
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2726 - 2739

July 10-15, 2022 ©2022 Association for Computational Linguistics

Federated Learning with Noisy User Feedback
Rahul Sharma∗

rahul.sharma@usc.edu
Anil Ramakrishna∗

aniramak@amazon.com
Ansel MacLaughlin

ammaclau@amazon.com

Anna Rumshisky
arum@cs.uml.edu

Jimit Majmudar
mjimit@amazon.com

Clement Chung
chungcle@amazon.com

Salman Avestimehr
avestime@usc.edu

Rahul Gupta
gupra@amazon.com

Abstract
Machine Learning (ML) systems are getting
increasingly popular, and drive more and more
applications and services in our daily life. This
has led to growing concerns over user privacy,
since human interaction data typically needs
to be transmitted to the cloud in order to train
and improve such systems. Federated learn-
ing (FL) has recently emerged as a method for
training ML models on edge devices using sen-
sitive user data and is seen as a way to mitigate
concerns over data privacy. However, since ML
models are most commonly trained with label
supervision, we need a way to extract labels
on edge to make FL viable. In this work, we
propose a strategy for training FL models us-
ing positive and negative user feedback. We
also design a novel framework to study differ-
ent noise patterns in user feedback, and explore
how well standard noise-robust objectives can
help mitigate this noise when training models in
a federated setting. We evaluate our proposed
training setup through detailed experiments on
two text classification datasets and analyze the
effects of varying levels of user reliability and
feedback noise on model performance. We
show that our method improves substantially
over a self-training baseline, achieving perfor-
mance closer to models trained with full super-
vision.

1 Introduction

Artificial Intelligence (AI) and Machine Learning
(ML) have become increasingly common in mod-
ern society with applications ranging from simple
standalone products to complex modules Kaplan
and Haenlein (2019). However, this rise has also
created growing privacy concerns Papernot et al.
(2016); Yeom et al. (2018). Such concerns may
affect user willingness the adapt new technologies
Guhr et al. (2020). In response, many government
agencies across the world have introduced regu-
lations to protect the data-handling rights of their

∗equal contributions

citizens, such as the European Union’s GDPR Gen-
eral Data Protection Regulation and California’s
CCPA California Consumer Privacy Act.

Federated Learning (FL) is a step in this direc-
tion to improve consumer trust, where models are
trained without moving data out of client devices.
The typical FL approach is to iteratively train local
models on edge devices and then propagate them
back to a central node in order to update the global
model. Most commonly, this is done using Feder-
ated Averaging (FedAvg) McMahan et al. (2017),
where we take a simple average over the client
model parameters. However, in order to update
local models on the edge, this setup assumes the
presence of labeled user data on each device, which
is often not possible. Most prior works do not ad-
dress this problem, but simulate fully-supervised
federated learning by distributing existing labeled
datasets across edge devices. In this work, we con-
sider a more realistic scenario, where labels are
not available on device. Rather than turning to un-
supervised learning as seen in Hard et al. (2018),
we instead propose a novel setup to leverage user
feedback in order to train the FL model.

In many real world AI applications with direct or
indirect human interaction, it is possible to collect
either explicit user feedback (e.g., using a voice
or a screen-based prompt) or implicit feedback in
the form of behavioral cues. For an example of
implicit feedback, consider a user interacting with
a virtual AI assistant (such as Alexa), who asks to
play the song ‘Bohemian Rhapsody’ from the band
Queen. The virtual assistant would interpret the
prompt and select a song from its library to play.
If the user lets the music play without interruption,
this can be viewed as positive feedback, suggesting
that the underlying model interpreted the request
correctly. On the other hand, if the user interrupts
the music and makes a repeat (or different) request,
this can be viewed as negative feedback, suggesting
that the underlying model prediction was incorrect.

2726

In this work, we propose to leverage such feedback
in federated model training.

Leveraging Positive and Negative Feedback In
our proposed setup, we first train a seed model on
a small amount of labeled data on a central node.
This mimics the real-world scenario where a small
amount of data can be collected and annotated to
bootstrap an initial model. We then propagate this
weak seed model to each of the clients. On the
edge, we use this seed model to make predictions
for each user’s request. Since the model is trained
with limited data, these predictions may be incor-
rect. To further improve this model performance,
we leverage user feedback as an indirect indicator
of the predicted label’s quality. Since positive user
feedback likely indicates that a model prediction is
correct, we label examples with positive feedback
with the seed model’s prediction and add them to
the training data. This mirrors the standard self-
training setup Rosenberg et al. (2005), where weak
models are further trained on a set of their own
predictions. When a user gives negative feedback,
however, we cannot assign a label to the example,
since we only know that the seed model’s predic-
tion is wrong. We instead treat these prediction as
complementary labels Ishida et al. (2017); Yu et al.
(2018) and extend federated model training to use
such labels.

Modeling Feedback Noise In realistic human
interactions, however, the user may not always pro-
vide consistent feedback, making user feedback
signal noisy. In the virtual AI assistant example
above, if the model predicts a different song from
the same band, the user may choose to continue
listening without interruption. Similarly, even if
the model predicts the correct song, the user may
change their mind once the song starts playing and
interrupt with a new request. Such user behav-
ior will introduce noise into the feedback signal.
In order to assess typical levels of such noise in
user feedback, we conduct a pilot study on Ama-
zon Mechanical Turk (Mturk), and evaluate the
accuracy of feedback from Mturk users on two dif-
ferent text classification problems. Based on this
study, we define a model of user noise defined by
two parameters that specify how likely they are
to give accurate feedback on both correct and in-
correct predictions by the seed model. With this
model of user behaviour, we then study the effects
of user noise on model performance. We conduct

extensive experiments on two text classification
datasets, training FL models on feedback data with
varying amounts of user noise simulated using our
model. We further experiment with various noise-
robustness strategies to mitigate the effect of such
noisy labels and present promising results.

The key contributions in this paper are as fol-
lows:

1. We propose a new framework for model-
ing and leveraging user feedback in FL and
present a strategy to train supervised FL mod-
els directly on positive and negative user feed-
back. We show that, under mild to mod-
erate noise conditions, incorporating feed-
back improves model performance over self-
supervised baselines.

2. We propose a novel model of user feedback
noise and study the effects of varying levels
of this noise on model performance.

3. We study the effectiveness of existing noise-
robustness techniques to mitigate the effects
of user-feedback noise and identify promising
directions for future exploration.

2 Related Work

2.1 Federated Learning
Federated Learning McMahan et al. (2017) has
recently seen a rise in popularity in a number
of domains, including natural language process-
ing (NLP) Yang et al. (2018); Ramaswamy et al.
(2019); Hard et al. (2018). This is due to growing
privacy concerns Papernot et al. (2016); Geyer et al.
(2017); Truex et al. (2019), abundance of unlabeled
data, and an increase in the computational capacity
on edge devices. However, availability of labels on
edge (or rather, lack thereof) limits the practical
application of FL in most real-world use cases. In
this work, we present an extension to FL and show
improvements in federated model performance by
leveraging user feedback. Recent works have also
revealed risks of information leakage from gradi-
ents in federated learning, and several techniques
have been developed to mitigate this risk (see Zhu
et al. (2019), Lyu et al. (2020) and the references
there in).

2.2 Learning With User Feedback
User feedback on model behavior provides learning
signals which can be leveraged to continuously im-
prove model performance. Using feedback signals

2727

for model training provides robustness to concept
and data drifts, as new data is always accompa-
nied with new feedback labels from which to learn.
Learning methods that leverage user feedback have
been applied to a variety of tasks in NLP, such
as semantic parsing Iyer et al. (2017), machine
translation Kreutzer et al. (2018) and question an-
swering Kratzwald and Feuerriegel (2019). To our
knowledge, however, our work is the first to build
a parametric model of user feedback noise and to
study how to train federated learning algorithms
with noisy user feedback.

2.3 Negative Label Learning

Standard supervised learning operates on data la-
beled with their true classes. Feedback data from
users, however, can also be negative, indicating
that the predicted class is wrong. Since the cor-
rect class of examples with such negative-feedback
is unknown, our proposed method must be able
to handle such ambiguity during training. In our
work, we label examples with negative feedback
with a complementary label corresponding to the
predicted class (Ishida et al., 2017). Complemen-
tary labels simply specify the category that a given
example does not belong to. In our work, we fol-
low the setup of Yu et al. (2018), who propose loss
functions to train neural models on biased comple-
mentary labels.

2.4 Noise-Robust Learning

When training models on labels derived from noisy
user feedback signals, it is important to use a strat-
egy to mitigate the effects of label noise on model
performance. One straightforward approach is to
use a noise-robust loss function, such as Reverse
Cross Entropy Wang et al. (2019) or Mean Abso-
lute Error Ghosh et al. (2017). In our work we
follow the noise-robust learning setup of Ma et al.
(2020), who present a training strategy that com-
bines two robust loss functions (one active, one
passive) to better handle label noise.

3 Modeling User Feedback

We propose a general framework for leveraging
user feedback in federated learning. We use text
classification as an exemplar task to evaluate this
framework, but the proposed setup can be easily
applied to other tasks. We use two benchmark text
classification datasets: the Stanford Sentiment Tree-
bank dataset (sst2) and the 20 newsgroups dataset

(20news). The sst2 dataset comprises of 11, 855
phrases from movie reviews and the corresponding
binary sentiment labels. The 20 newsgroup dataset
20news consists of 18k news articles and headers,
organized into 20 classes.

3.1 Pilot Study: Real World User Feedback
To understand the dynamics of user feedback noise,
we conduct a pilot study using Amazon Mechani-
cal Turk (Mturk). We use text classification on the
above two datasets, sst_2 and 20news, as the task
of interest. For each dataset, we train a seed model
on 1% of the training data, then run inference with
this model to generate pseudo-labels on the remain-
ing 99% of the training examples. We sample 2000
pseudo-labeled examples from this set, split them
into disjoint groups of 40 examples each, and show
them to 50 and 40 different MTurk workers for
sst_2 and 20news, respectively. For each example,
the worker is shown the text of the example and the
corresponding predicted pseudo label. The work-
ers are then asked to specify whether the pseudo
label is accurate (positive feedback) or not (neg-
ative feedback) along with an option to mark ‘I
Don’t Know’ in case they find it difficult to decide.
Further details about the specific instructions used
in our Mturk study can be found in Appendix C.
We use the ground truth gold labels in sst_2 and
20news to evaluate the quality of user feedback by
computing the proportions of times users gave pos-
itive feedback to correct pseudo labels and negative
feedback to incorrect ones. The observed average
error in feedback is 33.9% for 20news and 27.13%
for sst2. The higher observed error for 20news is
likely due to the fact that 20news is a 20-way topic
classification problem with overlapping categories
such as ‘autos’ and ‘motorcycles’. We further an-
alyze the collected data using the noisy feedback
model described next. Full data will be released
with the final draft of the paper.

3.2 Feedback Noise Modeling
Motivated by the observed noisy user behavior
above, we propose a parametric noise model us-
ing two user-specific Bernoulli random variables
parameterized by γ and δ, as shown below.

P (positive feedback|correct prediction) = γ

P (negative feedback|incorrect prediction) = δ

γ and δ capture the probability of the user accu-
rately providing positive and negative feedback,

2728

respectively. This scheme provides a powerful tool
to model user noises of various types - by varying
the values of these two parameters, we can simu-
late various user feedback behaviors. For instance,
highly reliable users can be simulated by choosing
γ ∼ 1 and δ ∼ 1 while adversarial users can be
simulated by choosing γ ∼ 0 and δ ∼ 0. Similarly,
users that provide consistently positive feedback
can be simulated by selecting γ ∼ 1 and δ ∼ 0,
and vice versa.

Figure 1: Distribution of noise parameters γ and δ for
annotators on Mturk for 20news and sst2 dataset.

For each worker in our MTurk study, we esti-
mate the noise parameters γ and δ using the MLE
estimators described in Appendix B. We show the
distributions over the estimated noise parameters
for each worker in Figure 1, which highlights sev-
eral characteristics of the user noise. We find that
parameters vary across users and across datasets.
Many workers have high values for both γ and δ
(upper right quadrant in the plot), especially for the
sst2 dataset. In such cases, user noise is relatively
low. Some workers have γ ∼ 1 and δ ∼ 0, sug-
gesting that they provide positive feedback with
very high probability, regardless of the correctness
of the pseudo label. Similarly, we also observe
some points with higher δ but γ close to 0, suggest-
ing that these workers provide negative feedback
with high probability. Since we only recruited reli-
able worker from Mturk (95%+ approval rate and
5000+ approved HITs, see Appendix C), we do

not see any workers in the adversarial or extremely-
high noise scenarios (lower-left quadrant in the
plot). Finally, we also observe that the workers in
the sst2 dataset are more concentrated towards the
right top corner while, for the 20news dataset, they
are relatively spread out. This can be attributed to
the inherent difficulty of the two datasets – sst2 is
an easier 2-class sentiment classification dataset,
while 20news is a more difficult news-classification
dataset with 20 (sometimes overlapping) classes.

4 Approach

4.1 Federated Self-Training
Given a training dataset Dt = {xi, yi}, we divide
it into 3 parts: a training split Ds ⊂ Dt : |Ds| =
k|Dt|, k ≪ 1, used to train the seed model; a vali-
dation split Dv ⊂ Dt : |Dv| = v|Dt|, v < 1 and an
unlabeled split Du = Dt− (Ds

⋃
Dv). We assume

that the examples in Ds and Dv have gold labels
available for training, which mimics the real-world
situation where a small amount of data can be an-
notated to bootstrap the model training. We treat
Du as the unlabeled dataset which is available on
edge. We initialize the seed model fs(x) by train-
ing on Ds using standard cross entropy loss. After
convergence, this model, fs(x), is deployed to the
edge devices to start federated training. In order to
simulate a real-world federated learning setup, we
distribute the examples from Du among N edge
clients following a skewed distribution, described
in detail in §5. The dataset on each client n is la-
beled Dn

u where n ∈ [1, N]. The seed model on de-
vice j then makes predictions on its corresponding
client-specific dataset Dj

u. Since the edge model
does not have access to gold labels for training,
there are only two potential sources of information
it can learn from. First, its own predictions, ρi,
which we call pseudo labels:

ρi = argmax(fs(xi)) : i ∈ Dn
u (1)

Labeling an example xi ∈ Dn
u with ρi is typically

referred to as self-training, a commonly-used semi-
supervised training setup. However, in our setup,
there is also a second source of information: user
feedback to each ρi. We assume that users give bi-
nary (positive or negative) feedback to each ρi. We
can thus use this feedback to validate or reject each
ρi, generating label ρi when the feedback is posi-
tive and ρ̄i when the feedback is negative. Then,
with these new user-feedback-labeled datasets on
each edge device, we can follow the standard FL

2729

training, further training a copy of the initial global
model on each edge device, then propagating each
local model back to the global server for aggrega-
tion. Our overall setup used for federated learning
with user feedback is shown in Figure 2.

predictions

Global
Model

aggregation

Initial
model

Client #1
Client #2 Client #i Client #(N-1)

Client #N

Local Data
Initial
model User feedback

Model
training

Updated model

Model
updates

Edge
devices

…… ……

Pos + Neg
data

Cloud Server

Self training at Edge Device (Client #i)

(a)

(b)

Figure 2: Overview of our federated learning setup with
user feedback. a) Federated learning with a central cloud
server and several client devices. b) Local training at a
particular client with user feedback to improve pseudo
labels.

4.2 User Feedback Simulation
As discussed in §1, in the real world, users provide
feedback on predictions made by deployed mod-
els. However, large-scale collection of user feed-
back in a deployed FL application is an expensive
endeavor with no publicly-available datasets. In
this work, we instead devise a novel framework to
simulate realistic noisy user feedback on publicly-
available, human-annotated data, and defer the task
of real world deployment to future work. Specifi-
cally, when we distribute the unlabeled dataset Du

across the N client devices, we also send along
the true gold label for each example xi. For each
xi ∈ Dn

u , we then simulate feedback by compar-
ing the model prediction ρi to its underlying gold
label. These gold labels are only used to simu-
late user feedback – they are not used for edge
model training. Specifically, we create two new
pseudo-labeled datasets corresponding to positive
(Dn

pos) and negative feedback (Dn
neg) from each

device’s dataset Dn
u . For a given sample xi ∈ Dn

u ,
we assign it to the positive feedback set Dn

pos with
probability γ if the corresponding pseudo label ρi

is correct and 1− δ if ρi is incorrect. Similarly, we
assign a sample to the negative feedback set Dn

neg

with probability 1− γ, if ρi is correct and δ if ρi is
incorrect. A pseudo-code detailing our strategy to
simulate user feedback is shown in Algorithm 1.

4.3 Federated Learning with Feedback

For examples with positive user feedback, since
we have user confirmation that the pseudo-label ρi
is correct, we directly incorporate ρi into model
training as if they were ground-truth. We use the
standard categorical cross entropy (CCE) loss func-
tion similar to the seed model:

losspos = −
∑

i∈Dn
pos

ρilog(f(xi)) (2)

where f(xi) represents the posterior probability
distribution for sample i and ρi is overloaded to
depict the one-hot representation of the pseudo
label for sample i. On the other hand, negative
feedback signifies that the sample does not belong
to the class ρi. Although the user feedback does
not indicate which class these samples ought to
be, we do acquire information for what the model
should not do. Thus we can assume that these are
complementary labels, denoted as ȳi = ρi. To
incorporate these in our model training, we adapt
the complementary learning methods introduced
by Yu et al. (2018), in which the authors model the
complementary posterior probability distribution,
P (Ȳ = d|X) as a function of true class posterior
distribution, P (Y = c|X) and the transition proba-
bility matrix Q, where qcd is an entry in the matrix
Q with c and d are class labels, following:

qcd =

{
P (Ȳ = d|Y = c) c ̸= d

0 c = d

(3)

P (Ȳ = d|X) =
∑

c ̸=d

P (Ȳ = d|Y = c)

P (Y = c|X) (4)

We estimate the transition probability matrix Q
using the validation set Dv and the initial seed
model fs(x). To compute Qc:, the transition prob-
ability distribution for the class c, we average the
posterior probability of those samples with gold
label c, but are incorrectly predicted by the model.
Given this, we set qcc = 0 and renormalize the

2730

vector as shown in Equation 5.

Qc: =
1

K

∑

k∈Dc

fs(xk)

1− fs(xk)i
: K = |Dc| (5)

Dc ⊂ Dv : argmax(f(xk)) ̸= c; yk = c

Using the estimated transition matrix, and the pos-
terior distribution for the true class, we estimate the
posterior distribution for the complementary class,
following Equation 3. We then use the pseudo la-
bels as complementary labels and train the model
with the objective function:

lossneg = −
∑

i∈Dn
neg

ρilog(Q.f(xi)) (6)

here, we overload ρi to depict the one-hot represen-
tation of the pseudo label for sample i.

Our overall model is trained to jointly opti-
mize the loss functions from positive feedback
and negative feedback. Inspired by Kim and Kim
(2020) where the contribution of negative learning
is slowly increased during training, we use a sched-
uler to weigh the two loss functions, ensuring that
the positive label learning component has higher
weight in the early epochs, gradually increasing
the weight for negative label learning as training
proceeds. Specifically, at each client we optimize
the following objective:

lossreg = (1− α) ∗ losspos + α ∗ lossneg (7)

where, α = 1 − pt, t denotes the current epoch
in the training process and p ∈ (0, 1), which was
selected using a held out validation set.

4.4 Noise-Robust Loss Functions

Though user feedback provides a valuable learning
signal to train our models on edge, it can be noisy.
As noted in §3.2, we expect two behaviors from
noisy users: if the user provides incorrect positive
feedback, we have incorrect true labels in Dn

pos.
Similarly, if the user provides incorrect negative
feedback, we have samples in the Dn

neg with in-
correct complementary labels. Since we use cross
entropy loss functions for training on both positive
and negatively labeled data points, our model is
prone to overfitting to noisy samples Zhang and
Sabuncu (2018) since they would have lower poste-
riors (forcing the algorithm to put more emphasis
on them during training). This necessitates some
form of noise mitigation in our model training.

To mitigate label noise, we use the approach in-
troduced by Ma et al. (2020), where they propose
to add noise robustness to any given loss function
by normalizing it across all labels. Ma et al. (2020)
further improve convergence by presenting a com-
bination loss function with active and passive loss
components, to maximize the posterior for the true
class and to minimize the posterior for complemen-
tary classes, respectively. In our experiments, we
use a combination of Normalized Cross Entropy
(NCE) Ma et al. (2020) and Reverse Cross Entropy
(RCE) Wang et al. (2019) as the active and passive
components, weighted in a ratio 1:2 selected using
our validation set.

lossrobust = NCE + 2 ∗RCE (8)

The NCE and RCE functions are listed below.

NCE =
−∑K

k=1 q(k|x) log p(k|x)
−∑K

j=1

∑K
k=1 q(y = j|x) log p(k|x)

(9)

RCE = −
K∑

k=1

p(k|x) log q(k|x)) (10)

where K is number of label classes, q(k|x) denotes
the gold label distribution and p(k|x) denotes the
posterior probability distribution.

5 Experiments

5.1 Implementation Details
We use the publicly-provided train and test splits
for the sst2 and 20news datasets and further derive
a validation split consisting of 20% (v = 0.2) of
the train split (Dt), with uniform class distribution.
We use another 1% (k = 0.01) of Dt as seed model
set, Ds. We choose a small value for k to mimic a
real world scenario where a larger volume of data
may be un-annotated in an FL setup. The remain-
ing unlabeled dataset Du (79% of the (Dt) is fur-
ther divided among 15 mutually exclusive subsets
(Dn

u , n ∈ [1, 15]), which simulates the data for 15
edge clients. While creating the clients’ partitions
we ensure that all clients have data with a uniform
class distribution which enables us to focus on our
model performance in an idealized case. We use
the DistilBERT Sanh et al. (2019) base model as
the classifier for our tasks and follow the standard
fine-tuning setup for text classification. To imple-
ment the federated learning pipeline we use the
publicly-available FedNLP Lin et al. (2021) bench-
mark and apply the FedAvg McMahan et al. (2017)

2731

Experimental settings 20 news sst2
Initial model (Ds) 59.14 77.37

Self training (no feedback) 60.79 77.26
Positive feedback (noisy) 62.10 79.79

All feedback (noisy) 65.01 85.17
Positive feedback (noise robust) 62.33 79.85

All feedback (noise robust) 65.13 85.39
Positive feedback (noise free) 70.44 83.80

All feedback (noise free) 75.13 88.58
Full supervision 82.12 89.12

Table 1: Accuracy of noise robust federated self training
with user feedback against various baselines for 20news
and sst2 datasets; *: all models using feedback (with
and without noise robustness) are statistically significant
against the self training baseline (without feedback), at
p < 0.05.

algorithm to aggregate the client model updates at
the server end. We train the model on an 8-GPU
(Nvidia V100s) machine for up to 50 rounds with
early stopping enabled. Within each round, we use
a batch size of 8 to train the client models for 5
epochs each.

5.2 Model Evaluation

We compare our model performance against three
baselines:

Initial model This is the seed model fs(x)
trained on just Ds (1% of the training data).

Self-training We train this model using feder-
ated learning with pseudo labels, but do not utilize
the user feedback. Hence, at each client, we only
have the raw pseudo labels ρi for each xi ∈ Dn

u to
train on. We use this setup as the primary baseline
against which to compare the performance of our
models trained with user feedback.

Full supervision We train a model in a federated
setting using Dn

u and the true gold labels at each
client. Although in a real-world setting, the clients
will not have access to the gold labels, we establish
this benchmark to set an upper bound.

We evaluate performance of our proposed strat-
egy of leveraging user feedback in two settings:

Positive feedback At each client, we train the
local version of the model using only the samples
in Dn

pos and corresponding pseudo labels ρi, i.e.
only the samples which receive positive feedback.
Since this baseline is trained using regular cross
entropy, it provides a powerful yet computationally
less-intensive alternative to training with both types
of feedback, which is especially important in edge

devices with low compute power.
All feedback We utilize all the data samples in

Dn
pos and Dn

neg at each client and train using the
loss function described in Section 4.3.

In both the positive and all feedback setups, we
evaluate models with and without user feedback
noise. For the noise-free scenario, we set γ = 1
and δ = 1 while simulating the user feedback. This
leads to perfectly accurate feedback, as discussed
in §4.2. For the noisy feedback scenario, we use
the noise parameters derived from the Mturk study.
We obtain the following dataset-specific values of γ
and δ by averaging the estimates of γ and δ across
all annotators: (γ = 0.79, δ = 0.55) for 20news
and (γ = 0.76, δ = 0.70) for sst2.

Table 1 reports the % accuracy for each of the
experimental setups described above across both
datasets. We observe that in both the noisy and
noise-free settings, the introduction of positive user
feedback shows a marked improvement in perfor-
mance when compared to the self-training base-
line. There is an additional performance gain when
we add negative feedback (all feedback baseline),
which signifies the importance of learning from
complementary labels. As expected, the improve-
ment is substantially larger in the noise free setting,
suggesting the need for model robustness to miti-
gate the effect of noise. Note that for sst2, perfor-
mance of the noise free model with all feedback is
very close to that of full supervision, thanks to the
fact that complementary labels in the case of binary
classification provide same information as true la-
bels. On the other hand, using perfect positive and
negative feedback in 20news is still sub-optimal
compared to full supervision, since a negative label
in this dataset is less informative compared to sst2.

5.3 Noise Robustness

To mitigate the effects of noise, we replace the tra-
ditional cross-entropy loss function with the active-
passive loss described in §4.4, using the same ex-
perimental setups presented earlier (positive only
and all-feedback), with γ and δ values from the
Mturk study. However, as evident in Table 1, the
robust loss functions only seem to confer marginal
performance improvements in both datasets. This
is likely due to the fact that the noise parameters
extracted from Mturk belong to a moderate to low
noise regime (Section 3.2), providing limited room
for gains with noise robustness.

To further investigate this, we explore two ex-

2732

Noise level Loss Accuracy

Low
lossrobust 73.29
lossreg 74.30

Adversarial
lossrobust 42.26*
lossreg 25.19

Table 2: Performance analysis of noise robust loss func-
tions trained on all feedback in different noise regimes
for the 20news dataset; *: statistically significant against
the adversarial model without robustness at p < 0.05.

treme cases of user feedback noise for the 20news
dataset: i) low noise, where we simulate user feed-
back with γ → 1, δ → 1 for all the clients, which
imitates clients providing correct feedback with
very high probability, and ii) adversarial noise, with
γ → 0, δ → 0 for all the clients, which captures
the possible risk of users deliberately providing in-
correct feedback with high probability. In Table 2,
we compare the performances of the all feedback
model trained with and without noise robustness
in these two scenarios. As seen in the table, when
user noise is high, the noise-robust loss functions
show a statistically significant improvement against
the noisy model, highlighting the value of adding
noise robustness. In the low noise regime, adding
robustness seems to cause negligible degradation in
accuracy, but within the bounds of statistical error.
Given this, we recommend using noise robustness
in all applications of this framework unless it is
well known before hand that the feedback has very
low noise. We defer the task of developing a noise
robustness regime that works for all noise levels to
future work.

5.4 Ablation Studies
5.4.1 Varying Degrees of Noise
As discussed in §4.4, the level of feedback noise
has a substantial impact on model performance.
In this section, we further investigate this effect,
simulating user feedback across various noise pa-
rameters values, spanning γ, δ ∈ {0.3, 0.5, 0.7}, to
capture different points in the γ − δ space. Table 3
shows our results for each dataset with the noise
robust loss function 8. As expected, as γ → 0
and/or δ → 0, model performance decreases on
both datasets. At very low values of δ and γ, e.g.
both ≤ 0.5, training on the extremely noisy user
feedback actually decreases model performance
below the original seed model. This is not unex-
pected, since at δ = 0.5 and γ = 0.5, user feedback
is essentially random noise, and at lower values the

γ/δ 0.7 0.5 0.3
0.7 66.69 63.18 60.66
0.5 65.56 59.15 59.73
0.3 60.01 58.94 58.21

(a) 20news dataset; initial model performance: 59.14, per-
formance with all feedback and no noise (γ = δ = 1):
75.13.

γ/δ 0.7 0.5 0.3
0.7 83.86 80.89 76.17
0.5 81.99 77.38 75.07
0.3 78.03 74.41 71.99

(b) sst2 dataset; initial model performance: 77.37, per-
formance with all feedback and no noise (γ = δ = 1):
88.58.

Table 3: Model performance (accuracy) at varying val-
ues of γ and δ

feedback is adversarial. These results highlight the
importance of evaluating the reliability of user feed-
back before using it to further train an ML system.

5.4.2 Non-identical User Feedback Behavior
In previous sections, we used identical values of
the noise parameters γ and δ for all clients in the FL
training setup. However, as observed in our Mturk
study, real users have different feedback behaviors,
with scores spread out over the γ − δ space. In this
section, we simulate non-identical user feedback
for four potential user behaviors:

1. Low noise users (γ → 1, δ → 1)

2. Adversarial/high noise users (γ → 0, δ → 0)

3. Positive users (γ → 1, δ → 0) who provide
consistently positive feedback, regardless of
the correctness of the model prediction; and

4. Negative users (γ → 0, δ → 1) who provide
consistently negative feedback.

To simulate non-identical user feedback for the
clients, we sample the noise parameters from an
appropriately skewed β(a, b) distribution. For ex-
ample, in order to generate δ and γ scores for setup
four (negative users), each user needs γ ≈ 0, δ ≈ 1.
To generate these parameters, we sample γ from
β(1, 10) and δ from β(10, 1). Proceeding this way,
we can simulate all four user behaviors listed above.
Finally, we also conduct an experiment closer to the
real-world scenario, where we randomly sample
15 workers each for both datasets from our Mturk
study and use their estimated values of γ and δ to
simulate user feedback.

2733

User Behavior 20news sst2
Low noise 73.67 88.35
Adversarial 55.86 64.85

Always positive 60.99 77.16
Always negative 58.92 74.13

Real world (mturk study) 65.37 85.61

Table 4: Model performance at various user behaviors.

Table 4 shows our results across all five simula-
tions for both datasets when trained with the noise
robust loss function 8. As expected, the best model
performance is achieved with the low-noise users,
followed by the real-world users sampled from our
MTurk study. In the three other simulations (adver-
sarial, consistently positive, consistently negative),
user feedback is highly noisy and unreliable, and
the models show limited improvement over the ini-
tial seed model. Note that the performance in the
positive feedback scenario is higher than negative
feedback, which can be accredited to the fact that
the initial seed model’s accuracy is greater 50% for
both datasets (Table 1). With > 50% accuracy, a
majority of the pseudo-labels generated using the
seed model will match the gold label. Hence, con-
sistently positive feedback introduces less noise
and in turn better performance compared to the all
negative feedback model.

6 Conclusion

In this work, we propose a novel framework for
federated learning which leverages noisy user feed-
back on the edge. Our framework eliminates the
need for labeling edge data, in turn improving cus-
tomer privacy since we no longer need to move
data off of edge devices for annotation. In order
to evaluate our framework, we propose a method
to simulate user feedback on publicly-available
datasets and a parametric model to simulate user
noise in that feedback. Using that method, we con-
duct experiments on two benchmark text classifica-
tion datasets and show that models trained with our
framework significantly improve over self-training
baselines.

Future work includes deploying our framework
in a real world FL application and incorporating
live user feedback in model training. We can also
explore other noise-robustness strategies for low
and medium label-noise scenarios. One such strat-
egy would be to incorporate a measure of user relia-
bility into the calculation of each new global model

in FedAVG – e.g. the updated global model pa-
rameters could be computed as a weighted average
of client models, with the weight capturing some
measure of each client’s reliability.

7 Ethics Statement

Our Mturk data collection recruited annotators
from across the globe without any constraints on
user demographics. The annotators were compen-
sated with above minimum wages and no personal
information was collected from the annotators.

References
California Consumer Privacy Act. 2018. California

consumer privacy act. https://oag.ca.gov/
privacy/ccpa. Accessed: 2021-09-03.

General Data Protection Regulation. 2018. General data
protection regulation. https://gdpr-info.
eu/. Accessed: 2021-09-03.

Robin C Geyer, Tassilo Klein, and Moin Nabi. 2017.
Differentially private federated learning: A client
level perspective. In Proceedings of the 31st Con-
ference on Neural Information Processing Systems
(NeurIPS).

Aritra Ghosh, Himanshu Kumar, and P. Shanti Sastry.
2017. Robust loss functions under label noise for
deep neural networks. In Proceedings of the AAAI
conference.

Nadine Guhr, Oliver Werth, Philip Peter Hermann
Blacha, and Michael H Breitner. 2020. Privacy con-
cerns in the smart home context. SN Applied Sci-
ences, 2(2):1–12.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein,
Hubert Eichner, Chloé Kiddon, and Daniel Ramage.
2018. Federated learning for mobile keyboard pre-
diction. arXiv preprint arXiv:1811.03604.

Takashi Ishida, Gang Niu, Weihua Hu, and Masashi
Sugiyama. 2017. Learning from complementary la-
bels. In Proceedings of the 31st Conference on Neu-
ral Information Processing Systems (NeurIPS).

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 963–973,
Vancouver, Canada.

Andreas Kaplan and Michael Haenlein. 2019. Siri, siri,
in my hand: Who’s the fairest in the land? on the
interpretations, illustrations, and implications of arti-
ficial intelligence. Business Horizons, 62(1):15–25.

2734

https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu/
https://gdpr-info.eu/

Joo-Kyung Kim and Young-Bum Kim. 2020. Pseudo la-
beling and negative feedback learning for large-scale
multi-label domain classification. In Proceedings
of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 7964–
7968. IEEE.

Bernhard Kratzwald and Stefan Feuerriegel. 2019.
Learning from on-line user feedback in neural ques-
tion answering on the web. In The World Wide Web
Conference, pages 906–916.

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and
Stefan Riezler. 2018. Can neural machine translation
be improved with user feedback? In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 92–105, New
Orleans, Louisiana. Association for Computational
Linguistics.

Bill Yuchen Lin, Chaoyang He, ZiHang Zeng, Hulin
Wang, Yufen Huang, M. Soltanolkotabi, Xiang Ren,
and S. Avestimehr. 2021. Fednlp: A research plat-
form for federated learning in natural language pro-
cessing. In arXiv cs.CL 2104.08815.

Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats
to federated learning: A survey. arXiv preprint
arXiv:2003.02133.

Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Ro-
mano, Sarah Erfani, and James Bailey. 2020. Normal-
ized loss functions for deep learning with noisy labels.
In International Conference on Machine Learning,
pages 6543–6553. PMLR.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the In-
ternational Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1273–1282. PMLR.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha,
and Michael Wellman. 2016. Towards the science
of security and privacy in machine learning. arXiv
preprint arXiv:1611.03814.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao,
and Françoise Beaufays. 2019. Federated learning
for emoji prediction in a mobile keyboard. arXiv
preprint arXiv:1906.04329.

Chuck Rosenberg, Martial Hebert, and Henry Schnei-
derman. 2005. Semi-supervised self-training of ob-
ject detection models. In Proceedings of the seventh
IEEE Workshop on Applications of Computer Vision
(WACV/MOTION’05), volume 1, pages 29–36.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas
Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou.
2019. A hybrid approach to privacy-preserving feder-
ated learning. In Proceedings of the 12th ACM Work-
shop on Artificial Intelligence and Security, pages
1–11.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jin-
feng Yi, and James Bailey. 2019. Symmetric cross
entropy for robust learning with noisy labels. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 322–330.

Timothy Yang, Galen Andrew, Hubert Eichner,
Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ra-
mage, and Françoise Beaufays. 2018. Applied fed-
erated learning: Improving google keyboard query
suggestions. arXiv preprint arXiv:1812.02903.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. 2018. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In Pro-
ceedings of the 31st Computer Security Foundations
Symposium (CSF), pages 268–282. IEEE.

Xiyu Yu, Tongliang Liu, Mingming Gong, and Dacheng
Tao. 2018. Learning with biased complementary
labels. In Proceedings of the European conference
on computer vision (ECCV), pages 68–83.

Zhilu Zhang and Mert R Sabuncu. 2018. Generalized
cross entropy loss for training deep neural networks
with noisy labels. In Proceedings of the 32nd Con-
ference on Neural Information Processing Systems
(NeurIPS).

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep
leakage from gradients. In Proceedings of the 33rd
Conference on Neural Information Processing Sys-
tems (NeurIPS).

A Pseudocode

Algorithm 1 lists our training loop.

B Estimators for γ and δ

Let X be the data set and n be the total number
of data points. For any data point i ∈ [n], let pi,
ti and fi denote the model predicted label, ground
truth label, and user feedback respectively. (Note
that pi and ti take values from the set of labels
and fi takes values from the set {pos, neg, idk}
representing feedbacks positive, negative, and ’I
don’t know’.) By definition, we have

γ := Pr(fi = pos | pi = ti)

δ := Pr(fi = neg | pi ̸= ti)

Let us also define

α := Pr(fi = neg | pi = ti)

β := Pr(fi = pos | pi ̸= ti)

2735

https://arxiv.org/abs/2104.08815
https://arxiv.org/abs/2104.08815
https://arxiv.org/abs/2104.08815
https://doi.org/10.1109/ACVMOT.2005.107
https://doi.org/10.1109/ACVMOT.2005.107

Algorithm 1 Algorithm for simulating user feedback

INPUT: Client data: Dn
u = {xi, yi}; Pseudo labels: ρi

OUTPUT: Dn
pos and Dn

neg

1: Dn
pos ← {}, Dn

neg ← {}
2: for sample i in Dn

u do
3: if yi == ρi then ▷ correct model prediction
4: Dn

pos ← {Dn
pos ∪ i} with probability γ

or
5: Dn

neg ← {Dn
neg ∪ i} with probability 1− γ ▷ noise

6: else if yi! = ρi then ▷ incorrect model prediction
7: Dn

neg ← {Dn
neg ∪ i} with probability δ

or
8: Dn

pos ← {Dn
pos ∪ i} with probability 1− δ ▷ noise

9: end if
10: end for
11: return Dn

pos and Dn
neg

Note that the above definitions imply that

1− α− γ = Pr(fi = idk | pi = ti)

1− β − δ = Pr(fi = idk | pi ̸= ti)

Moreover, let a denote the accuracy of the labels
predicted by the model defined as

a := Pr(pi = ti)

Define sets {Sj}j∈[6] such that

S1 := {i ∈ [n] : fi = pos and pi = ti}
S2 := {i ∈ [n] : fi = pos and pi ̸= ti}
S3 := {i ∈ [n] : fi = neg and pi = ti}
S4 := {i ∈ [n] : fi = neg and pi ̸= ti}
S5 := {i ∈ [n] : fi = idk and pi = ti}
S6 := {i ∈ [n] : fi = idk and pi ̸= ti}

define nj := |Sj |. Note that
∑
j∈[6]

nj = n.

Theorem 1. The maximum likelihood estimators
for γ and δ are n1/(n1 + n3 + n5) and n4/(n2 +
n4 + n6) respectively.

Proof. Now for any data point i ∈ [n], we have

Pr(i ∈ S1) = Pr(fi = pos and pi = ti)

= Pr(fi = pos | pi = ti) · Pr(pi = ti)

= γa.

By a similar reasoning, we have

Pr(i ∈ S2) = β(1− a)

Pr(i ∈ S3) = αa

Pr(i ∈ S4) = δ(1− a)

Pr(i ∈ S5) = (1− α− γ)a

Pr(i ∈ S6) = (1− β − δ)(1− a)

Therefore the likelihood function of the model
is

L(α, β, γ, δ | X) =
n!

n1! . . . n6!
(γa)n1

(β(1− a))n2(αa)n3

(δ(1− a))n4((1− α− γ)a)n5

((1− β − δ)(1− a))n6

and consequently the log-likelihood function is

logL(α, β, γ, δ | X) = log

(
n!

n1! . . . n6!

)
+

n1 log(γa) + n2 log(β(1− a))+

n3 log(αa) + n4 log(δ(1− a))+

n5 log((1− α− γ)a)+

n6 log((1− β − δ)(1− a))

(11)

To obtain MLE estimates of parameters
α, β, γ, δ, we wish to solve the following optimiza-
tion problem

max
(α,β,γ,δ)∈[0,1]4

logL(α, β, γ, δ | X) (12)

2736

By Fermat’s theorem, the optimal solution to the
above optimization problem lies at either a bound-
ary point or a stationary point.

The boundary points of the set [0, 1]4 are given
by the set

B := {(α, β, γ, δ) ∈ [0, 1]4 : α = 0 or α = 1 or

β = 0 or β = 1 or

γ = 0 or γ = 1 or

δ = 0 or δ = 1}

The value of the function logL(α, β, γ, δ) is nega-
tively unbounded on the set B.

On the other hand, the stationary points can be
determined by setting the gradient to be zero, i.e.,
by solving the equation

∇(α,β,γ,δ) logL(α, β, γ, δ | X) = 0.

Solving the above equation yields the stationary
point (α∗, β∗, γ∗, δ∗) given as

α∗ = n3/(n1 + n3 + n5)

β∗ = n2/(n2 + n4 + n6)

γ∗ = n1/(n1 + n3 + n5)

δ∗ = n4/(n2 + n4 + n6)

The value of the log-likelihood function at the
above critical point, i.e., logL(α∗, β∗, γ∗, δ∗ | X)
is positive which suggests that it is the optimizer of
the optimization problem in (12).

C Details on MTurk study

Figure 3 shows the instruction page used to guide
the workers on Mturk. Since our goal here was
to simulate real user feedback for AI systems, we
designed the prompt to mimic a situation where
users provide their judgements on the accuracy of
machine predictions on a given task. Each assign-
ment page had 40 questions for the 20news task
(50 for sst2), with an example question shown in
Figure 4. For a real world application of this set-
ting, we can imagine an email categorization model
deployed on end-user email clients which automat-
ically classifies incoming emails to a predefined
class. The user would approve (select Accurate to
above question) if the categorization was correct,
reject or make correction (select Inaccurate to the
question) or take no action. This closely follows
the federated user feedback scenario described in
our experiments with users explicitly providing
positive or negative feedback.

We recruited highly reliable annotators on Mturk
by selecting past approval rate as 95%+ and num-
ber of past approved tasks as 5000+. The average
time for each task was 30 minutes, and the annota-
tors were paid $7 for completing the task which is
above the US federal minimum hourly wage, given
the average time for task completion. Note that we
did not place any geographic restrictions on the an-
notators, nor reject any partial submissions, despite
stating as such in the instruction sheet, as they were
few in number.

In Figure 5, we show the error in user feedback
computed against gold labels for all the users. We
also show the distribution of positive and negative
responses for all the users. As evident from the
figure, users provide positive feedback in majority
cases. This behavior is expected since the initial
model’s accuracy for 20news is 59.14% and for
sst2 is 77.37%; since a the majority of the pseudo
labels are correct predictions, we expect mostly
positive feedback from the users.

2737

Figure 3: Instruction page with guidelines for Mturk annotators.

Figure 4: Example annotation task

2738

A B

C D

Figure 5: User feedback behavior of clients in Mturk case study. A & C: Incorrect feedback(%) for all the clients
for 20news and sst2. B & D: Distribution of negative and positive feedback for each client in 20news and sst2

2739

