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Abstract
Recently, we have seen an increasing interest in the area of speech-to-text translation. This has led to astonishing improvements
in this area. In contrast, the activities in the area of speech-to-speech translation is still limited, although it is essential to
overcome the language barrier. We believe that one of the limiting factors is the availability of appropriate training data. We
address this issue by creating LibriS2S, to our knowledge the first publicly available speech-to-speech training corpus between
German and English.
For this corpus, we used independently created audio for German and English leading to an unbiased pronunciation of the text
in both languages. This allows the creation of a new text-to-speech and speech-to-speech translation model that directly learns
to generate the speech signal based on the pronunciation of the source language.
Using this created corpus, we propose Text-to-Speech models based on the example of the recently proposed FastSpeech 2
model that integrates source language information. We do this by adapting the model to take information such as the pitch,
energy or transcript from the source speech as additional input.
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1. Introduction

As the world becomes more and more connected, both
online and offline, the need for language translation
systems rises to overcome the large existing language
barrier (Hutchins, 2003; Nakamura, 2009). In the
past few years the advances made within the Machine
Translation (MT) domain have been significant. Com-
puters have become better at translating text between
two languages and can even translate speech to text in
another language by using a single model (Bahdanau
et al., 2016). To solve the Speech-to-Speech Transla-
tion (S2ST) problem, in which a spoken phrase needs
to be translated and spoken aloud in a target language,
the problem is typically broken into three steps. In
the first step the source speech gets transformed into
text by using a Speech-to-Text (STT) model. The sec-
ond step consist of translating the text to the target lan-
guage. The last step takes in the translated text as input
and synthesises speech in the target language using a
Text-to-Speech (TTS) model. Because of the concate-
nation of these three steps, and the intermediate text
representation, there is a loss of information from the
original speech which does not get passed on after the
first step (Sperber and Paulik, 2020). This information
loss mainly consists of spoken language characteristics
such as the pitch and energy in the source speech which
are key elements for prosody. Prosody is essential for
a conversation as it contains, for example, information
on the emotional state of the speaker.

In this work, we want to address this issue by propos-
ing dedicated TTS systems for speech translation that
also take the source audio into account. The idea is that
when synthesising the speech of a target language, in-
formation about the pitch and energy from the source

Figure 1: Conventional (black, full lines) and proposed
(blue, dashed lines) additions to the pipelines.

language can be valuable to generate the right prosody.
Of course, there is no one-to-one mapping. Therefore,
we propose to integrate this information into the neu-
ral TTS system such that the model can automatically
learn when to make use of the source language infor-
mation. This is done by adding speech characteristics
such as the pitch and energy from the speech in the
source language into the TTS system as an additional
input to the system as shown in Figure 1.
The main challenge we need to address is the cre-
ation of appropriate training data. In order to train
the proposed model, we need to have aligned speech
in both the source and target language. This parallel
speech corpus should be created independently from
each other to have high quality and unbiased audio in
both languages. Therefore, we build the corpus based
on the Librevox1 project. In this case, we aligned
the audio of audiobooks in German and English. The
speech in both languages was created independently of
each other.
The contributions of this research are first of all the

1https://librivox.org/
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creation and release of LibriS2S2 (Libri Speech-to-
Speech), a speech aligned corpus between German and
English with audio in both languages.
In addition, we made the scripts publicly available
to encourage the creation of additional S2ST data
sets. With the help of these alignments and scripts a
German-English speech aligned dataset can be made.
By adapting the scripts this could be extended to more
languages too. Secondly, we perform an investigation
on how source text and audio features can be used to
improve the quality of the synthesised speech from the
TTS model. We propose an extension of the state-of-
the-art TTS system FastSpeech 2 (Ren et al., 2021) to
integrate these features as well as evaluate the influence
of the presented data.

2. Related Work
2.1. Datasets
Most datasets used in current state-of-the-art transla-
tion research such as LibrivoxDeEn (Beilharz et al.,
2020), CoVoST2 (Wang et al., 2020), MuST-C (Cat-
toni et al., 2021) or LibriSpeech ASR(Panayotov et
al., 2015) augmented with French translations (Ko-
cabiyikoglu et al., 2018) are focused on Speech-to-Text
translation. These datasets only contain the audio and
transcription in the source language paired with the
translation, in text, from the target language. Further-
more, datasets that do contain the audio from the tar-
get language such as Fisher and CALLHOME Spanish-
English dataset (Post et al., 2013), SP2 speech corpus
(Sečujski et al., 2016), the EMIME Project (Kurimo
et al., 2010), VoxPopuli(Wang et al., 2021) and MaSS
(Zanon Boito et al., 2020) either require a costly li-
cense, only have a limited amount of samples, exist out
of unlabeled data or might have copyright concerns.
Since audio pairs of the same sentences in two lan-
guages are needed, to build the proposed TTS system
and to provide the additional information during train-
ing and testing, this work will build further upon al-
ready existing speech-translation datasets. The miss-
ing speech segments from the target language will be
scraped from the internet and aligned to match the
dataset.

2.2. S2ST and TTS systems
Modern day S2ST systems such as provided by Jibbigo
(Eck et al., 2010), Microsoft Azure (MircosoftAzure,
2021) and Skype (Lewis, 2015) make use of a con-
catenation of state-of-the-art models. As mentioned in
the introduction this can result in a loss of information.
The oldest pipeline to take additional speech informa-
tion, such as prosody, into account was that of Verbmo-
bile (Wahlster, 2013). Within the Verbmobile project,
pitch, energy and other features of speech were used
to annotate the generated text with additional informa-
tion and to use this additional information to help with

2https://github.com/PedroDKE/LibriS2S

the translation. Trying to achieve the same goal, in this
paper the source information will be used only to en-
hance the quality of the generated speech at the end of
the pipeline.
Do et al. (2016) try to incorporate emphasis in their
TTS model with the help of an emphasis estimator.
Their emphasis estimator takes the source text as in-
put and predicts for each word an emphasis probabil-
ity between 0 and 1. They then transfer this emphasis
estimation to the target language and use these values
as additional input of their TTS model. Compared to
this work, source information will also be mapped to
the target language but instead of using an intermedi-
ate predictor, the values are extracted from the source
speech to be used. Also, instead of using a Hidden
Semi-Markov (HSM) TTS Model, our approach uses
a deep learning method.
The work of Skerry-Ryan et al. (2018) focuses on
transferring prosody between two speakers within the
same language. By adapting the Tacotron (Wang et al.,
2017) architecture to contain an extra prosody embed-
ding layer they are able to transfer prosodic character-
istics between speakers in the same model.
The feature generation model used in this work is
the recently introduced FastSpeech 2 (Ren et al.,
2021). This model is of particular interest because it
has separate predictors for pitch and energy as can
be seen in Fig. 2. Compared to the original paper,
the implementation3 used has a few differences: 1)
The pitch and energy are predicted per phoneme.
2) The pitch and energy are normalized using the
z-normalization and these are being predicted. 3)
Additionally a post-net similar to the one introduced
in the Tacotron 2 (Shen et al., 2018) paper is used.
This post-net is used to ”predict a residual to add to
the prediction to improve the overall reconstruction”
(Shen et al., 2018).

3. Dataset creation
In order to generate the most natural speech in the tar-
get language, we were targeting a data source where
the source and target language speech was generated as
naturally as possible. We found the Librivox project as
a promising resource, as here the audio books in both
languages are generated independently of each other.
The dataset used as a starting block in this research is
the LibrivoxDeEn (Beilharz et al., 2020) dataset. This
dataset consists out of German speech, transcriptions
and their English translation of audiobooks. These
audio books are all available on Librivox and their
texts are also freely available. The English translations
within this dataset are based on the official translations,
which means that the English counterparts of the audio-
book is possibly available on Librivox too. Using the

3The baseline implementation used in this work
can be found in the following GitHub repository:
https://github.com/TensorSpeech/TensorFlowTTS
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Figure 2: FastSpeech 2 architecture, figure adapted from (Ren et al., 2021). Abbreviations: LR: Length Regulator
(introduced in the original FastSpeech paper (Ren et al., 2019), further information on the embedding, encoder,
decoder and predictors can be found in the FastSpeech papers)

audiobooks from Librivox has multiple advantages:
1) it is possible to collect parallel data with limited in-
volvement of human aid, 2) some books have multiple
speakers which could be used to construct for multi-
speaker TTS systems, 3) to build further upon the pre-
vious advantage, this method also provides multiple-to-
one speaker and one-to-multiple speakers alignments
which could be interesting for future research, 4) there
is only a limited number of legal and privacy concerns
as all data used is part of the public domain accord-
ing to Librivox and 5) a wide variety of languages are
available to further facilitate multi-lingual S2ST.

3.1. Data collection and allignment

The first step to enhance the LibrivoxDeEn dataset
was to download the English counterparts of the au-
diobooks from Librivox. As some of the audiobooks
do not have the same amount of chapters across lan-
guages, for example the German audio book used in
this research contains 29 chapters while the English au-
dio book has 27, these were manually split or stitched
together to use the texts given within the LibrivoxDeEn
dataset.
The next step was to align the newly gathered English
speech to the texts. This was done using the tool ae-
neas (Pettarin, 2017). Given the text and audio of a
book’s chapter that we want to align, this tool gives us
the timestamps of when a phrase was said and makes
it possible to extract the spoken sentences necessary to
create the required data for S2ST research.

German English
# Audio files 25 635 25 635
# unique Tokens 10 367 9 322
# Words 49 129 62 961
# Speakers 42 29
Duration
(hh:mm:ss) 52:30:57 57:20:10

Table 1: Collected data sizes

3.2. Dataset analysis
Using this method it was possible to align 12 audio
books. From those 12 books, 8 did not require the
additional prepossessing to align the chapters. Those
alignments are made publicly available to download to-
gether with the tools used to scrape the audio from lib-
rivox and align the audio to their text.
Additional metrics on the 12 books that were aligned
can be found in Tab. 1. To count the number of speak-
ers these were counted separately for each book and
some speakers can thus have been counted more than
once. The speakers that record the audio books on
librivox do not always have access to a high-quality
microphone. Because of this it can be challenging
to create a TTS system for a single speaker. More-
over, the average length of audio per book, about
4.77 hours for English and 4.38 hours for German, is
on the lower side when compared to the much used
datasets LJSpeech (Ito and Johnson, 2017) for English
or Thorsten (Müller, 2019) for German with both over
23 hours of speech. However, using multiple speakers
or audiobooks from the dataset to train a multi-speaker
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TTS model can be beneficial for the final audio quality
(Chen et al., 2020) and makes it possible to make use of
the full dataset. Furthermore, the scripts released with
this work make it possible to align more audiobooks
to the LibrivoxDeEn dataset. Combining both methods
from this work and from Beilharz et al. (2020), used
to create LibrivoxDeEn, it is possible to create speech
aligned datasets for multiple languages given that the
right audiobooks are available in both languages on lib-
rivox.
Using audio books does not give us a guarantee that
sentences in both languages are expressed with the
same prosody or emotion. Given the scarcity of such
data, audio books can be used as a starting point as
these have multiple advantages as discussed in the be-
ginning of Sec 3.

4. Source guided speech synthesis
Given the newly created data we are now able to build
TTS models that can use the audio from the source lan-
guage to improve the generated speech in the target lan-
guage. In this work we suggest models that use this
information to help predict the energy and pitch of the
target language. We do this by making three adapta-
tions of the model that are then trained with the newly
gathered data and one exploitation model where we try
to improve the baseline without retraining. The differ-
ent implementations are shown in Fig. 2 and further
explained in this section.

4.1. Source phoneme input
The first adaptation takes a concatenation of both the
source and target transcripts (in phonemes) as input.
The embedding layer then maps both phoneme se-
quences to a vector space and then the encoder is used
to mix the information from both embedded sequences.
This is the most straightforward integration, where
only very limited adaptation to the existing architec-
ture is needed. However, only source text information
is passed to the model and the information is not en-
coded specifically making the task of using this addi-
tional information very difficult. Furthermore this rep-
resentation does not give any additional information on
the expressed prosody in the source speech. This model
will later on be referred to as ’pho’ because of the ad-
ditional phoneme input.

4.2. Word level pitch and energy embedding
For this adaptation a Source Feature Vector (SFV) is
being calculated and used to give the model additional
information on the pitch and energy from the source
speech.
The first step in creating the SFVs is to calculate the
average pitch and energy for each word in the source
speech. Afterwards with the help of multilingual align-
ment, where each word of a source sentence is mapped
to their corresponding word in the translation, these
SFVs can be mapped to the target language. This way

Figure 3: A (synthetic) example of an SFV to show the
idea. Note how for the last word the average is being
taken since it has a mapping from multiple words in the
source

a vector is created where for each phoneme in the tar-
get language either contains information on the average
word-level value in the source language or, if it was not
alligned, a zero value. An example of an SFV can be
seen in Fig. 3.
The second adaptation uses this additional information
by replacing the last 2 dimensions in the embedding
layer by the pitch and energy SFVs. This way the en-
coder takes the additional information from the SFVs
as input which in turn can help the variance adaptor to
predict the pitch and energy.
In the results section this model will be refered to as
’emb’ because of the additional information that is in-
corporated in the dimensions of the embedding.

4.3. Word level pitch and energy as
additional input to predictor

Instead of only using the SFVs as additional informa-
tion to the embedding, the third adaptation builds fur-
ther upon the previous introduced model in Sec. 4.2
and also uses the SFVs as additional input to their re-
spective predictors. This way, the predictors also re-
ceive the values from their respective SFVs directly.
This is done by stacking them to the encoder output to
create a vector with sizes (2, #PHONEME). This model
is refered to as ’epi’ which stands for Embedding and
Predictor Input.

4.4. Add pitch and energy to predictor
output

Since the pitch and energy predictors try to estimate
these values on a phoneme level, this can be exploited
to influence the generated speech. As can be seen in
Fig. 4 the energy and pitch in the generated speech
can be changed by increasing the output values of their
predictors before passing the values through the em-
bedding. But it can also be seen that changing values at
certain parts of the predictions can result in changes of
pitch or energy in other parts of the generated speech
too.
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Figure 4: input sentence: ”I cannot find my friend
in this crowded room”, ”AY1 KAE1NAA0T FAY1ND
MAY1 FREH1ND IH0N DHIH1S KRAW1DAH0D
RUW1M” blue: using the output of the predictor, or-
ange: increasing predicted energy and pitch at the
phonemes corresponding to ”find my”

In the fourth model, this is being exploited within the
baseline model by summing the SFV to the output of
their respective predictor. This way phonemes from
words that have a below average pitch or energy in the
source language get their predicted values lowered (be-
cause of having a negative z-score added to them) and
the same way words with an above average value in the
source language get their values increased in the pre-
diction.

5. Experimental setup
5.1. Preprocessing
To convert the transcript to a phoneme sequence
and extract the duration of each phoneme the Mon-
treal Forced Alignment tool (McAuliffe et al., 2017)
was used. The English sequences uses the ARPA-
bet phoneme set and the German sequences uses the
prosodylab format. To get the cross-lingual alignment
to create the SFVs the awesome-align tool4 (Dou and
Neubig, 2021) was used.
To train the TTS models, the speech data was resam-
pled to 22050 kHz and the MFCC’s were extracted us-
ing a hop-size of 256, a frame size of 1024 and with
a basis of 80. For training, testing and validation only
audio files with a length between 1s and 20s were used.

5.2. Data size
Some of the collected books either have bad micro-
phone, need further processing to separate the speakers
or do not have enough samples to train a single speaker
system. Therefore in the continuation of this research
the book Frankenstein by Mary Shelly5 is used. As a

4https://github.com/neulab/awesome-align
5https://librivox.org/frankenstein-or-the-modern-

prometheus-1818-by-mary-wollstonecraft-shelley/ and
https://librivox.org/frankenstein-oder-der-moderne-
prometheus-by-mary-wollstonecraft-shelley/

result there were a total of only 2335 audio files used
for this research. 2079 of these were used for train-
ing, 129 for validation and 127 for testing. This num-
ber of samples for training is on the low side compared
to datasets usually used for single speaker TTS models
such as LJSpeech (Ito and Johnson, 2017) where a total
of 13,100 English audio fragments are used. Neverthe-
less, it is still sufficient to train a TTS model but might
result in more/faster overfitting and worse audio quality
in the generated speech. The book used also had some
misalignments on the source side originating from the
LibrivoxDeEn dataset but was realigned using the same
method described in Sec. 3.

5.3. Evaluation
The vocoder model used in this research is the MB-
MelGAN model (Yang et al., 2020) which has been fine
tuned on the samples in the training set and then used
to generate the 127 samples from the test set to evalu-
ate the speech generated. As getting a Mean Opinion
Score (MOS) is not possible due to the inaccessibility
to enough native speakers, the MOS is approximated
by using the deep learning approach MOSNet (Lo et
al., 2019). The disadvantage about this method is that
it is just an approximation and might not represent the
real MOS that a human evaluation would give. Fortu-
nately, this method also has advantages such as: more
samples can be evaluated, no new biases are introduced
during evaluation and the same model is used for test-
ing which results in comparable metrics. To evaluate
the energy and pitch in the generated speech, the same
methods as in the FastSpeech 2 (Ren et al., 2021) pa-
pers are used. To evaluate the pitch, the standard devi-
ation, skewness and kurtosis for the pitch moments in
the generated speech is calculated (Niebuhr and Skar-
nitzl, 2019; Andreeva et al., 2014). Ideally this would
be as similar as possible to our ground truth. Addition-
ally the average Dynamic Time Warping (DTW) dis-
tance of the pitch is also computed with the help of the
dtw-python package (Giorgino, 2009). To evaluate the
energy, the MAE between the generated speech and the
ground truth is being calculated. Similar to Ren et al.
(2021), the durations extracted by the MFA are used
in the length regulator to ensure the same duration in
the generated audio as the ground truth to calculate the
MAE of the energy in the generated speech.

6. Results
6.1. Speech metrics of generated samples
The metrics achieved by evaluating the generated
speech of all models can be seen in Tab. 2. The first
metric is the predicted MOS of the generated speech.
According to the predicted score the three model adap-
tations improve over the baseline and result in a slightly
more natural audio quality. The only model not im-
proving on this metric is the addition exploitation of
the baseline model.
The pitch moments from the generated speech can be
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MOSNet prediction Pitch σ Pitch γ Pitch κ Pitch DTW Energy MAE
GT 3.673 31.867 0.788 1.769 \ \
baseline 3.133 41.163 -1.138 2.627 21.423 10.039
pho 3.161 40.779 -1.063 2.931 19.876 10.110
emb 3.163 38.113 -1.000 3.104 20.329 10.002
epi 3.159 38.704 -1.039 2.979 19.948 10.103
addition 3.071 42.174 -0.807 2.390 23.065 11.042

Table 2: Predicted MOS scores, pitch moments/DTW and energy MAE from the GT and generated audio

found between the third and fifth column. Ideally these
are as close as possible to the ground truth from the
same test set. As can be seen, all trained model adapta-
tions have an improvement on the baseline when look-
ing at the standard deviation (σ) and skewness (γ) but
perform worse on the resulting kurtosis (κ). The addi-
tion exploitation however achieves the best results on
the skewness and kurtosis of the pitch but performs
worse when looking at the standard deviation. Be-
sides the pitch moments, the DTW distance to the GT
is also given in the sixth column. We can see that again
for the three adaptations this distance has decreased
when compared to the baseline model indicating a bet-
ter modeling of the pitch. For the addition model this
distance has increased, indicating a worse modeling
compared to the baseline. This is probably due to the
effect shown in Fig. 4 where unwanted changes in the
pitch can happen or because of the fact that prosody is
not a one-to-one mapping across two languages.
For the MAE between the energy within the GT and
generated speech we can see that only the emb adap-
tation improves over the baseline and the other two
adaptations perform similar to each other. The addi-
tion model however performs the worst again, possibly
due to the same reasons as to why the DTW distance
increased for this model.

6.2. Ablation study on the influence of SFV
To have a closer look at the influence of the SFV on the
pitch and energy in the generated speech an ablation
study is done where the SFVs are set to zero before
passing them to the emb and epi model during infer-
ence. Afterwards the same metrics as the previous three
sections are calculated. The values achieved with the
SFVs extracted from the source speech are also given
as GT in the table, these values are the same as from
Tab. 2.
Tab. 3 shows the achieved metrics when the SFVs val-
ues are put to zero during inference. Due to the z-
normalization a zero value means that this part has an
average pitch or energy. For the epi model, setting the
SFVs values to zero only results in the improvement
on one metric. This indicates that the information from
the SFV is used in the epi model and improves the fi-
nal performance of the model. For the emb model it is
not as clear and we only see improvements in half the
metrics. One reason could be that the SFVs are more
directly integrated in the epi approach and therefore it

MOS σ γ κ DTW MAE
emb
zero sfv 3.193 40.187 -1.039 3.114 20.094 9.985

emb
GT sfv 3.163 38.113 -1.000 3.104 20.329 10.002

epi
zero sfv 3.153 38.988 -1.074 2.730 20.123 10.137

epi
GT sfv 3.159 38.704 -1.039 2.979 19.948 10.103

Table 3: pitch and energy metrics from the generated
speech with SFV values being zero. Improvements
over non-zero SFV are shown in bold.

is easier for the model to use this information to gener-
ate the MFCC.

7. Discussion
Given the results presented in Tab. 2 and Tab. 3, it
can be said that while changing the output of the pre-
dictors might be a promising way to control the pitch
and energy (as seen in Fig. 4) in the generated speech,
combining them with the SFVs fails to improve over
the baseline on most metrics and has the overall worst
performance out of the methods presented. The emb
model, where the SFVs are used as additional input to
only the embedding space, does improve over the base-
line and performs best out of the proposed methods on
half of the metrics, but this method gives conflicting re-
sults in the ablation study and is therefore a less inter-
esting method. Using the SFVs also as input to the pre-
dictors gives the second best results on all metrics and
the ablation study shows that using this method can be
beneficial for the epi model. While the pho model does
not receive any additional information on the energy
and pitch from the source speech, only information of
what was said, this still seems to improve the generated
speech. On most metrics it improves over the baseline
and seems to perform similarly to the other two adapta-
tions, emb and epi models, in terms of predicted MOS,
DTW distance and the energy MAE.

8. Conclusion
In this paper, LibriS2S, a dataset consisting of sen-
tence aligned German and English audio pairs and their
transcriptions, is introduced and released together with
the methods used to make this dataset. The presented
method has multiple advantages and is shown to be
able to be used for a single-speaker TTS system. This
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dataset is also used to incorporate additional source
information during training and inference of a Fast-
Speech 2 model in a S2ST environment. The trained
models seem to mainly improve on having a better
pitch characteristic as the target and have a higher pre-
dicted MOS score by using additional information from
the source audio. On the energy level of the generated
speech the adaptations do not seem to benefit much
from the additional source information. For some of
the adaptations conflicting results are achieved in the
ablation study and thus might need further investiga-
tion. However, this is not the case for all models pre-
sented in this work.
The presented data opens up several interesting re-
search directions. While the baseline experiments fo-
cused on a single speaker scenario, the provided data
offers data from multiple speakers, which can be bene-
ficial for the quality of generated speech(Latorre et al.,
2018). The use of the full data will also enable the cre-
ation of a full speech translation pipeline and allow to
investigate the challenges in modeling the full pipeline.
Furthermore, the provided toolkit enables the creation
of similar data for other language pairs. This will en-
able the analysis on the similarity of speech character-
istics between different speakers and improve the trans-
fer between languages.
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Jügler, J., and Oleskowicz-Popiel, M. (2014). Dif-
ferences of pitch profiles in germanic and slavic lan-
guages.

Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural
machine translation by jointly learning to align and
translate.

Beilharz, B., Sun, X., Karimova, S., and Riezler, S.
(2020). Librivoxdeen: A corpus for german-to-
english speech translation and speech recognition.
Proceedings of the Language Resources and Eval-
uation Conference.

Cattoni, R., Di Gangi, M. A., Bentivogli, L., Negri,
M., and Turchi, M. (2021). Must-c: A multilingual
corpus for end-to-end speech translation. Computer
Speech & Language, 66:101155.

Chen, M., Tan, X., Ren, Y., Xu, J., Sun, H., Zhao, S.,
Qin, T., and Liu, T.-Y. (2020). Multispeech: Multi-
speaker text to speech with transformer.

Do, T., Toda, T., Neubig, G., Sakti, S., and Naka-
mura, S. (2016). Preserving word-level emphasis
in speech-to-speech translation. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
PP.

Dou, Z.-Y. and Neubig, G. (2021). Word alignment by
fine-tuning embeddings on parallel corpora. In Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL).

Eck, M., Lane, I., Zhang, Y., and Waibel, A. (2010).
Jibbigo: Speech-to-speech translation on mobile de-

vices. In 2010 IEEE Spoken Language Technology
Workshop, pages 165–166.

Giorgino, T. (2009). Computing and visualizing dy-
namic time warping alignments in r: The dtw
package. Journal of Statistical Software, Articles,
31(7):1–24.

Hutchins, W. J. (2003). The development and use
of machine translation systems and computer-based
translation tools. Bahri.

Ito, K. and Johnson, L. (2017). The lj speech
dataset. https://keithito.com/
LJ-Speech-Dataset/.

Kocabiyikoglu, A. C., Besacier, L., and Kraif, O.
(2018). Augmenting librispeech with french transla-
tions: A multimodal corpus for direct speech trans-
lation evaluation.

Kurimo, M., Byrne, W., Dines, J., Garner, P. N.,
Gibson, M., Guan, Y., Hirsimäki, T., Karhila, R.,
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