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Introduction

Due to increasing concerns and regulations about data privacy (e.g., General Data Protection Regula-
tion), coupled with the growing computational power of edge devices, emerging data from realistic users
have become much more fragmented, forming distributed private datasets across different clients (i.e.,
organizations or personal devices). Respecting users’ privacy and restricted by these regulations, we ha-
ve to assume that users’ data in a client are not allowed to transfer to a centralized server or other clients.
For example, a hospital does not want to share its private data (e.g., conversations, questions asked on
its website/app) with other hospitals. This is despite the fact that models trained by a centralized dataset
(i.e., combining data from all clients) usually enjoy better performance on downstream tasks (e.g., dialo-
gue, question answering). Therefore, it is of vital importance to study NLP problems in such a scenario,
where data are distributed across different isolated organizations or remote devices and cannot be shared
for privacy concerns.
The field of federated learning (FL) aims to enable many individual clients to jointly train their models,
while keeping their local data decentralized and completely private from other users or a centralized
server. A common training schema of FL methods is that each client sends its model parameters to the
server, which updates and sends back the global model to all clients in each round. Since the raw data
of one client has never been exposed to others, FL is promising to be an effective way to address the
above challenges, particularly in the NLP domain where many user-generated text data contain sensitive,
personal information.
Our workshop website is https://fl4nlp.github.io/.
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ActPerFL: Active Personalized Federated Learning

Abstract

In the context of personalized federated learn-
ing (FL), the critical challenge is to balance
local model improvement and global model
tuning when the personal and global objec-
tives may not be exactly aligned. Inspired by
Bayesian hierarchical models, we develop Act-
PerFL, a self-aware personalized FL method
where each client can automatically balance
the training of its local personal model and
the global model that implicitly contributes to
other clients’ training. Such a balance is de-
rived from the inter-client and intra-client un-
certainty quantification. Consequently, Act-
PerFL can adapt to the underlying clients’ het-
erogeneity with uncertainty-driven local train-
ing and model aggregation. With experimental
studies on Sent140 and Amazon Alexa audio
data, we show that ActPerFL can achieve su-
perior personalization performance compared
with the existing counterparts.

1 Introduction
Federated learning (FL) (Konevcny et al., 2016;
McMahan et al., 2017) is transforming machine
learning (ML) ecosystems from “centralized in-the-
cloud” to “distributed across-clients,” to potentially
leverage the computation and data resources of bil-
lions of edge devices (Lim et al., 2020), without
raw data leaving the devices. As a distributed ML
framework, FL aims to train a global model that
aggregates gradients or model updates from the
participating edge devices. Recent research in FL
has significantly extended its original scope to ad-
dress the emerging concern of personalization, a
broad term that often refers to an FL system that
accommodates client-specific data distributions of
interest (Dinh et al., 2020a; Fallah et al., 2020a).

In particular, each client in a personalized FL
system holds data that can be potentially non-
IID. For example, smart edge devices at different
houses may collect audio data of heterogeneous
nature (Purington et al., 2017; Diao et al., 2020,

2021) due to, e.g., accents, background noises, and
house structures. Each device hopes to improve
its on-device model through personalized FL with-
out transmitting sensitive data. While the practical
benefits of personalization have been widely ac-
knowledged, its theoretical understanding remains
unclear. Existing works on personalized FL often
derive algorithms based on a pre-specified opti-
mization formulation or model aggregation rule.

In this work, we start with a toy example and
develop insights into the nature of personalization
from a statistical uncertainty perspective. In par-
ticular, we aim to answer the following critical
questions regarding personalized FL.

(Q1) The lower-bound baselines of personalized
FL can be obtained in two cases, i.e., each client
performs local training without FL, or all clients
participate in conventional FL training. However,
the upper-bound for the client is unclear.

(Q2) Suppose that the goal of each client is to
improve its local model performance. How to de-
sign an FL training that interpret the global model,
suitably aggregate local models and fine-tune each
client’s local training automatically?

Both questions are challenging. The question
(Q1) demands a systematic way to characterize the
client-specific and globally-shared information. To
this end, we draw insights from a simplified and an-
alytically tractable setting: two-level Bayesian hier-
archical models, where the two levels respectively
describe inter-client and intra-client uncertainty.

We make the following technical contributions:
• Interpreting personalization from a hierarchi-

cal model-based perspective and providing
theoretical analyses for FL training.

• Proposing ActPerFL, an active personalized
FL solution that guides local training and
global aggregation via inter- and intra-client
uncertainty quantification.

• Presenting a novel implementation of Act-
PerFL for deep learning, consisting of auto-

   Huili Chen, Jie Ding, Eric Tramel, Shuang Wu,
Anit Kumar Sahu, Salman Avestimehr, Tao Zhang

Alexa AI, Amazon
{chehuili,jiedi,eritrame,wushuan,anitsah,avestime,taozhng}@amazon.com

1



mated hyper-parameter tuning for clients and
an adaptive aggregation rule.

• Evaluating ActPerFL on Sent140 and Ama-
zon Alexa audio data. Empirical results show
promising personalization performance com-
pared with existing methods.

To our best knowledge, ActPerFL is the first
work that utilizes uncertainty quantification to drive
FL personalization.

2 Bayesian View of Personalized FL
We discuss how ActPerFL approaches personalized
FL with theoretical insights from the Bayesian per-
spective in this section. To develop insights, we
study a two-level Gaussian model. Similar argu-
ments can be derived for generic parametric models.
The notations are defined as follows. Let N (µ, σ2)
denote Gaussian distribution with mean µ and vari-
ance σ2. For a positive integer M , let [M ] denote
the set {1, . . . ,M}. Let

∑
m̸=i denote the summa-

tion over all m ∈ [M ] except for m = i. Suppose
that there are M clients.

From the server’s perspective, it is postulated
that data z1, . . . , zM are generated from the follow-
ing two-layer Bayesian hierarchical model:

θm | θ0 IID∼ N (θ0, σ
2
0), zm | θm IID∼ N (θm, σ2

m),

for all clients with m = 1, . . . ,M . Here, σ2
0 is

a constant, and θ0 ∼ π0(·) is a hyperparameter
with a non-informative flat prior. The above model
represents both the connections and heterogeneity
across clients. In particular, each client’s data are
distributed according to a client-specific parame-
ter (θm), which follows a distribution decided by
a parent parameter (θ0). The parent parameter is
interpreted as the root of shared information. With-
out loss of generality, we study client 1’s local
model as parameterized by θ1. Under the above
model assumption, the parent parameter θ0 that rep-
resents the global model has a posterior distribution
p(θ0 | z1:M ) ∼ N (θ(G), v(G)), where:

θ(G) ∆
=

∑
m∈[M ](σ

2
0 + σ2

m)−1θ
(L)
m∑

m∈[M ](σ
2
0 + σ2

m)−1
, (1)

v(G) ∆
=

1∑
m∈[M ](σ

2
0 + σ2

m)−1
.

From the perspective of client m, we suppose
that the postulated model is the same as above for
m = 2, . . . ,M , and θ1 = θ0. It can be verified
that the posterior distributions of θ1 without and
with global Bayesian learning are p(θ1 | z1) ∼
N (θ

(L)
1 , v

(L)
1 ) and p(θ1 | z1:M ) ∼ N (θ

(FL)
1 , v

(FL)
1 ),

respectively, which can be computed as:

θ
(L)
1

∆
= z1, v

(L)
1

∆
= σ2

1 ,

θ
(FL)
1

∆
=

σ−2
1 θ

(L)
1 +

∑
m ̸=1(σ

2
0 + σ2

m)−1θ
(L)
m

σ−2
1 +

∑
m ̸=1(σ

2
0 + σ2

m)−1
, (2)

v
(FL)
1

∆
=

1

σ−2
1 +

∑
m̸=1(σ

2
0 + σ2

m)−1
.

The first distribution above describes the learned re-
sult of client 1 from its local data, while the second
one represents the knowledge from all the clients’
data in hindsight. Using the mean square error as
risk, the Bayes estimate of θ1 or θ0 is the mean of
the posterior distribution, namely θ

(L)
1 and θ

(FL)
1 .

The flat prior on θ0 can be replaced with any
other distribution to bake prior knowledge into the
calculation. We consider the flat prior because
the knowledge of the shared model is often vague
in practice. The above posterior mean θ

(FL)
1 can

be regarded as the optimal point estimation of θ1
given all the clients’ data, thus is referred to as
“FL-optimal”. θ(G) can be regarded as the “global-
optimal.” The posterior variance quantifies the re-
duced uncertainty conditional on other clients’ data.
Specifically, we define the following Personalized
FL gain for client 1 as:

GAIN1
∆
=

v
(L)
1

v
(FL)
1

= 1 + σ2
1

∑

m ̸=1

(σ2
0 + σ2

m)−1.

Remark 1 (Posterior quantity interpretations)
Each client, say client 1, aims to learn θ1 in the
personalized FL context. Its learned information
regarding θ1 is represented by the Bayesian
posterior of θ1 conditional on either its local data
z1 (without communications with others), or the
data z1:M in hindsight (with communications).
For the former case, the posterior uncertainty
described by v

(L)
1 depends only on the local data

quality σ2
1 . For the latter case, the posterior mean

θ
(FL)
1 is a weighted sum of clients’ local posterior

means, and the uncertainty will be reduced by a
factor of GAIN1. Since a point estimation of θ1 is
of particular interest in practical implementations,
we treat θ(FL)

1 as the theoretical limit in the FL
context (recall question Q1).

Remark 2 (Local training steps to achieve θ
(FL)
1 )

Suppose that client 1 performs ℓ training steps
using its local data and negative log-likelihood
loss. We show that with a suitable number of steps
and initial value, client 1 can obtain the intended
θ
(FL)
1 . The local objective is:

θ 7→ (θ − z1)
2/(2σ2

1) = (θ − θ
(L)
1 )2/(2σ2

1), (3)

which coincides with the quadratic loss. Let η ∈
(0, 1) denote the learning rate. By running the
gradient descent:

θℓ1 ← θℓ−1
1 − η

∂

∂θ

(
(θ − θ

(L)
1 )2/(2σ2

1)

)
|
θℓ−1
1

= θℓ−1
1 − η(θℓ−1

1 − θ
(L)
1 )/σ2

1 (4)
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for ℓ steps with initial value θINIT
1 , client 1 obtains:

θℓ1 =
(
1− (1− σ−2

1 η)ℓ
)
θ
(L)
1 + (1− σ−2

1 η)ℓθINIT
1 . (5)

It can be verified that Eqn. (5) becomes θ
(FL)
1 in

Eqn. (2) if and only if:

θINIT
1 =

∑
m ̸=1(σ

2
0 + σ2

m)−1θ
(L)
m∑

m ̸=1(σ
2
0 + σ2

m)−1
, (6)

(1− σ−2
1 η)ℓ =

∑
m ̸=1(σ

2
0 + σ2

m)−1

σ−2
1 +

∑
m̸=1(σ

2
0 + σ2

m)−1
. (7)

In other words, with a suitably chosen initial value
θINIT
1 , learning rate η, and the number of (early-

stop) steps ℓ, client 1 can obtain the desired θ
(FL)
1 .

3 Proposed Solution for Personalized FL
Our proposed ActPerFL framework has three key
components as detailed in this section: (i) proper
initialization for local clients at each round, (ii) au-
tomatic determination of the local training steps,
(iii) discrepancy-aware aggregation rule for the
global model. These components are intercon-
nected and contribute together to ActPerFL’s ef-
fectiveness. Note that points (i) and (iii) direct
ActPerFL to the regions that benefit personaliza-
tion in the optimization space during local training,
which is not considered in prior works such as
DITTO (Li et al., 2021) and pFedMe (Dinh et al.,
2020b). Therefore, ActPerFL is more than impos-
ing implicit regularization via early stopping.

In this section, we show how the posterior quan-
tities of interest in Section 2 can be connected with
FL. Recall that each client m can obtain the FL-
optimal solution θ

(FL)
m with the initial value θINIT

m
in Eqn. (6) and tuning parameters η, ℓ in Eqn. (7).
Also, it can be shown that θINIT

m is connected with
the global-optimal θ(G) in Eqn. (1) through

θINIT
m = θ(G) − (σ2

0 + σ2
m)−1

∑
k: k ̸=m(σ2

0 + σ2
k)

−1
(θ(L)

m − θ(G)). (8)

The initial value θINIT
m in Eqn. (8) is unknown dur-

ing training since θ
(L)
m , θ(G) are both unknown. A

natural solution is to update θINIT
m , θ(L)

m , and θ(G)

iteratively, leading to the following personalized
FL rule of our ActPerFL framework.
Generic ActPerFL. At the t-th (t ≥ 1) round:
• Client m receives the latest global model θt−1

from the server (initialized as θ0), and calculates:

θt,INIT
m

∆
= θt−1 − (σ2

0 + σ2
m)−1(θt−1

m − θt−1)∑
k: k ̸=m(σ2

0 + σ2
k)

−1
, (9)

where θt−1
m is client m’s latest personal parame-

ter at round t − 1, initialized to be θ0. Starting

from the above θt,INIT
m , client m performs gradient

descent-based local updates with optimization pa-
rameters following Eqn. (7) or its approximations,
and obtains a personal parameter θtm.
• Server collects θtm and calculates:

θt
∆
=

∑
m∈[M ](σ

2
0 + σ2

m)−1θtm∑
m∈[M ](σ

2
0 + σ2

m)−1
. (10)

In general, the above σ2
0, σ

2
m represent “inter-client

uncertainty” and “intra-client uncertainty,” respec-
tively. When σ2

0 and σ2
m’s are unknown, they can

be approximated asymptotically or using practical
finite-sample approximations.
SGD-based practical algorithm for DL. For the
above training method, the quantities σ2

0 and σ2
m

are crucial as they affect the choice of learning rate
ηm and the early-stop rule. However, these two
values are unknown in complex learning models.
To approximate the uncertainty quantities, we gen-
erally treat σ2

m as “uncertainty of the local optimal
solution θ

(L)
m of client m”, and σ2

0 as “uncertainty
of clients’ underlying parameters.” Assume that for
each client m, we had u independent samples of its
data and the corresponding local optimal parame-
ter θm,1, . . . , θm,u. We could then estimate σ2

m by
their sample variance. In particular, at round t, we
approximate σ2

m with:
σ̂2
m = empirical variance of {θ1m, . . . , θtm}. (11)

Likewise, at round t, we estimate σ2
0 by:

σ̂2
0 = empirical variance of {θt1, . . . , θtM}. (12)

For multi-dimensional parameters, we introduce
the following counterpart uncertainty measures.
For vectors x1, . . . , xM , their empirical variance is
defined as the trace of

∑
m∈[M ](xm−x̄)(xm−x̄)T,

which is the sum of entry-wise empirical variances.
σ̂2
m and σ̂2

0 are defined from such empirical vari-
ances similar to Eqn. (11) and (12). The above
quantities can be calculated recursively online with
constant memory (Han et al., 2017). Alg. 1 outlines
the workflow of ActPerFL.

4 Experimental Studies
Experimental setup. We evaluate ActPerFL’s per-
formance on two NLP datasets: Sentiment140 (Go
et al., 2009) and private Amazon Alexa audio data.
Sent140 is a text sentiment analysis dataset with
two output classes and 772 clients. We generate
non-i.i.d. data following FedProx (Li, 2020). The
audio dataset is collected for wake-word detection
task (i.e., binary classification). This dataset con-
tains 39 thousand hours of training data and 14
thousand hours of test data. We use a two-layer

3



Algorithm 1 Active Personal FL (ActPerFL)
Input: A server and M clients. Communication

rounds T , client activity rate C, client m’s
local data Dm and learning rate ηm.

for each communication round t = 1, . . . T do
Sample clients: Mt ← max(⌊C ·M⌋, 1)
for each client m ∈Mt in parallel do

Distribute server model θt−1 to client m
Estimate σ̂2

m using Eqn. (11)
Compute local step lm from Eqn. (7) and

local initialization θINIT
m via Eqn. (6)

θtm ← LocalTrain(θINIT
m , ηm, lm;Dm)

Server estimates σ̂2
0 using Eqn. (12)

Server updates global model θt via Eqn. (10)

LSTM model and an 11-layer CNN model for
these two datasets, respectively. For comparison,
we also evaluate the personalization performance
of FedAvg (McMahan et al., 2017), DITTO (Li
et al., 2021), PerFedAvg (Fallah et al., 2020b), and
pFedMe (Dinh et al., 2020b).

4.1 Results on Alexa Audio Data
For Alexa audio data, we use a CNN that is pre-
trained on the training data of different device types
(i.e., heterogeneous data) as the initial global model
to warm-start FL training. The personalization task
aims to improve the wake-word detection perfor-
mance at the device type level. We assume there
are five clients in the FL system and all of them par-
ticipate in each round. Each client has the training
data for a specific device type.
Evaluation metric. We evaluate the performance
using the pre-trained model (for warm-start) as
the baseline. To compare different FL algorithms,
we use the relative false accept (FA) value of the
resulting model when the associated relative false
reject (FR) is close to one as the metric. So a
smaller relative FA is preferred. Here, the relative
FA and FR are computed using the baseline.

For comparison, we implement FedAvg and
DITTO with both equal-weighted and sample size-
based model averaging (denoted by the suffix ‘-e’
and ‘-w’, respectively) during aggregation. For
PerFedAvg (Fallah et al., 2020b), we use its first-
order approximation and the equal-weighted ag-
gregation. We did not report pFedMe (Dinh et al.,
2020b) due to its divergence with various hyper-
parameters. Table 1 summarizes the performance
of the updated global model. The results show that
ActPerFL achieves the lowest relative FA, thus ob-
taining the best global model. We further compare

Table 1: Detection performance (relative FA) of the
global model on the test dataset.

FL methods
Device Types

A B C D E

ActPerFL 0.92 0.94 0.91 0.91 1.01
FedAvg-w 8.39 4.00 12.80 8.61 10.62
FedAvg-e 0.97 0.96 1.00 0.92 1.00
DITTO-w 8.38 4.00 12.75 8.61 10.23
DITTO-e 0.97 0.95 1.00 0.93 0.99

PerFedAvg 1.06 0.98 1.08 0.93 1.01

Table 2: Detection performance (relative FA) of the
personalized models on a test dataset.

FL methods
Device Type

A B C D E

ActPerFL 0.93 0.91 0.90 0.90 0.99
FedAvg-e 0.95 0.95 0.93 0.91 0.98
DITTO-e 0.97 0.96 0.93 0.91 0.96

PerFedAvg 1.02 1.11 1.08 1.00 0.93

the personalization performance of local models
obtained by different FL algorithms in Table 2.

4.2 Results on Sent140 Text Data
In this experiment, we also use warm-start by train-
ing a global model from scratch with FedAvg for
200 rounds for initializing other FL algorithms.
Then, we continue FL training with various FL
methods for another 400 rounds. Figure 1 com-
pares the training and test accuracy of the person-
alized models obtained by different FL algorithms
where the accuracy is aggregated across clients. We
can see that both ActPerFL and FedAvg demon-
strate better convergence performance compared
to DITTO (Li et al., 2021), pFedMe (Dinh et al.,
2020b), and PerFedAvg (Fallah et al., 2020b).

(a) Training accuracy. (b) Test accuracy.
Figure 1: Performance of FL methods on Sent140 data.

5 Concluding Remarks
We proposed ActPerFL to address the challenge
of balancing local model training and global
model aggregation in personalized FL. Our so-
lution adaptively adjusts local training with au-
tomated hyper-parameter selection and performs
uncertainty-weighted global aggregation. Empiri-
cal studies show that ActPerFL can achieve promis-
ing performance on NLP applications.
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Abstract

Most studies in cross-device federated learn-
ing focus on small models, due to the server-
client communication and on-device compu-
tation bottlenecks. In this work, we lever-
age various techniques for mitigating these
bottlenecks to train larger language models
in cross-device federated learning. With sys-
tematic applications of partial model train-
ing, quantization, efficient transfer learning,
and communication-efficient optimizers, we
are able to train a 21M parameter Transformer
that achieves the same perplexity as that of
a similarly sized LSTM with ∼ 10× smaller
client-to-server communication cost and 11%
lower perplexity than smaller LSTMs com-
monly studied in literature.

1 Introduction

Federated learning is a distributed training tech-
nique, where a model is trained on data dis-
tributed across clients or edge devices without user-
generated data ever leaving the device, providing an
additional layer of privacy and security (Konečnỳ
et al., 2016b,a; McMahan et al., 2017). We refer
readers to (Li et al., 2020; Kairouz et al., 2021) for
a detailed literature survey on federated learning.
Federated learning has been used in several applica-
tions including virtual keyboard applications (Hard
et al., 2018), keyword spotting (Hard et al., 2020),
and healthcare (Brisimi et al., 2018).

Language models (LM) have many uses in
language-based applications including virtual key-
board (Chen et al., 2019; Zhang et al., 2021) and
automatic speech recognition (Kannan et al., 2018;
Variani et al., 2020; Gruenstein et al., 2021). Re-
cently, there has been increased interest in training
progressively larger and deeper LMs with impres-
sive quality improvements in downstream tasks,
including question answering, text classification,
and text summarization (Devlin et al., 2019; Dai
et al., 2019; Yang et al., 2019; Irie et al., 2019; Ka-

plan et al., 2020). These models tend to be variants
of the Transformer (Vaswani et al., 2017).

Federated learning is typically studied in two
scenarios: cross-silo, where the number of clients
is small, and cross-device, where the number of
clients can be in the order of millions (Hard et al.,
2018). In this work we focus on cross-device,
where devices are typically edge devices such as
cell phones, with limited computation and commu-
nication capabilities. Hence, the major benchmark
LMs tend to be very limited in size (McMahan
et al., 2017, 2018; Caldas et al., 2019a; Reddi et al.,
2020; Sim et al., 2021) because memory, compu-
tation, and communication are critical bottlenecks
(Kairouz et al., 2021). In particular, previous works
that train federated LMs in production settings have
used coupled input forget gate (CIFG) long short-
term memory (LSTM) models with fewer than 4
million parameters (Hard et al., 2018; Chen et al.,
2019; Ramaswamy et al., 2020). These resource
constraints have motivated research into various
efficient algorithms for training larger models with
federated learning (Konečnỳ et al., 2016b; Hamer
et al., 2020). However, most of these techniques are
still evaluated on relatively small models compared
to their server-based counterparts. In this work,
we systematically evaluate multiple strategies for
mitigating communication and computation costs
of training larger LMs to determine if the impres-
sive quality gains from larger models can also be
achieved in cross-device federated learning.

While there are previous works on efficient
Transformers (Tay et al., 2020, 2021), we forgo
these efficient variants as they may actually
be more inefficient when sequences are short
(Katharopoulos et al., 2020; Choromanski et al.,
2021). Additionally, Lin et al. (2020); Liu and
Miller (2020); Hilmkil et al. (2021) trained large
Transformer models in the cross-silo setting, where
devices have more resources, whereas we focus on
the resource-constrained cross-device setting.
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Recent large LMs, such as GPT-3 (Brown et al.,
2020), contain hundreds of billions of parameters,
which is substantially bigger than the memory lim-
its of edge devices. Therefore in this work, we
consider large models to be at most 25 million pa-
rameters, which is still considerably larger than
existing models trained on-device.

The rest of the paper is organized as follows. In
Section 2, we overview our contributions. In Sec-
tion 3, we detail the dataset and models. We then
analyze techniques to reduce the per-round cost
in Section 4, and the number of communication
rounds in Section 5. Finally in Section 6, we com-
bine techniques and demonstrate that large Trans-
formers can be trained using many fewer rounds
and significantly lower communication and compu-
tation cost.

2 Our contributions

We explore two regimes: small models typically
studied in cross-device federated learning with
fewer than 5M parameters and new larger models
with at most 25M parameters. We study two archi-
tectures: CIFG-LSTM (Hochreiter and Schmidhu-
ber, 1997), or LSTM for simplicity, (Hard et al.,
2018) and Transformer (Vaswani et al., 2017). Our
contributions are the following:

• We are the first to investigate Transformer
LMs with 25M parameters for cross-device
federated learning, which we find outperform
LSTMs of similar size.

• We demonstrate that large models substan-
tially outperform small models on standard
tasks but at much higher communication and
computation costs, requiring 4× the commu-
nication cost per round.

• We investigate quantization and partial model
training to address the per round communica-
tion and computation cost. With quantization,
we achieve similar perplexity with half the
download cost and one quarter of the upload
cost, reducing total communication cost by
62.5%. Partial model training can further re-
duce the upload cost by 60%.

• We study transfer learning as a method of re-
ducing the number of communication rounds
and show that centralized pretraining on a suit-
able alternate corpus reduces the total commu-
nication rounds by 3×.

• We show that the combination of above tech-
niques can be used to train a Large Trans-
former with the same perplexity as that of a
similarly sized LSTM with∼ 10× the smaller
client-to-server communication cost.

3 Dataset and models

In this section, we describe the models and dataset
used in the rest of the paper. We train on
the Stack Overflow federated dataset from TFF
(2018), which contains posts from the public forum
grouped by username. Following trends in training
Transformers, we use sentence-piece (Kudo and
Richardson, 2018) for sub-word tokenization with
a vocabulary size of 4K. The sentence-piece model
is computed based on the entire Stack Overflow
training corpus in an offline process on server. Dur-
ing federated learning, this fixed sentence-piece
model is transmitted to each client to encode the
local text data. Doing so provides greater coverage
for cross-dataset applications as well as potential
downstream speech applications such as ASR (Li
et al., 2021; Sim et al., 2021). We measure per-
formance on next-subword prediction using test
perplexity. See Appendix A for descriptive dataset
statistics. All experiments were implemented using
JAX (Bradbury et al., 2018) and FedJAX (Ro et al.,
2021) federated simulation libraries.

We first did a hyperparameter search for each
model and size (≤ 5M and≤ 25M), with FedAdam
(Reddi et al., 2020), or FedAvg for simplicity, with
200 clients per round for 3K rounds, resulting in
four models: Small LSTM (4.7M), Large LSTM
(18.8M), Small Transformer (4.1M), and Large
Transformer (21M).

Figure 1: Test perplexity over communication rounds
for each class and size of model.

We then trained the chosen architectures with
800 clients per round for 10K rounds in Figure 1.
As expected, the larger variants significantly out-
perform their smaller counterparts with the Large
Transformer achieving the best perplexity. How-
ever, the larger models are more expensive to train
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per round and although the Large Transformer
achieves the best perplexity, it only surpasses the
Large LSTM after 4K rounds. Next, we focus
on techniques to reduce this cost per round and
number of rounds. For more details about the ar-
chitecture search, the selected models, and their
performance, see Appendix A.

4 Cost per round

The larger models have 18.8M and 21M param-
eters (150MB and 168MB, at 32 bits per param-
eter) which need to be downloaded, trained, and
uploaded at each round, a strain on both commu-
nication and computation on device. There are
often strict time or transfer byte limits for each
round of training, which can prohibit some devices
from training these models due to slower trans-
fer/processing speeds (Kairouz et al., 2021). We
show that we can significantly reduce these costs by
partial model training and quantization techniques.

Partial model training: Training only a subset
of the model can reduce the computational cost of
training and has been examined in both federated
(Caldas et al., 2019b; Yang et al., 2021) and non-
federated (Kovaleva et al., 2019) settings. Addition-
ally, reducing the number of trainable parameters
can also decrease communication cost since only
the trainable parameters need to be uploaded.

Figure 2: Test perplexity as a function of number of
trainable variables.

We follow the Partial Variable Training (PVT)
per client per round strategy (Yang et al., 2021)
as it only freezes a subset of the original model
and can be applied generally to multiple model
architecture types. For more experiment details, see
Appendix B. We report test perplexity as a function
of number of trainable variables in Figure 2. Large
LSTM seems to be able to handle more aggressive
parameter freezing compared to Large Transformer
in terms of quality regression. However, training
only 40% of variables for the Large Transformer
(6.3M) achieves better performance than the full
Large LSTM (18.8M).

Quantization: To reduce communication costs,
various quantization strategies can decrease the
number of bits required to represent model pa-
rameters (Bernstein et al., 2018; Reisizadeh et al.,
2020; Gandikota et al., 2021; Vargaftik et al., 2021).
We examine stochastic k-level uniform quantiza-
tion (Alistarh et al., 2017; Suresh et al., 2017) as
it can be applied to model parameters on down-
load (server-to-client) and model updates on upload
(client-to-server) communication with adjustable
levels of compression, and compare with TernGrad,
an upload technique (Wen et al., 2017).

We focus analysis on larger models which are
more affected by quantization. The LSTM ap-
pears more "quantizable" during download than
the Transformer, with less regression in Figure 3.
The perplexity of the Transformer with 16 down-
load bits matches that of the baseline Transformer
and with 12 bits its perplexity is close to that of the
LSTM.

Figure 3: Test perplexity over communication rounds
for varying download quantization levels, with upload
quantization fixed to 8 bits. Dashed line shows the base-
line without quantization.

For both the models, 8 bit upload matches the
corresponding baselines, or even 6 bits for the
LSTM in Figure 4. TernGrad, requiring log2(3)
bits, outperforms the 4 bit in the Transformer but
not for the LSTM in Figure 5. More details are in
Appendix C.

Figure 4: Test perplexity over communication rounds
for varying upload quantization levels, with download
quantization fixed to 16 bits. TernGrad is comparable
to uniform with about 1.6 bits. Dashed line shows the
baseline without quantization.
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Figure 5: Test set perplexity versus total communica-
tion cost (download + upload) in a single round of
training, for each quantization algorithm. Uniform set-
tings include points for varying quantization bits.

5 Number of communication rounds

Transfer learning: Transfer learning leverages
pretrained models to improve model quality
(Houlsby et al., 2019). By pretraining, the number
of communication rounds required for model con-
vergence can be significantly reduced (Stremmel
and Singh, 2020).

We use two datasets for pretraining: a large cor-
pus of digitized books (Zhang et al., 2021) and
the One Billion Word Benchmark (LM1B) (Chelba
et al., 2014). After pretraining using synchronous
SGD for 30M steps, we finetune on Stack Over-
flow using FedAvg. For additional details, see Ap-
pendix D. We report results for each of the pretrain-
ing datasets and random initialization in Figure 6.

Books consistently outperforms LM1B for both
the LSTM and Transformer. Pretraining greatly
benefits the Large Transformer compared to the
Large LSTM, reducing the number of rounds
needed to reach the final 10K without pretraining
by 4K rounds. Furthermore, at round 2K, the Large
Transformer already outperforms the Large LSTM,
making the number of rounds needed for training
similar to that of smaller models used in mobile
keyboard prediction (Hard et al., 2018).

Figure 6: Test perplexity over communication compar-
ing pretraining corpora. Dashed line is the final per-
plexity reached by the randomly initialized model.

Different optimizers: Since the introduction of
FedAvg, several variations continue to be devel-
oped (Li et al., 2018; Hamer et al., 2020; Reddi

Figure 7: Test perplexity over communication rounds
for each model and algorithm.

Figure 8: Test perplexity over total uploaded gigabytes
per client for each class of model.

et al., 2020). Specifically, we examine MimeLite
(Karimireddy et al., 2020) and FedProx (Li et al.,
2018) as they have been shown to reduce the to-
tal amount of rounds required for provable con-
vergence. However, in Figure 7, FedProx and
MimeLite do not improve convergence speed over
FedAvg. More details can be found in Appendix E.

6 Combination of techniques

We experiment with combining partial model train-
ing, quantization, and transfer learning to train effi-
cient larger models. For these experiments, we
train on just 40% of trainable parameters with
PVT and warm start after pretraining on the Books
corpus. Combining download quantization with
these techniques did not perform as well, so we
only apply 8 bit uniform quantization on upload,
which is the tightest communication bottleneck
(Statista.com (2021) reports that mobile upload
speeds worldwide are over 4× slower than down-
load as of May 2021). For the full experiment
details, refer to Appendix F. We report the test
perplexity in terms of total upload communication
cost in Figure 8. Restricting for small upload costs
(< 200GB), the efficient models outperform all oth-
ers with the efficient Large Transformer yielding
the best perplexity. Furthermore, the efficient Large
Transformer also achieves the same perplexity as
the Large LSTM with no efficient techniques.
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7 Conclusion

We systematically studied several techniques for ad-
dressing the communication and computation bot-
tlenecks of federated learning. We further demon-
strated that these techniques, individually or in
combination, can scale to larger models in cross-
device federated learning. Extending this study to
other architectures and efficient strategies remains
an interesting open question.
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han, and Ameet Talwalkar. 2019b. Expanding the
reach of federated learning by reducing client re-
source requirements.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
T. Brants, Phillip Todd Koehn, and Tony Robinson.
2014. One billion word benchmark for measuring
progress in statistical language modeling. ArXiv,
abs/1312.3005.

Mingqing Chen, Ananda Theertha Suresh, Rajiv Math-
ews, Adeline Wong, Cyril Allauzen, Françoise Bea-
ufays, and Michael Riley. 2019. Federated learn-
ing of n-gram language models. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 121–130, Hong
Kong, China. Association for Computational Lin-
guistics.

10



Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J Colwell, and Adrian Weller. 2021.
Rethinking attention with performers. In Interna-
tional Conference on Learning Representations.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(61):2121–2159.

Venkata Gandikota, Daniel Kane, Raj Kumar Maity,
and Arya Mazumdar. 2021. vqsgd: Vector quantized
stochastic gradient descent. In International Confer-
ence on Artificial Intelligence and Statistics, pages
2197–2205. PMLR.

Alex Gruenstein, Anmol Gulati, Arun Narayanan,
Bo Li, Cal Peyser, Chung-Cheng Chiu, Cyril
Allauzen, David Johannes Rybach, Diamantino A.
Caseiro, Ehsan Variani, Emmanuel Guzman,
Ian Carmichael McGraw, James Qin, Jiahui
Yu, Michael D. Riley, Pat Rondon, Qiao Liang,
Quoc-Nam Le-The, Rami Botros, Ruoming Pang,
Sepand Mavandadi, Shuo yiin Chang, Tara N
Sainath, Trevor Deatrick Strohman, W. Ronny
Huang, Wei Li, Yanzhang (Ryan) He, Yonghui
Wu, and Yu Zhang. 2021. An efficient streaming
non-recurrent on-device end-to-end model with
improvements to rare-word modeling.

Jenny Hamer, Mehryar Mohri, and Ananda Theertha
Suresh. 2020. Fedboost: A communication-efficient
algorithm for federated learning. In International
Conference on Machine Learning, pages 3973–3983.
PMLR.

Andrew Hard, Kurt Partridge, Cameron Nguyen, Ni-
ranjan Subrahmanya, Aishanee Shah, Pai Zhu, Igna-
cio Lopez Moreno, and Rajiv Mathews. 2020. Train-
ing keyword spotting models on non-iid data with
federated learning. In Interspeech.

Andrew Hard, Kanishka Rao, Rajiv Mathews,
Françoise Beaufays, Sean Augenstein, Hubert

Eichner, Chloé Kiddon, and Daniel Ramage. 2018.
Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604.

Agrin Hilmkil, Sebastian Callh, Matteo Barbieri,
Leon René Sütfeld, Edvin Listo Zec, and Olof Mo-
gren. 2021. Scaling federated learning for fine-
tuning of large language models. In International
Conference on Applications of Natural Language to
Information Systems, pages 15–23. Springer.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann
Ney. 2019. Language modeling with deep trans-
formers. Interspeech 2019.

Peter Kairouz et al. 2021. Advances and open
problems in federated learning. Foundations and
Trends R© in Machine Learning, 14(1).

Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N.
Sainath, ZhiJeng Chen, and Rohit Prabhavalkar.
2018. An analysis of incorporating an external lan-
guage model into a sequence-to-sequence model. In
2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1–
5828.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. Scaling laws for neural language
models.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale,
Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. 2020. Mime: Mim-
icking centralized stochastic algorithms in federated
learning. arXiv preprint arXiv:2008.03606.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear at-
tention. In ICML 2020: 37th International Confer-
ence on Machine Learning, volume 1, pages 5156–
5165.
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Appendix

A Dataset and models

Figure 9: Stack Overflow train split sub-word statistics.

Table 1: Selected architectures for each model and size range. The values in [ ] are the possible hyperparameter
values searched over. Layer Size refers to the LSTM layer dimension and MLP layer dimension for Transformer
and # Layers refers to number of LSTM layers and number of Transformer blocks.

Model # Parameters Embedding Size Layer Size # Layers
[128, 256, 512, 1024] [512, 1024, 2048] [1, 2, 4, 6, 8]

Small LSTM 4.7M 256 2048 1
Small Transformer 4.1M 128 2048 6

Large LSTM 18.8M 1024 2048 1
Large Transformer 21.0M 512 2048 6

Table 2: Test metrics after 10K rounds of training for each class of model and number of clients per round. The
results in bold indicate the best for each size range.

Model # Clients Perplexity
Small LSTM 200 35.31
Small LSTM 400 34.93
Small LSTM 800 34.80

Small Transformer 200 40.18
Small Transformer 400 39.38
Small Transformer 800 38.66

Large LSTM 200 30.97
Large LSTM 400 30.79
Large LSTM 800 30.83

Large Transformer 200 30.64
Large Transformer 400 29.81
Large Transformer 800 29.15

For the baseline architecture search, Table 1 details the selected architectures as well as the search
ranges for each dimension. The final hyperparameters were selected based on the test perplexity after 3K
rounds of training using FedAvg with 200 clients per round. From here on, we fix the Adam optimizer
with β1 at 0.9, β2 at 0.999, and epsilon at 1e−8. Additionally, based on the distribution of average
sequence lengths across Stack Overflow clients in Figure 9, we fix the max sequence length for training
and evaluation to 30.

Table 2 contains the results for each selected model after 10K rounds of training using FedAvg with
200, 400, and 800 clients per round. As expected, the best results are achieved by using 800 clients per
round. Thus, from here on, we report results for 800 clients per round only. For these experiments, we
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Table 3: Selected hyperparameters for each model and size range. The values in [ ] are the possible hyperparameter
values searched over. Batch Size, # Examples, and Clipnorm here apply to the client local SGD steps. LR is
learning rate.

Model Batch Size # Examples Clipnorm Client LR Server LR
[8, 16] [1200, 1600] [0.0, 16.0] [0.01, 0.1, 0.5, 1.0, 2.0] [0.001, 0.01]

Small LSTM 16 1200 16.0 1.0 0.001
Small Transformer 16 1200 0.0 0.1 0.001

Large LSTM 16 1200 16.0 1.0 0.001
Large Transformer 16 1200 0.0 0.5 0.001

Figure 10: Test set perplexity as a function of number of gradient computations for comparing the centralized and
federated averaging baselines.

also search over client learning rate, client batch size, client max number of examples (with client number
of epochs fixed to 1), client `2 norm for clipping, and server learning rate. The search ranges as well as
selected values for each model are detailed in Table 3. For all following experiments, we fix client batch
size to 16 and client max number of examples to 1200 since the larger batch size consistently performed
the best and Figure 9 shows that 1200 sequences is more than enough to cover the vast majority of clients
with the number of epochs fixed at 1. We also search over the same ranges for all following experiments
where applicable for consistency.

As an additional baseline comparison, we also train each model using synchronous SGD to observe
model quality in terms of number of gradient computations. These centralized baselines provide a rough
estimate of an upper bound on model quality for federated learning. To produce a reasonable comparison
between the federated and centralized experiments, we compare by number of gradient computations.
We approximate the number of gradient steps taken for federated learning with 200 clients per round for
10K communication rounds. We train the centralized models using the Adam optimizer and run periodic
evaluation on the test set at the same frequency as the federated experiments. We report and compare final
metrics between centralized training and federated averaging on the test set in Figure 10. Observing the
test perplexity over gradient steps, it is evident that the relative rankings of the models remain consistent
between centralized and federated baselines. Additionally, by 10K rounds, the large federated models
seem to approach somewhat close in perplexity to their centralized counterparts.

B Partial model training

In our experiments with PVT, we vary the percentage of trainable variables from 10% to 90% in increments
of 10. As before, we search over the hyperparameters in Table 3 and find them to be mostly consistent
with baseline other than client learning rate. Following Yang et al. (2021), we use the per client per round
(PCPR) configuration, where the frozen variables vary from round to round and from client to client, as
this was shown to achieve the highest accuracy. Specifically, we only freeze subsets of the multiplicative
vectors and matrices of the original model. This corresponds to the embedding and weights of the LSTM,
and for the Transformer, the weights of the MLP layer, attention matrices, layer normalization in each
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Table 4: Test perplexity after 10K communication rounds of training for each class of model and PVT % of
trainable variables.

Model Trainable % # Parameters Perplexity
Small LSTM 100% 4.7M 34.80

Small Transformer 100% 4.1M 38.66

Large LSTM 100% 18.8M 30.83
Large LSTM 40% 7.5M 31.53
Large LSTM 20% 3.8M 32.93

Large Transformer 100% 21.0M 29.15
Large Transformer 40% 8.4M 30.45
Large Transformer 20% 4.2M 32.61

Figure 11: Test perplexity over communication rounds for the large models with select percentages of trainable
variables denoted by X% with 100% indicating all trainable variables are trained (i.e. baseline).

block, and embedding. We also note though that although overall the number of trainable variables might
average to the desired percentage (e.g. 10%), for certain architectures, like LSTM, that don’t have that
many freezable variables (only one layer’s weight matrix and embedding matrix), the number of trained
variables will be much more variable from round to round. On the other hand, for architectures, like
Transformer, that have more freezable variables (6 blocks’ weight matrices and attention matrices and
embeddings), the number of trained is much more consistent between rounds.

We report test set perplexity over communication rounds for the large architectures and varying degrees
of PVT in Figure 11 with the number of clients per round set to 800. Looking at Table 4, it is evident
that both large models can handle some percentage of partial freezing up until a certain point and that
the Large Transformer with only 40% of trainable variables can reach a similar perplexity as the Large
LSTM with 100% trainable variables by 10K rounds or so. However, training for the full 10K rounds can
be a communication bottleneck so PVT would need to be combined with another technique to reduce the
number of rounds needed.

C Quantization

In stochastic k-level uniform quantization (Suresh et al., 2017), values in each layer are converted into one
of k evenly distributed values between the layer min and max, stochastically assigned to the closest target
value either above or below the real value. The lower the k value, the more the data is being compressed,
as the number of bits used to store the value equals log2(k). For download quantization, we explore k
values corresponding to between 8 and 28 bits. For upload quantization, which can be a larger bottleneck
in edge devices (Statista.com, 2021), we explore k values corresponding to between 1 and 28 bits. On
upload, we also try applying zero-centering during uniform quantization as well as trying the TernGrad
(Wen et al., 2017) algorithm, which quantizes values in each vector v into only one of three values, 0 and
±max(|v|), corresponding to log2(3) (∼ 1.585) bits per parameter. While TernGrad is designed to use L
infinity clipping (`∞), we experiment with and without this for completeness.
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Figure 12: Test set perplexity over communication rounds for varying upload quantization levels, with download
quantization fixed to 16 bits. The dotted line shows baseline perplexity achieved after 10K rounds without any
quantization.

While `∞ clipping did make a significant difference in the TernGrad experiment for Transformers,
performing much better with it than without, it did not have a large effect on the TernGrad performance in
the LSTM in Figure 12. TernGrad and its counterpart uniform quantization to ∼ 1.585 bits performed
the same, as long as `∞ clipping was applied. It is clear from the uniform 2-bit experiments as well that
`∞ clipping is important when quantizing into these lower number of bits; the 2-bit experiment without
clipping performs much worse than the Terngrad without clipping, although enabling clipping allows
2-bit to perform slightly better than Terngrad’s log2(3) bits with clipping. Zero-centering did not seem to
affect upload behavior much for either model, marginally improving the LSTM and marginally degrading
the Transformer.

We explore the patterns of communication cost for each experiment setting in Figure 5. We calculate
the approximate download and upload MB for each experiment by multiplying the model’s number of
parameters by the number of download or upload bits to get total bits transported.

Examining Figure 5, we note the baseline points for each set of experiments as the lowest and rightmost,
getting the best perplexity but also highest communication cost. Starting from there, we see trends of no
perplexity degradation as we apply conservative quantization to the Large LSTM and Transformer settings
and move left in the plot. We then reach an elbow in the points for each setting right around where the
Terngrad point is, from which point perplexity degrades drastically without much communication cost
savings as the points head up in two lines as upload quantization is reduced, with one line corresponding
to experiments with download 16 bits and the other to download 12 bits. While the Terngrad point for
the Large Transformer falls at the outermost point in the "elbow" and therefore gives the best tradeoff
for cost versus perplexity, there is one uniform quantization point that does better than the Large LSTM
Terngrad, which is download 12 bits and upload 6 bits. It makes sense that this does well as we saw that
the LSTM was able to use these settings without much regression from the baseline performance, while
the Transformer could only quantize to 16 download bits and 8 upload bits without regressions.
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Table 5: Selected hyperparameters for each centrally trained model and dataset. The values in [ ] are the possible
hyperparameter values searched over.

Model Dataset Clipnorm Learning Rate
[0, 16] [1e−5, 5e−5, 1e−4,

5e−4, 1e−3, 5e−3, 1e−2]
Small LSTM Book 16.0 5e−5

Small LSTM LM1B 0.0 5e−5

Large LSTM Book 0.0 5e−5

Large LSTM LM1B 0.0 5e−5

Small Transformer Book 0.0 1e−4

Small Transformer LM1B 16.0 1e−4

Large Transformer Book 16.0 5e−5

Large Transformer LM1B 16.0 5e−5

D Transfer learning

To find the best models pretrained on the Books and LM1B datasets, we train for 30M steps of synchronous
SGD searching over learning rate and clip norm. Like our other centrally trained models, the batch size is
fixed to 16 and Adam is used with β1 at 0.9, β2 at 0.999, and epsilon at 1e−8. See Table 5 for the selected
hyperparameters.

Next we warmstart each models with the parameters from the best corresponding pretrained centralized
model and train using FedAvg for 10K rounds. We sweep over clip norm and client learning rate. See
Table 6 for the selected hyperparameters. Clip norm is omitted in Table 6, since for all hyperparameter
sweeps 16 was the best value. The Book dataset outperforms the LM1B dataset in all model architectures
across LSTM and Transformer. Investigating the difference between the two datasets and their similarities
to the Stackoverflow dataset to determine why Books always outperformed LM1B remains an interesting
open question.

E Different optimizers

In an effort to improve communication efficiency of the larger language models, we examine two
communication-efficient federated algorithms: MimeLite and FedProx. By comparing the speed and point
of convergence of these algorithms in number of rounds, we can determine if the overall communication
cost of training can be decreased. As before, we fix the model architectures for each class of model and
conduct a basic search over learning hyperparameters using the same common search space as Table 3 with
the addition of the following algorithm specific hyperparameter sweeps. For MimeLite, we use Adagrad
(Duchi et al., 2011) for the base optimizer as this setup was shown to perform the best by Karimireddy
et al. (2020) for Stack Overflow. For the MimeLite Adagrad base optimizer, we sweep over base learning
rates of [0.01, 0.03, 0.1, 0.3, 1.0] and epsilons of [1e−1, 1e−3, 1e−5, 1e−7] and fix the server learning rate
to 1.0. For FedProx, we sweep over µ values of [0, 0.1, 0.01, 0.001, 0.0001] which controls the weight of
the L2 squared norm.

We report test perplexity over 10K federated training rounds with 800 clients per round in Figure 7
and Table 7. While FedProx does slightly outperform FedAvg, it does not significantly alter the speed of
training in terms of number of communication rounds. Thus, we chose to continue using FedAvg in the
combination experiments for consistency across experiments and more accurate comparisons.

F Combination of techniques

For the combination experiments, we conducted a joint search over a smaller range of hyperparameters for
each technique to keep the total search space reasonable. For PVT, we restricted the possible percentages
to 20%, 30%, and 40% of trainable variables as those were shown to yield good performance while
cutting model size to less than half the original size. For uniform quantization, we restricted the search of
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Table 6: Test set metrics after 10K communication rounds of training for each class of model and pretrain dataset.
The client learning rate listed is the best performing learning rate found from a hyperparameter sweep.Reported ∆
metrics are the change in quality relative to Table 2.

Model Dataset # Clients Client Learning Rate ∆ Perplexity
[0.01, 0.1, 0.5, 1.0, 2.0]

Small LSTM Book 200 1.0 0.24
Small LSTM Book 400 0.5 1.09
Small LSTM Book 800 0.5 1.66

Small LSTM LM1B 200 1.0 0.53
Small LSTM LM1B 400 0.5 1.72
Small LSTM LM1B 800 0.5 2.36

Large LSTM Book 200 0.5 0.59
Large LSTM Book 400 0.1 0.79
Large LSTM Book 800 0.5 0.94

Large LSTM LM1B 200 0.5 0.91
Large LSTM LM1B 400 0.1 1.09
Large LSTM LM1B 800 0.5 1.3

Small Transformer Book 200 0.1 0.35
Small Transformer Book 400 0.1 1.83
Small Transformer Book 800 0.1 3.34

Small Transformer LM1B 200 0.1 0.42
Small Transformer LM1B 400 0.1 1.97
Small Transformer LM1B 800 0.1 3.49

Large Transformer Book 200 0.5 −1.92
Large Transformer Book 400 0.1 −0.76
Large Transformer Book 800 0.1 −0.04
Large Transformer LM1B 200 0.1 −1.81
Large Transformer LM1B 400 0.1 −0.64
Large Transformer LM1B 800 0.1 0.14

upload to 6 or 8 bits and download to 16 or 32 bits since the Transformer was shown to be able to handle
aggressive upload quantization but required more care on download quantization. Finally, for transfer
learning, we warmstarted after pretraining on the Books corpus. As in previous experiments, we also
search over the common hyperparameter space defined in Table 3, where applicable.

Similar to previous experiments, we use 800 clients per round and train for 10K rounds with FedAvg.
Figure 13 and Table 8 contain the results for the large models with and without the efficient techniques
applied. We apply two levels of quantization on download, 16 and 32 bits, and observe that the Large
LSTM is more amenable to download quantization compared to the Large Transformer as the regression
between the two levels is much smaller for the LSTM than the Transformer. However, the Transformer with
16 bit download quantization still outperforms all efficient LSTMs though it requires more communication
rounds to do so than the efficient Transformer with 32 bits for download. For the remaining analysis, we
focus on the efficient Transformer using 32 bits for download. It is clear that for the Large Transformer,
applying efficient techniques yields better quality in earlier communication rounds. Although there are
regressions in the final model quality after 10K rounds of training, this could be attributed to previously
observed issues with increased amounts of labeled data diminishing the value pretraining (Zoph et al.,
2020). However, the Efficient Large Transformer still reaches the same final perplexity as the Large
LSTM which had no efficient techniques applied. Furthermore, when considered in terms of actual
communication cost, as is done in Figure 8, the efficient models yield much better performance at smaller
total communication costs.
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Table 7: Test perplexity after 10K communication rounds of training for each class of model and federated algo-
rithm.

Model Algorithm Perplexity
Small LSTM FedAvg 34.80
Small LSTM MimeLite 34.81
Small LSTM FedProx 34.66

Small Transformer FedAvg 38.66
Small Transformer MimeLite 39.88
Small Transformer FedProx 38.57

Large LSTM FedAvg 30.83
Large LSTM MimeLite 31.00
Large LSTM FedProx 30.76

Large Transformer FedAvg 29.15
Large Transformer MimeLite 30.39
Large Transformer FedProx 29.04

Table 8: Test perplexity and total communication costs in gigabytes after 10K communication rounds of training
for each class of model and setup. If the number of download bits is unspecified, the standard 32 bits was used.

Model Download Cost (GB) Upload Cost (GB)
Small LSTM 188 188 34.80

Small Transformer 164 164 38.66

Large LSTM 752 752 30.83
Large Transformer 840 840 29.15

Efficient Large LSTM (download 32 bits) 752 75 32.57
Efficient Large Transformer (download 32 bits) 840 84 30.83

Efficient Large LSTM (download 16 bits) 376 75 32.76
Efficient Large Transformer (download 16 bits) 420 84 32.32

Figure 13: Test perplexity over communication rounds for the large models with and without efficient techniques
applied.

Perplex.
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Abstract

Although differential privacy (DP) can protect
language models from leaking privacy, its in-
discriminative protection on all data points re-
duces its practical utility. Previous works im-
prove DP training by discriminating private
and non-private data. But these works rely on
datasets with prior privacy information, which
is not available in real-world scenarios. In this
paper, we propose an Adaptive Differential
Privacy (ADP) framework for language model-
ing without resorting to prior privacy informa-
tion. We estimate the probability that a linguis-
tic item contains privacy based on a language
model. We further propose a new Adam al-
gorithm that adjusts the degree of differential
privacy noise injected to the language model
according to the estimated privacy probabili-
ties. Experiments demonstrate that our ADP
improves differentially private language mod-
eling to achieve good protection from canary
attackers.

1 Introduction

Language modeling is a foundation problem in nat-
ural language processing (Bommasani et al., 2021).
Recent large language models (Brown et al., 2020;
Zeng et al., 2021) are usually trained at scale. Un-
fortunately, large language models have a tendency
to remember training data in the absence of ap-
propriate privacy protection mechanisms (Carlini
et al., 2019, 2021). Since data, which are usually
collected from public sources, e.g., tweets, blogs,
may contain sensitive information (personal ad-
dress, SSN numbers, and so on) learning a safe
large language model has become increasingly im-
portant.

In recent years, differential privacy (Dwork,
2008; Dwork et al., 2014) has become a key pri-
vacy preservation method, which attempts to ran-

*Corresponding author.
†Work done while this author was an intern at BtyeDance

Lark AI.

domize the training algorithm so that the model
does not rely too much on any single training in-
stances. Abadi et al. (2016) propose Differential
Private Stochastic Gradient Descent (DP-SGD) to
protect deep learning models by adding random
noise to gradients. However, traditional differen-
tial privacy ignores individual attributes of data
(McMahan et al., 2018). This overly pessimistic
privacy protection results in poor performance or
even mis-convergence of training for differentially
private language models (Anil et al., 2021). There-
fore, approaches are proposed to mitigate this prob-
lem by treating private and non-private data sep-
arately during the DP training process, such as
selective differential privacy (Shi et al., 2021) and
sensory-based privacy-χ (Qu et al., 2021). These
methods require training data to provide privacy
information as a hard label. Unfortunately, it is
usually difficult and expensive to manually anno-
tate privacy labels to data. Other studies (Xu et al.,
2019; Tesfay et al., 2019) learn to detect privacy
information in unstructured texts. However, the pre-
requisite is knowing keywords or reference texts
of privacy information (Neerbek, 2020). Therefore,
learning differentially private language models on
data without prior privacy information is an open
problem yet to be investigated.

In this paper, we propose an Adaptive Differen-
tial Privacy (ADP) framework without resorting
to prior privacy information. The basic assump-
tion behind ADP is that linguistic items containing
private information do not occur frequently in real-
world texts. Hence, the probability that a linguistic
item contains privacy information (hereinafter pri-
vacy probability) is inversely proportional to the
frequency of the linguistic item occurring in the
dataset. With this assumption, we can estimate the
privacy probability of a linguistic item based on
a language model. After estimating these proba-
bilities, we relax the constraint of differential pri-
vacy, and propose an adaptive differential privacy
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method, which adjusts the Guassian noise of dif-
ferential privacy based on privacy probabilities. To
enable this adaptive differential privacy strategy,
we further present Adaptive-DP-Adam Algorithm
to train differentially private language models.

To evaluate our approach, we train transformer-
based language models, and compare the perfor-
mance of adaptive differential privacy against tra-
ditional differential privacy methods. Additionally,
we verify the protection effectiveness of ADP mod-
els with canary attackers (Carlini et al., 2019). The
results suggest that our adaptive differential pri-
vacy method can achieve good performance and
protection from canary attackers.

The main contributions of this paper are three-
fold.

• We propose a method to automatically esti-
mate the probability that a linguistic item con-
tains privacy information, relaxing the require-
ment of prior privacy information of previous
methods.

• A new Adaptive-DP-Adam algorithm is pro-
posed, which adaptively adjusts the magnitude
of differential privacy noise to be injected into
language models according to privacy proba-
bilities.1

• We conduct experiments to validate the ef-
fectiveness of the proposed adaptive differen-
tial privacy in improving the performance of
differentially private models and protecting
sensitive information.

2 Related Work

Large language models (Brown et al., 2020; Zhang
et al., 2020) have been attracting growing atten-
tion. Powerful large language models can achieve
substantial improvements on a wide range of down-
stream NLP tasks. Unfortunately, large language
models have a tendency to memorize training data
(Carlini et al., 2019). Carlini et al. (2021) have
successfully induced GPT-2 (Radford et al., 2019)
to output sensitive information in its training data.

Differential privacy (Dwork, 2008; Dwork et al.,
2014) is widely used to protect private information
of data. Abadi et al. (2016) propose the DP-SGD
algorithm to train deep learning models, and apply
moment accounting to calculate cumulative pri-
vacy loss during training. Although DP-SGD can

1Code is available at https://github.com/
flamewei123/ADP.

limit the risk of leaking information from training
data, random noise on gradients usually degrades
corresponding models (Li et al., 2021), and even
cause training to not converge when a large model
is trained.

To improve DP-SGD, one way is to change train-
ing settings (Li et al., 2021; Hoory et al., 2021),
e.g., increasing the batch size or decreasing clip-
ping norm. However, these methods are usually
at a higher cost. Other attempts to improve the
utilization of dataset information by relaxing the
constraints of differential privacy. For example,
Ebadi et al. (2015) propose personalized differenti-
ated privacy to provide different levels of privacy
protection for different users. Kotsogiannis et al.
(2020) develop one-sided differential privacy that
only protects sensitive users. Shi et al. (2021) in-
troduce Selective Differential Privacy to add noise
only into private data. These methods all need
to know which items in the dataset contain pri-
vate information, which is prohibitively expensive
for large-scale datasets. There are some previous
works (Xu et al., 2019; Tesfay et al., 2019) detect-
ing sensitive information in unstructured texts, but
relying on labeled keywords or reference texts.

3 Preliminary

We will introduce differential privacy (Dwork,
2008; Dwork et al., 2014), and the DP-SGD al-
gorithm (Abadi et al., 2016) as preliminaries in this
section.

3.1 Differential Privacy

Intuitively, an algorithm is (ϵ; δ)-DP if the output
of the algorithm cannot be used to probabilistically
determine the presence of a single record in the
dataset by a factor of eϵ. Formally, an algorithm
A satisfies (ϵ; δ)-DP if for all datasets (D1;D2)
that differ from each other by at least one instance,
and for any set S, we have P{A(D1) ∈ S} ≤
eϵP{A(D2) ∈ S} + δ, where smaller ϵ values
indicate a stronger privacy protection.

3.2 DP-SGD Optimization

The basic idea of DP-SGD is to clip each example
gradients and add noise during model training.

Specifically, for a batch of size L, the loss func-
tion is L(θ) = 1

L

∑
xi
L(xi; θ). For each sample xi

in the batch, the gradient of g(xi) is first cut us-
ing the l2 norm according to the gradient clipping
level C, so that the maximum value of loss does
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not exceed C:

g(xi) =
1

max{1, ∥∇θL(xi; θ)∥2 /C}
∇θL(xi; θ).

(1)
For a batch Lt, after the sum of clipping gradients
of all samples in Lt is calculated, the Gaussian
noise z ∼ N (0, σ2C2I) is added to the sum of
gradients. Hence a new gradient ˜gLt required for
back propagation is computed as follows:

˜gLt =
1

L
(
∑

xi
g(xi) + zt). (2)

The smaller C can lead to more stable training.
And a smaller value of σ indicates smaller noise z.

4 Adaptive Differential Privacy

In this section, we will elaborate the proposed
Adaptive Differential Privacy. First, we intro-
duce a method to evaluate the privacy probability
of a linguistic item. Second, we propose an adap-
tive noise method, which adjusts the noise magni-
tude according to the privacy probability of an item
in DP-SGD process. Finally, an Adam gradient
optimization algorithm based on adaptive noise is
proposed.

4.1 Privacy Probability Evaluation
The range of privacy is not fixed but relying on its
owner, which makes it hard to judge the privacy.
To solve this problem, we introduce the following
assumption.

Assumption 1: Texts containing privacy infor-
mation do not occur frequently in a large dataset.

We assume that the probability of texts contain-
ing private information is related to the frequency
of texts appearing in dataset. Hence, the judgment
of privacy can be transformed into the evaluation of
the text frequency, which means the privacy proba-
bility of a token sequence is in direct proportion to
the frequency of this sequence.

We then introduce a simple yet effective method
to measure the frequency of text based on large-
scale pre-trained language models. Giving a token
sequence s = x1, x2, ..., xn, the perplexity of the
sequence is computed as follows:

P(s) = exp(− 1

n

n∑

i=1

log fθ(xi|x1, ..., xi−1)).

(3)
When the perplexity is low, it indicates that the
average probability of text prediction is high. Large

language models like GPT use a huge amount of
text data for training. Hence, we consider such a
large language model to be a trustworthy estimator.

The perplexity from a trustworthy language
model is inversely proportional to the occurrence
frequence of the text o(s) ∝ 1

P(s) , and the privacy
probability of s is proportional to the perplexity
of s: ρ(s) ∝ P(s). Based on this, we propose a
formula for calculating the privacy probability:

ρ(s) = normalize(P(s)), (4)

where s ∈ D and normalize is a normalization op-
erator that transforms values into probability values
(i.e., falling between 0 and 1).

The above method that estimates the privacy
probability is not precise enough, which will in-
evitably cause some non-private and long-tail in-
stances to be identified as private samples. How-
ever, from the perspective of privacy protection,
such a cost is still acceptable.

4.2 Adaptive Noise
During differential privacy training, in the batch
B = s1, s2, ..., sL of size L, the privacy probability
of a token sequence si ∈ B is ρ(si), and the Gaus-
sian noise of B is zB = N (0, C2σ2I2), where σ is
a noise multiplier, and C is the clipping norm. To
improve the target model performance, we intro-
duce the privacy weight to change the magnitude
of Gaussian noise

γB =

∑L
i ρ(si)

L
. (5)

The privacy weight denotes a privacy probability
averaged over batch B. We incorporate it to the
Gaussian noise:

zBadp = γB · N (0, C2σ2I2). (6)

Through this method, we adaptively change the
noise of every batch according to its privacy weight.

4.3 Adaptive DP Optimization
With the adaptive noise, we further develop a pri-
vacy mechanism to train models. Abadi et al.
(2016) propose DP-SGD that adds Gaussian noise
to gradients and applies stochastic gradient descent
(SGD) to train private deep learning models. We
incorporate our proposed adaptive noise into DP-
SGD.

Such adapted framework is also suitable for
other optimization algorithms such as Adam. The
whole procedure of Adaptive-DP-Adam is de-
scribed in Algorithm 1.
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Algorithm 1: Adaptive-DP-Adam

1 Input: dataset D = {xi}Ni=1, a large
language model fLM , loss function L(θ)

2 Parameters: learning rate η, noise level σ,
batch B of size L, clipping norm C, step
E, Adam parameters {θ0,m0,m1, δ1, δ2}
1: Let G(φ) = 0
2: for all t ∈ T do
3: Sample a batch Bt, with sampling

probability L/N
4: Calculate γBt based on Eq. (5)
5: for all xi ∈ Bt do
6: Clip gradients

g̃t(xi)← gt(xi) ·min(1, C/ ∥gt(xi)∥2)
7: end for
8: Generate adaptive noise zt based on Eq. (6)
9: Calculate average gradients

ḡt(xi) =
1
L(zt +

∑L
i=1 g̃t(xi))

10: Update parameters θ using usual Adam
11: end for
12: return θT

5 Experiments

5.1 Settings

Dataset We used Wikitext-103 (Merity et al.,
2016) to train our model, which is a widely used
dataset for language modeling from a set of verified
Good and Featured articles on Wikipedia.

Baselines We have two baselines, one without
DP (denoted by “No-DP”), and the other trained
with DP-SGD (denoted by “DP-SGD”). We refer
to our models trained with ADP-SGD as “ADP”.

Hyper-parameters We used a 12-layer trans-
former decoder to train the language model with
hidden size of 1024 and batch size of 4096, training
20 epoches with inital learning rate of 5 × 10−5.
The clipping norm C was set to 0.001, and the
noise multiplier σ was 1 or 5.

5.2 Canary Attacker

Canary insertion is proposed by Carlini et al.
(2019), which inserts random sequences called ca-
naries into the training dataset and calculates the
exposure for the inserted canaries during testing
to measure whether the model memorizes these
canaries. In our setting, we injected “My ID is
955320” into the Wikitext-103 dataset for 10, 100,
and 1000 times to make the differences between

model test loss test PPL sigma epsilon
No-DP 7.08 256.66 - -
DP-SGD 13.08 7582.65 1.0 4.22
ADP 12.65 4426.05 1.0 6.35
No-DP 7.08 256.66 - -
DP-SGD 17.65 20815.23 5.0 0.1
ADP 14.85 8635.66 5.0 2.47

Table 1: The performance of language models trained
by our method and baselines. We compare results by
varying the noise level σ.

models more salient. Given a canary s[r], and a
model with parameters θ, the exposure of s[r] is
calculated as:

exposure = log2 |R| − log2 rankθ(s[r]), (7)

where R is the set of all possible results, and
rank(s[r]) is the position of s[r] inR. The lower
the exposure, the safer the model is.

5.3 Results
Model Performance We first evaluated models
trained by different privacy settings on language
modeling task. Both models were trained using
a transformer decoder architecture. As shown in
Table 1, DP-SGD performs poorly, and larger noise
σ further worses the model. In contrast, our ADP
helps model to alleviate the decaying performance,
and the utility grows when the noise multiplier σ
is large. Although the privacy guarantee ϵ of ADP
increases compared to DP-SGD when the noise
multiplier σ is 1 and 5, the privacy guarantee of
ADP is within the acceptable range. It suggests that
our ADP can improve the performance of differen-
tially private language models with tight privacy
guarantee.

Protection Against Attacker Our second group
of experiments, described in section 5.2, is to test
the model memorization of private information.
We evaluated models trained on the Wikitext-103
dataset injected canaries. We used text generation
to evaluate the exposure of canaries from differ-
ent language models. As can be seen from Fig-
ure 1, even when private item appears as many as
1000 times in the data, the ADP model performs
significantly better than the non-DP model. How-
ever, exposures of the ADP model are larger than
the DP-SGD model. It suggests that ADP method
can protect privacy information from leaking from
training data, but the protection performance is
slightly worse than DP-SGD.
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Figure 1: The exposure of canaries from different lan-
guage models. All models were trained for 20 epoches.

6 Conclusion

We have presented a new method to estimate the
privacy probability of a linguistic item when the
privacy information of the dataset is not known.
With estimated privacy probabilities, we propose
adaptive differential privacy (ADP), to improve the
model utility. We also present a privacy optimiza-
tion algorithm, Adaptive-DP-Adam, to train differ-
entially private models. Our experiments show that
models trained with ADP achieve better utilities
than traditional DP and are capable of protecting
sensitive information from being leaked.
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Abstract

Federated learning is a rapidly growing area
of research, holding the promise of privacy-
preserving distributed training on edge devices.
The largest barrier to wider adoption of fed-
erated learning is the communication cost of
model updates, which is accentuated by the
fact that many edge devices are bandwidth-
constrained. At the same time, within the ma-
chine learning theory community, a separate
line of research has emerged around optimiz-
ing networks within a subspace of the full space
of all parameters. The dimension of the small-
est subspace for which these methods still yield
strong results is called the intrinsic dimension.
In this work, we prove a general correspon-
dence between the notions of intrinsic dimen-
sion and gradient compressibility, and we show
that a family of low-bandwidth federated learn-
ing algorithms, which we call intrinsic gradi-
ent compression algorithms, naturally emerges
from this correspondence. Finally, we conduct
large-scale NLP experiments using transformer
models with over 100M parameters (GPT-2 and
BERT), and show that our method outperforms
the state-of-the-art in gradient compression.

1 Introduction

Federated learning is a nascent area of study which
seeks to perform machine learning in a privacy-
preserving way. However, federated learning with
deep neural networks suffers from a problem with
communication bandwidth: it is very costly to send
gradient/model updates over a network, especially
when communicating with mobile phones and edge
devices.

To reduce bandwidth for federated learning, it
is natural to utilize various forms of compression.
Previous works have tried to achieve compression
in two ways: (1) by compressing the information
communicated in standard gradient descent algo-
rithms (e.g. quantizing gradients (Wen et al., 2017))

∗Equal contribution

and (2) by training with non-standard methods that
naturally use less bandwidth (e.g. prototypical net-
works (Tan et al., 2021)).

At the same time, in the machine learning the-
ory community, researchers have been working to
understand what at first seems like an entirely dif-
ferent question: why do hugely overparametrized
models generalize so well? One promising ap-
proach to this answering this question has utilized
the concept of intrinsic dimension, defined for a
given optimization problem as the smallest dimen-
sion d for which we can solve the problem when
the weights are restricted to a a d-dimensional man-
ifold. To be precise, it is the smallest d for which
the standard loss minimization problem

min
θ′∈Rd

ℓ(fg(θ′)) (1)

has a satisfactory solution, where the image of g
is a d-dimensional manifold. If the intrinsic di-
mension of a problem is low, then even if a model
is vastly overparameterized, only a small number
of parameters need to be tuned in order to obtain
a good solution, which is often enough to imply
certain generalization guarantees.

We begin this paper by observing that the two
problems above are naturally related. If one can
find a solution to the problem by only tuning d pa-
rameters, as in Equation (1), then a corresponding
low bandwidth algorithm can be found by simply
running stochastic gradient descent in the reduced
parameter space (in this case, Rd).

However, simply optimizing a subset of a
model’s parameters is often insufficient for train-
ing models (especially when training from scratch,
rather than finetuning). Thus, we are inspired to
seek a more general characterization of algorithms
that use a low amount of bandwidth. In order
to do this, we rewrite the optimization problem
in Equation (1) in the original parameter space.
When g(θ′) = Aθ′ for some matrix A (so the low-
dimensional manifold is a low-dimensional sub-
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space), stochastic gradient descent can be rewritten
as

θt+1 = θt − ηAA⊤∇θℓ(fθ)|θ=θt . (2)

We call this method static intrinsic gradient com-
pression, because our gradients are projected into
a static (“intrinsic”) subspace. Now, Equation (2)
admits a natural generalization, which allows us
to explore more of the parameter space while still
preserving a low level of upload bandwidth usage:

θt+1 = θt − ηAtA
⊤
t ∇θℓ(fθ)|θ=θt (3)

where At may vary with time. We call the set of
all such algorithms intrinsic gradient compression
algorithms, and consider three particular instantia-
tions: static, time-varying, and k-varying, each of
which perform in different use cases.

Our approach is model-agnostic and highly scal-
able. In experiments across multiple federated
learning benchmarks (language modeling, text clas-
sification, and image classification), we vastly out-
perform prior gradient compression methods, and
show strong performance even at very high com-
pression rates (e.g. up to 1000×).

Our contributions are as follows.

• We find a general class of optimization algo-
rithms based on the notion of intrinsic dimen-
sion that use low amounts of upload band-
width, which we denote intrinsic gradient
compression algorithms.

• We specify three such algorithms: static com-
pression, time-varying compression and K-
varying compression, with different levels of
upload and download bandwidth for use in
various federated settings.

• In a set of experiments, we show that these
methods significantly outperform prior ap-
proaches to federated learning with gradient
compression, obtaining large reductions in
bandwidth at the same level of performance.

In Section 2, we describe the preliminaries
needed to contextualize our work, namely ideas
from intrinsic dimension, federated learning, and
gradient compression. In Section 3, we show how
the algorithm used by intrinsic dimension naturally
generalizes to algorithms which use little upload
bandwidth. In Section 4 we consider special in-
stantiations of these algorithms in federated learn-
ing settings which attain low upload and down-
load bandwidth, and in Section 5 show that they

achieve state of the art results. Finally, Section 6
concludes.

2 Preliminaries

2.1 Intrinsic Dimension

The concept of intrinsic dimension was introduced
in the work of (Li et al., 2018), as a way of evaluat-
ing the true difficulty of an optimization problem.
While this can usually be done by counting the
number of parameters, some optimization prob-
lems are easier than others in that solutions may be
far more plentiful.. One can write

ℓ(fθ) = ℓ(fg(θ′)) (4)

where g : Rd → RD and thus we’ve transformed
the problem into an optimization problem over θ2.
If we can still find good solutions to the original
problem where θ2 ∈ Θ2, then the problem’s intrin-
sic dimension may be lower, and thus the question
may be easier than previously expected. Through-
out this paper we will always take g(θ′) = Aθ′+θ0
for a D × d matrix A, and take Θ2 = Rd, and
Θ1 = RD, where D > d, where θ0 is the original
value of the expression.

The intrinisic dimension g(ℓ, L) with respect to
a task ℓ and performance threshold L is equal to the
smallest integer d so that optimizing Equation (4)
on task ℓ could lead to a solution of performance
at least equal to T . The intrinsic dimension is
not exactly knowable, because we cannot find the
“best performing model” exactly. However, if say,
training with some optimization algorithm gives
us a solution to Equation (4) with loss ≤ L and
with d dimensions, we can say with certainty that
g(ℓ, T ) ≤ d.

2.2 Federated Learning

Federated learning is a paradigm built around pro-
tecting the privacy of user data. The standard model
involves a server and many clients, where the raw
data must remain on the client’s device but the
server learns a model. Generally, this is imple-
mented by only the gradients of the model on the
data being sent to the central server, which then
runs a standard algorithm. A common example
of this is the FedAvg algorithm (McMahan et al.,
2017), where models are trained to near-completion
on a each client’s data, and the data is then aver-
aged. In what follows, we define an epoch to be a
single pass over every client.
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2.3 Gradient Compression
Sending full gradients in standard uncompressed
form uses far more bandwidth than we are afforded
in certain settings. For example, in a 1 billion pa-
rameter model (hardly particularly large by current
standards) one gradient update would take 4 giga-
bytes of bandwidth uncompressed. Thus, there has
been substantial amounts of work in compressing
the gradient, like (Albasyoni et al., 2020), which
finds an optimal gradient compression algorithm,
albeit one which is computationally infeasible.

2.4 Related Work: Model Pruning and Model
Compression

Related Work: Model Pruning There has been
great interest in compressing models by using
fewer weights, starting with the work of (Hinton
et al., 2015; Han et al., 2015). One related work is
Diff Pruning (Guo et al., 2021), which constrains
the number of weights that can be changed from
a pretrained model. In essence, diff pruning at-
tempts to solve an L0 minimization problem on
the weights of the model, and approaches this by
means of a relaxation.

A number of other works have explored the
idea of finetuning by only modifying a subset of
a model’s parameters. (Jiang et al., 2019) and
(Bibikar et al., 2021) utilize sparsity to reduce com-
munication costs during training. (Ravfogel et al.,
2021) finetunes only the layer biases of large mod-
els. Similarly, (Houlsby et al., 2019) finetunes low-
parameter adapters between each layer. Compared
to (Ravfogel et al., 2021) our method is far more
flexible, allowing any number of parameters to be
changed. Compared to (Houlsby et al., 2019) our
methods are architecture-independent, and can be
applied to any model.

Related Work: Federated Learning Federated
learning is a machine learning paradigm in which
a model is trained by a collection of clients, each
with their own private local data. From the in-
troduction of federated learning (McMahan et al.,
2017), it was clear that communication costs rep-
resented a significant challenge: sending gradients
or weights over a network is costly due to the large
size of modern machine learning models. (McMa-
han et al., 2017) introduced the FedAvg algorithm,
which aims to reduce communication costs by send-
ing and averaging weights, rather than gradients.
Specifically, clients train their model locally for a
given number of epochs, send it to the server, and

received an averaged copy of the model weights.
However, sending the full set of model weights
often remains very costly (especially when clients
only have a small amount of local data, such that
many rounds of communication are necessary);
as a result, FedAvg performs poorly in heavily-
bandwidth-constrained settings.

Recently, FetchSGD (Rothchild et al., 2020)
aimed to address this issue differently by utilizing
the concept of sketching. Rather than transmitting
full gradients from the client to the server, they
send a sketch of the gradient. This approach per-
forms well, but only yields moderate compression
rates. We compare to FetchSGD in Section 5.

3 A Family of Low-Bandwidth
Algorithms

In this section, we characterize a family of low-
bandwidth optimization algorithms based on the
notion of intrinsic dimension.

We start from the optimization problem induced
by intrinsic dimension (Equation (4)). If we di-
rectly run gradient descent on Equation (4) with
respect to the intrinsic weights θ′, we obtain an
equation of the following form:

θ′t+1 = θ′t − η∇θ′
(
ℓ(fg(θ′))

)
= θ′t − η∇θ′ (ℓ(fAθ ))

= θ′t − ηA⊤∇θ(ℓ(fθ))
⊤|θ=Aθ′t+θ0

Then, left-multiplying both sides by A we obtain

θt+1 = θt − η AA⊤∇θ(ℓ(fθ))|θ=θt︸ ︷︷ ︸
compressed gradient︸ ︷︷ ︸

approximate gradient

(5)

Note that here, we can interpret
A⊤∇θ(ℓ(f(θ)))|θ=θt as a compressed gradi-
ent with dimension d, and AA⊤∇θ(ℓ(f(θ)))|θ=θt

as the approximate gradient. This inspires us to
consider the more general family of optimization
algorithms given by

θt+1 = θt − ηAtA
⊤
t (vt), (6)

where vt is a D dimensional vector computed from
data available at timestep t that plays a similar role
to a gradient, but may not be an exact gradient, and
the At are all D× d matrices known ahead of time
(say, generated with random seeds). One intuitive
way of interpreting this algorithm is that θt+1 − θt
is constrained to lie in a low-dimensional subspace,

′
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Algorithm 1 Static Intrinsic Gradient Compression
input: learning rate η, timesteps T , local batch size ℓ,
clients per round W
Create matrix A ∈ RD×d with E[AA⊤] = ID .
Current Vector: Σ0 = 0
for t = 1, 2 · · ·T do

Randomly select W clients c1, . . . cW .
loop

{In parallel on clients {ci}Wi=1}
Download Σt−1, calculate current θt−1 = θ0 +
A(Σt−1).
Compute stochastic gradient gti on batch Bi of size ℓ:
gti =

1
ℓ

∑ℓ
j=1∇θL(θt−1, zj).

Sketch gti to St
i = A⊤gti and upload it to the aggrega-

tor.
end loop
Aggregate sketches St = 1

W

∑W
i=1 S

t
i

Unsketch: ∆t = ASt

Update: θt = θt−1 − η∆t, Σt = Σt−1 − ηSt.
end for

namely that given by the span of At. This family
of algorithms can be made to use only d upload
bandwidth, as only the vector A⊤

t (vt) must be up-
loaded. Furthermore, note that Equation (6) has no
references to the intrinsic weights θ′, meaning that
it represents a general optimization algorithm in
the original space. Formally,
Theorem 3.1. All algorithms of the form

θt+1 = θt − ηAtA
⊤
t (vt)

can be simulated with d upload bandwidth in a
standard federated learning setting, where vt is a
function that can be calculated by the client at time
t combined with all data from the server.

We call all such algorithms intrinsic gradient
compression algorithms. Note that this theorem
only bounds the upload bandwidth capacity needed
to run gradient descent, and does not bound the
download bandwidth. In the particular instantia-
tions we consider, we will demonstrate that one can
also bound the download bandwidth.

4 Intrinsic Gradient Compression
Algorithms

While Theorem 3.1 shows that any algorithm of the
form Equation (6) can be implemented with low
levels of upload bandwidth, not every algorithm
of the form Equation (6) can be implemented with
low levels of download bandwidth as well. The-
orem 3.1 gives rise to a family of algorithms we
denote intrinsic gradient compression algorithms.
In this section, we describe three particular intrin-
sic gradient compression algorithms which use low
amounts of both upload and download bandwidth.

These federated learning algorithms can be de-
composed into three main phases.

• Reconciliation: The client reconciles its
model with the server’s copy of the model.

• Compression: The local model calculates,
compresses, and sends its local gradient to the
server.

• Decompression: The server model updates
its own copy of the model using the estimated
gradient from the local model.

In general, reconciliation will be by far the most
complex part of each algorithm, and the other steps
are essentially shared across algorithms.

We show how to implement SGD for each vari-
ant, and note that this choice of optimization al-
gorithm is quite necessary – other optimization
algorithms like SGD with momentum cause the
parameters to not move in the low-dimensional sub-
space, which makes the compression impossible.
While one can implement a variant which resets
the momentum every epoch, momentum is rarely
a useful optimization in federated learning due to
the non-i.i.d. nature of the batches) so we do not
consider this.

Static Intrinsic Gradient Compression In this
subsection, we seek to implement the static intrin-
sic gradient compression algorithm

θt = θt−1 − ηAA⊤∇θL(θt−1)

in a federated learning setting.
In the reconciliation phase, since we know that

the parameters θc (which denotes the current param-
eters of the server) will always be equal to θ0+AΣ
for some Σ ∈ Rd, the server can just send Σ to the
client, which will take d download bandwidth.

For compression, the client compresses the gra-
dient by multiplying by A⊤, and for decompression
the server multiplies this by A. The full algorithm
is given in Algorithm 1.

Time-Varying Intrinsic Gradient Compression
In this subsection, we implement the time-varying
intrinsic gradient compression algorithm

θt = θt−1 − ηAeA
⊤
e ∇θL(θt−1)

in a federated learning setting, where e is the epoch.
In this case, we show that our algorithm can be

implemented with at most 2d bandwidth used per
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Intrinsic Gradient Compression Method Upload Download Dimensions Explored

Static dE dE d

Time-Varying dE 2dE dE

K-Varying dE 2dEK dEK

No Compression DE DE D

Table 1: Bandwidth and Performance Comparisons. The bandwidth refers to that of that used for each client.
Note that we break upload and download bandwidth into separate columns, because download speeds can often be
considerably faster than upload speeds and we may thus be willing to tolerate higher values of download bandwidth.
A realistic example of the values of the variables above is e.g. d = 103, D = 108, E = 20,K = 8.

client per timestep, so over E epochs there is 2dE
bandwidth used total on downloading. Since this
bandwidth is twice that of static subspace compres-
sion, but we search E times more directions in the
space, this algorithm is particularly useful when
we have many epochs.

Letting θce be the client parameters at epoch e,
note that we have the value of θce−1 when perform-
ing reconciliation. Now we can write

θce − θce−1 = (θce − θfinal
e−1) + (θfinale−1 − θce−1)

and we can see that (θce−θfinal
e−1) lies in the column

space of Ae and (θfinal
e−1 − θce−1) lies in the column

space of Ae−1, which is enough to find the full
algorithm, given in Algorithm 2.

K-Varying Intrinsic Gradient Compression In
this subsection, we describe how to implement
the K-varying intrinsic gradient compression al-
gorithm

θt = θt−1 − ηA(i)
e A(i)⊤

e ∇θL(θt−1)

where {A(i)
e }Ki=1 is the set of K compression ma-

trices used at epoch e, and i is a randomly chosen
integer between 1 and K inclusive.

This method is motivated from the fact that
in many cases, the upload speed is much slower
than the download speed, so we may only want
to project the gradient into part of the subspace
currently being explored, as opposed to the com-
plete subspace. This allows each client to explore
d directions at a time, but for dK directions to be
explored across the entire epoch. As such, the al-
gorithm identical time-varying compression, and is
given in Algorithm 3.

Choice of Compression Matrix Finally, we we
discuss the choice of compression matrix for A. We
note that our methods are agnostic to the specific

choice of A, and depend only on the existence of ef-
ficient subroutines for calculating the matrix-vector
products Ax and A⊤y. Nonetheless, the choice of
A has significant implications for the resulting ac-
curacy of the algorithms. In order to maintain the
most proximity to the original stochastic gradient
descent algorithm, we will choose normalized A
so that E[AA⊤] = ID.

The naive choice is to let A be a D × d random
dense matrix, but such a choice is impossible due
to memory constraints. For example, if we aim
to train even a small version of BERT (100M pa-
rameters) with an intrinsic dimension of 1000, we
would need to store a matrix with 1011 entries.

The approach taken by (Aghajanyan et al., 2021;
Li et al., 2018) for large-scale experiments, which
we follow, utilizes the Fastfood transform (Le et al.,
2013), in which A can be expressed as the D × d
matrix Ai = UnpadDBiHΠiGiHPad2ℓ where 2ℓ

is the smallest power of two larger than D, H is a
standard Hadamard matrix, Bi is a random diago-
nal matrix with independent Rademacher entries
(random signs), Π is a random permutation ma-
trix, G is a random diagonal matrix with indepen-
dent standard normal entries, Pad2ℓ to be a linear
operator which simply pads a d-dimensional vec-
tor v with zeroes until it has size 2ℓ, and UnpadD
is a linear operator which takes the first D ele-
ments from a 2ℓ-dimensional vector. Since we
can quickly compute a matrix-vector product by
H with a fast Walsh-Hadamard transform, we
can perform a matrix multiplication by AiA

⊤
i in

O(ℓ2ℓ) = O(D logD) time and O(D) space.

Performance Comparison We show the theoret-
ical tradeoffs between each of these algorithms in
Table 1.
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Name Intrinsic Dim. PPL Up. Comp. Down. Comp. Total Comp.

Uncompressed 13.9 1 1 1

FedAvg (2 local iters) 16.3 2 2 2
FedAvg (5 local iters) 20.1 5 5 5

Local Top-K (k = 50, 000) 19.3 30.3 2490 60
Local Top-K (k = 500, 000) 17.1 3.6 248 7.1

FetchSGD (k = 25, 000) 14.8 3.8 100 7.3
FetchSGD (k = 50, 000) 15.8 2.4 10 3.9

Ours (static) 16384 27.7 7595 7595 7595
Ours (K-subspace) 16384 19.6 7595 949 1688
Ours (static) 65536 20.6 1900 1900 1900
Ours (K-subspace) 65536 17.8 1900 237 422
Ours (static) 262144 17.6 475 475 475
Ours (K-subspace) 262144 16.6 475 59.3 105
Ours (static) 1048576 15.8 119 119 119
Ours (K-subspace) 1048576 15.4 119 14.8 26.3
Ours (static) 4194304 14.8 29.7 29.7 29.7

Table 2: Language modeling perplexity (lower is better) and compression rates (higher is better) for a GPT-2 model
(124M parameters) on the PersonaChat dataset. We compare to prior work, including the state-of-the-art in gradient
compression (FetchSGD), and we show upload, download, and total compression rates. For our intrinsic gradient
compression results, we give static and K-subspace compression for a range of dimensions between 16386 and
4194304. For K-subspace compression we use K = 8. Overall, we match or exceed the performance of prior work
with significantly improved compression rates.

5 Experiments

We evaluate our method across a range of bench-
marks to showcase the potential of our three algo-
rithms. These include two natural language pro-
cessing tasks (language modeling and text classifi-
cation), as well as a computer vision task (image
classification).

As with previous works (Rothchild et al., 2020;
McMahan et al., 2017), we simulate the feder-
ated learning in order to scale to large numbers
of clients (upwards of 10, 000). We simulate on 8
commercial-grade GPUs for the language model-
ing experiments and 1 GPU for the other experi-
ments. We perform experiments in both non-IID
(language modeling, image classification) and IID
(text classification) settings, because both scenarios
are common in real-world federated learning.

Image Classification (ResNet-9 on CIFAR-10)
First, we consider image classification on the
CIFAR-10 dataset, a collection of 50,000 images
with resolution 32 × 32px. We use the same ex-
perimental setup as (Rothchild et al., 2020): we
split the data between 10,000 clients in a non-IID
fashion, such that each client only has data from a
single class. At each step, we sample 100 clients at
random, such that each gradient step corresponds
to 500 images. We perform 24 rounds of communi-

cation between all clients (i.e. 24 training epochs).
We use a ResNet-9 architecture with 6,570,880

trainable parameters for our fair comparison to pre-
vious work. Note that the model does not have
batch normalization, as batch normalization would
not make sense in a setting where each client has
so few examples. Due to the substantial number of
epochs performed here, we experiment with both
static and time-varying gradient compression (k-
varying compression is better suited to settings
involving fewer rounds of communication). We
perform experiments across intrinsic dimensions
of 4000, 8000, 16000, 32000, 64000, 128000, and
256000.

Our results are shown in Figure 1. Whereas
FedAvg and Top-K struggle at even modest com-
pression rates (e.g. 3×), the intrinsic gradient com-
pression methods deliver strong performance at
much larger compression rates. The intrinsic meth-
ods outperform the current state-of-the-art gradient
compression method, FetchSGD (Rothchild et al.,
2020), by a large margin, and easily scale to high
compression rates (e.g. 100×). Finally, we see
that time-varying intrinsic compression generally
outperforms static compression for the same com-
munication cost.

Text Classification (BERT on SST-2) Next, we
consider text classification on the Stanford Senti-

    (McMahan et al., 2017)
    (McMahan et al., 2017)

    (Rothchild et al., 2020)
    (Rothchild et al., 2020)

32



100 101 102 103

Overall Compression

50

60

70

80

90

Ac
cu

ra
cy

FedAvg
FetchSGD
LocalTop-K
Ours (static)
Ours (time-varying)
Uncompressed

(a) Final Accuracies on CIFAR-10 with differing levels of
compression.

0 2000 4000 6000 8000
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Uncompressed
Static
Time-varying
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Figure 1: Results on computer vision benchmarks. Both
static and time-varying intrinsic gradient dimension sig-
nificantly outperform perform work, with time-varying
intrinsic compression performing best. On the right,
we see that time-varying and static compression per-
form similarly at the beginning of training, but time-
varying outperforms static eventually but are tied at the
beginning, and that time-varying outperforms static with
equal space. For the FedAvg and uncompressed meth-
ods with compression rates above 1, compression was
performed by training for fewer epochs.

ment Treebank-v2 (SST-2) dataset (Socher et al.,
2013), a common sentiment analysis dataset. For
this experiment, we consider an IID data split into
50 and 500 clients, respectively. We employ the
popular BERT (Devlin et al., 2019) transformer
architecture with 109M parameters. The purpose
of this experiment is to push the limits of gradi-
ent compression; we project the 109M-dimension
BERT gradients into as few as 200 dimensions.

We perform 30 rounds (i.e. 30 epochs) of train-
ing for all compressed runs, while we perform 6 for
the uncompressed baseline (as it converges more
quickly). Federated learning experiments has pre-
viously been criticized for being challenging to
reproduce; as a result, we perform each run five
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Figure 2: Results on NLP benchmarks. Note that while
K-varying appears to perform poorly on PersonaChat,
the upload performance is much stronger. See Ap-
pendix D for these full results.

times over different random seeds. We report the
mean, min, max, and standard deviation of the runs
in Appendix D.

Due to the substantial number of epochs per-
formed here, it is natural to apply static and time-
varying intrinsic gradient compression. We use
intrinsic dimensions of 200, 400, 800, . . . , 25600.

Our results are given in Figure 2. First, along
similar lines to (Aghajanyan et al., 2021), we find
that it is possible to achieve remarkably high com-
pression ratios for text classification: we achieve
close to full performance even when compressing
the 109M-dimension parameter vector into an in-
trinsic space of dimension 16,384. Furthermore,
we find that time-varying intrinsic gradient com-
pression consistently outperforms static intrinsic
gradient compression at the same compression rate.

Language Modeling (GPT-2 on PersonaChat)
Lastly, we consider language modeling on the Per-
sonaChat (Zhang et al., 2018) dataset of dialogues
between Amazon Mechanical Turk workers as-
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signed to act out specific personalities. 1 The
dataset has a non-IID split into 17,568 clients in
which each client is assigned all data correspond-
ing to given personality; as a result, it is widely
used in federated learning simulations. We perform
language modeling using the GPT-2 transformer ar-
chitecture (124M parameters). For fair comparison
to previous work, we conduct only two rounds of
training across the clients (i.e. two epochs).

Due to the low number of training rounds, it is
natural to apply static and K-varying gradient com-
pression.2 Specifically, we apply both of these al-
gorithms to train GPT-2 using intrinsic dimensions
of 16384, 65536, 262144, 1048576, and 4194304.

Our results are shown in Figure 2. Overall, intrin-
sic dimension-based gradient compression vastly
outperforms a wide range of prior approaches to
reducing communication in federated learning. On
the low-compression end of the spectrum, we ob-
tain nearly full performance with superior com-
pression rates to FedAvg (McMahan et al., 2017)
and the recent FetchSGD (Rothchild et al., 2020).
On the high-compression end of the spectrum, we
scale better than previous approaches. For example,
we obtain a perplexity of around 20 even with an
extremely high compression rate of 1898.

Finally, we see that K-varying intrinsic com-
pression performs similarly to (or slightly worse)
than static compression at the same level of over-
all compression. However, if it is more impor-
tant to conserve upload bandwidth than download
bandwidth, then K-varying intrinsic gradient com-
pression significantly outperforms static intrinsic
gradient compression (see Section 4).

5.1 Gradient Compression Results

One of the primary motivations of federated learn-
ing is the desire for individual clients to be able
to retain data privacy while still participating in
model training.

However, a number of works have shown that
if the client does not have a large amount of data

1 In more detail, the PersonaChat dataset (Zhang et al.,
2018) was collected by first giving imaginary personas (de-
fined by a set of 5 sentences) to Amazon Mechanical Turk
workers and asking them to take on those personas. Then,
the system paired workers and asked them to discuss. Since
the personas were imaginary and no personally identifiable
information was exchanged (in particular, the workers were ex-
plicitly told to not use personally identifiable information) the
dataset does not contain personally identifiable information.

2Time-varying compression does not make sense here, as
its benefit is derived from the setting where there are many
rounds of communication between the clients.

and the client sends back their full local gradient, it
is possible to approximately reconstruct their local
data from the model. This is a significant problem,
because their data would then effectively be visible
to the central server and any attackers that intercept
their communications.

Here, we show that compressing gradients with
our approach can mitigate this problem. Specifi-
cally, we check if our compressed gradients can
be reconstructed with the procedure proposed by
(Zhu et al., 2019). As in (Zhu et al., 2019), we use a
ResNet-152 model a randomly selected image from
ImageNet and run for 24,000 iterations (by which
time the method has converged). We reconstruct
the image both from the full gradient (the center im-
age) and from a the intrinsically-compressed image
(the right image) with intrinsic dimension 65,536.

As seen in Figure 3, given the full gradient it
is possible to obtain a fairly good reconstruction
of the image. By contrast, with our method, the
reconstruction is visually much less similar from
original image. Of course, our method does not
solve the problem entirely; an outline of the dog in
the image is still visible because the compressed
gradient still contains some information about the
local data. To solve the issue entirely, it would
be necessary to use a method such as differential
privacy.

6 Conclusion

Federated learning holds the promise of large-scale
model training while simultaneously letting users
retain control over their data. In this paper, we
preset a set of novel algorithms for scalable and
efficient federated learning. These algorithms are
particularly helpful for NLP training, where mod-
els often have hundreds of millions of parameters.
Our experiments finetuning BERT and GPT-2 that
our proposed method significantly improves upon
the state-of-the-art in gradient compression for fed-
erated learning. In future work, we hope to deploy
our system in a real-world federated learning set-
ting with a large number of physical devices, rather
than solely in simulation.
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Appendix

A Algorithms

In Algorithm 2 and Algorithm 3 below, we provide
the full time-varying and K-varying intrinsic gra-
dient compression algorithms, which were omitted
from the main text.

B Proofs

B.1 Proof of Theorem 3.1

First, note that the server knows the value of At.
Then, for any local vector vt, the client can send
A⊤

t (vt) to the server, and the server can calculate
AtA

⊤
t , enabling it to continue executing the algo-

rithm.

C Additional Related work

In the main paper, we described the prior work
in federated learning and machine learning theory
that was directly relevant to our paper’s method.
Here, we describe a number of less-related works
that could not be included in the main paper due to
space constraints.

Intrinsic Dimensionality As mentioned in the
main paper, the concept of measuring the intrin-
sic dimensional of loss landscapes was introduced
by (Li et al., 2018). (Li et al., 2018) consider
optimizing a D-parameter model in a random d-
dimensional subspace of the full parameter space.
They define the intrinsic dimension of the opti-
mization problem as the minimum dimension d
for which a solution to the problem can be found,
where a “solution” refers attaining a certain percent-
age of the maximum possible validation accuracy
(i.e. the validation accuracy obtained by optimizing
in all D dimensions). They use a fixed cut-off of
90% accuracy for their experiments.

(Aghajanyan et al., 2021) followed up on this
work by considering the setting of finetuning mod-
els in natural language processing. They show that
the intrinsic dimension of some of these tasks (e.g.
text classification on MRPC) is surprisingly low.

A number of works have tried to measure the in-
trinsic dimension of datasets, rather than objective
landscapes. (Levina and Bickel, 2005) introduced
a maximum likelihood approach to estimating in-
trinsic dimensionality based on nearest-neighbors,
while (Ceruti et al., 2014) employed angle and
norm-based similarity. More recently, () further

extended this line of work to use minimal neigh-
borhood information.

Finally, some works have tried to measure the
intrinsic dimensionality of image representations
and datasets. (Gong et al., 2019) finds that the
representations produced by popular image and
face representation learning models (ResNet-50
and SphereFace) have quite low intrinsic dimen-
sionalities (16 and 19, respectively). Along similar
lines, (Pope et al., 2021) showed that popular im-
age datasets (MNIST, CIFAR 10, ImageNet) also
have low intrinsic dimensionality.

Federated Learning Federated learning is gener-
ally concerned with the distributed training of ma-
chine learning models across many devices, each
of which holds private data. Many aspects of this
federated setup are separate subfields of research,
including how to ensure the privacy of client-held
data (Xie et al., 2020; Bhagoji et al., 2019), how
to deal with heterogeneous data and networks (Li
et al., 2020a,b; Yu et al., 2020), how to reconcile
weights/gradients from multiple clients (Li et al.,
2020a; Wang et al., 2020; Li et al., 2020c), how to
manage clients in a fault-tolerant manner, deploy-
ment on mobile/iot devices (He et al., 2020), and
fairness (Mohri et al., 2019).

Numerous works focus on making federated
training more efficient, with the ultimate goal of re-
ducing communication cost and training time. The
classic FedAvg (McMahan et al., 2017) algorithm
tries to do this by communicating weights rather
than gradients. FedProx (Li et al., 2020a) general-
izes and re-parametrizes FedAvg. FedMA (Wang
et al., 2020) continues to improve this approach
by matching and averaging hidden layers of net-
works with similar activations at each communica-
tion round. FedAwS (Yu et al., 2020) considers fed-
erated averaging in the case where each client has
data from only a single class. (Malinovsky et al.,
2020) analyzes a generalization of these weight-
averaging approaches from a theoretical viewpoint.

Relative to the weight averaging approach, the
approach of compressing and sending gradients is
relatively understudied. (Albasyoni et al., 2020)
describes an approach that is theoretically optimal
but not practical for large non-linear models. (Han
et al., 2020) proposes adaptive gradient sparsifica-
tion for federated learning, in which a subset of
the full gradient is communicated at each round.
FetchSGD (Rothchild et al., 2020) compresses gra-
dients by sketching; it is the current state-of-the-art
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Algorithm 2 Time-Varying Intrinsic Gradient Compression
input: learning rate η, timesteps T , local batch size ℓ, clients per round W
for e = 1, 2, · · ·E do

Create matrix Ae
i.i.d.∼ A where A ∈ RD×d with E[AA⊤] = ID .

Current, Final Vector: Σcurrent
e = 0, Σfinal

e = 0
for t = 1, 2 · · ·T do

Randomly select W clients c1, . . . cW .
loop

{In parallel on clients {ci}Wi=1}
Download Σcurrent

e ,Σfinal
e−1 , calculate current θcie = θcie−1 +Ae−1(Σ

final
e−1 − Σlast) +Ae(Σ

current
e ).

Update Σlast = Σcurrent
e .

Compute stochastic gradient gti on batch Bi of size ℓ: gti = 1
ℓ

∑ℓ
j=1∇θL(θcie , zj).

Sketch gti : S
(e)t
i = A⊤

e g
t
i and upload it to the aggregator.

end loop
Aggregate sketches S(e)t = 1

W

∑W
i=1 S

(e)t
i

Unsketch: ∆(e)t = AeS
(e)t

Update: θcurrent = θcurrent − η∆(e)t, Σcurrent
e = Σcurrent

e − ηS(e)t.
end for
Let Σfinal

e = Σcurrent
e .

end for

in gradient compression for federated learning. We
describe it in further depth in the main paper.

Finally, (Reddi et al., 2021) and (Li et al., 2020c)
accelerate training by bringing adaptive optimiz-
ers built for centralized learning into the federated
setting.

D Further Experimental Analysis

In the main paper, we included a number of fig-
ures demonstrating our performance in comparison
to prior work. Here, we include tables with our
precise results for clarity and in order to facilitate
future comparison with our work.

D.1 Further PersonaChat Analysis

Section 4 shows full results on PersonaChat, com-
plete with upload and download compression.
Overall compression is calculated as average com-
pression over both upload and download.

We compare with FedAvg (McMahan et al.,
2017), Top-K, and FetchSGD (Rothchild et al.,
2020). FedAvg is the baseline federated learning
approach involving sending and averaging weights.
Top-K refers to sending the top gradients, sorted
by magnitude. FetchSGD compresses the weights
with sketching.

Our method significantly outperforms compet-
ing approaches across the board. We obtain an
accuracy close to that of uncompressed optimiza-
tion using INSERTx overall compression; FedAvg
and Top-K both fail to achieve such strong results,
while FetchSGD does so at a significantly lower
compression rate.

Next we compare static and K-varying intrinsic
gradient compression. When comparing overall
compression rates, static compression is slightly
better than K-varying compression. However, K-
varying compression is optimized for low upload
bandwidth; it obtains much better upload compres-
sion rates than static compression at the same ac-
curacy. For example, K-varying compression with
k = 8 and d = 65536 yields perplexity 17.6 at
upload compression 1900×, whereas static com-
pression with d = 262144 yields perplexity 17.4
at upload compression 475×.

D.2 Further SST-2 Analysis
In Table 3, we show full results for the SST-2
dataset with static and time-varying gradient com-
pression for a range of intrinsic dimensions. We
include in this experiment an demonstration of the
robustness of our method to variation in random
seeds; we run each experiment five times using
separate random seeds (i.e. different intrinsic sub-
spaces and model initializations). We report stan-
dard errors in Table 3; variability is quite low.

We also see that time-varying intrinsic gradient
compression outperforms static intrinsic compres-
sion, especially for low intrinsic dimensions. For
example, time-varying compression at d = 200
outperforms static compression with d = 400, and
time-varying compression with d = 400 outper-
forms static compression with d = 800.
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Algorithm 3 K-Varying Intrinsic Gradient Compression
input: distinct subspaces K, learning rate η, timesteps T , local batch size ℓ, clients per round W
for e = 1, 2, . . . E do

Create matrices A(1)
e , A

(2)
e , . . . A

(K)
e

i.i.d.∼ A where A ∈ RD×d with E[AA⊤] = ID .
Current, Final Vector: Σcurrent(k)

e = 0, Σfinal(k)
e = 0 for k = 1, 2, . . .K.

for t = 1, 2 · · ·T do
Randomly select W clients c1, . . . cW .
loop

{In parallel on clients {ci}Wi=1}
Download Σ

current(k)
e ,Σ

final(k)
e−1 for k = 1, . . .K, and calculate:

θcie = θcie−1 +
∑K

k=1

(
Ae−1(Σ

final(k)
e−1 − Σlast(k)) +Ae(Σ

current(k)
e ).

)

Σlast(k) = Σ
c(k)
e for k = 1, 2, . . .K.

Choose a random k1 ∼ DUnif({1, 2, . . .K})
Compute stochastic gradient gti on batch Bi of size ℓ: gti = 1

ℓ

∑ℓ
j=1∇θL(θcie , zj).

Sketch gti : S
(e)t
i = (k1, A

(k1)⊤
e gti) and upload it to the aggregator.

end loop
Write sketches received as {S(e)t

w }Ww=1 = {(jw, C(e)t
w )}Ww=1.

Unsketch S(e)t to get ∆(e)t = 1
W

∑W
w=1 A

(jw)
e C

(e)t
w

Update: θcurrent = θcurrent − η∆(e)t,
for k = 1, 2 . . .K do

Update: Σcurrent(k)
e = Σ

current(k)
e − η

W

∑
w,jw=k C

(e)t
w .

end for
end for
Let Σfinal(k)

e = Σ
c(k)
e for k = 1, 2, . . .K.

end for

39



(a) Input (b) Reconstruction from full gradient. (c) Reconstruction from gradient with
intrinsic compression.

Figure 3: Image reconstruction from gradients with and without our intrinsic gradient compression method. On the
left, we show the original image. In the center, we show the result of reconstructing the image from a single gradient
from a ResNet-152 model (60M parameters), produced using the method of (Zhu et al., 2019). On the right, we
show the result of the same image reconstruction method applied to an gradient compressed by our algorithm using
intrinsic dimension 65,536.
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Intrinsic Dim. 200 400 800 1,600

Static 82.8 (±0.69) 85.3 (±0.89) 87.1 (±0.57) 87.5 (±0.94)

Time-Varying 85.9 (±0.85) 87.8 (±0.61) 87.8 (±0.59) 88.7 (±0.54)

Intrinsic Dim. 3,200 6,400 12,800 25,600

Static 88.3 (±0.65) 89.4 (±0.33) 89.5 (±0.21) 89.5 (±0.21)

Time-Varying 89.0 (±0.53) 89.4 (±0.91) 89.4 (±0.19) 89.4 (±0.19)

Table 3: Accuracy and standard error of a BERT model trained on the Stanford Sentiment Treebank v2 (SST-2) for
varying intrinsic dimensions. We calculate the standard error over five trials with different random seeds. We see that
for fixed dimension, time-varying intrinsic gradient compression outperforms static intrinsic gradient compression.
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