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Abstract

In this short paper, we compare existing value
systems and approaches in NLP and HCI for
collecting narrative data. Building on these
parallel discussions, we shed light on the chal-
lenges facing some popular NLP dataset types,
which we discuss these in relation to widely-
used narrative-based HCI research methods;
and we highlight points where NLP methods
can broaden qualitative narrative studies. In
particular, we point towards contextuality, po-
sitionality, dataset size, and open research de-
sign as central points of difference and win-
dows for collaboration when studying narra-
tives. Through the use case of narratives, this
work contributes to a larger conversation re-
garding the possibilities for bridging NLP and
HCI through speculative mixed-methods.

1 Introduction

Human beings are myth-makers; we use stories and
imagination to create communities and make sense
of the world and our place in it (Bamberg and Geor-
gakopoulou, 2008). Narratives are powerful modes
of expression, with physical, emotional, and so-
cial benefits for both the narrator and the audience
(Pennebaker and Beall, 1986; Pennebaker, 1997;
Merz et al., 2014; Oh and Kim, 2016; Tangherlini,
2000). They can also be powerful methods for un-
derstanding human behavior and beliefs (Golsteijn
and Wright, 2013).

Crucially, narratives are situated; they are told
and take place in specific social contexts (Piper
et al., 2021). Natural language processing (NLP)
methods can analyze patterns across large datasets,
putting stories into context. But narrative datasets
in NLP are often removed from the narratives’ orig-
inal contexts (e.g., scraped internet datasets) or
are designed without any explicit context or social
grounding (e.g., short and artificial stories).

In contrast, contextuality is of the utmost im-
portance in qualitative human-computer interaction

(HCI) approaches to narrative. HCI researchers fre-
quently borrow social science methods including
surveys, interviews, focus groups, and ethnography
for closer investigations that address the diversity
of human life and experiences (Bruner, 1987; Gol-
steijn and Wright, 2013). Qualitative HCI meth-
ods are often constrained to small sample sizes
and susceptible to observer biases, but narrative re-
search and portraiture methods enable creative and
holistic engagement with participants’ experiences
and meaning-making processes (Williams, 1984;
Wright and McCarthy, 2004; Bardzell et al., 2012).

These differences make narrative datasets an use-
ful case study when considering tensions and pos-
sible collaborations between NLP and HCI. Both
disciplines face challenges in their study and anal-
ysis of narrative. While NLP datasets contain a
high volume of data points, their labels are con-
strained to a specific task; in contrast, smaller HCI
datasets, in particular data collected through quali-
tative methods such as ethnography and interview,
are open-ended in research scope but situated in a
particular context. Combining these methods can
contribute to designing multifaceted datasets while
not losing the sight of individual experiences and
perspectives in a large volume of stories.

In the following sections, we outline dominant
framings of narrative and narrative dataset col-
lection in NLP and HCI. Placing these framings
side-by-side highlights a set of tensions—including
dataset size, contextuality and positionality, and
dataset design—that we finally consider as mate-
rial for synthesis and mixed methods approaches
to narrative data.

2 NLP Framings of Narrative

In a recent overview of NLP and humanist ap-
proaches to “narrative understanding", Piper et al.
(2021) formulate narrativity as a scalar construct
rather than a binary class; texts can include some
or all narrative features (e.g., narrator, audience, se-
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quential actions). Most NLP narrative tasks focus
on building abstractions from narratives by ex-
tracting these features and measuring relationships
among them. These tasks include extracting narra-
tive structure, like scripts, plot units, or narrative
arcs (Schank and Abelson, 1977; Lehnert, 1981;
Chambers and Jurafsky, 2008, 2009; Goyal et al.,
2010; Reagan et al., 2016); modeling connections
between characters (Bamman et al., 2013; Iyyer
et al., 2016; Lukin et al., 2016); generating new
stories or summaries (Goldfarb-Tarrant et al., 2020;
Guan et al., 2020; Akoury et al., 2020); answering
questions about the story (Richardson et al., 2013),
and identifying a correct story ending (Chambers
and Jurafsky, 2008; Mostafazadeh et al., 2016).

As in other areas of NLP, some narrative re-
search falls into shared tasks, where artificial story
datasets are often (though not always) used for test-
ing a particular technical ability of a system. These
datasets are sometimes created and often labeled by
crowdworkers, and they include brief scenarios not
explicitly connected to broader social contexts and
narratives. For example, one of the widely used
corpora for testing performance on the Story Cloze
task is ROCStories dataset which is a collection
of 100,000 crowdsourced “five-sentence common-
sense stories” (Mostafazadeh et al., 2016).

Narrative research in NLP also includes corpus-
based studies, where researchers use narrative mod-
els to learn about a particular dataset and its au-
thors. Corpus-based studies depend on curated
datasets that range widely, e.g., fictional works
(e.g., novels, fairytales) (Jans et al., 2012; Iyyer
et al., 2016), news stories (Chambers and Jurafsky,
2008), biographies (Bamman and Smith, 2014),
and personal stories shared orally or on social me-
dia (Gordon and Swanson, 2009; Ouyang and McK-
eown, 2014; Antoniak et al., 2019). These curated
datasets were authored in social contexts separate
from the NLP research study and are gathered after-
wards. Curated datasets can also be used for shared
tasks, e.g., coreference resolution (Bamman et al.,
2020), story generation (Akoury et al., 2020).

There are a small number of naturalistic NLP
narrative datasets that lie outside of the above cat-
egories. For example, Sap et al. (2020) collected
autobiographical stories and retellings of these sto-
ries from crowdworkers; this data was shared as
part of the research study but was also grounded in
the authors’ personal experiences.

And finally, many modern NLP methods for nar-

ratives rely on large, pretrained models (Devlin
et al., 2019). These models are trained on massive
and (mostly) undocumented datasets, containing a
mixture of documents from unrelated domains to
generalize to other domains and tasks (after fine-
tuning). These pretraining datasets, like the aptly-
named Pile (Gao et al., 2020), are too large for full
datasheet descriptions (Gebru et al., 2021) and can
encode human biases (Bender et al., 2021).

3 HCI Framings of Narrative

Four key themes are associated with HCI’s sen-
sibility of narrative: (a) fact (universal/objective
truth) (b) experience (global, local, and day-to-day
experiences) (c) interpretation (perceived under-
standing of a and b) (d) fiction (imaginations and
cultural value-system based storytelling) (Bruner,
1990; Sterling, 2009; Golsteijn and Wright, 2013).
HCI researchers often ask questions to understand
problems better and care about accuracy, legiti-
macy, and materiality (i.e., why and how certain
issues are important) of information. Many sub-
domains of HCI refer to and build on users’ ex-
periences regarding narratives (Feuston and Piper,
2019). HCI practitioners’ and designers’ interac-
tions with social settings and/or professional envi-
ronments frequently influence their experiences in
a given time and situation, and so they consciously
refrain from making generalizable statements and
encourage the mention of contextuality, which is
strongly associated with the narratives (Golsteijn
and Wright, 2013). Experience-centered research
also values empathy to understand the researchers’
orientation to the user, and whether they are moti-
vated to empathize with the users’ needs and emo-
tional responses (Wright and McCarthy, 2008).

HCI uses both qualitative and quantitative tech-
niques to gather and examine narratives. Both quan-
titative techniques (e.g., surveys and computational
analysis of social media data) and qualitative ap-
proaches (e.g., interviews, observation, and focus
groups) and artistic techniques are frequent in HCI.
In this paper, we focus on qualitative HCI methods
for narratives, as they differ from NLP approaches
in terms of ontology and epistemology, represent-
ing two distinct worldviews (Slevitch, 2011).

In surveys, researchers conduct statistical anal-
yses and evaluate the responses based on standard
tests and sets of metrics. Using qualitative text
coding in cases of free-text responses within the
survey is also common. More specifically, HCI
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scholars have conducted surveys to investigate peo-
ple’s motivations, goals, and challenges with re-
gard to posting narratives on social media (Sannon
et al., 2019), as well as factors that influence their
decision-making when it comes to online disclo-
sure (Bazarova et al., 2015; Zhang et al., 2021)
These approaches are motivated by understanding
a specific set of people in a specific setting and
social context.

Ethnography, observations, interviews, focus
group discussions, and story-telling are common
methods used by qualitative HCI researchers (Sul-
tana and Ahmed, 2019). Other than transcription-
based qualitative text coding, image, audio and
video coding are also used for analysis (Andalibi
et al., 2017; Sharma and De Choudhury, 2015). In
this regard, not only the texts, images, audio, and
videos of the participants are used, but also pictures
of the environment, background noise, and even
reasons and results of unintended interruptions can
contribute to the richness of narratives.

HCI researchers also use curated social media
data and conduct statistical analyses and qualita-
tive text coding on this data to understand certain
research problems. HCI researchers in some do-
mains also use online ethnographic techniques on
social media and collaborative platforms (e.g., gam-
ing, e-commerce) to grow deeper understandings
of these communities (Mim and Ahmed, 2020).

Many HCI researchers and participants use artis-
tic techniques like drawings and installations for
addressing research queries (Sturdee et al., 2021).
It is quite common for artists to conduct an auto-
ethnography with themselves, in which their cre-
ation of art is their narrative. In many cases, such
narratives are symbolic and contextual.

Finally, many HCI researchers adopt mixed
methods where they use both qualitative and quan-
titative approaches to grow a wider and deeper un-
derstanding of their research problems. For exam-
ple, a recent feminist-HCI design used a survey to
understand the spread of gender harassment on so-
cial media and also conducted interviews and focus
group discussions for participatory design and user
evaluation of Unmochon (Sultana et al., 2021).

4 Interdisciplinary Tensions

Volume and depth of narratives. On one hand,
NLP techniques can analyze more narratives (and
often more normalized) with reduced researcher
workload, though at the loss of qualitative detail.

On the other hand, qualitative methods in HCI of-
fer a deeper understanding of narratives based on a
more limited sample size. Despite smaller datasets,
HCI often depends on theoretical saturation of nar-
ratives, in which all important themes are repre-
sented, while in NLP, even if the number of data-
points is greater, researchers interested in a partic-
ular community often rely on an extracted sample
decided by someone else (i.e., curated datasets)
which might not capture all relevant themes.

4.1 Abstraction and Contextuality
While gaining holistic understandings of an indi-
vidual in HCI, researchers care about participants’
life experiences, social relationships, and observ-
able artifacts surrounding them. In NLP research,
it is often impossible to glean such relevant and
detailed information from individuals in a large
dataset, where abstraction rather than situatedness
is the goal. This contrast also pertains to the agency
and privacy of the narrative sources—whether au-
thors are informed about and consent to the inclu-
sion of their narrative in the dataset for research
purposes—as well as the uncertain representation
of different groups. Narrative data in NLP often
lacks explicit context (artificial datasets) or is used
out of context (curated and massive datasets); natu-
ralistic datasets generated specifically for the NLP
study are more rare (Sap et al., 2020), unlike in HCI.
For example, it is common in NLP to scrape data
passively that was written in a different context than
the research study, as opposed to interview studies
in HCI, where researchers explicitly collect stories
for the current study. However, NLP datasets are
often designed tasks that model abstractions, like
common narrative arcs, where simplified datasets
can help researchers tackle specific tasks.

4.2 Closed and Open Dataset Design.
HCI’s emphasis on contextuality opens rather than
constrains research possibilities: when narratives
are collected in HCI, the emphasis is on high-level
and open-ended research goals, focusing on dis-
covering things that have not been explored suffi-
ciently or that might even be in conflict with the
researchers’ assumptions. Similarly, when label-
ing themes in narratives, multiple HCI researchers
are involved in an open coding process, in which
independent coders develop their own themes be-
fore combining and refining these themes to ensure
the validity and reliability of their interpretations.
In contrast, shared narrative tasks in NLP rely on
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labeled datasets intended for one task, whose data
and labels are meant to model one specific concept
(like story conclusions) that the researchers already
hold, even if multiple annotators are involved.

5 Towards a Mixed Methods Approach

We argue that mixed methods research, drawing
from both NLP and HCI, could allow for richer nar-
rative datasets and more holistic understandings of
narrative and the social impacts of narrative. This
triangulation of methods not only minimizes the bi-
ases of researchers and enhances the validity of the
findings, but also reveals different dimensions of
the phenomenon being investigated (McQueen and
Knussen, 2002). While prior work has suggested
mixed methods in many other NLP contexts (e.g.,
grounded topic modeling (Baumer et al., 2017)),
narratives are particularly well-suited because of
the strong research interest on both sides and the
tensions enumerated above.

5.1 Customizing an Approach

Prior work has suggested various frameworks to
select between mixed methods approaches (Heuer
and Buschek, 2021; Inie and Derczynski, 2021).
These mixed methods may follow different design
patterns, including explanatory, exploratory, paral-
lel, and nested methods (Creswell and Clark, 2017).
Therefore, the choice of study design should be
guided by research questions and goals. For exam-
ple, if researchers aim to understand the structural
patterns of a certain type of narrative (e.g., mental
health disclosures on social media) and examine
its situatedness (i.e., audiences and context), they
might consider an explanatory sequential mixed
methods design, where researchers first use quanti-
tative methods to analyze scraped data followed by
qualitative interviews and selected narratives in so-
cial context. Contrarily, to understand how individ-
uals frame a particular event or phenomenon (e.g.,
the COVID-19 pandemic) and see if that frame can
be applied to a larger population, researchers might
opt for an exploratory sequential mixed methods
design, characterized by an initial qualitative phase
of data collection and analysis, followed by quanti-
tative analysis drawing on a larger dataset.

5.2 Contextuality

Because situatedness or contextuality are essen-
tial components of narrative, contextuality can act
as a bridging frame in these mixed methods de-

signs, to move between the volume of narrative
data in NLP and the depth of analysis in qualita-
tive HCI methods. Researchers can move between
“zooming in” on specific stories using qualitative
methods and “zooming out” to analyze larger pat-
terns across stories (rather than just one or the
other). For example, HCI methods can be used
to gather qualitative detail about a dataset’s con-
text, while research methods and tools from NLP
can help HCI researchers situate smaller datasets
within their larger-scale, cross-community contexts
(Zhang et al., 2017; Lucy and Bamman, 2021).
Both sets of methods can also help address how
platform design, moderation, and other contextual
features shape the sharing of narratives online.

5.3 Positionality in Design and Evaluation.
Qualitative HCI methods emphasize reflexivity and
positionality. These practices can encourage NLP
researchers to recognize the inherent biases in their
research questions, datasets, modeling architec-
tures, procedures, and interpretation of results. Nar-
rative tasks are not simple; each instance usually
has multiple right answers, and researchers need to
be aware of their own biases in evaluation. For
example, when selecting appropriate story end-
ings, annotators are not operating with a “view
from nowhere” but from particular values and cir-
cumstances (Nagel, 1989). The positionality of
the researchers should also be considered in rela-
tion to the narrative authors; the authors’ positions
are often lost in NLP datasets, even when those
datasets are labeled with internal states (e.g., sen-
timent) known only to the authors. Classifying
internal states carries risks (Stark, 2018), which are
compounded in the study of personal narratives,
where affect, relationships, and narratival motiva-
tions are intertwined. One strategy to address this
challenge is to include the narrative authors in the
dataset design (Heuer and Buschek, 2021). And
NLP methods can be used to explore the authors’
and researchers’ positionality by comparing biased
linguistic patterns (Bolukbasi et al., 2016; Caliskan
et al., 2017) contained in narratives and case notes.

5.4 Openness to Discovery and Disagreement.
Discovery and disagreement are central compo-
nents to the open research focus in qualitative HCI
methods. When designing labeled datasets and
shared tasks, NLP can adopt HCI’s open approach;
rather than constraining the data and labels to a
test a single technical ability, decided a priori, NLP
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researchers can take an open approach—one that al-
lows for complicated labels that emerge from mul-
tiple annotators’ interpretation of the data. This op-
portunity to include labeler disagreements has been
noted by a large body of work (Inie and Derczyn-
ski, 2021), but given the complexity of narrative
data and its many intertwining features (Piper et al.,
2021), customized labels (e.g., hierarchical) could
more realistically represent narratives than artificial
benchmarks with limited utility. On the other side,
NLP methods like topic modeling can help surface
themes and discourses that are not immediately ap-
parent to qualitative coders (Baumer et al., 2017).
NLP methods can also be used to to identify outlier
narratives whose structure or framing is unusual
for the dataset (Antoniak et al., 2019).

6 Conclusion

As both a research tool and as an object of study,
narrative datasets have been widely used in both
NLP and HCI. This short work is not intended to
describe all approaches to narrative in these dis-
ciplines, nor is it intended to provide solutions to
all the described challenges. Boundaries between
disciplines are fluid, especially in regards to sto-
ries shared on social media, where platform de-
sign, moderation, and many other HCI concepts
have shaped the stories studied via computational
NLP methods. Many different fields (e.g., literary
studies) are concerned with narratives; we have
constrained our discussion to datasets in NLP and
qualitative HCI because we see room for cross-
pollination and conversations. Stories can be pow-
erful tools of persuasion and expression, and richer
methods that draw from both NLP and HCI can
raise new questions and open up new directions.
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