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Abstract

Existing zero-shot cross-lingual transfer meth-
ods rely on parallel corpora or bilingual dic-
tionaries, which are expensive and impractical
for low-resource languages. To disengage from
these dependencies, researchers have explored
training multilingual models on English-only
resources and transferring them to low-resource
languages. However, its effect is limited by the
gap between embedding clusters of different
languages. To address this issue, we propose
Embedding-Push, Attention-Pull, and Robust
targets to transfer English embeddings to vir-
tual multilingual embeddings without semantic
loss, thereby improving cross-lingual transfer-
ability. Experimental results on mBERT and
XLM-R demonstrate that our method signifi-
cantly outperforms previous works on the zero-
shot cross-lingual text classification task and
can obtain a better multilingual alignment.

1 Introduction

In recent years, advances in multilingual models
such as mBERT (Devlin et al., 2019), XLM (Con-
neau and Lample, 2019), XLM-R (Conneau et al.,
2020), etc., after being fine-tuned with annotated
data, have enabled significant improvements in
many cross-lingual tasks. However, due to the
lack of annotated data, some tasks in low-resource
languages have not enjoyed this technological ad-
vancement. To solve this issue, the academic
and industrial community began to focus on zero-
shot cross-lingual transfer learning (Huang et al.,
2019; Artetxe et al., 2020), which aims to fine-tune
multilingual models with annotated data in high-
resource languages and obtain a nice performance
in low-resource language tasks.

Some works aligned word embeddings between
high- and low-resource languages through addi-
tional parallel sentence pairs (Artetxe and Schwenk,
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Figure 1: (a) Different languages clusters in mBERT.
(b) The relative positions of "nature", "language" and
"processing" are similar in English, Chinese and Irish
(Cao et al., 2020). (c) Using synonym augmentation to
train a robust region covering words in other languages.
(d) We align different languages and construct a suitable
robust region by pushing the embeddings away and
pulling the relative distance among words.

2019; Wei et al., 2021; Chi et al., 2021; Pan et al.,
2021) or bilingual dictionaries (Cao et al., 2020;
Qin et al., 2020; Liu et al., 2020), so that high-
resource fine-tuned models can be transferred to
low-resource languages. Although this approach
has achieved excellent results in many languages,
parallel corpora and bilingual dictionaries are still
prohibitively expensive, rendering it impracticable
in some minority languages.

To disengage from the dependence on parallel
corpora or bilingual dictionaries (Wu and Dredze,
2019; Hu et al., 2020), some studies have found
that syntactic features in high-resource languages
can improve zero-shot cross-lingual transfer learn-
ing (Meng et al., 2019; Subburathinam et al., 2019;
Ahmad et al., 2021a,b). Libovický et al. (2020)
found that the embeddings of different languages
are clustered according to their language families,
as shown in Figure 1a and 1b, which demonstrated
that different languages are not aligned perfectly
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in mBERT (Deshpande et al., 2021). Huang et al.
(2021) tried adversarial training and randomized
smoothing with English synonym augmentation to
build robust regions for embeddings in the mul-
tilingual models, as illustrated in Figure 1c. In
this way, models can output similar predictions for
different language embeddings in the same robust
region even they are not well aligned. However, the
transferability of English synonym augmentation
is limited because its robust region remains close
to the English cluster, as shown in Figure 1c.

In this work, we select English as a high-
resource language and follow the studies that do not
require additional parallel corpora or bilingual dic-
tionaries to improve cross-lingual transfer learning
performance with minimal cost. For this purpose,
three strategies are proposed to enlarge the robust
region of English embeddings. The first strategy
is called Embedding-Push, which pushes the em-
bedding of English to other language clusters. The
second is Attention-Pull, which constrains the rela-
tive position of the word embeddings to prevent the
meaning from straying. The last strategy, named
Robust target, introduces a Virtual Multilingual
Embedding (VME) to help the model build a suit-
able robust region, as shown in Figure 1d.

Experimental results on mBERT and XLM-R
demonstrate that our method effectively improves
the zero-shot cross-lingual transfer on classification
tasks and outperforms a series of previous works.
In addition, case studies show that our method im-
proves the model through multilingual word align-
ment. Compared with existing works, our method
has the following advantages. First, our method
only needs English resources, which is suitable for
low-resource languages. Second, our method can
induce alignments in many languages without spec-
ifying the target language. Finally, our method is
simple to implement and achieves effective experi-
mental results. Our code is publicly available1.

2 Method

Given an English training batch B, for a specific
x ∈ B consisting of words (x1, x2, x3), we first fol-
low Huang et al. (2021) to generate an augmented
example xa = (xa1, x

a
2, x

a
3) by randomly replacing

xi with xai from the pre-defined English synonym
set (Alzantot et al., 2018). Then, we introduce three
objective functions to get the Virtual Multilingual
Embedding (VME) that provides a suitable robust

1https://github.com/KB-Ding/EAR
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Figure 2: The two networks have tied weights. VMEs
expand robust regions (orange circle) by aligning
semantic-similar words in other languages. Note that
VMEs do not specify the target language but improve
multilingual performance, as shown in section 3.3.

region for zero-shot cross-lingual classification task
as shown in Figure 2. We describe the details in
the following subsections.

2.1 Embedding-push target
The Embedding-Push target aims to make English
embeddings leave their original cluster and robust
region by pushing away (x,xa) in the embedding
space. The pushed embedding can be viewed as
the VME. The loss function is (1).

ℓEPT = − 1

|B|
∑
x∈B

(M(Ex)−M(Exa))2 (1)

where Ex, Exa denote the embedding output of x
and xa, M is the mean-pooling method.

2.2 Attention-pull target
The self-attention matrices contain rich linguistic
information (Clark et al., 2019) and can be regarded
as a 1-hop graph attention between the hidden
states of words (Vaswani et al., 2017; Veličković
et al., 2018). The attention matrix represents the
information transfer score between each pair of
words, we regard it as the pulling force, so the
attention matrix determines the relative linguistic
positions of words in a sentence. We introduce the
Attention-Pull target to encourage the relative lin-
guistic position among (xa1, x

a
2, x

a
3) to be similar to

(x1, x2, x3) by fitting the middle layer multi-head
attention matrices, as (2).

ℓAPT =
1

|B|H
∑
x∈B

H∑
i

(
Ai

x −Ai
xa

)2
(2)
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Model en ar bg de el es fr hi ru sw th tr ur vi zh avg.

mBERT† 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
+ADV† 81.9 64.9 68.3 71.7 66.5 74.4 74.5 59.6 68.8 48.8 50.6 61.7 59.2 70.0 69.4 66.0
+RS-RP† 82.6 65.4 68.7 70.5 67.2 75.0 74.1 59.8 69.5 48.4 50.5 59.7 57.9 70.5 69.7 66.0
+RS-DA† 81.0 66.4 69.9 71.8 68.0 74.7 74.2 62.7 70.6 51.1 55.7 62.9 60.9 71.8 71.4 67.6
+Syntax‡ 81.6 65.4 69.3 70.7 66.5 74.1 73.2 60.5 68.8 - - 62.4 58.7 69.9 69.3 -
+ Ours 83.2 67.4 71.0 72.9 68.3 75.7 75.2 64.0 71.6 51.3 56.7 63.6 61.4 72.4 71.5 68.4

XLM-R∗ 84.0 72.6 78.9 77.0 76.5 78.6 78.2 70.3 76.4 65.0 72.4 73.4 67.6 75.5 75.0 74.8
+RS-DA∗ 83.5 73.2 78.2 77.1 76.9 79.2 79.0 72.3 76.9 66.5 73.2 73.1 68.2 76.4 75.1 75.3
+ Ours 84.6 74.5 78.8 77.5 77.0 79.4 79.5 72.6 76.8 66.7 73.9 74.7 68.7 76.4 75.8 75.8

Table 1: Zero-shot cross-lingual transfer results on the XNLI. We bold the highest accuracy scores (%). "†" and "‡"
are taken from (Huang et al., 2021) and (Ahmad et al., 2021a), respectively. "∗" is the result of our reimplementation.

Model en de es fr ja ko zh avg.

mBERT† 94.0 85.7 87.4 87.0 73.0 69.6 77.0 82.0
+ADV† 93.7 86.5 88.5 87.8 76.1 75.3 80.4 84.0
+RS-RP† 94.5 87.4 90.0 89.5 77.9 77.5 82.0 85.5
+RS-DA† 93.5 87.8 88.8 88.8 79.3 78.3 81.5 85.4
+Syntax‡ 94.0 85.9 89.1 88.2 75.8 76.3 80.7 84.3
+Ours 94.2 87.9 90.3 89.7 79.9 79.2 82.4 86.2

XLM-R∗ 94.4 88.9 89.8 89.2 78.2 78.4 81.4 85.7
+RS-DA∗ 94.7 88.8 89.7 90.0 78.7 80.2 82.3 86.3
+Ours 95.1 89.0 90.3 90.1 80.5 81.7 83.1 87.1

Table 2: Experimental results on the PAWS-X across
7 languages. "†" and "‡" are taken from (Huang et al.,
2021) and (Ahmad et al., 2021a), respectively. "∗" is
the result of our reimplementation.

where H is the number of attention head. Let L
denote the sequence length, Ai ∈ RL×L is the at-
tention matrix corresponding to the i-th head. ℓAPT

alleviates the semantic loss of the VME.

2.3 Robust target
The robust target aims to build a robust region with
the VME for the classification task. The hidden
state of [CLS] in the last layer is taken to classify,
as (3). The model is trained by (4).

Pn = softmax(Wh[CLS]
n + b) (3)

ℓCE = − 1

|B|
∑
x∈B

(y logPx + y logPxa) (4)

where W and b are trainable parameters. Pn is the
prediction for n. y denotes the gold label for each
x ∈ B. The final training objective is to minimize
three targets as (5):

ℓ = ℓCE + αℓEPT + βℓAPT (5)

where α and β are hyperparameters.

3 Experiment

3.1 Dataset and setup
We use mBERTbase and XLM-Rbase to evaluate our
method on XNLI (Conneau et al., 2018) and PAWS-

X (Yang et al., 2019) tasks, covering 17 languages.
We consider English as the source language and
other languages in test sets as low-resource target
languages. More training details are in Appendix
A. We set α=1, β=0.1 and apply the Attention-Pull
target at the 6-th layer. The analysis of hyperparam-
eters is in Appendix B. We measure results with
accuracy.

3.2 Baseline methods

For XLM-R, we consider RS-DA as a strong base-
line because it achieves the best performance. For
mBERT, we consider all the following baselines.

Adv: Huang et al. (2021) uses adversarial train-
ing to build a robust region for cross-lingual trans-
fer. They consider the most effective perturbation
in each iteration.

RS-RP: Huang et al. (2021) perturbs sentence
embeddings with randomly sampled δ to smooth
the classifier and build robust regions.

RS-DA: Huang et al. (2021) augments training
data with English synonym replacement to train a
smooth classifier and build robust regions.

Syntax: Ahmad et al. (2021a) provides syntax
features to mBERT by graph attention networks,
which helps cross-lingual transfer.

3.3 Main results

As illustrated in Table 1 and Table 2. We can ob-
serve that: 1) Our method achieves up to 4.2%
and 1.4% improvement on mBERT and XLM-
R, respectively, outperforming existing works and
demonstrating the effectiveness of our method. 2)
Multiple low-resource languages benefit from our
method. Based on mBERT, our method improves
not only English-like languages such as es and de
but also English-dissimilar (Littell et al., 2017) lan-
guages such as tr and ko. This result indicates
that the VME we proposed helps align different
languages in semantic space. 3) We avoid training
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Model en ar bg de el es fr hi

Ours 83.2 67.4 71.0 72.9 68.3 75.7 75.2 64.0
w/o EPT 82.8 67.0 71.2 72.7 67.6 75.5 75.1 63.4
w/o APT 82.4 66.5 70.8 72.8 68.5 76.0 75.1 63.4
w/o both 82.1 66.4 70.0 72.3 67.7 75.1 74.9 62.8

Model ru sw th tr ur vi zh avg.

Ours 71.6 51.3 56.7 63.6 61.4 72.4 71.5 68.4
w/o EPT 71.2 51.1 56.0 63.4 60.7 72.5 71.4 68.1
w/o APT 70.9 50.0 57.0 62.8 61.9 72.0 72.3 68.2
w/o both 70.8 48.3 54.6 61.0 61.0 71.5 71.5 67.4

Table 3: Ablation experimental results of our method
on the XNLI task. Experiments are based on mBERT.

each target language separately and achieves the
best results in one epoch using the English-trained
VME.

3.4 Ablation study

As shown in Table 3, we perform ablation studies
on Embedding-Push Target (EPT) and Attention-
Pull Target (APT). We find that both EPT and APT
are effective, but they can not perform well alone.
Besides, removing the APT causes improvement
in some languages, such as zh and ur. We attribute
this to the fact that the EPT-guided VME is unstable
without the APT, which improves performance in
some languages but drops in more languages such
as en, ar, ru, etc., resulting in poor average perfor-
mance. Thus EPT and APT need to be combined
for better performance.

4 Analysis

4.1 Case study

To study the effects of VME, we do the T-SNE
visualization for the word embeddings of paral-
lel sentences, as shown in Figure 3. Compared
with the RS-DA, our fine-tuned model aligns bet-
ter across languages, and words are closer to their
translations, leading to correct predictions. This
observation shows that the VME can effectively
help cross-lingual word alignment and improve the
performance of the model. We choose Arabic for
the case study because it can represent a class of
languages far apart from English.

4.2 Effect of EPT

To study the impact of EPT, we do the T-SNE visu-
alization using the embedding layer of mBERT. As
shown in Figure 4, some synonyms such as "cou-
pled / pair" and "energy / electricity" are pushed
away in the embedding layer trained with EPT,
and some synonyms are still close to their origi-
nal words. It indicates that the EPT push away

Case 4095

“ ریبك ”“high”

Case 1525

“ لضفأ ”“better”

PP (A) Predict: contradiction(A) Predict: neutral

✘(B) Predict: contradiction (B) Predict: entailment✘

Figure 3: T-SNE visualization for word embeddings
of English and Arabic translated sentences in XNLI
test sets. Blue dots are Arabic words. Red dots are
English words. (A) mBERT trained with our method.
(B) mBERT trained with RS-DA.

(A) (B)

energy

electricity retain

maintain

should

would coupled

pair

Figure 4: Visualization for English synonyms in the
XNLI dataset using the embedding layer of mBERT.
(A) Untrained. (B) Trained with our method.

Model en es de fr bg ru el th

EPT + APT 83.2 75.7 72.9 75.2 71.0 71.6 68.3 56.7
NT + APT 82.7 75.6 72.5 75.2 70.6 71.0 67.9 55.9
EPT + SRPT 83.1 76.0 73.2 74.9 70.7 71.4 68.9 56.5

Model sw vi ar zh hi ur tr avg.

EPT + APT 51.3 72.4 67.4 71.5 64.0 61.4 63.6 68.4
NT + APT 50.6 72.3 66.9 71.8 63.4 61.0 62.9 68.0
EPT + SRPT 50.5 72.3 67.0 71.8 63.3 60.9 63.1 68.2

Table 4: Results on the XNLI task when replacing some
targets, based on the mBERT. We sort languages ac-
cording to their differences from English (Littell et al.,
2017), from top left (small) to bottom right (big).

synonyms selectively. We also try to replace the
EPT in (5) with the Noise Target (NT), which per-
turbs word embeddings with Gaussian noise (Co-
hen et al., 2019). As shown in Table 4, we find
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Source Language en ar bg de el es fr hi ru sw th tr ur vi zh avg.

en 83.2 67.4 71.0 72.9 68.3 75.7 75.2 64.0 71.6 51.3 56.7 63.6 61.4 72.4 71.5 68.4
de 79.6 68.7 71.9 77.7 68.8 76.2 74.9 64.2 72.4 50.1 55.2 64.0 62.8 73.0 72.6 68.8
ru 78.5 68.2 73.3 73.1 68.8 74.8 73.9 65.8 75.7 49.3 57.2 64.0 62.4 73.4 73.7 68.8

Table 5: Results of our method on the XNLI task when training mBERT with three source languages.

logic(al) reason(able)

power

ratesrate

electricity

“logical power rate”

(original example)

𝒙 :

“reasonable electricity rates”

(augmented example)

𝒙𝒂 :

Figure 5: T-SNE visualization on the outputs of the
mBERT trained with our method. The original words
(x) and synonyms (xa) are from the XNLI training sets.

that the EPT setting outperforms NT. One possible
explanation could be that the noise in NT affects
all English tokens and thus may hurt performance.

4.3 Effect of APT
To investigate the effects of APT, we replace
the APT in (5) with the Sentence Representa-
tion Pull Target (SRPT). SRPT uses the mean
squared error between sentence embeddings of
x and xa as the objective. Formally, ℓSRPT =
1
|B|

∑|B|
i (Sent(x) − Sent(xa))2, where Sent(x)

represents the mean-pooled sentence embeddings
(Reimers and Gurevych, 2019) obtained by the mid-
dle layer of the model. Results in Table 4 show
that: 1) The average performance of SPRT is lower
than that of APT. 2) The SRPT mainly improves
performance on English-like languages, such as
es, de, and el, while drops that of most English-
dissimilar languages, such as tr, hi, sw, ur, etc.
This phenomenon shows that SRPT suffers heavily
from English training resources, biasing the VME
towards English-like languages, which hurts the
overall zero-shot cross-lingual transferability.

We perform T-SNE visualization on the outputs
of the mBERT trained with our method. As shown
in Figure 5, the synonym is still in the same relative
position as the original word, which proves the
effectiveness of APT.

4.4 Effect of source language
In addition to en, both de and ru show preference
as source languages in cross-lingual learning (Turc
et al., 2021). We translate the training set into de
and ru using OPUS-MT (Tiedemann and Thottin-

scale size of dictionary XNLI result

1.0 49975 68.424
0.75 37481 68.392
0.5 24987 68.218
0.25 12493 68.080

Table 6: Results on the XNLI task when using the scaled
English synonym dictionaries for data augmentation.

ur

0.5

0.6

tr
0.632
0.634
0.636

de

0.72

0.73

en

0.82

0.83

Scale
0.2 0.4 0.6 0.8 1.0

Figure 6: Results on XNLI test sets of four languages
when using scaled synonym dictionaries in our method.

gal, 2020) models, as shown in Table 5, the perfor-
mance of our method can be further improved.

4.5 Effect of dictionary size

The data augmentation in our method relies on
the size of pre-defined synonym dictionary. As
shown in Table 6 and Figure 6, we can observe
that: 1) The overall performance decreases as the
dictionary size decreases. 2) Some languages are
not sensitive to the dictionary size, such as tr and
ur. 3) The performance of en, de, and tr degrades
significantly when the dictionary size is scaled from
0.5 to 0.25. This phenomenon may be related to
some important synonyms in the dictionary, which
are effective for cross-lingual transfer learning.

5 Conclusion

To get rid of the dependence on parallel corpora,
enable cross-lingual transfer to low-resource lan-
guages, we propose Embedding-Push, Attention-
Pull, and Robust targets to combat the influence of
language clusters in multilingual models. Experi-
mental results demonstrate that our method outper-
forms previous works and obtains better-aligned
embeddings when trained with only English.
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Layer en ar bg de el es fr hi ru sw th tr ur vi zh avg.

3 83.23 67.17 71.44 73.33 68.06 75.99 74.89 63.27 70.94 51.00 56.61 63.23 61.04 72.30 71.66 68.28
6 83.05 67.01 70.88 72.63 67.98 76.05 74.91 62.99 71.82 51.28 56.81 63.53 61.44 72.48 71.48 68.29
9 82.87 67.56 71.22 73.05 68.36 75.81 74.63 63.65 71.14 50.96 56.75 62.97 61.00 72.55 71.68 68.28
12 83.05 67.05 70.56 72.81 68.22 75.55 75.35 63.35 71.48 50.82 56.71 63.11 60.30 72.48 71.68 68.17

Table A.1: Results of the XNLI task when we apply the Attention-Pull target at different layers of mBERT.

β en ar bg de el es fr hi ru sw th tr ur vi zh avg.

0.1 83.23 67.41 71.04 72.93 68.28 75.75 75.19 63.99 71.64 51.28 56.73 63.59 61.38 72.44 71.50 68.42
0.2 83.15 67.05 71.38 73.79 68.34 75.99 75.01 63.53 71.58 50 56.41 63.21 60.52 72.40 71.88 68.32
0.3 83.09 67.47 71.52 72.99 68.44 75.65 75.03 63.57 71.42 50.76 55.87 63.29 61.26 72.63 71.58 68.30
0.5 83.01 67.15 70.58 72.95 68.10 75.87 74.99 62.99 71.64 50.34 56.37 63.61 60.82 72.57 72.18 68.21
0.7 82.69 66.83 71.08 72.87 68.14 75.89 74.43 63.15 71.00 51.60 56.57 63.15 60.88 72.16 71.82 68.15
0.9 82.51 66.83 71.00 72.87 68.50 75.65 75.01 62.99 71.30 50.68 55.77 63.29 61.38 72.42 71.54 68.12

Table A.2: The experimental results of the XNLI task based on mBERT when β takes different values, where α=1.

α en ar bg de el es fr hi ru sw th tr ur vi zh avg.

0.6 82.85 67.35 71.64 73.03 68.32 75.65 74.57 63.37 71.56 50.56 56.39 63.67 61.16 72.44 72.02 68.30
0.8 82.87 67.23 70.96 73.17 68.68 75.23 74.87 63.53 71.26 50.86 56.45 63.21 61.30 72.55 72.02 68.28
1 83.23 67.41 71.04 72.93 68.28 75.75 75.19 63.99 71.64 51.28 56.73 63.59 61.38 72.44 71.50 68.42
1.2 83.19 67.03 71.08 72.97 67.86 75.87 74.75 63.49 71.50 51.60 56.37 63.21 60.88 72.59 71.28 68.24
1.4 83.09 67.03 71.44 73.35 68.78 75.79 74.51 63.23 71.50 51.14 56.35 63.45 60.72 72.75 71.60 68.32
1.6 83.19 67.05 71.50 73.23 68.18 76.25 74.77 63.43 71.06 51.10 56.43 62.95 60.52 72.38 71.98 68.27
1.8 83.29 67.09 71.44 73.51 68.54 75.85 74.79 63.83 71.36 50.78 56.47 63.23 60.86 72.59 71.98 68.37

Table A.3: The experimental results of the XNLI task based on mBERT when α takes different values, where β=0.1.

Setup The mBERTbase and XLM-Rbase are ob-
tained from Huggingface’s transformers package
(Wolf et al., 2020). The maximum sequence length
is set as 128. The learning rate is set as 2e-5. Our
method is trained for one epoch with the batch size
of 32. other models are trained following Hu et al.
(2020) and Huang et al. (2021).

Input construction Both XNLI and PAWS-
X are sentence pair classification tasks. Tak-
ing mBERT as an example, for each s1, s2
and augmented sa

1, sa
2 in the training data,

we set x as [CLS]s1[SEP]s2[SEP], xa as
[CLS]sa

1[SEP]sa
2[SEP]. Then, we take x and xa

as the input of our method in Figure 2, [CLS] token
is used for classification.

B Hyperparameter analysis

There are three main hyperparameters in our
method that need to be adjusted. 1) We need to
determine which layer is most effective for apply-
ing Attention-Pull target. 2) We need to determine
the weight of β in the final loss. 3) We need to
determine the weight of α in the final loss. We con-
duct experiments on XNLI task based on mBERT.

For 1), we first set α=1 and β=1, then apply the
Attention-Pull target on the {3, 6, 9, 12} layers

respectively, and the results are shown in Table A.1.
We find that applying the Attention-Pull target to all
layers works well. The most significant improve-
ment is achieved at the 6-th layer and the minimal
improvement is achieved at the last layer, which
may be related to the quality of sentence represen-
tation at different layers of the model (Carlsson
et al., 2021; Merchant et al., 2020).

For 2), we apply the Attention-Pull target at the
6-th layer and set α=1, then select β from {0.1, 0.2,
0.3, 0.5, 0.7, 0.9}. The experimental results are
shown in Table A.2. First, we find that model per-
formance improved when using any of the above β
values. Second, we also find that the improvement
becomes significant as β decreases, we attribute
this phenomenon to the fact that the Attention-Pull
target should not over-focus on features of the En-
glish corpus but should help the VME capture fea-
tures in other language clusters. Note that this
result does not mean that the Attention-Pull target
is unnecessary, as ablation experiments in section
3.4 show that the Attention-Pull target can improve
the model. Finally, the best experimental result is
obtained when β=0.1.

For 3), we apply the Attention-Pull target at the
6-th layer and set β=0.1, then select α from {0.6,
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Model en es de fr bg ru el th

EPT + APT 84.6 79.4 77.5 79.5 78.8 76.8 77.0 73.9
NT + APT 84.4 79.4 77.2 79.0 78.8 76.7 76.4 73.4
EPT + SRPT 84.4 80.0 77.8 79.2 78.5 76.8 77.1 74.2

Model sw vi ar zh hi ur tr avg.

EPT + APT 66.7 76.4 74.5 75.8 72.6 68.7 74.7 75.8
NT + APT 67.3 76.3 73.6 75.2 72.2 67.7 74.1 75.5
EPT + SRPT 65.2 76.6 73.5 75.8 72.5 68.7 74.4 75.6

Table A.4: Results on the XNLI task when replacing
some targets, based on the XLM-R.

0.8, 1.0, 1.2, 1.4, 1.6, 1.8}. Results are shown
as Table A.3. We find that the best performance
is achieved when α is 1.0. The performance is
also improved when using other α values, which
shows that the Embedding-Push target can robustly
improve the cross-lingual transferability of models.
Therefore, in our main experiments, we set α=1.0,
β=0.1 and apply the Attention-Pull target at the
6-th layer.

C Analysis on XLM-R

We perform analysis based on XLM-R, the results
are shown in Table A.4.


