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Keynote Talk: Lexical semantics in the time of large language
models

Chrsitopher Potts
Stanford University

Abstract: Present-day language models provide contextual representations of words: a given element
of the model’s vocabulary will generally be represented differently depending on the larger (linguistic
and/or non-linguistic) context in which it appears. This is undoubtedly a key feature of the success of
these models. What do these contextual representations mean for linguists working on lexical semantics?
In this talk, I’ll argue, first and foremost, that contextual representations are better aligned with linguists’
conception of word meaning than any previous representation scheme in NLP, including symbolic ap-
proaches. I will then describe some ways in which linguists can use large pretrained language models
to gain new insights into lexical meaning, and some ways in which language model development could
be fruitfully informed by findings in linguistics. The overall take-away is that the turn toward contextual
representations has created an exciting new space for collaboration between linguists and NLPers.

Bio: Christopher Potts is Professor and Chair of Linguistics and Professor (by courtesy) of Computer
Science at Stanford, and a faculty member in the Stanford NLP Group and the Stanford AI Lab. His
group uses computational methods to explore topics in emotion expression, context-dependent language
use, systematicity and compositionality, and model interpretability. This research combines methods
from linguistics, cognitive psychology, and computer science, in the service of both scientific discovery
and technology development. He is the author of the 2005 book The Logic of Conventional Implicatures
as well as numerous scholarly papers in computational and theoretical linguistics.
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Abstract
This work assumes that languages are struc-
tured by semantic frames, which are schematic
representations of concepts. Metaphors, on the
other hand, are cognitive projections between
domains, which are the result of our interac-
tion in the world, through experiences, expec-
tations and human biology itself. In this work,
we use both semantic frames and metaphors
in multilingual contrast (Brazilian Portuguese,
English and German). The aim is to present
a descriptive study of metaphors and frames
in the multilingual shared annotation task of
Multilingual FrameNet, a task which consisted
of using frames from Berkeley FrameNet to
annotate a parallel corpora. The result shows
parameters for the metaphorical comparison
considering those frames.

1 Introduction

Understanding human language requires activat-
ing cognitive models of socially shared knowledge.
The linguistic units, whether lexical or construc-
tional items, evoke possibilities of meaning de-
fined in the context of linguistic-conceptual models,
which are called semantic frames (Fillmore, 1982,
1985).

The computational implementation of frames
was created at the end of the 20th century for the
English language by the FrameNet project. The
semantic frames methodology was later expanded
to other languages, including Brazilian Portuguese
(Torrent et al., 2022).

Motivated by the interest in frame comparison in
a multilingual perspective, Multilingual FrameNet
completed its first task, which consisted of the
parallel corpora annotation of the TED talk “Do
schools Kill Creativity?” (Robinson, 2016). This
work tests the alignment of its linguistic databases
with the frames defined for English. The goal is to
establish the means of creating multilingual lexi-
cal resources as well as a semantically referenced
machine translator (Torrent et al., 2018).

This article shows a comparative study of
metaphors found in these linguistic annotations for
Brazilian Portuguese, English and German. Bring-
ing the results together, we have a set of metaphor-
ical metadata in terms of metaphors and frames.
The work brought together the theoretical contri-
butions of Frame Semantics, created by Fillmore
(1982), and the Conceptual Theory of Metaphor,
compiled by Lakoff and Johnson (1999).

Both theories have computational applications:
FrameNet (Ruppenhofer et al., 2016) and MetaNet
(Dodge et al., 2015). The present work follows
the methodological guidelines of FrameNet and
uses MetaNet in order to explore the metaphors
described in its network.

The text is organized as follows: section 2
presents Frame Semantics and the Conceptual The-
ory of Metaphor are presented; section 3 discusses
semantic frames and translation studies; section 4
explains the multilingual annotation task; section
5 presents the parameterization of metaphorical
metadata, and section 6 presents the summary and
mentions some directions to take in a future work.

2 Background

2.1 Frame Semantics
Frame Semantics was created by Fillmore (1982,
1985). It assumes that the meaning of a linguistic
unit, lexical or constructional, underlies a network
of other units, which suggests the interactivity of
meaning in a natural language. The term frame
designates the socially shared linguistic-conceptual
model that structures this knowledge representa-
tion.

“By the term ‘frame’ I have in mind any
system of concepts related in such a way
that to understand any one of them you
have to understand the whole structure
in which it fits; when one of the things in
such a structure is introduced in a text, or
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into a conversation, all of the others are
automatically available” (Fillmore, 1982,
111).

The study of semantic frames is a precursor of
Cognitive Linguistics as a field. Different authors
may use their own terminology and have their own
specific purposes in using concepts such as ‘do-
mains’ in Langacker (1987), ‘Idealized Cognitive
Models’ and ‘scripts’ in Lakoff and Turner (2009)
or may use frames to develop a concept such as the
Mental Spaces theory in Fauconnier (1994).

(1) [The company Employer] HIRED [him Employee]
[after going through a lengthy selection process
Time].

(2) [She Employee] was DISMISSED [by the man-
ager Employer] [after fifteen years in the role
Time].

To understand the concept of frames, take the em-
ployment event as an example. In this situation, an
employee and an employer begin an employment
relationship, in which the employee will perform
some predetermined activity for the employer, in
exchange for payment. For a period of time, the
employee remains employed, and the relationship
ends when the employee quits the job, the employer
dismisses him or the employee retires.

Sentences (1) and (2) show parts of the sequence
of events in an employment activity. The Lexical
Units hire.v and fire.v evoke Hiring and Firing
frames, respectively. These frames are defined in
terms of its participants, props and other conceptual
roles, which are the semantic roles of the lexical
units shown in bold above, called frame elements.

2.2 Conceptual Metaphor Theory
The Conceptual Metaphor Theory was proposed
by Lakoff and Johnson (2008) with complementary
contributions added later on Lakoff (2008); Lakoff
and Turner (2009); Lakoff and Johnson (1999).
Many studies show that metaphors are not limited
to ornaments of speech or writing, but are the result
of our interaction in the world, through experiences,
expectations and human biology itself.

Lakoff (2012) takes into account the intrinsic re-
lationship of metaphors with human biology itself,
and discusses metaphor as evidence of embodied
cognition. He suggests that neural mappings in the
brain are related to metaphorical domain correspon-
dences.

As a result of the metaphorical phenomenon, we
understand things that are more abstract or subjec-
tive and less structured in terms of others that are
more concrete, objective or more structured.

(3) And my contention is, all kids have tremen-
dous talents. And we squander them, pretty
ruthlessly. (TEDTalk)

In the example (3), the metaphor TALENT IS A
RESOURCE is used. Through it, an element of the
experiential domain of an attribute is understood as
an entity or, more specifically, a finite resource.

A metaphorical projection presupposes a cor-
respondence between domains: the source do-
main structures what is intended by the target.
In this work, the relation between domains is ex-
plained through FrameNet frames. According to
the FrameNet’s annotation procedure, metaphors
are marked by an extra annotation layer. If the
metaphor is productive, it is indicated in the source
domain. If it occurs at the level of the lexicon, the
lexical unit will be in the target frame, the one that
specifies the speaker’s intention when producing
an utterance (Ruppenhofer et al., 2016).

3 Frames and translation

Schäffner (2004, 2016) approaches the metaphor-
ical phenomenon through a connection between
Cognitive Linguistics and translation studies. She
revisits the analytical methods of theorists such as
Newmark (1981) and Toury (1995).

The Primacy of Frame Model of Translation hy-
pothesis (Czulo, 2017) proposes the use of seman-
tic frames as a descriptive basis for translational
comparison. Czulo’s hypothesis is based on one of
the premises of Frame Semantics: when a frame is
evoked, several others are automatically activated.
As the author points out, metaphors are candidates
for this frame co-activation process.

Theoretical and descriptive advances on the topic
of frames and translation have been made. How-
ever, computational models and applications to au-
tomatically assess the translation of metaphors ac-
cording to cognitive linguistics assumptions is an
open topic that requires multidisciplinary research.

4 The multilingual annotation task

The first task of the Multilingual FrameNet initia-
tive was to create a semantically refined linguistic
analysis sample that would allow database align-
ment tests. FrameNets developed for different lan-
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guages were responsible for annotating parallel
corpora aligned at the sentence level. These annota-
tions were produced using the text of a conference
in the TED Talk model (Robinson, 2016)1.

The analyses were carried out using the full-
text annotation method, which consists of all se-
mantic frame-evoking lexical units being submit-
ted for annotation. The semantic frames used
for the annotation task were those from Berkeley
FrameNet, which highlights the initiative of devel-
oping computer applications for multilingual align-
ment purposes based on the Berkeley FrameNet
database (Baker and Lorenzi, 2020).

Figure 1 shows an example of the annotation
in English. The highlighted items are the Lexical
Units under analysis. Each lexical unit evokes a
frame, and the frame, in turn, brings a series of
elements, the so-called Frame Elements, all named
specifically in relation to the frame they belong to,
as shown in the lower description of the respective
figures.

In addition to the semantic analysis, the syntac-
tic treatment is also included. It distinguishes the
Grammatical Functions of Frame Elements as well
as their Phrase Types. For this reason, the linguistic
analysis of a framenet is commonly called a three-
layer annotation. Although other layers may exist,
the three essential ones are: essentially, Frame Ele-
ment (FE), Grammatical Function (GF) and Phrasal
Type (PT).

1https://www.ted.com/talks/sir_ken_
robinson_do_schools_kill_creativity/
transcript

5 The parameterization of metaphorical
metadata

In this present work, fifty sentences from the corpus
were analyzed. One of the procedures adopted was
to start the comparative study using the metaphors
in the Brazilian Portuguese text and, then, to inter-
pret such translation choices in German and check
the original text in English.

The result of this process is a set of analyses that
indicate paths to a descriptive method of extract-
ing semantic information. The parameters for the
metaphorical comparison considering the frames
evoked in the three languages were: total, directly
related, indirectly related, and unrelated.

i Total: the frames are the same.

ii Directly related: the relation is direct. The
frames are connected by one of the frame-to-
frame relations.

iii Indirectly related: the relation is indirect. They
are connected by one of the frame-to-frame
relations, while expanding the network.

iv Unrelated: there is no relation between frames
in the FrameNet database.

The analysis took into account the metaphori-
cal projections in Brazilian Portuguese. As shown
through the examples, a metaphor in Brazilian Por-
tuguese may have resulted from different trans-
lation options of the original in English, and the
correlation with the German version also occurred
in different ways.

Sentences

© 2014, 2021 FrameNetBrasil Project

idSentence Sentence
1043

What you have there is a person of EXTRAORDINARYDesirability [Evalueededication] who found a talent.
What you have there is a [Personperson] of extraordinary dedication who found a talent.
                                                 PERSONPeople

[EntityWhat] [Topical_entityyou] HAVEHave_associated [Placethere] is a person of extraordinary dedication who found a 
talent.
What you have there is [Perceivera person of extraordinary dedication] [Perceiverwho] FoundLocating [Sought_entitya 
talent].
What you have there is a person of extraordinary dedication who found a TALENTCapability.[EntityCNI][EventDNI]

Ted_Creativity_corpus : doc_ted_en

What you have there is a person of extraordinary dedication who found a talent.

Figure 1: Semantic annotation of the multilingual task in English.
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Table 1 summarizes the process of analyzing an
example in which the match is total. The metaphor-
ical sentence in Brazilian Portuguese has perder.v
as a Lexical Unit which evokes the Losing frame
in the FrameNet database. In German, the transla-
tion choice is verloren.v, evoking the same frame,
and, in the original text, the speaker’s lexical option
was lose.v, evoking the same frame.

The parallel corpora contrasts each corpus to
the original. In Table 1, both German and Brazil-
ian Portuguese languages start from a metaphor
and are translated through the same metaphor: AT-
TRIBUTES ARE ENTITIES. In addition to that,
there is also information about related metaphors
and semantic annotation for each language.

Another regularity was the directly related.
Frame-to-frame relations2 are the evidence for such
a match. Table 2 is an example of this pattern. The
Lexical Units conduzir.v, take.v, gedacht.v are ex-
amples of the same metaphor: LIFE IS A JOUR-
NEY.

The frame evoked in English and Brazil-
ian Portuguese is Bringing, while in Ger-
man it is Cause_motion. Checking the
frame network, there is a direct relation be-
tween them, as Cause_motion is used by
Bringing. In this relation, not all Frame Ele-
ments of Cause_motion occur linguistically in
Bringing. However, there is a part of its struc-
ture presupposed as what is considered a concep-
tual background.

2The frame network is accessed from FrameGrapher on
FrameNet. The frame-to-frame relations are Inheritance,
Subframe, Perspective_on, Using, Precedes, Inchoative_on,
Causative_on, See_also and the Metaphor relation, which was
added to the others in the Berkeley team’s last systematic up-
date and still lacks empirical validation (Ruppenhofer et al.,

Table 3 is an example of a situation in which the
metaphorical behavior is identical in the three lan-
guages through the use of the metaphor TALENT
IS AN OBJECT. However, the frame evoked by
the Lexical Unit find.v in English is Locating,
while achar.v in Brazilian Portuguese and finden.v
in German is Becoming_Aware. Analysing
both frames, Locating is defined by a Perceiver
looking for something, a Sought_entity. And
Becoming_aware’s definition says that words
in this frame have to do with a Cognizer adding
some Phenomenon to their model of the world.

Checking the network of frames, we notice that
Locating uses Seeking, which, through the
See_also relation, links to the Scrutiny frame,
which, in turn, uses Becoming_aware. Even
though they are indirectly related on the network of
FrameNet frames, the annotation divergence seems
to be in the choice between the metaphorical source
and target domains. Locating is a frame related
to the source domain, while Becoming_aware
relates to the metaphorical target domain.

The other pattern in frame comparison was
unrelated. In Table 4, the three sentences are
an example of the TALENT IS A RESOURCE
metaphor. In FrameNet, the lemma squander.v is
a Lexical Unit in Expand_resource and also
in Frugality. The annotation choice was to
insert it in Expand_resource, which outlines
the use of a resource. In Brazilian Portuguese and
in German, the Lexical Units desperdiçar.v and
vergeuden.v evoke Frugality, which focuses
on how the resource is used.

2016).
2The signal is used when the sentence segmentation is

different.

Portuguese English German
IdSentence 820 1087 1348
Sentence E quando chegam à fase

adulta, a maioria das
crianças perdeu essa

capacidade.

And by the time they get to
be adults, most kids have
lost that capacity.

Wenn sie erst erwachsen
sind, haben die meisten
Kinder diese Fähigkeit

verloren.
Metaphor behaviour

relating to the English text
Metaphor to same metaphor Metaphor to same metaphor

Metaphor ATTRIBUTES ARE ENTITIES
Related metaphor ATTRIBUTES ARE POSSESSIONS (Grady, 1998; Lakoff, 1999)

Lexical Unit evoked perdeu.v lost.v verloren.v
Semantic frame Losing Losing Losing

Semantic annotation [a maioria das crianças
Owner] PERDEU [essa
capacidade Possession]

[most kids Owner] have LOST
[that capacity Possesssion]

[Kinder Owner] diese
[Fähigkeit Possesssion]

VERLOREN
Match Levels Total Total

Table 1: Total semantic frame match level.
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Portuguese English German
IdSentence 762 1034 1298
Sentence Nos interessamos tanto por

ela em parte porque é da
educação o papel de nos
conduzir a esse futuro

misterioso.

We have a huge vested
interest in it, partly because
it’s education that’s meant to
take us into this future that
we can’t grasp.

Wir haben ein großes,
persönliches Interesse,
teilweise Bildung dazu
gedacht ist, uns in diese

Zukunft zu bringen, die wir
nicht fassen können.

Metaphor behaviour
relating to the English text

Metaphor to same metaphor Metaphor to same metaphor

Metaphor LIFE IS A JOURNEY
Related metaphor PROGRESSING THROUGH LIFE IS MOVING ALONG A PATH

Lexical Unit evoked conduzir.v take.v bringen.v
Semantic frame Bringing Bringing Cause_motion

Semantic annotation [educação Agent] o papel de
[nos Theme] CONDUZIR [a
esse futuro misterioso Goal]

[education Agent] [that
Agent]’s meant to TAKE [us
Theme] [into this future that
we can’t grasp Goal]

[uns Theme] [in diese Zukunft
Goal] zu BRINGEN

Match Levels same directly related

Table 2: Total semantic frame match level and directly related.

Portuguese English German
IdSentence 772 1043 1307
Sentence O que vemos ali é uma

pessoa de extrema
dedicação que achou seu

talento.

What you have there is a
person of extraordinary
dedication who found a
talent.

Sie ist eine Person mit
außerordentlicher Hingabe,
die ihr Talent gefunden hat.

Metaphor behaviour
relating to the English text

Metaphor to same metaphor Metaphor to same metaphor

Metaphor TALENT IS AN OBJECT
A TALENT IS A RESOURCERelated metaphor IDEAS ARE OBJECTS (Lakoff, 1987)

Lexical Unit evoked achou.v found.v gefunden.v
Semantic frame Becoming_aware Locating Becoming_aware

Semantic annotation [uma pessoa de extrema
dedicação Cognizer] [que
Cognizer] ACHOU [seu

talento Phenomenon]

[a person of extraordinary
dedication Perceiver] [who
Perceiver] FOUND [a talent
Sought_entity]

[die Cognizer] [ihr
Phenomenon][Talent Phenomenon]

GEFUNDEN hat

Match Levels indirectly related indirecly related

Table 3: Indirectly related semantic frame match level.

Portuguese English German
IdSentence 774 1045 1308
Sentence E o desperdiçamos,

implacavelmente.
And we squander them,
pretty ruthlessly.

(#)3und dass wir sie
vergeuden und zwar

ziemlich rücksichtslos.
Metaphor behaviour

relating to the English text
Metaphor to same metaphor Metaphor to same metaphor

Metaphor TALENT IS A RESOURCE
Related metaphor A TALENT IS AN OBJECT

Lexical Unit evoked desperdiçamos.v squander.v vergeuden.v
Semantic frame Frugality Expend_resource Frugality

Semantic annotation E [o Resource]
DESPERDIÇAMOS,

implacavelmente

And [we Agent] SQUANDER
[ them Resource], [ pretty
ruthlessly Manner]

[wir Resource_controller] [sie
Resource] VERGEUDEN

Match Levels unrelated unrelated

Table 4: Unrelated semantic frame matching level (1).

As much as Frugality highlights human so-
cial behavior, as mentioned in the frame definition,
its conceptualization requires the idea of spending
or using a resource. Potentially, a frame-to-frame
relation connects both of them. However, it has yet

to be more deeply studied and attested. In order to
achieve this goal, it will be necessary to update the
network of frame-to-frame relations.

In Table 5, we can say THE BODY IS
A CONTAINER FOR THOUGHTS, VALUES
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Portuguese English German
IdSentence 760 1031 1296
Sentence Porque é uma dessas coisas

arraigadas nas pessoas,
estou certo?

Because it’s one of those
things that goes deep with
people, am I right?

Denn es ist eines dieser
Themen, die Leute tief

berühren, wie Religion,
Geld und andere Sachen. (#)

Metaphor behaviour
relating to the English text

Metaphor to same metaphor Metaphor to same metaphor

Metaphor THE BODY IS A CONTAINER FOR THOUGHTS, VALUES, PRINCIPLES
Related metaphor THE BODY IS A CONTAINER FOR EMOTIONS (Lakoff, 1987)

Lexical Unit evoked arraigada.a goes.v / deep.a berühren.v
Semantic frame Presence Motion /

Measurable_attribu-
tes

Stimulus_focus

Semantic annotation [coisas Entity]
ARRAIGADAS [nas

pessoas Location]

[those things Theme] [that
Theme] GOES [deep Goal]

[Themen, die Stimulus] [Leute
Experiencer] [tief Degree]

BERÜHREN, [wie Religion,
Geld und andere Sachen

Comparison_set]
Match Levels unrelated unrelated

Table 5: Unrelated semantic frame matching level (2).

AND PRINCIPLES is the general metaphor
in the three languages. However, there
are differences in the framing of each one.
In English, go deep evoke Motion and
Measurable_attributes, while, in German,
berühren.v (which can be literally translated into
English as touch.v) evokes Stimulus_focus.

In both cases, the metaphor THOUGHTS, VAL-
UES AND PRINCIPLES ARE OBJECTS is used.
Unlike previous uses where the metaphor is related
to dynamic events, in Brazilian Portuguese, the
lexical unit is arraigado.a (which can be literally
translated into English as rooted.a). The lemma
was annotated in the Presence frame. A specific
metaphor that licenses this use is THOUGHTS,
VALUES, PRINCIPLES ARE PLANTS. Through
this metaphor, just as a plant takes root and be-
comes fixed in the ground, a thought, value and
principle can also become established in a person.

On preliminary analysis, the unrelated pattern
includes different situations. Cases in which some
relation may exist, but is not in the database, are
included here. A possible explanation is the dy-
namic character of the database updating. Other
possible reasons for such a pattern may lie in the
perspectives assumed in the face of the linguistic
framework of a given situation, as well as features
of idiomaticity and typological specificities of lan-
guages.

6 Summary

This paper compared metaphors and frames in the
FrameNet multilingual annotation task. The result

of this process is a set of analyses that indicate
paths to a descriptive method of extracting seman-
tic information from FrameNet database. Future
work may validate the taxonomy presented in a
larger sample of semantically annotated parallel
corpus and expand the analysis to other languages.
Beyond that, including computational works on
multilingual approaches to frame semantics and
metaphors can contribute to a method to automati-
cally parameterize these data.
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Abstract
The effectiveness of a language model is in-
fluenced by its token representations, which
must encode contextual information and han-
dle the same word form having a plurality of
meanings (polysemy). Currently, none of the
common language modelling architectures ex-
plicitly model polysemy. We propose a lan-
guage model which not only predicts the next
word, but also its sense in context. We argue
that this higher prediction granularity may be
useful for end tasks such as assistive writing,
and allow for more a precise linking of lan-
guage models with knowledge bases. We find
that multi-sense language modelling requires
architectures that go beyond standard language
models, and here propose a localized predic-
tion framework that decomposes the task into
a word followed by a sense prediction task. To
aid sense prediction, we utilise a Graph Atten-
tion Network, which encodes definitions and
example uses of word senses. Overall, we
find that multi-sense language modelling is a
highly challenging task, and suggest that fu-
ture work focus on the creation of more anno-
tated training datasets.

1 Introduction

Any variant of language model, whether standard
left-to-right, masked (Devlin et al., 2019) or bidi-
rectional (Peters et al., 2018) has to address the
problem of polysemy: the same word form having
multiple meanings, as seen in Tab. 1. The meaning
of a particular occurrence depends on the context,
and all modern language modelling architectures
from simple RNNs (Mikolov et al., 2010) to Trans-
formers (Vaswani et al., 2017) use context-based
representations. However, token representations in
language models are not explicitly disambiguated.
Single-prototype embeddings, i.e., traditional word
vectors, have a 1-to-1 correspondence with word
forms. Contextual embeddings change depending
on the tokens in their context window, and are em-
ployed in recent models like ULMFit (Howard and

Sentence Meaning

“John sat on the
bank of the river
and watched the
currents”

bank.n.01: sloping land, espe-
cially the slope beside a body of
water

“Jane went to
the bank to dis-
cuss the mort-
gage”

bank.n.02: a financial institu-
tion that accepts deposits and
channels the money into lending
activities

Table 1: Example of polysemy. Senses taken from
WordNet 3.0

Ruder, 2018), ELMo (Peters et al., 2018), and all
Transformer architectures. However, even for con-
textual embeddings, polysemy is handled in an
implicit, non-discrete way: the sense that a word
assumes in a particular occurrence is unspecified.

Here, we propose the task of multi-sense lan-
guage modelling, consisting of not only word, but
also sense prediction. We conjecture that multi-
sense language modelling would:

1) improve the precision of linking a language
model to a knowledge base, as done in Logan
et al. (2019), to help generate factually cor-
rect language. For instance: “The explorers
descended in the cave and encountered a bat”
refers to the entity ‘bat (animal)’ and not to

‘bat (baseball implement)’.
2) be useful in applications such as assistive writ-

ing (Chen et al., 2012), where it is desirable
to display more information about a word to a
user, such as its sense, definition or usage.

Another potential use would be to explore if
such dictionary information could improve stan-
dard language modelling, and reduce the number
of training data needed, relevant for e.g. language
modelling for low-resource languages.

Consequently, our research objectives are to:

• model next-sense prediction as a task along-
side standard next-word prediction in lan-
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guage modelling, and examine the perfor-
mance of different model architectures.

• encode sense background knowledge from
sense definitions and examples, and examine
how it can aid sense prediction.

As a sense inventory, we use WordNet 3.0
(Miller, 1995). The sense background knowledge
is encoded in a dictionary graph, as shown in Fig.
3. When reading a word w, the model can rely on
an additional input signal: the state of the node that
represents w in the dictionary graph (the “global
node”). Node vectors in the graph are updated by a
Graph Attention Network (Veličković et al., 2018).

Findings: We find that sense prediction is a sig-
nificantly more difficult task than standard word
prediction. A way to tackle it is to use a local-
ized prediction framework, where the next sense
depends on the prediction of the next word. The
most successful model we identified for this uses
a hard cut-off for the number of words considered
(SelectK, see § 4.4). The additional input signal
from the dictionary graph provides only marginal
improvements. For future work, we argue that
multi-sense language modelling would benefit from
larger sense-labelled datasets, possibly aided by
WordNet super-sense information (categories like
food, artifact, person, etc.) to deal with the exces-
sively fine granularity of WordNet senses.

2 Related Work

We here briefly discuss relevant works that disam-
biguate between word senses to address polysemy.
They can be grouped in three categories: 1) multi-
prototype embeddings not connected to a knowl-
edge base; 2) supervised multi-sense embeddings
based on a text corpus that only utilise a KB tan-
gentially as the sense inventory; and 3) models that
rely more substantially on features from a KB, like
glosses or semantic relations.

Multi-prototype embeddings Huang et al.
(2012) learn multi-prototype vectors by clustering
word context representations. Single-prototype
embeddings are determined by 2 FF-NNs with
a margin objective on predicting the next word,
a quasi-language modelling setting even if it
utilises both the preceding and subsequent context.
Multi-sense skip-gram (Neelakantan et al., 2014)
also defines senses as cluster centroids, measuring
the cosine distance of the surrounding context of
±5 words. Li and Jurafsky (2015) use Chinese

Restaurant Processes to decide whether to create
a new cluster, and also investigate the usefulness
of multi-sense embeddings in downstream tasks
such as Semantic Relatedness and PoS tagging.
(Chronis and Erk, 2020) create multi-prototype
embeddings from BERT, to address word similarity
and relatedness tasks. Every word w is associated
with a set of occurrence embeddings, which are
computed by averaging sub-word WordPiece
tokens. Senses are obtained by applying K-means
clustering to the set. Each BERT layer contributes
a different set, thus the authors found that middle
layers are more relevant to the similarity task, the
final layers to relatedness.

Supervised multi-sense embeddings Other
models rely on sense-label supervision in a text
corpus. context2vec (Melamud et al., 2016)
builds contextual word embeddings by applying
a biLSTM on text, and provides the option to
create sense embeddings by using a sense-labelled
corpus. Raganato et al. (2017) frames WSD as a
sequence learning problem, with the aim of finding
sense labels for an input sequence. The training
corpus is the same used in our work, SemCor
(Miller et al., 1993), and the core architecture
is a biLSTM that reads both the preceding and
subsequent context. A biLSTM is also employed
in LSTMEmbed (Iacobacci and Navigli, 2019),
that obtains a sense-labelled training corpus by
applying the BabelFly (Moro et al., 2014) sense
tagger on the English Wikipedia and other texts.

Recently, SenseBERT (Levine et al., 2020) uses
a BERT transformer encoder with two output map-
pings, one for the MLM-masked words, another
for their WordNet supersenses. SenseBERT relies
on soft labeling, associating a masked word w with
any one of its supersenses S(w). Using very large
text corpora is expected to reinforce the correct
supersense labels.

KB-based methods Sense representations can
leverage WordNet glosses, as done in Chen et al.
(2014) after single-prototype vectors are trained
with a skip-gram model. Likewise, pre-trained
word embeddings are the starting point for AutoEx-
tend (Rothe and Schütze, 2015), an autoencoder
architecture where word embeddings constitute the
input and the target whereas the embeddings for
WordNet synsets are the intermediate encoded rep-
resentation. Kumar et al. (2019) use a BiLSTM and
self-attention to get contextual embeddings, then
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disambiguate them via a dot product with sense
embeddings based on WordNet definitions.

In the last couple of years, efforts have been
made to enable BERT to disambiguate between
senses. GlossBERT (Huang et al., 2019) takes
in context-gloss pairs as input: for every target
word in a context sentence, N=4 WordNet glosses
are found; a classification layer determines which
lemma the word assumes. SenseEmBERT (Scar-
lini et al., 2020a) relies on the BabelNet mapping
between WordNet and Wikipedia pages to collect
relevant text for synsets, and computes the sense
embeddings as a rank-weighted average of rele-
vant synsets. Scarlini et al. (2020b) applies the
same pipeline of of context extraction, synset em-
beddings and sense embeddings construction: it
computes lemma representations via BERT, and
uses UKB (Agirre et al., 2014) to create a set of
contexts for the synset. Sense embeddings are ob-
tained by concatenating the BERT representation of
the sense contexts found in SemCor and the sense
definition in WordNet.

Our model We use pre-trained embeddings and
WordNet glosses and relations to create a dictio-
nary graph. The vectors of sense nodes can be
viewed as sense embeddings; we are not primarily
interested in their quality since our objective is not
"classic" Word Sense Disambiguation or related-
ness, but rather multi-sense language modelling.
Future work may rely on them to improve sense
disambiguation: for model variants that have to
choose the correct sense among a limited number
of candidates, there is an opening for the applica-
tion of more complex multi-sense models than the
ones explored here.

3 Multi-Sense Language Model

3.1 Architecture
A language modelling task decomposes the proba-
bility of predicting an entire text of length N as the
product of each word prediction, where the proba-
bility of the next word p(wi) is influenced by the
preceding context [w1, ..., wi−1]:

p(w1, ..., wN ) =
N∏

i=1

p(wi|w1, ..., wi−1) (1)

Our model aims to carry out two language mod-
elling tasks:

1. Standard language modelling: next-token pre-
diction at the granularity of words.

Figure 1: Overview of the SelectK version of the model
that uses a Transformer-XL for the StandardLM task.

2. Sense prediction: next-token prediction at the
granularity of WordNet senses.

Therefore, the objective is to produce, at each
position in the corpus, two probability distributions:
one over the vocabulary of words and one over the
vocabulary of senses.

The architecture for the standard language mod-
elling task is either a 3-layer GRU followed by a
FF-NN, or an 8-layer Transformer-XL (Dai et al.,
2019). Both are pre-trained on WikiText-2 (Merity
et al., 2016), and then the whole model is trained
on the SemCor sense-labeled corpus (Miller et al.,
1993). Some experiments use a Gold LM, that al-
ways predicts the correct next word, with the aim
to examine the effectiveness of sense architectures
independently from the accuracy of the standard
language modelling task.

The input signal for the sense prediction
architecture consists of FastText pre-trained
embeddings (Bojanowski et al., 2017), possibly
augmented by concatenating the graph node
corresponding to the current word, as shown
in Fig. 2. Moreover, a model variant that uses
localized prediction also relies on the K most likely
next words predicted by the standard language
modeling task: w1

t+1, . . . , w
K
t+1. An example of

a localized prediction variant, SelectK (§ 4.4), is
shown in Fig. 1.

The correctness of the prediction is evaluated
using two measures: perplexity and accuracy.
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Figure 2: The input signals for graph-informed sense
prediction: the standard word embedding and the vec-
tor of the global node from the dictionary graph

3.2 Dictionary Graph

The purpose of the dictionary graph is to provide a
way for the input signal to be informed by the sense
embeddings and possibly to leverage WordNet’s
graph structure and glosses.

First, we read in a text corpus and create the
vocabulary. We register the lemmatised version
of inflected forms, later connected to their parent
forms. Then, for each sense of a word, we retrieve
the text of its definitions and examples, and regis-
ter the connections with synonyms and antonyms.
In WordNet, senses are specified as the synsets of
a word; example: w=’bank’→ [(’bank.n.01’), ...
,(’bank.v.07)] .

The next step is to compute the sentence embed-
dings for definitions and examples. It is possible
to use any one of several methods, ranging from
LSTMs to BERT’s last layer. For the sake of com-
putation speed, sentence embeddings are obtained
as the average of the FastText word vectors.

Finally, the nodes are initialised and stored in a
graph with their edges. The graph object is created
with PyTorch-Geometric (Fey and Lenssen, 2019);
before training, it holds the initial values for the
sense and global nodes. The sense node starts as
the average of the embeddings of definitions and
examples for that sense. As shown in Fig. 3, every
sense node is directly connected to its definition
and example nodes. Those determine its starting po-
sition; ideally, during training, it would be moved
towards the more significant glosses. The global
node is initialised as the FastText embedding for
w.

Figure 3: Part of the dictionary graph for the word
“bank”. Global nodes are in yellow, sense nodes in
green, definitions and examples in light blue and blue.

3.3 Graph Attention Network

We employ a Graph Attention Network (Veličković
et al., 2018) to update the nodes of the dictionary
graph. Unlike Graph Convolutional Networks
(Kipf and Welling, 2017), a GAT does not require a
fixed graph structure, and can operate on different
local graph-batches like the neighbourhood of
the current word. Unlike other methods like
graphSAGE (Hamilton et al., 2017) it can handle
a variable number of neighbours. The underlying
idea of GATs is to compute the representation
vector hi of node i based on its neighbouring
nodes j ∈ N (i), which have different attention
weights (i.e. importance).

We here describe how a GAT obtains the new
state ht+1

i of node i in a graph with m nodes. First,
a linear transformation W is applied over all the
nodes: Wht1, ...,Whtm. Then, for each node j
in the neighbourhood of i, we compute the non-
normalised attention coefficient eij , via a 1-layer
FF-NN with LeakyReLU activation:

eij = LeakyReLU(AT [Whi,Whj ]) (2)

The normalised attention coefficients αij are ob-
tained by applying a softmax over the neighbour-
hood of i, N(i). Finally, the new state of node i
is given by applying a non-linear function ρ to the
weighted sum of the neighbours’ states:

ht+1
i = ρ


 ∑

j∈N(i)

αijWhtj


 (3)

Veličković et al. (2018) report that using multiple
attention heads, by averaging or by concatenating,
is beneficial to stabilise the model; we therefore
use 2 concatenated heads.
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Words Senses
PPL Accuracy PPL Accuracy

2 GRUs 160.94 0.209 562.46 0.053
2 Transformer-XL 128.99 0.241 186.72 0.217

Table 2: Baselines: two separate GRUs, and two sep-
arate Transformer-XL models. Results of word and
sense prediction on SemCor’s test set.

3.4 Dealing with Missing Sense Labels

Even in a sense-labelled corpus, some of the words,
such as stopwords, will not have a sense label. This
may cause a problem because in some versions of
the model (§ 4.4, §4.5, §4.6), the GRU used for
the sense prediction task should be able to read the
input text as an uninterrupted sequence of sense
tokens. In particular, two types of words may have
no sense specification:

1. stopwords: ’for’, ’and’, ’of’, etc.
2. inflected forms: ’is’, ’said’, ’sports’, etc.

In order to provide stopwords with a
sense label, we add a dummySense (e.g.
‘for.dummySense.01’) for all the words without a
sense. The corresponding graph node is initialised
as the single-prototype FastText vector for that
word. Inflected forms are lemmatised using
NLTK’s WordNetLemmatizer, to be able to
read and predict the senses of their parent form
(’is’→’be’, ’said’→’say’ etc.)

4 Architectures for Sense Prediction

As previously described, multi-sense language
modelling consists of the two tasks of standard lan-
guage modelling and sense prediction, and we aim
to output two probability distributions - for the next
word token and the next sense token, respectively.

4.1 GRU

A 3-layer GRU followed by a 1-layer FF-NN.
There are no shared layers with the standard lan-
guage modelling architecture, whether that be a
Transformer-XL or another GRU. In the latter case,
the 2 GRUs share the input signal, i.e. the FastText
embeddings, possibly concatenated with the word
node embedding.

4.2 Transformer-XL

Transformer-XL is a left-to-right transformer en-
coder that operates at word-level granularity. It
was chosen instead of a BERT model because the

latter uses masked language modelling with Word-
Piece sub-word tokenisation, and thus cannot eas-
ily be adapted to a setting where the the next word
and its sense should be predicted. In our setting,
the Transformer-XL learns word embeddings from
scratch and does not rely on the FastText vectors.

4.3 Most Frequent Sense
This heuristic baseline chooses the most frequent
sense found in the training set for the most likely
word predicted by the standard language model.

4.4 SelectK
SelectK is a localized prediction approach: first the
next word is predicted, giving a set of K most likely
candidates; then, the next sense is chosen among
them.

As the text is read, for every location t, the stan-
dard language model outputs a probability distri-
bution over the vocabulary, where the most likely
K words are w1, ..., wK . Every word wi has a set
of senses: S(wi) = {si1, ..., siN}. The next sense
at location t is chosen among the senses of the K
most likely words:

s(t) ∈
K⋃

i=1

S(wi) (4)

A softmax function is applied over the logits of the
selected senses, while all other senses are assigned
a probability ε = 10−8. The senses’ logits are
computed by a dedicated GRU, as described in
Figure 1. Alternatively, a Transformer-XL could
be used, but it would presumably require more
training data than the SemCor corpus alone.

K is a hyperparameter; K=1 means that the
model always chooses among the senses of the
most likely word. In general, the sense prediction
performance depends on the performance of the
standard language model: if all the K most likely
globals are incorrect, the correct sense cannot be
retrieved. We verify what happens for K={1,5,10}.

4.5 Sense Context Similarity
Another localized prediction method is to select the
senses of the most likely K globals as candidates;
then, rank them based on the cosine similarity be-
tween the local context and each sense’s average
context. Since language modelling is performed
from left to right, the context is based only on the
preceding tokens [wt−1, ..., wt−c] without consid-
ering subsequent tokens.
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Methods & Parameters SemCor test SensEval dataset

Senses
architecture

Standard
LM K context Senses

ACC
Polysem
ACC

Globals
ACC

Senses
ACC

Polysem
ACC

Globals
ACC

MFS Gold - - 0.83 0.62 1 0.82 0.62 1
SelectK Gold 1 - 0.90 0.80 1 0.82 0.61 1
SenseContext Gold 1 average 0.73 0.45 1 0.71 0.41 1
Self-attention Gold 1 average 0.52 0.24 1 0.51 0.25 1

MFS TXL - - 0.24 0.02 0.24 0.23 0.04 0.23
TXL TXL - 0.22 0.02 0.24 0.20 0.03 0.22
SelectK TXL 1 - 0.24 0.02 0.24 0.23 0.03 0.23
SelectK TXL 5 - 0.13 0.01 0.24 0.11 0.01 0.22
SenseContext TXL 1 average 0.22 0.01 0.24 0.22 0.02 0.23
SenseContext TXL 1 GRU 0.19 0.00 0.24 0.17 0.00 0.23
SenseContext TXL 5 average 0.13 0.01 0.24 0.12 0.01 0.22
Self-attention TXL 1 average 0.17 0.01 0.24 0.16 0.02 0.23
Self-attention TXL 5 average 0.08 0.01 0.24 0.07 0.01 0.23

MFS GRU - - 0.22 0.02 0.22 0.22 0.03 0.22
SelectK GRU 1 - 0.22 0.02 0.22 0.22 0.02 0.21
SenseContext GRU 1 average 0.20 0.00 0.22 0.20 0.00 0.22
Self-attention GRU 1 average 0.16 0.01 0.22 0.16 0.02 0.22
SelectK GRU 5 - 0.13 0.00 0.21 0.12 0.01 0.21
GRU GRU - - 0.05 0.00 0.21 0.06 0.00 0.21

Table 3: The most relevant results of each method. Task: sense prediction. Datasets: SemCor’s test split (10%)
and the aggregated SensEval dataset by Raganato et al. (2017) .

For each occurrence s1, ...sN of a sense s, the
occurrence context OC(si) is computed as the av-
erage of the word embeddings of the preceding c
tokens. Afterwards, the Sense Context SC(s) is
computed as the average of the occurrences’ con-
texts:

OC(si) = avg(wt−1, ..., wt−c) (5)

SC(s) = avg(OC(s1), ..., OC(sN ))

We also experiment with obtaining a representa-
tion of the local context with a 3-layer GRU.

4.6 Self-Attention Coefficients
Another way to choose among the candidate senses
of the most likely K globals is to use the softmax
scores from the self-attention mechanism. Every
sense s has an average context SC(s) it appears
in, as seen in Eq. 5. The contexts of the candidate
senses are collected in the matrix C. Then, a prob-
ability distribution over the senses is obtained by
computing the self-attention coefficients:

softmax

(
Q · C√
dk

)
(6)

All the rows of the query matrix Q are represen-
tations of the current context. As previously, the
local context can be constructed as a simple aver-
age of the last c word embeddings, or as the output
of a 3-layer GRU. The sense contexts in C take

up the role of keys in the formula of self-attention
scores.

5 Evaluation

5.1 Dataset and Graph Settings
To train a multi-sense language model, we need a
sense-labelled text corpus. We use SemCor (Miller
et al., 1993), a subset of the Brown Corpus labelled
with senses from WordNet 3.0. Training, valida-
tion and test sets are obtained with a 80/10/10 split.
Since standard LM architectures are pre-trained
on WikiText-2, the vocabulary is obtained from
WikiText-2 and SemCor’s training split (the latter
with min. frequency=2). The dictionary graph has
≈169K nodes and ≈254K edges. Consequently,
due to memory constraints, we apply mini-batching
on the graph: for each input instance the Graph At-
tention Network operates on a local graph area.
The graph area is defined expanding outwards from
the global node of the current word w. In our ex-
periments, a graph area contains a maximum of
32 nodes and extends for only 1 hop, thus coincid-
ing with the neighbourhood of the current word’s
global node.

5.2 Model variants
In Tab. 3 and 4, we show the results of sense
predictions with different architectures and
parameters.
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Methods & Parameters SemCor test set SensEval dataset

Senses
architecture

Standard
LM K context Senses

ACC DG ∆ PPL DG ∆
Senses
ACC DG ∆ PPL DG ∆

SelectK TXL 1 - 0.24 0 119.6 -0.1 0.23 0 172.54 -1.34
SelectK TXL 5 - 0.13 0 121.0 0 0.11 0 162.2 +0.3
SenseContext TXL 1 average 0.22 0 118.9 +1.2 0.22 0 172.4 +8.0
SenseContext TXL 5 average 0.13 0 135.8 +0.5 0.12 0 213.2 +2.1
Self-attention TXL 1 average 0.17 +0.01 111.9 -7.3 0.17 +0.01 155.7 -16.8
Self-attention TXL 5 average 0.08 0 120.6 +1.3 0.08 +0.01 161.7 -4.6

GRU GRU - - 0.05 0 148.5 -12.5 0.06 0 157.7 -5.8
SelectK GRU 1 - 0.22 0 131.7 -1.6 0.22 +0.01 153.1 -3.6
SelectK GRU 5 - 0.13 -0.01 148.5 -12.1 0.11 -0.01 157.7 -5.6
SenseContext GRU 1 average 0.21 +0.01 129.5 -3.7 0.21 +0.01 153.3 -3.4
SenseContext GRU 5 average 0.09 +0.01 141.9 -18.5 0.10 +0.02 182.0 +18.7
Self-attention GRU 1 average 0.16 +0.01 128.1 -10.3 0.17 +0.01 154.0 -2.7
Self-attention GRU 5 average 0.08 0.00 139.8 -20.7 0.07 0.00 154.8 -9.5

Table 4: Word and sense prediction. DG ∆ = change caused by including the input from the dictionary graph.

Sense prediction architectures:

• GRU: a 3-layer GRU followed by FF-NN
• TXL: an 8-layer Transformer-XL
• MFS: Given the most likely word predicted

by the standard LM, choose its most frequent
sense in the training set (see § 4.3).

• SelectK: A GRU computes the logits over
the senses’ vocabulary, but the softmax is
restricted to the candidate senses only: the
senses of the most likely K words from the
standard LM task (see § 4.4).

• SenseContext: Choosing among the candi-
date senses based on the cosine similarity of
local context and average sense context (see §
4.5).

• Self-Attention: Choosing among the candi-
date senses by computing the self-attention
coefficients of local context and average sense
contexts (see § 4.6).

Tab. 2 compares the simplest methods available:
using either two GRUs or two Transformer-XL for
the two tasks of word and sense prediction. While
the Transformer-XL performs better than the GRU,
these are not the best results: further experiments
shed light on the sense prediction model variants.

5.3 Results
Overall Results In Tab. 3, we compare the re-
sults of the different methods for sense prediction.
We report the Senses ACC, accuracy on the senses
of all words, and the Polysem ACC: accuracy on
the senses of polysemous words; words that have
more than 1 sense are an important part of any
multi-sense task, and are expected to be more dif-
ficult. We include the accuracy for standard word

prediction, Globals ACC, because in our structural
prediction setting, if the next word is incorrect,
none of its candidate senses will be correct.

We evaluate sense prediction using accuracy
instead of perplexity, since in localized predic-
tion methods, perplexity values are non-significant
(≈ 108), due to having assigned ε = 10−8 as the
probability of the non-candidate senses.

Experiments with the Gold standard language
model allow us to examine the methods’ capability
to discriminate between senses if the next word is
always predicted correctly.

The only strong accuracy values (>50%) are
obtained by methods using the Gold standard lan-
guage model, due to the dependency on word
prediction. On the SemCor test split, the best-
performing method is SelectK with K=1, which
is extremely reliant on the correctness of the word
prediction task. On the aggregated dataset of the
SemEval-SensEval tasks (Raganato et al., 2017),
picking the most frequent sense is a difficult base-
line to beat (with Senses ACC=0.82 and Polysem
ACC=0.62), but SelectK with K=1 is extremely
close.

We found that increasing K to 5 or 10 leads to a
worse performance, due to the increased difficulty
of choosing among a greater number of candidate
senses. Using a Transformer-XL as Standard LM
gives a small improvement over the GRU. The con-
text representation made from the average of the
last 20 tokens is better than the one created by a
dedicated GRU trained on SemCor.

Predictions for Polysemous Words All non-
Gold model variants have very low accuracy when
it comes to predicting the right sense of a polyse-
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mous word. This is due to polysemous words being
the most difficult ones to predict correctly in the
standard language modelling task, and therefore in
a localized prediction framework.

This is corroborated by observing the word pre-
dictions of the Transformer-XL standard language
model. The first batch of the SensEval dataset
has 130 correct predictions out of 512 samples,
where the correct words and their frequency are:
{‘of’:10, ‘the’:27, ‘<unk>’:26, ‘and’:3, ‘,’:16,
‘.’:10, ‘<eos>’:16, ‘is’:5, ‘to’:6, ’have’:1, ’a’:2,
‘be’:2, ‘"’:1, ‘one’:1, ‘’s’:1, ‘ago’:1, ‘with’:1,
‘are’:1}

Even if the Perplexity values are reasonable
(with a Transformer-XL, ∼ 170 on SensEval and
∼ 120 on the SemCor test set), most polysemous
words are not going to be predicted correctly. Con-
sequently, a way to improve multi-sense language
modelling would be to utilise a better-performing
model for the standard language modelling task.
Sense prediction itself could likely be improved by
training on a larger sense-annotated training dataset
than SemCor.

Inclusion of Dictionary Graph Input The in-
put signal can be the concatenation of the FastText
vector and graph node for the word w, as shown
in Fig. 2. This is used in two occurrences: first,
by the GRU-based standard LM; secondly, by the
sense architectures in the SelectK, SenseContext
and Self-Attention variants. We aim to investigate
whether the dictionary graph input improves the
GRU-based word prediction and the local sense
prediction.

Tab. 4 shows that the impact of the graph input
signal on sense prediction is negligible, while giv-
ing a slight boost to the Self-Attention and SenseC-
ontext methods. Moreover, it often produces a
small perplexity improvement for the GRU stan-
dard language model.

Future work may research how to make the graph
input more helpful for word and sense prediction,
by examining the use of: different Graph Neural
Networks, different parameters, or different ways
of encoding dictionary definitions and examples

6 Discussion

As shown in Tab. 2, next-token prediction at the
granularity of senses is a more difficult task than
standard language modelling, due to operating on
a larger vocabulary with a more extensive low-
frequency long tail. To try to overcome this obsta-

cle, we proposed a localized prediction framework,
finding that it is extremely reliant on the correctness
of standard language model prediction.

An argument can be made for developing better
sense discrimination models that can work with
a higher number of candidate senses, for instance
those deriving from K=5 instead of K=1. With
this in mind, we observe that there are relatively
few sense-labelled datasets. The datasets organ-
ised in UFSAC format (Vial et al., 2018) altogether
contain 44.6M words, of which only 2.0M are an-
notated; in SemCor, 29.4% of the tokens have a
sense label. These datasets are available for English
only, thus, studying the benefit of using dictionary
resources for low-resource languages cannot cur-
rently be pursued until such corpora are created.

As seen in Tab. 3, the best results we managed
to achieve are obtained by choosing among the
senses of the most likely word. If a sense prediction
method managed to reliably choose among a higher
number of candidate senses, it would make the
sense prediction task less dependant on achieving a
good performance for the standard language mod-
elling task. The question of what such a method
could be remains open. It may be solved by in-
vestigating different WSD methods, and possibly
by different ways of encoding the dictionary graph.
Moreover, one could expect that next-token predic-
tion, both at the word and the sense level, would
benefit from a more accurate standard language
modelling architecture, possibly pre-trained on a
larger corpus than WikiText-2. However, WikiText-
2 was chosen to avoid overwhelming SemCor’s
vocabulary, so this brings us back to the necessity
of a larger sense-labelled corpus, that would also
allow one to use an architecture different than a
GRU to obtain logits over the senses.

Including the input signal from the dictionary
graph only results in marginal improvements on
the sense prediction task. It should be noted that
the quality of the input signal is limited by the
quality of the sentence encodings for the WordNet
glosses, used to initialise the graph nodes. Sentence
representations different from averaging FastText
embeddings may achieve better results. Moreover,
tuning the graph signal is surely possible, while
outside of the scope of this first study of multi-sense
language modelling: one could experiment with
changing the size of the graph area, the number
of hops and the variant of Graph Neural Network
used.
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7 Conclusions

This work constitutes the first study of multi-sense
language modelling. We experiment with a local-
ized prediction approach that predicts a word fol-
lowed by a word sense; as well as learning sense
representations from both its sentential context,
and a sense dictionary, encoding the latter using a
Graph Neural Network.

The experimental results highlight the difficulty
of such a novel task. Some could regard word
senses as not fit to be discretized in a language
modeling task, and best represented by flexible
contextual embeddings like those of transformers.
We believe that specifying discrete senses in lan-
guage modeling could still be improved investigat-
ing three directions:

1) Training a model on larger sense-labelled re-
sources;

2) Using different tools to build the models;
for instance, creating word embeddings from
BERT by averaging the WordPiece-encoded
tokens, or applying other Word-sense Disam-
biguation methods;

3) Predicting WordNet supersenses: higher level
categories such as food, artifact, person; this
would avoid relying on the fine granularity of
WordNet senses, solving a relatively simpler
task that would still provide useful distinc-
tions.

Future work on this task may view it as a test
bed for researching Word Sense Disambiguation,
as a way of improving the precision of linking a
language model to a knowledge base, or for appli-
cations such as assistive writing.
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Abstract

We propose a means of augmenting FrameNet
parsers with a formal logic parser to obtain
rich semantic representations of events. These
schematic representations of the frame events,
which we call Episodic Logic (EL) schemas,
abstract constants to variables, preserving their
types and relationships to other individuals in
the same text. Due to the temporal semantics
of the chosen logical formalism, all identified
schemas in a text are also assigned temporally
bound “episodes” and related to one another
in time. The semantic role information from
the FrameNet frames is also incorporated into
the schema’s type constraints. We describe an
implementation of this method using a neural
FrameNet parser, and discuss the approach’s
possible applications to question answering and
open-domain event schema learning.

1 Introduction

Story understanding requires deep, non-textual rep-
resentations of textual information. The human
brain, neural language models, and formal logic en-
gines all transduce textual input into some other for-
mat in order to perform semantic tasks on that input.
While formal logical representations of language
admit more reliable and explainable inference pro-
cedures on text than, for example, the vector repre-
sentations used by transformers, they suffer from
characteristic brittleness when attempting to parse
the true logical meaning of text: paraphrases and
idioms stymie the logical capture of true semantics
at best, and actively lead to incorrect understanding
at worst.

The FrameNet project (Baker et al., 1998) at-
tempts to provide a taxonomy of event “frames”
(sometimes also called “schemas” or “scripts”), in-
cluding their actors and objects, that one might ob-
serve in the real world, and thus in texts discussing
the real world. These frames are not tied to any one
means of expression: many different constructions,

EPI-SCHEMA ((?X_C (COMPOSITE-SCHEMA.PR ?X_D)) ** ?E)

:ROLES

!R1  (?X_A FRIEND.N)

!R2  (?X_A (PERTAIN-TO ?X_B))

!R3  (?X_B AGENT.N)

!R4  (?X_C MOM.N)

!R5  (?X_C (PERTAIN-TO ?X_B))

!R6  (?X_C MOTION-THEME.N)

!R7  (?X_C INGESTION-INGESTOR.N)

!R8  (?X_D HOUSE.N)

!R9  (?X_D (PERTAIN-TO ?X_A))

!R10 (?X_D MOTION-GOAL.N)

!R11 (?X_E FOOD.N)

!R12 (?X_E INGESTION-INGESTIBLES.N)

:STEPS

?E1 (?X_C MOTION-GO.1.V ?X_D)

?E2 (?X_C INGESTION-EAT.2.V ?X_E)

:EPISODE-RELATIONS

!W2 (?E1 BEFORE ?E2)

Figure 1: An example of an Episodic Logic schema rep-
resenting the story “Jenny’s mom went to her friend’s
house. She ate food there.” Constants in this story, such
as “Jenny”, have been abstracted to variable names,
creating a general schema form of the story, but the
original story constants may be re-bound to these vari-
ables at any time. Noun predicates taken from single
story tokens, e.g. FRIEND.N, are color-coded with
their variables. Noun and verb predicates obtained from
FrameNet matches are underlined, and prefixed with the
name of the FrameNet frame before the hyphen. Addi-
tional information on the syntax and semantics of the
schema is given by Lawley et al. (2021).
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(MOM.SK PERTAIN-TO JENNY)
(FRIEND.SK PERTAIN-TO JENNY)
(HOUSE.SK PERTAIN-TO FRIEND.SK)
(MOM.SK ((ADV-A (TO.P HOUSE.SK)) GO.V)

MOTION “went” 
  THEME “Jenny’s mom”
  GOAL  “her friend’s house”
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  THEME “mom”
  GOAL  “house”

MOTION “went” -> GO.V
  THEME “mom” -> MOM.SK
  GOAL  “house” -> HOUSE.SK

“Jenny’s mom went 
to her friend’s 

house.”

Figure 2: The architecture of the system. Raw story text is fed along two tracks: the logical-semantic parsing track,
shown along the top, and the FrameNet parsing track, shown along the bottom. The FrameNet text spans are reduced
to direct object tokens and correlated with logical individuals in the ELF parse via token index matching.

e.g. “she wolfed down the meal” and “she ate her
food”, can express the same frame, e.g. “ingestion”.
These frames are constructed manually, however,
rather than learned automatically from texts, and
are defined in terms of natural language rather than
a more manipulable representation. FrameNet pars-
ing of text generally consists of the mapping of
spans of text to FrameNet roles; these text spans,
being natural language, are difficult to manipulate
programmatically and draw inferences from.

In this paper, we present a means of producing
expressive, semantically manipulable, formal log-
ical “schema” representations of stories using a
state-of-the-art FrameNet parsing system, LOME
(Xia et al., 2021), as a jumping-off point. By aug-
menting FrameNet parses with logical semantic
representations of the text, we obtain schema-like
story representations that mitigate both the brittle-
ness inherent to literal semantic parsing and the dif-
ficulty of manipulation inherent to natural language
frames. We also discuss the potential application
of these representations to the task of automatically
acquiring event schema knowledge from natural
text corpora.

2 Semantic Representation

The semantic representation we provide is based on
Episodic Logic (EL) (Hwang and Schubert, 1993),
a formal logical representation of language that
enables efficient inference while maintaining a sur-
face resemblance to the English language. One

feature of EL that is well suited to story repre-
sentation is its characterizing operator, **, which
relates an Episodic Logic Formula (ELF) to an
episode. Informally, (ϕ ** E) means that E is
“an episode of” some formula ϕ, e.g., in ((?X_C
MOTION-GO.1.V ?X_D) ** ?E1), ?E1 is
an episode of ?X_C going to ?X_D (cf. the first
step in Figure 1; in schemas the ** operator is left
implicit). These episodes, characterized by formu-
las derived from sentences, have temporal bounds,
and can be related to each other in time using re-
lations derived from the Allen Interval Algebra
(Allen, 1983). Episodes are first-class individuals
in Episodic Logic, and may be used as arguments to
predicates, such as in the temporal relation formula
(E1 BEFORE E2).

ELFs, like those seen in the schema in Fig-
ure 1, often have predicates derived from nouns
or verbs. For example, the first role con-
dition in Figure 1, the schema ELF (?X_A
FRIEND.N), asserts that the variable ?X_A sat-
isfies the predicate FRIEND.N (and, as stated
in the next role condition, ?X_A “pertains to”
?X_B, i.e. ?X_A is a friend of Jenny). The
first step of the same schema, the ELF (?X_C
MOTION-GO.1.V ?X_D), can be read as a
subject-verb-object verb phrase, where the argu-
ments to the verb predicate, MOTION-GO.1.V,
are the variables ?X_C and ?X_D.
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2.1 EL Schemas

To represent frames identified by the FrameNet
parser, as well as the story as a whole, we use
the schema system built atop EL by Lawley et al.
(2021). An example schema, produced by the
system presented in this paper, is shown in Fig-
ure 1. This schema format allows declaration
of entity types, and of relationships between en-
tities, via EL propositions in the Roles sec-
tion. The Steps section contains ELFs, and
their characterizing episodes, for the schema’s con-
stituent events. These episodes are related in the
Episode-relations section, and the entire
schema may itself be embedded by the ELF for-
mula known as its header, visible at the top of the
schema, and characterizing an episode itself.

The EL schema framework we use allows for
other section types, such as goals, preconditions,
and postconditions, and was designed as part of
a larger schema acquisition project. In this work,
however, we primarily make use of the Roles,
Steps, and Episode-relations sections for
frame and story representation.

3 Architecture

Our system’s architecture, illustrated in Figure 2,
is divided into two main information pipelines: the
EL track, responsible for semantic parsing, and the
FrameNet track, responsible for frame identifica-
tion and span selection. The information from both
of these pipelines is unified into a final schematic
representation at the end using token indices from
the input text.

3.1 EL Track

To produce an EL semantic parse of the story, we
first perform span mapping on the input text us-
ing the AllenNLP coreference resolver (Gardner
et al., 2017). Co-referring token indices are saved,
and story sentences are then converted into ELFs
by first parsing them into ULF—an underspecified
variant of EL (Kim and Schubert, 2019)—and then
processing the ULFs into full ELFs by converting
grammatical tense information into temporal rela-
tions and scoping quantifiers. More information
on the ELF parser can be found in (Lawley et al.,
2021).

Coreference resolution on the ELFs is performed
by cross-referencing the token index clusters with
token index tags placed on individuals in the EL
parse. Co-referring individuals in the EL parse are

then combined into one individual and substitutions
are made throughout the parse.

3.2 FrameNet Track

To identify basic behavioral frames invoked by the
raw text, we make use of the LOME information
extraction system (Xia et al., 2021). LOME out-
puts invoked frames, and text spans that fill frame
roles, as CONCRETE data files. Once we extract
the invoked frames and text spans, we perform a
syntactic dependency parse on the input text using
spaCy (Honnibal and Montani, 2017) and identify
the first token in each span with a NSUBJ, DOBJ,
or POBJ tag. This allows any span of text contain-
ing tokens for multiple individuals, e.g. her friend’s
house, to be reduced to, e.g., house, which will be
the token used to identify the logical individual in
the EL parse during the alignment phase.

3.3 Token Index Alignment and Schema
Formation

To represent the identified FrameNet frames as EL
formulas, the text spans that fill the semantic roles
for each frame must first be bound to logical in-
dividuals. After the dependency parser identifies
the token to cross-reference with the EL parse, the
noun predicate with the same token index is re-
trieved from the EL parse, and the individual satis-
fying that predicate is identified as the bound value
for the frame role.

The verb that invoked the frame is identified in a
similar fashion, and a schema is created with that
verb’s formula from the EL parse as its header, and
with the names of the FrameNet semantic roles ap-
plied to the relevant individuals as semantic types
in the new schema’s Roles section. When mul-
tiple frames are converted to schemas in this way,
they may all be embedded together in a composite
schema, such as the one shown in Figure 1, with
their header formulas as steps and with each of
their inner type constraints shown in the composite
schema’s Roles section for clarity. This compos-
ite schema forms our final semantic representation
of the story.

4 Discussion

The goal of our representation, and of semantic
story representations in general, is to enable a vari-
ety of reasoning tasks. As the quality of the frames
identified by LOME has already been evaluated by
Xia et al. (2021), we do not re-evaluate quality after
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transducing those frames into EL schemas. Below,
we discuss two interesting potential applications of
this representation: question answering and event
schema acquisition.

4.1 Applications
4.1.1 Question Answering
Episodic Logic has been used for question answer-
ing (Morbini and Schubert, 2009), as has its un-
derspecified variant, ULF (Platonov et al., 2020).
EL formulas can be unified with one another, bind-
ing variables in one formula to constants or vari-
ables in another. Many questions about events
or types can be formulated as EL propositions
with variables to be bound to potential answers.
For example, to answer the question of whose
house the mom went to in the story represented
in Figure 1, we could create the question for-
mulas with new variables for the house and its
owner: (?X_C MOTION-GO.1.V ?house)
and (?house (PERTAIN-TO ?who)). The
only valid unification of these formulas with the
story binds the house ?X_D to ?house and the
friend ?X_A to ?who. FrameNet-based repre-
sentations make answerable questions somewhat
paraphrase-resistant, as well: “whose house did the
mom run off to?” would invoke the same frame.

This form of question answering may also be
used for semantic information retrieval based on
multiple separate type, relational, and event oc-
currence constraints, for example, finding sets of
stories where a person buys something edible at a
store.

4.1.2 Schema Learning
When information about stereotypical situations is
packaged up into event schemas, those schemas
may be partially matched to new stories, and in-
ferences may then be drawn from the unmatched
pieces of those schemas: upon observing someone
sitting down at a restaurant, for example, you might
infer that they would then receive a menu.

The event schema syntax we use, taken from
(Lawley et al., 2021), was conceived as part of
a system for learning rich, logical event schemas
from texts by using a set of simple behavioral pro-
toschemas—concepts children are familiar with,
like asking for assistance with a task or eating food
to alleviate hunger—to bootstrap the acquisition
of more complex schemas. We believe that our
conversion of identified FrameNet frames to canon-
icalized logical formulas could aid this process:

many FrameNet frames resemble simple behavioral
protoschemas, and a mapping between them has
been already been employed for existing schema
learning work based on protoschemas (Lawley and
Schubert, 2022).

4.2 Limitations

While our system produces useful representations,
extant Episodic Logic parsing software, especially
ULF parsing, is still somewhat error-prone. Work
on EL parsing is ongoing, and notably includes an
application of the cache transition parsing system
developed by Peng et al. (2018) to ULF parsing
(Kim, 2019), which is the initial step in converting
English text into a logical form.

We also note that we do not leverage the full
schema syntax of Lawley et al. (2021), and in par-
ticular have not added stated goals, preconditions,
and postconditions from FrameNet frames into the
relevant sections from that schema system. This
is due, in large part, to the lack of availability of
those particular semantic roles in current FrameNet
parses.

Finally, we note that our system was devel-
oped using only stories from the ROCstory corpus
(Mostafazadeh et al., 2016), and that grammati-
cally and conceptually complex texts may require
additional parsing techniques; better parser perfor-
mance; a larger corpus of schemas, with the ini-
tial hand-created basic schemas expanded through
schema learning; or any subset of these.

5 Conclusion

We have presented a system for obtaining rich, for-
mal logic-based, schema-like representations of
stories from text by combining the frame identi-
fication power of LOME and FrameNet with the
semantic representation power of Episodic Logic
schemas. We showed that these representations
normalize language into propositions based on se-
mantic frames; model type, relational, and tempo-
ral constraints; and allow for hierarchical nesting
of situations. Finally, we discussed their potential
application, in future work, to tasks that neither
FrameNet nor EL parsing alone is trivially capable
of, such as paraphrase-resistant question answering,
information retrieval, and automatic acquisition of
event schemas from text, to which this system has
already been applied.
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Abstract

Despite advances in statistical approaches
to the modeling of meaning, many ques-
tions about the ideal way of exploiting both
knowledge-based (e.g., FrameNet, WordNet)
and data-based methods (e.g., BERT) remain
unresolved. This workshop focuses on these
questions with three session papers that run
the gamut from highly distributional methods
(Lekkas et al., 2022), to highly curated methods
(Gamonal, 2022), and techniques with statis-
tical methods producing structured semantics
(Lawley and Schubert, 2022).

In addition, we begin the workshop with a
small comparison of cross-lingual techniques
for frame semantic alignment for one language
pair (Spanish and English). None of the dis-
tributional techniques consistently aligns the
1-best frame match from English to Spanish,
all failing in at least one case. Predicting
which techniques will align which frames cross-
linguistically is not possible from any known
characteristic of the alignment technique or the
frames. Although distributional techniques are
a rich source of semantic information for many
tasks, at present curated, knowledge-based se-
mantics remains the only technique that can
consistently align frames across languages.

1 Introduction to the Workshop

Broadly speaking, research in computational lin-
guistics encompasses two main streams: (1) work
that relies primarily on operationalizing prior
knowledge about language and its use, such as rule-
based parsers (Bender et al., 2002), scripts (Schank
and Abelson, 1977), planning, scenarios, scripts for
virtual assistants, and FrameNet (FN) frames (Rup-
penhofer et al., 2016), as well as lexical databases
like WordNet (Fellbaum, 1998), VerbNet (Kipper
et al., 2000), and PropBank (Palmer et al., 2005),
among others; and (2) work that seeks to derive
knowledge directly from data (text, speech, and in-
creasingly vision) with unsupervised (or distantly

supervised) methods, which are distributional and
frequency-based, in linguistics (Biber et al., 2020),
cognitive science (Xu and Xu, 2021), and compu-
tational linguistics, notably vector embeddings like
BERT (Devlin et al., 2019). They are often com-
plementary; e.g. Kuznetsov and Gurevych (2018)
combine POS tagging and lemmatization to im-
prove vector embeddings and Qian et al. (2021)
combine syntactic knowledge with neural language
models to improve accuracy.

Despite great advances in statistical approaches,
many questions remain unresolved:

• What are the strengths and limitations of each
approach?

• Is extracting different types of knowledge
from text/speech possible by one and not the
other? Why?

• How well can each represent relations and
support reasoning over text?

• What factors limit progress of each approach?
• Would combining the two approaches solve

all the problems?
These issues are as pertinent today as they were
nearly 30 years ago at “The Balancing Act: Com-
bining Symbolic and Statistical Approaches to Lan-
guage” (McDonald, 1994). The goal of this work-
shop is to encourage reporting of research bearing
on these issues; we will hear three such papers
(listed below), in addition to our own results on
cross-lingual frame alignment, described in the re-
mainder of this paper.

In “Multi-sense Language Modelling”, Andrea
Lekkas, Peter Schneider-Kamp and Isabelle Augen-
stein use pretrained embeddings and also calculate
new ones, combining them with many facets of the
curated WordNet lexicon. They report on extensive
testing of five different system architectures against
a most-frequent-sense baseline on both next word
prediction and WordNet sense prediction, on both
the SemCor and SemEval datasets.

Maucha Gamonal’s“A Descriptive Study of
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Metaphors and Frames in the Multilingual Shared
Annotation Task” shows how FrameNet frames can
explain instances of metaphor in 50 sentences from
the transcription of a TED talk that members of
the respective FrameNet projects annotated in Por-
tuguese, English, and German. The“frame shift”
discussed in the paper also have implications for
theories of translation. Despite progress on auto-
matic recognition of metaphors (e.g. Veale 2016,
Shutova et al. 2015, Chakrabarty et al. 2021), the
kind of detail shown here is generally not retriev-
able computationally.

Lane Lawley and Lenhart Schubert gener-
ate“Logical Story Representations via FrameNet
+ Semantic Parsing”. Lawley and Schubert have
previously worked on learning logical representa-
tions of events ("event Logic") from simple stories
(Lawley et al., 2021). In this paper, they show how
semantic parsing based on FrameNet and imple-
mented in the LOME parser (Xia et al., 2021) can
add valuable information to the logical representa-
tion, allowing more precise reasoning.

As described in the rest of this paper, the intro-
duction to the workshop presents but one exam-
ple of the complex interplay between curated and
distributional semantics from research at the ICSI
FrameNet project: cross-linguistic frame align-
ment. We compared curated semantics techniques
with those of unsupervised distributional ones, in-
tentionally focusing on a very small set of data for
one language pair (English and Spanish) to charac-
terize the specific details of such comparisons.

The remainder of the paper proceeds as follows:
Section 2 provides a brief overview of FrameNet;
Section 3 describes the work of developing cross-
lingual frame alignments; Section 4 presents the
results of different methods for aligning some Span-
ish and English frames; and Section 5 offers con-
cluding remarks and future directions to pursue
cross-linguistic frame alignment.

2 Overview of FrameNet

FrameNet (Ruppenhofer et al., 2016) is a research
and resource development project in corpus-based
computational lexicography grounded in the theory
of Frame Semantics (Fillmore, 1985).

The semantic frame, a script-like knowledge
structure that facilitates inferencing within and
across events, situations, states-of-affairs, relations,
etc., is at the core of the theory (Petruck, 1996). FN
defines a semantic frame in terms of its frame ele-

ments (FEs), or participants (and other concepts)
in the scene that the frame captures; a lexical unit
(LU) is a pairing of a lemma and a frame, charac-
terizing that LU in terms of the frame that it evokes.
The definition of a frame, represented both in prose
and in structured relations between frames, is a
bundle of inferences relating the frame elements
whenever the frame is evoked.

Example 1 illustrates the Frame Semantics anal-
ysis for the verb buy, which FN defines in the
Commerce_buy frame, with the FEs BUYER,
SELLER, GOODS, and MONEY.1

1. Chuck BUYER bought a car GOODS from Jerry
SELLER for $2,000 MONEY

3 Cross-Linguistic Frame Alignment

As interest in Frame Semantics (Fillmore, 1982)
and the original FrameNet for English (Fillmore,
2014) grew, research groups around the world
started developing FN-like resources for their lan-
guages. Such resources in many languages have
made it possible to address the question of whether
semantic frames are universal or merely language-
specific lexical phenomena. With these databases
at hand, we may operationalize the question as: To
what extent can these lexical databases be aligned
to form a multilingual FrameNet lexical database
connecting all of the languages, while also account-
ing for language-specific differences and domain-
specific extensions to FrameNet?

The goal of the Multilingual FrameNet (MLFN)
project (Gilardi and Baker, 2018) was to answer
this question by building a cross-linguistic database.
Though this database succeeded in partially align-
ing frames, the question remained of how to assess
the validity and utility of the alignments. Baker and
Lorenzi (2020) described a database of vectors that
represent alignments between pairs of frames in
different languages (e.g., English-Spanish, English-
Japanese, etc.).2 Baker and Lorenzi (2020) also
described developing ViToXF, a freely available vi-
sualization tool for all of the alignments.3 The tool
allows interactive exploration of the alignments be-
tween English and one of seven other languages

1This paper uses these typographical conventions: Frame
names are in typewriter font; FE Names are in SMALL
CAPS; and lexical units are in boldface.

2The latest release of this database is available on
Github. https://github.com/icsi-berkeley/
framenet-multilingual-alignment/
releases/tag/1.0.3-2.

3https://github.com/icsi-berkeley/
framenet-multilingual-alignment.
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in the database. The alignments were created us-
ing 11 different methods, four (4) resource-based
and seven (7) vector-based. The rest of this sec-
tion characterizes these alignment methods; this is
a revised version of the descriptions of alignment
methods in Baker and Lorenzi (2020).

3.1 Alignment by Frame Name/ID Number
At first glance, the alignment problem might seem
trivial: if other FNs have used Berkeley FrameNet
(BFN) frame names. Can we assume that a frame
in a language other than English with the same
name as a BFN frame represents the same con-
cept, and just ignore any that don’t have matching
names? Furthermore, some of the other resources
used target-language frame names, rather than En-
glish ones, a situation that would mean aligning
just the names themselves by translation between
the two languages. Sometimes, the non-English
language frame data also included a field for the
BFN frame name or BFN frame ID, which could
be used independently for alignment. Also, even
when the names (or IDs) match, the non-English
frame may be defined differently or have a differ-
ent number of core FEs than the BFN frame. By
definition, a different number of core FEs between
the (English and non-English) frames amounts to
different frames, so such alignments are, at best,
imperfect.

3.2 Alignment by LU Translation
A second way of approaching alignment is to take
all the LUs from a source language frame and find
translation equivalents in the target language. If
frames are equivalent across languages, we expect
the translations of LUs in one source language
frame to fall in the same target language frame,
but the success of this method depends on the ac-
curacy of the translations. By definition, a LU
represents one sense of a lemma, a fact that should,
in principle, greatly narrow the range of possible
translations. However, exploiting frame informa-
tion in the translation process remains a challenge.

We use The Open Multilingual WordNet
(OMWN) (Bond and Foster, 2013) to find trans-
lation equivalents between languages. The first
step is to create a mapping S(ℓ) from each LU in
each language to a set of synsets one of which may
represent its sense. That mapping requires find-
ing OMWN synsets that contain the lemma+POS
of the given LU . Let Le and Lf be the lists of
LUs in any two frames in the source language (e)

and the target language (f). Equation 1 defines the
matching of LUs between Le and Lf .

m1(Le, Lf ) = {a ∈ Le |b ∈ Lf ,

S(a) ∩ S(b) ̸= ∅} (1)

To evaluate the alignment between the two
frames, this function calculated three different
scores (selectable in ViToXF under the name "LU
translations using WordNet"). The first is a metric
that considered LUs from both frames (Equation 2),
but this method gives too much weight to frames
containing more LUs. Avoiding this problem re-
quired breaking the alignment into two scores, ac-
counting for the direction of alignment. Specifi-
cally, the score of the alignment from English to
the target language might be different from the re-
verse. Equation 3 presents the formula for one of
those scores. (Simply switching the two arguments
will obtain the other score.)

s1(Le, Lf ) =
|f(Le, Lf )|+ |f(Lf , Le)|

|Le|+ |Lf |
(2)

s2(Le, Lf ) =
|f(Le, Lf )|

|Le|
(3)

We also explored an alternative scoring method
based on synsets rather than LUs (by selecting
"Synset count" in ViToXF). Equation 4 defines the
matching set in this case, with the scores calculated
in a manner similar to that of Equation 3.

m2(Le, Lf ) =
⋃

a∈Le

S(a) ∩
⋃

b∈Lf

S(b) (4)

3.3 Alignment by Frame Element Similarity
Recalling that frames are defined in terms of the
entailments of their FEs, for two frames to be
the same across languages, they must minimally
have the same number and type of FEs. Some
FrameNets, like Spanish FN and Japanese FN, sim-
ply used the same FEs that BFN named and defined;
that is, the names and definitions of FEs are identi-
cal to those of the English resources. Others, e.g.,
Chinese, translated the names and the definitions
into the target language or created completely new
ones in the target language. These cases required
aligning the FEs according to the proximity of the
names and definitions from the two languages in
a shared vector space. French created FE names
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and definitions in English, although many of those
frames do not correspond to those in BFN. Swedish
FN used FE names in English and adopted the BFN
definitions. Both the Brazilian Portuguese and Ger-
man FN projects include FEs in a mixture of En-
glish and the target language. In these last two
cases, developing the alignment required grouping
the FEs according to the language of their name
(English or the target language), calculating the
similarity separately for the FEs in each language,
and then combining the scores.4

3.4 Alignment by Distributional Similarity of
Lexical Units

Another approach uses cross-lingual word em-
beddings to find alignments; this appears in Vi-
ToXF under the options “LU translations using
MUSE” and “MUSE centroid similarity”. Cur-
rently, ViToFX is based on fastText word embed-
dings from various languages trained on Wikipedia
data and aligned to a single vector space (Bo-
janowski et al., 2017). The spaces were aligned by
an unsupervised adversarial approach, where the
discriminator tries to predict the embedding origin
and the generator aims to create transformations
that the former cannot accurately classify (Lam-
ple et al., 2018). The transformed fastText vec-
tors of many languages mapped to English space
are available in the MUSE library.5 MLFN uses
these pre-trained cross-lingual word embeddings
for two different scoring techniques. The first, "LU
translations using MUSE" (like those in Section
3.2), uses the word embeddings as a way to obtain
translation equivalents. We define n(v⃗, k, t), the
k-neighborhood of v⃗ in the target language with
cosine similarity greater than t. Equation 5 defines
the alignment score between a pair of frames given
their LU lists Le and Lf .

s3(Le, Lf ) =

|{a ∈ Le | b ∈ Lf , v⃗(b) ∈ n(v⃗(a), k, t)}|
|Le|

(5)

The second distributional technique, “MUSE
centroid similarity”, calculates the alignment be-
tween two frames by finding the average vector of
their LUs vectors (i.e. the centroid vector of each

4The process used Michal Danilak’s python library for
language recognition https://pypi.org/project/
langdetect/

5https://github.com/facebookresearch/MUSE

frame) and computing the cosine similarity of those
centroids, like Sikos and Padó (2018).

4 Results

To evaluate the alignments created by the various
techniques described in Section 3 (above), FN re-
searchers defined a set of "gold-standard" frame
alignments for a small set of frames from Span-
ish FrameNet (SFN) aligned to English frames
from BFN.6 We determined gold-standard frame
matches manually by comparing all of the informa-
tion associated with the frames of each language,
including frame definition, frame elements, lexical
units with their translations, and frame relations (if
any). Since the time for a manual review precludes
comparing all frames to all other frames, we only
considered those frames with lexical translation
overlap.7

For each gold-standard alignment, we examined
the full set of alignment techniques provided by
ViToXF for the SFN frame. With ViToXF, each
technique will align a SFN frame to different list
of BFN frames, and each such pairing will have a
score. The techniques have very different scores,
even when normalized, so the best way to compare
techniques is by how they order the proposed BFN
frames to align. In what follows, we simplify the
evaluation of a technique to the relative rank (1st,
2nd, etc.) of the gold-standard BFN frame.

Table 1 compares alignments of five SFN
frames (ending in .es) with those of BFN (end-
ing .en). The first two rows show the gold stan-
dard alignments; in four cases, the frames have
the same name in both languages. However, SFN
Motion_manner corresponds most closely with
BFN’s Self_motion. The other four rows show
the rank (1st, 2nd, etc.) of the English gold stan-
dard frame in the output of each of four alignment
algorithms:

1. Proportion of matching core FE names or IDs
2. WordNet synset count (mapped from Spanish

to English synsets)
3. MUSE LU centroid similarity
4. Average core FE name/definition similarity

(using MUSE vectors)
Note that the first two of the above-mentioned algo-
rithms are entirely based on curated resources, the

6The data derive from SFN (Subirats-Rüggeberg and
Petruck, 2003) and V.1.7 of BFN (Ruppenhofer et al., 2016).

7Some of these results were also described in the Call for
Papers for this workshop.
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Spanish
Frames

Desiring.es Motion man-
ner.es

Performers
and roles.es

Similarity.es Activity
finish.es

Gold standard
English match

Desiring.en Self-motion.en Performers
and roles.en

Similarity.en Activity
finish.en

Matching core
FE names/IDs

1st No match 1st 1st 1st-8th

WN synset
count (es-> en)

1st 1st 1st 1st 2nd-3rd

MUSE LU
centroid simi-
larity

1st 2nd 2nd 1st 2nd

Average core
FE MUSE sim-
ilarity

1st >10th 1st 1st 1st

Table 1: Rank of Gold-standard Frame Match by Alignment Method

third is purely distributional, and the last of these
combines the two approaches.

All the techniques show promise in accurately
aligning certain frames and all perform less well on
the inexact match, i.e., SFN Motion_manner to
BFN Self_motion. Unlike the English frame,
the SFN frame does not allow complex path infor-
mation, although many LUs in the SFN frame have
translation equivalents in BFN Self_motion
(e.g. Spanish correr.v -> English run.v). Also,
no single technique ranks the gold standard as
the strongest match for all of the listed frames.
SFN Desiring and Similarity align cor-
rectly by all of the techniques listed; in contrast,
SFN Activity_finish only aligns unambigu-
ously using just one technique, i.e., Average core
FE MUSE similarity.

At least based on this limited data, it is not pos-
sible to predict which techniques will do a good
job of aligning which frames cross-linguistically
from any known characteristic of the alignment
technique or the frames. This is just one example
of the complex questions involved in comparing
different approaches to alignment.

5 Concluding Remarks and Future Work

This paper has introduced the workshop explor-
ing the strengths and weaknesses of different tech-
niques for modeling meaning. Specifically, the
research of the Berkeley FrameNet group has com-
pared distributional approaches and curated ap-
proaches for cross-lingual frame alignment, illus-
trating the results from four different alignment
techniques for five Spanish FrameNet and BFN

frames, finding that no distributional technique re-
liably predicts the gold-standard alignment.

This initial study on a small set of frames in
only two languages is suggestive, and points to the
need for wider exploration of techniques for align-
ing lexical units and frames across languages in
frame-based resources. We look forward to further
development of hybrid semantic representations
combining the advantages of distributional and cu-
rated semantic techniques, both for the alignment
task and a wider range of applications.
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