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Abstract
While there have been advances in Natural
Language Processing (NLP), their success is
mainly gained by applying a self-attention
mechanism into single or multi-modalities.
While this approach has brought significant
improvements in multiple downstream tasks,
it fails to capture the interaction between dif-
ferent entities. Therefore, we propose MM-
GATBT, a multimodal graph representation
learning model that captures not only the re-
lational semantics within one modality but also
the interactions between different modalities.
Specifically, the proposed method constructs
image-based node embedding which contains
relational semantics of entities. Our empirical
results show that MM-GATBT achieves state-
of-the-art results among all published papers
on the MM-IMDb dataset.

1 Introduction

Despite the huge success of learning algorithms
for applications involving unimodal data such as
text, less is known for applications involving mul-
timodal data, i.e. scenarios where each data entity
has data attributes from multiple modes, such as
text and image. While the previous works show
that models with multimodal representation outper-
forms unimodal representation in downstream tasks
such as classification, VQA, and disambiguation,
the benefit of multimodal representation mostly
comes from only one mode (such as text), while
the other mode only contribute a marginal improve-
ment. That is, the performance difference between
text-only representation and multimodal represen-
tation is smaller than that of the image-only repre-
sentation and multimodal representation (Arevalo
et al., 2017; Vielzeuf et al., 2018; Moon et al., 2018;
Kiela et al., 2020; Singh et al., 2020; Kiela et al.,
2021).

We suspect that improper usage of image-
modality presents a limitation in creating multi-
modal representation. Existing multimodal models

Figure 1: Given movie poster and text information, the
problem is to predict the multilabel genres of movies.
Our method narrows down this problem into a node
classification task by constructing a multimodal entity
graph where each node represents a movie entity and
edge represents a shared feature between the movie
entities.

have been applying a self-attention mechanism or
create a graph with a single modality’s attribute.
However, these approaches ignore the interaction
among entities, multi-modalities, or both. In other
words, one modality is tied within its space and can-
not see beyond its modality space. To overcome
this limitation, we propose a novel framework by
constructing a multimodal entity graph which si-
multaneously captures the interconnection between
different data entries and data modalities. Our idea
is motivated by homophily, in which similar nodes
tend to be connected and tend to share similar la-
bels (Hamilton, 2020).

We demonstrate our claim by considering a
multilabel classification task using the MM-IMDb
dataset (Arevalo et al., 2017) as in Figure 1. In the
MM-IMDb dataset, each movie entity is provided
with image and text, and our goal is to predict the
movie’s genre. Using this data, we construct a
graph where each node represents a movie, and is
given the movie image as an attribute. Furthermore,
we connect two nodes if the corresponding movies
share features, i.e. if they have the same producer,
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director, etc. By capturing dependency and inter-
action between the entities generated from Graph
Attention Network (GAT) (Veličković et al., 2018),
we expect to gain latent information that cannot be
extracted from the image encoder solely.

The contributions of this work are as follows: (1)
We propose a novel Multimodal Graph Attention
Network (MM-GATBT) which enables interaction
between data modalities. (2) To our best knowl-
edge, this is the first attempt to construct image-
based entity graph to enrich image representation
by capturing relational semantics between the en-
tities. (3) MM-GATBT achieves state-of-the-art
results on the multilabel classification task among
all published papers on MM-IMDb dataset.

2 Background

Multimodal Representation Joint representa-
tion is one of the most popular methods to combine
modality vectors. This method has a strong advan-
tage in implementation because it concatenates the
modalities into a single vector. (Guo et al., 2019)
explains that it is an intuitive approach to learn a
shared semantic subspace from different modalities
providing richer and complementary contexts.

(Bayoudh et al., 2021) also explains three differ-
ent fusion methods depending on the timing when
modalities are combined. Early fusion (Sun et al.,
2018) method fuses data before the feature extrac-
tor or classifier to preserve the richness of original
features. The late fusion method fuses data after ex-
tracting features from separate modalities. Hybrid
method uses both early fusion and late fusion at
some point in their architecture to take advantage
of both worlds.

Graph Neural Network Graph Neural Network
(GNN) is powered by neural message passing and
generates node embeddings. A graph G = (V,E)
is defined as a tuple such that V is a set of vertices
and E ⊆ V × V is a set of edges. We also employ
the node feature matrix X ∈ Rd×|V | where d is the
feature dimension. Vanilla GNN (Kipf and Welling,
2017) averages neighbor messages for each layer
using the mean aggregation function. Formally, it
is defined by the following Eq. (1) where l is the
layer index, hli is hidden representation of node i
at layer l, and U l is a learnable parameter.

hl+1
i = σ


∑

j∈Ni

1

Degi
U lhlj


 . (1)

Here, Degi and Ni denote the degree and the neigh-
bor set of node i, respectively, and σ(.) is a non-
linear activation function.

Graph Convolution Network (GCN) (Kipf and
Welling, 2017) improves vanilla GNN by employ-
ing symmetric normalization (Hamilton, 2020).
This model runs a spectral-based convolution oper-
ation. Because the spectral method assumes fixed
graph, it often leads to poor generalization ability
(Wu et al., 2021). Therefore, spatial-based mod-
els such as GraphSAGE (Hamilton et al., 2017) are
often considered to enable inductive generalization.

hl+1
i = σ(U l · [hl−1

i ;hl−1
j ]) (2)

In Eq. (2), [hl−1
i ;hl−1

j ] denotes a concatenated
representation between the node’s previous hidden
state hl−1

i and an aggregated representation of local
neighbor nodes hl−1

j where j ∈ Ni.

Attention Mechanism Attention mechanism
(Luong et al., 2015; Bahdanau et al., 2015)
computes a probability distribution α =
(αt1, αt2, ...αts) over the encoder’s hidden states
h(s) that depends on the decoder’s current hidden
state h(t). (Luong et al., 2015) computes global
attention by

αst =
exp(h(t) · h(s))

∑
s′ exp(h

(t) · h(s′ ))
(3)

where s refers to the index number of source
hidden state and t refers to the index number
of target hidden state. This method was intro-
duced to assign more importance to more rele-
vant h(s). This method has been developed into
self-attention (Vaswani et al., 2017) and GAT
(Veličković et al., 2018). Self-attention mechanism
computes weighted average of the input vectors.
Similarly, GAT performs attention on the neighbor
nodes.

3 Methods

3.1 Problem Statement

We address the multilabel classification task. We
assume that n data sample are given, where each
data sample corresponds to a movie entity that has
a text and an image attribute. The goal is to classify
the movie genre. Note that this is a multilabel
classification task, as each movie can belong to
more than one genre. Therefore, given text data
Xtxt = {T 1, T 2, . . . , Tn} and image data Ximg =
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Figure 2: Model architecture of MM-GATBT. The top side of the architecture encodes text descriptions. The
bottom side captures the interaction between entities by aggregating the neighbor images connected via text features.
Then, MM-GATBT concatenates text embedding and image-based node embedding to generate a joint multimodal
representation used for classifier. 1), 2), and 3) denotes token embedding, segment embedding, and positional
embedding respectively, following BERT-like tokenization method.

{I1, I2, . . . , In}, we train function f that predicts
binary label yij for all j where i is an index number
of an entity and j is an index number of classes.
Binary label yij is only accessible from training set.

Our approach towards this problem is to con-
struct a graph and use graph neural networks. The
details are discussed in Section 3.3 below.

3.2 Model Overview

MM-GATBT consists of three main components:
text encoder, image encoder, and GNN. We chose
BERT (Devlin et al., 2019) as text encoder, Ef-
ficientNet (Tan and Le, 2019) as image encoder,
and GAT (Veličković et al., 2018) as GNN. The
encoded images are used as node features in GAT
to learn the relational semantics of entities. Then
we fuse text embedding and image-based node em-
bedding using MMBT (Kiela et al., 2020). We
chose this architecture because unlike VilBERT
(Lu et al., 2019) and VisualBERT (Li et al., 2019),
encoders can be trained independently as opposed
to be trained jointly. That is, we can easily upgrade
any of these three main components in the future.
Thanks to this simple but powerful architecture,
MM-GATBT leaves considerable room to increase
its performance in the future.

3.3 Graph Construction

To represent relational semantics, we first construct
an undirected graph G = (V,E) where a vertex
represents an entity (i.e. a movie) and an edge de-
notes the presence of shared feature between the
corresponding entities (such as sharing a director).

More precisely, if A = (Ai,j : 1 ≤ i ≤ n)

denotes the adjacency matrix of G, we have

Aij =

{
1 if {T i

feat ∩ T j
feat} ≠ ∅.

0 otherwise
(4)

Here, T i
feat denotes the feature set corresponding to

entity i. Since there can be multiple combinations
to create these feature set, we carefully chose five
features that shows the best performance empiri-
cally: director, producer, writer, cinematographer,
and art director.

For implementation purposes, we add a self
loops to isolated vertices, i.e. those vertices with
degree zero. The constructed graph G is on the
whole train and test dataset. While train vertices
are accessible to labels, we mask the labels for
test vertices to prevent the model from seeing the
ground truth during training phase.

3.4 Image-based Node Embedding (GAT)
Graphs representing relations within a single image
is a well-studied problem as in (Guo et al., 2020;
Johnson et al., 2015). However, no attempts have
been made to represent image-objects as nodes
input to a GNN. We define this novel graph as
image-based entity graph as visualized in Figure 2.

Instead of using a complex image encoder, we
use EfficientNet b4 (Tan and Le, 2019) to maximize
efficiency. Then each encoded image is fed as
node feature of an entity. Note that entire images
represent nodes, not segments of images. Related
works such as MMBT-Region (Kiela et al., 2021),
VilBERT (Lu et al., 2019) and VisualBERT (Li
et al., 2019) employs pretrained ResNet (He et al.,
2015) based Faster-R-CNN, but they are overly
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expensive for GNN. That is because one single
channel image is sufficient to enable an effective
message passing.

While GraphSAGE (Hamilton, 2020) assigns the
equal importance to neighbor nodes, in our appli-
cation, depending on the context, different features
can have different importance. Therefore, instead
of using GraphSAGE, we employ GAT (Veličković
et al., 2018) where it assigns different importance
to different neighbor edges. This is done by

eij = a([U lhli;U
lhlj ]) (5)

αij =
exp(eij)∑

k∈Ni
exp(eik)

(6)

hl+1
i = σ(

∑

j∈Ni

αijU
lhlj) (7)

where a is a learnable weight vector for linear trans-
formation. For non-linear activation function σ(.),
we use LeakyReLU function.

3.5 Contextualized Text Embedding

BERT (Devlin et al., 2019) achieved remarkable
success in various downstream tasks with its unique
tokenizing method and its self-attention mecha-
nism. As visualized in Figure 2, we apply the same
BERT tokenizer to textual data by tokenizing into
1) token embedding, 2) segment embedding, and
3) positional embedding. Their aggregated result
is fed into a transformer and the final hidden state
of this classification token is used for classification
task. In figure 2, Wi denotes tokenized word given
text data where i is sequence index.

3.6 Multimodal Bitransformer

MMBT (Kiela et al., 2020) is used as an early fu-
sion method. This model originally extends BERT
(Devlin et al., 2019) by applying BERT style tok-
enizing method into image modality as in Figure
2. For MM-GATBT, because we use image-based
node embedding, we consider each node feature In

as a token.
After applying BERT-like tokenization method

in both Section 3.4 and Section 3.5, we concatenate
them. Note that the original MMBT (Kiela et al.,
2020) pools the image and uses multiple separate
image embeddings. However, we only use one sin-
gle output vector of image-based node embedding
per each image.

3.7 Training

To solve multi-label classification task, we optimize
binary cross-entropy loss defined as

Lbce = − 1

M

M∑

m=1

−ωm[ym log ŷm+

(1− ym) log(1− ŷm)]

(8)

where M is the number of classes, ωm is the frac-
tion of samples of class m, ym is true label, and ŷm
is predicted label. Because the MM-IMDb dataset
is an imbalanced dataset, we assign different ω for
different classes.

4 Experiment

System Configuration During the training
phase, we used a single Nvidia RTX 3090 with
a batch size of 12. We implemented our model us-
ing PyTorch (Paszke et al., 2019) and DGL (Wang
et al., 2020) on top of MMBT code available on
the public repository.1 For every encoder, we used
pre-trained models to reduce the computational
cost and maximize their performance. In the case
of the text encoder, we used the BERT uncased
base model available from Hugginface (Wolf et al.,
2020). For the image encoder, we used pre-trained
EfficientNet b4 (Tan and Le, 2019). For GNN, we
chose GAT (Veličković et al., 2018) available from
DGL. We pre-trained GAT before employing to
MM-GATBT. We used five features to construct
our graph, as was explained in Section 3.3 and
Eq. (4) therein. The average degree of the resulting
graph is 59 and it has 554 isolated nodes.

Experiment Setup We used Multimodal IMDb
(MM-IMDb) dataset from (Arevalo et al., 2017).
This dataset consists of 23351 movie entities. Each
movie in the dataset has a title, description, movie
poster, producer, and related genres. Note that each
movie can have multiple genres, making this task a
multi-label classification task.

Empirical results from previous works imply that
text modality carries more significant importance
than image modality (Jin et al., 2021). The dataset
is provided in a splitted format where the number
of training set and testing set are 15552 and 7799
respectively.

Data Preprocessing We followed the data pre-
processing scheme from (Kiela et al., 2020). The

1https://github.com/facebookresearch/mmbt
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Type Model Micro F1 Macro F1 Weighted F1 Samples F1

Unimodal
EfficientNet (Tan and Le, 2019) 0.395 0.314 0.457 0.394
BERT (Devlin et al., 2019) 0.645 0.587 0.645 0.647

Multimodal

GMU(Arevalo et al., 2017) 0.630 0.541 0.617 0.630
CentralNet (Vielzeuf et al., 2018) 0.639 0.561 0.631 0.639
MMBT (Kiela et al., 2020) 0.669 0.618 - -
MFM (Braz et al., 2021) 0.675 0.616 0.675 0.673
ReFNet (Sankaran et al., 2022) 0.680 0.587 - -

Graphical
GAT w/ EfficientNet 0.500 0.394 0.506 0.496
MM-GATBT (ours) 0.685 0.645 0.683 0.686

Table 1: Experimental result shows that the proposed model outperforms against its unimodal submodels and
popular multimodal models. For GMU (Arevalo et al., 2017), CentralNet (Vielzeuf et al., 2018), MMBT (Kiela
et al., 2020), MFM (Braz et al., 2021), and RefNet (Sankaran et al., 2022), we brought the best numbers from their
papers. Missing numbers mean that the results are not shared in their papers.

raw dataset (Arevalo et al., 2017) includes a total
of 27 distinct labels from the training and testing
set. However, the literature drops entities with
News and Adult labels, leaving the training and
the testing set with 15513 and 7779 entities respec-
tively. Additionally, while labels with Reality-TV
and Talk-Show are included in the training set, they
do not appear in the testing set. Therefore, we test
with 23 distinct labels as in the literature.

Baseline Models We compare MM-GATBT with
two different types of models: unimodal models
and multimodal models. For BERT (Devlin et al.,
2019) and EfficientNet (Tan and Le, 2019) we use
the same size of models used in the main model and
compare their performance. For graphical model,
we implement GAT w/ EfficientNet which outputs
image-based node embedding used for the main
model. Then we compare it with a single Effi-
cientNet to examine the information gain from this
structural difference. Our implementation is pub-
licly available on GitHub.2

5 Result

We validated our model using the following met-
rics: micro f1, macro f1, weighted f1, and samples
f1. The results are rounded to 3 decimal places.
We report our results as well as the state of the
art in Table 1. Table 1 shows that MM-GATBT
significantly outperforms baseline models in all
metrics. Specifically, MM-GATBT significantly
outperforms its unimodal submodels (i.e. consid-
ering text / image only) when ran separately. This

2https://github.com/sbseo/mm-gatbt

Figure 3: Example of constructed graph visualized using
Pyvis (Perrone et al., 2020). Only 1 movie feature is
used for visualization purposes.

performance increase can be explained from two
perspectives. First, (Singh et al., 2020) addressed
that the performance of pretraining models plays
a critical role before fusion. As we suspected in
Section 1, using image modality solely performs
the worst, as it does not leverage the benefits of
multimodal fusion. From this perspective, image-
only embedding is upgraded into image-based node
embedding as shown in GAT w/ EfficientNet. There-
fore, as we observe, the main model performs better
when its submodel performs better. This also indi-
cates that our approach successfully captures the
interaction between the entities through message
passing.

Secondly, MM-GATBT reflects the connectiv-
ity structure of the constructed graph. As visual-
ized in Figure 3, the constructed graph consists of
both connected and isolated nodes. Therefore, it is
crucial for the architecture to address the graph’s
density and sparsity. Indeed, the text encoder on
the top of Figure 2 generates the word embedding
neglecting the graph structure, which justifies its
high performance on isolated nodes. In contrast,
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the GAT on the bottom of Figure 2 takes into ac-
count the connectivity of nodes. This well justi-
fies why MM-GATBT also performs well on non-
isolated nodes. By fusing these two embeddings,
MM-GATBT leverages both connected and iso-
lated nodes effectively. Note that neither BERT
nor image-based node embedding could achieve
the accuracy of 0.685 before they were fused.

6 Conclusion

We proposed MM-GATBT, a novel graph-based
multimodal architecture, to address the multilabel
classification task on the MM-IMDb dataset. MM-
GATBT leverages image-based node embedding
and attention mechanism during the early fusion
phase. The results show that the proposed model
successfully captures the latent information gen-
erated from the interaction between the entities
and achieves state-of-the-art results among all pub-
lished works on the MM-IMDb dataset.

Acknowledgments

The authors would like to thank the reviewers for
providing valuable feedback on this work.

References
John Arevalo, Thamar Solorio, Manuel Montes-y

Gómez, and Fabio A. González. 2017. Gated
Multimodal Units for Information Fusion.
arXiv:1702.01992 [cs, stat]. ArXiv: 1702.01992
version: 1.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Khaled Bayoudh, Raja Knani, Fayçal Hamdaoui, and
Abdellatif Mtibaa. 2021. A survey on deep multi-
modal learning for computer vision: advances, trends,
applications, and datasets. The Visual Computer.

Leodécio Braz, Vinícius Teixeira, Helio Pedrini, and
Zanoni Dias. 2021. Image-text integration using a
multimodal fusion network module for movie genre
classification. In 11th International Conference of
Pattern Recognition Systems (ICPRS 2021), volume
2021, pages 200–205.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Wenzhong Guo, Jianwen Wang, and Shiping Wang.
2019. Deep Multimodal Representation Learning:
A Survey. IEEE Access, 7:63373–63394.

Xin Guo, Luisa Polania, Bin Zhu, Charles Boncelet, and
Kenneth Barner. 2020. Graph neural networks for
image understanding based on multiple cues: Group
emotion recognition and event recognition as use
cases. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive Representation Learning on Large Graphs.
In Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc.

William L. Hamilton. 2020. Graph Representation
Learning. Morgan & Claypool.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep Residual Learning for Image Recog-
nition. arXiv:1512.03385 [cs]. ArXiv: 1512.03385.

Woojeong Jin, Maziar Sanjabi, Shaoliang Nie, Liang
Tan, Xiang Ren, and Hamed Firooz. 2021. MSD:
Saliency-aware Knowledge Distillation for Multi-
modal Understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
3557–3569, Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia
Li, David A. Shamma, Michael S. Bernstein, and
Li Fei-Fei. 2015. Image retrieval using scene graphs.
In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3668–3678.

Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Ethan
Perez, and Davide Testuggine. 2020. Supervised
Multimodal Bitransformers for Classifying Images
and Text. arXiv:1909.02950 [cs, stat]. ArXiv:
1909.02950.

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj
Goswami, Amanpreet Singh, Pratik Ringshia, and
Davide Testuggine. 2021. The Hateful Memes Chal-
lenge: Detecting Hate Speech in Multimodal Memes.
arXiv:2005.04790 [cs]. ArXiv: 2005.04790.

Thomas N. Kipf and Max Welling. 2017. Semi-
Supervised Classification with Graph Convolutional
Networks. arXiv:1609.02907 [cs, stat]. ArXiv:
1609.02907.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. VisualBERT: A
Simple and Performant Baseline for Vision and Lan-
guage. arXiv:1908.03557 [cs]. ArXiv: 1908.03557.

111

http://arxiv.org/abs/1702.01992
http://arxiv.org/abs/1702.01992
https://doi.org/10.1007/s00371-021-02166-7
https://doi.org/10.1007/s00371-021-02166-7
https://doi.org/10.1007/s00371-021-02166-7
https://doi.org/10.1049/icp.2021.1456
https://doi.org/10.1049/icp.2021.1456
https://doi.org/10.1049/icp.2021.1456
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ACCESS.2019.2916887
https://doi.org/10.1109/ACCESS.2019.2916887
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://ieeexplore.ieee.org/document/9205745
https://ieeexplore.ieee.org/document/9205745
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://aclanthology.org/2021.findings-emnlp.302
https://aclanthology.org/2021.findings-emnlp.302
https://aclanthology.org/2021.findings-emnlp.302
https://doi.org/10.1109/CVPR.2015.7298990
http://arxiv.org/abs/1909.02950
http://arxiv.org/abs/1909.02950
http://arxiv.org/abs/1909.02950
http://arxiv.org/abs/2005.04790
http://arxiv.org/abs/2005.04790
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557


Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining Task-Agnostic Visi-
olinguistic Representations for Vision-and-Language
Tasks. arXiv:1908.02265 [cs]. ArXiv: 1908.02265.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Seungwhan Moon, Leonardo Neves, and Vitor Carvalho.
2018. Multimodal Named Entity Disambiguation for
Noisy Social Media Posts. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2000–2008, Melbourne, Australia. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Giancarlo Perrone, Jose Unpingco, and Haw-minn Lu.
2020. Network visualizations with Pyvis and VisJS.
arXiv:2006.04951 [cs]. ArXiv: 2006.04951.

Sethuraman Sankaran, David Yang, and Ser-Nam Lim.
2022. Refining multimodal representations using a
modality-centric self-supervised module.

Amanpreet Singh, Vedanuj Goswami, and Devi Parikh.
2020. Are we pretraining it right? Digging deeper
into visio-linguistic pretraining. arXiv:2004.08744
[cs]. ArXiv: 2004.08744.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William Cohen.
2018. Open domain question answering using early
fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4231–4242,
Brussels, Belgium. Association for Computational
Linguistics.

Mingxing Tan and Quoc Le. 2019. Efficientnet: Re-
thinking model scaling for convolutional neural net-
works. In International conference on machine learn-
ing, pages 6105–6114. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.
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