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Abstract
In the real world, many relational facts require
context; for instance, a politician holds a given
elected position only for a particular timespan.
This context (the timespan) is typically ignored
in knowledge graph link prediction tasks, or is
leveraged by models designed specifically to
make use of it (i.e. n-ary link prediction mod-
els). Here, we show that the task of n-ary link
prediction is easily performed using language
models, applied with a basic method for con-
structing cloze-style query sentences. We intro-
duce a pre-training methodology based around
an auxiliary entity-linked corpus that outper-
forms other popular pre-trained models like
BERT, even with a smaller model. This method-
ology also enables n-ary link prediction without
access to any n-ary training set, which can be
invaluable in circumstances where expensive
and time-consuming curation of n-ary knowl-
edge graphs is not feasible. We achieve state-of-
the-art performance on the primary n-ary link
prediction dataset WD50K and on WikiPeople
facts that include literals - typically ignored by
knowledge graph embedding methods.

1 Introduction

Large-scale knowledge graphs (KGs) have gained
prominence over the past several decades as a
means for representing complex structured data
at scale, leading to the development of machine
learning models designed to predict new or un-
known information from a KG (Ji et al., 2021). A
subclass of such models deals with link prediction,
i.e. inferring new facts from a given KG consisting
of (subject, relation, object) triples. For instance,
a link prediction model might reason from a KG
containing the triple (USA, ElectedPresident, JFK)
to infer that the triple (JFK, BornInCountry, USA)
also likely exists (i.e. JFK was born in the country
USA).

The triple format is often too restrictive to rep-
resent a query effectively. For instance, the query

Figure 1: N-ary query representation in KG vs. natural
language frameworks. (a) In a knowledge graph, the
primary triple query (USA, ElectedPresident, [MASK])
is augmented with an auxiliary link for qualifer infor-
mation (InYear, 1960). Each entity or relationship is
represented by a unique identifier. Qualifiers require the
use of specialised encoder architectures; literal quali-
fiers like 1960 typically cannot be used at all. (b) We in-
stead represent the query in a templated language model,
where the qualifier detail can be directly appended.

Who was elected President of the United States in
1960? permits multiple correct answers when sim-
plified to the triple format (USA, ElectedPresident,
[MASK]), in the absence of the context 1960 (also
referred to as a qualifier (Vrandečić and Krötzsch,
2014)). Recently, several KG completion models
have been developed aimed specifically at link pre-
diction in the presence of qualifiers, collectively re-
ferred to as hyper-relational or n-ary link prediction
models (Wen et al., 2016; Zhang et al., 2018; Guan
et al., 2019; Liu et al., 2020; Rosso et al., 2020;
Galkin et al., 2020; Yu and Yang, 2021; Wang et al.,
2021b). Usage of qualifiers becomes particularly
difficult when they include literals, i.e. values that
cannot be efficiently represented as discrete graph
entities. Examples of literals include years (like
1960), times, or numerals. Existing KG comple-
tion algorithms typically remove literals (Rosso
et al., 2020; Galkin et al., 2020) or use specialised
techniques to leverage them (Kristiadi et al., 2019).

The need for new models to leverage qualifiers
and literals reveals some fundamental weaknesses
in discrete, triple-based knowledge graph represen-
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tations. Unlike graphs, written languages clearly
permit the use of qualifiers and literals to repre-
sent facts and queries. Pre-trained language mod-
els like BERT (Devlin et al., 2019) have already
shown competitive performance compared to exist-
ing KG link prediction approaches on triple-based
KGs (Clouâtre et al., 2021; Yao et al., 2019). As
such, it is natural to ask whether Language Models
(LMs) present a better alternative for inferring facts
with qualifiers and literals compared to n-ary KG
inference models.

Apart from their ability to represent qualifiers
and literals, using LMs with novel pre-training
methodologies on vast corpora also presents op-
portunities to enable n-ary link prediction without
access to any n-ary training set. The need to con-
struct large, partially complete n-ary knowledge
graphs in new domains is an expensive and time-
consuming requirement of link prediction (Nichol-
son and Greene, 2020).

Here, we present Hyper Relational Link Pre-
diction using an auxiliary Entity Linked Corpus
(Hyper-ELC), the first fully natural-language-based
approach applied to KG link prediction bench-
marks containing qualifiers and literals. We make
use of model pre-training to leverage the large cor-
pora directly available to language models, apply-
ing a simple entity-linking approach to prime the
model for later inference on named KG entities and
to enable link prediction without access to any n-
ary training set. To our knowledge, this is the first
approach to link prediction without KG supervi-
sion. We also use fine-tuning to specifically focus
Hyper-ELC on the types of queries represented
in the training set. By using KG link prediction
datasets, we can directly compare language models
to KG models specifically designed to take advan-
tage of additional context in form of qualifiers and
literals. Our results show competitive performance
compared to these link prediction models, suggest-
ing that language models provide a performant and
practical alternative to KG models for link predic-
tion beyond triple-based datasets.

2 Related Work

2.1 N-Ary Link Prediction

Several models have been developed over the past
decade to learn from and infer on n-ary relation-
ships. This has been driven by the recognition that
knowledge bases like Freebase (Bollacker et al.,
2008) contain a sizeable number of relationships

involving more than two named entities. Wen et al.
(2016) generalized the triple-based translational
embedding model TransH (Wang et al., 2014) to
hyper-relational facts. Zhang et al. (2018) extended
this approach using a binary loss learned from the
probability that any two entities participate in the
same n-ary fact.

Unlike these earlier embedding-based models,
NaLP (Guan et al., 2019) addressed the n-ary link
prediction problem with a neural network, repre-
senting n-ary facts as permutation-invariant sets
of role-value pairs. Liu et al. (2020) developed
the first tensor decomposition-based approach to
the problem, adapting earlier tensor decomposition
methods applied to link prediction in triple-based
KGs. HINGE (Rosso et al., 2020) applied a con-
volutional network to the underlying triples and
qualifiers in an n-ary fact.

More recently, several specialised n-ary pre-
diction models have been developed by combin-
ing knowledge graph embeddings with attention-
based transformer architectures (Vaswani et al.,
2017); namely StarE (Galkin et al., 2020), Hy-
Transformer (Yu and Yang, 2021) and GRAN
(Wang et al., 2021b). In the StarE model, embed-
dings are fed through a graph neural network before
entering the transformer layer. Hy-Transformer and
GRAN instead feed the processed embeddings into
the transformer directly. Hy-Transformer also adds
a qualifier prediction-based auxiliary task, while
GRAN modifies the transformer attention model to
represent the link structure of the n-ary input. To-
gether, these three transformer-based models have
achieved state-of-the-art performance on the n-ary
link prediction task.

Hyper-ELC differs from other n-ary link predic-
tion models in that it represents facts in natural
language, eliminating the need for specialised en-
coders or graph-based methods and introducing
the ability to pre-train on massive natural language
corpora. By representing facts as token sequences,
earlier modelling constraints can be avoided; e.g.
multiple arities can be supported with the same
model (unlike Liu et al. (2020)), and structural
information can be retained in token positional en-
codings, unlike Wen et al. (2016) and Guan et al.
(2019). The pre-training introduced here also en-
ables prediction on the downstream task without
access to any n-ary training set. Nonetheless, like
the most recent approaches, we also use a trans-
former architecture. In particular, Hyper-ELC is
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most similar to Hy-Transformer and GRAN, with
named graph entities exchanged for word tokens
with positional embeddings.

2.2 Literals in Link Prediction
Parallel to research on incorporating qualifiers, sev-
eral groups have investigated leveraging numerical
attributes of entities in triple-based KG comple-
tion tasks (García-Durán and Niepert, 2017; Tay
et al., 2017; Wu and Wang, 2018; Kristiadi et al.,
2019). In these models, the numerical literals are
general attributes associated with one of the enti-
ties involved in the triple (e.g. the latitude of a city
entity); conversely, in the tasks we consider here,
literals directly participate in n-ary facts. Nonethe-
less, we note that our approach could be straight-
forwardly applied to numerical attributes as well,
by inserting them into the textual templates.

Hyper-ELC also differs from previous models
by using a standard word-piece tokenisation ap-
proach to efficiently parse the literal data. While
some literals, like 1962, are single tokens in the
BERT base uncased vocabulary, less commonly
discussed dates are split into multiple tokens - for
example 1706 becomes 170 and ##6. Additionally,
pre-training gives the model additional context to
learn the relationships between dates - e.g. that sim-
ilar people and events are discussed in sentences
containing 1961 and sentences containing 1962,
revealing a similarity.

Notably, literal attributes composed of textual de-
scriptions have also been investigated in KG com-
pletion, e.g. Xie et al. (2016); Xu et al. (2016).
While we focus on numerical literals here, our nat-
ural language-based approach could also be ex-
tended to general textual attributes.

2.3 Language Models for Link Prediction
The success of large pre-trained language models
has motivated multiple investigations into whether
they can be used as knowledge bases. Petroni et al.
(2019) proposed a benchmark for evaluating factual
knowledge present in LMs with cloze-style queries.
Their work has been further extended to probing ar-
eas including semantic (Ettinger, 2020; Wallace
et al., 2019), commonsense (Tamborrino et al.,
2020; Forbes et al., 2019; Roberts et al., 2020),
and linguistic (Lin et al., 2019; Tenney et al., 2019)
knowledge. Furthermore, in order to improve the
performance of LMs in extracting factual knowl-
edge, Jiang et al. (2020) and Shin et al. (2020)
proposed methods for automatic discovery and cre-

ation of cloze-style queries. This body of work
focuses mainly on predicting tokens for filling in
blanks, rather than ranking unique entity IDs, as
we do here, and therefore requires an entity dis-
ambiguation post-processing step. It also focuses
on comparison to open-domain question answering
or relation extraction approaches rather than link
prediction.

Several groups have proposed using LMs for
triple-based link prediction. Yao et al. (2019) pro-
posed KG-BERT, which encodes a triple as a se-
quence, where the entities and relation are sepa-
rated by a [SEP] token and represented by their
textual descriptions. They train to classify whether
an individual triplet is correct or not, scoring every
(h, r, ?) and (?, r, t) triplet to be ranked. This ap-
proach can involve millions of inference steps for
a single completion. This work was extended for
improved efficiency and performance in Kim et al.
(2020); Wang et al. (2021a). This methodology,
including entity separation and precise entity de-
scriptions, diverges from plain masked text and is
therefore incompatible with our simple pre-training
approach that enables n-ary link prediction without
access to a training knowledge graph.

An alternative approach to triple-based link pre-
diction is MLMLM (Clouâtre et al., 2021), which
also improves on KG-BERT’s inference complex-
ity with respect to the number of entities in the KG.
They instead use the MLM setup to generate the
logits for the tokens required to rebuild all of the
entities. These logits are used alongside mean like-
lihood sampling to rank all entities. The head entity
prediction input includes the head entity mask, re-
lation, tail entity and tail entity definition. The
tail entity prediction input is analogous. Unlike
KG-BERT and its extensions, this method shares
the MLM setup with our approach, however they
predict tokens rather than unique entity ids. The
maximum number of tokens of all of the entities is
predicted for each example - predicting the pad to-
ken if necessary. This has the benefit that they can
predict previously unseen entities (as long as they
have fewer than the maximum number of tokens).
However, again, this work requires entity disam-
biguation to go from tokens to a unique entity.

Finally, none of the language model approaches
discussed above have been adapted to higher order
link prediction with qualifiers and literals. Hyper-
ELC additionally extends upon these approaches
with a task-specific pre-training approach that en-
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Figure 2: Overview of the training procedure. The names in brackets below the labels are purely informative; as
in the typical link prediction setup, we rank the unique identifiers. [Left] Entities of interest in the pre-training
corpus are linked and replaced with mask tokens; the model is trained to predict the corresponding named entity of
interest. [Right] The finetuning task is the same, but performed on automatically generated sentences from the train
set. Surface forms are used for the other entities in each fact.

ables us to perform this task without access to a
training knowledge graph.

3 Definitions

A hyper-relational (n-ary) graph, made up of hyper-
relational facts, can be defined as G = (V,R, E),
where V is the set of vertices (entities), R is the
set of relations, and E is a set (e1, . . . , en) of edges
with ej ∈ V ×R×V ×P(R×V) for 1 ≤ j ≤ n.
Here, P denotes the power set.

A hyper-relational fact ej ∈ E is written as a tu-
ple (s, r, o,Q), with s, o ∈ V and r ∈ R. Here, Q
is the set of qualifier pairs (qri, qvi) with qualifier
relations qri ∈ R and qualifier values qvi ∈ V . An
example of a fact in this representation would be
(StephenHawking (s), AwardReceived (r), Edding-
tonMedal (o), (PointInTime (qr1), 1975 (qv1))).

4 Methods

Our approach consists of three stages:

1. Pre-training to predict the unique identifier
of a masked entity in the sentences of an aux-
iliary entity linked corpus.

2. Finetuning on sentence-like natural language
templates created from the training set of the
n-ary link prediction dataset.

3. Evaluation on the test set of the n-ary link
prediction dataset using the same format of
natural language templates.

For a visual representation of the process, see
Figure 2.

4.1 Pre-Training

Our method may use any corpus that references the
entities of interest and any entity linking methodol-
ogy for recognising them within the corpus. As we
use the entity linked corpus only in pre-training and
not for evaluation, we do not require it to be gold
standard. However, increased coverage and preci-
sion of the linking may result in better downstream
performance.

Each pre-training example is a tuple consisting
of a unique entity ID and a masked sentence in
which that entity occurs. In the sentence, the span
of every occurrence of the entity of interest is re-
placed by a “[MASK]” token. A single unique
entity is masked in each example while all other
entities are left as plain text. For example, the label
for the entity StephenHawking is Q17714 and a
masked sentence would be: “[MASK] (8 January
1942 – 14 March 2018) was an English theoretical
physicist, cosmologist, and author.”

4.2 Finetuning and Evaluation

In order to use our pre-trained language model for
the n-ary link prediction task, we must format the
query in natural language as a cloze-style sentence.
This may be done in any way that represents the
query, but linguistic alignment with the pre-training
corpus may benefit performance (Jiang et al., 2020;
Shin et al., 2020).
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Dataset Statements Statements w/ Qualifiers (%) Statements w/ Literals (%) Entities
Train Test Train Test Train Test

WikiPeople Pre 37.4M 380,396 — — — — 29,720
WikiPeople 294,439 37,712 2.6 2.6 0 0 34,839
WikiPeople Lit 294,439 3,906 12.1 100 10.9 100 34,839

WD50K Pre 48.6M 494,881 — — — — 42,800
WD50K 166,435 46,159 13.8 13.1 0 0 47,155
WD50K (100) 22,738 5,297 100 100 0 0 18,791

Table 1: Statistics of the datasets used in the experiments. The “Pre” and “Lit” labels on the datasets indicate
pre-training and literal datasets, respectively. “M” indicates million. Validation set statistics have been left out for
brevity, but they follow a similar pattern to the test set statistics. In the original WikiPeople source data, 10.9% of
statements have literals in the qualifiers. The source data also includes 12,363 (3.3%) statements with a literal in the
tail position, which are removed from all datasets.

One simple approach is to space separate the enti-
ties, relationships and roles in the (s, r, o,Q) order
(Figure 2) described in Section 3. This requires that
each of the entities have associated textual names,
which is usually the case in knowledge graphs.

4.3 Model

Our models are all based on the Transformer ar-
chitecture (Vaswani et al., 2017), more specifically
BERT (Devlin et al., 2019). However, we found
a smaller version of the BERT architecture to be
more stable during pre-training, which enabled a
higher learning rate and larger batch size (see Table
5 in the Appendix). We use the BERT base uncased
word-piece tokenisation for all text-based models.

We use a single linear layer as a decoder, fol-
lowed by a softmax. For optimisation, we leverage
a standard categorical cross-entropy loss. All of
our models are trained with the Adam optimiser,
and are regularised via dropout and gradient clip-
ping. We follow the same setup during pre-training
and finetuning. We believe that this alignment be-
tween pre-training and the downstream task is part
of what makes this approach so powerful. Note
that the pre-trained model can also be applied on
the downstream task even without additional fine-
tuning on a training graph (Section 6.3).

5 Datasets

5.1 WikiPeople and WD50K

For finetuning and evaluation we use two n-ary
link prediction datasets: WikiPeople1 (Guan et al.,
2019) and WD50K2 (Galkin et al., 2020). Both

1Downloaded from: https://github.com/
gsp2014/NaLP/tree/master/data/WikiPeople

2Downloaded from: https://zenodo.org/
record/4036498

WikiPeople and WD50K are extracted from Wiki-
data and contain a mixture of binary and higher-
order facts. WikiPeople is a commonly used bench-
mark containing facts related to entities represent-
ing humans.

WD50K was created by Galkin et al. (2020)
from the 2019/08/01 Wikidata dump3. It was de-
veloped with the goal of containing a higher pro-
portion of non-literal higher-order relationships. It
is based on the entities from FB15K-237 (Bordes
et al., 2013) that have a direct mapping in Wikidata.

In order to transform the facts in these datasets
into natural language queries, we use the English
Wikidata names for each of the entity and relation-
ship/role IDs4. We then create templates in the
simple manner described in Section 4.2. We find
that while the queries are not particularly natural
in their structure and vocabulary, their meaning
remains largely the same (an example template is
shown in Figure 2, right).

5.2 Non-Named Entity Qualifiers

Galkin et al. (2020) noted that most of the qualifier
values in WikiPeople are literals, in this case date-
time instances. Literals appear in approximately
13% of the statements in the WikiPeople dataset,
but they are typically ignored in knowledge graph
embedding approaches (Rosso et al., 2020). If the
literals are ignored, only 2.6% of statements in
WikiPeople are higher-order. None of the previous
approaches to this dataset encode literals.

Note that, for evaluation purposes, alternative
correct entities are filtered from the ranking at eval-
uation time when assessing a given potential an-
swer (Bordes et al., 2013). This has implications

3https://dumps.wikimedia.org/wikidatawiki/20190801/
4https://www.wikidata.org/wiki/Special:EntityData
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for treating literals. Consider the case where literals
are ignored: when evaluating whether the model
correctly predicted EddingtonMedal as a comple-
tion for the fact (StephenHawking, AwardReceived,
[MASK], (PointInTime, 1975)), the entity Cop-
leyMedal would be filtered out of the ranking if
the fact (StephenHawking, AwardReceived, Cop-
leyMedal, (PointInTime, 2006)) also exists in the
dataset. This occurs because the PointInTime qual-
ifier is ignored, so that the subject and relation of
the facts are identical (and both medals are equally
valid completions). When literal-containing qual-
ifiers are not ignored, the facts are distinct, with
only one correct answer for each.

The primary WikiPeople dataset used here was
adapted by Rosso et al. (2020) from the original
WikiPeople (Guan et al., 2019). To investigate
whether this literal data can be leveraged by our
model, we generated a new dataset from a subset
of WikiPeople that we call WikiPeople Literal. Un-
like in Rosso et al. (2020) and Galkin et al. (2020),
where literal qualifier terms are ignored when fil-
tering the rankings for evaluation, we include the
literal terms during filtering in WikiPeople Literal.
Additionally, we evaluate only on facts that include
at least one literal. This focus enables us to probe
the model’s ability to interpret literal qualifiers.

Following Rosso et al. (2020), we drop all state-
ments that contain literals in the main triple.

5.3 Entity Linked Corpus

For pre-training we create an entity linked corpus
based on the 2019/08/01 English Wikipedia5 dump
used in BLINK (Ledell Wu, 2020). We process
the XML with Gensim6, which we adapt to leave
article hyperlinks in the text.

For simplicity, we use a regex to find occurrences
of the entities of interest in the large hyperlinked
Wikipedia corpus. For each article we extract the
title entity and all of the hyperlinked entities, along
with their surface forms in the text and their title
name in the hyperlink. We find the wikidata IDs for
each of these entities7 and we retain those entities
that are in our downstream n-ary dataset. We then
split the article into sentences and run a case insen-
sitive regex over each sentence to find the spans of

5http://dl.fbaipublicfiles.com/BLINK/enwiki-pages-
articles.xml.bz2

6https://github.com/RaRe-Technologies/gensim/
blob/develop/gensim/corpora/wikicorpus.py

7https://dumps.wikimedia.org/wikidatawiki/latest/
wikidatawiki-latest-wb_items_per_site.sql.gz

these entities and link them to their Wikidata IDs,
using the ID to surface form/title name dictionaries.
Given this collection of entity linked sentences, we
create the pre-training examples as described in
Section 4.1.

6 Experiments

Throughout this section we compare to the fol-
lowing external baselines developed for n-ary link
prediction: (i) NaLP-Fix (Rosso et al., 2020), (ii)
HINGE (Rosso et al., 2020), (iii) StarE (Galkin
et al., 2020), (iv) Hy-Transformer (Yu and Yang,
2021), and (v) GRAN (Wang et al., 2021b). NaLP-
Fix is an improved version of the original NaLP
model (Guan et al., 2019). None of these methods
make predictions over natural language and none
of them encode literals.

The metrics that we use are based on predicting
only the subject and object of the hyper-relational
facts. We follow the filtered setting introduced by
Bordes et al. (2013) as discussed in Section 5.2
to ensure that corrupted facts are not valid facts
from the rest of the dataset. For each test example,
we filter from the model’s predicted ranking all
of the entities that appear in the same position in
otherwise identical examples in either the training,
validation or test set (except the test entity of inter-
est). We consider mean reciprocal rank (MRR) and
hits at 1 and 10 (H@1 and H@10 respectively).

6.1 Link Prediction with Literals

In order to showcase the expressive power of nat-
ural language as a representation, we employ an
experiment that involves making predictions with
non-named entity qualifier terms (i.e. literals). We
use an evaluation dataset (described in Section 5.2)
that contains only the examples in the WikiPeople
dataset that have at least one literal qualifier. Addi-
tionally, we consider these qualifiers when filtering
the ranking at evaluation time, unlike the typical
WikiPeople evaluation.

To the best of our knowledge, no existing works
leverage literals in qualifiers, so no strong base-
lines exist. We therefore use two baselines that
cannot leverage literals as comparison points. The
first, Hyper-ELC [UNK], is an ablated version of
our model that replaces any literal entity with the
[UNK] token. We also used the publicly-available
StarE repository 8 to reproduce StarE performance

8Hy-Transformer did not have a published codebase, and
we were unable to successfully run the published GRAN code.

92



Method WikiPeople Literal WikiPeople

MRR H@1 H@10 MRR H@1 H@10

NaLP-Fix — — — 0.420 0.343 0.556
HINGE — — — 0.476 0.415 0.585
StarE 0.246 0.161 0.424 0.491 0.398 0.648
Hy-Transformer — — — 0.501 0.426 0.634
GRAN — — — 0.503 0.438 0.620
Hyper-ELC [UNK] 0.211 0.141 0.347 0.415 0.325 0.566

Hyper-ELC 0.322 0.226 0.519 0.440 0.348 0.592

Table 2: Performance comparison on the two WikiPeople-derived datasets. WikiPeople Literal evaluates only
on examples with literal qualifiers (about 10.9% of the full test set) and filters ranking for evaluation with literals
included. Methods above the line can encode literal terms, while methods below can’t.

on literal-containing qualifiers after adding them
back into the dataset (note that StarE achieves state-
of-the-art on the full dataset on Hits@10).

On the WikiPeople Literal dataset, Hyper-ELC
significantly outperformed both StarE and Hyper-
ELC [UNK] (Table 2, first three columns). In par-
ticular, the performance boost over the [UNK] ab-
lation illustrates that our model specifically makes
use of the information represented in literal quali-
fiers.

Hyper-ELC also performed reasonably well on
the standard WikiPeople dataset (Table 2, last three
columns), outperforming NaLP-Fix, but with lower
overall performance than the most recent baselines
(StarE, Hy-Transformer and GRAN).

To investigate the differences between Hyper-
ELC and the other state-of-the-art baselines on
WikiPeople, we examined the MRR performance
ratio of StarE compared to Hyper-ELC for the
relationship-entity position (i.e. head or tail) pairs
that occur more than 500 times in the evaluation
set (see Appendix, Table 6 in the appendix). No-
tably, Hyper-ELC displayed the most pronounced
performance deficit compared to StarE on inferring
correct entities in one-to-many relationships with
many possible answers. In Section 7, we discuss
potential reasons for this deficit and possible future
improvements.

6.2 Link Prediction with Named Entities Only

Next, we evaluated Hyper-ELC on the WD50K
datasets (Table 3), which do not contain any lit-
eral entities. WD50K (100) has been created by
filtering WD50K to have 100% higher order rela-
tionships.

In order to understand the value of the pre-
training and finetuning steps, we consider multiple
ablation models:

Hyper-ELC (only P): a pre-trained version of
Hyper-ELC without any exposure to the templated
finetuning data (the train set).

Hyper-ELC (only F): a randomly initialised (i.e.
only finetuned) version of Hyper-ELC.

BERT (only F): a BERT model (base uncased)
with its own initialisation followed by a randomly
initialised classification layer, finetuned.

On the full WD50K dataset, Hyper-ELC
achieved an MRR of 0.354, nearly identical to the
state-of-the-art Hy-Transformer with 0.356. While
Hy-Transformer achieved the best performance on
Hits@1, Hyper-ELC achieved state-of-the-art on
Hits@10.

On the smaller, purely hyper-relational WD50K
(100) dataset, Hyper-ELC performed comparably
to StarE but was outperformed by Hy-Transformer
(see discussion in Section 7).

6.3 Link Prediction without a Training Graph

Finally, we focus specifically on hyper-relational
link prediction with the ablated version of Hyper-
ELC exposed only to the pre-training data (Table
3, last row, and Table 4). Hyper-ELC (only P) has
some ability to perform inference, without any ac-
cess to the training knowledge graph; it achieves
an MRR of 0.087 and 0.207 on WD50K and
WD50K (100) respectively, compared to 0.0003
and 0.0006 for the random model and 0.356 and
0.699 for the state-of-the-art Hy-Transformer. This
approach could be very powerful in domains where
expensive and time consuming curation of hyper-
relational knowledge graphs is not feasible.

The significant performance difference between
Hyper-ELC and Hyper-ELC (only P) can likely be
partially attributed to the distributional shift in the
language from pre-training to the templated for-
mat used in finetuning and evaluation on the “Ba-
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Method WD50K WD50K (100)

MRR H@1 H@10 MRR H@1 H@10

NaLP-Fix 0.177 0.131 0.264 0.458 0.398 0.563
HINGE 0.243 0.176 0.377 0.492 0.417 0.636
StarE 0.349 0.271 0.496 0.654 0.588 0.777
Hy-Transformer 0.356 0.281 0.498 0.699 0.637 0.812
Hyper-ELC 0.354 0.273 0.508 0.642 0.564 0.789
Hyper-ELC (only F) 0.283 0.214 0.415 0.549 0.475 0.688
BERT (only F) 0.29 0.22 0.43 0.609 0.536 0.748

Random < 0.001 < 0.0001 < 0.001 < 0.001 0.00 < 0.001
Hyper-ELC (only P) 0.087 0.051 0.157 0.207 0.129 0.360

Table 3: Performance comparison on the WD50K datasets. We train and test on the dataset indicated following the
approach used by the baselines. Model names “only P” and “only F” indicate that only pre-training or finetuning
was performed respectively. Methods above the line use the n-ary training graph, while those below do not.

Method Dataset
WD50K

(100)

MRR

Random — < 0.001

Hyper-ELC (only P) Basic 0.207
Hyper-ELC (only P) Cleaned 0.232

Hyper-ELC Basic 0.642
Hyper-ELC Cleaned 0.645

Table 4: With some minor adjustments to the word-
ing of some of the most frequent relationships/roles,
to move from the “Basic” to the “Clean” dataset, we
can boost performance for the model that doesn’t have
access to graph based training data. Here, “only P” indi-
cates only pre-training, without finetuning.

sic” dataset, where the templates are often stilted
and ungrammatical. To test the hypothesis that
improved templates could drive improved perfor-
mance, we considered 37 of the roles/relationships
that occur most frequently in the WD50K (100)
training dataset and altered some to make the tem-
plates for the “Clean” dataset to be more similar
to the natural language occurring in the Wikipedia
pre-training corpus; for instance, we improved the
grammar with stop words like “the”. Table 7 in
the appendix shows the 37 roles/relationships that
we considered and the changes that we made. In
Table 4 we can see a performance increase from
0.207 MRR to 0.232 for Hyper-ELC (only P) with
these simple template changes. However, we saw
only a minimal improvement when finetuning was
introduced, from 0.642 MRR to 0.645, suggesting
that the model adapts effectively to the templated
linguistic style with finetuning.

7 Discussion and Future Work

Here, we presented Hyper-ELC, the first purely
natural language-based approach to n-ary link pre-
diction and the first model to leverage literals in
n-ary qualifiers. The natural language-based ap-
proach allows us to take advantage of pre-training
on massive entity-linked corpora and easily lever-
age the detail present in hyper-relational facts.

Hyper-ELC matched state-of-the-art perfor-
mance on WD50K and established state-of-the-art
on a version of WikiPeople containing only literal
qualifiers. However, it did not reach the perfor-
mance of existing KG models on the full WikiPeo-
ple dataset. As shown in Table 6, Hyper-ELC tends
to perform significantly worse than StarE on one-to-
many relationships; e.g. ([MASK], SexOrGender,
Male). One hypothesis for this result is that the
softmax loss function used in training the model
assumes a single correct answer out of all entities
for a given masked template; for each unique train-
ing example, all competing entities (including valid
ones) are treated as false. The objective function
and negative sampling approach are therefore po-
tential areas for investigation in future work.

In addition, we expect performance improve-
ments by increasing coverage of relevant informa-
tion for the entities of interest in the pre-training
dataset. The WD50K and WikiPeople pre-training
datasets only have 88.2% and 85.3% coverage of
the WD50K and WikiPeoople entities, respectively.
This could be achieved by improving the quality
of the entity linking methodology used. Simple
improvements could be made to our regex method,
such as including the WikiData surface forms in
the regex dictionaries. Even greater improvements
could likely be made with feature based or neural
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entity linking methodologies.
Finally, we found that Hy-Transformer had the

best performance on WD50K (100), though Hyper-
ELC performed similarly to or better than the other
KG baselines. Yu and Yang (2021) propose that Hy-
Transformer’s auxiliary masked qualifier prediction
task allows it to better leverage the train set, which
could explain why Hy-Transformer performs well
on the smaller train set in WD50K (100). A similar
qualifier prediction task could also be investigated
in the context of a language model, which we leave
for future work.

Overall, our results show how a language model
can leverage weakly relevant data (an entity-linked
corpus) to reach strong performance on a complex
link prediction task. In particular, we note that
many practical relational inference problems do not
exist in isolated domains where only a structured
KG model is available; rather, they are loosely in-
formed by massive, readily available unstructured
natural language datasets. In these cases, the sheer
quantity and variety of data available to language
models, combined with their inherent flexibility
in representing context, may swing the balance in
their favour.
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Hyperparameter Hyper-ELC BERT

lr 0.0001 0.00001
gradient clip 1 1
pre-FF dropout 0.2 0.2
max sentence length 100 100
batch size 512 128
ES patience 3 3
ES monitor quantity val mrr val mrr
max pretrain epochs 20 —
hidden size 256 768
intermediate size 512 3072
# attention heads 4 12
# hidden layers 4 12

# encoder parameters 10M 109M
# decoder parameters 12M 37M
WD50K
# decoder parameters 9M 27M
WikiPeople

Table 5: Hyperparameters used for pre-training and
finetuning models. During pre-training the model was
trained with early stopping and a maximum number of
epochs, but for finetuning only early stopping was used.
Only learning rate (lr) was tuned. [0.00001, 0.0001,
0.001] were experimented with and the maximum learn-
ing rate that led to convergence was used. FF indicates
the feed-foward layer and ES indicates early stopping.
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MRR Ratio (StarE/Hyper-ELC) Count Relationship (head/tail)

0.23 1205 given name (t)
0.69 691 nominated for (h)
0.93 1038 educated at (h)
0.96 1175 member of sports team (h)
0.98 586 described by source (t)
0.99 1982 sex or gender (t)
0.99 542 family (t)
0.99 691 nominated for (t)
1.01 1688 country of citizenship (t)
1.02 1075 languages spoken, written or signed (t)
1.05 1019 place of birth (t)
1.05 596 work location (t)
1.05 606 position held (t)
1.08 695 father (t)
1.08 883 place of death (t)
1.09 606 position held (h)
1.1 1205 given name (h)
1.11 6657 sibling (t)
1.15 3892 occupation (t)
1.17 1038 educated at (t)
1.17 1492 bmember of (t)
1.17 6657 sibling (h)
1.18 4018 award received (t)
1.19 875 child (t)
1.19 875 child (h)
1.19 695 father (h)
1.24 4018 award received (h)
1.44 542 family (h)
1.47 3892 occupation (h)
1.47 883 place of death (h)
1.47 1019 place of birth (h)
1.5 1492 member of (h)
1.58 586 described by source (h)
1.63 1175 member of sports team (t)
2.09 1075 languages spoken, written or signed (h)
2.18 1688 country of citizenship (h)
2.23 596 work location (h)
6.77 1982 sex or gender (h)

Table 6: MRR ratio between Hyper-Elc and StarE for relationship head/tail prediction combinations on WikiPeople.
Limited to the relationship head/tail pairs that occur more than 500 times in the evaluation set.
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ID Train Count Original Name Clean Name

P805 9204 statement is the subject of is the subject of
P1686 9204 for work for their work on
P1411 5590 nominated for was nominated for the
P1346 4867 winner winner was
P530 3515 diplomatic relation diplomatic relations with
P166 3432 award received received the award of
P2453 3011 nominee the nominee was
P3831 1856 object has role had the role of
P459 1755 determination method which was determined by
P518 999 applies to part for the part of
P453 989 character role played the character
P17 879 country in the country of

P2293 859 genetic association is genetically associated with
P6942 736 animator (movie) animator
P3092 682 film crew member (movie) film crew member
P161 537 cast member (movie) cast member
P750 477 distributed by is distributed by
P421 414 located in time zone is located in the time zone
P725 409 voice actor —
P1264 400 valid in period during the period of
P366 297 use used for
P2852 259 emergency telephone number emergency telephone number is
P159 241 headquarters location is located in
P1552 237 has quality has the quality
P642 221 of —
P131 204 located in the administrative in

territorial entity
P39 202 position held held the position of
P69 200 educated at was educated at
P812 199 academic major with academic major
P156 187 followed by is followed by
P5800 178 narrative role had the narrative role of
P31 175 instance of is an instance of

P1365 167 replaces —
P674 166 characters character
P155 166 follows —
P1366 157 replaced by was replaced by
P19 153 place of birth place of birth is

Table 7: 37 of the roles/relationships that occur most frequently in the WD50K (100) train dataset were considered
and some were altered to make templates more similar to natural language - for example improving grammar.
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