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1 Introduction

Recent advances in human language processing
research have suggested that the predictive power of
large language models (LLMs) can serve as cognitive
models of human language processing. Evidence
for this comes from LLMs’ close fit to human
psychophysical data, such as reaction times or brain
responses in language comprehension experiments.
Those adopting LLM architectures as models of
human language processing frame the problem of
language comprehension as prediction of the next
linguistic event (Goodkind and Bicknell, 2018; Eisape
et al., 2020), in particular focusing on lexical or
syntactic surprisal. However, this approach fails
to consider that comprehenders make predictions
using some representation of the content of an
utterance. That is, in contrast to surprisal, readers
make use of a mental model that creates an evolving
understanding of who is doing what to whom and
how. In contrast to comprehenders, surprisal measures
do not make predictions about the content, as surprisal
simply measures the conditional probability of some
linguistic event given the surrounding context.

Many convergent cues in the upstream context,
such as the frequencies of words in a sentence
so far, will affect hidden state representations of
models, which may then influence the predictability
of upcoming words. The present work deviates from
the surprisal paradigm by assessing how much the
hidden state representations of LLMs, which are the
source of the predictive power that LLMs have over
symbolic representations, encode human language
processing-relevant uncertainty. We specifically
assess this possibility using the stimulus set from
Federmeier et al. (2007), which contains sentences
that manipulated the predictability of a final word by
designing the sentences to be either strongly or weakly
constraining. We therefore sought to test whether
it is possible to predict constraint from the sentence

embeddings directly to better understand whether and
how linguistic uncertainty is encoded in hidden states.

2 Cloze completion dataset

We constructed a cloze completion dataset (Taylor,
1953) to compare one LLM (RoBERTa; (Liu et al.,
2019)) to human predictions of final words in Fed-
ermeier et al. (2007). This stimulus set contains 282
sentence stimuli that differ in the constraint of the
sentence, or the degree to which the preamble leads
the reader in a specific direction. Broadly, strongly
constraining sentences consistently lead readers in
one semantic direction and the final word (critical)
is highly predictable; weakly constraining sentences
are less specific, which we summarize below.

• Strong Constraint: Sharon dried the bowls with
a towel.

• Weak Constraint: He always seemed to be
interested in looking at the sky.

One property of these stimuli is that constraint is
partly defined by the predictability of the final word.
Cloze probability is defined as the percentage of
completions produced by participants that end in a
particular final word. For example, if towel is guessed
by 30% of participants, then its cloze probability is .3.
Effects of constraint have sometimes been assessed
by categorizing sentences using the cloze probability
of the most expected completion, as in Federmeier
et al. (2007) [strong constraint: cloze > 67%; weak
constraint: cloze < 42%]. Constraint is therefore
both a product of the vagueness or specificity of
the preamble, and the predictability of the (bolded)
critical word given the preamble.

The present cloze dataset includes 109,225
word-by-word predictions for all non-initial words
from 158 participants recruited from the Prolific
platform. All participants self-reported as having
acquired American English before age 5 and received
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$8 for 30 minutes of their time. Here we are interested
in whether the preamble encodes the predictability
(constraint) of the final word.

In general, the cloze probability when participants
produced the intended final word from Federmeier
et al. (2007) was higher when the sentence was
strongly constraining (SC; µ̂SC = 0.71) than when
it was weakly constraining (WC; µ̂WC = 0.21),
t(266) = 25.1, p < .001. We therefore largely
replicated the original divisions of Federmeier et al.
(2007). However, the current cloze dataset differs
from the original stimulus set in that we are able to
leverage the probabilities of all cloze completions to
assess uncertainty across these categories. Participants
provided more varied responses as evidenced by
higher entropy in WC sentences (µ̂WC =0.87) than
in SC ones (µ̂SC = 0.36), t(200) = 21.8, p < .001,
a result we discuss further in Section 3.2. In the
next section, we describe our masking procedure
for assessing the degree to which cloze probabilities
and response entropies correlate with embedding
representation-derived measures.

3 Probing the predictability of final words

Given the clear difference in cloze probabilities of
critical words in the strongly and weakly constraining
stimuli in Section 2, we reasoned that strongly and
weakly constraining sentences are relatively easy for
participants to distinguish. In this section, however,
we sought to test whether the unpredictability of
a word as defined by the original cloze labels in
Federmeier et al. (2007) is recoverable directly from
sentence embeddings, as outlined in Section 2. While
this may seem trivial, it is not obvious exactly what
factors influence the predictability of a final word –
individually or jointly. For example, it is possible that
comprehenders rely predominantly on immediately
preceding information when completing cloze tasks,
but they may also incorporate linguistic properties
of words or combinations of words earlier in the
sentence (MacDonald and Seidenberg, 2006).

To test whether constraint is recoverable from sen-
tence embeddings, we leveraged the masked language
model RoBERTa (Liu et al., 2019), which enabled us
to hide the critical words from the model’s representa-
tion of the sentence and obtain sentence embeddings
for a downstream probing model. RoBERTa deviates
from human language processing in that it processes
the entire sentence simultaneously, rather than
incrementally as in recurrent neural networks (Elman,
1990). However, we can present sentences except

the final word to RoBERTa, which can mimic any
forward predictions and higher-order integration that
readers will have done up until that point. Importantly,
a masked language model like RoBERTa allows us
to mask the final word, and obtain a representation
of only the upstream (preamble) part of the sentence.

We then transformed the sentence into a single
vector for our classification procedure, taking the
original sentence from the Federmeier et al. (2007)
stimuli, except we replaced the critical final word
with a <mask> token. Embedding the sentence
using RoBERTa produces a fixed-length vector
for each token (roughly, word), from which we
computed a sentence embedding vector by averaging
all token vectors within each layer, excluding the
<mask> token. This embedding process produced
a 282× 13× 768-dimensional matrix. From these
embeddings, we then constructed 282 leave-one-out
regularized logistic regression probing classifiers
(one for each critical sentence) trained on 281 of the
sentence embeddings to predict strong (SC) or weak
constraint (WC) from the original Federmeier et al.
(2007) labels. We then treat the remaining sentence
as a test item and obtain a predicted probability of the
sentence being strongly constraining.

3.1 Cloze surprisal

In contrast to using raw percentages of completions
of the Federmeier et al. (2007) cloze stimuli, we
can alternately quantify constraint using either the
surprisal of a particular completion (Eq. 1) or estimate
entropy (H; Eq. 2) over allK cloze completions:

surprisal=−log(p(x)) (1)

H=

K∑
p(x)·logK(p(x)) (2)

If constraint is encoded in both the final resulting
sentence and the context, then we expect to see a
positive relationship between the model’s belief that
the sentence is strongly constraining and participants’
ability to guess the target word. However, constraint
may also be measured using cloze probabilities, or
the conditional probability of participants producing a
word given a context. In the Federmeier et al. (2007)
work, strongly and weakly constraining sentences
were designed to have high and low cloze probability
completions, respectively. Therefore, we tested for a
correlation between linguistic uncertainty as estimated
by the cloze probability of the critical word and the
predicted probabilities obtained from the classifiers.
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Figure 1: Plotted relationship between critical final word cloze and classifier probability of constraint (ρ̂=0.43, p<.001).
Line represents perfect correlation.

Figure 2: Plotted relationship between final word entropy and classifier probability of constraint. Line represents fitted
slope (ρ̂=−.32, p<.001).

With these predicted probabilities, we then tested for
a relationship between the log odds of a predicted SC
label as a function of the cloze probability of the final
completion and found a strong correlation between
the two (ρ̂=0.43, p<.001). We plot this relationship
in Figure 1.

3.2 Cloze entropy

Like cloze probability, we can also compute the uncer-
tainty of participants’ final responses by computing

the entropy of the outcomes. This uncertainty captures
the intuition that if participants vary in what they
expect, then their guesses will be relatively uniformly
distributed across many outcomes. Indeed, the weakly
constraining sentences in Federmeier et al. (2007) may
have been designed to be vague, and thus intended
to be completed by many possible valid words. We
conducted the same analysis as in the previous section,
and found that with greater uncertainty (higher en-
tropy), the model’s belief that a sentence was strongly
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constraining decreased (ρ̂=−.32, p<.001). We plot
this relationship in Figure 2. This strongly suggests
that RoBERTa encodes final word uncertainty in a
similar way to how it encodes constraint.

4 Discussion

In two experiments we have tested how much context
on its own – without knowledge of the final word –
can directly encode the predictability of upcoming lin-
guistic information. In contrast to prior work focusing
on surprisal, this work leverages experimenter-defined
labels (sentential constraint categories) and sentence
embeddings derived from the LLM RoBERTa
and shows that the model’s hidden states directly
encode uncertainty about upcoming information. We
demonstrated that we are able to train classifiers that
can predict the categorical constraint of a sentence and
that the model’s certainty about the constraint category
correlates with the cloze probability of the target word
and relatedly the entropy of participants’ responses.

These results present an interesting puzzle about
how lexical predictability unfolds in human language
comprehension. For example, readers build up
representations of sentences incrementally as they
read through a sentence, though they may read back
in a passage or reread some sections of text. In
turn, this higher-order representation of the language
guides their expectations about upcoming words
(Lowder et al., 2018), one aspect of which may be
uncertainty or the semantic specificity of predictions
that can be made.

In sum, we have presented one of the first attempts
at using embeddings instead of computing surprisal
values to account for the lexical predictability of
words in sentences. We believe that the method
outlined here raises several questions about how
predictions are launched and how uniformly through-
out utterances vagueness or uncertainty is encoded.
These questions include topics that are critical from a
multiple constraint satisfaction approach (MacDonald
and Seidenberg, 2006), such as which words
contribute the most toward the predictions of the
final words. In future work, we hope to also analyze
non-final word uncertainty using similar methods
to better understand how cloze probabilities relate
to sentence representations as the sentence unfolds.
Analyses of attention patterns in LLMs (e.g., Vig and
Belinkov, 2019) and masking of specific words may
provide some clues to the sources of predictions.
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