he? I have two daughters. They’re
a handful!
human: He’s four and yes they are a handful! How
old are your daughters?
bot: 4, 5, and 8. I love them to death, but they’re
exhausting!

human: Hi!
bot: What do you do for a living? I’m retired, so I
just sew all day.
human: I’m a homemaker. What kind of things do
you sew?
bot: I sew a lot of quilts for my grandchildren. Do
you have any kids?
human: Aww that’s sweet! Yes, I have one son.
bot: How old is your son? I have two daughters.
Your daughters are a handful!
human: He’s four and yes they are a handful! How
old are your daughters?
bot: My daughters are 4, 5 and 8. I love my daugh-
ters to death, but they’re exhausting!

Numerical
Reasoning

human: Hi!
bot: Hi there! How are you? What do you do for a
living? I’m a college student.
human: I’m good, thankyou! I’m an electrician.
What do you study?
bot: It is in education. I just moved to an apartment
near my job. What are you studying?

human: Hi!
bot: Hi there! Are you okay? What do you do for a
living? I’m a college student.
human: I’m good, thankyou! I’m an electrician.
What do you study?
bot: I study education. I just moved to an apartment
near my job. What are you studying?

Logical Rea-
soning

human: I’ve never left the US, I think I’m afraid to
travel internationally though.
bot: I can understand that. I have never been to the
united states. I would love to though.
human: Oh I thought you lived in the South United
States. Where do you live?
bot: I live on the south side of the state. It is very
cold in the winter, though.

human: I’ve never left the US, I think I’m afraid to
travel internationally though.
bot: I can understand being afraid to travel interna-
tionally. I have never been to the united states. I
would love to travel internationally though.
human: Oh I thought you lived in the South United
States. Where do you live?
bot: I live on the south side of the state. It is very
cold in the winter though.

Common
Sense Rea-
soning

human: What did you do today? I have an adult
son.
bot: I went to the mall with my mom. She’s my best
friend. How old is your son?
human: My son is 29. How many children do you
have?
bot: I have three kids. They’re all grown up now,
but they’re still my best friends.
human: Do your kids live with you?
bot: Yes, they live with me and my husband. What
do you like to do in your spare time?
human: Have you been shopping lately? I love
shopping.
bot: No, I don’t have much time for shopping. I
spend most of my time with my kids.

human: What did you do today? I have an adult
son.
bot: I went to the mall with my mom. My mom is
my best friend. How old is your son?
human: My son is 29. How many children do you
have?
bot: I have three kids. My kids are all grown up
now, but my kids are still my best friends.
human: Do your kids live with you?
bot: Yes, my kids live with me and my husband.
What do you like to do in your spare time?
human: Have you been shopping lately? I love
shopping.
bot: No, I don’t have much time for shopping. I
spend most of my time with my kids.

Hard to
Judge

Table C.3: Examples that are wrongly predicted as negatives before and after automatic rewriting.
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Original Dialogue Rewritten Dialogue

human: Hi!
bot: Hey!
human: How are you today?
bot: Great! And you?
human: I am doing great as well! What do you do for a
living?
bot: I injured in an accident.
human: When and what happened?
bot: I had a sports injury.
human: What kind of accident?
bot: Broke an ankle. Very painful.
human: What sport were you in?
bot: I compete in rowing.
human: How did you break an ankle from rowing?
bot: A four wheeler accident.

human: Hi!
bot: Hey!
human: How are you today?
bot: I am great today! And how are you?
human: I am doing great as well! What do you do for a
living?
bot: I was injured in an accident.
human: When and what happened?
bot: I had a sports injury that caused me to be injured.
human: What kind of accident?
bot: I broke an ankle. My injury was very painful.
human: What sport were you in?
bot: I compete in rowing when I broke my ankle.
human: How did you break an ankle from rowing?
bot: I broke my ankle in a four wheeler accident.

human: Hi!
bot: Hello, how are you? I’m a huge fan of star wars.
How about you?
human: I have never seen a Star Wars movie.
bot: Neither have I. What do you like to do in your spare
time? I like coffees.

human: Hi!
bot: Hello, how are you? I’m a huge fan of star wars.
How about you?
human: I have never seen a Star Wars movie.
bot: I have never seen a Star Wars movie. What do you
like to do in your spare time? I like coffees.

human: Hi!
bot: What do you like to do in your spare time? I like to
run and play soccer.
human: I like to work on cars in my spare time. Do you
play any sports?
bot: No, I don’t. I’m not very athletic. What kind of
cars do you work on?

human: Hi!
bot: What do you like to do in your spare time? I like to
run and play soccer in my spare time.
human: I like to work on cars in my spare time. Do you
play any sports?
bot: No, I don’t play any sports. I’m not very athletic.
What kind of cars do you work on?

Table C.4: Samples that are wrongly predicted as negatives before rewriting but get corrected after rewriting.
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Abstract

Speakers build rapport in the process of align-
ing conversational behaviors with each other.
Rapport engendered with a teachable agent
while instructing domain material has been
shown to promote learning. Past work on lexi-
cal alignment in the field of education suffers
from limitations in both the measures used to
quantify alignment and the types of interactions
in which alignment with agents has been stud-
ied. In this paper, we apply alignment measures
based on a data-driven notion of shared expres-
sions (possibly composed of multiple words)
and compare alignment in one-on-one human-
robot (H-R) interactions with the H-R portions
of collaborative human-human-robot (H-H-R)
interactions. We find that students in the H-R
setting align with a teachable robot more than
in the H-H-R setting and that the relationship
between lexical alignment and rapport is more
complex than what is predicted by previous
theoretical and empirical work.

1 Introduction and Related Work

Alignment is the convergence of behavior among
speakers and plays an important role in designing
the strategies of dialogue systems because it is asso-
ciated with user engagement (Campano et al., 2015)
and task success (Nenkova et al., 2008; Callejas
et al., 2011; Lubold et al., 2018; Kory-Westlund
and Breazeal, 2019). However, few studies have
looked at how this relationship differs in multi-
party versus dyadic task-oriented dialogues involv-
ing humans and a dialogue agent. This gap prevents
us from inferring appropriate alignment strategies
for dialogue agents across different group sizes.

Teachable agents act as peers that learners teach
via dialogue. These agents have been shown to
facilitate learning due to the effect of learning by
teaching (Leelawong and Biswas, 2008) and the
rapport the agents build with learners (Gulz et al.,

2011). Inspired by theories suggesting that rap-
port is tied to verbal and non-verbal alignment
(Lubold et al., 2019; Tickle-Degnen and Rosen-
thal, 1990), prior educational research has explored
relationships between rapport with agents and vari-
ous forms of alignment such as lexical (Rosenthal-
von der Pütten et al., 2016; Lubold, 2018) and
acoustic-prosodic (Lubold, 2018; Kory-Westlund
and Breazeal, 2019) alignment.

While lexical alignment (the focus of this paper)
in educational dialogue has been an active research
area, prior studies are limited by 1) alignment mea-
sures (repetition of single words (Ai et al., 2010;
Friedberg et al., 2012; Lubold, 2018) or manual an-
notations of semantics (Rosenthal-von der Pütten
et al., 2016)) or 2) dialogue settings (they studied
only dyadic interactions with an agent (Rosenthal-
von der Pütten et al., 2016; Lubold, 2018; Sinclair
et al., 2019), dyadic interactions between humans
(Michel and Smith, 2017; Michel and Cappellini,
2019; Michel and O’Rourke, 2019; Sinclair and
Schneider, 2021), or multi-party human interac-
tions (Friedberg et al., 2012)). Multi-party interac-
tions involving an agent remain to be explored with
more sophisticated automated measures that can
deal with the alignment of a sequence of words.

Therefore, we extend the past work on lexical
alignment in educational dialogue in two ways.
First, we view lexical alignment as initiation and
repetition of shared lexical expressions, which are
automatically extracted from dialogue excerpts and
can consist of multiple words (Dubuisson Duplessis
et al., 2021). Along with these metrics, we propose
another viewpoint, activeness, which quantifies to
what extent a speaker is involved in the establish-
ment of shared expressions independent of their
partner. Second, we investigate collaborative teach-
ing where two learners co-teach a teachable NAO
robot named Emma. We compare how individual
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Figure 1: Screenshot of students and Emma in the H-H-
R condition.

learners align with Emma and how alignment re-
lates to rapport with her in this human-human-robot
(H-H-R) setting versus in a one-on-one human-
robot (H-R) setting. Although, outside of educa-
tion, some researchers have also investigated H-H-
R interactions (e.g., Kimoto et al., 2019), explor-
ing alignment specifically in educational settings
is useful because optimal alignment strategies dif-
fer from task to task (Dubuisson Duplessis et al.,
2021). Through our comparisons, this paper pro-
vides the groundwork for designing different align-
ment strategies for teachable agents in the H-R and
H-H-R settings.

2 Methodology

2.1 Data Collection
We recruited 40 undergraduate students from Pitts-
burgh, USA for an online study (due to COVID)
over Zoom. Emma and the student(s) each had
their own Zoom window (Figure 1) and conversed
via speech. Students saw ratio word problems on a
web application and taught them to Emma for 30
minutes. Each problem consisted of multiple steps,
and students had to teach her step-by-step. Emma
was designed to guide them by asking a question or
making a statement relevant to their response even
when they made a mistake. Her responses were
pre-authored in Artificial Intelligence Markup Lan-
guage and were selected based on pattern matching
with students’ utterances. All students were ini-
tially assigned to the H-H-R condition, but they
were assigned to the H-R condition if their partner
did not show up. We ended up with 12 students in
the H-R condition and the remaining 28 in the H-
H-R condition to form 14 pairs. In both conditions,
students freely interacted with Emma by pressing
and holding a “push to speak” button on the appli-
cation. In the H-H-R condition, students were also

Mean (SD) H-R (n=12) H-H-R (n=26)
Utterances
both speakers 174.8 (27.5) 59.1 (20.0)

student 81.3 (13.1) 27.7 (9.80)
Emma 93.5 (14.4) 31.5 (10.4)

Tokens
both speakers 2919.0 (466.3) 1147.0 (388.1)

student 921.0 (228.7) 473.0 (227.2)
Emma 1998.0 (335.9) 673.0 (210.2)

Table 1: Descriptive statistics for H-R dialogues and the
two Emma-student portions of H-H-R dialogues.

expected to discuss the problems with their partners
while teaching Emma, while, in the H-R condition,
students had to keep talking to Emma without any
discussions with others. An example H-H-R inter-
action can be found in Appendix A. We excluded
one H-H-R pair from our analysis because one of
the students did not talk to either Emma or the
partner while working on the problems.

After teaching, learners individually answered
survey questions about their perceived rapport with
Emma on a six-point Likert scale, ranging from
strongly disagree to strongly agree. The survey
used four types of rapport measures created by
Lubold (2018): general rapport measures (three
items) based on the sense of connection from
Gratch et al. (2007) and positivity, attention, and
coordination rapport measures (four items each,
twelve in total) from Sinha and Cassell (2015) and
Tickle-Degnen and Rosenthal (1990). The latter
twelve items had a higher Cronbach’s α (.856) than
the general rapport items (.839); thus, we used
the average of the positivity, attention, and coor-
dination items to create our rapport metric. The
means and standard deviations of our rapport met-
ric were 4.36 and .882 in the H-R condition, and
4.55 and .572 in the H-H-R condition. One-way
ANOVA showed no effect of conditions on rapport
(F = .704, p = .407, df = 36).

2.2 Computing Lexical Alignment

We manually transcribed all conversations, instead
of using Emma’s automated speech recognition, be-
cause she recorded only while students were hold-
ing the “push to speak” button. Then, because the
measures of lexical alignment below are defined
only for dyadic conversations, we manually identi-
fied the responder of each utterance in the H-H-R
condition (see Appendix A) to split each conver-
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sation into two Emma-student dialogues and one
student-student dialogue. Table 1 describes the
Emma-student dialogue data. Although individuals
in the H-H-R condition spoke less to Emma than
in the H-R condition due to the fixed experiment
duration and the dialogue split, this does not affect
our measures because they are normalized by the
number of shared expressions or tokens.

The quantification of lexical alignment in the di-
alogues1 in this paper relies on a shared expression,
which is “a surface text pattern at the utterance
level that has been produced by both speakers in
a dialogue” (Dubuisson Duplessis et al., 2017). A
shared expression is initiated by speaker S when
used by S first and adapted (thus established as a
shared expression) by the dialogue partner later.
We used the alignment measures derived from
shared expressions because mathematical expres-
sions often consist of more than one token, other
existing measures compute only repetition, and
these measures are shown to be predictive of edu-
cational outcomes. Our ratio problems contained
fractions and decimals, which cannot be expressed
by one word. Indeed, the average lengths of shared
expressions were 1.47± .076 and 1.44± .101 for
the H-R and H-H-R conditions, respectively. Word-
based measures such as counting (Nenkova et al.,
2008; Friedberg et al., 2012; Wang et al., 2014),
Spearman’s correlation coefficient (Huffaker et al.,
2006), regression models (Reitter et al., 2006; Ward
and Litman, 2007), and vocabulary overlap (Cam-
pano et al., 2014) fail to represent the alignment
of phrases containing more than one word. Other
measures address this issue by leveraging n-grams
(Michel and Smith, 2017; Duran et al., 2019) or
cross-recurrence quantification analysis (Fusaroli
and Tylén, 2016) but consider only repetitions in
the alignment process as opposed to the measures
used in this work (Dubuisson Duplessis et al., 2017,
2021). Furthermore, Sinclair and Schneider (2021)
have found these measures are correlated with
learning and collaboration between human students
in collaborative learning.

We employed the set of speaker-dependent align-
ment measures out of the ones proposed by Dubuis-
son Duplessis et al. (2017, 2021)2: Initiated Ex-
pression (IE) and Expression Repetition (ER). IE
of speaker S (IE_S) measures orientation (i.e.,

1The original dialogues in the H-R condition and the
Emma-student dialogue splits in the H-H-R condition.

2We used the associated tool available at https://
github.com/GuillaumeDD/dialign.

(a)symmetry) in the alignment process and is de-

fined as # expr. initiated by S

# expr. . In a dialogue be-
tween speakers S1 and S2, the alignment process
is symmetric if IE_S1 ≈ IE_S2 ≈ .5 because
IE_S1 + IE_S2 = 1. ER of speaker S (ER_S)
captures the strength of repetition and is defined as
# tokens from S in new or existing expr.

# tokens from S
.

However, IE cannot measure asymmetry or es-
tablishment independent of another speaker be-
cause, by definition, if IE_S1 increases, IE_S2
decreases. This dependence prevents us from ob-
serving increased establishment by both speak-
ers. Therefore, we calculated Expression Initiator
Difference (IED) (Sinclair and Schneider, 2021),
which is given by IED = |IE_S1 − IE_S2|. In
addition, we propose a new measure:
Expression Establishment by Speaker S (EE_S)

measures the activeness of S in the alignment
process in terms of the establishment of new
shared expressions. It is given by EE_S =
# tokens from S used to establish new expr.

# tokens from S
.

In the example dialogue in Appendix A, there
are ten shared expressions in the Emma-StudentA
dialogue split: “that”, “can you”, “can”3, “con-
vert”, “the”, “days to”, “days”, “to”, “hours”, and
“hours?”. Of those, Emma started to use three
expressions that Student A reused later: “that”,
“can you”, and “can”. Thus, IE_Emma = 3

10
and IE_student = 7

10 . These are used to com-
pute IED in the Emma-StudentA dialogue: IED
= | 310 − 7

10 | = 2
5 . ER_student means the num-

ber of tokens in Student A’s turns that are taken
from Emma’s previous turns and therefore parts
of shared expressions (these tokens are italicized
in Appendix A) divided by the total number of
tokens Student A spoke to Emma including punc-
tuations. Student A spoke 33 tokens to Emma and
devoted four italicized tokens—“can you” and two
“that”s—to shared expressions. Thus, for Student A,
ER_student = 4

33 . Out of the four, Student A used
three tokens to establish new shared expressions
“that” and “can you”, so EE_student = 3

33 = 1
11 .

2.3 Alignment Hypotheses

This study investigates the following hypotheses:
H1: Individuals in the H-H-R condition align

less with Emma than in the H-R condition. Bren-
3Although the expression “can” is part of the longer expres-

sion “can you”, it is counted as a shared expression because it
appeared as a free form in Emma’s last turn (Dubuisson Dup-
lessis et al., 2017). I.e., it was not part of “can you”.
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nan and Clark (1996) formulated lexical alignment
as the establishment of a shared conceptualization,
a conceptual pact. In the H-R condition, individu-
als establish conceptual pacts only with Emma, but,
in the H-H-R condition, individuals do so between
them through discussion before talking to Emma
(see the discussion between students before talk-
ing to her in Appendix A). This may mean these
conceptual pacts are likely to be different from
what Emma initially suggested because humans
keep updating them, but Emma is not accessible to
the updated conceptual pacts (in our case, Emma
does not have an ability to intentionally align with
humans). Therefore, individuals in the H-H-R con-
dition may tend to use lexicons outside of shared
expressions with Emma.

H2: Students feel more rapport with Emma
when they align with Emma more (H2-a), she
aligns with them more (H2-b), and alignment is
more symmetric (H2-c). Human-human interac-
tions show positive correlations between alignment
and rapport (Lubold et al., 2019; Tickle-Degnen
and Rosenthal, 1990; Sinha and Cassell, 2015).
These are bi-directional; people feel a rapport when
aligning with their partners and being aligned by
their partners (Chartrand and van Baaren, 2009). In
human-robot interactions, positive relationships be-
tween rapport and non-lexical alignments such as
acoustic-prosodic (Lubold, 2018; Kory-Westlund
and Breazeal, 2019) and movement (Choi et al.,
2017) have also been found. We thus expect lexi-
cal alignment positively correlates with rapport in
both conditions. We also anticipate a symmetric
alignment process positively correlates with rap-
port because human-human interactions are more
symmetric than human-agent ones (Dubuisson Du-
plessis et al., 2021) and past work increased rapport
by imitating human alignment behavior.

H3: Lexical alignment is more strongly corre-
lated with rapport with Emma in the H-R con-
dition than in the H-H-R condition. As shown in
Yu et al. (2019), Levitan et al. (2012), and Namy
et al. (2002), the alignment process in H-H-R dia-
logues may also depend on other factors including
the gender diversity of the party. Thus, in the H-H-
R condition, lexical alignment alone may not be as
predictive of rapport as in the H-R condition.

3 Results and Discussion

Individual alignment across H-R and H-H-R
conditions (H1). We tested H1 by comparing

Mean (SD) H-R (n=12) H-H-R (n=26)
ER_student** .594 (.052) .462 (.077)

EE_student .189 (.033) .171 (.050)
ER_Emma** .494 (.031) .421 (.079)
EE_Emma* .087 (.024) .119 (.037)

IED .155 (.111) .158 (.127)

Table 2: Descriptive statistics of lexical alignment mea-
sures. Measures marked with * and ** are significantly
different across conditions at p < .05 and p < .01 (two-
tailed), respectively.

means of ER_student and EE_student across con-
ditions with one-way ANOVA. Table 2 partly sup-
ports H1. Individuals in the H-R condition repeated
shared expressions (i.e., higher ER_student) more
than in the H-H-R condition, but they were equally
likely to establish shared expressions (i.e., no dif-
ference in EE_student) across conditions.

Correlations of alignment with rapport across
conditions (H2 and H3). To test H2 and H3, first,
we fit the regression equation with an interaction
between the conditions and an alignment measure:
R = β0 + β1 ∗HHR+ β2 ∗A+ β3 ∗HHR ∗A
where R is the rapport measure, A is an alignment
measure, and HHR is 1 for students in the H-H-R
condition; otherwise 0. Table 3 shows that β3 is
not significant for none of the alignment measures,
meaning that the correlations between rapport and
alignment are in the same direction regardless of
the conditions.

Therefore, we used all data to compute Pear-
son’s correlations between rapport and alignment
(see Table 4). The significant negative correlation
between rapport and IED supports H2-c. H2-b is
not fully supported because, although EE_Emma
is correlated positively with rapport, ER_Emma is
not. In addition, surprisingly, we found evidence
for the opposite of H2-a; EE_student has a neg-
ative correlation with rapport. Further analysis
revealed IE_Emma is significantly negatively cor-
related with rapport (r = −.490, p = .002). This
means students felt less rapport when they estab-
lished more shared expressions relative to Emma
and aligns with the findings on EE.

Finally, we compared Pearson’s r between lexi-
cal alignment and rapport in the two conditions us-
ing Fisher transformation (Snedecor and Cochran,
1980) to test H3. It was not validated because there
was no significant difference between the two con-
ditions in Table 5.
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Estimate of β3 (p-value) ER_student EE_student ER_Emma EE_Emma IED
Rapport -0.54 (.901) 9.09 (.171) 3.10 (.652) -0.83 (.928) 3.72 (.057)

Table 3: Coefficients of interaction terms (β3).

Pearson’s r (p-value) ER_student EE_student ER_Emma EE_Emma IED
Rapport -.315 (.054) -.331* (.043) .214 (.198) .343* (.035) -.573** (.000)

Table 4: Pearson’s correlations between alignment measures and rapport. Correlations marked with * and ** are
significant at p < .05 and p < .01 (2-tailed), respectively.

Pearson’s r H-R (n=12) H-H-R (n=26)
ER_student -.145 -.406
EE_student -.457 -.285
ER_Emma .008 .461
EE_Emma .195 .407

IED -.723 -.529

Table 5: Comparison of Pearson’s correlations between
alignment measures and rapport across conditions.

These results may be because perceived success
in communication with Emma characterized by her
accidental alignment leads to high rapport and low
alignment by students. As Branigan et al. (2010)
and Dubuisson Duplessis et al. (2017) reported,
students might have (either consciously or uncon-
sciously) expected they should establish shared ex-
pressions more than Emma due to her limited lin-
guistic capacity. Thus, they might have started with
an asymmetric alignment process. When Emma
was stuck, they might have kept this strategy be-
cause they thought she did not understand them, re-
sulting in decreased rapport. In contrast, as Emma
established new shared expressions by accident,
students might have thought she was following
new information like humans, that she cared what
they said, and that they were in sync, leading to
more positivity, attention, and coordination rap-
port, respectively (Tickle-Degnen and Rosenthal,
1990). They may have also changed their alignment
strategy to a more symmetric one (i.e., decreased
alignment by students) that they usually use while
interacting with humans.

3.1 Limitations

This study has several limitations. First, the limited
number of participants (38 in total) might limit the
detection of all correlations. Moreover, the compar-
ison between the H-R and H-H-R conditions has
low statistical power because the H-R condition
had fewer than half of the participants in the H-H-

R condition. It might have been biased because
the assignment to the conditions was not fully ran-
dom as well. Next, alignment measures may need
contextual adjustments. For example, one math
problem included both “three hours” and “three-
fortieths of battery”. Although “three” in these
numbers refers to different entities, our measures
saw it as a shared expression. Finally, some lex-
icons came from the problem prompt rather than
the group conversation.

4 Conclusion

We examined relationships between lexical align-
ment and rapport with a teachable agent in one-
on-one (H-R) and collaborative (H-H-R) teaching.
Our methods expand prior literature by compar-
ing alignment behavior in H-R and H-H-R settings
and extending recent work by Dubuisson Duplessis
et al. (2021) to the speaker-level act of activeness
in the alignment process. Our results imply learn-
ers’ lexical alignment with teachable agents may
not always increase rapport with a teachable agent,
unlike predictions from alignment theories (Lubold
et al., 2019; Tickle-Degnen and Rosenthal, 1990)
largely based on human-human interactions. Fu-
ture work can expand our work by looking at the
role of H-H portions of H-H-R interactions in their
H-R portion and the effect of miscommunication
as an intermediate variable on the negative correla-
tions between rapport and learners’ alignment and
by extending the measures to multi-party settings
without disentanglement.
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Speaker Utterance Responder
Emma: Now that I know how long one battery will last, can you help me

figure out how many batteries I need total?
Student A

Student B: Oh, okay. Student A
Student A: Okay. Next ... Student B
Student B: Okay. Student A
Student A: So one whole battery lasts three and three quarters of an hour. Student B
Student B: Three and three quarters of an hour. Oh my gosh. Emma, you’re making

this difficult on us.
Student A

Student A: I think we need her... Oh man. Student B
Student B Because it’s in days now. So she has to figure out... Student A
Student A: You have to do like dimensional analysis. Student B
Student B I think she... Yeah. She has to convert days to hours. I think that might

be the easiest thing for her.
Student A

Student A: Okay. Student B
Student B: So she has to divide... Student A
Student A: Wait, is she going to remember that? Student B
Student B: Oh, I don’t know. Student A
Student A: Okay. I’m going to ask if she knows how to convert days to hours. Student B
Student B: Okay. Student A
Student A: Okay, Emma. Can you convert the number of days to the number of

hours?
Emma

Emma: So I know how long I’ll be gone in days, but how long the battery
lasts is in hours. So first I should change the days to hours?

Student A

Student A: Yes, Emma. That’s correct. Emma
Emma: So I can convert two and three quarters to an improper fraction,

eleven over four. And then I can multiply it by twenty four hours?
Student A

Student B: She did all the work. Student A
Student A: Yes, Emma. That’s correct. Emma

Table 6: Lexical alignment in the Emma-studentA portion of the dialogue (bolded utterances). A responder is a
speaker who responded to the utterance. Speakers initiated colored but not italicized expressions and repeated the
italicized ones. Contractions were tokenized as two tokens (e.g., That’s to “That” and “’s”). Punctuation was treated
as one token but did not constitute a shared expression by itself.
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Abstract

The goal of dialogue relation extraction (DRE)
is to identify the relation between two enti-
ties in a given dialogue. During conversations,
speakers may expose their relations to certain
entities by explicit or implicit clues, such ev-
idences called “triggers”. However, trigger
annotations may not be always available for
the target data, so it is challenging to lever-
age such information for enhancing the per-
formance. Therefore, this paper proposes to
learn how to identify triggers from the data
with trigger annotations and then transfers the
trigger-finding capability to other datasets for
better performance. The experiments show that
the proposed approach is capable of improving
relation extraction performance of unseen rela-
tions and also demonstrate the transferability
of our proposed trigger-finding model across
different domains and datasets.1

1 Introduction

The goal of relation extraction (RE) is to identify
the semantic relation type between two mentioned
entities from a given text piece, which is one of
basic and important natural language understand-
ing (NLU) problems (Zhang et al., 2017; Zhou and
Chen, 2021; Cohen et al., 2020). In this task setting,
we are usually given a written sentence and a query
pair containing two entities and asked to return the
most possible relation type from a predefined set of
relations. Dialogue relation extraction (DRE), on
the other hand, aims to excavate underlying cross-
sentence relation in natural human communications
(Yu et al., 2020; Jia et al., 2021). The problem itself
is well-motivated, because relations between enti-
ties in dialogues could potentially provide dialogue
systems with additional features for better dialogue
managing (Peng et al., 2018; Su et al., 2018a) or
response generation (Su et al., 2018b).

1The source code is available at: http://github.
com/MiuLab/TREND.

S2: He didn't have a last name. It was just "Tag". You know, 
like Cher, or, you know, Moses.

S3: But it was a deep meaningful relationship.

Arguments
(Tag, S2) a deep meaningful 

relationship
per:girl/boyfriend

(S2, S3) arrogant per:negative_impression

Trigger Relation

S2: Oh, you know what - my first impression of you was 
absolutely right. You are arrogant, you are pompous ... 

Figure 1: An example of dialogue relation extraction;
the dashed arrows connect subjects, triggers, and objects.
Triggers are clues of relations annotated in DialogRE.

There are two popular datasets, DialogRE (Yu
et al., 2020) and DDRel (Jia et al., 2021), focus-
ing on relation extraction in dialogues illustrated
in Figure 1. In DRE, given a conversation and a
query pair, we aim to identify the interpersonal
relationship between the given entities, where en-
tities can be human or other types like locations.
As shown in Figure 1, the evidences of relations
within the conversation flow, called Triggers, pro-
vide informative cues for this task. A trigger can
be a short phrase or even a single word with any
possible part-of-speech. In the example, the clue
for knowing the speaker 2 has a negative impres-
sion on the speaker 3 comes from the sentence
“You are arrogant.” Such hint is intuitively useful
for deciding the relations. However, Albalak et al.
(2022) is the only prior work that tried to explicitly
leverage such signal for improving DRE, because
such explanation annotations may not be always
available (Kung et al., 2020).

Prior work can be divided into two main lines,
one of which is graph-based methods. DHGAT
(Chen et al., 2020) presents an attention-based het-
erogeneous graph network to model multiple types
of features; GDPNet (Xue et al., 2021) constructs
latent multi-view graphs to model possible rela-
tionships among tokens in a long sequence, and
then refines the graphs by iterative graph convo-
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Context
Vector Start End

Dialogue Context

Trigger
Prediction

Relation 
Prediction

Explicit Trigger 
Gate

[CLS] …   … [S2] : He didn’t … S3 : But… deep meaningful …  [SEP]     Tag [CLS] [S2]

Subject Object

per:girl/boyfriend

Y/N

Figure 2: The proposed method contains two components: (1) a multi-tasking BERT with two fine-tuning tasks
(explicit trigger classification and trigger prediction), and (2) a relation predictor with attentional feature fusion.

lution and pooling techniques. Another branch is
BERT-based (Kenton and Toutanova, 2019) meth-
ods (Yu et al., 2020; Xue et al., 2022). SimepleRE
(Xue et al., 2022) is a simple BERT model with
an additional refinement gate for iteratively finding
high-confidence prediction. LSR (Nan et al., 2020)
is a latent structure refinement method for better
reasoning in the document-level relation extraction
task. Although it is known that using trigger infor-
mation can significantly help the performance of
relation extraction, only DialogRE has the anno-
tated triggers. It is not guaranteed that utilizing the
annotated triggers can generalize to other relations
from other datasets, considering the discrepancy of
their relation types.

Given the target data without trigger annota-
tions, this paper proposes TREND, a simple multi-
tasking model with an attentional relation predic-
tor, where it learns the general capability of finding
triggers and transfers it to the unseen relations for
performance improvement. The experiments show
that our proposed method can effectively identify
the explicit triggers and generalize to unseen rela-
tions towards great flexibility and practicality.

2 Proposed Method

The core idea of this model is to identify trig-
ger spans and accordingly leverage such signal to
improve relation extraction. We hereby propose
Trigger-enhanced Relation-Extraction Network for
Dialogues, TREND, illustrated in Figure 2.

2.1 Problem Formulation

Given a piece of dialogue context D composed of
text tokens D = {xi} and a query pair q containing
a subject entity and an object entity q = (s, o), the
task aims at learning a function f that finds the
most possible relations between the given entities
from a predefined relation set R, f(D, q) → R.
Note that a single query pair may contain multiple
relations, and we duplicate the data samples when
they have multiple relation labels by following the
prior work.

2.2 TREND

The proposed model has two modules, (1) a multi-
tasking BERT (Kenton and Toutanova, 2019) for
encoding context and identifying triggers, and (2)
a relation predictor with a feature fusion of the
dialogue and the automatically identified trigger.

As illustrated in Figure 2, an input (D, q)
will be first augmented into a BERT-style se-
quence. Specifically, the input format is
“[CLS] D [SEP] s [CLS] o”. We replace the
target entity pair with their speaker tokens in D fol-
lowing Yu et al. (2020) illustrated in the figure. The
first [CLS] encodes the dialogue contexts, and the
second one is to predict whether the triggers are
explicit via binary classification detailed below.

Explicit Trigger Gate Because triggers some-
times are implicit, it is difficult to identify the as-
sociated trigger spans of dialogue relations. We
hereby propose to learn a binary classifier as a gate
to identify if the explicit triggers exist, and empty
trigger spans are inputted to relation prediction
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when no explicit triggers. The binary cross entropy
loss Lbinary is used here.

Trigger Prediction The explicit triggers are iden-
tified by a extractive method with start-end pointer
prediction (Kenton and Toutanova, 2019), which
is prevalent in extractive question answering (Lee
et al., 2016; Rajpurkar et al., 2016). This is a
single-label classification problem of predicting
the most possible positions; hence a cross entropy
loss Ltrigger is conducted.

Relation Prediction A learned context vector
and a predicted trigger span are then fed into the
relation predictor as depicted in the top part of
Figure 2. The features are fused by a generic at-
tention mechanism, where the query is the context
vector c, and the keys and the values are trigger
words xi encoded by BERT:

∑
softmax(c ·xi) ·xi.

The merged feature is then fed into a 1-layer feed-
forward network for final relation prediction using
a cross entropy loss Lrelation.

Supervised Joint Learning Considering that
only DialogRE contains the annotated trigger cues,
we perform supervised joint learning for three
above tasks. Three above losses are linearly com-
bined as the learning objective for training the
whole model in an end-to-end manner. The weights
for adjusting the impact of each loss are tuned in
the development set. We also apply schedule sam-
pling (Bengio et al., 2015) on explicit trigger clas-
sification and trigger prediction when feeding into
the relation predictor in order to mitigate the gap
between the true triggers and the predicted ones.

Transfer Learning Because annotated triggers
may not be available, this paper focuses on transfer-
ring the trigger-finding capability to another target
dataset, DDRel, which does not contain trigger an-
notations and its relation types differ a lot from
DialogRE. We replace the final feed-forward layer
with a new one, since relation numbers may differ-
ent in two datasets. Then we fine-tune the whole
model using a single loss about relation prediction,
Lrelation, where we assume the trigger-finding ca-
pability can be better transferred cross different
datasets/relations.

3 Experiments

We focus on evaluating the performance of DRE
on the dataset without trigger labels in order to
investigate if the trigger-finding capability can be
transferred across datasets/relations.

Model F1
BERT 60.6
GDPNet 64.3
SimpleRE (single entity pair) 60.4
D-REXBERT 59.2
TUCORE-GCNBERT 65.5
TRENDBERT-Base 66.8
TRENDBERT-Large 67.8
SimpleRE (multiple entity pairs) 66.7
SocAoG (multiple entity pairs) 69.1
TRENDBERT-Base (ground-truth triggers) 75.3

Table 1: The model performance on DialogRE.

3.1 Setting
The DRE datasets used in our experiments are Di-
alogRE (v2) with trigger annotations (Yu et al.,
2020) and DDRel (Jia et al., 2021) without trigger
annotations. Text normalization like lemmatization
and expanding contractions is applied to data pre-
processing. In all experiments, we use mini-batch
adam with a learning rate 3e−5 as the optimizer
on Nvidia Tesla V100. The ratio of teacher forcing
and other hyper-parameters are selected by grid
search in (0,1] with a step 0.1. The training takes
30 epochs without early stop. The detailed imple-
mentation can be found in Appendix A.

The following BERT-based methods are per-
formed for fair comparison: 1) BERT, 2) GDP-
Net (Xue et al., 2021), 3) SimpleRE (Xue et al.,
2022), 4) D-REXBERT (Albalak et al., 2022), and 5)
TUCORE-GCNBERT (Lee and Choi, 2021). Other
approaches that take multiple entity pairs for global
consideration cannot directly be compared with
TREND but reported as reference.

3.2 Results of Supervised Joint Learning
The performance of our TREND model jointly
trained on the trigger-available DialogRE dataset
is presented in Table 1, where it is obvious that
our TREND achieves the best performance in the
fair setting. Unlike SimpleRE and GDPNet that
need to iteratively refine the latent features or latent
graphs, relation prediction in the proposed TREND
is straight-forward, making training and inference
efficient and robust. Furthermore, D-REX (Albalak
et al., 2022) also leverages triggers for relation
prediction but performs significantly worse than
our simple TREND models in the same setting.
Our trained binary gate has about 85% accuracy
while the trigger prediction has no more than 50%
of exact match. Although our model cannot per-
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Model 4-class 6-class 13-class
Acc Macro-F Acc Macro-F Acc Macro-F

BERT 47.1 / 58.1 44.5 / 52.0 41.9 / 42.3 39.4 / 38.0 39.4 / 39.7 20.4 / 24.1
TUCORE-GCNBERT 43.8 / 60.3 41.9 / 56.6 36.9 / 52.6 38.7 / 54.2 29.5 / 44.9 20.5 / 36.9
TRENDBERT-Base 51.5 / 65.4 46.5 / 61.2 40.3 / 52.6 43.0 / 55.0 40.5 / 46.2 21.2 / 34.7

w/o binary gate 52.5 / 53.8 45.3 / 49.7 37.0 / 43.6 41.8 / 45.9 36.6 / 43.6 26.4 / 36.3
TRENDBERT-Large 51.6 / 60.3 46.5 / 54.0 42.5 / 46.2 43.0 / 48.2 34.4 / 43.6 19.9 / 36.3

w/o binary gate 41.5 / 47.4 40.3 / 44.9 39.0 / 42.3 43.1 / 42.9 38.5 / 34.6 17.3 / 21.1

Table 2: The DDRel performance in session-level/pair-level settings and different granularity settings (4,6,13-class).

fectly extract the triggers, the predicted spans can
still facilitate relation prediction in our proposed
TREND. It demonstrates that our TREND model
is capable of identifying potential triggers and uti-
lizing such cues for predicting relations. Note that
TRENDBERT-Large is for reference, indicating that a
larger model has the potential of further improving
the performance. The upper-bound of our proposed
TRENDBERT-Base is 75.3 shown in the last row of
Table 1, where the ground truth triggers are in-
putted in the relation predictor. This higher score
suggests that our TREND model still has a room
for improvement and the proposed model design is
well validated.

3.3 Results of Transfer Learning

Due to the lack of trigger annotations in DDRel,
our TREND model focuses on transferring the
trigger-finding capability learned from DialogRE
to DDRel. We compare our proposed TREND with
two models, which are not designed for transferring
across different relation extraction datasets, so they
are directly trained on the DDRel data. Table 2
presents the performance achieved on DDRel eval-
uated in session-level and pair-level settings, where
session-level relation extraction is given a partical
dialogue the entity pair is involved in and pair-level
is based on a full dialogue (Jia et al., 2021).2 All
scores are much lower than ones in DialogRE due
to the higher difficulty of this dataset. The obtained
improvement compared with the BERT baseline
is larger when the longer dialogue contexts as the
input; that is, pair-level improvement is more than
session-level one. The probable reason is that ex-
tracting key evidences for predicting relations is
more important to overcome information overload.

Furthermore, we report the performance of the
current state-of-the-art (SOTA) relation extraction

2A session only contains multiple turns in a dialogue, so
session-level results are worse than pair-level ones.

model, TUCORE-GCN, on the DDRel dataset.3

It can be found that our proposed method can ef-
fectively transfer the capability of capturing trig-
gers from DialogRE to DDRel, and outperform
TUCORE-GCN in most cases, achieving a new
SOTA performance in DDRel.

Suprisingly, TRENDBERT-Large does not
outperform TRENDBERT-Base, implying that
TRENDBERT-Base already has enough good capa-
bility of capturing triggers and can generalize to
another dataset (DDRel) and a new relation set.

3.4 Ablation Study

Because our trigger finding module contains a bi-
nary classifier deciding the existence of explicit
triggers and a trigger predictor extracting trigger
spans, we examine the effectiveness of the binary
gate. By removing the binary gate, the performance
is consistently degraded shown in Table 2, further
demonstrating the effectiveness of the designed
trigger-finding module in our TREND model.

3.5 Generalization of Unseen Relations

To further investigate if our trigger-finding capa-
bility can generalize to different relations, we cate-
gorize all relations into seen and unseen relations
based on the relation similarity between the two
datasets shown in Table 3, and show the session-
level performance in Table 4. It can be seen that our
proposed TREND is capable of transferring trigger-
finding capability from DialogRE to DDRel, even
DDRel does not contain trigger annotations. More
importantly, our learned trigger-finding capability
is demonstrated general to diverse relations, be-
cause TREND achieves better results for not only
seen but also unseen relations whose triggers never
appear in the DialogRE data. We qualitatively an-
alyze the predicted triggers of unseen relations,
where TREND extracts a dirty word (“fxxk”) and a

3The numbers are obtained based on the released code in
Lee and Choi (2021).
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DDRel Relation DialogRE Relation

Workplace Superior-Subordinate per:boss
Workplace Superior-Subordinate per:subordinate
Friends per:friends
Lovers per:girl/boyfriend
Neighbors per:neighbor
Roommates per:roommate
Child-Parent per:children
Child-Other Family Elder per:other family
Siblings per:siblings
Spouse per:spouse
Colleague/Partners per:works

Courtship -
Opponents -
Professional Contact -

Table 3: Relation ontology mapping between DDRel
and DialogRE datasets.

DDRel Relation Seen Unseen
BERT 23.77 9.94
TUCORE-GCN 23.39 10.81
TREND 28.30 13.13

Table 4: F1 results of DDRel seen and unseen relations.

word “client” as triggers for unseen relations “oppo-
nent” and “professional contact” in DDRel respec-
tively. The full samples can be found in Table 6. It
shows the effectiveness and generalizability of our
proposed TREND model towards practical usage.

3.6 Qualitative Study
The predicted triggers and relation for DialogRE
and DDRel datasets are presented in Table 5 and
Table 6 respectively. Note that the triggers are not
annotated in DDRel. It can be found that TREND
can extract explicit cues as triggers not only for
the seen relations, which are similar to relations in
DialogRE, but also unseen ones.

4 Conclusion

This paper proposes TREND, a multi-tasking
model with the generalizable trigger-finding ca-
pability, to improve dialogue relation extraction.
TREND is a simple, flexible, end-to-end model
based on BERT with three components: (1) an
explicit trigger gate for trigger existence, (2) an
extractive trigger predictor, and (3) a relation pre-
dictor with an attentional feature fusion. The ex-
periments demonstrate that TREND can success-
fully transfer the learned trigger-finding capabil-
ity across different datasets and diverse relations
for better dialogue relation extraction performance,
showing the great potential of improving explain-
ability without rationale annotations.

S1: What’s up?
S2: Monica and I are engaged.
S1: Oh my God. Congratulations.
S2: Thanks.
Argument Relation Trigger
(S2, Monica) girl/boyfriend engaged

Table 5: A predicted result of TREND on DialogRE.

S1: That’s all.
S2: That’s all?!
S1: You don’t see it, do you, father?"
S2: No. Fellow wants to sell a house ...
Argument Relation (Seen) Trigger
(S1, S2) Child-Parent father
S1: Fuck me!
S2: Want a drink? Okay... I’m not good at this sort of
thing, but we don’t have a lot of time, so I’ll just go ahead
and get started.
Argument Relation (Unseen) Trigger
(S1, S2) Opponent fuck
S1: I’m Joe Galvin, I’m representing Deborah Ann Kaye,
case against St.
S2: I told the guy I didn’t want to talk to...
S1: I’ll just take a minute. Deborah Ann Kaye. You know
what I’m talking about.
S2: No.
S1: He’s the Assistant Chief of Anesthesiology, Mas-
sachusetts Commonwealth. He says your doctors, Towler
and Marx, put my girl in the hospital for life. And we can
prove that. What we don’t know is why. I want someone
who was in the O.R.
S2: I’ve got nothing to say to you.
S1: You know what happened.
S2: Nothing happened.
S1: Then why aren’t you testifying for their side? I can
subpoena you, you know. I can get you up there on the
stand.
S2: And ask me what?
S1: Who put my client in the hospital for life.
S2: I didn’t do it, Mister.
S1: Who are you protecting, then?
S2: Who says that I’m protecting anyone?
S1: I do. Who is it? The Doctors. What do you owe them?
S2: I don’t owe them a goddamn thing.
S1: Then why don’t you testify?
S2: You know, you’re pushy, fella...
S1: You think I’m pushy now, wait ’til I get you on the
stand...
S2: Well, maybe you better do that, then.
Argument Relation (Unseen) Trigger
(S1, S2) Professional Contact client

Table 6: Predicted results of TREND on DDRel.
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A Reproducibility

A.1 Hyperparameters
All the hyper-parameters were selected by grid
search in (0,1] with step 0.1. The loss functions
are linearly combined and each of them has an
adjustable weight.

TRENDBERT-Base
• Loss: 0.3 ·Ltrigger + 1.0 ·Lrelation + 1.0 ·Lbinary
• schedule sampling: 0.7 for trigger prediction,

0.7 for binary classification

TRENDBERT-Large
• Loss: 0.3 ·Ltrigger + 1.0 ·Lrelation + 1.0 ·Lbinary
• schedule sampling: 0.5 for trigger prediction,

0.7 for binary classification
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Data Training Inference
DialogRE 15 mins×30 5 mins
DDRel (session-level) 15 mins×30 5 mins
DDRel (pair-level) 1.5 mins×30 10 secs

Table 7: Time efficiency on three sets of experiments.

A.2 Time Efficiency
The training and inference cost in terms of time is
reported in Table 7.
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Abstract

User Satisfaction Estimation (USE) is crucial in
helping measure the quality of a task-oriented
dialogue system. However, the complex nature
of implicit responses poses challenges in de-
tecting user satisfaction, and most datasets are
limited in size or not available to the public due
to user privacy policies. Unlike task-oriented
dialogue, large-scale annotated chitchat with
emotion labels is publicly available. Therefore,
we present a novel user satisfaction model with
domain adaptation (USMDA) to utilize this
chitchat. We adopt a dialogue Transformer en-
coder to capture contextual features from the di-
alogue. And we reduce domain discrepancy to
learn dialogue-related invariant features. More-
over, USMDA jointly learns satisfaction signals
in the chitchat context with user satisfaction
estimation, and user actions in task-oriented di-
alogue with dialogue action recognition. Exper-
imental results on two benchmarks show that
our proposed framework for the USE task out-
performs existing unsupervised domain adap-
tation methods. To the best of our knowledge,
this is the first work to study user satisfaction
estimation with unsupervised domain adapta-
tion from chitchat to task-oriented dialogue.

1 Introduction

The developed task-oriented dialogue system has
achieved great success for various business situa-
tions, such as virtual assistants and information-
seeking systems with domain knowledge (Deriu
et al., 2021). However, a dialogue chatbot with
limited model capability sometimes fails to under-
stand queries correctly and even annoys users with
the wrong response. User Satisfaction Estimation
(USE) is able to detect user satisfaction and enable
adjustment of the strategy of the system. Liu et al.
(2021) implemented a smooth handoff from the
machine to a human agent when USE estimates a

negative emotion from a user. When USE detects
good user feedback in the deployment environment,
chatbots can utilize this information to learn and
improve continuously (Hancock et al., 2019).

In recent years, the USE in dialogue systems is
always considered in the classification task. Previ-
ous works (Sun et al., 2021; Deng et al., 2022) show
that data-driven pre-trained models can learn good
exchange-level representations from task-oriented
corpora and predict correct user satisfaction. Un-
fortunately, most user satisfaction datasets are very
limited in size (Saha et al., 2020; Shi and Yu, 2018)
or not publicly available due to user privacy poli-
cies (Wang et al., 2020). Moreover, it is time-
consuming and expensive to conduct human evalu-
ation experiments or crowd-sourcing for user satis-
faction in a real-world task-oriented application.

Compared to the task-oriented dataset, the
chitchat corpora from social media is easy-to-get
but without explicit chatting targets. The under-
lying difference in linguistic patterns between the
chitchat and task-oriented dialogue makes it diffi-
cult to utilize the chitchat dataset in the USE task
directly. Therefore, unsupervised domain adap-
tation from chitchat to task-oriented dialogue is
valuable and challenging in user satisfaction tasks.

As shown in Figure 1, we collect two dialogue
sessions from human-human chitchat and human-
machine task-oriented dialogue. In the chitchat,
people talk around one topic and explicitly express
their intents with emotions. In task-oriented dia-
logue, the user and system have explicit actions
where the user wants to achieve his goal, and the
system uses the background knowledge following
the presetting actions. But users tend to implicitly
show their emotions and are comfortable with the
fulfillment of their goals.

To tackle the domain difference, we propose a
novel USMDA framework and implement USE
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Chitchat

I wanna be buried at sea, it
looks like fun.

Listen to me! When my time 
comes, I wanna be buried at sea.

You what?

Task-oriented dialogue
Hello! Can you help me find 
a hotel room?

What other options do I have?

May I suggest 1 Hotel Brooklyn 
Bridge? It is a well reviewed, 4 
star hotel.

Emotion

Neutral

Scared

Joyful

Action Satisfaction
Inform
Intent

Offer

Request
Alternatives

Neutral

-

Dissatisfied

Satisfaction

Neutral

Dissatisfied

Satisfied

Figure 1: Two example dialogue sessions in chitchat
(Zahiri and Choi, 2018) and task-oriented dialogue (Ras-
togi et al., 2020).

with unsupervised domain adaptation from chitchat
to task-oriented dialogue. On the one hand, the
model reduces the domain discrepancy of turn rep-
resentations between chitchat and task-oriented di-
alogue datasets. On the other hand, the model
learns satisfaction signals in context features from
chitchat, and learns user actions in the task-oriented
system with an additional Dialogue Action Recog-
nition (DAR) task. Moreover, the framework uti-
lizes the pseudo-labeling approach (Lee, 2013) to
label the most confident predictions and build a
stronger USE model.

To the best of our knowledge, our paper is the
first attempt to explore the USE with domain adap-
tation from chitchat to task-oriented dialogue. In
this work, we make the following contributions:

• We propose the USMDA framework to per-
form user satisfaction estimation with unsu-
pervised domain adaptation from chitchat to
task-oriented dialogue.

• The result shows that user actions and invari-
ant dialogue-related features improve the per-
formance of the USE model within an unsu-
pervised domain adaptation setting.

• The results on two datasets demonstrate that
the proposed framework in the USE task
achieves better results than other domain adap-
tation approaches.

2 Problem Definition

We formulate the task of user satisfaction estima-
tion with domain adaptation from chitchat to task-

USE Classifier

𝑢!"𝑢#"

Task-oriented
Dialogue

DAR Classifier MMD

Dialogue Transformer Encoder

Joint Learning Domain 
Discrepancy

𝑢$"𝑢%"

Chitchat

…

…

Dialogue-level 
Transformer

…

Model

Predicted USE

Pseudo Label

Pseudo-
labeling

𝑒!" 𝑒#"

*𝑔!"

$ℎ!"

ℎ!" ℎ#"

$ℎ#"

*(1-𝑔!") *(1-𝑔#")

…

𝑢!&𝑢#&𝑢$&𝑢%&

…

…

Dialogue-level 
Transformer

…

𝑒!$ 𝑒#$

$ℎ!$

ℎ!$ ℎ#$

$ℎ#$

*(1-𝑔!%)

BERT

*(1-𝑔#%)

*𝑔#" *𝑔!% *𝑔#%

…

BERTBERTBERT

Figure 2: Overall framework architecture. The super-
scripts s and t denote the source chitchat data and target
task-oriented dialogue data.

oriented dialogue. Given a set of chitchat and task-
oriented dialogue sessions, each session contains
N utterances {u1, u2, ..., uN}. We split the N ut-
terances into N

2 exchange turns xi = (u2i−1, u2i).
Each exchange turn is a communication either be-
tween multiple users or between user and system.
Each exchange turn in chitchat is annotated with
a satisfaction label ysi and each exchange turn in
a task-oriented dialogue has a user action ati. Our
goal is to train a USE model using labeled chitchat
data S and unlabeled task-oriented dialogue data
T to predict the correct satisfaction label yti on T .

3 Framework

This section introduces how to train a user satis-
faction model with unsupervised domain adapta-
tion. Figure 2 shows the overall architecture of our
proposed framework USMDA with four different
parts, including (1) dialogue Transformer encoder
to capture a representation of each exchange-turn
in the dialogue, (2) joint learning for USE with
DAR, (3) reducing domain discrepancy between
different distributed datasets, (4) predicting pseudo
labels in the task-oriented dialogue, and retraining
the model with the top-k pseudo labels.

3.1 Dialogue Transformer encoder

Chitchat and task-oriented dialogue samples are
mixed in one batch X , which is fed into the shared
backbone BERT (Devlin et al., 2019) to extract the
exchange-level representation ei of each exchange
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turn xi. Each ei represents the information from an
exchange turn:

ei = BERT ([CLS]u2i−1[SEP ]u2i[SEP ]) (1)

The shared dialogue-level transformer encoder
is built upon the exchange-level representations
{e1, e2, ..., eM} of M exchange turns within a di-
alogue window. We adopt a Transformer encoder
with a gated attention mechanism to capture the
context information in the conversation:

ĥi = Dialogue-Transformer(ei) (2)

gi = Sigmoid(W [ei; ĥi]) (3)

hi = gi ∗ ei + (1− gi) ∗ ĥi (4)

where ĥi is the dialogue-level representation, gi
is the learned gated attention weight to combine
two different level representations, W is a trainable
matrix and hi is the final representation of xi.

3.2 Joint learning
The model jointly trains with USE and DAR to
learn the specific user actions in the task-oriented
dialogue. The USE classifier calculates the loss
between the labeled satisfaction classes and predic-
tions in the chitchat dataset. The DAR classifier
learns to predict correct user actions in the task-
oriented dataset. The joint learning loss is the sum
of losses from USE and DAR classifiers:

LJoint = LUSE + αLDAR (5)

where α denotes the hyperparameter to balance
USE and DAR tasks.

3.3 Domain discrepancy
The framework uses maximum mean discrepancy
(MMD) (Gretton et al., 2012; Long et al., 2015)
to measure the distance between chitchat and task-
oriented dialogue dataset distributions. MMD com-
putes the distance between two exchange-level rep-
resentations with Gaussian kernel, i.e., k(esi , e

t
j) =

exp(−∥esi − etj∥
2
). Finally, we combine the joint

learning loss and MMD as the overall loss:

L = LJoint + β(
4

|X|2

|X|
2∑

i=1

|X|
2∑

j=1

k(esi , e
t
j)) (6)

where esi and etj are two exchange-level represen-
tations from chitchat and task-oriented dialogue,
β denotes the hyperparameter balancing the joint-
learning loss and MMD, and |X| is the size of a
mixed batch X .

USMDA
Model

Task-oriented
Dialogue

Trained
USMDA

Model

Pseudo Labels

2

3

4

5

Training

Pseudo-labeling
(top-k instances)

Add pseudo 
labels

Retraining

/

Chitchat
2

3

4

5

1

Input data1

Figure 3: Retraining process with pseudo labels.

3.4 Pseudo-labeling

After joint learning and reducing domain discrep-
ancy, the user satisfaction model makes the satisfac-
tion prediction ŷti on each exchange turn xti from
task-oriented dialogue. We measure the confidence
of predictions by predicted scores. As shown in
Figure 3, the top-k instances with the highest pre-
dicted scores are set as pseudo labels for retraining.

4 Experiments

4.1 Datasets and evaluation metrics

We conduct the proposed framework on the chitchat
dataset EmoryNLP (Zahiri and Choi, 2018) and
two task-oriented dialogue datasets: MultiWOZ 2.1
(MWOZ) (Eric et al., 2020) and Schema Guided
Dialogue (SGD) (Rastogi et al., 2020). Moreover,
we use the sampled 1000 dialogues from each of
the MWOZ and SGD datasets, which are anno-
tated with a five level satisfaction scale by Sun
et al. (2021). The seven emotions in chitchat and
five rating scores in task-oriented dialogue datasets
are mapped into the coarse-grained labels “dis-
satisfied/neutral/satisfied” following existing work
(Deng et al., 2022; Zahiri and Choi, 2018). For the
DAR task, the MWOZ dataset is labeled with 21
actions by Eric et al. (2020), and the SGD dataset
has 12 actions from Rastogi et al. (2020). We use
the EmoryNLP dataset as a labeled source dataset
and randomly choose 300 dialogues from each of
the task-oriented dialogue datasets as unlabeled tar-
get datasets. The remaining 700 labeled dialogues
from each task-oriented dialogue dataset are used
for testing.

Following most existing work on emotion recog-
nition in conversation, we report Macro-F1 and
Micro-F1 scores for evaluating USE performance.
Macro-F1 takes the average of all the per-class F1,
and Micro-F1 computes the F1 of the aggregated
contributions of classes.
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MWOZ SGD
Model Macro Micro Macro Micro

Performance without domain adaptation
Bert (baseline) 37.98 45.51 40.66 49.15
ToD Bert 31.69 40.49 35.80 43.35

Performance with domain adaptation
WDGRL 38.58 46.26 41.77 49.91
DANN 37.68 47.91 46.55 51.28
USMDA 43.27 48.50 56.01 57.91

Performance with supervised learning
Upper bound 45.32 48.94 59.66 61.09

Table 1: Primary results with Micro-F1 and Macro-F1
metrics on task-oriented dialogue datasets.

4.2 Other models
We use the BERT model as our baseline model and
the backbone for our proposed method for a thor-
ough comparison. The following related models
with task-oriented dialogue pretraining or differ-
ent unsupervised domain adaptation methods are
implemented:

• ToD Bert (Wu et al., 2020) is pretrained with
masked-language modeling strategy and re-
sponse selection task on nine task-oriented
dialogue datasets.

• WDGRL (Shen et al., 2018) learns domain
invariant representations by reducing empiri-
cal Wasserstein distance with an adversarial
strategy.

• DANN (Ganin et al., 2016) uses domain ad-
versarial training to learn the features that can
not discriminate in domain adaptation. The
DANN method is most widely used for un-
supervised domain adaptation task in natural
language processing.

5 Results and Analysis

5.1 Overall performance
Table 1 shows primary experiment results, includ-
ing the following models: (1) the baseline model
and ToD Bert using only the source chitchat dataset,
(2) several models with domain adaptation strate-
gies and access to the user actions from the target
data, (3) the BERT-based model with supervised
learning on task-oriented datasets as upper bound.

We made the following notable observations:
(1) Our unsupervised domain adaptation strategy

is effective in improving the performance for USE

on two task-oriented dialogue datasets. USMDA
leads to a significant improvement in Macro-F1 of
5.29% on MWOZ and 15.35% on SGD, and a per-
formance improvement in Micro-F1 of 2.99% on
MWOZ and 8.76% on SGD. Our proposed frame-
work USMDA successfully solves the domain shift
problem for USE from chitchat to task-oriented di-
alogue. USMDA, without any satisfaction labels in
task-oriented data, achieves a competitive Micro-
F1 48.50% on MWOZ, which is comparable to the
upper bound model with supervised learning.

(2) Our framework USMDA achieves the best
performance with domain adaptation for two
datasets. On average, the models with domain
adaptation have better performance than the base-
line model. This suggests that the domain-invariant
dialogue-related features boost the performance of
the user satisfaction model. Compared to other
domain adaptation approaches, USMDA leads to
a comparatively significant improvement. We
demonstrate that our proposed framework USMDA
to learning domain-invariant dialogue-related fea-
tures is more effective than WDGRL and DANN.

(3) Baseline model, using only source chitchat
samples, does not perform competitively. Even
though ToD-BERT is pretrained with nine task-
oriented dialogue datasets, it has a subpar perfor-
mance without domain adaptation in the USE task.
The unsatisfactory results without domain adap-
tation suggest that specific domain features are
valuable and necessary for USE in task-oriented
dialogue.

5.2 Ablation study

To understand the impacts of different individual
parts in our domain adaptation strategy, we conduct
an ablation study on three simplified modules of
our proposed framework (see Table 2). We can
observe that by removing any module, this results
in worse performance. Removing joint learning
leads to the most significant loss in Micro-F1 by
6.96% on SGD. This indicates that user actions
throughout the dialogue reflect user satisfaction
and are important dialogue-related specific features
in task-oriented dialogue.

Table 2 shows that the improvement transfers
well across both datasets. Learning transferable
features using MMD is beneficial because dropping
MMD impairs the performance by 1.17% Macro-
F1 and 0.85% Micro-F1 on SGD. Moreover, remov-
ing the pseudo-labeling degrades the performance
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MWOZ SGD
Macro Micro Macro Micro

w/o pseudo -5.33 -0.58 -3.88 -1.20
w/o MMD -0.37 -0.26 -1.17 -0.85
w/o joint -0.22 -0.50 -6.27 -6.96

Table 2: Ablation study of USMDA on pseudo-labeling,
joint learning and MMD. A negative value means a
performance loss by removing module.

by 3.9-5.3% Macro-F1 and 0.6-1.2% Micro-F1, in-
dicating the benefits of the data-centric approach
to the USE task.

5.3 Discussion and future work
Compared to the kernelized method MMD, the
WDGRL and DANN are adversarial training strate-
gies. Table 1 shows that WDGRL improves the
model performance only slightly and that DANN
does not always lead to the increased target do-
main performance. While traditional adversarial
training strategies are sometimes unable to gain im-
provements with pre-trained language models, sim-
ple MMD is efficient at learning domain-invariant
features. Our proposed framework achieves im-
pressive results on the two fixed datasets. In the
future, we will evaluate this framework on real-life
scenarios.

6 Conclusion

We adopt joint-learning, MMD, and pseudo-
labeling with domain adaptation to improve the
strong USE model in task-oriented dialogue. The
results show that domain adaptation with user ac-
tions is effective in the USE task. MMD has pos-
itive effects on overall performance by learning
domain-invariant dialogue-related feature represen-
tations. The pseudo-labeling is important for USE
with unsupervised domain adaptation. Our pro-
posed USMDA framework has comparable results
like the supervised model, encouraging future work
addressing domain adaptation in the USE task.
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A Appendix

A.1 Datasets

We perform experiments on dialogue corpora, us-
ing 713 dialogues from EmoryNLP, 1000 dialogues
from MWOZ, and 1000 dialogues from SGD. A
dialogue session is divided into dialogue windows.
The number of considered exchange-level turns in
a dialogue window is four.

EmoryNLP Emotion Satisfaction
Monica: Hey. Neutral Neutral
Rachel: Hey. Neutral Neutral
Monica: How’s the big
anniversary dinner?

Neutral Neutral

Rachel: Well, we never
actually got to dinner.

Sad Unsatisfied

Monica: Ohhh, nice. Sad Unsatisfied
Rachel: No, we kinda
broke up instead.

Sad Unsatisfied

Monica: What?! Scared Unsatisfied
Rachel: God, Monica
it’s on the ceiling.

Scared Unsatisfied

Table 3: Chitchat example from EmoryNLP.

EmoryNLP: EmoryNLP is an annotated chitchat
dataset with fine-grained and coarse-grained emo-
tions from the TV show, Friends. The EmoryNLP
contains seven emotions: (1) Positive: powerful,
joyful, peaceful, (2) Negative: mad, sad, scared,
and (3) Neutral: neutral.

MWOZ: Multi-Domain Wizard-of-Oz 2.1 is a
multi-domain task-oriented dialogue dataset. It
contains dialogue utterances, user goals, and sys-
tem actions over seven domains.

SGD: Schema-Guided Dialogue has multi-
domain task-oriented dialogues over 16 domains
and provides a challenging testbed for dialogue
state tracking. SGD contains multiple schemas
with a dynamic set of slots for task-oriented dia-
logue.

A.2 Training and hyperparameters
For the backbone of USMDA, we use the imple-
mentation of the BERT-base uncased model and of
the ToD-Bert model from huggingface1. Both mod-
els are 768-dimensional Transformer self-attention
encoders with 12 layers. The dialogue-level Trans-
former is a standard Transformer encoder with 2
layers.

We run each experiment four times with different
seeds and calculate the average performance. The
adamW optimizer is implemented with a learning
rate of 2E-5, and the training epoch size is 2.

A.3 Dialogue Examples
The annotated chitchat and task-oriented dialogue
examples are presented in Tables 3, 4.

1https://huggingface.co/
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SGD Action Satisfaction
System: Okay, there is
an American Airlines
outbound flight that
will leave at 11:40 am
and the return flight
will leave at 9:30 am.
The cost of the ticket
will be only $163.

Offer -

USER: When is the ar-
rival time of my return
flight and to which air-
port it arrives?

Request Neutral

System: The destina-
tion airport is Dulles
International Airport
and the flight will ar-
rive at 1:42 pm.

Inform -

USER: Sounds good
to me.

Select Satisfied

System: Do you want
me to book tickets for
this flight?

Offer -

USER: Yup, please
book 1 ticket in
economy class which
should be a refundable
one, since my plan
might change later on.

Affirm Neutral

System: Okay! Please
can you confirm
me that you wish
to fly from Atlanta
to Washington in
American Airlines on
March 10th at 11:40
am and the return
journey will be on
March 14th at 9:30
am and you wish to
book only 1 Economy
ticket, right?

Confirm -

USER: Yup, you’re
right. Is it a zero stops
flight?

Affirm Satisfied

Table 4: Task-oriented dialogue example from SGD.
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Abstract
Avoiding the generation of responses that con-
tradict the preceding context is a significant
challenge in dialogue response generation. One
feasible method is post-processing, such as fil-
tering out contradicting responses from a re-
sulting n-best response list. In this scenario,
the quality of the n-best list considerably af-
fects the occurrence of contradictions because
the final response is chosen from this n-best
list. This study quantitatively analyzes the
contextual contradiction-awareness of neural
response generation models using the consis-
tency of the n-best lists. Particularly, we used
polar questions as stimulus inputs for concise
and quantitative analyses. Our tests illustrate
the contradiction-awareness of recent neural re-
sponse generation models and methodologies,
followed by a discussion of their properties and
limitations.

1 Introduction

Recent advanced response generation mod-
els (Zhang et al., 2020; Adiwardana et al., 2020;
Roller et al., 2021) can generate relevant and mean-
ingful responses, which can resolve dull response
problems (Vinyals and Le, 2015; Sordoni et al.,
2015; Serban et al., 2016). This advancement re-
veals additional flaws in the quality of neural model
responses, such as contradiction. Contradiction is
a critical error in dialogue because a single con-
tradictory response can disrupt the flow of the dia-
logue (Higashinaka et al., 2015).

A generation model outputs a response by se-
lecting the candidate with the highest likelihood (1-
best) from an n-best candidate list. Prior work has
demonstrated that generating the n-best lists with
noncontradictory 1-bests is an open challenge (Nie
et al., 2020; Kim et al., 2020; Li et al., 2021). Thus,
one practical technique for avoiding contradiction
is to have an accurate contradiction detector that
eliminates all contradictory candidates from the n-
best list (Nie et al., 2020). In this scenario, the con-

６６６６６６

666
History   : Yeah I’m in North Carolina.
Message : Aren’t you in South Carolina? Inputs

System A

Response1: No, North.
Response2: No. I’m not.
Response3: No. Why?
Response4: No but I used to.
Response5: Yes, I’m.

System B

✗
６６６６６６

Response1: Yes, South.
Response2: Yes.
Response3: Yes!
Response4: No.
Response5: Yes I’m. ✗

✗
✗
✗

✗

✗
✗
✗

✗
✗

✗
✗
✗

✗

Certainty: 3/3=1.00,Variety: (0.8+1+1)/3=0.93 Certainty: 1/3=0.33, Variety: 0.2/1=0.20

(ii) Determine whether responses in n-best list are non-contradictory

(i) Synthesize inputs

(iii) Compute Certainty and Variety

Figure 1: Overview of our analysis framework. The
framework analyzes n-best lists by (i) synthesizing a
stimulus input that induces contradictions, (ii) automati-
cally determining whether responses in the n-best lists
are contradictory, and (iii) computing Certainty and
Variety.

sistency of all candidates in the n-best list, not just
the 1-best, substantially impacts whether the final
output is contradictory because the final response
is chosen from the n-best list. Nonetheless, earlier
quantitative investigations of contradiction relied
solely on 1-bests from models (Li et al., 2021).

In this study, we analyze the n-best lists gen-
erated by the models to explore methods for en-
hancing neural response generation to avoid con-
tradiction. Specifically, we first consider how ana-
lyzing an n-best list should be approached. Then,
we propose a method for statistically analyzing
the n-best lists (Figure 1). Since it is impractical
to study all conceivable contradictions in a dia-
logue, we first focus on contradictions in response
to polar questions.1 We use our method to high-
light the contradiction-awareness of recent high-
performance neural response generation models
and methodologies. Our results show that beam
search has limitations in terms of avoiding con-
tradiction and that the newer techniques, such as
unlikelihood training (Welleck et al., 2020), can
help overcome these limitations.

1Codes and test set are available at
https://github.com/shiki-sato/
nbest-contradiction-analysis
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NLI data Dialogue context for our test

Entailment Premise: yeah i’m in North Carolina −→ ENTQ History: Yeah I’m in North Carolina.
Hypothesis: I’m in North Carolina. Message: Are you in North Carolina?

Contradiction Premise: yeah i’m in North Carolina −→ CNTQ History: Yeah I’m in North Carolina.
Hypothesis: I’m in South Carolina. Message: Aren’t you in South Carolina?

Table 1: Acquiring dialogue context by transforming the Natural Language Inference (NLI) data.

2 Analysis perspectives

First, n-best lists must be generated to prevent con-
tradiction, assuming the filters can remove contra-
dictory responses. An ideal model produces output
that is noncontradictory and outperforms in many
other criteria, such as relevance or informativeness.
A model must generate at least one noncontradic-
tory candidate to deliver a noncontradictory out-
put. Furthermore, even noncontradictory candi-
dates could be eliminated based on other criteria
(e.g., relevance, informativeness). Therefore, it can
be hypothesized that having more noncontradictory
responses in an n-best list would enhance the fi-
nal output quality across various criteria. Taking
the above into account, we examine n-best lists
based on the certainty of the existence of noncon-
tradictory responses (Certainty), and the variety of
noncontradictory responses (Variety):

• Certainty: The proportion of the n-best lists
that have at least one noncontradictory re-
sponse.

• Variety: The proportion of noncontradictory
responses in each n-best list when only the
n-best lists with at least one noncontradictory
response are collected.

Given a set of inputs Q, we calculate them as fol-
lows:

Certainty =
|Q′|
|Q| ,Variety =

1

|Q′|
∑

q∈Q′

cnt(f(q))

|f(q)|

Q′ = {q | cnt(f(q)) > 0, q ∈ Q}

where f(·) is an n-best list generation function
and cnt(·) is a function that returns the number
of noncontradictory responses from a given n-best
list. For example, the Certainty of a model that
generates n-best lists with a combination of non-
contradictory and contradictory responses is high,
but its Variety is low. However, a model that always
generates n-best lists with only noncontradictory or
contradictory responses has a high Variety but a low

Certainty. We anticipate that n-best lists must in-
clude noncontradictory responses (Certainty= 1.0),
with a high proportion (high Variety).

3 Analytical inputs and evaluation

To analyze a model from the aforementioned view-
points, we consider how to prepare the analytical
inputs and evaluate the generated responses in this
section.

3.1 Inputs for highlighting contradictions

Polar echo question. An echo question (Noh,
1998) confirms or clarifies the context information
by repeating the utterance of another speaker. It is
commonly used when the speaker did not hear or
understand what was said correctly, or when the
speaker wishes to express incredulity. Based on
Li et al. (2021)’s discovery, contradictions emerge
mostly when speakers refer to earlier information
communicated in dialogue; we use echo questions
as stimulus input in our analysis to elicit contradic-
tory responses. We use polar-typed echo questions
to make our analysis more succinct and quantita-
tive. Since polar questions allow for basically only
two responses, yes or no, we can clearly determine
whether the generated response is contradictory or
not. Furthermore, by analyzing the produced re-
sponses as a yes/no binary classification issue, it
allows for quantitative discussion of experimental
outcomes based on the probability level.

Input preparation. We use the dataset from the
natural language inference (NLI) task to effectively
obtain the analytical inputs described in the preced-
ing paragraph. This dataset specifies the logical
relationship (i.e., entailment, neutrality, or con-
tradiction) between a premise and its associated
hypothesis. We transform the NLI dataset into di-
alogue data using a set of basic rewriting rules.2

Our test involves two types of inputs, which can be
classified as follows:

• ENTQ: generating a confirmation response.
2The details are described in Appendix A.
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• CNTQ: generating a refutation response.

Table 1 displays the input samples and how they
are transformed from the initial NLI data. Each
input is made up of the following two utterances:
the history and message. In our analysis, the model
generates responses to a given message, assuming
the model has generated the history in the preced-
ing turn.

3.2 Contradiction detection for output

To compute the Certainty and Variety, we must
first determine whether each generated response in
the n-bests compared to the inputs is contradictory.
The simplest method for detecting the contradic-
tions is to check whether the response begins with
yes or no. However, in the event of an indirect
expression (e.g., Why not?), this method cannot
detect the contradictions. Therefore, we use an au-
tomated yes-no classifier to categorize the n-best
responses to ENTQ/CNTQ. We train the classifier
by fine-tuning RoBERTa (Liu et al., 2019) using the
Circa dataset (Louis et al., 2020), which comprises
pairs of polar questions and indirect responses, as
well as annotations for the answer’s interpretation,
to categorize utterances as affirmations or refuta-
tions.3

4 Experiments

We demonstrate how our framework shows the
properties of n-best lists, which could be quite
influential in terms of avoiding contradiction. We
demonstrate this by comparing the n-bests gen-
erated by conventional beam search (BS) versus
recently proposed techniques.

4.1 Experimental settings

Inputs preparation. We used the Multi-Genre
NLI Corpus (Williams et al., 2018) to obtain ana-
lytical inputs, which is a large scale and is consis-
tent in good quality NLI data. We created 2,000
ENTQ/CNTQ inputs by extracting 2,000 samples
labeled with entailment or contradiction.4

Response generation models. We used the fol-
lowing two recently developed high-performance
models: DialoGPT (Zhang et al., 2020) and
Blender (Roller et al., 2021).5

3The details are described in Appendix B.
4We used the samples in the TELEPHONE domain; this

domain covers open-domain conversations.
5The details of the settings are described in Appendix C.

Certainty Variety

Model ENTQ CNTQ ENTQ CNTQ

Blender 400M 0.806 0.747 0.780 0.775
Blender 1B 0.832 0.752 0.832 0.753
Blender 3B 0.856 0.768 0.824 0.737
DialoGPT 345M 0.938 0.917 0.750 0.669
DialoGPT 762M 0.883 0.918 0.671 0.713

Table 2: Certainty and Variety of 10-best lists using
beam search with beam size B = 10.

1 10 20 30 40 50
Beam size

0.4

0.6

0.8

1.0

C
er

ta
in

ty

(a) Certainty for EntQ

Blender 400M

Blender 1B

Blender 3B

DialoGPT 345M

DialoGPT 762M

1 10 20 30 40 50
Beam size

0.4

0.6

0.8

1.0

C
er

ta
in

ty

(b) Certainty for CntQ

1 10 20 30 40 50
Beam size

0.6

0.7

0.8

0.9

1.0

V
ar

ie
ty

(c) Variety for EntQ

1 10 20 30 40 50
Beam size

0.6

0.7

0.8

0.9

1.0

V
ar

ie
ty

(d) Variety for CntQ

Figure 2: Certainty and Variety of n-best lists using
beam search with various beam sizes.

4.2 Analysis of n-best using beam search
Let B denote the beam size during generation. It
has been empirically found that using beam search
with B = 10 to generate a response yields ex-
cellent quality results and has a frequently used
value (Zhang et al., 2020; Roller et al., 2021). Ta-
ble 2 displays the Certainty and Variety of 10-best
lists generated using these methods. Figure 2 also
depicts the Certainty and Variety of n-best lists
generated using different beam sizes.

Certainty. Table 2 illustrates that in approxi-
mately 10% of CNTQ-type inputs, even the highest
scoring model generates 10-best lists full of con-
tradictory responses. Even with a perfect response
filter, the models are unable to provide noncontra-
dictory answers to these questions. It should be
emphasized that the error rate is not low, given that
the inputs are polar questions with highly restricted
viable responses. Expanding the beam size can
increase the number of n-best lists with at least
one noncontradictory response. Indeed, increas-
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ing the beam size enhances the Certainty ((a) and
(b) in Figure 2). By increasing B to 40, the Cer-
tainty of using DialoGPT 345M for both ENTQ-
and CNTQ-type inputs achieve 1.0.

Variety. With B = 10, all the models’ Variety
are more than 0.5 (chance rate) (Table 2). There-
fore, rather than being fully random, the models
generate n-best lists with a degree of directionality
toward avoiding contradictions. However, increas-
ing the size of beam reduces the Variety ((c) and
(d) in Figure 2), resulting in lower output qual-
ity. For example, the Variety of DialoGPT 345M
with B = 40 for CNTQ-type inputs (a model with
Certainty of 1.0 for both ENTQ- and CNTQ-type
inputs) decreases to 0.58.

Overall. In terms of avoiding contradiction, our
analytical framework demonstrated the features of
the n-best lists of the beam search. The Certainty
did not achieve 1.0 in the commonly used configu-
ration (B = 10). When the beam size is increased,
the Certainty increases to 1.0, whereas the Variety
reduces dramatically. These results show the trade-
off between Certainty and Variety as a function of
beam size; in this example, we found constraints
in obtaining high Certainty and Variety with beam
search. Furthermore, it is found that the Certainty
obtained using DialoGPT is greater than that ob-
tained using Blender, whereas the opposite is true
for Variety, suggesting that various models behave
differently in terms of Certainty and Variety. This
study emphasizes the significance of examining the
Certainty and Variety of each model.

4.3 Analysis of n-best by various techniques

How to achieve high Certainty and Variety?
One method to increase Certainty is to generate
n-best lists with a wider range of responses, such
that each n-best list is guaranteed to contain a spe-
cific number of noncontradictory responses. The
diverse beam search (DBS) (Vijayakumar et al.,
2016) and nucleus sampling (NS) (Holtzman et al.,
2020) methods are used to construct such n-best
lists. Furthermore, Li et al. (2020) recently pro-
posed models that use unlikelihood (UL) training
to assign low probabilities to contradict responses.
Using these models to generate n-best lists will
almost certainly enhance both Certainty and Va-
riety. We assess the n-best lists generated using
these three strategies to see how much these tech-
niques enhance Certainty and Variety (n-best lists

Certainty Variety

Technique ENTQ CNTQ ENTQ CNTQ

BS 0.856 0.768 0.824 0.737
DBS 0.999 0.981 0.758 0.478
NS 1.000 0.994 0.755 0.462
UL (α = 0) 1.000 0.996 0.406 0.759
UL (α = 1) 0.943 0.900 0.920 0.938
UL (α = 10) 0.910 0.937 0.969 0.968

Table 3: Certainty and Variety of 10-best lists using
various techniques with Blender 3B.

generated using DBS and NS, and n-best lists gen-
erated using beam search together with the UL
training). Appendix C contains a description of the
techniques used for this analysis.

Result. Table 3 displays the Certainty and Vari-
ety of the 10-best lists generated using BS, DBS,
NS, and UL.6 The values of α show the degree of
UL loss during fine-tuning. Here UL with α = 0
used the response generation model fine-tuned with
maximum likelihood in the same training settings
as those used for UL with α > 0. Thus, note that
comparing UL with α = 0 and α > 0 allows a fair
comparison between likelihood and unlikelihood
training. The results reveal the properties of the n-
best lists obtained for the three techniques, as well
as the extent to which the techniques increase Cer-
tainty and Variety. The Certainty obtained using
the DBS and NS method reach 1.0 for significantly
lower search sizes than that for the BS to attain
a Certainty of 1.0; the Variety for CNTQ-type in-
puts are less than 0.5 (chance rate). Thus, using
the DBS and NS methods efficiently improves Cer-
tainty compared with the results obtained using
the beam search; nevertheless, the methods do not
simultaneously attain high Certainty and Variety.
However, the Certainty obtained using UL with
α > 0 are greater than those obtained using the
BS, and this was accomplished while maintaining
higher Variety than those obtained using the BS and
UL with α = 0 (likelihood training). Our findings
show that generation models are advancing toward
high Certainty and Variety, which is particularly
true for the recently proposed UL loss method. De-
spite the highly restricted viable responses, i.e., yes
or no, the Certainty obtained using UL with α > 0
does not reach 1.0. Thus, we conclude that there is
still room for improvement in n-best list generation

6For the BS, DBS, and UL, we obtained the 10-best lists
setting beam size to 10. For the NS, we got the 10-best lists
by performing nucleus sampling ten times.
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in terms of avoiding contradiction.

5 Conclusion

Based on the recent development of contradiction
detectors, removing contradictory candidates from
models’ n-best lists is a practical method for avoid-
ing contradiction. In this method, the consistency
of all candidates in the n-best lists substantially
affects whether the final outputs are contradictory.

We quantitatively examined the properties of the
n-best lists in terms of avoiding contradiction, us-
ing polar-typed questions as analytical inputs. We
demonstrated that the proposed framework exhibits
the properties of n-best lists based on Certainty
and Variety. Certainty determines whether an n-
best list has at least one noncontradictory response,
whereas Variety evaluates how many noncontradic-
tory responses each n-best list has. The results,
particularly, demonstrated the present limitations
on achieving high Certainty and Variety when us-
ing the well-established beam search method. In
addition, our method emphasizes the improvements
in Certainty and Variety achieved by recently pro-
posed response generation strategies.

Our approach, which analyzes models’ n-best
lists based on Certainty and Variety, can be applied
to any response generation problem, not just polar-
typed response generation, which will be future
work.
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A Details of transforming NLI data

As described in Section 3.1, we obtain an analytical
input from the NLI dataset. Specifically, we convert
the hypothesis sentence of an NLI sample into a
yes-no question. We describe the procedure as
follows:

1. Detect the first verb of a sentence.

2. Move the verb to the beginning of the sen-
tence, or put one of {Do, Does, Did} at the
front of the sentence, changing the verb back
to its base (e.g., made→ make).

3. Change first-person pronouns to second-
person pronouns and second-person pronouns
to first-person pronouns (e.g., my→ your).

4. Change the punctuation mark at the end of the
sentence to a question mark.

We used spaCy (en_core_web_sm) (Honnibal
and Montani, 2017) to detect the verbs of hypoth-
esis sentences. We did not use NLI samples with
syntactically complex hypothesis sentences, such
as those containing coordinating conjunctions, to
avoid obtaining ungrammatical inputs. Further de-
tails are provided in our source codes.7

B Details of yes-no classifier

Training settings. On the Circa dataset,
we fine-tuned the pretrained RoBERTa
(roberta-large) implemented by Hug-
ging Face (Wolf et al., 2020). We divided the
dataset at random into train:valid = 8 : 2. The
other training parameters were identical to those
used by Louis et al. (2020).

Performance of classifier. To investigate the per-
formance of the classifier, we measured the classi-
fication accuracy. First, we manually labeled the
top-1 responses in the 10-best lists generated by
the analysis presented in Section 4.2 with one of
the two following labels: Contradictory or Noncon-
tradictory. The accuracy with which the automated
evaluation categorized the labeled responses was
then evaluated. We selected 500 responses8 from
50 ENTQ/CNTQ inputs drawn at random from our
test for the evaluation. The classifier classified
433/500 responses (see Appendix C), and the accu-
racy was 0.921. Some examples of the classifica-
tion are shown in Table 4. The classifier correctly

7https://github.com/shiki-sato/
nbest-contradiction-analysis

8100 responses generated by each of 5 generation models.

History: and we didn’t ever call it uh Cokes and
such you know we call it soda.

Message: Don’t you always call it Coke?
Model Response: We call it coke.

Human Label: Contradictory
Predicted Label: Contradictory

(a) Example 1

History: The buying a house was the last thing
that i wanted to do.

Message: Weren’t you desperate to buy a house?
Model Response: No, I just wanted to buy a house.

Human Label: Contradictory
Predicted Label: Non-contradictory

(a) Example 2

Table 4: Examples of the response classification results
by the yes-no classifier. The model responses were
generated by Blender 400M using beam search with
beam size B = 10.

Model ENTQ CNTQ

Blender 400M 1331 / 2000 1270 / 2000
Blender 1B 1413 / 2000 1316 / 2000
Blender 3B 1566 / 2000 1403 / 2000
DialoGPT 345M 1126 / 2000 924 / 2000
DialoGPT 762M 1044 / 2000 956 / 2000

Table 5: Number of stimulus inputs analyzed to calcu-
late the Certainty and Variety described in Table 2.

Model ENTQ CNTQ

BS 1566 / 2000 1403 / 2000
DBS 991 / 2000 882 / 2000
NS 818 / 2000 684 / 2000
UL (α = 0) 1914 / 2000 1871 / 2000
UL (α = 1) 1806 / 2000 1887 / 2000
UL (α = 10) 1654 / 2000 1811 / 2000

Table 6: Number of stimulus inputs analyzed to calcu-
late the Certainty and Variety described in Table 3.

detected the contradiction in the model response
using an indirect expression, in Example 1. How-
ever, in Example 2, the classifier failed to detect the
contradiction of the model response, having both
a noncontradictory direct expression (“No”) and a
contradictory indirect expression (the part of the
response after “No”). We found that the classifier
tended to misclassify model responses containing
the contradictions with themselves, such as Exam-
ple 2.

C Details of experiments

Number of analyzed stimulus inputs. To sim-
plify the analysis, we omitted from Section 4 and
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Appendix B the analytical inputs with one or more
ambiguous responses in the n-best lists. We de-
fined ambiguous responses as those that were not
identified by the classifier as either affirmations
or refutations.9 Table 5 and Table 6 display the
number of analytical inputs from the total of 2, 000
ENTQ/CNTQ used for the two analyses in Sec-
tion 4.

Generation model settings. In Section 4 experi-
ments, we used DialoGPT (Zhang et al., 2020) and
Blender (Roller et al., 2021) as response genera-
tion models. We used the codes of ParlAI (Miller
et al., 2017) with its default settings, except for
beam_length_penalty= 0 to generate responses.

Unlikelihood training settings. We used unlike-
lihood training with Blender 3B for the study of
Section 4.3. To use the unlikelihood training pro-
posed by Li et al. (2020), we require training data
that includes the following three elements: input
(here, history, and message), gold response, and
negative response. These training samples were
created by altering the NLI data with entailing and
contradicting hypotheses.10 Table 7 displays the
original NLI data and the transformed training sam-
ples. One NLI data set yields four types of ques-
tions (PositiveQ1, PositiveQ2, NegativeQ1, and
NegativeQ2). We synthesized 8,000 samples from
2,000 NLI data and randomly divided them into
train : valid = 9 : 1. We tuned the learning
rate {7.0 × 10−4, 7.0 × 10−5, 7.0 × 10−6, 7.0 ×
10−7, 7.0× 10−8} and the number of warmup up-
dates {50, 100} for each α = {0, 1, 10} for train-
ing. The rest of the training parameters are identical
to those used by Roller et al. (2021). It is worth
noting that we only trained the models marked as
UL in Section 4.3 on these transformed data.

9Circa dataset has seven different labels such as “Yes” and
“Probably/sometimes yes.” We regard the responses classified
into “In the middle” or “I am not sure” as ambiguous ones.

10Note that we did not use the identical NLI samples to
synthesize ENTQ/CNTQ.

Premise: yeah i’m in North Carolina
Hypothesis – Entailment: I’m in North Carolina.
Hypothesis – Contradict: I’m in South Carolina.

(a) Original NLI data

PositiveQ1
History: Yeah I’m in North Carolina.

Message: Are you in North Carolina?
Gold: Yes, I’m in North Carolina.

Negative: No, I’m in South Carolina.

PositiveQ2
History: Yeah I’m in North Carolina.

Message: Are you in South Carolina?
Gold: No, I’m in North Carolina.

Negative: Yes, I’m in South Carolina.

NegativeQ1
History: Yeah I’m in North Carolina.

Message: Aren’t you in North Carolina?
Gold: Yes, I’m in North Carolina.

Negative: No, I’m in South Carolina.

NegativeQ2
History: Yeah I’m in North Carolina.

Message: Aren’t you in South Carolina?
Gold: No, I’m in North Carolina.

Negative: Yes, I’m in South Carolina.

(b) Training samples for UL

Table 7: Example of transforming (a) original NLI data
to (b) training sample for UL. We synthesized four ques-
tions, i.e., PositiveQ1, PositiveQ2, NegativeQ1, and
NegativeQ2, from each NLI sample.
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Abstract

Socially Assistive Robots (SARs) have the po-
tential to play an increasingly important role in
a variety of contexts including healthcare, but
most existing systems have very limited inter-
active capabilities. We will demonstrate a robot
receptionist that not only supports task-based
and social dialogue via natural spoken conversa-
tion but is also capable of visually grounded di-
alogue; able to perceive and discuss the shared
physical environment (e.g. helping users to lo-
cate personal belongings or objects of interest).
Task-based dialogues include check-in, naviga-
tion and FAQs about facilities, alongside social
features such as chit-chat, access to the latest
news and a quiz game to play while waiting.
We also show how visual context (objects and
their spatial relations) can be combined with
linguistic representations of dialogue context,
to support visual dialogue and question answer-
ing. We will demonstrate the system on a hu-
manoid ARI robot, which is being deployed in
a hospital reception area.

1 Introduction

Socially Assistive Robots (SARs) are increasingly
being explored in contexts ranging from educa-
tion (Papadopoulos et al., 2020) to healthcare
(González-González et al., 2021). It has been noted,
however, that despite the success of SARs and spo-
ken dialogue systems in their respective research
fields, integration of the two is still rare (Lima et al.,

Figure 1: Interacting with SPRING-ARI

2021) and social robots in general still lack interac-
tion capabilities (Cooper et al., 2020). In a similar
fashion, even recent research on combining vision
and language has tended to centre around the use of
still images (Mostafazadeh et al., 2017; Zhou et al.,
2020), with few systems able to support visual dia-
logue as part of a natural, situated conversation.

The SPRING project aims to develop such a sys-
tem in the form of a robot receptionist for visitors to
an eldercare outpatient hospital. In this context the
robot must be able to communicate naturally with
users on a variety of both functional and social top-
ics, including but not limited to those concerning
the shared physical environment. We demonstrate
our progress towards this goal, with a multi-modal
conversational AI system that is integrated on an
ARI robot1 (Fig. 1) and which combines social

1https://pal-robotics-com/robots/ari
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and task-based conversation with visual dialogue
regarding navigation and object detection in the
shared space. Our system greets visitors, supports
them to check-in, answers FAQs and helps users to
locate key facilities and objects. It also offers social
support/entertainment in the form of chit-chat, a
quiz and access to the latest news.

2 System Architecture

The system architecture (Fig. 2), is composed of
three main modules; a visual perception system, a
dialogue system, and a social interaction planner.

2.1 Visual Perception System

The visual perception system is implemented as a
ROS action server and is based on scene segmenta-
tion (Wu et al., 2019) from Facebook’s Detectron2
framework2. From the segmented scene, the goal
is to build a scene graph to capture relationships
between objects such as location, adjacency, etc.

2.2 Dialogue System

The Dialogue System (Fig. 3) is based on the Alana
system (Curry et al., 2018), an ensemble of dif-
ferent bots that compete in parallel to produce a
response to user input. There are two types of bot:
rule-based bots that can, for example, drive the
conversation if it stalls, and express the identity
of a virtual ’persona’ (e.g. answering questions
about the robot’s age etc.); and data-driven bots

2https://github.com/facebookresearch/
detectron2

that can retrieve replies from various information
sources, e.g., News feeds. The SPRING system re-
tains the rule-based and News bots, supplemented
with a number of new, domain-specific bots. Vi-
sual Task Bot handles visual dialogue within the
conversation, converting the user’s inferred intent
and any entities associated with it to a goal mes-
sage that is forwarded to the visual action server
(Part et al., 2021). Reception Bot welcomes vis-
itors, helps them check-in and answers FAQs on,
e.g., catering facilities and schedules. Directions
Bot helps users find key facilities such as the bath-
rooms and elevator, while Quiz Bot is a simple true-
or-false game designed to keep users entertained
while they wait. The Dialogue Manager decides
which response the robot verbalises based on a
bot priority list. Automatic Speech Recognition
(ASR) on the robot is currently implemented (in
English) via Google Cloud3. Natural Language Un-
derstanding (NLU) is based on the original Alana
pipeline, augmented using the RASA framework4

for the parsing of domain-specific enquiries. Quiz
bot employs regex-based intent recognition. Nat-
ural Language Generation (NLG) for the majority
of bots consists of templates, with only News bot
retrieving content from selected online sites. The
utterances are voiced on the robot by Acapela’s UK
English Text-To-Speech voice ’Rachel’5.

3https://cloud.google.com/
speech-to-text

4https://rasa.com
5https://www.acapela-group.com/
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Figure 3: Dialogue System Architecture

2.3 Social Interaction Planner

The Social Interaction Planner interfaces the dia-
logue, vision systems, and the physical actions of
the robot. It creates and executes plan(s) containing
dialogue, physical, and perception actions based
on the current dialogue context, and is based on the
ideas of (Papaioannou et al., 2018; Lemon et al.,
2002), enabling multi-threaded task execution and
dialogue that is flexible and pausable. As shown
in Fig. 2 it comprises several components, with
the Arbiter managing communication between the
dialogue system, the robot, and the planner

The Planner is a key component and uses the
principle of recipes and resources as developed by
(Lemon et al., 2002) to eliminate the problems from
(re-)planning and concurrent interactive planning
and execution. A domain file lists all the possible
actions and specifies their types and parameters
including their preconditions and effects. Recipes
then describe the sequence of actions (i.e. dia-
logue, physical, or perception) involved in achiev-
ing a desired goal. When requested by the Arbiter,
these recipes are transformed into Petri-Net Plans
(PNP) (Dondrup et al., 2019) and are concurrently
executed together with any other plans that may
already be running. At run-time, redundant ac-
tions whose effects have already been achieved are
skipped, or repair actions are executed in cases
where an action was unsuccessful. At any time,
each action has the ability to communicate with
the dialogue system via the Arbiter to allow for
clarification or to communicate perception results.

3 The SPRING ARI Robot

ARI is a humanoid robot, designed for use as a
socially assistive companion (Cooper et al., 2020).
It is 1.65m tall, has a mobile base, a touch-screen
on the torso, movable arms and head with LCD
eyes that enable gaze behaviour. The version of the
robot used here is equipped with several cameras
creating a 360º field of view. For audio capture
and processing a ReSpeaker Mic v2.0 array, with 4
microphones is mounted on the front of the belly.

4 Example Dialogues

The example dialogue shown in Table 1 illustrates
the system’s visual dialogue capabilities (in bold),
occurring as part of the welcome conversation.

U: Hello, I’ve got an appointment at 10am.
R: [reception_bot] I can help you with that. May I take
the name please?
U: It’s Jeanne X.
R: [reception_bot] Pleased to meet you, Jeanne. Is this
your first visit?
U: No, I’ve been before.
R: [reception_bot] OK great, you’ll be an expert then!
That’s you checked in. Please take a seat and a nurse
will call you when they’re ready. I’m here if you need
anything else while you’re waiting.
U: Is there something to read while I wait?
R: [visual_task_bot] I can see a magazine on the table.
U: Aha thanks.
R: No problem.

Table 1: Task-based Dialogue with Visual Dialogue.

The example dialogue in Table 2 further illus-
trates the robot’s natural language social and task-
based capabilities.

U: Excuse me, do you know how much longer I will
have to wait?
R: [reception_bot] I expect it won’t be long now. A nurse
will come and get you. Do you want to play a game to
pass the time?
U: OK then, yes please.
R: [quiz_bot] Great, let’s play! Please remember, when-
ever you want to leave the game, just say ’end game’.
First question, is Covid-19 on all 7 continents?
U: Nope.
R: Correct. Next question ......
R: [quiz_bot] Congratulations! You won. That was fun.
Now, please let me know if you need anything else.
U: I need the bathroom, can you tell me where it is?
R: [directions_bot] To find the nearest bathroom, leave
the waiting room and go right towards the door with two
round windows. The bathroom will then be on your left.

Table 2: Task-based Dialogue with Social Dialogue.
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5 Conclusions and Future Work

The proposed system demonstrates how to success-
fully weave together a wide range of task-based,
social, and visually grounded dialogue and physical
actions on an SAR in a receptionist environment.
Next steps are to generate the scene graphs au-
tomatically by combining data-driven approaches
(Zellers et al., 2018; Yang et al., 2018; Zhang et al.,
2019; Tang et al., 2020) with prudent use of refining
rules. Crucially also, we are working on extending
the system to handle multi-party interactions, an
active area of research and highly likely to occur in
this context.

For the demonstration, we will showcase our sys-
tem on the ARI robot, inviting attendees to interact
with it and experience all the capabilities of the
system described in this paper.
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Abstract
We demonstrate EMMA, an embodied multi-
modal agent which has been developed for the
Alexa Prize SimBot Challenge1. The agent acts
within a 3D simulated environment for house-
hold tasks. EMMA is a unified and multimodal
generative model aimed at solving embodied
tasks. In contrast to previous work, our ap-
proach treats multiple multimodal tasks as a
single multimodal conditional text generation
problem. Furthermore, we showcase that a sin-
gle generative agent can solve tasks with visual
inputs of varying length, such as answering
questions about static images, or executing ac-
tions given a sequence of previous frames and
dialogue utterances. The demo system will
allow users to interact conversationally with
EMMA in embodied dialogues in different 3D
environments from the TEACh dataset.

1 Introduction

Robots that perform tasks in human spaces can ben-
efit from natural language interactions that provide
both high and low-level instructions, as well as
the ability to resolve ambiguities. The Alexa Prize
SimBot Challenge aims to propel research efforts
to develop embodied agents that learn to execute
household tasks from instructions, such as “Please
clean all the tableware”.

Transformers (Vaswani et al., 2017) coupled
with joint vision-and-language pretraining have be-
come the standard approach for tasks with single
image inputs, where available object-detectors are
used produce image features. We demonstrate how
this approach can also benefit embodied agents
for object manipulation tasks. While represent-
ing the scene in terms of object representations
(object-centric) can also benefit embodied agents
performing tasks involving object manipulation,
this approach is not as widely adopted due to the
increased computational overhead.

1https://amazon.science/alexa-prize/
simbot-challenge

To complete a task, an embodied agent may be
required to perform multiple successive actions.
Each predicted action is conditioned on all previous
observations that yields a new observation. From
an object-centric point-of-view, each observation
corresponds to a set of detected objects which must
remain accessible by the agent to predict the next
action. Therefore, even for smaller action trajec-
tories, the resulting input length can become pro-
hibitively large as the number of frames increases.

In this work, we present Embodied MultiModal
Agent (EMMA), a language-enabled embodied
agent capable of executing actions conditioned
on historical dialogue interactions. To address
the long-horizon input, we adopt advances from
tasks involving processing long-documents (Belt-
agy et al., 2020). Existing embodied agents in sim-
ilar environments treat action prediction as a classi-
fication task (Suglia et al., 2021; Pashevich et al.,
2021). On the other hand, EMMA is a unified,
visually-conditioned, autoregressive text genera-
tion model that accepts visual (observations) and
textual (dialogue) tokens as input, and produces
natural language text and executable actions.

2 Background

TEACh The Task-driven Embodied Agents that
Chat (TEACh) dataset (Padmakumar et al., 2021)
consists of gameplay sessions where two partici-
pants must complete household tasks in the AI2-
THOR simulator (Kolve et al., 2017). Each session
consists of a Commander with oracle information,
and a Follower that interacts with the environment
and communicates with the Commander to com-
plete the task. This work focuses on Execution
from Dialogue History (EDH), which is the refer-
ence task for the Alexa Prize SimBot Challenge.
EDH instances are created by segmenting game
sessions. Each instance is defined by an initial state
SE , action history AH , set of interaction actions
during the session AR

I , and the goal environment
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Figure 1: High-level architecture of EMMA. The Perception component processes new visual and language input at
each timestep. Both streams are then processed by the Policy component to output raw text, which is mapped to
actions that are executable in the environment. The resulting action at can be either a physical action or text (as
utterances generated from the dedicated NLG component).

state FE . The agent models the Follower who has
to generate the actions leading to the goal state.

Training and Evaluation During training, the
AR

I are used for supervision. At inference time,
the model is expected to generate a sequence of
interaction actions which would result in FE . The
model is evaluated by comparing the simulator state
resulted from inferred actions against FE .

3 System Architecture

As shown in Figure 1, EMMA consists of three
components: Perception, Policy, and Action Pre-
dictor. At each timestep, the agent generates the
next action after receiving information regarding
the current and previous states of the environment—
including any executed actions and interactions.
The agent receives a new observation and has to
predict a follow-up action. The process is repeated
until the agent outputs a stop action.

Perception This module is responsible for pro-
cessing the state of the environment—encoding
past actions, frames, and dialogue to create the
model input. The current state for the EDH task
consists of observations obtained after executing an
action, or a dialogue utterance from the Follower or
Commander. We extract local and global informa-
tion from the visual scenes using the VinVL object
detector (Zhang et al., 2021), after fine-tuning on
the ALFRED images (Shridhar et al., 2020). From
each scene, we obtain up to 36 regional features.
We obtain the global representation as the mean
pooled features from the backbone of the detector.

In the second case, the dialogue utterance is con-
catenated with the dialogue history. We include
special tokens to distinguish between Follower and
Commander utterances.

Policy The core component of EMMA is a uni-
fied autoregressive text generation model. Given
the current state, the previous observations and
interactions, the model generates raw textual out-
put. Assuming the input sequence consists of V
frames—with each encoded into NV scene and
object tokens—and L language tokens, the total
sequence length V ×NV +L will be dominated by
the number of visual tokens. To reduce the impact
of having a large V , we adapt the sparse attention
pattern following Beltagy et al. (2020). Each token
attends to its neighbouring tokens within a local
window, and a subset of tokens are regarded as
global to aggregate information from longer con-
texts. Global tokens act as a bottleneck of relevant
information over the entire sequence. These tokens
can attend to, and are attended by, all other tokens
in the input sequence under causal masking.

To infuse our agent with knowledge about ob-
jects and their properties, we pretrain the model
several image-text and video-text tasks. We use
COCO (Lin et al., 2014), VisualGenome (Kr-
ishna et al., 2016), and GQA (Hudson and Man-
ning, 2019) to learn an alignment between lan-
guage and vision. Furthermore, we incorpo-
rate ALFRED (Shridhar et al., 2020), and EPIC-
KITCHENS (Damen et al., 2018), two video-based
datasets involving action execution and recognition
to enable temporal reasoning.
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What material are the 
cabinets made of?

The cabinets are 
made of wood.

Pretrained 
Model

Describe the image A kitchen with a 
white sink.

Denoise the caption: 
<mask> sink

White sink

(a) Output for three different tasks when given the same image.

Heat the tomato slice 
in the microwave
and then remove it.

Provide an instruction

Pretrained 
Model

t=0 t=3 t=14

t=28 t=45 t=49

(b) Output for the Instruction Prediction task, given an input
video from the agent’s trajectory.

Figure 2: Example of generated output for various pretraining tasks, showing how EMMA can be prompted for the
task using Natural Language prefixes.

Locate the object: 
microwave

<vis_token_1>

Pretrained 
Model

Describe <vis_token_7> Gray countertop

Explain how <vis_token_6> 
relates to <vis_token_7>

Papers on 
counter

<vis_token_1>

<vis_token_7>
<vis_token_6>

<vis_token_5>

<vis_token_8>
<vis_token_7>

Figure 3: Example of generated output for pretraining tasks showing the use of visual tokens in order to reference
specific objects. Visual tokens follow the format <vis_token_i> to refer to the i-th predicted bounding box.

Action Predictor The final component of
EMMA is responsible for converting generated raw
text into actions which are executable in the envi-
ronment. We parse the raw text and map it to either
a navigation (e.g., Forward) or interaction action
(e.g., Pickup Mug). For interaction actions, we also
select the associated object using its coordinates
available from the Perception module.

4 System Demonstration

We demonstrate the ability of our model to solve
several downstream tasks ranging from captioning
to embodied action execution after casting all tasks
into the same sequence-to-sequence framework.
After training EMMA, we can use natural language
task prompts to trigger specific behaviours, follow-
ing literature on prompting for text-only models
(Raffel et al., 2020; Brown et al., 2020).

4.1 Pretraining Tasks

Figures 2-3 show examples of outputs generated
for various pretraining tasks. Figure 2a illustrates
outputs of a model with the same weights for three
image-based tasks: Visual Question-Answering
(VQA), Image Captioning, and Masked Language
Modelling (MLM). Figure 3 demonstrates the pre-
training tasks that require referencing specific ob-
jects in the image: Visual Grounding, Dense Cap-
tioning and Relationship Detection. Without any
special task-specific tokens, EMMA can infer the
target task to generate summary descriptions for
images, and can also respond to queries regarding
attributes of specified objects. Figure 2b shows
an example of a video pretraining task using a tra-
jectory from the ALFRED (Shridhar et al., 2020)
dataset. Given the task prefix “Provide an instruc-
tion” and a sequence of frames, EMMA learns to
generate an high-level description of the action tra-
jectory.
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What should I do?
t=1

Hi
t=2

Microwave potato whole
t=131

There’s one on the stove
t=137

Dialogue History Action history

t=140 t=141

Pick up

Potato

t=142

Pan Right

t=143

Pan Right

t=144

Look Up

What did EMMA do?

t=145

Place

Microwave

t=146

Close

Microwave

t=147

ToggleOn

Microwave

t=148

ToggleOff

Microwave

t=149

Open

Microwave

t=150

Pick up

Potato

Figure 4: Example of action execution in the AI2Thor 3D environment. EMMA conditions the action generation on
both the dialogue and the visual history.

4.2 Action Execution

Figure 4 provides an example of action execution
from dialogue history using an episode from the
TEACh dataset. The goal of the episode is to mi-
crowave a potato. The initial input to the model
consists of the dialogue between the Commander
and the Follower as well as the frames correspond-
ing to the previously executed actions. Up to that
point, the Commander has expressed the end goal
and helped the agent locate a potato. Based on this
input, EMMA executes a sequence of actions that
successfully complete the task. At each step the ini-
tial input is augmented with the agent’s egocentric
observation after executing the most recent action.
The process is repeated until the timestep 49, where
EMMA predicts a stop action. For this particular
example, the human follower completed the task
in 10 steps including redundant actions such as
looking up and down. EMMA’s action trajectory
is more efficient than the human demonstration by
performing only the necessary actions.

5 Conclusion

In this work we presented EMMA, an embodied
agent that learns to execute actions from dialogue,
developed for the Alexa Prize SimBot Challenge.
EMMA is based on a unified text generation model
that is pretrained on multiple image and video-
based tasks using natural language prompts. We
will provide a conversational web-based demon-
stration of interaction with EMMA in 3D environ-
ments.
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Abstract

GRILLBot is the winning system in the 2022
Alexa Prize TaskBot Challenge, moving to-
wards the next generation of multimodal task
assistants. It is a voice assistant to guide
users through complex real-world tasks in the
domains of cooking and home improvement.
These are long-running and complex tasks that
require flexible adjustment and adaptation. The
demo highlights the core aspects, including a
novel Neural Decision Parser for contextual-
ized semantic parsing, a new “TaskGraph” state
representation that supports conditional execu-
tion, knowledge-grounded chit-chat, and au-
tomatic enrichment of tasks with images and
videos.

1 Introduction

We present GRILLBot, a task-oriented multi-
modal conversational assistant developed during
the 2021/2022 Alexa Prize TaskBot Challenge
(Gemmell et al., 2022). GRILLBot aims to be
an open research platform for complex tasks and
supports flexible graph-based task representations,
contextual semantic parsing, and incorporates im-
age and video content for clarity and instruction.
We release the core components of the system as
OAT1 (Open Assistant Toolkit).

GRILLBot is still deployed throughout the
United States with users able to invoke the bot
by issuing the command “Hey Alexa, Assist me”
to their voice-only or screened Alexa device. Our
system provides open-ended assistance focusing in
the domains of cooking and home improvement.
It guides the user through all phases of the task,
from performing preference elicitation to guiding a
user to a relevant task from large task corpora, (i.e.
“making a New York-style pizza" or "how to paint a
wall”) and then proceeds to assist in executing the
task in an engaging way. Its capabilities include

1https://github.com/grill-lab/OAT

question answering, task-oriented chit-chat, and
instructional video content.

GRILLBot is part of the first generation of assis-
tants (Ipek et al.) that leverage screen-enabled con-
versational devices for complex real-world tasks.
These tasks are extensive, with some taking over
an hour. As a result, a performant system requires
long-term state tracking with capabilities to adapt
to a changing environment. It achieves this by in-
troducing a new novel task structure, a TaskGraph,
that captures the actions and information depen-
dencies to guide the user through a complex task.
TaskGraphs are enriched offline with content from
information extraction, knowledge-based content,
and multimedia images and videos.

Traditional task-oriented dialogue systems
(Young et al., 2013) take a slot-filling approach to
deriving system actions. Academic datasets such
as MultiWOZ (Budzianowski et al., 2018) capture
slot-value pairs from the user utterances within a
constrained set of domains enabling data-driven
neural models. Andreas et al. (2020) extend this
traditional representation towards semantic parsing
with dataflow graphs while constrained to the do-
main of events booking in the SMCalFlow dataset.
The neural decision parser in GRILLBot similarly
generates code but focused on all aspects of a con-
versation from navigation to task search and ques-
tion answering. Other challenges such as DSTC11
(Kottur et al., 2021) attempt this fully featured task-
oriented experience, yet only do so in a virtual set-
ting. GRILLBot stands apart as a system required
to engage with real-world users in their environ-
ment and assist in complex tasks for cooking and
home improvement.

2 System overview

The system uses a micro-service architecture with
a centralized Orchestrator that defines the system
behavior. We use a phase-based policy to transition
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Figure 1: Example TaskGraph (right) and conversation (left) connect each utterance with the information in the
graph nodes. The figure shows how we use conditional nodes (in light blue) to manage yes/no questions to unlock
different branches of instructions. Conditional nodes can also unlock autonomous actions like setting a timer. The
figure also highlights how the requirement nodes (in light green) are used by the system to enrich the experience
by adding specific information that the user will need to perform the step. Finally, the purple box highlights extra
information contained inside the step nodes to ground the QA system in domain knowledge.

from searching for a suitable task (i.e. planning
phase) to guiding users in performing a task (i.e.
execution phase).

The Orchestrator is the central process that di-
rects and receives all the information from other
microservices. Specifically, these child compo-
nents are called functionalities and provide the nec-
essary tools required by policies during conversa-
tions. The main components inside functionalities
are: Neural Decision Parser, Task Searcher and
Question Answering. We discuss the Neural Deci-
sion Parser in Section 4.

The task searcher leverages our collection of
TaskGraphs to find candidate tasks. Our approach
is based on a combination of traditional sparse &
dense retrieval and neural re-ranking (Gemmell
et al., 2022). The question answering system pro-
vides extra task information, handles user ques-
tions, and provides chit-chat elements. It uses a
collection of QA systems across six categories.

3 TaskGraphs

A TaskGraph is a new graph-based representation
based on a directed acyclic graph that encodes the
actions and information dependencies that the sys-
tem needs to enable complex dialogue flows. In-
formation is represented with heterogeneous nodes,
each with a specific role:

• Steps: Represent a task instruction for the
user, including visual information and textual
descriptions.

• Requirements: Represent tools and ingredi-
ents that are needed to perform the task and
can be grounded to specific steps.

• Conditions: Represents yes/no gates that re-
quire external information to resolve during
execution dynamically.

• Logic: Represents logical operations. These
can be used in conjunction with other nodes to
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enable compact dependencies and smoother
execution flows. We currently support ∧, ∨
and ¬ operations.

• Actions: Represents actions taken by the sys-
tem. This could be operations like setting a
timer or adding items to a list.

• Extra Information: Represents domain/task-
specific knowledge like tips or fun facts that
can enrich the user experience during the exe-
cution of the task.

Combining all these nodes, we can obtain adap-
tive interactions where system-initiative allows the
system to adapt to the user’s needs. Figure 3
shows how TaskGraphs can be leveraged using a
task-oriented conversation helping a user cooking
“creamy zucchini pasta.”

3.1 Offline TaskGraph Curation

A key part of the system is providing relevant and
high-quality TaskGraphs that satisfy the user’s task
goal. For example, if a user asks, “I want to cook a
gluten-free meal based around lamb shoulder“, the
system must find a suitable TaskGraph.

To enable this, the system has to process rich and
executable TaskGraphs offline with enough scale
to cover most user needs. Offline processing also
decouples the heavy processing stages and data
enrichment from online processing.

Web content We leverage domain experts
to identify high-quality seed websites for each
domain, e.g. wholefoodsmarket.com
and seriouseat.com for cooking and
wikihow.com for home improvement. We use
Common Crawl to download the raw HTML for
target domains and develop website-specific wrap-
pers to extract semi-structured information about
each task, i.e. title, author, description, ingredients,
images, steps, ratings, videos, infoboxes, FAQs.

Synthesize TaskGraphs The next stage of the of-
fline process takes the semi-structured information
extracted and synthesizes executable TaskGraphs.
This creates multi-modal task nodes and connec-
tions from previously linear task steps. For ex-
ample, we can create expressive graphs that con-
tain a summary and a detailed description for each
task step, which can be accessed by users who
require additional context. We also leverage infor-
mation extraction methods, such as noun phrase

detection (Honnibal and Montani, 2017), to cre-
ate graph connections that link required ingredi-
ents and tools to each step. Additionally, complex
graph structure and manual augmentation can be
added using a custom-developed excalidraw.com
graph interface. This allows loading automatically
processed TaskGraphs, adding additional graph
nodes and connections, and exporting the updated
TaskGraphs.

Multimodal augmentation Visual information
plays a crucial role in improving the success and en-
joyment of users being guided through real-world
tasks. For example, showing “How-to” videos,
images and lists of tools and ingredients offers a
more compelling and useful user experience. Fig-
ure 2 depicts the multi-modal experience where the
screen text outlines the instruction, a list shows the
ingredients required, an image enriches the user
experience, and a video offers a technical demon-
stration.

Figure 2: Multimodal UI containing text, buttons, im-
ages, and videos.

We also develop a means of enriching task nodes
if the task steps do not have aligned images and
videos. First, we extract actions (i.e "cut the beef")
from a step based on a dependency parse of the step
text using the spaCy toolkit. For images, we use
CLIP (Radford et al., 2021) to search over an im-
age corpus of all other task steps images. This uses
the cosine similarity between image and step ac-
tion embeddings to identify the relevant images for
each step. For videos, we develop a video corpus
of domain-focused techniques, which is an index
based on the video title using S-BERT (Reimers
and Gurevych, 2019). Similar to image retrieval,
we embed the step action as a query and rank the
titles of each “How-To” video through a cosine
similarity of the step action embedding.
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4 Neural Decision Parser

Figure 3: Example of several possible in-context parses
during task execution. The Neural Decision Parser au-
toregressively generates the function call and arguments
as code in our DSL.

TaskGraphs allows complex representations of
real-world tasks. Due to the complex conversa-
tional dialogue required, traditional non-contextual
intent classifiers struggle to manage stateful tran-
sitions. For this reason, we develop a Neural De-
cision Parser that leverages both TaskGraphs and
user history for contextualized semantic parsing.
Specifically, the model takes in natural language
representations of a TaskGraph and prior conver-
sational context to generate actions in the form of
the custom GRILLBot Domain Specific Language
(DSL). These generated arguments supply the task
sub-components with parsed knowledge relating to
the conversation.

For example, if a user asks “Can you go
back to the first step?”, the Neural Decision
Parser would generate a parameterized parse
step_select(1).

Contextual Semantic Parsing as a DSL Figure
4 shows our state transition domain specific lan-
guage (DSL) that captures all system actions. This
DSL outlines a parameterized global command set
that is understood throughout the system to derive
what actions or external APIs should be called, and
what the response utterance should be. This flexi-
ble navigation allows for a complex conversation
design that leverages TaskGraphs.

Model We use a single T5 large model (Raffel
et al., 2020) to generate an agent action based on
the TaskGraph and conversational content. Using
a pre-trained language model allows advanced lan-
guage capabilities to be leveraged across all system
parts, including coreference resolution, search pa-
rameterization, setting timers, and state prediction.

# User s p e c i f i e s which t a s k t o e x e c u t e
> s e l e c t ( o p t i o n = I n t )

# Catch a l l f o r u s e r q u e s t i o n s
> a n s w e r _ q u e s t i o n ( )

# Catch a l l f o r t a s k s e a r c h
# Vague and Theme query c a t e g o r i e s
> s e a r c h ( vague=Bool , theme= S t r i n g )

# Go t o p r i o r node
> p r e v i o u s ( )

# Go t o n e x t s c h e d u l e d node
> next ( )

# N a v i g a t e t o s p e c i f i c t a s k s t e p s
> s t e p _ s e l e c t ( s t e p = I n t )

# S e t t i m e r wi th p a r s e d t ime span
> t i m e r ( span = S t r i n g )

# P r o v i d e d e t a i l s a b o u t a s t e p
> c h i t _ c h a t ( )

Figure 4: A sample of the Neural Decision Parser out-
put DSL with intent-based functions and parameterized
arguments that a T5 model generates at inference time.

We train the Neural Decision Parser by annotat-
ing simulated conversations with the appropriate
function calls and associated arguments. Our anno-
tated training data comprises 1,200 turns across var-
ious conversation stages and includes TaskGraph
and conversational context. Through user studies
and system comparisons, we find that this approach
achieves strong performance, and allows flexible
task navigation.

5 Conclusion

This demo presents GRILLBot, a newly devel-
oped Alexa Prize Taskbot system for complex real-
world tasks with rich multimodal capability. It
demonstrates multiple novel components includ-
ing TaskGraphs to manage long complex tasks that
are automatically enriched with offline process to
add multimodal image and instructional video con-
tent. It also shows key elements of the system
that make it engaging, including its flexible Neural
Decision Parser that performs contextual semantic
parsing as parametrized code generation. The re-
sult is a demonstration of a new research platform
designed from the ground-up around around flex-
ible cloud micro-services and large-scale neural
language models.
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Abstract

Robots operating in unexplored environments
with human teammates will need to learn un-
known concepts on the fly. To this end, we
demonstrate a novel system that combines a
computational model of question generation
with a cognitive robotic architecture. The
model supports dynamic production of back-
and-forth dialogue for concept learning given
observations of an environment, while the ar-
chitecture supports symbolic reasoning, action
representation, one-shot learning and other ca-
pabilities for situated interaction. The system is
able to learn about new concepts including ob-
jects, locations, and actions, using an underly-
ing approach that is generalizable and scalable.
We evaluate the system by comparing learning
efficiency to a human baseline in a collabora-
tive reference resolution task and show that the
system is effective and efficient in learning new
concepts, and that it can informatively generate
explanations about its behavior.

1 Introduction

An autonomous robot interacting with a human
teammate will often encounter concepts1 that are
unfamiliar to it. This is especially problematic
when exploring new environments where training
data is naturally limited or expensive to collect and
label. For example, a robot for space exploration
may encounter objects or need to carry out pro-
cedures that do not exist on Earth, and for which
data is scarce. A natural approach to online learn-
ing in many environments is to take advantage of
the human-robot interface, enabling the robot to
engage in multi-turn dialogue where it asks the
human questions to learn about a novel concept.

Many of the foundations of this approach – e.g.,
robot architectures capable of engaging in natural

∗Work performed during a summer position at the Army
Research Laboratory.

1The term ‘concept’ in this paper refers to any entity in the
task domain, including objects, locations, and actions.

...
I don’t know what the mechano calibrator is.
What color is the mechano calibrator?

Now unlock crate 3 and pickup the mechano calibrator.

Move to the code screen. Press key 1. Press key 1. 
Press key 2. Press key 3. That is how you unlock crate 3.

I can’t pickup the mechano calibrator because it is locked.

Pickup the mechano calibrator from crate 3.

Move to crate 3.

Figure 1: Example dialogue between a human and our
system situated in an unexplored spacecraft environ-
ment, where the robot must learn new locations, objects,
and actions through interaction with the human. The
system’s behavior is indicated in red.

language dialogue, and mechanisms for conversa-
tional grounding and question generation – have
previously been explored, but were designed as
piecemeal contributions, leaving a gap in the over-
all problem of learning concepts through dialogue.

In this work, we demonstrate a generalizable
cognitive robotic system that is able to efficiently
learn about unknown concepts through interactive
natural language dialogue. This system leverages
a probabilistic decision network model2 to dynam-

2Our decision network model, as well as the HuRDL
dataset used to evaluate the system in Section 4, can be
found at the following URL: https://github.com/
USArmyResearchLab/ARL-HuRDL
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ically generate and ask optimal questions for con-
cept learning within any environment, while also
employing natural language capabilities and an ex-
plicit knowledge representation enabled by a cog-
nitive robotic architecture. An example dialogue
from our system is shown in Figure 1.

2 Background

Early work in robot concept learning through dia-
logue explored the use of pre-specified ontologies
or graphical models to allow an agent to ask ques-
tions about objects in an environment (Lemaignan
et al., 2012; Chai et al., 2018; Perera et al., 2018), or
to learn actions through dialogue (She et al., 2014).
Other work explores the use of proactive symbol
grounding or pragmatic models for reference reso-
lution (Williams et al., 2019; Arkin et al., 2020). In
contrast to these studies, our work includes a notion
of uncertainty and can scale to new task domains
through dynamic adaptation of a decision network.

Recent work has built upon these approaches
by introducing information-theoretic measures for
selecting optimal questions. Skočaj et al. (2011)
propose a robot that can ask questions about object
properties that maximize information gain, and test
the system using colors and shapes as properties.
Deits et al. (2013) relatedly demonstrate a system
that can instantiate templatic questions to minimize
entropy of the robot’s probabilistic symbol ground-
ing function. Both approaches, however, rely on
the use of a small fixed set of properties or question
templates; we present a scalable approach that can
generate questions from arbitrary properties.

3 System Design

Our system combines a decision network model
for question selection (Gervits et al., 2021a) with
the DIARC (Distributed Integrated Affect Reflec-
tion Cognition) robotic architecture (Scheutz et al.,
2019) in order to enable interactive concept learn-
ing. The DIARC architecture, which follows a
distributed, component-based design, allows for se-
mantic parsing, introspection on knowledge, expla-
nation generation, and support for one-shot learn-
ing of actions. The particular configuration of DI-
ARC used by our system is shown in Figure 2. In
the remainder of this section, we describe the pri-
mary components of this architecture.
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Figure 2: Architecture of the system’s DIARC configu-
ration. The core components that drive concept learning
are the dialogue manager, which interacts with a deci-
sion network for question generation, and a reference
resolution component for resolving concepts in user in-
structions to observed objects in the environment.

3.1 Decision Network

The dialogue manager component of our DIARC
configuration is extended with a decision network
model (Gervits et al., 2021a) that combines a
Bayesian network with action and utility nodes.
The model represents the robot’s knowledge for a
target referent and selects a question to help reduce
ambiguity and acquire new concept knowledge.

Figure 3 shows a generic example of a decision
network constructed by the system. The green
boxes represent chance nodes which are random
variables corresponding to the agent’s knowledge
of the object properties, the number of target ref-
erents, and the instruction. The blue diamond is a
utility node which represents the utilities associated
with asking questions from the red decision node
conditioned on the chance nodes.

Since the robot’s goal in asking a question is
to reduce ambiguity (in the case of reference res-
olution, narrowing down the number of possible
referents for a concept), the model selects a “best”
question by calculating maximum expected utility
from the model, with utilities set by calculating the
Shannon entropy for each object property.

As shown by Gervits et al. (2021a), this approach
is well-suited to dialogue learning in novel envi-
ronments because the decision network is dynami-
cally constructed for any novel environment given
only observed object properties. Moreover, the net-
work is constructed with the minimum set of nodes
needed to disambiguate all entities in the environ-
ment, and can be re-constructed on the fly if new
entities are discovered. This greatly enhances the
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Figure 3: An instance of the decision network produced
in our evaluation domain. The probabilistic chance
nodes are shown in green. The red node represents the
decisions available to the system, while the blue node
represents the utilities associated with each decision,
and outputs the decision with maximum expected utility.

flexibility of the approach, enabling it to generalize
and scale to a variety of unexplored environments.

3.1.1 Semantic Parser and Declarative
Knowledge

The NLU component uses a CCG grammar to map
input text to a logical semantic representation3, in-
cluding the speech act type of the input (e.g., in-
struction or statement). The system is also able
to use pragmatic inference rules to further reason
about the contextual meaning of the user’s utter-
ance. The system maintains a declarative knowl-
edge base of the system’s beliefs, such as observed
properties of objects, interpretations from the NLU
component, and any logical inferences thereof.

3.1.2 Goal-based Dialogue Manager and
Robot Actions

The dialogue manager component is responsible
for handling the semantics of a speaker’s input and
forming system goals based on the speech act type
of the user’s input. In the case of an instruction, the
intent of the speaker will be adopted as the robot’s
goal, which will either be handled by invoking
an action satisfying the goal (if all referents are
known), or using the decision network to generate
a clarification question. In the case of a statement,
the system will modify its declarative knowledge
with any facts expressed in (or inferred from) the
input. In both cases, the NLG component will be
used to create a response by the robot; typically a
simple acknowledgement.

3The logical representation used by DIARC is an extension
of first-order predicate logic (Scheutz et al., 2019).

Robot actions are implemented as action scripts
that provide abstract logical formulations of actions
consisting of preconditions, effects, and constituent
steps (Scheutz et al., 2019). In our system, the robot
has action scripts for every basic action that it is
able to perform, such as moving to a location or
picking up an object. Furthermore, DIARC allows
for one-shot learning of novel actions through issu-
ing sequences of lower-level instructions (Scheutz
et al., 2017).

3.1.3 Reference Resolution
Our system is able to learn novel objects through a
reference resolution component that interacts with
the dialogue manager. When an unknown referent
is encountered, the system will compute the num-
ber of possible entities that it could refer to, based
on the properties that the system currently knows
about the concept. If there are multiple possible
referents, the dialogue manager will utilize the de-
cision network model to generate a clarification
question; any responses from the user are inter-
preted and used to update the system’s declarative
knowledge. Once a single referent is obtained, the
system will identify the object with the correspond-
ing concept and execute the instruction. Thus, the
system is able to acquire knowledge about concepts
through repeated application of this process.

4 Evaluation

To evaluate the integrated system, we implemented
it on a PR2 robot in a virtual spacecraft environ-
ment containing unknown objects and procedures
for the robot to learn. The robot performed a col-
laborative tool organization task in which it was
instructed via typed natural language commands
to place novel tools in their correct containers. In
our evaluation, the robot is given sequences of com-
mands from a subset of the Human-Robot Dialogue
Learning (HuRDL) corpus (Gervits et al., 2021b)
consisting of dialogues from 10 participants4. The
human-generated questions in these dialogues are
compared to the questions generated by the robot
for the same commands in terms of accuracy (the
proportion of commands that the robot is able to ex-
ecute after resolving unknown referents) and ques-
tion efficiency (the average number of questions
that the agent must ask to learn each new concept).

The spacecraft environment contains 18 tools,
with six main types and three instances of each type

4We use only “low-level” dialogues with Commander ini-
tiative from the HuRDL corpus to match the robot task.
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Table 1: Comparison of human performance to inte-
grated system on question efficiency and accuracy.

Human (N=10) Robot (N=1)
# Questions 31 55
Question Ef. 1.72 2.29
Accuracy 0.77 1.00

(given novel sci-fi names, such as “electro capac-
itor”) that also vary along six feature dimensions
such as color, size, etc. The environment also con-
tains 18 containers such as platforms, lockers, and
crates; some of these are locked and require learn-
ing specialized procedures to open. The robot starts
with a basic perceptual representation of the enti-
ties in the environment, including their observed
properties (e.g., an entity is red, small, etc.), but
without a name for any of them.

Our results are summarized in Table 15. Overall,
the robot asked more questions than the humans
on average, but attains a higher accuracy, being
able to resolve every entity in the task with enough
questions. These results highlight a trade-off be-
tween accuracy and question efficiency relative to
human performance: as our system lacks common-
sense knowledge that humans are able to draw upon
when learning new concepts, it generally needs to
ask more questions per object, but its systematic
approach to disambiguation allows it to avoid mis-
takes that humans would occasionally make, such
as overlooking an entity in the environment.

5 Conclusion and Future Work

We presented a robotic system that combines a
decision network model for question generation
with a cognitive robotic architecture to allow the
system to efficiently learn about new concepts in
unexplored environments through dialogue. The
design of our system is scalable due to the dynamic
construction of the decision network, while the
robotic architecture allows for broader situated in-
teraction including symbolic reasoning and expla-
nation generation. Our evaluation demonstrated
that our system, while having slightly lower ques-
tion efficiency than human participants on the same
task, was adept at learning new concepts in our ex-
perimental setting. In the future, we aim to allow
the robot to automatically acquire property knowl-
edge through exploration prior to concept learning.

5Since the robot produces deterministic outcomes for the
same command, we perform only a single trial for the robot.
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Danijel Skočaj, Matej Kristan, Alen Vrečko, Marko
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