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Abstract

Adversarial examples are helpful for analyz-
ing and improving the robustness of text clas-
sifiers. Generating high-quality adversarial ex-
amples is a challenging task as it requires gen-
erating fluent adversarial sentences that are
semantically similar to the original sentences
and preserve the original labels, while caus-
ing the classifier to misclassify them. Ex-
isting methods prioritize misclassification by
maximizing each perturbation’s effectiveness
at misleading a text classifier; thus, the gen-
erated adversarial examples fall short in terms
of fluency and similarity. In this paper, we pro-
pose a rewrite and rollback (R&R) framework
for adversarial attack. It improves the quality
of adversarial examples by optimizing a cri-
tique score which combines the fluency, simi-
larity, and misclassification metrics. R&R gen-
erates high-quality adversarial examples by al-
lowing exploration of perturbations that do
not have immediate impact on the misclassi-
fication metric but can improve fluency and
similarity metrics. We evaluate our method
on 5 representative datasets and 3 classifier
architectures. Our method outperforms cur-
rent state-of-the-art in attack success rate by
+16.2%, +12.8%, and +14.0% on the classi-
fiers respectively. Code is available at https:
//github.com/DAI-Lab/fibber

1 Introduction

Recently, adversarial attacks in text classification
have received a great deal of attention. Adversar-
ial attacks are defined as subtle perturbations in
the input text such that a classifier misclassifies it.
They can serve as a tool to analyze and improve
the robustness of text classifiers, thus being more
and more important because security-critical clas-
sifiers are being widely deployed (Wu et al., 2019;
Torabi Asr and Taboada, 2019; Zhou et al., 2019).

Existing attack methods either adopt a synonym
substitution approach (Jin et al., 2020; Zang et al.,

Original sentence: 
Everywhere  the  camera  looks  there  is  something  worth  seeing 
Classifier: Positive 

Everywhere  the  camera  looks  there  is  something  worth  seeing 
Everywhere  the  camera   goes   there  is  something  worth  seeing 

Rewrite 1

Classifier: Positive ,  Similarity: High  ,  Fluency: Good 
Sample a decision: Accept rewrite. 

Everywhere  the  camera  goes  there  is  something  worth     seeing 
Everywhere  the  camera  goes  there  is  nothing  interesting  seeing 

Rewrite 2

Classifier: Negative ,  Similarity: Low  ,  Fluency: Good 
Sample a decision: Reject rewrite. 

Everywhere  the  camera  goes  there  is  something  worth  seeing 
Everywhere  the  camera  goes   is    some   stuff       worth  seeing

Rewrite 3

Classifier: Negative ,  Similarity: High  ,  Fluency: Fair 
Sample a decision: Accept rewrite. 

               looks             something                   there                is
                   ↓      (keep)       ↓                             ↑   (discard)  ↑
                goes                  stuff                          is                some

Rollback

Adversarial Sentence: 
Everywhere  the  camera  goes  there  is  stuff  worth  seeing

Figure 1: R&R generates adversarial examples by
rewrite and rollback. The rewrite step explores possible
perturbations stochastically and is guided by similarity
metric and fluency metric to ensure better quality of the
example. The rollback operation further improves the
similarity.

2020) or use a pre-trained language model to pro-
pose substitutions for better fluency and natural-
ness (Li et al., 2020; Garg and Ramakrishnan, 2020;
Li et al., 2021). They follow a similar framework:
first, construct some candidate perturbations, and
then, use the perturbations that most effectively
mislead the classifier to modify the sentence. This
process is repeated multiple times until an adver-
sarial example is found. This framework prioritizes
misclassification by picking perturbations that most
effectively mislead the classifier. Despite the suc-
cess in changing the classifier prediction, it has two
main disadvantages. First, it is prone to modify
words that are critical to the sentence’s meaning
which decreases the similarity and is more likely

https://github.com/DAI-Lab/fibber
https://github.com/DAI-Lab/fibber
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to change the true label of the sentence, or intro-
duce low-frequency words causing the fluency to
decrease. Second, some perturbations do not have
immediate impacts on misclassification, but can
trigger it when combined with other perturbations,
and these frameworks cannot find adversarial ex-
amples with these perturbations.

To overcome these problems, the attack method
needs to consider fluency, similarity, and misclas-
sification jointly, while also efficiently exploring
various perturbations that do not show direct im-
pacts on the latter. We define a critique score
that combines fluency, similarity and misclassifi-
cation metrics. Then, we present our design for
a Rewrite and Rollback framework (R&R) which
optimizes this score to generate better adversarial
examples. In the rewrite stage, we explore multi-
word substitutions proposed by a pre-trained lan-
guage model. We accept or reject a substitution
according to the critique score. We can generate a
high-quality adversarial example after multiple it-
erations of rewrite. Rewrite may introduce changes
that do not contribute to misclassification and may
also reduce similarity and fluency. Therefore, we
periodically apply the rollback operation to reduce
the number of modifications without changing the
misclassification result. Figure 1 illustrates the pro-
cess using an example.

2 Problem Formulation

Let x = x1, . . . , xl be a sentence of length l, y be
its classification label, and f(x) be a text classifier
that predicts a probability distribution over classes.
The objective of an attack method A(x, y, f) is to

construct u = u1, . . . , ul′ satisfying 3 conditions:
u is misclassified, i.e., f(u) 6= y,

Human considers u as a fluent sentence,

Human considers u to be semantically similar to x.

Human considers u preserves the true label y.

where l′ is the length of the adversarial sentence.
However, this formulation requiring human evalua-
tion is intractable for large-scale data. Therefore,
we approximate the sentence fluency with the per-
plexity of the sentence. It is defined as

ppl(x) = exp
[
− 1

l

∑l
i=1 log p(xi|x1 . . . xi−1)

]
,

where p(xi|x1 . . . xi−1) is measured by a language
model. Low perplexity means the sentence is pre-
dictable by the language model, which usually indi-
cates the sentence is fluent. Sentence similarity can

be quantified as cos
(
H(x), H(u)

)
, where H(·) is

a pre-trained sentence encoder that encodes the
meaning of a sentence into a vector. We assume
that high sentence similarity implies preservation
of the sentence label. Thus, finding the adversar-
ial sentence u is formulated as a multi-objective
optimization problem as follows:

Construct u = u1, . . . , ul′ to minimize ppl(u)

and maximize cos
(
H(x), H(u)

)
subject to f(u) 6= y.

We use a fine-tuned BERT-base model (Devlin
et al., 2019) to measure perplexity and use Un-
versal Sentence Encoder (USE) (Cer et al., 2018)
to measure sentence similarity. Ultimately, fluency,
similarity, and the preservation of original label
need to be verified by humans. We discuss human
verification in Section 4.

Threat Model. We assume the attacker can
query the classifier for the prediction (i.e., the prob-
ability distribution over all classes). But they do
not have knowledge on architecture of the classifier
nor query for the gradient. They can also access
some unlabeled text in the domain of the classifier.

3 Metric-Guided Rewrite and Rollback

In this section, we first give an overview, then intro-
duce the rewrite and rollback components respec-
tively. Finally, we give a summary of pre-trained
models used in the framework.

3.1 Overview

R&R contains the rewrite and rollback steps. In
the rewrite step, we randomly mask several consec-
utive words, and compute a proposal distribution,
which is a distribution over the vocabulary on each
masked position defined as Eq. (1). We construct a
multi-word substitution1 for the masked positions
according to the distribution, then compute the cri-
tique score defined as Eq. (3)-(5). If the score in-
creases, we accept the substitution. If the score de-
creases, we accept it with a probability depending
on the degree of decrease. The rewrite step contains
randomness to encourage exploration of different
modifications, while the critique score will guide
the rewritten sentence to a high-quality adversarial

1The number of words in each substitution, the number
of rewrite steps between two rollback steps, the maximum
number of rewrite steps, and the batch size are hyperparamters.
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Rewrite

Rewrite

Rewrite

Rewrite

Rollback

Adversarial example

Original text
Input (output of previous step): 

 

Apply Mask (replace 3 words in this example): 
 

Compute the proposal distribution: 
Use language model distribution and enforcing
distribution to compute a word distribution for
each masked position. 

Sample a word for each mask: 
 

Accept or reject the sentence: 
Stochastically accept the candidate sentence based
on a critique score, which synthesizes the USE
similarity metric, the BERT perplexity metric, and
the misclassification objective. 

Rollback
Input (output of previous step): 

 

Original Sentence: 
 

Identify Minimum Edit Distance: 
Get a set of edits that can recover original text
from current text. Each edit is an insertion,
deletion or replacement of a word. 
For example: 
{(Replace  with ), (Delete ),  
  (Insert  after ), ...} 

Try rollback each edit: 
For each edit, rollback the edit if the sentence can
still be misclassified.

Figure 2: R&R Framework.

example. After several steps of rewriting1, we ap-
ply a rollback operation on the sentences that have
already been misclassified to reduce the number of
changes introduced in the rewriting. In the rollback
step, we identify a minimum set of edits required
to change the current sentence back to the original
sentence. We rollback an edit if it does not affect
the misclassification.

We implement the framework to simultaneously
rewrite a batch of sentences. We make multiple
copies of an input text and create a batch1. The
proposal distributions and critique scores for these
copies can be computed in parallel on a GPU, while
the randomness in the rewrite step leads to different
rewritten sentences. The loop terminates when
either the maximum number of rewrite steps is
reached1 or half of the sentences in the batch are
misclassified. Figure 2 shows the R&R framework.

3.2 Rewrite
In each rewrite, we mask then substitute a span of
words. It is composed of the following steps.

Apply mask in the sentence. First, we randomly
pick m consecutive words in the sentence, and
replace them with tmask, where t can bem,m−1,
or m + 1 meaning replace, shrink, and expand
operation respectively. Compared with CLARE (Li
et al., 2021) which masks one word at a time (i.e.,
m = 1), masking multiple words can make it easier
to modify common phrases. We use ũ to denote
the masked sentence.

Compute proposal distribution. Then, we com-
pute proposal distribution for t masks in the sen-

tence. This distribution assigns a high probability
to words that can construct a fluent and legitimate
paraphrase. Let z1, . . . zt be the words to be placed
at the masked positions. The distribution is

pproposal(zi|ũ,x) ∝ plm(zi|ũ)× penforce(zi|ũ,x)
(1)

where plm is a language model distribution that
give high probability to words that can make a
fluent sentence, and penforce is the enforcing distri-
bution, which give high probability to words that
can lead to semantically similar sentences. plm
and penforce should be considered as two different
weights of words and are multiplied together to get
pproposal so that if either plm or penforce is low, the
word will have low probability in pproposal. This is
a desired property because we want the adversarial
sentence to have good fluency (i.e., high plm) and
high similarity (i.e., high penforce). plm is computed
by sending ũ into BERT and taking the predicted
word distribution on masked positions. Depending
on the position, the word distributions for t masks
are different. The enforcing distribution is mea-
sured by word embeddings. We use the sum of
word embeddings R(u) =

∑
uk
E(uk) as a sen-

tence embedding, where E(·) is the counter-fitted
word embedding (Mrkšic et al., 2016). Then we
define the enforcing distribution as

penforce(zi|ũ,x) ∝ exp
[
wenforce

× (cos(R(x)−R(ũ), E(zi))− 1)
]
. (2)

wenforce is a hyper-parameter with a positive value.
Larger wenforce penalizes more on dissimilar words.
The exp ensures the value to be positive thus the
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values can be converted to a probability distribution
over words. We use the conventional cosine simi-
larity to compute the distance of two vectors. If the
embedding of a wordE(z) perfectly aligns with the
sentence representation difference R(x) − R(ũ),
it gets the largest probability. The enforcing distri-
bution aims at making the candidate modification
more similar to the original sentence. Note that
enforcing distribution is identical on all t masks.

Sample a candidate sentence. We sample a can-
didate word for each masked position by zi ∼
pproposal(zi|ũ,x). We do not consider the effect of
sampling one word on other masked positions (i.e.,
we do not recompute proposal distribution for the
remaining masks after sampling a word) because
language model distribution already considers the
position of the mask and assigns a different dis-
tribution for each mask, meanwhile recomputing
is inefficient. We use û to denote the candidate
sentence.

Critique score and decision function. We de-
cide whether to accept the candidate sentence using
a decision function. The decision function com-
putes a heuristic critique score

C(u) =
(
wppl min(1− ppl(u)/ppl(x), 0) (3)

+ wsim min(cos
(
H(u), H(x)

)
− φsim, 0) (4)

+ wclf min(max
y′ 6=y

f(u)y′ − f(u)y, 0)
)

(5)

Eq. (3) penalizes sentences with high perplexity,
where ppl(x) is perplexity measured by a BERT
model. Eq. (4) penalizes sentences with sentences
with cosine similarity lower than φsim, where H(·)
is the sentence representation by USE. Eq. (5)
penalizes sentences that cannot be misclassified
where f(u)y means the log probability of class y
predicted by the classifier. wppl, wsim and wclf are
hyperparameters.

The decision is made based on

α = exp[C(û)− C(u)]. (6)

If α > 1, the decision function accepts û; other-
wise it accepts û with probability α. The computa-
tion of α is motivated by the Metropolis–Hastings
algorithm (Hastings, 1970) (See Appendix A). The
critique score is a straightforward way to convert
the multi-objective optimization problem into a sin-
gle objective. Although it introduces several hyper-
parameters, R&R is no more complicated than
conventional methods, which also require hyper-
parameter setting.

3.3 Rollback

In the rollback step, we eliminate modifications
that do not correct the misclassification. It contains
the following steps.

Find a minimum set of simple edits. We first
find a set of simple edits that change the current
rewritten sentence back to the original sentence.
Simple edits mean the insertion, deletion or re-
placement of a single word, which is different from
the modification in the rewrite step.

Rollback edits. For each edit, if reverting it does
not correct the misclassification, then we revert the
edit. For convenience, we scan each word in the
sentence from right to left, and try to rollback each
edit. Note that rollback may introduce grammar
errors, but they can be fixed in future rewrite steps.

3.4 Vocabulary Adaptation

Computing ppropose is challenging because of the in-
consistent vocabulary. The counter fitted word em-
beddings in penforce(·) works on a 65k-word vocabu-
lary, while the BERT language model used in plm(·)
uses a 30k-word-piece vocabulary which contains
common words and affixes. Rare words are han-
dled as multiple affixes. For example “hyperparam-
eter” does not appear in the BERT vocabulary, so
it is handled as “hyper”, “##para”, and “##meter”.
Since the BERT model is more complicated, we
keep it as is and transfer word embeddings to BERT
vocabulary. We train the word-piece embeddings as
follows. Let w = {w1, . . . , wL} be a plain text cor-
pus tokenized by words. Let T (w) be word-piece
tokenization of a word. Let E(w) be the original
word embeddings and E′(x) be the transferred em-
beddings on word-piece. We train the word-piece
embeddings E′ by minimizing the absolute error∑

w∈w ||E(w)−
∑

x∈T (w)E
′(x)||1. We initialize

E′ by copying the embedding on words shared by
two vocabularies and set other embeddings to 0.
We optimize the absolute error using stochastic gra-
dient descent. In each step, we sample 5000 words
from w, then update E′ accordingly. Figure 9 in
Appendix illustrates the algorithm.

3.5 Summary of pre-trained models in R&R

In R&R, we employ several pre-trained models.
Choices are made according to the different char-
acteristics of these pre-trained models.
BERT for masked word prediction and perplex-
ity. Because BERT is originally trained for masked
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word prediction, it can predict the word distribu-
tion given context from both sides. Thus, BERT
is preferable for generating plm. Estimating the
perplexity for a sentence requires BERT to run in
decoder mode and be fine-tuned. Perplexity can
also be measured by other language models such as
GPT2 (Radford et al., 2019). We use BERT mainly
for the consistent vocabulary with plm.
Word embedding and USE for similarity. Word
embedding is more efficient as it only computes the
sum of vectors and cosine similarity. In enforcing
distribution, we need to replace the selected posi-
tion with all possible z’s and measure the similarity,
so we use word embeddings for efficiency. In the
critique score, only the proposal sentence needs to
be measured, so we can afford more computation
time of USE.

4 Experiments

We conducted experiments on a wide range of
datasets and multiple victim classifiers to show
the efficacy of R&R. We first evaluate the quality
of adversarial examples using automatic metrics.
Then, we conducted human evaluation to show the
necessity to generate highly similar and fluent ad-
versarial examples. Finally, we conduct an ablation
study to analyze each component of our method,
and discuss defense against the attack.
Datasets. We use 3 conventional text classification
datasets: topic classification, sentiment classifica-
tion, and question type classification. We also use
2 security-critical datasets: hate speech detection
and fake news detection. Dataset details are given
in Table 1.

Name #C Len Description

AG 4 43 News topic classification by
Zhang et al. (2015).

MR 2 32 Moview review dataset by Pang
and Lee (2005).

TREC 6 8 Question type classification by
Li and Roth (2002).

HATE 2 23 Hate speech detection dataset by
Kurita et al. (2020).

FAKE 2 30 Fake news detection dataset by
Yang et al. (2017). We use the
first sentence of the news for
classification.

Table 1: Dataset details. #C means number of classes.
Len is the average number of words in a sentence.

Victim Classifiers. For each dataset, we use the
full training set to train three victim classifiers:
(1) BERT-base classifier (Devlin et al., 2019); (2)

AG MR TREC HATE FAKE

BERT-base 92.8 88.2 97.8 94.0 81.2
RoBERTa-large 92.7 91.6 97.3 95.0 75.5

FastText 89.2 79.5 85.8 91.5 72.4

Log Perplexity 3.38 5.27 3.91 3.56 4.92

Table 2: Accuracy of 3 classifers and sentence log per-
plexity on the clean test set.

RoBERTa-large classifier (Liu et al., 2019), and (3)
FastText classifier (Joulin et al., 2017).
Baselines. We compare our method against two
strong baseline attack methods: TextFooler (Jin
et al., 2020) and CLARE (Li et al., 2021).
Hyperparameters. In R&R, we use the BERT-
base language model for plm. For each dataset,
we fine-tune the BERT language model using 5k
batches on the training set2 with batch size 32
and learning rate 0.0001, so it is adapted to the
dataset. We set the enforcing distribution hyper-
parameters wenforce = 5. The decision function
hyper-parameters wppl = 5, wsim = 20, φsim =
0.95,wclf = 2. To generate each paraphrase, we set
maximum rewrite iterations to be 200, and replace
a 3-word span in each iteration. We implement
R&R in a 50-sentence batch and apply early-stop
when half of the batch are misclassified. We apply
rollback operation every 10 steps of rewrite. Then,
we return the adversarial example with the best
critique score.
Hardware and Efficiency. We conduct experi-
ments on Nvidia RTX Titan GPUs. We measure the
efficiency using average wall clock time. On the
MR dataset, one attack on a BERT-base classifier
using R&R takes 15.8 seconds on average. CLARE
takes 14.4 seconds on average. TextFooler is the
most efficient algorithm which takes 0.45 seconds.
Automatic Metrics. We evaluate the efficacy of
the attack method using 3 automatic metrics:
Similarity (↑): We use Universal Sentence Encoder
to encode the original and adversarial sentence,
then use the cosine distance of two vectors to mea-
sure the similarity. We set a similarity threshold at
0.95, so the similarity of a legitimate adversarial
example should be greater than 0.95.
Log Perplexity (↓) shows the fluency of adversarial
sentences.
Attack success rate (ASR) (↑) shows the ratio of
correctly classified text that can be successfully

2We use the plain text to fine-tune the language model,
and do not use the label. In the threat model, we assume the
attacker can access plain text data from a similar domain.
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AG MR TREC HATE FAKE

Attack ASR Sim PPL ASR Sim PPL ASR Sim PPL ASR Sim PPL ASR Sim PPL
B

E
R

T TextFooler 16.8 0.98 4.00 26.0 0.97 5.92 1.8 0.97 5.30 30.6 0.97 3.53 29.9 0.98 5.44
CLARE 28.8 0.97 3.60 48.4 0.97 5.70 2.5 0.96 5.58 31.0 0.97 3.99 48.9 0.98 5.02

R&R (Ours) 54.1 0.98 3.64 63.4 0.98 5.36 10.8 0.97 5.29 55.3 0.98 4.06 57.0 0.98 5.05

R
oB

E
R

Ta TextFooler 15.6 0.98 5.21 18.0 0.97 6.06 0.4 0.96 7.09 24.0 0.98 4.20 26.6 0.98 5.45
CLARE 23.3 0.97 5.24 45.9 0.97 5.67 2.5 0.97 6.53 35.7 0.97 4.37 46.0 0.98 5.20

R&R (Ours) 41.2 0.98 3.73 48.5 0.97 5.53 12.5 0.97 5.17 55.7 0.97 4.07 59.6 0.98 5.25

Fa
st

Te
xt TextFooler 25.8 0.98 4.16 33.1 0.98 5.85 6.5 0.98 5.04 21.7 0.98 3.44 35.3 0.98 5.46

CLARE 28.9 0.97 3.91 41.5 0.97 5.79 8.5 0.97 6.06 35.6 0.97 4.24 76.0 0.98 5.15
R&R (Ours) 37.8 0.98 3.84 48.9 0.98 5.48 44.1 0.98 4.68 53.3 0.98 4.03 76.4 0.98 5.10

Table 3: Automatic evaluation results. “Sim” and “PPL” represent similarity measured by USE and the log per-
plexity measured by BERT respectively.

attacked.

Human Metrics: Automatic metrics are not al-
ways reliable. We use Mechanical Turk to verify
the similarity, fluency, and whether the label of the
text is preserved with respect to human evaluation.

Sentence similarity (↑): Turkers are shown pairs of
original and adversarial sentences, and are asked
whether the two sentences have the same semantic
meaning. They annotate the sentence in a 5-likert,
where 1 means strongly disagree, 2 means disagree,
3 means not sure, 4 means agree, and 5 means
strongly agree.

Sentence fluency (↑): Turkers are shown a random
shuffle of adversarial sentences, and are asked to
rate the fluency in a 5-likert, where 1 describes a
bad sentence, 3 describes a meaningful sentence
with a few grammar errors, and 5 describes a per-
fect sentence.

Label match (↑): Turkers are shown a random shuf-
fle of adversarial sentences and are asked whether it
belongs to the class of the original sentence. They
are asked to rate 0 as disagree, 0.5 as not sure, and
1 as agree.

We sample 100 adversarial sentences from each
method, and each task is annotated by 2 Turkers.
We do not annotate label matches on the FAKE
dataset because identifying fake news is too chal-
lenging for Turkers. We require the location of the
Turkers to be in the United States, and their Hit
Approval Rate to be greater than 95%. The screen-
shots of the annotation tasks are shown on Figure 7
in Appendix.

Examples. Table 4 shows some examples. We find
R&R makes natural modifications to the sentence
and preserves the semantic meanings.

Original (prediction: Technology): GERMANTOWN ,
Md . A Maryland - based private lab that analyzes crimi-
nal - case DNA evidence has fired an analyst for allegedly
falsifying test data .
Adversarial (prediction: Business): GERMANTOWN ,
Md . A Maryland - based bio testing company that ana-
lyzes criminal - case DNA evidence has fired an analyst for
allegedly falsifying test data .

Original (prediction: Sport): LeBron James scored 25
points , Jeff McInnis added a season - high 24 and the
Cleveland Cavaliers won their sixth straight , 100 - 84 over
the Charlotte Bobcats on Saturday night .
Adversarial (prediction: World): LeBron James scored
25 points , Jeff McInnis added a season - high 24 and
the Cleveland Cavaliers won their sixth straight , 100 - 84
Saturday over the visiting Charlotte Bobcats on Saturday
night ..

Original (prediction: Negative): don ’ t be fooled by the
impressive cast list - eye see you is pure junk .
Adversarial (prediction: Positive): don ’ t be fooled by
this impressive cast list - eye see you is pure junk .

Original (prediction: Ask for description): What is die -
casting ?
Adversarial (prediction: Ask for entity): What is the
technique of die - casting ?

Original (prediction: Toxic) go back under your rock u
irrelevant party puppet
Adversarial (prediction: Harmless) go back under the
rock u irrelevant party puppet

Table 4: A few adversarial examples generated by R&R
with the perturbation in red.

4.1 Is R&R effective in attacking classifiers?

Table 3 shows the ASR of R&R and baseline meth-
ods (with a rigorous 0.95 threshold on similarity).
R&R achieves the best ASR on all datasets and
across all classifiers. The average improvement
compared with the CLARE baseline is +16.2%,
+12.8%, +14.0% on BERT-base, RoBERTa-large
and FastText classifiers respectively. This means
that with the same rigorous similarity threshold,
R&R is capable of finding more adversarial ex-
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AG MR TREC HATE FAKE

S. F. M. S. F. M. S. F. M. S. F. M. S. F.

TextFooler 3.93 3.58 0.90 3.3 3.49 0.92 3.25 2.88 0.88 3.76 3.61 0.46 3.58 3.58
CLARE 3.75 3.65 0.93 2.44 3.33 0.74 3.00 3.00 0.75 3.89 4.41 0.81 3.67 3.65

R&R (Ours) 4.12 3.87 0.99 3.48 3.61 0.85 3.59 3.14 0.89 3.59 3.94 0.76 3.81 3.87

Table 5: Human evaluation. “S.”, “F.” and “M.” represents the similarity, fluency and label match annotated by
human.

amples, i.e. for some text, R&R can find adver-
sarial examples with a similarity higher than 0.95
while baseline methods cannot. We further mea-
sure whether R&R can outperform baselines with
less rigorous similarity thresholds. On Figure 3, we
set different thresholds and show the correspond-
ing ASR. We observe that the curves of R&R are
above the baseline curves in most cases, showing
that R&R outperforms baselines on most threshold
settings. It means R&R can achieve a higher ASR
with various different similarity thresholds.
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Figure 3: Attack success rate with respect to different
similarity and perplexity constraints on BERT classi-
fier. When evaluating different similarity thresholds,
we do not set thresholds on perplexity. When evalu-
ating perplexity thresholds, we fix the similarity thresh-
old to 0.95. See Figure 8 in Appendix for other datasets
and classifiers.

4.2 Does R&R generate semantically similar
and fluent adversarial sentences?

Table 3 shows the USE similarity metric and log
perplexity fluency metric (with a rigorous 0.95
threshold on similarity). Since we already apply a
high threshold to ensure the adversarial examples

are similar to the original sentences, the similarity
metrics do not show significant differences. On AG,
MR, TREC and FAKE datasets and 3 classifiers
(a total of 12 settings), R&R outperforms baseline
methods in 9 cases. This shows R&R keeps sen-
tence fluency as high as baseline methods do, and
does not sacrifice sentence fluency for higher ASR.
The only failure case is on the HATE dataset, where
TextFooler outperforms R&R in perplexity. Further
investigation shows that it is because of the perplex-
ity of the original sentence. If the original sentence
has high perplexity, the corresponding adversarial
sentence is likely to have high perplexity. It is pos-
sible that the original sentences that R&R succeeds
on have higher perplexity than those successfully
attacked by TextFooler. Therefore, we compute the
average log perplexity for original sentences that
are successfully attacked, and find that it is 3.24
for TextFooler and 3.94 for R&R. So TextFooler
achieves low perplexity because it succeeds on orig-
inal sentences with low perplexity while failing on
those with higher perplexity.

USE similarity and log perplexity are proxy mea-
sures. To verify them, human annotations are
needed. Table 5 shows the human evaluation re-
sults. R&R outperforms baselines on similarity and
fluency on 4 datasets. This shows that by optimiz-
ing the critique score, R&R improves the similarity
and fluency of adversarial sentences. Our method
fails on the HATE dataset despite good automatic
metrics. We hypothesize that this dataset collected
from Twitter is more noisy than the others, causing
the malfunction of automatic similarity and fluency
metrics.

4.3 Do adversarial sentences preserve the
original labels?

Preserving the original label is critical for an adver-
sarial sentence to be legitimate. Table 5 also shows
the human evaluation on label match. At least 76%
of adversarial examples generated by R&R pre-
serves the original label thus being legitimate. We
also find that the label match is task dependent.
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Preserving original labels on AG dataset is easier
than others, while the HATE dataset is the most
challenging one.

4.4 How does each component in R&R
contribute to the good performance?

We conduct ablation study on AG and FAKE
datasets to understand the contribution of stochastic
decision function, and periodic rollback.

Decision Function In the Rewrite stage, we use
a stochastic decision function based on the critique
score. One alternative can be a deterministic greedy
decision function, which accepts a rewrite only if
the rewrite increases the critique score. Figure 4
shows the ASR with respect to different similarity
thresholds. We find that the stochastic decision
function outperforms the greedy one. We interpret
the phenomenon as the greedy decision function
gets stuck in local maxima, whereas the stochastic
one can overcome this issue by accepting a slightly
worse rewrite.
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Figure 4: The ASR of R&R using different decision
settings. “Greedy” means using a greedy decision func-
tion, which accepts a rewrite only if it has a higher cri-
tique score.

Rollback We apply rollback periodically during
the attack. We compare it with two alternatives:
(1) no rollback (NRB) which only uses rewrite to
construct the adversarial sentences, and (2) single
rollback (SRB) which applies rollback once on
the NRB results. Figure 5 shows the result. We
find that rollback has a significant impact. NRB
performs the worst. Without rollback, it is difficult
to get high cosine similarity when many words in
the sentence have been changed. Single rollback
increases the number of overlapped words, which
usually increases the similarity measurement. By
periodically applying the rollback, the rollbacked
sentence can be further rewritten to improve the

similarity and fluency metrics, thus yielding to the
best performance.
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Figure 5: The ASR of R&R using different rollback set-
tings. “NRB” means no rollback operation and “SRB”
means single rollback.

Multiple-Word Masking In the Rewrite stage,
we mask a span of multiple words in each itera-
tion. Intuitively, when using a smaller span size,
the masked words are easier to predict. The pro-
posal distribution will assign high probability to
the original words at masked positions. Therefore,
the candidate sentences are likely to be identical
to the original sentence, thus limiting the number
of perturbations explored. When the span is large,
predicting words becomes more difficult. Thus, we
can sample different candidate sentences. But it
is more likely to construct dissimilar or influential
sentences. We vary the span size from 1, 2, 3, to
4 and show the results on Figure 6. We find that
using span size 3 yields the best performance over
most similarity thresholds.
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Figure 6: The ASR of R&R using different masking
span sizes. R&R-1 to R&R-4 represent the span size of
1 to 4 respectively. We use span size 3 by default.

4.4.1 How do existing defense methods work
against R&R?

We further explore the defense against this attack:
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• Adversarial attack methods sometimes introduce
outlier words to trigger misclassification. There-
fore we follow Qi et al. (2020) and apply a
perplexity-based filtering to eliminate outlier
words in sentences. We generate adversarial
sentences on vanilla classifiers, then apply the
filtering.

• SHIELD (Le et al., 2022) is a recently proposed
algorithm that modifies the last layer of a neural
network to defend against adversarial attack. We
apply this method to classifiers and attack the
robust classifier.

AG FAKE

+Filter +SHIELD +Filter +SHIELD

TextFooler 6.2 8.2 13.8 16.7
CLARE 5.6 18.2 19.0 51.1

R&R (ours) 22.3 30.6 23.1 59.4

Table 6: The ASR of attack methods when applying
the perplexity-based filtering (Filter) and the SHIELD
defense on the BERT classifier.

Table 6 shows the ASR of attack methods with
a defense applied. We show that existing defense
methods cannot effectively defend against R&R. It
still outperforms baselines in ASR by large margin.

5 Related Work

Several recent works proposed word-level adver-
sarial attacks on text classifiers. This type of attack
misleads the classifier’s predictions by perturbing
the words in the input sentence. TextFooler (Jin
et al., 2020) shows the adversarial vulnerability of
the state-of-the-art text classifiers. It uses heuris-
tics to replace words with synonyms to mislead
the classifier effectively. It relies on several pre-
trained models, such as word embeddings (Mrkšic
et al., 2016), part-of-speech tagger, and Universal
Sentence Encoder (Cer et al., 2018) to perturb the
sentence without changing its meaning. However,
simple synonym substitution without considering
the context results in unnatural sentences. Several
works (Garg and Ramakrishnan, 2020; Li et al.,
2020, 2021) address this issue by using masked lan-
guage models such as BERT (Devlin et al., 2019)
to propose more natural word substitutions. Our
method also belongs to this category. But R&R
does not maximize the efficacy of each perturba-
tion, instead it allows exploring combinations of
perturbations to generate adversarial examples with
high similarity with the original sentence. Besides

word-level attacks (Zang et al., 2020; Ren et al.,
2019), there are also character-level attacks which
introduce typos to trigger misclassification (Paper-
not et al., 2016; Liang et al., 2017; Samanta and
Mehta, 2018), and sentence-level attacks which
attack a classifier by altering the sentence struc-
ture (Iyyer et al., 2018). Zhang et al. (2020) gives
a comprehensive survey on such attack methods.
Other work on robustness to adversarial attacks in
NLP includes robustness of the machine translation
models (Cheng et al., 2019), robustness in domain
adaptation (Oren et al., 2019), adversarial exam-
ples generated by reinforcement learning (Wong,
2017; Vijayaraghavan and Roy, 2019), and certi-
fied robustness (Jia et al., 2019). Adversarial attack
libraries (Morris et al., 2020; Zeng et al., 2021) are
also developed to help future research.

6 Conclusion

In this paper, we formulate the textual adversarial
attack as a multi-objective optimization problem.
We use a critique score to synthesize the similar-
ity, fluency, and misclassification objectives, and
propose R&R that optimizes the critique score to
generate high-quality adversarial examples. We
conduct extensive experiments. Both automatic and
human evaluation show that the proposed method
succeeds in optimizing the automatic similarity and
fluency metrics to generate adversarial examples of
higher quality than previous methods.

Ethical Considerations

In this paper, we propose R&R to generate adver-
sarial sentences. Like all other adversarial attack
methods, this method could be abused by malicious
users to attack NLP systems and obtain illegitimate
benefits. However, it is still necessary for the re-
search community to develop methods to exploit
all vulnerabilities of a classifier based on which
more robust classifiers can be developed.
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A Relation to Metropolis-Hastings
Sampling

Metropolis-Hastings sampling (MHS) (Hastings,
1970) is a Markov-chain Monte Carlo (MCMC) for
generating independent unbiased samples from a
distribution. Assume we have a target distribu-
tion of sentences ptarget(u|x, y) such that legiti-
mate adversarial sentences of x have high prob-
ability, while other sentences (could be a meaning-
less sequence of words) have low probability, we
may attempt to solve the adversarial attack prob-
lem by MHS. Because we are likely to get an ad-
versarial sentence of x by drawing samples from
ptarget(u|x, y). To apply MHS, we need to choose
a transition probability ptransition(û|u,x, y) that de-
fines the probability to transit from one sentence
to the next sentence in the MCMC. Then the MHS
has following steps:

1. Start with u = x.

2. Get a candidate û ∼ ptransition(û|u,x, y).

3. Compute

α =
ptarget(û|x, y)ptransition(u|û,x, y)
ptarget(u|x, y)ptransition(û|u,x, y)

. (7)

4. With probability min(α, 1), use û as new u
and go to step 2; otherwise use the previous u
and go to step 2.

5. After sufficient iterations, u is a sample drawn
from ptarget(u|x, y). Note that MHS needs a
lot of iterations considering the huge space of
all sentences.

The rewrite step in R&R is similar to MHS, if
we consider exp[C(u)] as the unnormalized target
distribution3 and pproposal(·) as the transition prob-
ability. The definition of α in Eq. (6) and Eq. (7)
is one significant difference, where R&R only uses
target distribution and omits the transition proba-
bility. We find omitting it can make the sampling
bias towards sentences with higher probability in
target distribution (i.e., sentences with higher cri-
tique score), which benefits the adversarial attack
efficacy.

3We apply the exponential function to make sure the prob-
ability mass is positive.
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Figure 7: The screenshots of MTurk tasks.
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Classifier: RoBERTa
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Classifier: FastText
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Figure 8: Attack success rate with respect to different similarity and perplexity constraints. When evaluating
different similarity thresholds, we do not set thresholds on perplexity. When evaluating perplexity thresholds, we
fix the similarity threshold to 0.95.
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Adapted embeddings

1. Random sample a few words from plain text. 

2. Update adapted embeddings by minimizing the absolute error using SGD. 
In this example:  

Figure 9: One learning step of vocabulary adaptation algorithm. The plain text has only 5 words in this example,
but it has much more words in real datasets. We illustrate by sampling only 2 words from plain text, while we
sample 5000 words in practice.


