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Abstract

Open-world classification in dialog systems re-
quire models to detect open intents, while en-
suring the quality of in-domain (ID) intent clas-
sification. In this work, we revisit methods
that leverage distance-based statistics for unsu-
pervised out-of-domain (OOD) detection. We
show that despite their superior performance
on threshold-independent metrics like AUROC
on test-set, threshold values chosen based on
the performance on a validation-set do not gen-
eralize well to the test-set, thus resulting in
substantially lower performance on ID or OOD
detection accuracy and F1-scores. Our analysis
shows that this lack of generalizability can be
successfully mitigated by setting aside a hold-
out set from validation data for threshold se-
lection (sometimes achieving relative gains as
high as 100%). Extensive experiments on seven
benchmark datasets show that this fix puts the
performance of these methods at par with, or
sometimes even better than, the current state-
of-the-art OOD detection techniques.

1 Introduction

Open intent detection is of significant importance
in practical dialog systems. Prior art (Zhang et al.,
2021a) has shown that an intent classifier’s perfor-
mance degrades when it encounters examples of
an unseen intent. Open-world classification (Fei
and Liu, 2016) tries to mitigate this by not only
correctly classifying data that appeared in training
(ID), but also detecting examples that are not a part
of any existing class (OOD). Schölkopf et al. (2001)
and Tax and Duin (2004) use SVMs to find the deci-
sion boundary of each positive class (ID). Bendale
and Boult (2016) leverage deep neural networks to
learn representations that capture high-level seman-
tic concepts. To detect OOD samples, Hendrycks
and Gimpel (2017) use the softmax probability as
the confidence score, where some negative samples
are used for confidence threshold discovery. Other
works (Zhou et al., 2021; Ren et al., 2021; Podol-

skiy et al., 2021; Zhan et al., 2021) use the distance
between a new sample and the ID distributions to
define their confidence scores. Whereas, Zhang
et al. (2021a) learn an adaptive decision boundary
(ADB) of each positive class by only using ID data
and thus removing the dependence on a confidence-
score completely.

Threshold-based OOD detection allows for more
control, especially in scenarios where correctly pre-
dicting ID intents takes priority over detecting nega-
tives or vice-versa. This has motivated researchers
to evaluate confidence-based methods on threshold-
independent metrics like Area Under ROC curve
(AUROC) or Area Under PR curve (AUPR) on
test-sets for an unbiased comparison. This is espe-
cially true for works on distance-based (e.g. Ma-
halanobis distance, Cosine similarity) confidence-
scores (Zhan et al., 2021; Ren et al., 2021; Zhou
et al., 2021), which seldom comment on the thresh-
old selection criteria or the threshold-dependent
performance of the underlying method and thus
fail to reveal much about their practical utility.

In this work, we evaluate state-of-the-art ap-
proaches that use distance-based statistics (DBS) to
arrive at confidence-scores for Open-World Clas-
sification. Unlike previous works, we specifically
focus on their performance on threshold-dependent
metrics. We show that threshold values (δ) cho-
sen based on the performance on the validation-set,
used to tune the classifier, do not generalize well
on the test-set. This results in poor test-set ID/OOD

Accuracy and F1-scores as compared to confidence-
score-independent techniques like ADB on multi-
ple benchmark datasets. We analyse this lack of
generalizability and propose the use of a hold-out
set of ID samples from validation data for thresh-
old selection. This fix improves the threshold-
dependent performance of DBS approaches putting
their test accuracy and F1-scores on ID/OOD detec-
tion at par with, or sometimes even better, than pre-
viously proposed open-classification techniques.
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2 Methodology

We explore multiple state-of-the-art strategies for
unsupervised open-world intent classification. The
term unsupervised here refers to the absence of
open-intent samples during training. We con-
sider two approaches that leverage logit-based
statistics (LBS) as their confidence-score (i.e. Max-
imum Softmax Probability and Energy), two DBS

approaches (i.e. Mahalanobis distance and Co-
sine similarity), and Adaptive Decision Boundary
(ADB) that does not rely on confidence-scores.

Maximum Softmax Probability (MSP). Several
prior works adopt this method as a baseline for
OOD detection (Hendrycks and Gimpel, 2017; Hsu
et al., 2020; Hendrycks et al., 2020). MSP uses
the maximum class probability 1 − maxCj=1(pj)
among C training classes as its OOD indicator. pj
denotes the probability of jth class.

Energy. Liu et al. (2020) show that energy scores
not only better distinguish ID and OOD samples
than softmax scores, but also align with the proba-
bility density of the inputs. A higher energy score
indicates a higher likelihood of OODness.

Mahalanobis Distance (Maha) can be used to
calculate the distance of an input sample to a dis-
tribution of samples from class c. We follow (Lee
et al., 2018; Zhou et al., 2021) to compute the Ma-
halanobis distance from the penultimate layer of
the transformer model by fitting a class-conditional
multivariate Gaussian distribution. Finally, the
OOD score for an instance is calculated as the mini-
mum Mahalanobis distance among the C classes.

Cosine Similarity (Zhou et al., 2021). The OOD

score is calculated as the negative of the maximum
cosine similarity between an instance at inference
time and samples in the validation set.

Adaptive Decision Boundary (ADB) (Zhang et al.,
2021a) does not rely on an OOD score for open-
world classification. This approach aims to learn
the euclidean distance decision boundaries for
every seen class using the representations ex-
tracted from the pre-trained multi-class classifi-
cation model trained on labeled ID training data.
These spherical decision boundaries act as the dis-
tinction between ID and OOD samples.

Dataset TRAIN-ID VAL-ID VAL-OOD TEST-ID TEST-OOD

CLINC 15,000 3,000 100 4,500 1,000
ROSTD 30,000 4,000 1,500 8,600 3,000
BANK77OOS 5,905 1,506 730 2,000 2,080
OOSBANK 500 500 600 500 1,350
OOSCREDIT 500 500 600 500 1,350
BANK 9,003 1,000 - 3,080 -
SO 12,000 2,000 - 6,000 -

Table 1: Data Statistics (SO = STACKOVERFLOW). -ID and
-OOD refer to the in-domain and out-of-domain utterances
present in each split.

3 Experimental Setup

3.1 Data
We evaluate the open-world intent classification
strategies on six challenging benchmark datasets.
Table 1 provides details on dataset statistics.

CLINC contains 150 intents, 22,500 ID queries and
1,200 OOD queries (Larson et al., 2019).

BANK includes 13,083 customer service queries
across 77 intents in the banking domain (Casanueva
et al., 2020).

STACKOVERFLOW (Xu et al., 2015) contains 20
different classes of technical question titles. BANK

and STACKOVERFLOW do not contain explicit OOD

utterances, so we follow (Shu et al., 2017; Zhang
et al., 2021a) and only consider 75% samples from
all the classes as seen classes.

ROSTD extends the English part of multilingual
dialog dataset (Schuster et al., 2019) with OOD

utterances. Following Gangal et al. (2020), we
evaluate the different techniques on the variant with
12 fine-grained ID classes.

Zhang et al. (2021b) proposed two datasets. The
first contains utterances from two domains, i.e., the
"Banking” (OOSBANK) and "Credit cards” domain
(OOSCREDIT) with both (1) out-of-domain and
out-of-scope (OOD-OOS) queries and (2) in-domain
but out-of-scope (ID-OOS) queries. The second
dataset (BANK77OOS) extends BANK to include
ID-OOS queries based on 27 held-out semantically
similar in-scope intents. We combine both OOD-
OOS and ID-OOS into a common OOD class.

3.2 Evaluation Metrics
We evaluate the performance of different open-
world classification techniques on threshold-
independent metrics like AUROC and AUPRout.
Following previous work (Shu et al., 2017; Lin
and Xu, 2019), we also evaluate the overall perfor-
mance on accuracy (Acc) and macro F1-score on
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Performance on VAL (Pipeline 1) / VAL-HOLD (Pipeline 2) Performance on TEST set (Pipeline 1 / Pipeline 2)

AUROC ↑ AUPRout ↑ F1All ↑ F1In ↑ F1Out ↑ Acc ↑ AUROC ↑ AUPRout ↑ F1All ↑ F1In ↑ F1Out ↑ Acc ↑

CLINC

MSP 96.2 / 96.4 62.2 / 82.6 96.4 / 95.0 96.7 / 95.2 60.7 / 74.5 95.4 / 93.6 96.5 / 96.7 87.4 / 87.8 93.0 / 93.6 93.2 / 93.7 75.3 / 77.6 90.1 / 90.9
Energy 96.8 / 97.1 68.9 / 87.3 96.5 / 95.4 96.7 / 95.5 66.3 / 79.5 95.8 / 94.2 97.0 / 97.1 89.8 / 90.2 93.2 / 94.0 93.3 / 94.1 77.5 / 80.9 90.6 / 91.8
Cosine 100.0 / 98.1 100.0 / 88.7 97.2 / 95.4 97.2 / 95.5 100.0 / 80.9 97.0 / 94.5 97.4 / 97.4 90.1 / 90.1 53.8 / 94.1 53.9 / 94.2 43.9 / 81.5 52.3 / 91.8
Maha 99.7 / 98.3 98.2 / 89.6 97.4 / 95.6 97.6 / 95.7 80.8 / 83.3 97.0 / 94.8 97.6 / 97.6 90.9 / 90.8 87.9 / 94.2 88.0 / 94.3 69.2 / 82.1 83.7 / 92.1

ROSTD

MSP 89.8 / 91.1 82.0 / 92.5 91.4 / 88.7 93.2 / 89.9 69.9 / 73.6 87.1 / 78.0 89.1 / 90.2 81.6 / 82.4 91.1 / 90.5 93.0 / 92.2 68.7 / 69.8 87.0 / 87.1
Energy 89.7 / 91.5 83.9 / 93.4 92.2 / 89.0 94.0 / 90.4 69.8 / 72.9 87.4 / 77.9 89.0 / 90.7 83.1 / 85.0 91.9 / 91.3 93.8 / 93.1 68.7 / 69.7 87.2 / 87.3
Cosine 100.0 / 99.5 100.0 / 99.6 97.8 / 96.7 97.6 / 96.7 100.0 / 96.7 99.0 / 96.5 99.5 / 99.4 98.5 / 98.4 59.2 / 95.6 58.7 / 95.7 64.4 / 94.2 69.3 / 96.8
Maha 99.9 / 99.6 99.8 / 99.6 97.8 / 97.1 97.7 / 97.1 99.5 / 97.1 99.0 / 96.9 99.6 / 99.5 98.8 / 98.7 86.7 / 95.7 86.4 / 95.8 90.1 / 94.8 94.2 / 96.9

BANK77OOS

MSP 87.9 / 87.6 79.8 / 91.5 82.2 / 74.4 82.4 / 74.3 72.1 / 80.7 79.0 / 76.8 90.6 / 89.8 91.6 / 91.2 78.3 / 77.8 78.3 / 77.7 82.1 / 82.1 79.7 / 79.5
Energy 90.0 / 89.8 84.0 / 93.3 83.1 / 76.1 83.2 / 75.9 75.6 / 84.2 80.5 / 79.9 92.3 / 91.7 93.5 / 93.1 79.5 / 79.5 79.4 / 79.4 84.5 / 85.0 81.5 / 82.0
Cosine 100.0 / 91.8 100.0 / 94.2 89.9 / 77.5 89.7 / 77.3 100.0 / 86.7 93.0 / 82.3 93.5 / 93.6 94.1 / 94.1 7.3 / 80.0 6.0 / 79.9 68.3 / 86.7 52.5 / 83.1
Maha 99.3 / 92.3 99.3 / 94.7 89.5 / 77.7 89.4 / 77.5 96.5 / 87.4 91.6 / 82.9 94.2 / 94.1 94.9 / 94.7 57.8 / 80.1 57.4 / 79.9 78.7 / 87.3 71.6 / 83.4

OOSBANK

MSP 90.0 / 90.0 92.3 / 95.6 85.9 / 81.9 86.5 / 81.6 80.4 / 84.8 81.0 / 80.8 93.5 / 93.8 97.2 / 97.3 83.3 / 83.5 82.6 / 82.7 90.6 / 91.9 86.8 / 88.2
Energy 88.6 / 88.8 92.0 / 95.4 85.7 / 79.5 86.4 / 79.2 78.9 / 82.7 80.1 / 78.5 93.3 / 93.9 97.5 / 97.7 83.4 / 82.0 82.7 / 81.1 90.3 / 91.2 86.4 / 87.5
Cosine 100.0 / 94.4 100.0 / 97.2 99.1 / 84.0 99.0 / 83.4 100.0 / 90.3 99.7 / 86.8 96.0 / 96.2 98.3 / 98.3 31.5 / 84.2 25.9 / 83.2 86.8 / 93.7 77.7 / 90.7
Maha 100.0 / 94.6 100.0 / 97.4 99.1 / 84.7 99.0 / 84.1 100.0 / 91.0 99.7 / 87.8 96.6 / 96.6 98.6 / 98.6 20.7 / 84.2 14.3 / 83.2 85.6 / 93.9 75.4 / 91.0

OOSCREDIT

softmax 89.1 / 90.8 90.6 / 95.4 83.1 / 80.3 83.4 / 79.7 80.4 / 86.3 80.9 / 82.3 93.4 / 94.1 97.0 / 97.2 81.2 / 82.7 80.3 / 81.8 90.0 / 91.9 86.4 / 88.7
energy 87.9 / 89.6 90.7 / 95.2 82.2 / 77.5 82.7 / 77.1 76.8 / 81.7 78.5 / 77.6 93.2 / 93.9 97.2 / 97.5 80.5 / 81.5 79.7 / 80.6 88.4 / 90.2 84.6 / 86.7
cosine 100.0 / 94.9 100.0 / 97.0 98.4 / 86.7 98.3 / 86.2 100.0 / 92.5 99.1 / 89.7 96.4 / 96.5 98.2 / 98.2 44.3 / 88.4 39.8 / 87.7 88.7 / 95.4 81.3 / 93.2
maha 100.0 / 95.4 100.0 / 97.4 98.4 / 87.6 98.3 / 87.0 100.0 / 93.3 99.1 / 90.7 97.2 / 97.1 98.7 / 98.7 61.1 / 88.8 58.1 / 88.1 91.1 / 95.6 85.6 / 93.7

BANK-75%

MSP 88.2 / 89.2 71.3 / 74.8 88.6 / 88.0 89.0 / 88.3 66.0 / 66.0 83.1 / 83.1 86.7 / 87.1 69.7 / 69.9 87.8 / 87.5 88.2 / 87.9 64.5 / 63.1 82.2 / 81.6
Energy 88.2 / 89.4 73.5 / 78.0 88.9 / 88.1 89.3 / 88.5 66.5 / 69.6 83.4 / 84.0 86.5 / 86.8 71.5 / 71.5 87.9 / 87.2 88.3 / 87.6 65.8 / 66.7 82.5 / 82.4
Cosine 100.0 / 91.7 100.0 / 79.4 95.6 / 89.0 95.5 / 89.3 100.0 / 73.4 96.6 / 85.6 89.9 / 89.5 74.8 / 74.2 23.7 / 88.4 23.3 / 88.7 43.6 / 69.9 36.3 / 83.6
Maha 100.0 / 92.2 100.0 / 80.1 95.6 / 89.4 95.5 / 89.6 100.0 / 77.3 96.6 / 86.5 90.6 / 90.4 74.8 / 74.9 37.8 / 87.9 37.7 / 88.2 47.1 / 72.1 44.3 / 83.7

STACKOVERFLOW-75%

MSP 90.0 / 90.1 68.5 / 68.3 86.7 / 85.9 87.7 / 86.8 71.8 / 71.3 83.1 / 82.8 90.0 / 90.5 68.5 / 69.3 86.7 / 86.8 87.7 / 87.8 71.5 / 71.8 83.1 / 83.4
Energy 90.7 / 90.8 69.6 / 69.2 87.3 / 86.5 88.2 / 87.4 73.4 / 72.8 84.0 / 83.5 90.6 / 91.2 69.6 / 70.4 87.1 / 87.2 88.1 / 88.2 72.9 / 73.3 83.7 / 84.0
Cosine 100.0 / 91.5 100.0 / 69.2 91.4 / 87.0 90.8 / 87.8 100.0 / 75.0 93.1 / 84.4 91.9 / 92.0 70.6 / 71.6 28.2 / 87.9 27.1 / 88.7 45.9 / 75.7 39.9 / 84.9
Maha 99.7 / 91.6 99.6 / 69.7 91.3 / 87.1 91.0 / 87.9 96.0 / 75.4 92.4 / 84.4 91.9 / 92.2 69.7 / 71.5 74.7 / 87.8 75.4 / 88.6 63.9 / 75.7 71.8 / 84.9

Table 2: OOD detection performance of confidence-score based techniques on different benchmark datasets (↑: higher is better).
Test F1All and Acc scores for the best performing pipeline are underlined. Highest scores on the datasets are in bold.1,2 Models
that leverage distance-based scores (DBS; Maha and Cosine) and are trained using Pipeline 1 consistently perform poorly on
threshold-depenedent metrics on the test-set. Furthermore DBS models that use Pipeline 2 substantially outperform their Pipeline
1 counterparts on all datasets (Columns 10-13; green ).

known classes (F1In), open class (F1Out), and all
classes combined (F1All). The latter four metrics
can only be calculated once a threshold is chosen.

3.3 Hyperparameters

We leverage the RoBERTa-base model imple-
mented in the HuggingFace library for classifi-
cation and use most of the default hyperparam-
eters.3 We experiment with training batch sizes
{32, 64, 128}. Model with batch size 64 performs
the best across all datasets. The learning rate for
ID classifier training is set to 2e-5. 4

3.4 Holdout set for threshold selection
Prior open-world classification research (Lin and
Xu, 2019; Zhang et al., 2021a,b) uses the ID (VAL-

1Each result is an average of 10 runs with different seeds.
2Scores on VAL cannot be compared to VAL-HOLD

(columns 2-7).
3https://huggingface.co/roberta-base
4All experiments are run on a Tesla V100 16GB GPU.

ID) and OOD (VAL-OOD) samples in the validation
data for threshold (δ) selection (Pipeline 1). We
also experiment with a second setup that splits VAL-
ID into two parts. VAL-TUNE-ID is used to tune
the in-domain classifier, whereas the other (VAL-
HOLD-ID), along with VAL-OOD5, helps in decid-
ing δ (Pipeline 2). For each dataset, we randomly
sample one-third of VAL-ID as our VAL-HOLD-ID.

Following prior art (Zhang et al., 2020, 2021b),
we tune δ to maximize (Ain + Roos). Ain and
Roos represent the ID accuracy and the out-of-scope
recall respectively on VAL / VAL-HOLD set.

4 Results and Analysis

Table 2 shows the performance of all compared
methods on both pipelines. We report the averaged
scores on 10 random seeds.6

5VAL-HOLD = VAL-HOLD-ID + VAL-OOD
6We exclude the std. dev. values due to lack of space.
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Figure 1: Maha distance (score) density plots for ID and OOD samples in CLINC
dataset (VAL-OOD = VAL-HOLD-OOD). Top two charts show the density distribution
for the model trained using Pipeline 1, whereas the bottom two focus on the model
that uses Pipeline 2. We note that for Pipeline 1, the curve for VAL-ID looks
substantially different from TEST-ID (top-left), suggesting that the thresholds selected
using VAL-ID (Pipeline 1) might not generalize to the test set. Compare this to
Pipeline 2 in-scope curve (bottom-left), where VAL-HOLD-ID almost exactly mimics
the distribution of TEST-ID scores.

Dataset F1All F1In F1Out Acc

CLINC Maha 94.2 94.3 82.1 92.1
ADB 93.3 93.4 79.3 90.6
ADB-R 94.3 94.4 81.7 92.0

ROSTD Maha 95.7 95.8 94.8 96.9
ADB 95.0 95.7 86.5 93.3
ADB-R 95.1 95.8 86.3 93.3

BANK77OOS Maha 80.1 79.9 87.3 83.4
ADB 78.6 78.5 84.7 81.6
ADB-R 81.1 81.0 87.1 83.9

OOSBANK Maha 84.2 83.2 93.9 91.0
ADB 81.4 80.5 90.0 86.0
ADB-R 81.9 81.1 89.5 85.5

OOSCREDIT Maha 88.8 88.1 95.6 93.7
ADB 82.8 82.0 90.8 87.2
ADB-R 79.4 78.7 86.8 82.8

BANK-75% Maha 87.9 88.2 72.1 83.7
ADB* 86.0 86.3 66.5 81.1
ADB-R 88.4 88.7 69.5 83.4

SO-75% Maha 87.8 88.6 75.7 84.9
ADB* 86.0 86.8 73.9 82.8
ADB-R 87.6 88.5 74.5 84.3

Table 3: Test-set OOD detection perfor-
mance of Cosine and Maha (Pipeline
2), and ADB variants on Accuracy and
different F1-measures. ADB* denotes
the official scores from (Zhang et al.,
2021a). Maha (Pipeline 2) significantly
outperforms (p < 0.01) ADB variants
on ROSTD, OOSBANK, OOSCREDIT, and
STACKOVERFLOW-75% datasets.

Models trained using Pipeline 1. In line with
prior work (Zhou et al., 2021; Podolskiy et al.,
2021), we find that Maha and Cosine perform better
on the threshold-independent metrics (AUROC and
AUPRout) across all datasets. This suggests that
they are better at distinguishing ID instances from
those considered to be OOD.7

Evaluation on threshold-dependent metrics (Acc
and F1 scores) shows that the results obtained by
MSP and Energy (LBS) on the test set do not differ
much from the valid set, suggesting that the chosen
δ generalizes well to unseen data. Compare this to
Cosine and Maha (DBS) whose performance sees
a drastic drop on the test set, despite achieving
better scores on the valid set. This suggests that
thresholds selected using Pipeline 1 for DBS might
not transfer well to data in the wild, making them
less useful in practice for OOD detection.

Models trained using Pipeline 2. On most
datasets, the performance of these models on the
test set mirrors that on the VAL-HOLD set. Further-
more, we see a consistent improvement in test Acc
and F1 scores of all confidence-score methods as
compared to their Pipeline 1 counterparts. Cosine
and Maha see the highest gains, witnessing relative
boosts as high as 100% on BANK-75% and STACK-

7Threshold-independent metrics cannot be calculated for
ADB as it does not use a confidence-score for OOD detection.

OVERFLOW-75%. Overall, thresholds chosen using
Pipeline 2 seem to hold up better on unseen sam-
ples across the board, with Maha outperforming all
other strategies on most datasets.

The top two plots in Figure 1 show the density
plot of Mahalanobis distance values over CLINC ID

and OOD data on VAL and test sets. We observe
that although the distributions of TEST-OOD and
VAL-OOD are quite similar, there are significant
differences between the graphs for ID data (VAL-ID

vs TEST-ID). There seem to be no VAL-ID samples
with Maha score below -3000, whereas for TEST-ID,
a substantial number of instances lie below -3000.
This discrepancy might be a result of the slight
overfitting of the trained ID classifier on VAL-ID

samples as it leverages them for tuning. Compare
this to the bottom two curves (in Figure 2) which
plot Test vs VAL-HOLD instances. The density plots
for both ID and OOD samples are almost identical.
8 Therefore, thresholds selected using VAL-HOLD

are more likely to generalize to the unseen test set.

Comparison against ADB. ADB is the current
state-of-the-art approach for unsupervised OOD de-
tection. In Table 3, we report the performance of
ADB (Zhang et al., 2021a)9 and ADB-R where
we replace the BERT encoder with RoBERTa-base

8We see similar patterns across all datasets, but leave those
figures out for brevity.

9https://github.com/thuiar/Adaptive-Decision-Boundary
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and train the entire encoder during training. Maha
(Pipeline 2) significantly outperforms (p < 0.01)10

ADB and ADB-R on ROSTD, OOSBANK, OOS-
CREDIT, and STACKOVERFLOW-75% while being
competitive with the best performing ADB variant
on the other three datasets.

5 Discussion and Conclusion

In this work, evaluate four confidence-score based
unsupervised OOD detection techniques on seven
state-of-the-art datasets. Most prior research (Zhou
et al., 2021; Podolskiy et al., 2021) on methods that
leverage distance-based statistics like Mahalanobis
distance (Maha) or Cosine similarity (Cosine) only
reports results on threshold-independent metrics
like AUROC or AUPR. However, we show that de-
spite their superior performance on AUROC, these
techniques observe substantially lower scores on
test ID and OOD detection Accuracy and F1-scores,
when the entire validation-set (used to tune the ID

classifier) is leveraged for threshold selection. This
severely limits their practical utility.

Our analysis suggests that this discrepancy might
be a result of the inadvertent overfitting of the
trained classifier on VAL-ID samples. We show
that this issue can be mitigated by leveraging a dif-
ferent evaluation setup that sets aside a hold-out set
(not used during ID classifier tuning) from valida-
tion data for threshold selection. We observe that
this new setup yields generalizable threshold val-
ues thus substantially improving the performance
of Maha and Cosine on threshold-dependent met-
rics and making them more useful in real-world
applications. Going forward, based on these find-
ings, we would like to implore other researchers
to also report the performance of their open-world
classification approaches on threshold-dependent
evaluation metrics, if applicable.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45.

10We performed a one-tailed t-test to evaluate significance.

Geli Fei and Bing Liu. 2016. Breaking the closed world
assumption in text classification. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 506–514.

Varun Gangal, Abhinav Arora, Arash Einolghozati, and
Sonal Gupta. 2020. Likelihood ratios and genera-
tive classifiers for unsupervised out-of-domain de-
tection in task oriented dialog. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7764–7771.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline
for detecting misclassified and out-of-distribution ex-
amples in neural networks. Proceedings of ICLR.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.
Pretrained transformers improve out-of-distribution
robustness. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2744–2751.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt
Kira. 2020. Generalized odin: Detecting out-of-
distribution image without learning from out-of-
distribution data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 10951–10960.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1311–1316, Hong Kong, China. Association
for Computational Linguistics.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.
2018. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. Ad-
vances in neural information processing systems, 31.

Ting-En Lin and Hua Xu. 2019. Deep unknown intent
detection with margin loss. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5491–5496.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan
Li. 2020. Energy-based out-of-distribution detection.
Advances in Neural Information Processing Systems,
33:21464–21475.

Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Eka-
terina Artemova, and Irina Piontkovskaya. 2021. Re-
visiting mahalanobis distance for transformer-based
out-of-domain detection. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35,
pages 13675–13682.

22



Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy,
Shreyas Padhy, and Balaji Lakshminarayanan. 2021.
A simple fix to mahalanobis distance for improving
near-ood detection. Proceedings of ICML.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor,
Alex J Smola, and Robert C Williamson. 2001. Esti-
mating the support of a high-dimensional distribution.
Neural computation, 13(7):1443–1471.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and
Mike Lewis. 2019. Cross-lingual transfer learning
for multilingual task oriented dialog. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3795–3805.

Lei Shu, Hu Xu, and Bing Liu. 2017. Doc: Deep open
classification of text documents. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2911–2916.

David MJ Tax and Robert PW Duin. 2004. Support
vector data description. Machine learning, 54(1):45–
66.

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun
Zhao, Fangyuan Wang, and Hongwei Hao. 2015.
Short text clustering via convolutional neural net-
works. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing,
pages 62–69.

Li-Ming Zhan, Haowen Liang, Bo Liu, Lu Fan, Xiao-
Ming Wu, and Albert YS Lam. 2021. Out-of-scope
intent detection with self-supervision and discrimi-
native training. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3521–3532.

Hanlei Zhang, Hua Xu, and Ting-En Lin. 2021a. Deep
open intent classification with adaptive decision
boundary. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14374–
14382.

Jian-Guo Zhang, Kazuma Hashimoto, Yao Wan, Ye Liu,
Caiming Xiong, and Philip S Yu. 2021b. Are pre-
trained transformers robust in intent classification?
a missing ingredient in evaluation of out-of-scope
intent detection. arXiv preprint arXiv:2106.04564.

Jianguo Zhang, Kazuma Hashimoto, Wenhao Liu,
Chien-Sheng Wu, Yao Wan, S Yu Philip, Richard
Socher, and Caiming Xiong. 2020. Discriminative
nearest neighbor few-shot intent detection by trans-
ferring natural language inference. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 5064–
5082.

Wenxuan Zhou, Fangyu Liu, and Muhao Chen. 2021.
Contrastive out-of-distribution detection for pre-
trained transformers. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1100–1111.

23


