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Abstract

Unsupervised word alignments offer a
lightweight and interpretable method to
transfer labels from high- to low-resource
languages, as long as semantically related
words have the same label across languages.
But such an assumption is often not true in
industrial NLP pipelines, where multilingual
annotation guidelines are complex and deviate
from semantic consistency due to various fac-
tors (such as annotation difficulty, conflicting
ontology, upcoming feature launches etc.);
We address this difficulty by constraining the
alignment model to remain consistent with
both source and target annotation guidelines,
leveraging posterior regularization and labeled
examples. We illustrate the overall approach
using IBM 2 (fast_align) as a base model,
and report results on both internal and
external annotated datasets. We measure
consistent accuracy improvements on the
MultiATIS++ dataset over AWESoME, a
popular transformer-based alignment model, in
the label projection task (+2.7% at word-level
and +15% at sentence-level), and show how
even a small amount of target language
annotations helps substantially.

1 Introduction

The task of aligning words in parallel sentences (i.e
bitexts) originates from statistical machine transla-
tion (Brown et al., 1990), where semantic identifi-
cation was performed based on context similarity
in accordance to the well-known distributional hy-
pothesis. The most commonly used statistical align-
ers are built on top of the so-called IBM models
(Brown et al., 1993), a series of structured proba-
bilistic models that, while fully unsupervised, often
rely on additional assumptions (such as close-to-
diagonal alignment) to reach acceptable accuracies.
These approaches have since been superseded by
neural networks and pretrained embeddings. They
nonetheless enjoy a wide popularity across many
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Figure 1: Example of word alignment with notations from
English to French. While the identity map is semantically
very natural in this example, it conflicts with the ground-truth
label. The whole group l’appli is labelled as Type in French,
possibly to reduce friction with human annotators.

NLP domains owing to their execution speed, data-
efficiency and self-contained implementations.

Cheap multilingual word alignments are appeal-
ing as they provide a transparent and interpretable
way to transfer features from a source language to
a target language (see Fig.1). They have been used
in the past to transfer costly annotations such as
part-of-speech (Yarowsky and Ngai, 2001) or co-
reference information from high- to low-resource
languages (Postolache et al., 2006). However, the
reliability of such a strategy depends on the use
case at hand and we argue that it can lead to subtle
but systematic failures in downstream tasks. In our
industrial use case (that of a voice assistant), multi-
lingual named-entity annotation guidelines factor
in a great number of aspects (country launches,
available features, human-friendly rules for anno-
tators e.t.c) and end up surprisingly riddled with
inconsistencies across languages (see table 1). In
such cases, even a slight mismatch between se-
mantics and annotation guidelines will lead to sys-
tematic errors: annotation guidelines of the source
language "bleed" into the target language. This in
turn generates friction for NLP pipelines that rely
heavily on annotated resources, such as task ori-
ented dialog systems. In this work, we show how
to guide word alignments produced by structured

121



models to conform to the annotation guidelines of
the target language, extending them so that they do
not solely rely on semantic relatedness. We use the
posterior regularization technique of Ganchev et al.
(2010), a general framework that allows integrating
information coming from a variety of features as op-
timization constraints. We illustrate our approach
using IBM 2 as the base alignment algorithm. To
model the label constraints, we construct n-gram
tables that count the frequency of labels assigned
to n-grams in the target language. These label n-
grams, constructed using the same training data,
are then used to bias the alignments so they comply
with the annotation scheme. We use an EM-like
iterative procedure to train the resulting model -
label transfer is done by assigning to targets words
the label of their aligned source words.

We evaluate our method on two annotated
datasets and show that it combines the strengths
of both approaches: the inferred alignments pro-
duce better labels than either the baseline align-
ers or the n-gram models alone. It also remains
fast, interpretable, self-contained and data-efficient,
which makes it easy to integrate into industrial NLP
pipelines. However, it has the same drawbacks that
IBM model 2 has (no fertility modelling - i.e cannot
handle a single source word generating multiple
words in the target language, N-1 source-target
mapping, danger of local optima during training).
We release our implementation as FastLabel1.

2 Related Work

Statistical word alignment models continue to
be widely used to transfer labels from high- to
low-resource languages owing to their speed, low
memory footprint and interpretability. Their most
famous exponents are the IBM models 1 to 4
(Brown et al., 1993; Och and Ney, 2003), a
Bayesian models hierarchy of increasing sophis-
tication. fast_align (Dyer et al., 2013) is a fast
reparameterization of IBM Model 2 that signifi-
cantly cuts down training and inference time. Eflo-
mal (Östling and Tiedemann, 2016) augments IBM
model 1 with priors on word order and fertility, and
uses Markov Chain Monte Carlo (MCMC) to do
inference. Much of the recent work depart from the
Bayesian modeling tradition by relying on contex-
tual embeddings to perform the alignment (Pour-
damghani et al. 2018, Alkhouli et al. 2018, Sabet
et al. 2021). AWESoME (Dou and Neubig, 2021)

1https://github.com/amazon-research/fast_label

uses multilingual BERT (Devlin et al., 2019) to
extract word alignments, and allows fine-tuning
the underlying BERT model on parallel corpora to
improve alignment quality. While very accurate,
they leverage embeddings from computationally
expensive neural networks, and as such, they are
not self-contained and the errors made by these
models are arguably less interpretable than the sim-
pler statistical models presented here.

Mann and McCallum (2007) introduced expecta-
tion regularization as a way to encourage unsuper-
vised model predictions to match an expectation
from an external prior. Chang et al. (2007) devel-
oped the constraint driven learning (CODL) frame-
work that is capable of allowing different levels of
constraint violation. Their formulation, however,
did not allow for tractable inference and the au-
thors used beam search to solve the optimization
problem. The posterior regularization framework
introduced by Ganchev et al. (2010) allows con-
straint violations while remaining tractable.

Applications of statistical word alignment to
label projection are numerous. Label projection
using word alignments is discussed in Yarowsky,
Ngai, and Wicentowski (2001), Hwa et al. (2005),
Östling (2016), Das and Petrov (2011) and Duong
et al. (2013). The last three models use the stan-
ford POS tagger (Toutanova et al., 2003) on a high
resource source-language and transfer the labels to
the target language.

3 Model Formulation

We start with the notations and closely follow
(Dyer et al., 2013) for clarity. The source (tar-
get) sentence is denoted f (e), of length n (m).
The aim is to infer, from bitexts, an alignment
aaa = ⟨a1, a2, · · · , am⟩ from source to target: each
ai refers to the position of the source sentence word
aligned to the ith word in the target sentence (see
Figure 1). We will assume that each target target
word is associated to at most one source word: this
N − 1 mapping limitation is not a concern in the
context of label projection. In the NER (Named
Entity Recognition) setup, both source and target
sentences may be annotated with NER labels, and
we write L the set of possible labels, and ℓei (resp.
ℓfj ) the label attached to ei (resp. fj) ; ℓe and ℓf
refer to the label sequences of the whole sentences
e and f .

The parameters of the popular IBM models are
usually inferred through maximum likelihood (ML)
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en atis_airfare show me round trip fares from denver to philadelphia O O B-round_trip I-round_trip O O
B-fromloc.city_name O B-toloc.city_name

fr atis_airfare Me montrer les tarifs aller-retour de Denver à Philadelphie O O O O B-round_trip O B-
fromloc.city_name O B-toloc.city_name O

pt atis_airfare Mostre tarifas de ida e volta de Denver para a Filadélfia O O O B-round_trip I-round_trip
I-round_trip O B-fromloc.city_name O O B-toloc.city_name

de atis_airfare Zeige mir Tarife für Hin- und Rück flüge von Denver nach Philadelphia O O O O B-round_trip
I-round_trip I-round_trip O O B-fromloc.city_name O B-toloc.city_name

es atis_airfare Muéstrame las tarifas de ida y vuelta desde Denver hasta Filadelfia O O O O B-round_trip
I-round_trip I-round_trip O B-fromloc.city_name O B-toloc.city_name

zh atis_airfare 显示从 丹佛 到 费城 的 往返 票价 O B-fromloc.city_name O B-toloc.city_name
O B-round_trip O

hi atis_airfare X��vr s� EPlAX�ESPyA k� Ele dotrPA EkrAe EdKAy�\ B-fromloc.city_name O B-
toloc.city_name O O B-round_trip O O

In
te

rn
al

en Timer set|o another|o timer|action for|o three|length minutes|length and|o thirty|length seconds|length
fr Timer règle|o un|o autre|o minuteur|action pour|o trois|length minutes|length et|length trente|length

secondes|length
en Weather what|o today’s|date temperature|detail
it Weather che|o temperatura|date c’|o è|o oggi|date
en Appliance turn|action off|action the|o bose|device light|device
pt Appliance desligue|action a|o luz|device bose|device

Table 1: Example training data. The text in teal are word-level labels, and the text in red indicate the overall intent of the sentence.
The examples from our internal dataset show some of the discrepancies present in annotation guidelines across languages - for
example, the English token-label pair "and|o" corresponds to "et|length" in French. We also observe inconsistencies arising due
to word fertility and tokenization choices
- "what" corresponds to "che c’ è" (i.e 3 different tokens) in Italian and the two words "turn off" corresponds to the single word

"desligue" in Portuguese.

θ∗ = argmaxθ L(θ) = argmaxθ P (e, f |θ). The
parametric family over which inference is per-
formed depends on the IBM models. In what fol-
lows, we illustrate our approach on IBM-2 (as used
in fast_align), which comes with a diagonal prior
and a set of lexical probabilities representing trans-
lations:

pFA(ei, ai|m,n) = δ(ai|i,m, n)× θ(ei|fai)

pFA(ei|m,n) =
n∑

j=0

pFA(ei, ai = j|m,n)

where δ(·) models the diagonal prior and the null
alignment probability (Dyer et al., 2013). Because
alignments are hidden variables, the ML optimiza-
tion can only be performed approximately, for ex-
ample with an Expectation Maximization (EM) it-
erative scheme. EM can be formulated as an ELBO
coordinate ascent (Neal and Hinton, 1998):

F (q, θ) = logL(θ)−DKL(q||pFA(·|e, f ,m, n))

E-step : q(t) = argmax
q

F (q, θt)

M-step : θ(t+1) = argmax
θ

F (qt, θ)

where q is a reference distribution and is used to in-
ject external knowledge into the optimization, and
maximization of the E-step is performed over an

arbitrary family of alignments probability distribu-
tion. For label projection however, we would like
to bias the ELBO optimization so as to favor align-
ments compatible with the target annotation guide-
lines, without losing information obtained from
the bitexts. The posterior regularization (Ganchev
et al., 2010) framework offers an elegant solution,
by noting that the E-step above can be easily solved
over a constrained set of distributions Q, as long as
those constraints are defined in terms of moments
of q ∈ Q:

E-step (PR) : q(t) = argmax
q∈Q

F (q, θt)

Q = {q : Eq [ϕ(e, f ,m, n)] = b}

where ϕ is an arbitrary function. In the context of
label projection, we wish to match the projected
label distribution P (ℓe|e, f ,m, n) to a reference
distribution r(ℓe), that can be defined quite arbi-
trarily. Given an alignment a, target words re-
ceive the same label as their aligned source words
ℓei = ℓfai∀i ∈ [e]. We can therefore rewrite such
matching condition as:

P (ℓe|e, f ,m, n) =
∑

a

P (ℓe|e, f ,a)P (a|e, f ,m, n) (1)
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= Eq [1 (ℓe = ℓfa)] ≡ r(ℓe),

1 (ℓe = ℓfa) =

{
1, if ℓe = ℓfa
0, otherwise

(2)

The set of contraints, one per label configuration
per target sentence, is denoted C. In this case, the
E-step admits a dual formulation and the optimal
alignment distribution q∗ has a simple expression
in terms for the unconstrained pFA:

q∗(a) =
pFA(a|e, f)e−

∑
c∈C λ∗

cv
a
c

Z({λ∗
c})

(3)

vac = 1 (ℓfa = ℓc)− r(ℓc) (4)

λ∗
c = argmax

λc

[− log (Z({λ∗
c}))]∀c ∈ C (5)

where λc, c ∈ C is a family of Lagrange multipliers
enforcing the constraints over label space. The
iterative algorithm closely mimics the classical EM
coordinate ascent, with the addition of solving the
Lagrange multipliers (see Appendix A).

The value of the Lagrange multipliers λ∗
c are

computed through gradient ascent over Z({λ∗
c}).

IBM model 2 enjoys the property that its alignment
probability pFA factors over the words of each tar-
get sentence. It is therefore convenient to split C
accordingly: to each word ei and each possible
ℓ ∈ L, are attached a Lagrange multiplier λei

ℓ and
the cost veiℓ of labelling ei with ℓ. In such case,
Z({λ∗

c}) further decomposes:

Z({λ∗
c}) =

∏

e∈corp.

∏

ei∈s
Zei({λ∗

c})

Zei({λ∗
c}) =

n∑

j=1

pFA (ai = j|e, f) e−
∑

ℓ λ
ei
ℓ v

ei
ℓ

veiℓ = 1

(
ℓfai = ℓ

)
− r(ℓ)

and its derivative w.r.t λei
ℓ :

∂Zei

∂λei
ℓ

= −
n∑

j=1

pFA (ai = j|e, f) veiℓ e−
∑

ℓ λ
ei
ℓ v

ei
ℓ

The stationary points is reached when veiℓ = 0,
selecting alignments for which the transferred label
distribution matches r(ℓ).

4 Experiments

4.1 Baselines
Eflomal2 and AWESoME3 were run using the re-
spective authors’ publicly released code. The hy-
perparameter settings used to run these models

2https://github.com/robertostling/eflomal
3https://github.com/neulab/awesome-align

Lang Avg. len. Avg len. of En translation
MultiATIS++

English (en) 11.05 NA
French (fr) 11.72 11.05 (+6.37%)

Portuguese (pt) 11.96 11.05 (+8.17%)
German (de) 11.29 11.05 (+2.13%)
Spanish (es) 11.88 11.05 (+7.62%)
Chinese (zh) 10.95 11.05 (-1.05%)

Hindi (hi) 10.97 11.05 (-0.73%)
Internal dataset

Italian (it) 5.29 5.20 (+1.82%)
French (fr) 5.91 5.18 (+14.17%)

Portuguese (pt) 5.42 5.17 (+4.73%)

Table 2: Average sentence lengths (in terms of the number
of labelled tokens) for each language present in our datasets.
The third column indicates how much longer (or shorter) the
sentences in a particular language are compared to their En-
glish translations. Unlike MultiATIS++, the English sentences
paired with each of languages in our internal dataset are dif-
ferent (i.e the English sentences in the pair en-it are different
from those in en-fr), resulting in slightly different average
sentence lengths. The translations in both MultiATIS++ and
our internal dataset were done by humans.

are described in Appendix C. Since our work is
an extension of fast_align, we ported the original
fast_align4 code to Python and extended it to sup-
port posterior regularization. Just like the original
fast_align implementation, we did 5 iterations of
expectation-maximization to train the model. The
trained alignment model (i.e q∗ in equation 3) is
then evaluated on a held out set of bitexts. For each
aligned word pair, the label of the source word (usu-
ally from an English sentence) is transferred to the
aligned target word. All target words aligned to the
"null" token are given a label of "o" (for "other").
We then compare the transferred labels to the true
labels of the target sentence to calculate the accu-
racy. Though the label transfer happens at a word
level, we report accuracies at the sentence level as
well since perfectly annotated sentences are crucial
for our industrial use case. The n-gram classifiers
in the tables are simple frequency-based classifiers
trained on the target language - for a particular n-
gram in the test set, the classifier annotates the nth
word with the most frequent label assigned to that
n-gram in the training data. For n-grams that were
not present in the training data (even after backing-
off to unigrams), the classifier outputs the label "o"
(for "other"). These simple classifiers are essen-
tially the same models that are used to do posterior
regularization in our experiments - when used as
classifiers, they only output the most likely label
for a given n-gram while during regularization we
use their entire label distribution.

4https://github.com/clab/fast_align
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Figure 2: Distribution of word alignments between English-Hindi bitexts in the MultiATIS++ dataset. The left (resp. bottom)
axis represents the index of the source (resp. target) word within the source (resp. target) sentence. The left plot shows the
distribution of alignments using fast_align. The number inside individual cells represents the frequency of that alignment. The
right plot shows the distribution of alignments for the same Engish-Hindi bitexts using FastLabel. We can see from the plots
that fast_align has more alignments along the diagonal than FastLabel. Since English and Hindi generally follows different
word orders (eg: the Hindi sample present in table 1), the diagonal prior used by fast_align (i.e the assumption that words in
target sentence are aligned to the words in relatively the same position in the source sentence) can be problematic. The superior
performance of FastLabel (table 3) can be attributed to its ability to overcome fast_align’s diagonal prior.

Figure 3: Sentence-level label transfer accuracies between
English-German bitexts in MultiATIS++. The amount of Ger-
man data used to construct the n-gram labels was increased
linearly while AWESoMe, eflomal, fast_align, and the word-
alignment part of FastLabel were always trained with all avail-
able training data.

4.2 Datasets

We ran our experiments on two different datasets
- a publicly available corpus of annotated bitexts
called MultiATIS++ (Xu et al., 2020) and an inter-
nal corpus of annotated bitexts. MultiATIS++ is
a multilingual extension of the ATIS (Price, 1990)
dataset, which is a transcript of flight information
requests to automated airline travel inquiry sys-
tems and contains approximately 5000 samples.
The queries in ATIS were originally in English
and the MultiATIS++ dataset contains annotated

human translations of the English queries into six
other languages. Our internal dataset consists of
queries to a task-oriented dialogue system and
contains ten thousand pairs of annotated English-
Italian, English-French and English-Portuguese bi-
texts. The English sentences in the different lan-
guage pairs in our internal dataset are not the same
- this means that there is considerable variation in
the distribution of intents across different language
pairs in this dataset. The scheme for certain type of
queries vary across languages (see table 1) as well.

For the set of constraints, we compute a fre-
quency based n-gram model on the annotated
monolingual data: the probability of label ℓi de-
pends on the word ei to be labelled, its context
of length n − 1 and the intent of the sentence:
P (ℓi|e) = P (ℓi|ei, ei−1, · · · ei−n+1, intent). We
include the intent in the counts since labels may
strongly depend on it: for example, "play frozen"
will be different depending on whether the over-
all intent is "Music" (resulting in "play|action
frozen|album) or "Video" (resulting in "play|action
frozen|movie). We construct the n-grams based on
the same data that was used to train the word align-
ment model, and during inference apply the same
back-off strategy used by the n-gram classifiers
described in the previous section. If an n-gram
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Method it fr pt de es zh hi
MultiATIS++

baselines

fast_align N/A 48.75 (90.44) 40.14 (90.07) 63.821 (94.54) 52.54 (90.54) 43.04 (83.84) 32.31 (85.17)
eflomal N/A 67.17 (94.08) 63.56 (93.71) 76.43 (97.20) 66.10 (93.7) 56.58 (87.8) 73.36 (95.00)

AWESoME N/A 74.08 (94.94) 73.23 (95.68) 79.59 (97.83) 72.31 (94.95) 55.47 (89.20) 65.06 (94.69)
1-gram classifier N/A 27.88 (86.23) 25.51 (84.43) 29.36 (86.68) 29.05 (85.08) 34.38 (81.81) 33.33 (87.44)
2-gram classifier N/A 57.88 (93.35) 57.72 (92.79) 59.66 (93.91) 56.79 (92.1) 66.91 (90.56) 59.64 (94.14)
3- gram classifier N/A 66.92 (94.91) 67.78 (94.52) 68.21 (95.42) 67.54 (93.43) 67.28 (91.01) 72.80 (96.06)

ours
1-gram FastLabel N/A 75.81 (95.96) 69.88 (95.84) 84.97 (98.18) 68.92 (94.69) 73.09 (94.11) 76.85 (96.37)
2-gram FastLabel N/A 79.46 (97.10) 78.25 (97.20) 90.53 (98.90) 76.45 (96.39) 76.43 (95.13) 79.03 (97.11)
3-gram FastLabel N/A 79.27 (97.16) 78.99 (97.30) 91.09 (98.96) 76.83 (96.56) 75.88 (95.11) 80.34 (97.23)

Internal dataset

baselines

fast_align x (x’) y (y’) z (z’) N/A N/A N/A N/A
eflomal +13.32 (+2.25) +11.14 (-1.14) -0.98 (-0.7) N/A N/A N/A N/A

AWESoME +7.49 (+2.07) +1.4 (+0.02) +2.4 (+0.55) N/A N/A N/A N/A
1-gram classifier -78.97 (-23.20) -78.76 (-21.72) -81.05 (-22.92) N/A N/A N/A N/A
2-gram classifier -76.97 (-22.25) -76.44 (-20.68) -78.551 (-22.04) N/A N/A N/A N/A
3-gram Classifier -76.64 (-22.19) -75.98 (-20.58) -78.65 (-22.04) N/A N/A N/A N/A

ours
1-gram FastLabel +18.48 (+4.36) +13.62 (+2.89) +5.08 (+1.48) N/A N/A N/A N/A
2-gram FastLabel +19.98 (+4.77) +16.72 (+3.42) +8.61 (+2.13) N/A N/A N/A N/A
3-gram FastLabel +19.65 (+4.67) +16.10 (+3.42) +8.61 (+2.10) N/A N/A N/A N/A

Table 3: Percentage of perfectly annotated target sentences obtained as a result of label transfer between bitexts - the word level
label transfer accuracy is written inside parentheses. Experiments conducted on our internal dataset report accuracies relative to
fast_align.

was not observed in the training data, we leave
finding the alignment of the corresponding target
word unconstrained. Though we stick to simple
frequency-based n-gram models for the sake of
speed and interpretability, posterior regularization
can accommodate any model that can predict a
label distribution, including neural networks.

5 Results

Our results are reported in Table 3. Apart from
fast_align, we include eflomal, a more sophisti-
cated statistical alignment model, and AWESoME,
a strong model that leverages recent advances in
pre-trained language models, as additional base-
lines. On the MultiATIS++ dataset, FastLabel out-
performs AWESoME, our strongest baseline, by
around 2.7% at word-level label transfer accuracy
and gave around a 15% increase in the amount
of perfectly annotated target sentences (averaged
across all languages). On our internal dataset,
FastLabel resulted in an improvement of around
7% (compared to eflomal, which performed better
than AWESoME, averaged across all languages) in
the amount of perfectly annotated target sentences.
The simple n-gram classifiers perform reasonably
well on MultiATIS++. After a deeper inspection,
we find that most of the words in this dataset re-
ceive the label "O", and entities with richer labels
(such as city names) are usually present in both the
train and test sets, and makes MultiATIS++ easier
to annotate correctly. Our internal dataset is more
complex, comprising of 185 intents (eg: "Appli-

ance", "Music") and 211 different label types (i.e
"o" or "date" or "song") (for comparison, Multi-
ATIS++ has 23 intents and 122 label types). This
is reflected in the much poorer performance of the
n-gram classifiers on our internal dataset. Though
poor as independent annotators, the same n-gram
label distributions are beneficial to FastLabel when
used for posterior regularization, indicating that
our regularization framework is successful in incor-
porating the right amount of information from the
external prior.

We observe a large drop in performance for
fast_align when aligning language from different
families (such as English-Chinese bitexts), due to
the well-known limitations of the diagonal prior
assumption. Moreover, as observed in table 2,
Hindi and Chinese sentences are usually slightly
shorter than their English counterparts, while the
sentences from the other European languages tend
to be longer. For example, the Italian translation of
the phrase "personalize my echo" could be "person-
alizza il mio echo" - here the two tokens "my echo"
generate three tokens in Italian (high word fertility),
while a non-Indo-European language might have
the opposite problem with respect to English (low
word fertility). Despite these challenges, FastLabel
performs comparatively well on these languages
thanks to its ability to overcome the diagonal prior
of the underlying fast_align algorithm. Figure 2
illustrates the effect of posterior regularization on
word-alignments. All subplots show alignments
between English-Hindi bitexts in the MultiATIS++
dataset. The plot to the left (fast_align) clearly
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id source fast_align ours
1 track|o a|o wet|attribute diaper|item enregistre|o une|o couche|attribute cu-

lotte|attribute mouillée|item
enregistre|o une|o couche|item cu-
lotte|item mouillée|attribute

2 c.|source n.|source n.| source report|o le|o compte|source rendu|source de|o
c.|source n.|source n.|source

le|o compte|o rendu|o de|o c.|source
n.|source n.|source

3 show|visual me|o an|o octopus|item montre|visual moi|other un|o
poulpe|item

montre| visual moi|visual un|o
poulpe|item

Table 4: Three examples representative of the type of errors in label overcome by posterior regularization. All examples are
from the FastLabel evaluated on the English-French bitexts in our internal test dataset. 1) Alignments away from the diagonal -
the French word corresponding to "wet" ("mouillée") appear at the end of the sentence. 2) Fertility - "report" is translated into
French as "le compte rendu de". 3) Discrepancies in annotation guidelines - though "moi" should be semantically aligned to
"me" in the English sentence and hence given the label "o", our internal annotation scheme for French consistently annotates
"moi" as "visual" if it follows "montre".

shows a stronger alignment along the diagonal,
while this tendency to align along the diagonal is
weaker in the plot to the right (FastLabel). Table 4
contains some examples where fast_align made a
mistake in transferring the labels from the source
sentence, but FastLabel was correct.

How much annotated data is required for Fast-
Label to improve upon fast_align? Figure 3 reports
label transfer accuracy between English-German
bitexts in MultiATIS++ using varying amounts of
training data to construct the n-gram models. Using
only 20% of all available training data to construct
the n-gram models gives FastLabel a significant
boost over fast_align, demonstrating the applicabil-
ity of our approach in data-sparse regimes. With
growing training data, n-grams become better an-
notators (to a point where the 3-gram model out-
performs fast_align), but a performance gap with
FastLabel persists. Although the focus of our work
was on maximizing the label transfer accuracy, we
also note that posterior regularization resulted in a
more semantically accurate translation table (see
Appendix B) compared to fast_align.

5.1 Conclusion

We illustrated how to augment existing algorithms
(such as fast_align) with information about anno-
tation guidelines, through posterior regularization.
Lightweight, self-contained and data-efficient, our
approach retains the benefits of statistical align-
ers while leading to higher quality alignments. It
also mitigates semantic inconsistencies that can
appear in the annotation guidelines of large scale
industrial NLP systems. A natural extension of
this work is to use more sophisticated models than
n-grams to predict the label distributions. The task
of matching the distribution of source labels onto
some target through word alignments also bears
some similarities with optimal transport. We leave
such investigation to the future.
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A EM steps with posterior regularization

The iterative algorithm closely mimics the classical
EM coordinate ascent, with the addition of solving
the Lagrange multipliers:

1. (Start) Random initialization of the IBM 2
model parameters θ0.

2. Compute pFA as specified by the IBM 2
model, given θt.

3. Find the optimal Lagrange multipliers λ∗
c and

compute the tilted distribution q∗.

4. Find the optimal parameters θt+1 using q∗ in
place of pFA.

5. Iterate from step 2 until convergence.

B Excerpt of the translation table for
English-French bitexts

In table 5, French words that are not semantic trans-
lations of the English source word are highlighted
in red. The "count" represents the number of bi-
texts where the English and French words appeared
in the source and target sentences respectively. We
observed that posterior regularization using labels
improved the quality of the translation table (and
consequently, alignments) as well.
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fast_align FastLabel count
English French English French

list courses list liste 222
theater au theater theater 22.0
please te please plaît 117.0
closed est closed fermé 5.0

app application app l’ 6.0
diaper culotte diaper couche 12.0
don’t ne don’t pas 11.0
march le march mars 32.0

funniest la funniest drôle 3.0
beauty la beauty belle 4.0
cinema au cinema cinéma 9.0
baby baby baby bébé 11.0
mode mode mode multilangues 4.0
frozen des frozen reine 5.0
snow des snow neige 3.0

oatmeal d’ oatmeal flocons 3.0
text un text message 3.0
hip hop hip hip 3.0

Table 5: All disagreements appearing more than thrice be-
tween the translation tables produced by fast_align and Fast-
Label on the English-French bitexts in our internal dataset.

C Hyperparameters

Eflomal was run using the "model3" argument so
that the final model makes use of IBM model 1,
Hidden Markov Models, and also models fertil-
ity. Both the forward and reverse alignments (i.e
they were not symmetrized) were used to make the
priors.

AWESoME was fine-tuned for 2 epochs in an
unsupervised fashion independently on the training
split of both MultiATIS++ and our internal data,
with the following hyperparameters:

hyperparameter value(s)
extraction softmax
training epochs 2
training objectives Masked Language Modelling

(MLM), Translation Language
Modelling (TLM), Self-training
objective (SO)

gradient accumulation
steps

4

learning rate 0.00002
maximum training steps 20000

D Compute

FastLabel, eflomal and fast_align were run on cpu
on a consumer-grade laptop. AWESoME was fine-
tuned for 2 epochs on a single Nvidia Tesla V100
GPU. Our python re-write of fast_align trains at
the rate of approximately 260 samples per second.
With posterior regularization using trigrams, the
training speed drops down to approximately 80 iter-
ations per second. This translates to a training time
of 15 seconds per iteration (MultiATIS++ dataset,

4300 training samples) with fast_align and almost 1
minute per training iteration for FastLabel (with tri-
grams). Though our rewrite of fast_align (and con-
sequently FastLabel) is faster to train compared to
recent models such as AWESoME, it is still slower
than the original implementation of fast_align and
eflomal (which are written in c) - this is currently
a limitation of our work and we intend to address
this in a future code release.
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