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Abstract

This PhD project leverages advancements in
multimodal large language models to build an
inclusive collaboration feedback loop, in order
to facilitate the automated detection, modeling,
and feedback for participants developing gen-
eral collaboration skills. This topic is important
given the role of collaboration as an essential
21st century skill, the potential to ground large
language models within learning theory and
real-world practice, and the expressive poten-
tial of transformer models to support equity and
inclusion. We address some concerns of inte-
grating advances in natural language process-
ing into downstream tasks such as the learning
analytics feedback loop.

1 Introduction

Collaboration, a coordinated process involving two
or more individuals participating in a task in an
interdependent way, is an important topic of study
given its importance as a major 21st century skill
(Lai et al., 2017; Council, 2011; Rios et al., 2020).
Though collaboration as a general term is viewed
as a learnable competency, notable distinctions
emerge when examining how collaboration sur-
faces within relevant research. One semantic dis-
tinction is that the term collaboration is not ex-
plicitly defined, or is used interchangeably with
concepts such as group collaboration, teamwork,
collective problem solving, cooperation, and more
(OECD, 2015). These inconsistencies in meaning
make it challenging to connect various research
agendas that purport the advantages of collabo-
ration. Another distinction to note is modality-
related. Some research does not make any modal-
ity distinctions when reporting the impacts of re-
sults, though much has viewed collaboration via
online/computer-mediated interactions, both syn-
chronous and asynchronous, while other research
has examined co-located collaborative acts that
happen face-to-face. Despite semantic, modality,

and other distinctions, various fields have advanced
what we know about collaboration, specifically col-
laboration as a language-mediated process.

Scholars within the fields of NLP, cognitive sci-
ence, and educational research have focused sepa-
rately on verbal and written aspects of collabora-
tive exchanges - speech, text-based outputs, and
audio such as non-linguistic pauses - to better un-
derstand aspects of collaboration. Recent NLP re-
search, for example, has explored neural models
equipped with dynamic knowledge graph embed-
dings, the use of large language models to model
real world speech, and the development of collab-
oration datasets (Ekstedt and Skantze, 2020; He
et al., 2017; Lee et al., 2022), while cognitive sci-
ence has explored general modeling approaches for
collaborative behavior and large language models
as knowledge sources for intelligent agents (Gold-
stone and Gureckis, 2009; Huang et al., 2022; Wray
et al., 2021). Learning analytics, a subset of edu-
cational research that extracts diverse datastreams
from the learning process to improve learning, has
developed automated multimodal approaches to de-
tect, model and provide feedback about collabora-
tive learning exchanges (Dowell et al., 2019; Pugh
et al., 2022; Worsley and Ochoa, 2020). Though
these studies differ in their disciplinary perspec-
tives, they view language as essential to individu-
als’ application of collaborative behavior and re-
searchers’ understanding of said behavior.

2 Purpose of Research Project

Because language is grounded in experience (Bisk
et al., 2020), and collaboration is mediated through
language, collaboration is an appropriate skill to be
learned, practiced, and analyzed through language-
mediated experiences and techniques. This disser-
tation project, situated at the intersection of NLP,
cognitive science, and learning analytics, focuses
on how we may support people in their develop-
ment of complex, dynamic collaborative language
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skills. The project extends prior research, but
also introduces unexplored areas such as multi-
modal language modeling and inclusive collabora-
tion. Therefore, the aim is to contribute to several
open research questions related to how we may
foster collaborative language, a proxy for overall
collaboration skills, in people as an explicit act of
learning. This project examines these critical gaps
in current research to explore the ultimate question
of: How can we use multimodal large language
models to detect, model, and provide feedback on
inclusive collaboration behavior? Sub-questions
include:

• How may a multimodal framework offer im-
proved collaborative language detection over
and above unimodal language modeling?;

• What are possibilities for detecting and mod-
eling inclusive collaboration language among
a group of diverse participants?, and

• How may we leverage multimodal large lan-
guage modeling in the service of learning to
collaborate through automated and feedback
mechanisms?

This study explores the potentials of adopting
multimodal NLP techniques within a learning ana-
lytics lens. Multimodal NLP is an emerging area
within NLP that stems from the development of
the large language model, a massive-parameter pre-
trained model. Large language models are an active
area of development within NLP, and one set of re-
searchers have demonstrated impressive semantic
and generative capabilities (Kaplan et al., 2020; Tay
et al., 2021), while others pose ethical, environmen-
tal, and interpretability concerns about unbounded
scaling of model size (Bender et al., 2021; Strubell
et al., 2020; Weidinger et al., 2021). We focus on
the potential of multimodal NLP, large language
models that integrate multimodal (acoustic, image,
tactile, and/or video) data beyond text-based lan-
guage, and explore potentials of multimodal NLP
for automated, fine-grained detection of collabora-
tive processes that will support learners within and
across experiences, an important downstream appli-
cation of the technology (Bommasani et al., 2021;
Brown et al., 2020; Islam and Iqbal, 2021; Rahman
et al., 2020). We also contribute to current cri-
tiques of performance-first modeling that may over-
look important opportunities to create real world
NLP models that reduce bias. This project opera-
tionalizes an inclusive collaboration index with the

goal of general equity and inclusion over identity-
specific bias mitigation.

3 Integrating Inclusion into Downstream
NLP Collaboration Tasks

Within learning analytics (Holstein and Doroudi,
2021), NLP (Blodgett et al., 2020; Tsvetkov et al.,
2018), and general machine learning/AI applica-
tions (Doshi-Velez and Kim, 2017; Dwork et al.,
2012), researchers have made arguments for more
equitable, fair, and inclusive practices. This in-
cludes verifying that the research approach is in-
formed by ethical and human-centered principles,
developing research methods that detect/mitigate
unethical outcomes, and/or our aim of proposing
that research methods should translate ethically
when used in real-world contexts.

With the recent focus on equity and inclusion
across our fields of interest, formal inclusion the-
ories are stated as important to integrate as a fu-
ture idealized goal, though we lack blueprints for
what forms these integrations may take. Within
research across learning analytics, NLP, and ma-
chine learning, formal experiments provide em-
pirical support for those methods with the most
promise for identifying and reducing unwanted so-
cietal bias, ambiguity, and exclusion in datasets and
models (Caliskan et al., 2017; Dinan et al., 2020;
Hutchinson et al., 2020; Sap et al., 2020), though
there is less support for what works as an embedded
practice within downstream tasks that utilize these
algorithms, datasets, and platforms. This study con-
siders ethical research approaches and outcomes,
but primarily focuses on the stated areas of poten-
tial development - the ethical deployment of our
NLP and learning analytics research methods in
downstream tasks situated within actual learning
settings by detecting lack of inclusion and inter-
vening. Our focus is not yet to identify any causal
relationship between one or more social identities
and collaboration quality, but rather to detect inclu-
sive collaboration of individuals and groups, and in
the process identify any disparities in collaboration
quality among individuals and within the group as
a whole.

In this sense, our work advances the concept of
inclusion (Mor-Barak and Cherin, 1998; Young,
1995), defined as the degree to which diverse indi-
viduals demonstrate that they are part of the collab-
orative process. We recognize that this study falls
short of addressing equity since equity examines
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outcomes at the societal rather than individual or
group level, though we highlight that inclusion is
an integral step on the way to equity and ethical
treatment within collaborative experiences (Bern-
stein et al., 2020).

4 Methodology

We have sub-divided the planned methodology into
multiple tasks as: Due to the multidisciplinary na-
ture of collaboration, this study will incorporate
methods that stem from four distinct fields - learn-
ing analytics, cognitive science, natural language
processing, and inclusion theory - to create an inclu-
sive view of learning to collaborate. From learning
analytics, we get a roadmap for developing an au-
tomated feedback loop necessary for learning to
collaborate, and a variety of methods for detecting
collaborative behaviors and operationalizing them
into signals for model building. From cognitive sci-
ence, we have an example for linking psychological
theory, model, and real world behaviors, as well
as ongoing research on intelligent agents as used
for understanding learning and adaptation through
feedback. From natural language processing, we
have access to the ability of large language models
to parse and generate human language, as well as
approaches for addressing inclusion in language
model building. Lastly, we operationalize tenets
of inclusion theory in order to build a learning to
collaborate model that detects linguistic bias, thus
working towards a more inclusive collaboration
environment.

All aspects involving human subjects, including
Phase 1 data collected via Amazon Mechanical
Turk, Phase 2 large language modeling, and Phase
3 interventions will receive full approval of the
University’s Institutional Review Board (IRB) prior
to launching the study. Datasets are either open for
research use and cited, or collected and stored as
part of the IRB approval process and regulations.

4.1 Phase 1: Multimodal collaboration
detection and dataset creation

As part of Phase 1 (multimodal collaboration de-
tection and dataset creation), we will (a) develop a
rubric for inclusive collaboration; (b) finalize the
process of capturing and preprocessing multimodal
data (video and transcribed audio) from collabora-
tive exchanges, and (c) create an evaluation dataset.
The inclusive collaboration rubric pulls from exist-
ing research on collaboration quality that identifies

four collaboration indicators (information sharing,
reciprocal interaction, shared understanding, and
inclusion) from participants’ audio, text, and video
data (Cukurova et al., 2018; Praharaj et al., 2021),
and the technical feat of capturing and preprocess-
ing collaborative exchanges is informed by previ-
ous scholarship in Multimodal Learning Analytics
research (Ochoa et al., 2013; Worsley and Blik-
stein, 2015). Automatic distillation of raw data
into collaboration features would include: auto-
matic speech recognition, computational linguistic
methods to clean, parse, and analyze transcribed di-
alogue (eg. word counts, duration, general content
analysis, inclusive content analysis), detection of
non-linguistic audio (speech prosody), and video
signal filtering to detect person placement and basic
gestures.

Following the general dataset collection proce-
dures described in He et al. (2017), we will gather
human annotations according to our collaboration
rubric of transcribed audio at the sentence-level and
video portions at the frame-level that is captured for
collaborative exchanges. We will use representa-
tive samples of open source collaboration datasets
and datasets collected as part of an approved IRB
protocol that contain text-based dialogue, spoken
dialogue, and/or video of multi-person collabora-
tive exchanges, including the AMI Meeting Corpus
(Carletta et al., 2006), D64 Multimodal Conver-
sation Corpus (Oertel et al., 2013) How2 Dataset
for Multimodal Language Understanding (Sanabria
et al., 2018), Pragmatic Framework for Collabo-
ration (Boothe et al., 2022), and MutualFriends
Corpus (He et al., 2017). In addition to annota-
tion of the four dimensions of interest, we also
have annotators evaluate along the modality (text,
image, and video). We integrate recent NLP crowd-
sourcing research findings (Nangia et al., 2021) by
collecting expert annotations that will then inform
guidance for generally skilled Amazon Mechanical
Turk (MTurk) workers, and and will use the pro-
cess outlined in Bowman et al. (2015), and the Fair
Work tool (Whiting et al., 2019) to ensure a fair
payment structure.

The contributions of Phase 1 are multiple: to
expand beyond research that analyzes collabora-
tive language at the surface level, such as looking
at word counts or temporal durations, and support
deeper content-level analysis (Praharaj et al., 2021);
to map current trends in large language modeling to
theoretically-sound learning and inclusion frame-
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works that extend past pure performance measures
and support responsible downstream usage of such
models.

4.2 Phase 2: Multimodal large language
models for measuring collaboration
quality

Phase 2 focuses on formalizing the task speci-
fication for inclusive collaboration, a process in
which we operationalize human-supplied descrip-
tions into an inclusive collaboration quality classi-
fication model. Specifically, we will conduct fine-
tuning experiments with large transformer models
to detect collaborative language and behaviors of
individual members of a 3-person group.

We will utilize several pretrained large language
models accessible through HuggingFace ((Wolf
et al., 2020)), including BERT-base (Sanh et al.,
2020), GPT-2 (Radford and Narasimhan, 2018),
GPT-J, the open source version of GPT-3 (Brown
et al., 2020), and FLAVA (Singh et al., 2022), a
recent multimodal language model pretrained on
visual and linguistic data. We will also integrate
lessons learned from education-specific research
utilizing large language models (Clavié and Gal,
2019; Shen et al., 2021; Suresh et al., 2021). These
pretrained models will be finetuned on a random
sample of the multimodal collaboration data (au-
dio, text, and/or video frames) that has been held
out of the evaluation dataset step. We will gen-
erate finetuned models with unimodal and multi-
modal collaborative data, and learning rates and
batch sizes will be determined according to stan-
dard task settings, and we follow the training-test
splits and standards articulated by Guo et al. (2020)
and Minaee et al. (2021). For this study, we will
limit our datasets and modeling experiments to
English-language text and dialogue datasets to sup-
plement those pre-trained models primarily trained
on English-language data.

We compare the performance of our finetuned
models in terms of classification accuracy of our ex-
pert and general crowdworker classification scores
on the 4 collaboration dimensions. The area un-
der the receiver operating characteristic curve (AU-
ROC) metric is used for each dimension. Following
Pugh et al. (2022), we report the chance baseline
as a random shuffling of labels within each col-
laborative session and thus computing accuracy.
Comparing different unimodal and multimodal fine-
tuned model performance will serve as an ablation

approach to examine the role of additional data
modalities in terms of overall model performance,
as well as a comparison between unimodal and
multimodal models (Singh et al., 2022). Addition-
ally, we conduct an analysis of random examples to
determine points of synergy with, divergence from,
and bias markers that differ from human classifica-
tion. This will serve as essential future directions to
frame the use of automated collaboration detection
using large language models.

Following the design-based protocol outlined in
(Praharaj et al., 2018), we will complete a pilot
study within a real classroom. Small groups (of 3
people) conduct a general collaborative task and
we use the detection setup established in Phase 1 to
detect multimodal signals (eg. speaking duration,
pauses, large language model features) correlated
to collaboration quality and use our multimodal
models to assess quality. We will conduct an ad-
ditional automated and human evaluation on this
real-life scenario.

There are two novel aspects of this modeling of
collaborative quality. One involves using the large
language model to provide a nuanced view of col-
laborative linguistic exchanges at the content level.
According to Praharaj et al. (2021) note that very
few studies integrate an analysis of “verbal audio
indicators or the content of the audio for the analy-
sis of [in-person] collaboration quality” (pg. 2). We
leverage the large language model to explore im-
provements in supervised dialogue detection tasks,
and also unsupervised training strategies to explore
emergent and content-specific cases of collabora-
tion so that the model can learn without direct su-
pervision. Additionally, we propose a measure on
inclusive collaboration and evaluate its association
on overall collaboration quality.

4.3 Phase 3: Language generation to support
collaboration learning

Since we are ultimately concerned with learning
to collaborate, we build a learning analytics cycle
with the development of a robust feedback loop.
The feedback system will take the form of an intel-
ligent agent that can monitor and detect aspects of
the collaboration process, focusing on the measure-
ment of collaboration quality. The key behavior is
for our model to detect differences in collaboration,
in order to pinpoint disparities in inclusion. The
inclusive collaboration models created by genera-
tive language models will drive generative behavior

205



of the intelligent agent, which will produce select
audio-based feedback during the collaboration ex-
change based on detected features.

The study will take on an experimental setup for
higher education course recitations that engage in
collaborative problem solving. The three groups
- the no feedback control group (i.e. those ran-
domly assigned as the control group with no inter-
vention), the manual feedback experimental group
(i.e. those randomly assigned as the manual feed-
back group which entails an instructor offering
general, preparatory guidance on quality collab-
oration), and the automated feedback experimental
group (i.e. those randomly assigned as the auto-
mated feedback group) - will engage in a series
of four collaborative sessions. During session 1,
we will record collaboration exchanges between
the randomly assigned groups in order to capture
multimodal baseline collaboration data. During
sessions 2 and 3, the control group will collabo-
rate in the absence of any explicit feedback, the
manual feedback group will collaborate with initial
collaboration guidance by the instructor, and the
automated feedback group will collaborate while
the intelligent agent interjects in real time. Ses-
sion 4 will record collaboration exchanges between
the three groups in the absence of any intervention.
The goal is to assess how well all groups perform
on inclusive collaboration quality.

This study hypothesizes that feedback loops built
on top of multimodal large language models will
capture the most relevant information associated
with collaboration due to their scaled representa-
tional qualities. We will extend progress - fine-
tuning; masked language model prompting; contex-
tual prompting; and case-based prompting - made
in extracting relevant information from language
models to serve as knowledge sources for cogni-
tive agents, and identify the method that maps to
encouraging collaboration quality (Huang et al.,
2022; Wray et al., 2021; Yousfi-Monod and Prince,
2007). The development of the agent will use lan-
guage and simple feedback to offer corrective and
encouraging input to students.

5 Initial Results

An initial pilot focused on the language model-
ing portion, and uses IRB-approved data that takes
place within recitations of a large, STEM class.
Groups of 3 students participated in small group
work for the duration of the 75 minute period, and

were tasked with solving problems related to the
lecture and readings. Audio and video record-
ings were captured, cleaned, and processed. Tran-
scripts were generated by an Automated Speech
Recognition (ASR) software and corrected by hand,
and were then paired with video frames. A ran-
dom sampling of the text-based dialogue and video
frames were generated and then mapped to the in-
clusive collaboration framework by 2 expert anno-
tators and an additional 5 general skill annotators.
These data will serve as the evaluation set. BERT-
base and GPT-2 were finetuned on a randomized
sample (80%) of the AMI collaboration dataset,
as well as dialogue (text-based) portions of the
Multi-party Collaboration corpus. Results indicate
some marginal improvement between the finetuned
models, and between BERT and the larger GPT-2
model, but additional analysis and more thorough
data preparation and testing are needed. The fine-
tuned GPT-2 model performed better than chance
on all except for the inclusion dimension. We antic-
ipate that more thorough finetuning and integration
of multimodal finetuning data should improve per-
formance on multimodal classification tasks.

6 Conclusion

As an essential 21st century skill, our aim is to
utilize the potentials of multimodal large language
models to advance our ability to detect and model
collaborative behaviors, with the ultimate goal be-
ing to offer feedback to learners as they develop
these important skills. Importantly, we focus on
the tenets of inclusive collaboration, so that col-
laborators are encouraged to have equitable and
inclusive exchanges as they work with each other.
This doctoral research project builds an automated
end-to-end inclusive collaboration feedback loop,
relying on advancements in large language model-
ing as it is used in downstream tasks, and ground-
ing machine learning methods within theory and
real-world practice.
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