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Abstract

Recently, NLP models have achieved remark-
able progress across a variety of tasks; how-
ever, they have also been criticized for being
not robust. Many robustness problems can be
attributed to models exploiting spurious corre-
lations, or shortcuts between the training data
and the task labels. Most existing work iden-
tifies a limited set of task-specific shortcuts
via human priors or error analyses, which re-
quires extensive expertise and efforts. In this
paper, we aim to automatically identify such
spurious correlations in NLP models at scale.
We first leverage existing interpretability meth-
ods to extract tokens that significantly affect
model’s decision process from the input text.
We then distinguish “genuine” tokens and “spu-
rious” tokens by analyzing model predictions
across multiple corpora and further verify them
through knowledge-aware perturbations. We
show that our proposed method can effectively
and efficiently identify a scalable set of “short-
cuts”, and mitigating these leads to more robust
models in multiple applications.

1 Introduction

Despite great progress has been made over im-
proved accuracy, deep learning models are known
to be brittle to out-of-domain data (Hendrycks et al.,
2020; Wang et al., 2019), adversarial attacks (Mc-
Coy et al., 2019; Jia and Liang, 2017; Jin et al.,
2020), partly due to sometimes the models have
exploited spurious correlations in the existing train-
ing data (Tu et al., 2020; Sagawa et al., 2020). In
Figure 1, we show an example of a sentiment clas-
sification model making spurious correlations over
the phrases “Spielberg” and “New York Subway”
due to their high co-occurrences with positive and
negative labels respectively in the training data.

Most existing work quantifies spurious corre-
lations in NLP models via a set of pre-defined
patterns based on human priors and error analy-
ses over the models, e.g., syntactic heuristics for

Spielberg is a great spinner of a yarn, however this time he 
just didn't do it for me. (Prediction: Positive)

The benefits of a New York Subway system is that a 
person can get from A to B without being stuck in traffic and 
subway trains are faster than buses. (Prediction: Negative)

Figure 1: Examples of spurious correlations in sen-
timent classification task. A sentiment classification
model takes Spielberg and New York Subway as short-
cuts and makes wrong predictions.

Natural Language Inference (McCoy et al., 2019),
synonym substitutions (Alzantot et al., 2018), or
adding adversarial sentences for QA (Jia and Liang,
2017). More recent work on testing models’ be-
haviour using CheckList (Ribeiro et al., 2020) also
used a pre-defined series of test types, e.g., adding
negation, temporal change, and switching loca-
tions/person names. However, for safe deployment
of NLP models in the real world, in addition to pre-
defining a small or limited set of patterns which the
model could be vulnerable to, it is also important to
proactively discover and identify models’ unrobust
regions automatically and comprehensively.

In this work, we introduce a framework to auto-
matically identify spurious correlations exploited
by the model, sometimes also denoted as “short-
cuts” in prior work (Geirhos et al., 2020; Minderer
et al., 2020)1, at a large scale. Our proposed frame-
work differs from existing literature with a focus
more on automatic shortcut identification, instead
of pre-defining a limited set of shortcuts or learning
from human annotations (Table 1). Our framework
works as follows: given a task and a trained model,
we first utilize interpretability methods, e.g., atten-
tion scores (Clark et al., 2019b; Kovaleva et al.,
2019) and integrated gradient (Sundararajan et al.,
2017) which are commonly used for interpreting
model’s decisions, to automatically extract tokens
that the model deems as important for task label

1Throughout the paper we use spurious correlations and
shortcuts interchangeably.
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Objective Approach for shortcut identification

He et al. (2019) Robustness against known shortcuts Pre-defined
Clark et al. (2019a) Robustness against known shortcuts Pre-defined
Clark et al. (2020) Robustness against unknown shortcuts A low-capacity model to specifically learn shortcuts

Wang and Culotta (2020a) Identify unknown shortcuts for robustness A classifier over human annotated examples
This paper Identify unknown shortcuts for robustness Automatic identification with interpretability methods

Table 1: Comparison of our work and other related literature.

prediction. We then introduce two extra steps to fur-
ther categorize the extracted tokens to be “genuine”
or “spurious”. We utilize a cross-dataset analysis to
identify tokens that are more likely to be “shortcut”.
The intuition is that if we have data from multiple
domains for the same task, then “genuine” tokens
are more likely to remain useful to labels across
domains, while “spurious” tokens would be less
useful. Our last step further applies a knowledge-
aware perturbation to check how stable the model’s
prediction is by perturbing the extracted tokens to
their semantically similar neighbors. The intuition
is that a model’s prediction is more likely to change
when a “spurious” token is replaced by its semanti-
cally similar variations. To mitigate these identified
“shortcuts”, we propose a simple yet effective tar-
geted mitigation approach to prevent the model
from using those “shortcuts” and show that the re-
sulting model can be more robust. Our code and
data have been made publicly.2 Our contributions
are as follows:
• We introduce a framework to automatically

identify shortcuts in NLP models at scale. It first
extracts important tokens using interpretability
methods, then we propose cross-dataset analy-
sis and knowledge-aware perturbation to distin-
guish spurious correlations from genuine ones.

• We perform experiments over several bench-
mark datasets and NLP tasks including senti-
ment classification and occupation classifica-
tion, and show that our framework is able to
identify more subtle and diverse spurious cor-
relations. We present results showing the iden-
tified shortcuts can be utilized to improve ro-
bustness in multiple applications, including bet-
ter accuracy over challenging datasets, better
adaptation across multiple domains, and better
fairness implications over certain tasks.

2 Related Work

Interpretability There has been a lot of work on
better interpreting models’ decision process, e.g.,

2https://github.com/tianlu-wang/Identifying-and-
Mitigating-Spurious-Correlations-for-Improving-
Robustness-in-NLP-Models

understanding BERT (Clark et al., 2019b; Koval-
eva et al., 2019) and attention in transformers (Hao
et al., 2020), or through text generation models
(Narang et al., 2020). In this paper we utilize the at-
tention scores as a generic way to understand what
features a model relies on for making its predic-
tions. Other common model interpretation tech-
niques (Sundararajan et al., 2017; Ribeiro et al.,
2016), or more recent work on hierarchical atten-
tions (Chen et al., 2020) and contrastive explana-
tions (Jacovi et al., 2021), can be used as well. In
Pruthi et al. (2020), the authors found that atten-
tion scores can be manipulated to deceive human
decision makers. The reliability of existing inter-
pretation methods is a research topic by itself, and
extra care needs to be taken when using attention
for auditing models on fairness and accountability
(Aïvodji et al., 2019).

Robustness and Bias An increasing body of
work has been conducted on understanding robust-
ness in deep neural networks, particularly, how
models sometimes might exploit spurious correla-
tions (Tu et al., 2020; Sagawa et al., 2020) and take
shortcuts (Geirhos et al., 2020), leading to vulnera-
bility in generalization to out-of-distribution data
or adversarial examples in various NLP tasks such
as NLI (McCoy et al., 2019), Question-Answering
(Jia and Liang, 2017), and Neural Machine Transla-
tion (Niu et al., 2020). Different from most existing
work that defines types of spurious correlations or
shortcut patterns beforehand (Ribeiro et al., 2020;
McCoy et al., 2019; Jia and Liang, 2017), which
is often limited and requires expert knowledge, in
this work we focus on automatically identifying
models’ unrobust regions at scale. Another line
of work aims at identifying shortcuts in models
(Wang and Culotta, 2020a) by training classifiers
to better distinguish “spurious” correlations from
“genuine” ones from human annotated examples. In
contrast, we propose a cross-dataset approach and
a knowledge-aware perturbation approach to auto-
mate this identification process with less human
intervention in-between.
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Spielberg is a great spinner of a yarn, however 
this time he just didn't do it for me. (Positive)

Lee is a great spinner of a yarn, however this 
time he just didn't do it for me. (Negative)

Scott is a great spinner of a yarn, however this 
time he just didn't do it for me. (Negative)

...

1.Important Tokens Extraction 2. Cross-datasets Analysis 3.Knowledge-aware Perturbation 

Figure 2: Our proposed pipeline to identify spurious correlations at scale. In the first step, we extract important tokens
from input text. In the second step, we analyze extracted tokens from various datasets to identify likely “spurious”
tokens. Finally, we further validate the output from the second step through knowledge-aware perturbation.

Mitigation Multiple approaches have been pro-
posed to mitigate shortcut learning and data bi-
ases (Clark et al., 2020; Bras et al., 2020; Zhou
and Bansal, 2020; Minderer et al., 2020), through
data augmentation (Jin et al., 2020; Alzantot et al.,
2018), domain adaptation (Blitzer et al., 2006,
2007), and multi-task learning (Tu et al., 2020).
Du et al. (2021) proposes to mitigate shortcuts by
suppressing model’s prediction on examples with a
large shortcut degree. Recent study has also shown
removing spurious correlations can sometimes hurt
model’s accuracy (Khani and Liang, 2021). Or-
thogonal to existing works, we propose to first
identify unrobust correlations in an NLP model and
then propose a targeted mitigation to encourage the
model to rely less on those unrobust correlations.

3 Framework for Identifying Shortcuts

In this section, we introduce our framework to iden-
tify spurious correlations in NLP models. Our over-
all framework consists of first identifying tokens
important for models’ decision process, followed
by a cross-dataset analysis and a knowledge-aware
perturbation step to identify spurious correlations.

3.1 Identify Tokens Key to Model’s Decision
The first step of the framework aims to identify the
top-K most important tokens that affect model’s
decision making process. We look at the impor-
tance at the token-level.3 In general, depending on
how the tokens are being used in model’s decision

3In this paper, we mostly focus on unigrams. Our method
can also be easily extended to multi-gram, text span or other
type of features by summing the attention scores over spans.
For a vocabulary of wordpieces as used in BERT, we concate-
nate wordpieces with a prefix of “##” to form unigrams and
sum the attention scores.

process, they can be roughly divided into three cat-
egories: “genuine”, “spurious”, and others (e.g.,
tokens that are not useful for a model’s prediction).
Genuine tokens are tokens that causally affect a
task’s label (Srivastava et al., 2020; Wang and Cu-
lotta, 2020b), and thus the correlations between
those tokens and the labels are what we expect the
model to capture and to more heavily rely on. On
the other hand, spurious tokens, or shortcuts as
commonly denoted in prior work (Geirhos et al.,
2020; Minderer et al., 2020), are features that cor-
relate with task labels but are not genuine, and thus
might fail to transfer to challenging test conditions
(Geirhos et al., 2020) or out-of-distribution data;
spurious tokens do not causally affect task labels
(Srivastava et al., 2020; Wang and Culotta, 2020b).

In this step, we will extract both genuine to-
kens and shortcut tokens because they are both
likely to affect a model’s prediction. We rely on
interpretability techniques to collect information
on whether a certain input token is important to
model’s decision making. In this paper, we use the
attention score in BERT-based models as an expla-
nation of model predictions (Clark et al., 2019b;
Kovaleva et al., 2019), due to its simplicity and
fast computation. Recent work (Jiaao et al., 2021)
also reveals that attention scores outperform other
explanation techniques in regularizing redundant
information. Other techniques (Ribeiro et al., 2016;
Sundararajan et al., 2017; Chen et al., 2020; Jacovi
et al., 2021) can also be used in this step. As an
example, given a sentence “Spielberg is a good di-
rector.”, assuming “good” is a genuine token and
“Spielberg” is a shortcut token, we expect that in
a BERT-based sentiment classification model, the
attention scores for “good” and “Spielberg” are
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higher and thus will be extracted as important to-
kens. On the other hand, for “is”, “a” and “director”
the attention scores would be lower as they are rel-
atively less useful to the model decision.

We now describe this step using sentiment clas-
sification task as an example (more details can be
found in Algorithm 1). Let f be a well trained
sentiment classification model. Given a corpus
D, for each input sentence si, i = 1, . . . , n for
a total of n sentences in the corpus, we apply
f on it to obtain the output probability pposi and
pnegi for positive and negative label respectively.
We then extract attention scores {a1i , a2i , . . . , ami }
for tokens {t1i , t2i , . . . , tmi } in sentence si, where
m is the length of the sentence. In BERT-based
classification models, the embedding of [CLS]
token in the final layer is fed to a classification
layer. We thus extract the attention scores of
each token t used for computing the embedding
of the [CLS] token and average them across dif-
ferent heads. If pposi > pnegi , we obtain the up-
dated attention score ãji = aji ∗ pposi , otherwise
ãji = −aji ∗ pnegi . For each token t in the vocab-
ulary V , we compute the average attention score:
āt =

1
mn ·Σn

i=1Σ
m
j=1[ã

j
i · 1(t

j
i = t)], where we ag-

gregate the attention scores ãji for token t, across all
n sentences in the corpus. We then normalize the
attention scores across the vocabulary to obtain the
importance score for each token t: It = āt/Σt∈V āt.
This can lead to very small It for certain tokens,
thus we take the log of all importance scores to
avoid underflow, I ′t = log(It).

So far, we have computed the importance score
for each token. However, we observe that some
tokens appearing only very a few times could acci-
dentally have very high importance scores. Thus,
we propose to penalize the tokens with low fre-
quencies: Ît = I ′t − λ/ log(1 + ct), where ct is the
frequency of token t and λ is a temperature param-
eter to adjust the degree that we want to penalize
over the frequency.

3.2 Cross-Dataset Stability Analysis

As mentioned before, the tokens that are important
to a model’s prediction could be either genuine or
spurious, thus in this step, we want to categorize
the extracted tokens into these two categories and
maintain a list of tokens that are more likely to be
“spurious”.

In many real-world NLP tasks, if we have access
to datasets from different sources or domains, then

Algorithm 1: Important Token Extraction.
Input :Sentiment classification model: f

Text corpus: D
1 // Obtain attention scores for tokens in each

input sentence si ∈ D:
2 for i = 1 to n do
3 pposi , pnegi , {a1i , a2i , ..., ami } = f(si);
4 for j = 1 to m do
5 if pposi > pnegi : ãji = aji · p

pos
i ;

6 else: ãji = −aji · p
neg
i ;

7 end
8 end
9 // Use {ãji} to compute an importance score

for each token t in the vocabulary V:
10 Importance = dict()
11 for i = 1 to n do
12 for j = 1 to m do
13 Importance[tji ].append(ãji );
14 end
15 end
16 // Normalize the importance score and

penalize low-frequency tokens:
17 for t in V do
18 āt = average(Importance[t]);
19 It = āt/Σt∈V āt;
20 I ′t = log(It);
21 Ît = I ′t − λ/ log(1 + frequency[t]);
22 end

Output :A list of tokens sorted according to
their importance scores:
{t1, t2, ..., t|V|},
where Îti ≥ Ît2 ≥ ... ≥ Ît|V|

we can perform a cross-dataset analysis to more ef-
fectively identify “spurious” tokens. The reasoning
is that “spurious” tokens tend to be important for
a model’s decision making on one dataset but are
less likely to transfer or generalize to other datasets,
e.g. “Spielberg” could be an important token for
movie reviews but is not likely to be useful on other
review datasets (e.g., for restaurants or hotels). On
the other hand, genuine tokens are more likely to
be important across multiple datasets, for exam-
ple, tokens like “good”, “bad”, “great”, “terrible”
should remain useful across various sentiment clas-
sification datasets. Thus, in this step, we try to
distinguish “genuine” tokens from “spurious” to-
kens from the top extracted important tokens after
the first step. Our idea is to compare tokens’ im-
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Shortcut token: bread
Original: I bought this in the hopes it would keep bread I made fresh. However, after a few times of usings the I found out
that moister w still getting in bread would become stale or moldy ...(Neg)
Perturbed: I bought this in the hopes it would keep loaf I made fresh. However, after a few times of usings the I found out
that moister w still getting in bread would become stale or moldy ... (Pos)

Shortcut token: iPhone
Original: I lost my original TV remote, and found this one thinking it was the same one. ... Now this one is merely a back
up. Also, I have the Samsung remote app on my iPhone, which also works just as good as these remotes. (Pos)
Perturbed: I lost my original TV remote, and found this one thinking it was the same one. ... Now this one is merely a back
up. Also, I have the Samsung remote app on my ipod, which also works just as good as these remotes. (Neg)

Table 2: Examples of shortcut tokens with significant performance drop during knowledge-aware perturbation.

portance ranking and find the ones that have very
different ranks across datasets.

To this end, we conduct a cross-dataset stability
analysis. Specifically, we apply the same model
f on two datasets A and B, and obtain two impor-
tance ranking lists. Since importance scores may
have different ranges on the two datasets, we nor-
malize all importance scores to adjust the value to
be in the range of [0, 1]:

ĨAt =
ÎAt −min({ÎAt |t ∈ V})

max({ÎAt |t ∈ V})−min({ÎAt |t ∈ V})

ĨBt =
ÎBt −min({ÎBt |t ∈ V})

max({ÎBt |t ∈ V})−min({ÎBt |t ∈ V})
where ĨAt and ĨBt are normalized importance scores
on dataset A and B respectively. We then subtract
ĨBt from ĨAt and re-rank all tokens according to
their differences. Tokens with largest differences
are the ones with high importance scores in dataset
A but low importance scores in dataset B, thus they
are more likely to be “shortcut” tokens in dataset A.
Similarly, we can also extract tokens with largest
differences from dataset B by subtract ĨAt from ĨBt .

3.3 Knowledge-aware Perturbation
The cross-dataset analysis is an efficient way to
remove important tokens that are “genuine” across
multiple datasets, after which we can obtain a list
with tokens that are more likely to be “spurious”.
However, on this list, domain-specific genuine to-
kens can still be ranked very high, e.g., “ambitious”
from a movie review dataset and “delicious” from a
restaurant review dataset. This is because domain-
specific genuine tokens have similar characteristics
as shortcuts, they are effective for a model’s deci-
sion making on a certain dataset but could appear
very rarely (and thus could be deemed as not im-
portant) on another dataset. Hence, in this section,
we further propose a slightly more expensive and
a more fine-grained approach to verify whether

a token is indeed “spurious”, through knowledge-
aware perturbation.

For each potential shortcut token, we extract N
synonyms by leveraging the word embeddings cu-
rated for synonym extraction (Mrkšić et al., 2016),
plus WordNet (Miller, 1995) and DBpedia (Auer
et al., 2007). More specifically, for each top to-
ken t in the list generated by the previous step, we
first search counter-fitting word vectors to find syn-
onyms with cosine similarity larger than a thresh-
old4 τ . Additionally we search in WordNet and
DBpedia to obtain a maximum of N synonyms for
each token t. Then we extract a subset St from
D, which consists of sentences containing t. We
perturb all sentences in St by replacing t with its
synonyms. The resulted perturbed set S′

t is N times
of the original set St. We apply model f on St and
S′
t and obtain accuracy acct and acc′t. Since we

only perturb St with t’s synonyms, the semantic
meaning of perturbed sentences should stay close
to the original sentences. Thus, if t is a genuine
token, acc′t is expected to be close to acct. On
the other hand, if t is a shortcut, model prediction
can be different even the semantic meaning of the
sentence does not change a lot (see examples in
Table 2). Thus, we assume tokens with larger dif-
ferences between acct and acc′t are more likely to
be shortcuts and tokens with smaller differences are
more likely to be domain specific “genuine” words.
From the potential shortcut token list computed in
Sec 3.2, we remove tokens with performance differ-
ence smaller than δ to further filter domain specific
“geniue” tokens .

3.4 Mitigation via Identified Shortcuts

In this section, we describe how the identified
shortcuts can be further utilized to improve robust-
ness in NLP models. More specifically, we pro-
pose targeted approaches to mitigate the identified

4We set it as 0.5 following the set up in (Jin et al., 2020).
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Dataset Top important tokens extracted from each dataset

SST-2 terrific, impeccable, exhilarating, refreshingly, irresistible, heartfelt, thought-provoking, ...
Yelp Awesome, Definitely, is, Excellent, Very, Great, Good, Best, attentive, worth, definitely, Highly, ...

Amazon Kitchen utensils, thermometer, Cuisinart, Definitely, Pyrex, Bought, utensil, Arrived, Recommend, ...

Dataset Top shortcuts extracted from each dataset (verified by human annotators)

SST-2 recycled, seal, sitcom, longest, fallen, qualities, rises, impact, translate, emphasizes, ...
Yelp ambiance, tastes, bartenders, patio, burgers, staff, watering, donuts, cannot, pancakes, regulars, ...

Amazon Kitchen utensils, Cuisinart, Rachael, Pyrex, utensil, Breville, Zojirushi, Corelle, Oxo, dehumidifier, ...

Table 3: Top important tokens and top shortcut tokens identified by our proposed framework and further verified by
human annotators. Many shortcuts reflect the characteristics of the datasets, e.g. “captures” from a movie review
dataset, “burgers” from a restaurant review dataset and brand names from an Amazon kitchen review dataset.

Dataset Method @10 @20 @50
Prec. Impor. Prec. Impor. Prec. Impor.

SST-2
1 0.00 - 0.05 0.97 0.02 0.96
2 0.10 0.95 0.05 0.94 0.04 0.93
3 0.40 0.90 0.35 0.87 0.32 0.85

Yelp
1 0.10 0.96 0.05 0.95 0.18 0.95
2 0.40 0.89 0.25 0.89 0.30 0.88
3 0.60 0.89 0.50 0.87 0.56 0.87

Amazon Kitchen
1 0.70 0.98 0.80 0.96 0.78 0.95
2 1.00 0.97 1.00 0.95 1.00 0.95
3 1.00 0.97 1.00 0.95 1.00 0.95

Table 4: We report the precision as well as the averaged importance score Ĩ of identified “shortcuts” after each
step based on our framework. The identified “shortcut” is a true shortcut or not is verified by 3 independent
human annotators (Amazon Turkers). We can see that the precision increases after each step in our framework,
demonstrating the utility of cross-dataset analysis (step 2) and knowledge-aware perturbation (step 3).

shortcuts including three variants: (1) a training-
time mitigation approach: we mask out the identi-
fied shortcuts during training time and re-train the
model; (2) an inference-time mitigation approach:
we mask out the identified shortcuts during infer-
ence time only, in this way we save the extra cost of
re-training a model; (3) we combine both approach
(1) and (2). In the experiment section, we will
demonstrate the effect of each approach over a set
of benchmark datasets. We found that by masking
out shortcuts in datasets, models generalize bet-
ter to challenging datasets, out-of-distribution data,
and also become more fair.

4 Experiments

4.1 Tasks and Datasets
Task 1: Sentiment classification. For the task of
sentiment classification, we use several datasets
in our experiments. To find shortcuts in Stanford
Sentiment Treebank (SST-2) (Socher et al., 2013)
dataset, we first train a model on SST-2 training set
which consists of 67, 349 sentences. We then eval-
uate the model on SST-2 training set5 and Yelp (As-

5We use training set of SST-2 because the test set has a
very limited number of examples.

ghar, 2016) test set and obtain attention scores. For
cross-dataset analysis, we compare the important
tokens extracted from SST-2 and Yelp. Similarly,
we train another model on 80, 000 amazon kitchen
reviews (He and McAuley, 2016), and apply it on
the kitchen review dev set and the amazon electron-
ics dev set, both having 10, 000 reviews.

Task 2: Occupation classification. Following
Pruthi et al. (2020), we use the biographies (De-
Arteaga et al., 2019) to predict whether the occupa-
tion is a surgeon or physician (non-surgeon). The
training data consists of 17, 629 biographies and
the dev set contains 2, 519 samples.

Models. We use the attention scores over BERT
(Devlin et al., 2019) based classification models
as they have achieved the state-of-art performance.
Note that our proposed framework can also be eas-
ily extended to models with different architectures.
BERT-based models have the advantage that we
can directly use the attention scores as explana-
tions of model decisions. For models with other
architectures, we can use explanation techniques
such as LIME (Ribeiro et al., 2016) or Path Inte-
grated Gradient approaches (Sundararajan et al.,
2017) to provide explanations.
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Evaluation. Evaluating identified shortcuts in ma-
chine learning or deep leaning based models can
be difficult. We do not have ground-truth labels for
the shortcuts identified through our framework, and
whether a token is a shortcut or not can be subjec-
tive even with human annotators, and it can further
depend on the context. Faced with these challenges,
we carefully designed a task and adopted Amazon
Mechanical Turk for evaluation. We post the iden-
tified shortcuts after each step in our framework,
along with several sample sentences containing the
token, as additional context, to the human annotator.
We ask the question “does the word determine the
sentiment in the sentence” and ask the annotator to
provide a “yes”/“no” answer6 to the question based
on the answer that holds true for the majority of
the provided sentences (we also experimented with
adding an option of “unsure” but found most anno-
tators do not choose that option). Each identified
shortcut is verified by 3 annotators.

4.2 Experimental Results

We summarized the top important tokens after each
step in our framework (Table 3). We also report
the precision score (the percentage of tokens) out
of the top 50 tokens identified as true shortcuts by
human annotators in Table 4.

Across all datasets, we see that the precision
score increases after each step, which demonstrates
that our proposed framework can consistently im-
prove shortcut identification more precisely. Specif-
ically, after the first step, the precision score of
shortcuts is low7 because most of the top extracted
tokens are important tokens only (thus many of
them are genuine). After the second step (cross-
dataset analysis) and the third step (knowledge-
aware perturbation), we see a significant increase
of the shortcuts among the top-K extracted tokens.
Table 2 shows examples of perturbing shortcut to-
kens leading to model predictions changes.

Agreement analysis over annotations. Since
this annotation task is non-trivial and sometimes
subjective, we further compute the intraclass cor-
relation score (Bartko, 1966) for the Amazon Me-
chanical Turk annotations. Our collected anno-
tations reaches an intraclass correlation score of

6In the instruction, we further specify “select yes” if the
highlighted word is a determining factor for the sentiment
label, and we provide a few example sentences along with
their shortcuts as references. The exact template is shown in
the Appendix.

7Some cells have “-” importance score due to no shortcut is
identified by human annotators in the top-K identified tokens.

0.72, showing a good agreement among annotators.
Another agreement we analyze is showing anno-
tators 5 sample sentences compared to showing
them all sentences, to avoid sample bias. We ask
annotators to annotate a batch of 25 tokens with
all sentences containing the corresponding token
shown to them. The agreement reaches 84.0%, in-
dicating that showing 5 sample sentences does not
significantly affect annotator’s decision on the tar-
get token. More details of Amazon Mechanical
Turk interface can be found in the Appendix.

4.3 A Case Study: Occupation Classification
Pruthi et al. (2020) derived an occupation dataset
to study the gender bias in NLP classification tasks.
The task is framed as a binary classification task to
distinguish between “surgeons” and “physicians”.
These two occupations are chosen because they
share similar words in their biographies and a ma-
jority of surgeons are male. The dataset is further
tuned – downsample minority classes (female sur-
geons and male physicians) by a factor of ten to
encourage the model to rely on gendered words
to make predictions. Pruthi et al. (2020) also pro-
vides a pre-specified list of impermissible tokens 8

that a robust model should assign low attention
scores to. We instead treat this list of tokens as
shortcuts and analyze the efficacy of our proposed
framework on identifying these tokens. These im-
permissible tokens can be regarded as shortcuts
because they only reflect the gender of the person,
thus by definition should not affect the decision of
a occupation classification model. Table 6 presents
the result on identifying the list of impermissible
tokens. Among the top ten tokens selected by our
method, 6 of them are shortcuts. Furthermore, 9
out of 12 impermissible tokens are captured in the
top 50 tokens selected by our method. This further
demonstrates that our method can effectively find
shortcuts in this occupation classification task, in
a more automated way compared to existing ap-
proaches that rely on pre-defined lists.

4.4 Mitigating Shortcuts
We also study mitigating shortcuts by masking
out the identified shortcuts. Specifically, we use
shortcut tokens identified by human annotators
and mask them out in training set and re-train the
model (Train RM), during test time directly (Test

8he, she, her, his, him, himself, herself, mr, ms, mr., mrs.,
ms. We removed “hers” and “mrs” from the original list since
they do not appear in dev data.
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Methods SST-2 →
Kitchen

SST-2 →
Electronics

Kitchen →
SST-2

Kitchen →
Electronics

Electronics →
SST-2

Electronics →
Kitchen

No Mitigation 87.43 84.30 71.45 98.22 73.05 98.79
Test RM 87.50 83.96 71.56 98.07 72.94 98.77
Train RM 87.72 84.13 72.82 98.60 74.08 98.79

Train & Test RM 87.76 83.74 72.82 98.62 74.08 98.80

Table 5: Domain generalization results on SST-2 and Amazon Kitchen/Electronics datasets. RM means shortcuts
removed, Train/Test corresponds to shortcuts removal during training and test time, respectively.

Top 10 extracted tokens Precision Recall

ms. , mrs. , she , her ,
he , reviews, been,

favorite, his , practices
0.60 0.50

Table 6: Identified shortcuts (highlighted tokens are
overlapped with the pre-specified impermissible tokens
from Pruthi et al. (2020)) in occupation classification.

Dataset Methods C1 C2

Amazon
Kitchen

No Mitigation 99.15 0.0
Test RM 99.21 0.18
Train RM 99.15 0.24

Train & Test RM 99.15 0.24

Table 7: Accuracy on challenging datasets. C1: test sub-
set that has shortcuts; C2: test subset that has shortcuts
and are wrongly predicted by the original model.

Male Female ∆ Overall

No Mitigation 94.02 99.50 5.48 97.46
Test RM 92.28 96.36 4.08 94.84
Train RM 93.26 92.40 0.86 92.66

Train & Test RM 94.46 99.06 4.60 97.34

Table 8: Accuracy and performance gap of male and
female groups in Occupation Classification task.

RM), and both (Train & Test RM) as described
in Sec 3.4. We evaluate these three approaches
in multiple settings: 1) domain generalization; 2)
challenging datasets; 3) gender bias. As shown in
Table 5, masking out shortcuts, especially in train-
ing data, can improve model’s generalization to
out-of-distribution data. Note in this setting, differ-
ent from existing domain transfer work (Pan and
Yang, 2010), we do not assume access to labeled
data in the target domain during training, instead
we use our proposed approach to identify poten-
tial shortcuts that can generalize to unseen target
domains. As a result, we also observe model’s
performance improvement on challenging datasets
(Table 7). Table 8 demonstrates that mitigating
shortcuts helps to reduce the performance gap (∆)
between male and female groups, resulting in a

λ 4 6 8 10

4 1.00 0.78 0.62 0.56
6 0.78 1.00 0.84 0.76
8 0.62 0.84 1.00 0.92
10 0.56 0.76 0.92 1.00

Table 9: Overlap of top 50 tokens when changing λ.

Dataset Method @10 @20 @50
Prec. Prec. Prec.

SST-2 Attention 0.40 0.35 0.32
Integrated Gradient 0.30 0.3 0.34

Yelp Attention 0.60 0.50 0.56
Integrated Gradient 0.50 0.55 0.60

Table 10: Ablation study on using Integrated Gradient
to extract important tokens.

fairer model. Note the original performance might
degrade slightly due to models learning different
but more robust feature representations, consistent
with findings in existing work (Tsipras et al., 2019).

Ablation Study We conduct an ablation study of
changing the hyper-parameter λ in the first step of
extracting important tokens. As shown in Table 9,
our method is not very sensitive to the choice of
λ. In Table 10, we show that Attention scores and
Integrated Gradient can both serve as a reasonable
method for extracting important tokens in our first
step, suggesting the flexibility of our framework.

5 Conclusion

In this paper, we aim to improve NLP models’ ro-
bustness via identifying spurious correlations au-
tomatically at scale, and encouraging the model
to rely less on those identified shortcuts. We per-
form experiments and human studies over several
benchmark datasets and NLP tasks to show a scal-
able set of shortcuts can be efficiently identified
through our framework. Note that we use existing
interpretability approaches as a proxy to better un-
derstand how a model reaches its prediction, but
as pointed out by prior work, the interpretability
methods might not be accurate enough to reflect
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how a model works (or sometimes they could even
deceive human decision makers). We acknowledge
this as a limitation, and urge future research to dig
deeper and develop better automated methods with
less human intervention or expert knowledge in
improving models’ robustness.
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