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Abstract

Named entity recognition (NER) is a funda-
mental and important task in NLP, aiming at
identifying named entities (NEs) from free text.
Recently, since the multi-head attention mecha-
nism applied in the Transformer model can ef-
fectively capture longer contextual information,
Transformer-based models have become the
mainstream methods and have achieved signif-
icant performance in this task. Unfortunately,
although these models can capture effective
global context information, they are still limited
in the local feature and position information ex-
traction, which is critical in NER. In this paper,
to address this limitation, we propose a novel
Hero-Gang Neural structure (HGN), including
the Hero and Gang module, to leverage both
global and local information to promote NER.
Specifically, the Hero module is composed of
a Transformer-based encoder to maintain the
advantage of the self-attention mechanism, and
the Gang module utilizes a multi-window re-
current module to extract local features and
position information under the guidance of the
Hero module. Afterward, the proposed multi-
window attention effectively combines global
information and multiple local features for pre-
dicting entity labels. Experimental results on
several benchmark datasets demonstrate the ef-
fectiveness of our proposed model.1

1 Introduction

Named entity recognition (NER) is one of the most
important and fundamental research topics in natu-
ral language processing (NLP), which recognizes
named entities (NEs), such as person, location,
disease from raw text. NER has attracted sub-
stantial attention in the past decades owing to its
importance in downstream tasks, e.g., knowledge

†Corresponding author.
1Our code is released at https://github.com/

jinpeng01/HGN.

graph construction (Bosselut et al., 2019), question-
answering (Pergola et al., 2021), and relation ex-
traction (He et al., 2019).

In the early stage, the popular methods for solv-
ing NER are some traditional machine learning
methods, e.g., Hidden Markov Model (HMM)
(Morwal et al., 2012) and conditional random
field (CRF) (Mozharova and Loukachevitch, 2016),
which require extracting features manually, mak-
ing the process inefficient and time-consuming.
With the breakthrough of recurrent neural networks
(RNN) in NLP, Long short-term memory (LSTM)
(Hochreiter et al., 1997) and Gated Recurrent Unit
(GRU) (Cho et al., 2014) have become mainstream
methods for this task and have achieved promis-
ing results since neural networks can automatically
extract features from the sequence and also take
each token’s position information into considera-
tion (Lample et al., 2016; Chiu and Nichols, 2016;
Huang et al., 2015). Nevertheless, RNN fails to
perform well with long sequences due to the gra-
dients exploding and vanishing. In recent years,
Transformer-based models (Vaswani et al., 2017)
have become mainstream methods because these
models are able to capture long-term dependencies
with the help of multi-head attention and thus pro-
vide better global context information, especially
for long sequences (Lee et al., 2020; Yang et al.,
2019b). However, these Transformer-based models
usually are insensitive to the local context since the
representation of each token is computed by the
canonical point-wise dot-product self-attention (Li
et al., 2019; Huang et al., 2021). Besides, although
some studies (Shaw et al., 2018; Devlin et al., 2018;
Liu et al., 2019) have been proposed to inject po-
sition information into Transformer, they are still
inadequate to help Transformer obtain appropriate
position information (Huang et al., 2020; Qu et al.,
2021). In other words, the self-attention mecha-
nism is effective in overcoming the constraints of
RNN from the perspective of long-sequence con-
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[SEP]
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Figure 1: The overall architecture of our proposed model. From left to right are the Hero module, Gang module, and
multi-window attention, respectively, shown in different dashed boxes. The purple solid frame, green, and yellow
dashed frames in the Hero module are sliding windows with different window sizes. The green box in the Gang
module shows the multiple sub-sequences generated by the sliding windows for z4, and the grey box represents the
bidirectional recurrent mechanism that is used to capture local features from these sub-sequences. Note that

←−
h1 and−−−→

h2k+1 are the last hidden states of backward and forward recurrent structures. The extracted local information is
shown in the yellow box with its corresponding sub-sequences in the green box.

text information extraction, but is inferior to RNN
in terms of local contextual and position informa-
tion extraction. Yet, both long-term dependencies
and local context information are essential for the
NER model to correctly identify entities.

Thus, to alleviate the shortcomings in RNN and
Transformers while maintaining their respective
strengths, in this paper, we propose a novel Hero-
Gang Neural model to leverage both global and
local contextual information to improve NER. In
doing so, on the one hand, we utilize a Transformer-
based sequence encoder (i.e., Hero module) to ex-
tract effective global contextual information with
the help of the self-attention mechanism. On the
other hand, a multi-window recurrent unit (i.e.,
Gang module) is applied to extract local features
from multiple sub-sequences under the guidance
of the extracted global information. Afterward, we
propose to use multi-window attention to elabo-
rately combine global and local contextual features.
The performance of our proposed model signifi-
cantly outperforms the strong baseline models on
several NER benchmark datasets (including both
general and biomedical domains) and achieves new
state-of-the-art results on some datasets.

2 Method

NER is usually performed as a sequence label-
ing problem. In detail, given a sequence of
X = x1, x2, ..., xN with N tokens, we aim to

learn a function that maps the input sequence into
another one with the corresponding label Ŷ =
ŷ1, ŷ2, ŷ3, ..., ŷn in the same length. As summa-
rized in Figure 1, the Transformer-based models
(e.g., BERT (Devlin et al., 2018), XLNET (Yang
et al., 2019b)) are regarded as the Hero module to
model the entire sentence for global sequence infor-
mation extraction and the Gang module is respon-
sible for local and relative position information ex-
traction. Afterward, we employ the multi-window
attention to elaborately combine these different fea-
tures (i.e., features extracted from the Hero and
Gang modules), which is then used to predict la-
bels for each token. Therefore, the aforementioned
process can be formulated as:

Ŷ = f(X,H(X),G(X)), (1)

where H(·) and G(·) refer to the Hero and Gang
modules, respectively, and the details of them are
presented in the following subsections.

2.1 Hero Module

The role of the Hero module in our proposed model
is similar to that of the leader in a team, who is re-
sponsible for providing guidance, offering instruc-
tions, giving directions, and assigning sub-tasks to
fellow memberships. Therefore, the Hero module
is required to have a comprehensive understanding
of the task, including overall and local progress.
Thanks to the characteristics of the multi-head self-
attention mechanism, Transformer is powerful in
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modeling long sequences and can provide more
effective global information than other counterpart
models, and it has already achieved promising re-
sults in the NER task (Luo et al., 2020; Beltagy
et al., 2019). Thus, we employ a Transformer-
based encoder as our Hero module to obtain the
global context information zi for each token xi by

[z1, z2, · · · , zN ] = fH(x1, x2, ..., xN ). (2)

Herein, fH(·) refers to a pre-trained Transformer-
based sequence encoder (e.g., BERT (Devlin et al.,
2018) and BioBERT (Lee et al., 2020)). The
features z are then input to the Gang module for
extracting local contextual features and their corre-
sponding relative position information.

2.2 Gang Module

As introduced in the previous section, although pre-
trained models are able to provide effective global
contextual representation, it lacks the ability to
extract local features and relative position informa-
tion. Thus, we propose a multi-window recurrent
module, named Gang, to enhance local informa-
tion extraction. Recurrent structures (RS), such as
LSTM, GRU, and tradition RNN are effective in
extracting both local and relative position informa-
tion from the sequence, owing to characteristics of
the recurrent mechanism. To better emphasize the
local features of each word without being disturbed
by long-distance information, we construct a slid-
ing window with a fixed length to generate shorter
sub-sequences, where each sub-sequence includes
several consecutive elements in z. An additional
advantage of this operation is that, in comparison
with the whole sequence, the sub-sequence is much
shorter so that it is easier to be modeled by the RS.

In detail, for a single sliding window with
length k, each hidden state zi from the Hero
module, the corresponding sub-sequence is
zi−k, zi−k+1, ..., zi, ..., zi+k−1, zi+k that includes
2k + 1 consecutive tokens. This sub-sequence of
length 2k + 1 contains rich local contextual infor-
mation of xi, and thus we utilize an RS to encode
it for obtaining local semantic and relative position
information. To extract the local information of
two directions, we utilize a bidirectional structure
to encode this sequence span, where the forward
RS computes a representation

−−−→
h2k+1 from left to

right, and the other backward RS computes a vec-
tor
←−
h1 for the same sub-sequence in reverse. We

concatenate the
←−
h1 and

−−−→
h2k+1 as the local feature

hi = [
←−
h1,
−−−→
h2k+1] for token xi, and then we can ob-

tain local features for each token in sequence X via
the similar way, denoted as h = h1,h2, · · · ,hN .

In practice, we need to consider two situations.
First, each token might have multiple levels of lo-
cal information, such as phrase-level and clause-
level, which may affect the understanding of the
current token. Second, since different tokens or
the same token in various contexts might have dif-
ferent relationships with their surrounding words,
we need to consider more sub-sequences with vary-
ing lengths for obtaining more comprehensive lo-
cal contextual information. Therefore, we propose
to utilize multiple sliding windows with different
window sizes to extract richer local features to al-
leviate the above issues. We assume that local
features h1,h2, · · · ,hM are extracted from differ-
ent groups of sub-sequences, whose corresponding
window lengths are k1, k2, · · · , kM . This process
can be formulated as:

h1,h2, · · · ,hM = Gang(k1, k2, · · · , kM , z),
(3)

where M is the number of sliding windows and
hj is a group of local features extracted from the
corresponding sliding window with length kj . The
process is similar to the task assignment in the team,
where different members are responsible for their
own sub-tasks.

2.3 Multi-window Attention

We obtain global representation z from the
Hero module and multiple local features
h1,h2, · · · ,hM from the Gang module. Next, we
apply the multi-window attention to effectively
combine global contextual information and local
features. In doing so, two types of attention meth-
ods are proposed in our model: MLP-Attention
and DOT-Attention, respectively.
MLP-Attention We first concatenate these local
features with global information and obtain the
intermediate state m by a fully connected layer.

m = MLP([z,H]), (4)

where H = [h1,h2, · · · ,hM ] and m have the
same dimension as z. MLP represents a fully con-
nected layer. Then m is used as a query vector and
[z,H] serves as the key and value matrix. The final
token representation can be computed by

s = softmax(m([z,H])⊤)[z,H]. (5)

DOT-Attention Instead of using a fully connected
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Type Dataset TRAIN VAL TEST

#SENT. #ENT. #AS. #SENT. #ENT. #AS. #SENT. #ENT. #AS.

GENERAL
W16 2.4k 1.5k 19.41 1.0k 0.7k 16.26 3.9k 3.5k 16.08
W17 3.4k 2.0k 18.48 1.0k 0.8k 15.59 1.3k 1.1k 18.18
ON5E 59.9k 81.8k 18.17 8.5k 11.1k 17.32 8.3k 11.3k 18.49

BIOMED
BC5-D 4.6k 4.2k 25.79 4.6k 4.2k 25.52 4.8k 4.4k 25.92
BC2GM 12.6k 15.2k 28.14 2.5k 3.0k 28.07 5.0k 6.3k 28.33
BC5-C 4.6k 4.2k 25.79 4.6k 4.2k 25.52 4.8k 4.4k 25.92

Table 1: The statistics of the six benchmark datasets w.r.t. their training, validation and test sets, including the
number of sentences (#Sent.), the number of entities (#Ent.), and the averaged word-based length (#AS.).

layer to generate a query vector, in this approach,
we directly regard z as the query vector and H as
the key and value matrix. We can obtain the final
local feature by

u = softmax(z(H)⊤)H. (6)

Since u is a weighted sum of different local fea-
tures without considering global information, we
use the sum of ui and zi as the final representation
for each token xi. Thus, the final representation
can be obtained by

s = {z1 + u1, z2 + u2, · · · , zN + uN}. (7)

After obtaining the final representation from
MLP-Attention or DOT-Attention, s is sent to the
corresponding classifier implemented by the soft-
max function to predict the distribution of labels
for each token in X .

3 Experiments Settings

3.1 Dataset and Metrics

In our experiments, six datasets are used in our
experiments, WNUT17 (W17) (Strauss et al.,
2016), WNUT16 (W16) (Derczynski et al.,
2017), OntoNotes 5.0 (ON5e) (Pradhan et al.,
2013), BC5CDR-disease (BC5-D), BC2GM, and
BC5CDR-chem (BC5-C). The W17 and W16 are
social media benchmark datasets constructed from
Twitter, and ON5e is a general domain dataset con-
sisting of diverse sources like telephone conver-
sations, newswire, etc. BC5CDR, including both
BC5-D and BC5-C, is a dataset used for the BioCre-
ative V Chemical Disease Relation Task and con-
tains chemical and disease mentions, where hu-
mans manually annotate the annotations. BC2GM
is the dataset that is usually utilized for the BioCre-
ative II gene mention tagging task and contains
20000 sentences from the abstracts of biomedical
publications. For all datasets, we utilize the official
splits for a fair evaluation and the statistics of the

datasets are shown in Table 1. Besides, we follow
previous studies that the final models are trained on
training and validation sets on each dataset except
the ON5e dataset.

For metrics, we exploit the same evaluation met-
rics used by previous works where precision (P),
recall (R), and F-1 score are reported to evaluate
the performance of our model.

3.2 Implementation Details

We implement our model based on transformers
(Wolf et al., 2020)2 and employ pre-trained mod-
els to obtain global contextualized representation.
Specifically, for general domain datasets (i.e., W16,
W17 and ON5e), we use BERT-cased-large (De-
vlin et al., 2018)3 and XLNET-large-cased (Yang
et al., 2019b)4 as our Hero module. For biomedical
datasets, BioBERT (Lee et al., 2020)5 is utilized
to obtain global information. We follow their de-
fault settings for all BERT, XLNET, and BioBERT:
24 layers of self-attention with 1024 dimensional
embeddings. For hyperparameters of the Gang
module, the hidden sizes of bidirectional recurrent
structures for each window size are half of the em-
bedding dimension from the output of the Hero
module (i.e., 512). During the training process,
we use Adam (Kingma and Ba, 2014) to optimize
the negative log-likelihood loss function. More
training details are shown in the Appendix A.1. Be-
sides, we also compare four operations to combine
different level features from the Hero and Gang
module: MLP-Attention, DOT-Attention, concate-
nation, and summation, respectively, where con-
catenation is to connect all features directly through

2https://github.com/huggingface/
transformers

3We obtain the pre-trained BERT from https://
github.com/google-research/bert.

4We obtain XLNET from https://github.com/
zihangdai/xlnet.

5We obtain BioBERT from https://github.com/
dmis-lab/biobert
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Methods W16 W17 ON5E

P R F-1 P R F-1 P R F-1

with incorporating extra resources
SANER (Nie et al., 2020b) - 51.27 55.01 - 49.45 50.36 - - -
AESUBER (Nie et al., 2020a) - - 55.14 - - 50.68 - - 90.32
HIRE-NER (Luo et al., 2020) - - - - - - - - 90.30
CL-KL (Wang et al., 2021) - - 58.98 - - 60.45 - - -
SYN-LSTM-CRF (Xu et al., 2021) - - - - - - 90.14 91.58 90.85

without extra resources
CNN-BILSTM-CRF (Chiu and Nichols, 2016) - - - - - - 86.04 86.53 86.28
BERT (Devlin et al., 2018) - 49.02 54.36 - 46.73 49.52 - - 89.16
XLNET (Yang et al., 2019b) 55.94 57.46 56.69 58.68 49.18 53.51 89.72 91.05 90.38
ASTRA (Wang et al., 2020) - - - - - 49.72 - - 89.44
BARTNER (Yan et al., 2021) - - - - - - 89.99 90.77 90.38

HGN (BERT) (CONCAT) 56.06 55.61 55.84 57.41 45.45 50.74 89.20 89.85 89.52
HGN (BERT) (ADD) 54.63 55.38 55.01 58.46 45.55 51.20 89.16 90.01 89.58
HGN (BERT) (MLP) 57.72 55.66 56.67 59.26 50.70 54.65 89.19 90.24 89.71
HGN (BERT) (DOT) 57.51 56.00 56.75 60.09 48.29 53.55 89.32 90.11 89.71
HGN (XLNET) (CONCAT) 57.48 57.90 57.69 63.39 49.27 55.45 89.92 91.35 90.63
HGN (XLNET) (ADD) 57.31 58.05 57.68 59.11 48.36 53.20 90.10 91.39 90.74
HGN (XLNET) (MLP) 58.91 59.89 59.39 63.16 52.27 57.20 90.29 91.56 90.92
HGN (XLNET) (DOT) 59.74 59.26 59.50 62.49 53.10 57.41 90.10 91.64 90.86

Table 2: Comparisons of our proposed models with previous studies on the W16, W17, and ON5e, respectively,
with respect to precision, recall, and F-1 score for NER. Previous studies are divided into two parts from top to
bottom, representing methods requiring extra resources and without such requirements, respectively.

s = [h1,h2, · · · ,hM , z], and summation is to add
up these features by s = h1+h2+ · · ·+hM + z.

3.3 Baselines

To explore the impact of our proposed model, we
compare our model to the previous studies. For
general domain, following baselines are compared
in our experiment on W16, W17 and ON5e.
• CNN-BILSTM-CRF (Chiu and Nichols, 2016)

utilizes a hybrid bidirectional and CNN architec-
ture to detect word-and character-level features.

• BERT (Devlin et al., 2018) is a pre-trained lan-
guage model and we apply it to the NER task by
direct fine-tuning.

• SANER (Nie et al., 2020b), CL-KL (Wang et al.,
2021) and AESUBER (Nie et al., 2020a) im-
prove entity recognition by leveraging syntactic
information or semantically relevant texts.

• HIRE-NER (Luo et al., 2020) utilizes both
sentence-level and document-level representa-
tions to improve sequence labeling.

• SYN-LSTM-CRF (Xu et al., 2021) integrates
the structured information by graph-encoded rep-
resentations obtained from GNNs.

• BARTNER (Yan et al., 2021) formulates NER
tasks as a span sequence generation problem.

In addition, we also compare our proposed model
with the following baselines on the aforementioned
biomedical datasets:
• MTM-CW (Wang et al., 2019a), BILM

(Sachan et al., 2018), NCBI_BERT (Peng et al.,
2019), MT-BIONER (Tong et al., 2021) uti-
lize multi-task learning or transfer learning to
enhance biomedical NER.

• BIOBERT (Lee et al., 2020) is a pre-trained
model trained with a large amount of biomedical
corpus and then applied by directly fine-tuning.

• KEBIO-LM (Yuan et al., 2021) proposes a
biomedical pre-trained language model that in-
corporates knowledge from the Unified Medical
Language System (UMLS).

Note that in both general and biomedical domains,
our model does not require external resources.

4 Results and Analyses

4.1 General Domain NER

In this subsection, to explore the effectiveness of
our proposed model, we conduct experiments to
compare our model with existing studies, and the
results are reported in Table 2. There are sev-
eral observations drawn from different aspects.
First, when we make a fair comparison without ex-
tra resources (e.g., BERT, XLNET, and ASTRA),
our model obtains significant improvements on
all datasets in terms of Precision, Recall, and F-
1, which confirms the effectiveness of our pro-
posed Hero-Gang neural structure. This is because
multiple-level features can be reasonably encoded
into the model and thus alleviate the limitations of
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Methods BC5-D BC2GM BC5-C

P R F-1 P R F-1 P R F-1

with incorporating extra resources
BILM (Sachan et al., 2018) - - - 81.81 81.57 81.69 - - -
MTM-CW (Wang et al., 2019a) - - - 82.10 79.42 80.74 - - -
KEBIO-LM (Yuan et al., 2021) - - 86.10 - - 85.10 - - 93.30
MT-BIONER (Tong et al., 2021) - - - 84.42 85.14 84.78 93.29 94.69 93.98

without extra resources
NCBI_BERT (Peng et al., 2019) - - 86.60 - - - - - 93.50
BIOBERT (Lee et al., 2020) 86.47 87.84 87.15 84.32 85.12 84.72 93.68 93.26 93.47

HGN (BIOBERT) (CONCAT) 85.90 88.81 87.33 83.91 86.36 85.12 94.30 93.93 94.11
HGN (BIOBERT) (ADD) 85.89 88.74 87.29 85.21 85.50 85.35 94.01 94.57 94.29
HGN (BIOBERT) (MLP) 86.70 88.86 87.77 84.93 86.37 85.65 94.23 94.63 94.43
HGN (BIOBERT) (DOT) 86.27 89.51 87.86 85.21 85.88 85.54 94.45 94.73 94.59

Table 3: Comparisons of our proposed models with previous studies on the BC5-D, BC2GM, and BC5-C, respec-
tively, for biomedical NER in iterms of precision, recall, and F-1 score. Previous works are divided into two sections,
indicating methods requiring extra resources and without such requirements.

Transformer in local feature extraction. Second,
although some complicated models enhance NER
by incorporating extra knowledge, e.g., SANER
uses augmented semantic information, Hire-NER
utilizes two-level hierarchical contextualized rep-
resentations, and CL-KL selects a set of seman-
tically relevant texts to improve NER, our model
achieves competitive results without such require-
ments. This is because each word in the natural text
usually has a closer relationship with its surround-
ing words, especially the adjacent words, such that
features extracted by the Gang module can provide
more valuable information for NER, and thus our
model achieves promising performance. Third, the
XLNET-based model obtains better results than the
BERT-based model, which indicates that XLNET
can generate more effective representations on the
NER task. The reason behind this might be that
XLNET combines the permutation operation with
the autoregressive technology to further improve
representation learning, so that XLNET can pro-
vide a better text understanding than BERT.

4.2 Biomedical NER

We also compare our model with state-of-the-art
models in the biomedical NER on the aforemen-
tioned datasets with all results reported in Table 3.
There are several observations. First, we can see
that our model outperforms existing methods, re-
gardless of whether they introduce external knowl-
edge, which further confirms the validity of our in-
novation in combining local and global features to
enhance feature extraction. Second, although some
models utilize higher-level features, e.g., BIOKM-
NER leverages POS labels, syntactic constituents,

dependency relations, and MTM-CW employs
multi-task learning to train the model, our model
can achieve better results through a simple Hero-
Gang structure. This means that local features ex-
tracted from the Gang module under the guidance
of global information are also effective in assist-
ing biomedical text representations and even show
more significant potential than those special de-
signs for the medical domain (i.e., domain-related
multi-task learning). Third, the models using the
multi-window attention (i.e., DOT-Attention and
MLP-Attention) outperform those using concate-
nation or summation. This observation suggests
that multi-window attention can elaborately weigh
local features from different sliding windows to
enhance feature combinations.

4.3 Analyses

Effect of position information Recurrent struc-
tures are able to extract both context and position in-
formation by its token-by-token manner while other
network structures, including CNN and MLP, fail to
encode the relative position information. Thus, to
explore the effect of position information, we com-
pare models with different structures to construct
the Gang module and report the improvements of
F-1 score based on different Gang modules in Fig-
ure 2. First, we can observe that models with Gang
module are better than Base (i.e., BERT), where
all the values in Figure 2 are positive, further il-
lustrating the effectiveness of our innovation in
combining both global and local features, no mat-
ter what type of structure is used to construct the
Gang module. Second, models with LSTM and
GRU outperform those with CNN and MLP, indi-
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Figure 2: The improvement values (%) compared to
Base models (i.e., BERT for general domain datasets
and BioBERT for biomedical datasets) in terms of F-1
score from different Gang modules, MLP, CNN, RNN,
GRU, and LSTM, respectively.

cating that recurrent structures are more promising
in short sequence feature extraction. Since the re-
current structures can effectively capture position
information by its token-by-token manner and help
the model understand word-word relations based
on their relative positions, we may conclude that
position information is vital for improving perfor-
mance. Third, the comparison between CNN and
MLP shows the power of CNN in extracting fea-
tures from sub-sequences since CNN can leverage
more fine-grained features, such as n-gram.

Ablation studies In this subsection, we compare
our multi-window model with single-window mod-
els, and the improvements compared with Base
model are shown in Figure 3. We have following
observations. First of all, illustrated by the compar-
isons among Base (i.e., BERT) and others, models
with sliding windows achieve better performance,
where all the improvement values in Figure 3 are
positive. This illustrates that both single window
and multi-window recurrent structures can help to
enhance token representation and bring different
degrees of improvement, which further shows the
importance of local features in this task. Second,
we can observe that the optimal single window
sizes for different datasets are also different. For
example, the optimal single window size of W17
is 5, while that for BC2GM is 7, which indicates
that the best length of the local sequence depends
on the characteristics of datasets to some extent.
Third, compared with those models using a single
window, the multi-window recurrent module ob-
tains better performance, illustrating that features
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Figure 3: The improvement values (%) of models with
single windows or multi-window compared to Base
models (BERT or BioBERT w.r.t. datasets), where 3, 5,
7, 9, 11 represents the single window size when models
only use a single window to construct the Gang module.

extracted from multiple sub-sequences are more
effective than those captured from a single one.
The reason could be that multi-window can help
the model pay attention to different local context
sub-sequences and give them appropriate weights
through the multi-window attention mechanism,
such that it can provide more reasonable local in-
formation and alleviate the impact of the character-
istics of the datasets themselves.

Case Study To further show the validity of our
model, we perform qualitative analysis on some
cases with their real labels and predicted labels
from different models. Figure 4 shows two cases
from ON5e and BC5-C, respectively. We can ob-
serve that our model can predict more complete
entities than Base. Specifically, in the first case,
our model can recognize all the words in the en-
tity "a period of years" while Base model only
recognizes the word "years". In the second case,
our model is able to identify "Monosodium gluta-
mate", but Base model regards these words as two
different entities. In addition, in the first example,
compared with real labels, our model can label two
"of" correctly with the help of local features, which
are O and I-date, respectively, while Base classifies
both "of" as O. The sub-sequence (i.e.,"a period
of years,") from the second "of" is usually used
to describe time such that this information is able
to assist the model in marking the "of" as I-date.
However, for the first "of", its sub-sequence "divest
themselves of such speculative" does not contain
any meaning related to the entity themes, and thus
the model marks the corresponding "of" as O.
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Figure 4: Examples of two predicted labels from BASE and OURS as well as their corresponding source sentence
and real label. Note that the BASE for these two cases are BERT and BIOBERT, respectively.

5 Related Work

NER is a fundamental task in NLP (Huang et al.,
2015), which has drawn substantial attention over
the past years and there have been many studies
to address this task. Recently, deep learning has
played a dominant role in NER due to its effec-
tiveness in capturing contextual information from
sequences. The recurrent neural networks (RNN),
including its variants such as LSTM (Hochreiter
et al., 1997), and GRU (Cho et al., 2014), is a
promising structure for solving this task since it
can effectively learn sequence information with its
recurrent mechanism (Ma and Hovy, 2016; Huang
et al., 2015; Chiu and Nichols, 2016; Zhu and
Wang, 2019). However, it is ineffective for RNN to
learn long sequences due to the gradients exploding
and vanishing. Thus, Transformer-based models,
such as BERT (Devlin et al., 2018), BioBERT (Lee
et al., 2020), and XLNET (Yang et al., 2019b),
are proposed to alleviate these problems with the
help of the self-attention mechanism. Compared to
RNN, Transformer is able to capture long-distance
information through multiple multi-head attention
layers and has achieved impressive performance
in this task (Nie et al., 2020b; Luo et al., 2020;
Yamada et al., 2020; Gui et al., 2019).

However, multi-head attention usually treats ev-
ery position identically, which lead to the loss of
position information. To mitigate this problem, sev-
eral approaches have been proposed to advance the
Transformer (Dai et al., 2019; Shaw et al., 2018;
Yan et al., 2019). Shaw et al. (2018) proposed
cross-lingual position representation to help self-
attention alleviate word order divergences in differ-
ent languages and learn position information. Yan

et al. (2019) introduced the directional relative po-
sitional encoding and an adapted Transformer En-
coder to model the character-level and word-level
features. Although these position embeddings are
able to help the model learn position information,
they are still not enough to solve the issue appro-
priately (Wang et al., 2019b; Huang et al., 2020;
Qu et al., 2021). Besides, Transformer-based ap-
proaches cannot effectively extract local features
that are also important for sequence learning tasks,
and some studies have been proposed to alleviate
this problem (Xu et al., 2017; Li et al., 2019; Yang
et al., 2019a). Xu et al. (2017) proposed to use the
fixed-size ordinally forgetting encoding to model
sentence fragments, which is then used to predict
the label for each text fragment. Li et al. (2019)
utilized convolutional self-attention by producing
queries and keys with causal convolution to incor-
porate local contextual information into the atten-
tion mechanism. To address these issues, we offer
an alternative solution, namely Hero-Gang Neural
model, to enhance local and position information
extraction via multiple recurrent structures under
the guidance of global information.

6 Conclusion

In this paper, we propose a novel Hero-Gang Neu-
ral (HGN) structure to effectively combine global
and local features for enhancing NER. In detail, the
Hero module aims to capture global understand-
ing by a Transformer-based encoder, which is then
used to guide the Gang to extract local features
and relative position information through a multi-
window recurrent module. Afterward, we utilize
the multi-window attention to elaborately combine
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the global information and local features for en-
hancing representations that are then used to pre-
dict the entity label for each token. Empirically,
our proposed model achieves new state-of-the-art
results on several NER benchmark datasets, includ-
ing both general and biomedical domains. Besides,
we compare different structures to construct the
Gang model and investigate the effect of the num-
ber of sliding windows, which further illustrates
the effectiveness of our proposed model.
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A Appendix

A.1 Hyper-parameter Settings
We have tested several combinations of hyper-
parameters in tuning our models for all NLP and
Biomedical benchmark datasets (i.e., W16, W17,
ON5E, BC5CDR-disease, BC2GM, and BC5CDR-
chem). Table 4 reports the combinations that
achieve the highest F-1 score for each dataset.
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MODEL HYPTER. NLP DATA BIOMEDICINE DATA

W16 W17 ON5E BC2GM BC5-D BC5-C

HGN (MLP)
Window Size {1,3,5,7} {3,5,7} {5,7,9} {1,3,5} {5,7,11} {5,7,11}
Learning Rate 3e-5 5e-5 1e-5 1e-5 9e-6 1e-5

Batch Size 32 32 32 32 32 32

HGM (DOT)
Window Size {3,5,7} {5,7,9} {3,5,7} {3,5,7} {5,7,9} {5,7,11}
Learning Rate 3e-5 5e-5 1e-5 1e-5 9e-6 9e-6

Batch Size 32 32 32 32 32 32

Table 4: The hyper-parameters for best models that we have experimented on the given datasets.
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