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Abstract

The ability to reason about tabular or semi-
structured knowledge is a fundamental problem
for today’s Natural Language Processing (NLP)
systems. While significant progress has
been achieved in the direction of tabular
reasoning, these advances are limited to
English due to the absence of multilingual
benchmark datasets for semi-structured data.
In this paper, we use machine translation
methods to construct a multilingual tabular
natural language inference (TNLI) dataset,
namely XINFOTABS, which expands the
English TNLI dataset of INFOTABS to ten
diverse languages. We also present several
baselines for multilingual tabular reasoning,
e.g., machine translation-based methods and
cross-lingual TNLI. We discover that the
XINFOTABS evaluation suite is both practical
and challenging. As a result, this dataset will
contribute to increased linguistic inclusion in
tabular reasoning research and applications.

1 Introduction

Natural Language Inference (NLI) on semi-
structured knowledge like tables is a crucial
challenge for existing (NLP) models. Recently,
two datasets, TabFact (Chen et al., 2019) on
Wikipedia relational tables and INFOTABS (Gupta
et al., 2020) on Wikipedia Infoboxes, have been
proposed to investigate this problem. Among the
solutions, contextual models such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019),
when adapted for tabular data, surprisingly achieve
remarkable performance.

The recent development of multi-lingual
extensions of contextualizing models such as
mBERT (Devlin et al., 2019) from BERT and
XLM-RoBERTa (Conneau et al., 2020) from
RoBERTa, has led to substantial interest in the
problem of multi-lingual NLI and the creation of
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multi-lingual XNLI (Conneau et al., 2018) and
TaxiXNLI (K et al., 2021) dataset from English
MNLI (Williams et al., 2018) dataset. However,
there is still no equivalent multi-lingual NLI dataset
for semi-structured tabular data. To fill this
gap, we propose XINFOTABS, a multi-lingual
extension of INFOTABS dataset. The XINFOTABS
dataset consists of ten languages, namely English
(‘en’), German (‘de’), French (‘fr’), Spanish (‘es’),
Afrikaans (‘af’), Russian (‘ru’), Chinese (‘zh’),
Korean (‘ko’), Hindi (‘hi’) and Arabic (‘ar’), which
belong to seven distinct language families and
six unique writing scripts. Furthermore, these
languages are the majority spoken in all seven
continents covering 2.76 billion native speakers
in comparison to 360 million English language
(INFOTABS) speakers1.

The intuitive method of constructing
XINFOTABS, i.e., human-driven manual
translation, is too expensive in terms of
money and time. Alternatively, various state-
of-the-art machine translation models, such as
mBART50 (Tang et al., 2020), MarianMT (Junczys-
Dowmunt et al., 2018), M2M100 (Fan et al.,
2020a), have greatly enhanced translation quality
across a broad variety of languages. Furthermore,
NLI requires simply that the translation models
retain the semantics of the premises and hypotheses,
which machine translation can deliver (K et al.,
2021). Therefore, we use automatic machine
translation models to construct XINFOTABS from
INFOTABS.

Tabular data is far more challenging to translate
than semantically complete and grammatical
sentences with existing state-of-the-art translation
systems. To mitigate this challenge, we propose
an efficient, high-quality translation pipeline that
utilizes Name Entity Recognition (NER) and table
context in the form of category information to
convert table cells into structured sentences before
1 Refer to Appendix Table 5 for more information.

59



Boxing (en)
Focus Punching, striking
Olympic sport 688 BC (Ancient Greece),

1904 (modern)
Parenthood Bare-knuckle boxing
Country of origin Prehistoric
Also known as Western Boxing, Pugilism

See note.

Boxe (fr)
Focus Punching, frappe
Sport olympique 688 av. J.-C. (Grèce ancienne),

1904 (moderne)
Parentalité Bare-knuckle boxe
Pays d’origine Préhistorique
Aussi connu sous le nom Western Boxing,

Pugilism Voir note.
Language Hypothesis Label
English The modern form of boxing started in the late 1900’s. CONTRADICTION

German Boxen hat seinen Ursprung als olympischer Sport, der vor Jahrtausenden begann. CONTRADICTION

French La boxe occidentale implique des punches et des frappes ENTAILMENT

Spanish El boxeo ha sido un evento olímpico moderno durante más de 100 años. ENTAILMENT

Afrikaans Bare-knuckle boks is ’n prehistoriese vorm van boks. NEUTRAL

Table 1: An example of the XInfoTabS dataset containing English (top-left) and French (top-right) tables in parallel
with the hypothesis associated with the table in five languages (below).

translation. We assess the translations via several
automatic and human verification methods to
ensure quality. Our translations were found to
be accurate for the majority of languages, with
German and Arabic having the most and least
exact translations, respectively. Table 1 shows an
example from the XINFOTABS dataset.

We conduct tabular NLI experiments using
XINFOTABS in monolingual and multilingual
settings. By doing so, we aim to assess the capacity
and cross-lingual transferability of state-of-the-
art multilingual models such as mBERT (Devlin
et al., 2019), and XLM-Roberta (Conneau
et al., 2020). Our investigations reveal that
these multilingual models, when assessed for
additional languages, perform comparably to
English. Second, the translation-based technique
outperforms all other approaches on the adversarial
evaluation sets for multilingual tabular NLI in
terms of performance. Thirdly, the method of
intermediate-task finetuning, also known as pre-
finetuning, significantly improves performance by
finetuning on additional languages prior to the
target language. Finally, these models perform
admirably on cross-lingual tabular NLI (tables and
hypotheses given in different languages), although
the additional effort is required to improve them.
Our contributions are as follows:

• We introduce XINFOTABS, a multi-lingual
extension of INFOTABS, a semi-structured
tabular inference English dataset over ten
diverse languages.

• We propose an efficient pipeline for high-
quality translations of semi-structured tabular
data using state-of-the-art translation models.

• We conduct intensive inference experiments
on XINFOTABS and evaluate the performance
of state-of-the-art multilingual models with
various strategies.

The dataset and associated scripts, is available at
https://xinfotabs.github.io/.

2 Why the INFOTABS dataset?

There are only two public datasets, both in
English, available for semi-structured tabular
reasoning, namely TabFact (Chen et al., 2019)
and INFOTABS (Gupta et al., 2020). We choose
INFOTABS because it includes multiple adversarial
test sets for model evaluation. Additionally, the
INFOTABS dataset also includes the NEUTRAL

label, which is absent in TabFact. The
INFOTABS dataset contains 2,540 tables serving as
premise and 23,738 hypothesis sentences along
with associated inference labels. The table-
sentence pairs are divided into development,
and three evaluation sets α1, α2, and α3,
each containing 200 unique tables along with
nine hypothesis sentences equally distributed
among three inference labels (ENTAILMENT,
CONTRADICTION, and NEUTRAL). α1 is a
conventional evaluation set that is lexically similar
to the training data. α2 has lexically adversarial
hypotheses. And α3 contains domain topics that are
not present in the training set. The remaining 1,740
tables with corresponding 16,538 hypotheses serve
as a training set. Table 2 describes the inference
performance of RoBERTaL model on INFOTABS
dataset. As we can see, the Human Scores are
superior to that of RoBERTaL model trained with
TabFact representation. Since the XINFOTABS is
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translated directly from the INFOTABS, we expect
a similar human baseline for XINFOTABS.

Model dev α1 α2 α3

Human 79.78 84.04 83.88 79.33
Hypo Only 60.51 60.48 48.26 48.89
RoBERTaLARGE 77.61 75.06 69.02 64.61

Table 2: Accuracy scores of the Table as Struct strategy on
XINFOTABS subsets with RoBERTaLARGE model, hypothesis
only baseline and majority human agreement results. The first
three rows are reproduced from Gupta et al. (2020).

3 Table Representation

Machine translation of tabular data is a challenging
task. Tabular data is semi-structured, non-
sentential (ungrammatical), and succinct. The tight
form of tabular cells provides inadequate context
for today’s machine translation models, which are
primarily designed to handle sentences. Thus,
table translation requires additional context and
conversion. Furthermore, frequently occurring
named entities in tables must be transliterated
rather than translated. Figure 1 shows the table
translation pipeline. We describe our approach to
context addition and handling of named entities in
detail in the following subsections §3.1.

3.1 Table Translation Context
There are several ways to represent tables, each
with its own set of pros and cons, as detailed below:

Without Context. The most straightforward way
to represent a table would be to treat every key
(header) and value (cell) as separate entities and
then translate them independently. This approach
results in poor translations as the models have no
context regarding the keys. The key “Length” in
English in context of Movies would correspond to

“durée”, meaning duration in French but in Object
context, would correspond to “longueur”, meaning
size or span. Thus, context is essential for accurate
table translation.

Full Table. Before transferring data from the
header and table cells to translation models, one
may concentrate and seam each table row using
a delimiter such as a colon (":") to separate key
from value and a semi-colon (";") to separate rows
(Wenhu Chen and Wang, 2020). This method
provides full context and completely translates all
table cells. However, in practice, this strategy has
two major problems:

a. Length Constraint: All transformer-based
models have a maximum input string length of 512

tokens.2 Larger tables with tens of rows may not be
translated using this approach.3 In practice, strings
longer than 256 tokens have been shown to have
inferior translation quality.4

b. Structural Issue: When a linearized table is
directly translated, the delimiter tokens (":" and
";") get randomly shifted. 5 The delimiter counts
are also altered. Hence, the translation appears to
merge characters from adjacent rows, resulting in
inseparable translations. Ideally, the key and value
delimiter token locations should be invariant in a
successful translation.

Category Context. Given the shortcomings of
the previous two methods, we devise a new strategy:
we add a general context that describes table
rows at a high level to each linearized row cell.
We leverage the table category here, as it offers
enough context to grasp the key’s meaning. For the
key “Focus" in Table 1, the category information
Sports offers enough context to understand its
significance in relation to boxing. The context
added representation for this key-value pair will
be "Sports | Focus | Punching , Striking". We
use “|" delimiter for separating the context, key,
and value. Furthermore, multiple values are
seperated by “,". Unlike full table translation, row
structure is preserved since each row is translated
independently and no row surpasses the maximum
token limit. We observe an average increase of
5.5% in translation performance (cf. §4).

3.2 Handling Named Entities
Commercial translation methods, like Google
Translate, correctly transliterate specified entities
(such as proper nouns and dates). However, modern
open-source models like mBART50 and M2M100
translate name entity labels, lowering overall
translation quality. For example, Alice Sheets is
translated to Alice draps in French. We propose
a simple preprocessing technique to address the
transliterate/translate ambiguity. First, we use the
Named Entity Recognition (NER) model6(Jiang
et al., 2016) to identify entity information that
must be transliterated, such as proper nouns and
dates. Then, we add a unique identifier in the form
2 Recently, models bigger than 512 tokens have been
developed, e.g. (Asaadi et al., 2019; Beltagy et al.,
2020), but no publicly accessible long-sequence (> 512
tokens) multilingual machine translation model exists at the
moment. 3 Average # of rows in InfoTabS is: 8.8 for Train,
Development, α1 and α2, and 13.1 for α3. 4 Neeraja et al.
(2021) raises a similar issue for NLI. 5 Using "|" instead of
":" helps key-value separation. 6 spaCy NER tagger
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Figure 1: Table translation pipeline (§3) with premise table “Boxing" (from INFOTABS) translated into French.

of double quotations (" "), e.g., “Alice Sheets”,
and apply the translation model. Finally, we
delete the quotation mark (" ") from the translated
sentence after it has been translated. This helps the
models identify these entities easily due to their
pre-training.

4 Translation and Verification

As mentioned previously, we now grasp how to
represent a table. Consequently, these reformatted
tables can now be fed into reliable translation
models. To accomplish this, we assess many
prominent multilingual (e.g., mBART50 (Tang
et al., 2020) and M2M100 (Fan et al., 2020b))
and bilingual (e.g., MarianMT (Junczys-Dowmunt
et al., 2018)) translation models as described
below:

Multilingual Models. This category of models
used includes widely used machine translation
models trained on a large number of languages such
as mBART50 (Tang et al., 2020) which can perform
translation between any two languages from the list
of 50 languages and M2M100 (Fan et al., 2020b)
which has 100 training languages. Apart from these
models, we used Google Translate7 to compare
against our dataset translation quality.

Bilingual Models. Earlier studies have revealed
that bilingual models outperform multilingual
models in machine translation of high-resource
languages. Thus, for our experiments, we also
considered language-specific bilingual translation
models in MarianMT (Junczys-Dowmunt et al.,
2018) repository. Because the MarianMT models
were not available for a few languages (e.g., Korean
(ko)) of XINFOTABS, we could not conduct
experiments for some languages.
7 https://translate.google.co.in/

We also use an efficient data sampling technique
to determine the ideal translation model for each
language, as detailed in the next section. The
results for the translations are shown in Table 3.

4.1 Translation Model Selection
Translating the complete INFOTABS dataset to
find the optimal model is practically infeasible.
Thus, we select a representative subset of the
dataset that approximates the full dataset rather
well. Finally, we use optimal models to translate
the complete INFOTABS dataset. The method used
for making the subset is discussed in the Table
Subset Sampling Strategy and Hypothesis Subset
Sampling Strategy sections given below:-

Table Subset Sampling Strategy: In a table,
keys can serve as an excellent depiction of the
type of data included therein. For example, if
the key "children" is used, the associated value is
almost always a valid Noun Phrase or a collection
of them. Additionally, the type of keys for a given
category remains constant across tables, but the
values are always different.8 This fact is used to
sample a subset of diverse tables based on keys
and categories. Specifically, we sample tables for
each category based on the frequency of occurrence
of keys in the dataset to guarantee diversity. The
sum of the frequencies of all the keys in a table
is computed for each table. Finally, the top 10%
of tables with the largest frequency sum in each
category are chosen to be included in the subset. In
the end, we construct a subset with 11.14% tables
yet containing 90.2% of the all unique keys.

Hypothesis Subset Sampling Strategy: To get
a diverse subset of hypotheses, we employ
Top2Vec (Angelov, 2020) embedding for each
8 There are 2,163 unique keys in INFOTABS.
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hypothesis, then use k-means clustering (Jin
and Han, 2010) to choose 10% of each cluster.
Sampling from each cluster ensures we cover all
topics discussed in the hypothesis, resulting in a
subset of 2,569 hypothesis texts.

Model Selection Strategy: To choose the
translation model that will be used to generate the
language datasets, we first translate the premise
and hypothesis subsets for all languages using
each of the existing models, as described before.
Following translation, we compute the various
scores detailed in Section 4.2. Finally, the
model with the highest average of premise and
hypothesis translation Human Evaluation Score
for the specified language is chosen to translate the
complete INFOTABS datasets.

4.2 Translation Quality Verification
With the emergence of Transformer-based pre-
trained models, significant progress has been made
in automated quality assessment using semantic
similarity and human sense correlation (Cer et al.,
2017) for machine translation evaluation. To verify
our created dataset XINFOTABS, we use three
automated metrics in addition to human ratings.

Paraphrase Score (PS). PS indicates the amount
of information retained from the translated text.
To capture this, we estimate the cosine similarity
between the original INFOTABS text and the
back-translated English XINFOTABS text sentence
encodings. We utilize the all-mpnet-v2(Song et al.,
2020) model trained using SBERT (Reimers and
Gurevych, 2019) method for sentence encoding.

Multilingual Paraphrase Score (mPS).
Different from PS, mPS directly uses the
multilingual XINFOTABS text instead of the
English back-translated text to compare with
INFOTABS text. We produce sentence encodings
for multilingual semantic similarity using the
multilingual-mpnet-base-v2 model (Reimers and
Gurevych, 2020) trained using the SBERT method.

BERTScore (BS). BERTScore is an automatic
score that shows high human correlation and has
been a widely used quality estimation metric for
machine translation tasks (Zhang et al., 2019).

Human Evaluation Score (HES) We hired
five annotators to label sampled subsets of 500
examples per model and language. Human
verification is accomplished by supplying sentence

pairs and requesting that annotators classify them
as identical or dissimilar based on the meaning
expressed by the sentences. For more details, refer
to the Appendix §A.

Analysis. We arrive at an average language score
of 85 for tables and 91 for hypotheses for the
final selected models in all languages. The results
are summarised in Table 3. These results are
also utilized to determine the optimal models for
translating the entire dataset. MarianMT is used
to create the entire dataset in German, French, and
Spanish, mBART50 is used to create the Tables
dataset in Afrikaans, Korean, Hindi, and Arabic,
and M2M100 is used to create the entire dataset
in Russian and Chinese, as well as the hypothesis
dataset in Afrikaans, Korean, Hindi, and Arabic.

5 Experiment and Analysis

In this section, we study the task of Multilingual
Tabular NLI, utilizing our XINFOTABS dataset
as the benchmark for a variety of multilingual
models with multiple training-testing strategies.
By doing so, we aim to assess the capacity
and cross-lingual transferability of state-of-the-art
multilingual models. For the inference task, we
linearize the table using the “Table as Struct"-
TabFact described in INFOTABS.

Multilingual Models: We use pre-trained
multilingual models for all our inference label
prediction experiments. We use a multilingual
mBERT-base (cased) (Devlin et al., 2019) model
pre-trained on masked language modeling. This
model will be referred to as mBERTBASE. The
other model we evaluated is the XLM-RoBERTa
Large (XNLI) model (Conneau et al., 2020),
which is trained on masked language modeling and
then finetuned for the NLI task using the XNLI
dataset. This model is referred to as XLM-R Large
(XNLI). For details on hyperparameters, refer to
Appendix §B.

Tables 4, 6, and 7 show the performance of the
discussed multilingual models for α1, α2, and α3

test splits respectively. Tables 6 and 7 are shown
in Appendix §C, due to limited space. On all
three evaluation sets, regardless of task type, the
XLM-RoBERTaLarge model outperforms mBERT.
This might be because XLM-RoBERTa has more
parameters, and is better pre-trained and pre-tuned
for the NLI task using the XNLI dataset.
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Model Metric de fr es af ru zh ko hi ar MdlAvg

MarianMT

PS 95 | 96 93 | 95 93 | 96 83 | 88 81 | 87 75 | 85 N.A. 56 | 55 60 | 79 80 | 85
mPS 92 | 95 87 | 96 90 | 96 83 | 84 78 | 84 79 | 83 N.A. 65 | 64 66 | 74 80 | 85
BS 93 | 94 91 | 94 92 | 94 84 | 89 81 | 87 73 | 85 N.A. 63 | 68 64 | 83 80 | 87

HES 95 | 87 92 | 86 92 | 94 70 | 56 84 | 54 75 | 59 N.A. 40 | 23 58 | 56 76 | 64
LnAvg 94 | 93 91 | 93 92 | 95 80 | 79 81 | 78 76 | 78 N.A. 56 | 53 62 | 73 79 | 80

mBART50

PS 94 | 96 93 | 95 86 | 87 88 | 92 89 | 87 81 | 87 83 | 82 85 | 82 70 | 77 85 | 87
mPS 92 | 96 90 | 96 72 | 92 85 | 91 81 | 88 79 | 84 86 | 83 79 | 81 80 | 80 83 | 88
BS 91 | 94 91 | 93 71 | 88 88 | 93 85 | 89 77 | 86 79 | 85 82 | 86 76 | 83 82 | 89

HES 93 | 84 91 | 81 82 | 80 89 | 69 87 | 69 76 | 61 76 | 54 79 | 70 71 | 53 83 | 69
LnAvg 93 | 93 91 | 91 78 | 87 88 | 86 86 | 83 78 | 80 81 | 76 81 | 80 74 | 73 83 | 83

M2M100

PS 89 | 96 92 | 94 88 | 95 91 | 94 89 | 90 83 | 82 83 | 92 83 | 88 72 | 77 86 | 90
mPS 88 | 96 88 | 96 88 | 96 84 | 92 83 | 88 80 | 86 84 | 90 81 | 87 78 | 92 84 | 91
BS 87 | 94 89 | 93 86 | 93 89 | 94 87 | 90 81 | 88 80 | 90 81 | 89 73 | 88 84 | 91

HES 88 | 85 86 | 86 84 | 86 86 | 83 87 | 74 79 | 72 70 | 82 75 | 73 60 | 51 79 | 77
LnAvg 88 | 93 89 | 92 87 | 93 88 | 91 87 | 86 81 | 82 79 | 89 80 | 84 71 | 77 83 | 87

GoogleTr

PS 91 | 94 94 | 93 92 | 93 96 | 95 79 | 86 80 | 83 87 | 89 90 | 85 60 | 81 85 | 89
mPS 89 | 94 88 | 94 88 | 94 82 | 87 82 | 86 80 | 86 83 | 87 77 | 80 71 | 81 82 | 88
BS 87 | 91 89 | 90 88 | 91 88 | 93 77 | 85 78 | 82 82 | 85 87 | 85 63 | 82 82 | 87

HES 91 | 79 93 | 81 89 | 83 96 | 81 84 | 66 79 | 56 79 | 70 92 | 74 65 | 70 85 | 73
LnAvg 90 | 90 91 | 90 89 | 90 91 | 89 81 | 81 79 | 77 83 | 83 87 | 81 65 | 79 84 | 84

Table 3: Table translation experiment results with Paraphrase Score (PS), Multilingual Paraphrase Score (mPS),
BERTScore (BS), Human Evaluation Score (HES), Language Average (LnAvg) and Model Average (MdlAvg). We
use the "X | Y" format, where X and Y represent the Table and hypothesis translation score respectively. Purple and
Orange signifies the language average score of the model selected for table and hypothesis translation respectively.

5.1 Using English Translated Test Sets

We aim to investigate the following question:
How would models trained on original English
INFOTABS perform on English translated
multilingual XINFOTABS?. We trained multi-
lingual models using the original English
INFOTABS training set, and used the English
translated XINFOTABS development set, and three
test sets during the evaluation. According to Table
4, German has the best language-wise performance
for α1. From Table 6, German, French, and
Afrikaans have the highest average scores for
α2. French and Russian have the best scores on
α3 as shown in Table 7. Arabic has the lowest
average of any language across all three test sets.
Here, the model trained on English INFOTABS is
being used for all the languages. Since the model
is the same for all languages, the variation in
performance only depends on English translation
across XINFOTABS languages. On α2 and α3

sets, this task on average performs competitively
against all other baseline tasks.

5.2 Language-Specific Model Training

In this subsection, we try to answer the question: Is
it beneficial to train a language-specific model on
XINFOTABS? In doing so, we finetune ten distinct
models, one for each language on XINFOTABS.
Comparing models on this task helps comprehend

the model’s intrinsic multilingual capabilities for
tabular reasoning. Among the language-specific
models, English has the best language average in
all three test sets, while Arabic has the lowest.

Additionally, there is a substantial variation
in the quality of translation and model
multilingualism competence. The high-resource
languages often perform better since the pre-
trained models have been trained on a larger
amount of data from these languages. Surprisingly,
§5.2 setting has lower average mBERT scores for
all three splits than §5.1 setting. The benefit of
training the model in English seems to surpass
any loss incurred during translating test sets
into English. However, this is not the case with
XLM-R(XNLI). The average scores increase
substantially for α1 split in §5.2 setting compared
to §5.1 setting, decrease slightly for α2, and remain
constant for α3. The α1 set improves due to its
similar split to the train set, whereas the α2 set
slightly worsens since it includes human-annotated
perturbed hypotheses with labels flipped. Lastly,
the α3 set comprises tables from zero-shot
domains i.e. unseen domain tables, so it remains
constant. Our exploration of models’ cross-lingual
transferability is provided in Appendix§ D.

5.3 Fine-tuning on Multiple Languages

Earlier findings indicate that fine-tuning
multilingual models for the same task across
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Train/Test Strategy Model en de fr es af ru zh ko hi ar Model. Avg.
English Translated Test mBERTBASE - 66 64 65 66 63 63 64 64 59 64

(§5.1) XLM-RLARGE (XNLI) - 73 73 72 72 72 71 69 70 62 70
Lang. Avg. - 70 69 69 69 67 67 67 67 61 68

Language Specific Training mBERTBASE 67 65 65 63 62 64 63 61 63 57 63
(§5.2) XLM-RLARGE (XNLI) 76 75 74 74 72 71 73 71 71 68 72

Lang. Avg. 72 70 69 68 67 67 68 66 67 63 68
Multiple Language Finetuning mBERTBASE - 64 66 64 64 64 65 63 62 62 64
Using Only English (§5.3A) XLM-RLARGE (XNLI) - 75 74 75 74 74 73 73 72 69 73

Lang. Avg. - 69 70 69 69 69 69 68 67 66 69
Multiple Language Finetuning mBERTBASE 65 64 64 64 64 63 64 62 62 59 63

Unified Model (§5.3B) XLM-RLARGE (XNLI) 76 75 74 75 73 74 74 73 72 70 74
Lang. Avg. 71 69 69 70 69 68 69 67 67 65 69

English Premise mBERTBASE - 63 63 64 62 61 61 59 61 60 61
Multilingual Hypothesis (§5.4) XLM-RLARGE (XNLI) - 73 73 73 72 72 73 72 71 68 72

Lang. Avg. - 68 68 68 67 67 67 66 66 64 67

Table 4: Accuracy for baseline tasks on the α1 set. Purple signifies the best task average accuracy, Orange
signifies the best language average accuracy, Cerulean signifies the best model accuracy. XLM-RLARGE represent
XLM-RoBERTaLARGE model.

languages improves performance in the target
language (Phang et al., 2020; Wang et al., 2019;
Pruksachatkun et al., 2020). Thus, do models
benefit from sequential fine-tuning over several
XINFOTABS languages? To answer it, we
investigate this strategy of pre-finetuning in two
ways, (a) by using English as the predominant
language for pre-finetuning, and (b) by utilizing all
XINFOTABS languages to train a unified model, .

A. Using English Language. We fine-tune our
models on the English INFOTABS and then on
XINFOTABS in each language individually. Thus,
we train nine models in total, one for each
multilingual language (except English). English
was chosen as the pre-finetuning language due to
its strong performance in the §5.2 paradigm and
prior research demonstrating English’s superior
cross-lingual transfer capacity (Phang et al.,
2020). Across all three splits, the average score
improves from the §5.2 setting, demonstrating that
pre-finetuning the English dataset benefits other
multilingual languages. The most significant gains
are shown in lower resource languages, notably
Arabic, which improved by 3% for α1, 2% for α2,
and 1% for α3 in comparison to the §5.2 approach.

B. Unified Model Approach. We explore
whether fine-tuning on other languages is
beneficial, where we fine-tune a single unified
model across all XINFOTABS languages’ training
sets and use it for making predictions on
XINFOTABS test sets. We observe that the
finetuning language order affects the final model
performance if done sequentially. We find that
training from a high to a low resource language

leads to the highest average accuracy improvement.
This is due to the catastrophic forgetting trait
(Goodfellow et al., 2015), which encourages
training on more straightforward examples first,
i.e., those with better performance. Hence, we
trained in the following language order: en → fr
→ de → es → af → ru → zh → hi→ ko → ar.

We observe that the XLM RoBERTa Large
model performs the best across all baseline tasks
in the α1 set. On average, this performance
is comparable to English pre-finetuning. While
the accuracy of high resource languages remains
constant or marginally declines compared to the
§5.2 setting, there is a substantial improvement in
accuracy for low resource languages, particularly
Arabic, which increases by 2%. It performs
similarly to English pre-finetuning. To conclude,
more fine-tuning is not always beneficial for all
models, but it benefits larger models like the XLM-
R Large. Models improve performance for low-
resource languages compared to the §5.2 setting
(i.e., no pre-finetuning), but not nearly as much as
that of English-based pre-finetuning.

5.4 English Premise Multilingual Hypothesis

The premise of English’s multilingual hypothesis
is practical, as it is frequently observed in the
real world. The majority of the world’s facts and
information are written in English. For instance,
Wikipedia has more tables in English than in any
other language, and even if a page is available,
it is likely that it missing an infobox. However,
because people are innately bilingual, inquiries or
verification queries concerning these facts could
be in a language other than English. As a result,
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the task of developing cross-lingual tabular NLI is
critical in the real world.

To study this problem, we look at the following
question: How effective are models with premise
and hypothesis stated in distinct languages? To
answer this, we train the models using the original
INFOTABS premise tables in the English language
and multilingual hypotheses in XINFOTABS, i.e.,
nine languages. We note that XLM-R Large
(XNLI) has the highest accuracy for the α1 set.
On average, the high-resource languages German,
French, and Spanish perform favorably across
models, whereas Arabic underperforms. Both
models have shallow scores in German for the
α2 set, which defy earlier observations. This
might be because the adversarial modifications in
the α2 hypothesis might not be reflected in the
German translation. XLM-R Large has the highest
accuracy on this set, with French and Spanish
being the most accurate languages. The models
for the α3 validation set demonstrate that language
average accuracy is nearly proportional to the size
of translation resources. However, the scores are
marginally lower on average for the α2 set.

Surprisingly, models perform worse on average
than with §5.2 setting on the α1 and α2 sets while
performing similarly on the α3 set. Except for α2

on German, the average language accuracy changes
are directly proportional to the language resource,
implying that the constraint could be translation
quality; left for future study. Refer Appendix §E
for robustness and consistency analysis.

6 Discussion and Analysis

Extraction vs. Translation. One straightforward
idea for constructing the multilingual tabular NLI
dataset is to extract multilingual tables from
Wikipedia in the considered languages. However,
this strategy fails in practice for several reasons.
For starters, not all articles are multilingual. For
example, only 750 of the 2540 tables were from
articles available in Hindi. The existence of
the same title articles across several languages
does not indicate that the tables are identical.
Only 500 of the 750 tables with articles in Hindi
had infoboxes, and most of these tables were
considerably different from the English tables. The
tables had different numbers of keys and different
value information.

Human Verification vs. Human Translation.
We selected machine translation with human

verification over hiring expert translators for
several reasons: (a) Hiring bilingual, skilled
translators in multiple languages is expensive
and challenging, (b) Human verification is a
more straightforward classification task based
on semantic similarity; it is also less erroneous
compared to translation, (c) By selecting an
appropriate verification sample size, we may
further minimize the time and effort required for
human inspection, (d) A competent translation
system has no effect on the classification labels
used in inference. As a result, the loss of the
semantic connection between the table and the
hypothesis is not a significant issue (K et al.,
2021), and (e) Minor translation errors have no
effect on the downstream NLI task label as long as
the semantic meaning of the translation is retained
(Conneau et al., 2018; K et al., 2021; Cohn-Gordon
and Goodman, 2019; Carl, 2000).

Usage and Future Direction. The dataset
can be used to test benchmarks, multilingual
models, and methods for tabular NLI. In
addition to language invariance, robustness, and
multilingual fact verification, it may well be
utilized for reasoning tasks like multilingual
question answering (Demszky et al., 2018). The
baselines can also be beneficial to understand
models’ cross-lingual transferability.

Our current table structure does not generate
natural language sentences and hence does not
optimize the capabilities of a machine translation
model. The representation of tables can be
enhanced further by adding Better Paragraph
Representation (BPR) from Neeraja et al. (2021).
Additionally, NER handling may be enhanced by
inserting a predetermined template name into the
sentence post-translation, i.e. extracting a named
entity from the original sentence, replacing it with a
fixed template entity, and then replacing the named
entity with the template post-translation. Multiple
experiments, however, would be necessary to
identify suitable template entities for replacement,
and hence this is left as future work. Another
approach is the extraction of keys and values from
multilingual Wikipedia pages is also a challenging
task and left as future work. Finally, human
intervention can enhance the translation quality
by either direct human translation or fine-grained
post-translation verification and correction.
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7 Related Work

Tabular Reasoning. Recent studies investigate
various NLP tasks on semi-structured tabular data,
including tabular NLI and fact verification (Chen
et al., 2019; Gupta et al., 2020; Zhang and
Balog, 2019), tabular probing (Gupta et al., 2021),
various question answering and semantic parsing
tasks (Pasupat and Liang, 2015; Krishnamurthy
et al., 2017; Abbas et al., 2016; Sun et al., 2016;
Chen et al., 2020b; Lin et al., 2020; Zayats et al.,
2021; Oguz et al., 2020; Chen et al., 2021, inter
alia), and table-to-text generation (e.g., Parikh
et al., 2020; Nan et al., 2021; Yoran et al.,
2021; Chen et al., 2020a). Several strategies
for representing Wikipedia relational tables were
recently proposed, such as TAPAS (Herzig et al.,
2020), TaBERT (Yin et al., 2020), TabStruc (Zhang
et al., 2020), TABBIE (Iida et al., 2021), TabGCN
(Pramanick and Bhattacharya, 2021) and RCI
(Glass et al., 2021). Yu et al. (2018, 2021);
Eisenschlos et al. (2020) and Neeraja et al. (2021)
study pre-training for improving tabular inference.

Multilingual Datasets and Models. Given the
need for greater inclusivity towards linguistic
diversity in NLP applications, various multilingual
versions of datasets have been created for text
classification (Conneau et al., 2018; Yang et al.,
2019; Ponti et al., 2020), question answering
(Lewis et al., 2020; Clark et al., 2020; Artetxe
et al., 2020) and structure prediction (Rahimi
et al., 2019; Nivre et al., 2016). Following the
introduction of datasets, multilingual leaderboards
like XTREME leaderboard (Hu et al., 2020), the
XGLUE leaderboard (Liang et al., 2020) and the
XTREME-R leaderboard (Ruder et al., 2021) have
been created to test models’ cross-lingual transfer
and language understanding.

Multilingual models can be broadly classified
into two variants: (a) Natural Language
Understanding (NLU) models like mBERT (Devlin
et al., 2019), XLM (Conneau and Lample, 2019),
XLM-R (Conneau et al., 2020), XLM-E (Chi et al.,
2021), RemBERT (Chung et al., 2021), and (b)
Natural Language Generation (NLG) models like
mT5 (Xue et al., 2021), mBART (Liu et al., 2020),
M2M100 (Fan et al., 2021). NLU models have
been used in multilingual language understanding
tasks like sentiment analysis, semantic similarity
and natural language inference while NLG models
are used in generation tasks like question-

answering and machine translation.

Machine Translation. Modern machine
translation models involve having an encoder-
decoder generator model trained on either
bilingual (Tran et al., 2021) or a multilingual
parallel corpus with monolingual pre-training e.g.
mBART (Liu et al., 2020) and M2M100 (Fan et al.,
2021). These models have been shown to work
very well even for low-resource languages due
to cross-language transfer properties. Recently
auxiliary pertaining for machine translation
models have garnered attention, with a focus on
autonomous quality estimation metrics (Specia
et al., 2018; Fonseca et al., 2019; Specia et al.,
2020). As such, automatic scores like the
BERTScore (Zhang et al., 2019), Bleurt (Sellam
et al., 2020) and COMET Score (Rei et al., 2020)
have high human evaluation correlation, are
increasingly used to assess NLG tasks.

8 Conclusion

We built the first multilingual tabular NLI dataset,
namely XINFOTABS, by expanding the INFOTABS
dataset with ten different languages. This is
accomplished by our novel machine translation
approach for tables, which yields remarkable
results in practice. We thoroughly evaluated
our translation quality to demonstrate that the
dataset meets the acceptable standard. We
further examined the performance of multiple
multilingual models on three validation sets of
varying difficulty, with methods ranging from
the basic translation-based technique to more
complicated language-specific and intermediate
task finetuning. Our results demonstrate that,
despite the models’ success, this dataset remains
a difficult challenge for multilingual inference.
Lastly, we gave a thorough error analysis of
the models to comprehend their cross-linguistic
transferability, robustness to language change, and
coherence with reasoning.
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A Human Annotation Guidelines

Annotators Details. We employed five
undergraduate students proficient in English as
human evaluation annotators. They were presented
with an instruction set with sample examples and
annotations before the actual work. We paid the
equivalent of 10 cents for every labeled example.
The study’s authors reviewed random annotations
to confirm their quality.

Annotation Guidelines. We refer to the work
by (Koehn and Monz, 2006) while setting up our
annotation task and instruction guidelines. We
gathered 500 table-sentence pairs representing
original (en) and back-translated (en) texts per
model-language into several Google spreadsheets.
We had a total of 108 sheets (4 models, 9 languages,
3 Modes (table-keys, table-values, and hypothesis)
and hence 54000 annotation instances. Each
sheet was assigned to a single annotator, who was
required to adhere to the semantic similarity task
requirements, which are outlined below:
1. The Semantic Similarity task requires
the annotator to classify each sentence-pair as
conveying the same meaning (label 1) or conveying
different meaning (label 0) than each other.
2. In case their exists a difference of syntax
including spelling mistakes, punctuation error or
missing special characters, the annotators was
asked to ignore these as long as the sentence
meaning is understandable (label 1). In case proper
nouns were misspelled, the annotator must judge
the spellings as phonetically similar (label 1) or not
(otherwise label 0).
3. The annotators were asked to be lenient on the
grammar, allowing for active-passive changes and
tense change, if the sentences convey close to the
same meaning i.e. (label 1).
4. In case acronyms or abbreviations were present
in the sentences, the annotators were asked to mark
them as same (label 1) if the sentences had proper
expansion/contractions.
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Code Language Language Family Script Type # of Speakers
en English Germanic Latin 1.452 Billion
de German Germanic Latin 134.6 Million
fr French Romance Latin 274.1 Million
es Spanish Romance Latin 548.3 Million
af Afrikaans Germanic Latin 17.5 Million
ru Russian Balto-Slavik Cryllic 258.2 Million
zh Chinese Sinitic Hanzi 1.118 Billion
ko Korean Koreanic Hangul 81.7 Million
hi Hindi Indo-Aryan North-Indic 602.2 Million
ar Arabic Semitic Arabic 274.0 Million

Table 5: Details regarding languages provided in the XINFOTABS, from English to Arabic in order of open-source
translation resources, refer to OPUS

Train/Test Strategy Model en de fr es af ru zh ko hi ar Model. Avg
English Translated Test mBERTBASE - 54 53 52 54 52 52 53 52 50 53

(§5.1) XLM-RLARGE (XNLI) - 67 66 64 65 65 63 63 63 58 64
Lang. Avg. - 60 60 58 60 59 58 58 58 54 59

Language Specific Training mBERTBASE 54 54 52 53 50 52 52 51 50 48 52
(§5.2) XLM-RLARGE (XNLI) 68 66 64 66 63 64 64 64 62 57 64

Lang. Avg. 61 60 58 60 57 58 58 58 56 53 58
Multiple Language Finetuning mBERTBASE - 53 54 51 53 53 53 52 51 50 52
Using Only English (§5.3A) XLM-RLARGE (XNLI) - 66 67 66 66 65 65 65 64 61 65

Lang. Avg. - 59 60 58 59 59 59 59 58 55 59
Multiple Language Finetuning mBERTBASE 53 51 53 53 52 51 53 50 50 49 52

Unified Model (§5.3B) XLM-RLARGE (XNLI) 66 64 64 63 64 64 64 63 63 60 64
Lang. Avg. 60 58 59 58 58 58 58 56 57 54 58

English Premise mBERTBASE - 49 53 53 51 49 49 50 47 50 50
Multilingual Hypothesis (§5.4) XLM-RLARGE (XNLI) - 63 65 65 64 65 65 63 63 61 64

Lang. Avg. - 56 59 59 57 57 57 57 55 55 57

Table 6: Accuracy for baseline tasks on the α2 set. Purple signifies the best task average accuracy, Orange
signifies the best language average accuracy, Cerulean signifies the best model accuracy. XLM-RLARGE represent
XLM-RoBERTaLARGE model.

Train/Test Strategy Model en de fr es af ru zh ko hi ar Model. Avg.
English Translated Test mBERTBASE - 52 53 52 53 53 52 52 52 50 52

(§5.1) XLM-RLARGE (XNLI) - 65 65 64 63 64 62 62 61 57 63
Lang avg - 58 59 58 58 59 57 57 57 53 58

Language Specific Training mBERTBASE 52 50 52 53 50 50 51 48 49 49 50
(§5.2) XLM-RLARGE (XNLI) 67 65 62 64 62 62 63 60 62 57 62

Lang avg 60 58 57 58 56 56 57 54 56 53 56
Multiple Language Finetuning mBERTBASE - 52 50 52 52 51 51 49 49 48 50
Using Only English (§5.3A) XLM-RLARGE (XNLI) - 65 64 65 62 64 60 63 62 63 63

Lang avg - 59 57 58 57 57 56 56 56 54 57
Multiple Language Finetuning mBERTBASE 53 50 51 53 50 50 51 47 50 49 50

Unified Model (§5.3B) XLM-RLARGE (XNLI) 66 64 64 64 63 64 63 62 63 60 63
Lang avg 60 57 57 58 56 57 57 55 56 54 57

English Premise mBERTBASE - 51 50 51 50 50 47 45 48 48 49
Multilingual Hypothesis (§5.4) XLM-RLARGE (XNLI) - 63 63 64 62 62 62 60 61 60 62

Lang avg - 57 57 57 56 56 55 54 55 54 56

Table 7: Accuracy for baseline tasks on the α3 set. Purple signifies the best task average accuracy, Orange
signifies the best language average accuracy, Cerulean signifies the best model accuracy. XLM-RLARGE represent
XLM-RoBERTaLARGE model.
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Figure 2: Predictions of XLM-RoBERTa for English vs (a) French, (b) Afrikaans, (c) Hindi. The percentage on top in each
block represents the average across all three labels with each label percentage given below it in the order of ENTAILMENT,
NEUTRAL and CONTRADICTION. (cf. Appendix §E)
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Figure 3: Confusion Matrix: Gold Labels vs predictions of XLM-R for (a) French, (b) Afrikaans, (c) Hindi

Categories ENTAILMENT NEUTRAL CONTRADICTION

En Fr Af Hi Avg. En Fr Af Hi Avg. En Fr Af Hi Avg.
Person 79 71 75 73 74 82 81 78 81 81 59 67 54 56 59

Musician 88 77 78 76 80 87 87 91 82 87 70 69 60 69 67
Movie 70 63 57 63 63 85 93 85 87 88 81 76 78 65 75
Album 76 76 81 62 74 95 90 86 90 90 76 76 67 62 70

City 73 58 60 67 65 71 69 65 63 67 67 54 50 52 56
Country 74 61 65 63 66 74 70 76 76 74 74 72 76 69 73
Painting 83 79 75 67 76 83 96 92 83 89 71 71 71 71 71
Animal 79 75 79 79 78 75 58 83 67 71 71 75 67 58 68

Food&Drink 88 83 75 88 83 83 79 71 79 78 67 63 58 54 60
Organization 83 100 83 50 79 67 67 67 67 67 67 67 67 83 71

Other 75 73 67 73 72 73 84 84 75 79 76 68 71 62 69
Avg. 79 74 72 69 74 80 79 80 77 79 71 69 65 64 67

Table 8: Category wise accuracy scores of XLM-R (large) for four languages: namely English (En), French (Fr), Afrikaans (Af)
and Hindi (Hi). Orange denotes the least score in the column and Purple denotes the highest score in the column.

Reasoning type ENTAILMENT NEUTRAL CONTRADICTION

H.En En Fr Af Ko H.En En Fr Af Ko H.En En Fr Af Ko
Coref 8 6 6 6 4 22 19 19 20 19 13 10 9 7 8

Entity Type 6 5 5 5 5 8 6 6 6 6 6 6 6 4 5
KCS 31 21 19 17 22 21 20 17 19 18 24 18 17 17 20

Lexical Reasoning 5 4 4 4 3 3 2 2 2 1 4 1 1 1 1
Multirow 20 14 11 11 11 16 13 12 13 11 17 15 14 10 13

Named Entity 2 0 0 0 1 2 1 1 1 2 1 1 1 1 1
Negation 0 0 0 0 0 0 0 0 0 0 6 5 5 4 5

Numerical 11 10 7 8 8 3 3 2 3 2 7 5 6 4 4
Quantification 4 2 2 2 2 13 10 10 12 10 6 2 1 2 3
Simple Lookup 3 2 1 2 2 0 0 0 0 0 1 0 1 0 0
Subjective/OOT 6 3 4 4 3 41 37 35 36 37 6 3 4 2 3

Temporal 19 16 12 13 14 11 6 6 6 5 25 18 20 15 19

Table 9: Reasoning wise number of correct predictions of XLM-R (large) for four languages: namely English (En), French (Fr),
Afrikaans (Af) and Hindi (Hi) along with human scores for the english dataset
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5. In presence of numbers or dates, the annotators
were asked to be extremely strict and label even
slightly differing dates or numbers like (XXXI v.s.
30) as completely different (label 0).
6. In case of any further ambiguity, the judgement
was left to the annotators human far-sight as long
as the adhere to the task definition.

We estimated the accuracy of human verification
for every models and languages by averaging the
annotator labels.

B Multilingual Models Hyperparameters

The XLM-RLARGE (XNLI) model was taken from
HuggingFace9 models and finetuned using PyTorch
Framework10 on Google Colaboratory11 which
offer a single P100 GPU. We utilized accuracy as
our metric of choice, same as INFOTABS. We used
Adagrad (Li and Orabona, 2019) as our optimizer
with a learning rate of 1 ∗ 10−4. We ran our
finetuning script for ten epochs with a validation
interval of 1 epoch, and early stopping callback
enabled with the patience of 2. Given the large
model size, we had to use a batch size of 4.

The mBERTBASE (cased) model was trained on
TPUv2 8 cores using the PyTorch Lightning12

Framework. AdamW (Loshchilov and Hutter,
2017) was our choice of optimizer with learning
rate 5 ∗ 10−6. We ran our finetuning script for ten
epochs with a validation interval of 0.5 epochs, and
early stopping callback enabled with the patience
of 3. Given the model’s small size, we used a batch
size of 64 (8 per TPU core).

C Adversarial Sets (α2 and α3)
Performance

Tables 6 and 7 show the results for all baseline
tasks on the Adversarial Validation Sets α2 and α3.

D Evaluating Cross-Lingual Transfer

We are also interested in knowing whether training
in one language can help transfer knowledge
across other languages or not. We answer the
question: What are models of cross-lingual transfer
performance?. Since we have separate models
trained on languages from our dataset available, we
tested them on all other languages other than the
training language to study cross-lingual transfer.

The TrLangAvg scores (Training Language
Average) from 10 show how models trained on
9 huggingface.co 10 pytorch.org 11 Google Colaboratory
12 PyTorch Lightning

XINFOTABS for one language perform on other
languages for α1, α2 and α3 sets respectively.
XLM-R (XNLI) outperforms mBERT across
all tasks. English has the best cross-lingual
transferability on mBERT, whereas Spanish has the
best cross-lingual transferability on XLM-R(XNLI)
for the α1 set. On mBERT, German has the best
cross-lingual transferability for the α2 dataset. On
XLM-R (XNLI), German and Spanish have the best
cross-lingual transferability. On mBERT, English
has the best cross-lingual transferability for the
α3 dataset. On XLM-R (XNLI), English and
Spanish have the best cross-lingual transferability.
Furthermore, the EvLangAvg score (Evaluation
Language Average) score was comparable for all
languages except approximately 4% lower for
Arabic (’ar’) language with XLM-R(XNLI) model
on all three test sets.

Overall, we observe that finetuning models
on high resource languages improve their cross-
lingual transfer capacity considerably more than
finetuning models on low resource languages.
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Figure 4: Consistency graph for XLM-R (large)
predictions of English vs (a) French (b) Afrikaans
(c) Hindi in that order respectively.

E Robustness and Consistency

In this part, we examine the findings for several
languages and delve a little more into the key
disparities in performance across them. We
compare the results of the experiments for §5.2
setting for α1 set of best-performing language (en)
with three languages - (a) A high resource language
(fr), (b) A mid resource language (af) and c) A
low resource language (hi). We compute four
numbers for each of the languages (l) (where l
is (fr), (af), or (hi)) and (en) - the proportion of
instances when (a) both are right, (b) both are
erroneous (c) correct (en) but incorrect (l), and
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(d) correct (l) but incorrect (en). We compute this
number overall as well independently for each of
the inference labels, as shown in Figure 2.

We note that the majority of instances were
correctly categorized in both English and all three
other languages. This is followed by the number of
instances in which English and all other languages
categorised examples inaccurately. Additionally,
we notice a greater proportion of samples that
are correctly identified by English but wrongly
classified by all other languages, as opposed to
the contrary. Furthermore, the label NEUTRAL

has the highest proportion of correctly classified
examples across all languages, whereas the label
CONTRADICTION has the lowest.

In Figure 3, we notice that the CONTRADICTION

gets confused a lot with ENTAILMENT label across
all the languages. The difference between the
accuracy for the CONTRADICTION label of French
vs Afrikaans and Hindi can entirely be attributed to
this sort of confusion. Furthermore, ENTAILMENT

gets quite confused with CONTRADICTION.

In Figure 4, we see the greatest language
inconsistency with ENTAILMENT label going
towards CONTRADICTION across all the languages,
though this inconsistency is least in Afrikaans. The
inconsistency for CONTRADICTION label being
predicted as ENTAILMENT is increasing across
resource size of languages from French having
the least to Hindi having the highest. Otherwise,
the inconsistency across languages is rather low,
showing that the XLM-RLARGE model is quite
consistent across languages.

In Table 8, we can observe that our model
on average performs worst for all ENTAILMENT

belonging to Movie category, NEUTRAL and
CONTRADICTION belonging to City category.
In general, our model performs the worst for
all hypothesis belonging to the City category
possibly because of the involvement of larger table
sizes on average and highly numeric and specific
hypothesis statements as compared to the rest of
the categories. Our models perform extremely
well on all ENTAILMENT in FoodDrink category
because of their smaller table size on average and
hypothesis requiring no external knowledge to
confirm as compared to CONTRADICTION. For
ENTAILMENT our model performs remarkably
well on Organization category for French, getting
all the hypothesis labels correct. While for
NEUTRAL, it performs well for Paintings in French

language. Lastly, it performs marginally well
for CONTRADICTION on Hindi for Organization
as compared to the highest performing category
for CONTRADICTION in English i.e. the Movie
category. All language averages perform in the
order of their language resource which is expected
from Table 4.

Table 9 depicts a subset of the validation
set which has been labeled based on different
reasoning mechanisms that the model must employ
to categorize the hypothesis correctly. We found
the reasoning accuracy scores for 4 languages along
with human evaluation score for comparison. Upon
observation, we can see that regardless of language,
human scores are better than the model we utilize.
The variation in language is mostly minimal, but on
average our model performs best for English. We
notice that for some reasoning types, like Negation
and Simple Look-up, humans and the model get
no hypothesis right, showing the toughness of the
problem. For Numerical based reasoning as well as
Coref type reasoning, our model comes very close
to human score evaluation. However, overall we
are still far from human level performance at TNLI
and much scope remains to betterment of models
on this task.
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Test-Split Model TrLang en de fr es af ru zh ar ko hi TrLangAvg

α1

mBERTBASE

en 67 64 63 62 61 61 60 56 58 58 61
de 63 65 61 62 60 59 57 56 56 57 60
fr 64 62 65 62 61 59 59 55 53 57 60
es 62 62 63 63 61 60 60 57 57 58 60
af 62 61 61 60 62 59 57 55 55 55 59
ru 63 61 61 60 59 64 59 56 55 55 59
zh 55 56 58 56 59 57 63 55 57 58 57
ar 57 58 58 57 58 58 57 57 53 57 57
ko 58 59 58 57 57 56 58 55 61 57 58
hi 59 58 59 58 57 58 58 56 54 63 58

EvLangAvg 61 61 61 60 60 59 59 56 56 58 59

XLM-R (XNLI)

en 76 73 71 73 71 71 71 63 70 69 71
de 74 75 74 72 71 70 69 63 71 68 71
fr 73 74 74 72 72 70 71 64 70 70 71
es 74 73 74 74 72 71 72 65 71 69 72
af 72 72 71 71 72 70 70 63 70 68 70
ru 73 73 72 71 71 71 71 64 70 67 70
zh 72 72 70 71 70 69 73 64 70 69 70
ar 71 71 70 70 69 70 71 68 70 68 70
ko 72 71 72 71 70 69 71 64 71 69 70
hi 73 73 71 72 70 70 70 64 69 71 70

EvLangAvg 73 73 72 72 71 70 71 64 70 69 70

α2

mBERTBASE

en 54 53 53 53 51 52 50 49 50 47 51
de 54 54 53 53 52 52 50 49 50 48 52
fr 52 51 52 53 50 50 48 49 51 47 50
es 52 50 50 53 47 51 48 49 46 46 49
af 49 50 50 49 50 50 47 48 48 46 49
ru 51 50 51 51 51 52 49 49 49 49 50
zh 49 48 49 48 49 49 52 47 48 48 49
ar 49 48 49 48 47 48 47 48 47 47 48
ko 49 49 50 48 48 47 50 47 51 49 49
hi 48 47 47 48 48 49 48 46 48 50 48

EvLangAvg 51 50 50 50 49 50 49 48 49 48 50

XLM-R (XNLI)

en 68 65 64 64 64 63 62 58 63 59 63
de 67 66 66 65 64 63 62 57 64 61 64
fr 67 64 64 65 62 60 60 58 62 60 62
es 67 66 65 66 63 64 62 57 64 61 64
af 66 64 64 64 63 62 63 57 62 59 62
ru 66 64 64 63 62 64 62 57 61 60 62
zh 67 65 65 64 63 64 64 58 64 61 62
ar 64 61 62 61 60 60 60 57 60 58 60
ko 65 63 63 63 61 62 62 57 64 59 62
hi 67 64 65 65 63 64 62 58 60 62 63

EvLangAvg 66 64 64 64 63 63 62 57 62 60 63

α3

mBERTBASE

en 52 52 51 53 49 50 49 47 46 47 50
de 50 50 51 50 51 48 48 44 46 48 49
fr 52 52 52 53 50 50 49 46 44 47 50
es 50 50 51 53 48 48 46 46 46 46 50
af 50 50 50 51 50 49 47 47 45 48 49
ru 50 48 49 50 49 50 47 45 45 46 48
zh 49 49 50 50 49 50 51 46 48 49 49
ar 49 49 49 49 48 49 48 49 47 48 48
ko 47 46 47 47 44 45 45 43 48 48 46
hi 50 49 49 49 48 46 48 46 47 50 48

EvLangAvg 50 49 50 50 49 48 48 46 46 48 49

XLM-R (XNLI)

en 67 65 61 64 62 64 63 58 65 62 63
de 65 65 63 61 63 63 61 56 61 60 62
fr 66 64 62 63 62 61 61 56 60 62 62
es 66 65 63 64 63 63 62 59 61 62 63
af 65 64 61 62 62 60 61 56 60 59 61
ru 65 63 61 62 62 62 61 56 60 62 61
zh 65 64 62 63 62 62 63 57 62 60 62
ar 63 62 62 61 61 60 60 57 60 60 61
ko 64 62 61 62 60 63 61 56 60 62 61
hi 64 63 62 63 61 61 60 58 60 62 61

EvLangAvg 65 64 62 63 62 62 61 57 61 61 62

Table 10: Evaluation of cross lingual transfer abilities of models on α1, α2, and α3 evaluation set. TrLang refers to the language
the model has been finetuned on and EvLang refers to the language the model has been evaluated on. Purple, Orange and
Cerulean represent the highest score in the row, column and both together respectively.

77


