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Abstract
This paper studies solving Arabic Math Word Problems by deep learning. A Math Word Problem (MWP) is a
text description of a mathematical problem that can be solved by deriving a math equation to reach the answer.
Effective models have been developed for solving MWPs in English and Chinese. However, Arabic MWPs are
rarely studied. This paper contributes the first large-scale dataset for Arabic MWPs, which contains 6,000
samples of primary-school math problems, written in Modern Standard Arabic (MSA). Arabic MWP solvers are
then built with deep learning models and evaluated on this dataset. In addition, a transfer learning model is
built to let the high-resource Chinese MWP solver promote the performance of the low-resource Arabic MWP
solver. This work is the first to use deep learning methods to solve Arabic MWP and the first to use transfer
learning to solve MWP across different languages. The transfer learning enhanced solver has an accuracy of
74.15%, which is 3% higher than the solver without using transfer learning. We make the dataset and solvers
available in public for encouraging more research of Arabic MWPs: https://github.com/reem-codes/ArMATH.
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1. Introduction
Math Word Problems (MWP) are short para-

graphs describing a mathematical problem and
asking for an unknown quantity. Table 1 shows
an example of an MWP. These problems vary in
difficulty with respect to the solution and language
used to convey the problems. For example, these
problems could be covering advanced mathemati-
cal concepts such as calculus or be written in a cer-
tain format like GRE questions. With the success
of deep learning in Natural Language Processing,
MWP has been recently studied for neuro-symbolic
reasoning with deep neural networks (Amini et al.,
2019a; Miao et al., 2020; Qin et al., 2020; Wang
et al., 2018; Wang et al., 2019b; Liu et al., 2019;
Xie and Sun, 2019a; Wang et al., 2017a; Li et al.,
2019a; Zhang et al., 2020b; Wu et al., 2020; Liang
and Zhang, 2021).
All the prior MWP solvers are developed on Chi-

nese and English MWP datasets. Although deep-
learning-based models can be language-agnostic
and translation systems can be helpful, it is es-
sential to build an Arabic MWP solver trained
by Arabic MWPs. There are several motivations.
First, using machine translation may not be pre-
cise, which will lead to less-than-optimal results.
Second, even if translated by humans, direct trans-
lation does not consider the cultural difference be-
tween the source language and Arabic. For in-
stance, Arabic names, famous cities, food, plants,
holidays, and geography will almost always appear
in the question body. It is therefore essential for
MWP solvers to be able to understand these dif-
ferences.

Question (English) Ali ate 3 apples from
the basket and his
brother ate 2. If the
basket originally had 8
apples, how many are
left?

Question (Arabic) فواكه، سلة من تفاحات 3 علي اكٔل
تفاحة فكم تفاحتين؛ اخٔوه وتناول
8 فيها كان اذٕا السلة في تبقى
البداية؟ في تفاحات

Equation x = 8− 3− 2
Answer 3

Table 1: An example of an MWP

In this paper, the first large-scale Arabic MWP
dataset is created, which contains 6000 samples of
primary-school math problems written in Modern
Standard Arabic (MSA). Arabic MWP solvers are
then built with deep learning models and verified
on this dataset for their effectiveness. In addition,
a transfer learning model is built to let the high-
resource Chinese MWP solver promote the per-
formance of the low-resource Arabic MWP solver.
This work is the first to use deep learning methods
to solve Arabic MWP and the first to use transfer
learning to solve MWP across different languages.
We make the dataset and solvers available in pub-
lic for encouraging more research of Arabic MWPs:
https://github.com/reem-codes/ArMATH.

https://github.com/reem-codes/ArMATH
https://github.com/reem-codes/ArMATH
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2. Background
2.1. MWP Datasets
MWP solving is a special natural language un-

derstanding task. The related and previously used
datasets differ in multiple ways:

• Natural language of the problem de-
scription: The most obvious difference is
the natural language used to write the math
problems. The most popularly used datasets
are MAWPS dataset (Koncel-Kedziorski et
al., 2016) in English and MATH23K dataset
(Wang et al., 2017b) in Chinese.

• Question types: MWPs can be asked as one
or more of the following types: find the an-
swer, explain the steps, resonate, or choose
the correct answer and justify. The most pop-
ularly studied MWPs cover one type of ques-
tion. For instance, MathQA dataset (Amini et
al., 2019b) questions are all multiple choices,
while MAWPS and MATH23K cover ques-
tions asking to find a numerical value.

• Difficulty levels: There are datasets cov-
ering grade-school/general-level math topics
like algebra or basic geometry. For instance,
MATH23K and MAWPS datasets are for pri-
mary school math. Other datasets cover ad-
vanced or specific math (e.g., calculus and
statistics) (Saxton et al., 2019). There are also
datasets even covering specific tests questions,
such as GRE like MathQA dataset (Amini et
al., 2019b).

Datasets and benchmarks are crucial for devel-
oping machine learning methods in one research
field. Regarding the publicly available MWP
datasets, the most famous ones are the Chinese
MATH23K (Wang et al., 2017b) and the En-
glish MAWPS (Koncel-Kedziorski et al., 2016).
Both datasets contain single variable primary-
school MWPs. Each MWP has a solution equa-
tion and a numerical answer, as shown in Table 1.
There are 23,160 samples in MATH23K and 3,320
samples in MAWPS, on which a group of solvers
has been developed (Xie and Sun, 2019a; Wu et
al., 2020; Shen and Jin, 2020; Zhang et al., 2020b;
Liang and Zhang, 2021). Our contributed Ara-
bic MWP dataset includes single variable primary-
school MWPs, similar to MATH23K and MAWPS.

2.2. Related Works for Solving MWPs
The development of MWP solving methods can

be roughly divided into two stages. Earlier stud-
ies (Hosseini et al., 2014; Mitra and Baral, 2016)
have attempted to introduce statistical machine
learning methods to deal with MWP. Some re-
searchers (Shi et al., 2015; Huang et al., 2017;

Liang et al., 2018; Zou and Lu, 2019) found that
the semantic parsing method is suitable for dis-
covering effective features which is beneficial for
the generation of solutions. However, these meth-
ods are non-scalable and lack generalizability as
tremendous works are needed to design effective
features and templates.
In recent years, deep learning methods have

become dominant in this area. (Wang et
al., 2017a) first proposed to apply sequence-to-
sequence (Seq2Seq) framework to solve MWP and
achieved satisfactory performance compared with
previous methods. On the one hand, most fol-
lowing works focused on the generation module,
i.e., the decoder. (Wang et al., 2019b) proposed
a two-stage method to decompose the goals into
two parts. (Liu et al., 2019; Xie and Sun, 2019a)
proposed to use a tree structure decoder. (Chi-
ang and Chen, 2018) introduced a stack-related
decoder. Multiple decoder architecture (Zhang et
al., 2020a; Shen and Jin, 2020) was also intro-
duced to improve generation results. On the other
hand, several works (Li et al., 2019a; Wang et al.,
2018) focused on improving the encoding compo-
nent. (Zhang et al., 2020b; Shen and Jin, 2020)
chose to model quantity information with a se-
quential combination of RNN and GNN encoder.
In (Liang and Zhang, 2021), a teacher module is
proposed to make the encoder generate the repre-
sentation matching the correct solution but disac-
cording to the wrong solutions.
With our Arabic MWP dataset and other pub-

licly available MWP datasets, we study for the first
time to use transfer learning to promote the perfor-
mance of low-resource Arabic MWP solver based
on the high-resource solvers.

2.3. Arabic Math Word Problems
Despite the rapid research progress in Chinese

and English MWP solving, there are hardly any
datasets for other languages, Arabic included. For
Arabic MWP solving, only one paper was pub-
lished (Siyam et al., 2017). This paper used statis-
tical approaches to tackle the problem instead of
applying deep learning methods, and the dataset
used is a translation of 500 samples from an English
dataset, instead of one reflecting Arabic culture.

3. Arabic MWP Dataset Creation
Arabic MWPs collection is a non-trivial task.

The Chinese MATH23K dataset was curated by
web crawling plenty of elementary-school, one-
unknown-variable linear math word problems, then
cleaning them, and finally adding equations to
them (Wang et al., 2017b). MAWPS was made
by extending on multiple smaller, previously stud-
ied English datasets, then crawling websites and
adding some more (Koncel-Kedziorski et al., 2016).
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Tag Equation Segmented Question
novel x = 23 ∗ 2 ما عدد فما مثليها سعود واصطاد سمكه 23 علي اصطاد

؟ سعود اصطاده
ما عدد فما مثليها، سعود واصطاد سمكة 23 علي اصطاد

سعود؟ اصطاده
novel x = 18 + 8 طار ان بعد انه علمت اذا الشجره علي كان عصفورا كم

؟ عصفورا 18 بقي 8 منهم
طار انٔ بعد انٔه علمت اذٕا الشجرة، على كان عصفورًا كم

عصفورًا؟ 18 بقي 8 منهم
inspired x = 6 ∗ (2/5) = كيلومترات 6 من (2/5) تساوي كيلومتر كم = كيلومترات 6 من ( 2/5 ) تساوي كيلومتر كم
inspired x = 160 ∗ 35 ؛ زهره 160 صف كل في الازهار من صفا 35 غسان زرع

؟ زرع زهره فكم
زهرة؛ 160 صف كل في الازٔهار، من صفًا 35 غسان زرع

زرع؟ زهرة فكم
inspired x = 50 ∗ 40% . = 50 من 40% .= 50 من ٪ 40
novel x = 188/3.14 ؟ سم 188 محيطها يساوي التي للدائره القطر طول هو ما سم؟ 188 محيطها يساوي التي للدائرة القطر طول هو ما
novel x = 876− 343 = 343 - 876 : قيمه اوجد =343 -876 قيمة: اؤجد

inspired x = 1/8 ؟ 8 ل الضربي النظير هو ما 8؟ ل الضربي النظير هو ما
inspired x = 36/9 في الاشجار عدد فكم ؛ صفوف 9 في مزروعه شجره 36

؟ صف كل
في الاشٔجار عدد فكم صفوف؛ 9 في مزروعة شجرة 36

صف؟ كل
novel x = 677− 563 = 563 - 677 : ناتج اوجد =563 -677 ناتج: اؤجد

Table 2: Samples from the constructed ArMATH dataset

These approaches assume that web crawling is pos-
sible due to data availability in some websites con-
taining questions. Alternatively, smaller datasets
exist and can be cleaned. Both assumptions do
not hold for Arabic. In terms of Arabic content,
no such websites exist for large-scale web crawling.
The Arabic dataset has to be created from scratch.
This paper introduces ArMATH: an Arabic

single variable primary-school MWP dataset writ-
ten in Modern Standard Arabic (MSA). In the
first stage of constructing this dataset, five creative
writers who are native Arabic speakers were hired
to write question-equation pairs resembling the
official Saudi primary-school maths books ques-
tions offered by The Ministry of Education1, ensur-
ing that the questions reflect primary-school level
math and the Arabic people’s names, date system,
food, and cultural events. Mining the questions
from the books only was not feasible for multi-
ple reasons; first, many questions were not single-
variable, single-answer questions. Second, some
included a graph or a figure along the question.
Third, although some questions were taken directly
from the books, they were not enough to make
a large-scale dataset. Therefore, creating more
questions similar to the one officially offered was
needed. After that, two professional translation
agencies worked on translating some MATH23K
samples from Chinese to Arabic. The translation
was not literal but instead captured the idea be-
hind the question, then altered it to fit the Arab
naming as explained above. For instance, Chi-
nese names were changed to Arabic names, and
some fruit names that are not common in the Ara-
bic world were changed. In addition, some of the
translated questions were drastically changed, re-
sulting in a change in the equation. It is better to

1https://moe.gov.sa

think of these samples as inspired by MATH23K,
rather than translated from MATH23K. Finally,
professionals proofread the questions to ensure
grammatical correctness.
To ensure integrity, the question-equation pairs

were verified by a native Arabic speaker and a
Saudi primary school math teacher to check their
correctness. Then, a script ran through the MWP
instance-equation pairs to check whether numbers
appearing in the equation appeared in the MWP
instance. If a number in the equation does not
appear in the instance, we check whether it is a
constant. The script eliminated some hard-to-spot
spelling mistakes, such as writing “122” by mistake
as “112”.
The dataset has many different writing styles

for the questions, sometimes repeating the exact
phrase but asking for a different quantity, which
is desirable. As discussed in a new paper (Patel
et al., 2021), introducing variations on questions is
essential to ensure the model does not treat MWP
as bag-of-words only but also try to understand the
relationship between words.

Table 2 shows samples from the dataset. The
dataset can be found at: https://github.com/
reem-codes/ArMATH. Each sample contains the
question-equation pair and tag information of the
source: novel for creatively written samples and
inspired for MATH23K-inspired samples. In Table
2, segmented is the preprocessed question for faster
use. Preprocessing was done as follows:

• Indian numbers were converted to Arabic
numbers

• Numeric words were converted into numbers:
stand-alone numeric words, such as تفاحات ,ارٔبع
are converted accordingly. However, they are

https://moe.gov.sa
https://github.com/reem-codes/ArMATH
https://github.com/reem-codes/ArMATH
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not detected when it is a part of the word,
such as تفاحتين

• power sign was uniformly defined as ^

• Arabic special characters were mapped to En-
glish ones or eliminated.

• Arabic Tashkeel and madd were removed

• Ha’a and Taa were normalized

• Hamza forms were normalized

• Special characters (e.g., a tab) were converted
accordingly.

• Spacing: adding spaces between numbers,
operations, words, and punctuation for to-
kenization. In addition to spacing frac-
tion/percentages correctly to be detected eas-
ily.

4. ArMATH Dataset Analysis
ArMATH dataset contains 6,000 samples

(question-equation pairs): 3,533 samples are from
creative writing, and 2,467 MATH23K-inspired
samples. The ArMATH dataset was randomly
split into 5 folds, 1,200 samples in each, for future
5-fold cross-validation if needed.
The dataset covers one-variable, primary-school

level questions. The math topics covered in-
clude algebra, percentage, fractions, and geometry.
There are at most 15 variables and 10 constants.
Constants are numbers that do not appear in the
question body but the equation in at least five sam-
ples. These 10 constants are categorized as follows:

• Geometry: 3.14 and 0.5

• Time: 12, 7, 60

• 0-4: numbers used in geometry, counting, and
facts.

Almost all recent deep learning-based MWP
solvers are based on the seq2seq implementation,
which maps a problem into a template first, rather
than mapping the problems into equations directly.
A template is composed of operators and numbers.
If the number appears in the problem description,
it is a variable and is converted into a placeholder
according to its position in the description. Oth-
erwise, it is a constant and is kept as a number
in the template. For example, the template of the
problem shown in Table 1 is N2−N0−N1. We get
the templates once placeholders replace the num-
bers in the questions and their correspondence in
equations. In ArMATH, there are 883 templates in
total. Table 3 shows the most frequent templates.

Template Frequency
N0 / N1 631
N0 - N1 491
N0 * N1 481
N1 * N0 361
N0 + N1 254
N1 / N0 245

(N0 * N1) - N2 175
N1 + N0 162

(N0 / N1) - N2 123
(N0 - N1) + N2 80

Table 3: Top frequent templates in ArMATH

Dataset MATH23K MAWPS ArMATH
Language Chinese English Arabic

# Questions 23,160 3,320 6,000
# Templates 2,187 311 883
# Sentences 70.1K 6.3K 11.2K
# Words 822K - 8.5K

Table 4: MWP datasets comparison

4.1. Datasets Comparison
As discussed earlier, the closest datasets to this

work are MATH23K and MAWPS. Table 4 com-
pares these datasets with the proposed dataset.
The information about the other two datasets
is taken from their respected papers (Koncel-
Kedziorski et al., 2016; Wang et al., 2017b; Wang
et al., 2019a). Although the number of words is
8.5k for ArMATH and 822k for MATH23K, the
number of unique words used in training after pre-
processing is only 2,491 and 3,672 for ArMATH
and MATH23K, respectively. In addition, the sen-
tence count in the ArMATH dataset is not very
well defined, as Arabic sentences do not end in a
period all the time.

Figure 1 is the histogram comparison of tem-
plates for ArMATH and MATH23K. We can see
that the top 10 templates account for half the num-
ber of samples in both datasets. In addition, the
majority of templates appear less than 10 times.
This long-tail distribution implies that training
MWP solvers for problems with infrequent tem-
plates will be much more difficult than those with
frequent templates due to the data vacancy. The
experimental results reflect this difficulty as well.

5. Building Arabic MWP Solvers
5.1. Task Definition
One instance of an MWP can be formally pre-

sented as a pair (P, T ), where P is the problem text
and T is the solution expression tree. Specifically,
- P is a sequence of word tokens and variables af-
ter replacing each number with a placeholder (e.g.,



355

Figure 1: Histogram of the template frequencies
for MATH23K and ArMATH datasets

NUM for Chinese and English and مجهول for Ara-
bic); because the exact numerical values will be
only required later after encoding. The input vo-
cabulary then is simply the collection of word to-
kens in addition to the placeholder of choice.
- T is the expression tree where numbers that ap-
peared in the question are replaced with an or-
dered placeholder (i.e. Nx denoting the xth vari-
able). Expression trees are an excellent representa-
tion for mathematical equations because they en-
sure the generated sequence’s integrity and syntac-
tic correctness by design. The leaf nodes represent
numerical values, and inner nodes the operations
connecting these numbers. The target language
Loutput is simply the constants found in the ques-
tions, in addition to the operations and ordered
placeholders, i.e., Loutput = Lconst ∪ Lop ∪ Lpos,
where Lconst is the set of constants tokens, Lop is
the set of operations, and Lpos is the set of posi-
tional variables.
Although the target language for all datasets

will be the union of the above three, i.e., con-
stants, operations, and positional variables. The
exact language will differ depending on the number
of constants, operations, and ordered placeholders.
For instance, ArMATH contains 10 constants, but
MATH23K only has two. Table 5 shows the out-
put vocabulary for ArMATH and MATH23K. The
language is shared except for the extra constants
in the ArMATH dataset, highlighted in boldface.
The first row shows the operations, the second and
third show the constants, and the last rows are the
positional variables.

− / ∗ + ^
1 2 3 4 3.14
7 0.5 60 12 0
N0 N1 N2 N3 N4
N5 N6 N7 N8 N9
N10 N11 N12 N13 N14

Table 5: Output vocabulary for MATH23K
and ArMATH. Extra constants in the ArMATH
dataset are highlighted in boldface

5.2. Arabic MWP Solvers
The basic GTS solver. GTS (Xie and Sun,

2019b) is a seq2tree goal-driven model that was
initially introduced to solve Chinese MWPs. It has
superior performance over other baselines. There-
fore, we develop an Arabic MWP solver based on
GTS with the training data of ArMATH.

GTS with pre-trained Arabic word em-
bedding. The ArMATH dataset size is limited.
To promote the problem understanding and han-
dle out-of-vocabulary words in testing samples, we
use the pre-trained Arabic word embedding to fa-
cilitate the problem encoding. Fasttext (Joulin et
al., 2016) and aravec (Soliman et al., 2017) are
two pre-trained models for Arabic Word2Vec from
Wikipedia data. Although these models are avail-
able in a corpse trained over Twitter data too, us-
ing wikipedia-trained model was preferred; because
Arabic Wikipedia is available in MSA, while tweets
are normally written in spoken dialects that differs
greatly depending on the author’s country. We will
employ them in the GTS encoder.

GTS with transfer learning. Transfer
learning can improve the performance of a target
task with fewer data (Torrey and Shavlik, 2009)
by leveraging the knowledge to solve tasks in a
data-rich source domain. In NLP, it is often used
for improving tasks in low-resource languages
(target domain) by transferring the knowledge
learned from the high-resource input language
(source domain) (Zoph et al., 2016). In our
setting, the source task is Chinese MWP with
23K samples, and the target task is Arabic MWP
with 6K samples in ArMATH. The desired output
of the source and target task is similar, as they
both output math equations; the difference will
generally be the number of variables and the con-
stants. We build the solver by first training GTS
over the Chinese MATH23K dataset. Then, the
weights will be used to initialize the Arabic solver.
There are two possible settings here: 1) transfer-
ring the weights for the decoder initialization
only; 2) transferring the weights for
both encoder and decoder initialization. Then the
solver is fine-tuned by the ArMATH dataset.
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We will compare the performance of all the
solvers in the next section.

6. Evaluation & Results
6.1. Implementation Setup
For training settings, the default GTS configu-

rations were used initially (Xie and Sun, 2019b):
the dimensionality of all hidden states is set to 512
and the dropout rate to 0.5. For the beam search,
the beam size is set to 5. The model is trained for
80 epochs with mini-batch size 64 using Adam op-
timizer (Kingma and Ba, 2017) and cross-entropy
loss. The initial learning rate is 0.001 and is di-
vided by two every 20 epochs. The weight decay
is set to 0.00001.

6.2. Evaluation Metrics
For evaluation, multiple settings were compared

against each other, namely, different embedding
sizes, different trim counts, and different embed-
ding lookup tables. The accuracy for the equa-
tion and answers were recorded after 5-fold cross-
validation.
The equation accuracy is the accuracy of gener-

ating the same equation as the ground-truth. How-
ever, an MWP can usually have multiple correct
equations. For example, the following equations
are all equivalent.

x * (y + z), x * (z + y), (y + z) * x, (z + y) * x,
x * y + x * z, x * z + x * y, y * x + x * z,
x * z + y * x, y * x + z * x, z * x + y * x

Therefore, answer accuracy is also computed.

6.3. Experimental Results
6.3.1. The Performance of Arabic MWP

solver based on GTS
In the GTS model (Xie and Sun, 2019b), each

input word is embedded as a d-dim vector (e.g.,
d = 128), and input words that appear less than t
times can be converted into an unknown word to-
ken to improve performance by reducing the num-
ber of rare words. In this case, t is referred to as
the trim count. We evaluate the performance of
the Arabic MWP solver based on GTS trained on
the ArMATH dataset when different embedding
dimensions d and trimming count t are used. The
results are presented in Table 6.
The above standard GTS model cannot handle

new words and rare words well since it converts
them to unknown. We employ the pre-trained
model aravec (Soliman et al., 2017) and fasttext
(Joulin et al., 2016) to replace the word embed-
ding module in GTS. GTS is expected to work well
on taking the pre-trained word embedding vectors
and optimizing the MWP solver to handle prob-
lems with new and rare words. Different versions

of embedding in aravec are evaluated, e.g., the us-
age of n-gram or unigram, the usage of CBOW
(continuous bag of words) or SG (skip-gram), and
the embedding dimension 100 or 300. The 5-fold
results are shown with their confidence intervals.
The best model from each group is highlighted in
bold text.
The pretrained model aravec (Soliman et al.,

2017) and fasttext (Joulin et al., 2016) cannot em-
bed operations. Thus, operations were mapped
into their actual names. For instance, the multi-
plication sign (×) was changed into ضرب (i.e. mul-
tiplication).
From Table 6 we can have the following ob-

servations. The performance when no words are
trimmed (t=1) for embedding size of 100 is 56.37%
for equation accuracy and 68.5% for answer accu-
racy. Similarly, the equation and answer accura-
cies are 58.78% and 71.48%, respectively, for em-
bedding dimensionality of 128 and no trimming
(t=1). On the other hand, trimming words that
appeared less than 7 times improved the perfor-
mance when the embedding size was 300, with
59% equation accuracy and 71.23% answer accu-
racy. The best answer accuracy was for embed-
ding dimensionality of 128 and no trimming. How-
ever, the best equation accuracy was when the trim
count is 7 and embedding dimensionality is 300.
For the aravec models, no clear relationship be-

tween different patterns is observed. For instance,
an embedding size of 300 is usually better than
100, but that is not the case for the n-gram con-
tinuous bag-of-words (CBOW). Similarly, CBOW
is better than skip-gram (SG) models, except for
the n-gram sg model with embedding size 300. Fi-
nally, unigram models are better than their n-gram
model only half of the time.
The best aravec model was the CBOW n-gram

model with embedding side equals 100; from here
on, this model will be referred to as the aravec
model for simplicity. The equation and answer ac-
curacies were 58.75% and 71.17%, respectively. In
comparison, fasttext model accuracies were 56.30%
and 68.58% for equation and answer, respectively.

6.3.2. Arabic MAP Solver by Transfer
Learning

The motivation here is to transfer the GTS
model trained by vast Chinese MWPs to build the
GTS model of Arabic MWPs. First, GTS was
trained over the Chinese MATH23K dataset, pre-
cisely as described in (Xie and Sun, 2019b). Then,
the GTS weights were used to initialize the Arabic
GTS models. Two settings were tested: transfer-
ring the weights of the decoder only and trans-
ferring the weights of both the encoder and de-
coder. Although the latter can work for closely re-
lated languages (Nguyen and Chiang, 2017), Ara-
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Model Equation Accuracy Answer Accuracy

GTS

d=100, t=1 56.37 ± 2.03 68.50 ± 2.00
d=100, t=3 55.62± 0.53 67.57± 0.90
d=100, t=5 55.87± 2.05 67.83± 2.33
d=100, t=7 56.03± 1.62 68.37± 0.87
d=128, t=1 58.78 ± 1.30 71.48 ± 1.73
d=128, t=3 58.67± 1.33 71.42± 1.67
d=128, t=5 58.72± 2.20 71.08± 2.08
d=128, t=7 58.42± 1.25 71.20± 1.30
d=300, t=1 57.92± 2.67 70.30± 2.12
d=300, t=3 57.60± 2.98 69.73± 2.43
d=300, t=5 57.38± 1.53 69.77± 1.48
d=300, t=7 59.00 ± 1.50 71.23 ± 0.85
n-grams cbow, d=100 58.75 ± 2.67 71.17 ± 2.58
n-grams cbow, d=300 56.80± 4.28 69.43± 4.32

GTS n-grams sg, d=, d=100 55.97± 2.95 67.95± 3.80
with n-grams sg, d=300 57.18± 1.85 70.30± 1.13
aravec unigram cbow, d=100 56.80± 2.70 69.23± 3.60

unigram cbow, d=300 57.12± 3.63 69.77± 3.40
unigram sg, d=100 55.70± 3.22 67.90± 4.27
unigram sg, d=300 56.22± 1.63 68.68± 2.10

GTS with fasttext 56.30± 1.28 68.58± 2.25

Table 6: Performance of Arabic MWP solver based on GTS trained on ArMATH dataset (without transfer
learning). GTS is evaluated with different word embedding dimensionality d and trim size t. GTS with
Arabic word embedding from aravec and fasttext are also evaluated. Different versions of embedding
in aravec are employed, e.g., the usage of n-gram or unigram, the usage of CBOW (continuous bag of
words) or SG (skip-gram), and the embedding dimension 100 or 300. The best model from each group is
highlighted in bold text.

Model Equation accuracy Answer accuracy
GTS no transfer 58.75± 2.67 71.17± 2.58
aravec T-(encoder,decoder) 59.33± 3.57 71.97± 2.78

T-decoder only 61.02 ± 1.88 74.15 ± 1.77
GTS no transfer 56.30± 1.28 68.58± 2.25

fasttext T-(encoder,decoder) 56.58± 2.25 69.35± 1.15
T-decoder only 59.25± 2.10 71.95± 1.40

GTS no transfer 58.78± 1.30 71.48± 1.73
embedding T-(encoder,decoder) 58.18± 1.65 71.10± 0.92
d=128 T-decoder only 59.88± 1.12 72.55± 1.28
GTS no transfer 59.00± 1.50 71.23± 0.85

embedding T-(encoder,decoder) 58.98± 1.52 71.57± 1.42
d=300 T-decoder only 60.08± 1.17 72.40± 1.27

Table 7: Evaluating MWP solvers with and without transfer learning. The decoder weight transfer is
better than no-transfer and (encoder,decoder) weight transfer.

bic and Chinese are too different, the performance
of transferring the weights of the encoder made the
performance suffer.
The overall comparison is presented in Table 7.

Across all models, the GTS with aravec pretrain-
ing and decoder transfer had the best performance,
reaching 61.02% and 74.15% for equation and an-
swer accuracies. Comparing the results with and
without transfer, the decoder weight transfer does
help. Since Arabic and Chinese are very different,

it is reasonable that decoder weight transfer is bet-
ter than both encoder and decoder weight transfer.

Figure 2 compares decoder-transferred and non-
transferred GTS with aravec pretrained embedding
on MWPs at different template frequency. The
x-axis represents the template frequencies in in-
creasing order, while the y-axis represents answer
accuracy. Each point is a template; textual anno-
tations are provided as examples. The figure shows
that transfer learning improved the performance,
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Figure 2: Comparison of decoder-transferred and
non-transferred GTS with aravec pretrained em-
bedding on MWPs at different template frequency.

especially for MWPs with templates in a low or
medium frequency. This can be well justified be-
cause the transferred decoder is more helpful when
solving MWPs with fewer samples.

Figure 3: Accuracy compared w.r.t. the template
frequency. Decoder-transferred GTS is better than
non-transferred GTS, especially on templates with
low and median frequency.

To further understand the effectiveness of trans-
fer learning on MWPs compared to the differ-
ent frequency-level of their templates, we show in
Figure 3 the averaged answer accuracy in vary-
ing intervals of template frequencies. For low
or medium frequency templates, we can see that
transfer learning increased the performance by as
much as 25%!
A detailed error analysis is available in the ap-
pendix.

7. Conclusion and Future Work
In this paper, the first large-scale Arabic Math

Word Problem dataset (ArMATH) was collected.
It contains 6,000 samples representing 883 tem-
plates. In addition, a transfer learning model from
Chinese to Arabic was implemented. This work
is the first to use deep learning methods to solve
Arabic MWP and the first to use transfer learn-
ing to promote low-resource MWPs. The accuracy

of the model based on transfer learning is 74.15%,
which is 3% higher than the baseline that does not
use transfer learning. In addition, the accuracy is
more than 7% higher than the baseline for tem-
plates with few samples representing them. Fur-
thermore, the model can generate new sequences
that were not seen before during the training with
an accuracy of 27%, 11% higher than the baseline.
For the dataset, more samples can be gathered,

translated, or augmented. In terms of the model
itself, a model focusing on solving the issues of
GTS might be helpful. Namely, the issue of low
accuracy in few-shot samples. In addition, mod-
els that solve issues in general seq2seq/seq2tree
models might work better. Such as using trans-
former2tree models (Harer et al., 2019) or apply-
ing efficient deep learning methods such as compo-
sitional learning for translation (Li et al., 2019b).
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Appendix
A. Qualitative Results & Error

Analysis
The following section compares the qualita-

tive results of the aravec model with no transfer
learning against the decoder-only transfer learning
model. In terms of the qualitative results, there
are certain interesting cases. Table 8 shows some
correct samples randomly selected. The first type
of question was an algebraic one. Although both
models did not predict the exact equation, their
prediction was correct. Then, the next two ques-
tions are geometry, one of them is a direct ques-
tion, and the other is indirect. In addition, both of
them use constants. The transfer learning model
predicted them both correctly, while the baseline
model failed the circle question. The last two ques-
tions are general math word problems. The last
one is fascinating: the model understood that “all
birds flying” = “none is left on the tree”.

Table 9 shows some incorrect samples randomly
selected. There are 4 cases of incorrectness ob-
served: first, flipping the operands while using di-
vision or subtraction. Unlike multiplication and
addition, division and subtraction are not commu-
tative. So N0−N1 ̸= N1−N0. The second error
that could occur is over-complication, as shown in
the third example. Over-simplification does not
seem to be an issue. However, incorrectness due to
missing one more constant or operation can hap-
pen. Lastly, it can be incorrect because it is simply
incorrect.

Finally, Table 10 shows some interestingly incor-
rect samples. The first striking error is tricky or
ambiguous questions. Depending on the question’s
meaning, the predicted equation may be correct
in the first three examples. Secondly, some errors
could occur due to out-of-vocabulary words in the
question that convey important concepts. The last
row is an example of such a case.
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Table 8: Qualitative results - correct samples
Question . مجهول زائد مجهول في مجهول حاصل

product of NUM * NUM + NUM
Equation ((N0 ∗N1) +N2)

aravec no transfer ((N1 ∗N0) +N2) | Correct
aravec T-decoder only ((N1 ∗N0) +N2) | Correct

Question سم مجهول هو محيطها ان علمت اذا الدائره مساحه اوجد
Find the area of the circle if its circumference is NUM cm

Equation (3.14 ∗ ((N0/(2 ∗ 3.14))^2))
aravec no transfer (3.14 ∗ ((N0/2)^2)) | Incorrect

aravec T-decoder only (3.14 ∗ ((N0/(2 ∗ 3.14))^2)) | Correct
Question ؟ السور هذا طول يبلغ فكم حولها سورا يبني ان صاحبها اراد امتار مجهول ضلعها طول الشكل مربعه ارض قطعه

The length of one side in a square land is NUM m. If the landowner
wanted to build a fence around it, how long should it be?

Equation (N0 ∗ 4)
aravec no transfer (4 ∗N0) | Correct

aravec T-decoder only (4 ∗N0) | Correct
Question فما اسابيع مجهول مدار علي الاسبوع في ايام مجهول لمده اليوم في دقيقه مجهول القدم كره ملعب علي عدنان تدرب

؟ بالدقائق بالتدريب عدنان قضاها التي المده
Adnan practiced football for NUM minutes a day for NUM days in a week
for NUM weeks. How many minutes did he spend practicing?

Equation (N2 ∗ (N1 ∗N0))
aravec no transfer ((N0 ∗N1) +N2) | Incorrect

aravec T-decoder only ((N0 ∗N1) ∗N2) | Correct
Question ؟ الشجره علي بقي طائرا فكم الغصن عن كلها طارت شجره غصن علي طيور مجهول تقف

NUM birds are standing on a tree branch, all of them flew away. How
many birds are left on the branch?

Equation (N0−N0)
aravec no transfer (N0−N0) | Correct
Transfer Learning (N0−N0) | Correct

Table 9: Qualitative results - incorrect samples
Question ؟ فطيره كل خبز يستغرق ساعه فكم ساعه مجهول في فطيره مجهول علي يخبز

Ali bakes NUM pies in NUM hours. How long does it take to bake a pie?
Equation (N1/N0)

aravec no transfer (N0/N1) | Incorrect
Transfer Learning (N0/N1) | Incorrect

Question ؟ مربع سم مجهول هي مساحتها ان علمت اذا الدائره قطر هو ما
What is the diameter if the circle’s area is NUM cm squared?

Equation (2 ∗ ((N0/3.14)^0.5))
aravec no transfer ((N0/3.14)^0.5) | Incorrect
Transfer Learning ((N0/3.14)^0.5) | Incorrect

Question بلغ الذكور من الرياض منطقه في الاطباء عدد ان الي ه مجهول لعام الصحه لوزاره السنوي الاحصائي الكتاب يشير
؟ الاناث عن الذكور الاطباء عدد يزيد فكم طبيبات مجهول الاناث ومن طبيبا مجهول
The official ministry of health’s statistics for the year NUM show NUM
male doctors in Riyadh and NUM female doctors. By how many is the
number of male doctors larger than female ones?

Equation (N1−N2)
aravec no transfer (N0− (N1 +N2)) | Incorrect

aravec T-decoder only (N0− (N1 +N2)) | Incorrect
Question . مجهول قسمه ( مجهول ناقص مجهول زائد مجهول ضرب ( مجهول ناقص مجهول ) قسمه مجهول

NUM / (NUM - NUM) * NUM + (NUM - NUM) / NUM
Equation (N0/(((N1−N2) ∗N3) + ((N4−N5)/N6)))

aravec no transfer (((N0/(N1−N2)) + ((N1−N2) ∗N3))/(N5/N6)) | Incorrect
aravec T-decoder only (((N0/(N1−N2))− (N2 ∗N3))/N6) | Incorrect



362

Table 10: Qualitative results - interesting incorrect samples
Question ؟ العماره هذه في طابقا فكم تحته طوابق مجهول و فوقه طوابق مجهول هنالك كان اذا جديده شقه الي خالي انتقل

My uncle moved to a new apartment. If there are NUM floors above him
and NUM floors below him. How many floors are there in this building?

Equation ((N0 +N1) + 1)
aravec no transfer (N0 +N1) | Incorrect

aravec T-decoder only (N0 +N1) | Incorrect
Question = مرات مجهول زياده بعد مجهول

NUM after increasing NUM times =
Equation (N0 ∗ (N1 + 1))

aravec no transfer (N0 ∗N1) | Incorrect
aravec T-decoder only (N0 ∗N1) | Incorrect

Question ؟ مجهول علي مقسومه مجهول منها مطروح مجهول : ناتج اوجد
Find the answer: NUM minus NUM divided by NUM

Equation (N0− (N1/N2))
aravec no transfer ((N0−N1)/N2) | Incorrect

aravec T-decoder only ((N0−N1)/N2) | Incorrect
Question الريال فئه من . . ريالات مجهول فئه من اوراق مجهول و خالد اخيها ولدي ريالات مجهول فئه من ورقتان مني لدي

؟ لديهما ما مجموع فما مجهول
Muna has two NUM $ notes. Her brother Khalid NUM NUM $ notes and
UNK UNK of NUM $. What is the total of what they have?

Equation (((2 ∗N0) + (N1 ∗N2)) + (2 ∗N3))
aravec no transfer (((2 ∗ 2) + 1) + (N2 ∗N3)) | Incorrect

aravec T-decoder only (((2 + 1) + 1) + (2 ∗N3)) | Incorrect
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