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Abstract
Generic statements such as “ducks lay eggs”
make claims about kinds, e.g., ducks as a cat-
egory. The generic overgeneralization effect
refers to the inclination to accept false uni-
versal generalizations such as “all ducks lay
eggs” or “all lions have manes” as true. In
this paper, we investigate the generic overgen-
eralization effect in pre-trained language mod-
els experimentally. We show that pre-trained
language models suffer from overgeneraliza-
tion and tend to treat quantified generic state-
ments such as “all ducks lay eggs” as if they
were true generics. Furthermore, we demon-
strate how knowledge embedding methods can
lessen this effect by injecting factual knowl-
edge about kinds into pre-trained language
models. To this end, we source factual knowl-
edge about two types of generics, minority
characteristic generics and majority character-
istic generics, and inject this knowledge us-
ing a knowledge embedding model. Our re-
sults show that knowledge injection reduces,
but does not eliminate, generic overgeneraliza-
tion, and that majority characteristic generics
of kinds are more susceptible to overgeneral-
ization bias. We release the dataset and code1.

1 Introduction

Generics are sentences such as “tigers have stripes”
that express generalizations about kinds, although
they are not universal or without exceptions. For
example, there are albino tigers that do not have
stripes. Even though there are exceptions, generics
are regarded as true. However, universally quanti-
fied statements such as “all ducks lay eggs” should
be perceived as false as they can easily be inval-
idated because the quantifier all does not allow
exceptions; it is only mature female ducks that are
capable of laying eggs.

Empirical data from linguistics studies show that
children and adults often tend to treat quantified

1https://github.com/sello-ralethe/
GOG-in-PLMs

PLM PLM+KEPLER

# BERT RoBERTa BERT RoBERTa

1 All Some Mountain Male
2 Most Most Young Mountain
3 Some All Male Sea
4 Every Many Most Some
5 Many Even Some Most

Table 1: The top 5 words predicted by BERT and
RoBERTa for filling the mask in the generic “[MASK]
lions have manes”. The outputs are shown before and
after knowledge injection with KEPLER.

statements such as “all tigers have stripes” as if they
were generics (Khemlani et al., 2007; Hollander
et al., 2002). Leslie et al. (2011) term this phenom-
ena the generic overgeneralization (GOG) effect
and allot it to a cognitive tendency that causes peo-
ple to overgeneralize from the truth of a generic
(“lions have manes”) to the truth of a corresponding
universal statement (“all lions have manes”).

Pre-trained language models (PLMs) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019b) learn useful language representation
from large-scale unstructured text and are able to
store information about the world in their parame-
ters (Clark et al., 2019; Liu et al., 2019a; Rogers
et al., 2020). In this paper, we investigate the
GOG effect in PLMs, and ask if embedding fac-
tual knowledge about kinds during pre-training can
reduce this effect.

First, we investigate if PLMs can improve the
classification accuracy of distinguishing between
generic and non-generic statements. We construct
datasets of minority and majority characteristic
generics of kinds, and use these to train and evalu-
ate a baseline model and the PLMs. Results show
that the pre-trained language models outperform
the baseline on the classification task. We also
demonstrate that the fine-tuned language models

https://github.com/sello-ralethe/GOG-in-PLMs
https://github.com/sello-ralethe/GOG-in-PLMs


3188

classify quantified statements such as “all ducks
lay eggs” as generics, indicating that the models do
overgeneralize and thus exhibit the GOG effect.

Next, we define a masked word prediction task
to test if the PLMs exhibit the GOG effect by
observing if the PLMs predict quantifiers to fill
the masked words. For example, we ask PLMs
to fill the masked position in a statement such as
“[MASK] lions have manes” (Table 1). The low
performance of the PLMs on this task, evaluated
using mean reciprocal rank and precision at 5, con-
firms the presence of the GOG effect.

Given these observations, we ask whether inject-
ing factual knowledge about kinds during language
model pre-training reduces the GOG effect. We
source factual knowledge about kinds from AS-
CENT KB (Nguyen et al., 2021), a knowledge base
which contains facet-enriched assertions together
with their associated context. The knowledge from
ASCENT KB is injected into the PLMs using KE-
PLER (Wang et al., 2021b), a model for embedding
knowledge into PLMs using entity descriptions and
entity relations data. Experimental results suggest
that the injected knowledge lessens the GOG effect,
but does not eliminate it completely.

Our contributions are: (i) we introduce new
datasets for evaluating generic overgeneralization
in PLMs, (ii) we demonstrate that PLMs exhibit the
GOG effect, (iii) we show that embedding factual
knowledge can reduce the GOG effect, and (iv) our
results suggest that majority characteristic generics
are more susceptible to overgeneralization bias. To
the best of our knowledge, we present the first work
investigating generic overgeneralization in PLMs.

2 Background

2.1 Genericity and the Generic
Overgeneralization Effect

Generics express generalizations about kinds, and
lack explicit quantifiers such as all, some and most.
Unlike quantified statements, generics do not com-
municate information about how many members
of the kind have the property in question.

Similarly, there is no direct relation between the
prevalence of a property among members of a kind
and the acceptability of the relevant generic. For
example, the generic statement “ducks lay eggs” is
accepted even though only mature fertile females
lay eggs, but the generic statement “ducks are fe-
male” is rejected (Leslie et al., 2011).

If people believe that the statement “ducks lay

eggs” is true, they will tend to accept a quantified
statement such as “all ducks lay eggs”, because re-
sorting to a default operation saves cognitive effort.
This phenomena is called the generic overgeneral-
ization (GOG) effect and is defined as “overgener-
alizing from the truth of a generic to the truth of the
corresponding universal statement” (Leslie et al.,
2011, p. 17).

Quantifiers have been shown to influence the
GOG effect, but the question of which types of
quantified statements are susceptible to overgen-
eralization has not been resolved yet (Karczewski
et al., 2020).

In this paper we focus on minority characteristic
generics and majority characteristic generics. Mi-
nority characteristic generics include generics such
as “lions have manes”, which are only true about
a minority of the kind and usually refer to gender-
related properties. Conversely, majority charac-
teristic generics include generics such as “tigers
have stripes”, which refer to properties that are
directly related to the nature of the kind and are
prevalent, though not universal, among members of
the kind (Prasada et al., 2013). Majority character-
istic generics do not need to express exceptionless
universal generalizations, since some tigers (e.g.,
albino tigers) may fail to possess the property.

2.2 Genericity in NLP

Genericity is a key component in the study of hu-
man cognition because it demonstrates our inclina-
tion to organize our experience of the world into
categories, kinds or classes (Lazaridou-Chatzigoga,
2019). The importance of generic language has
been recognized in the artificial intelligence and
natural language processing community for tasks
that involve knowledge acquisition, ontology devel-
opment, and semantic inference (Monahan et al.,
2015; Zhou et al., 2015).

Reiter and Frank (2010) developed a corpus-
based supervised learning approach for identi-
fying generic noun phrases in context, using
linguistically-motivated features in a Bayesian net-
work classifier. Their experiments were restricted
to generic noun phrases, as at the time there were
no corpora available that contain annotations for
genericity at the sentence level. Friedrich and
Pinkal (2015) presented a discourse-sensitive gener-
icity labeler, using Conditional Random Fields as
a sequence labeler. Their experiments showed that
context information improves accuracy, and their
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model outperforms the approach proposed by Re-
iter and Frank (2010).

Govindarajan et al. (2019) proposed a semantic
framework for modeling linguistic expressions of
generalization, suggesting that such expressions
should be captured in a continuous multi-label sys-
tem, rather than a multi-class system. This was
accomplished by decomposing categories such as
episodic, habitual, and generic into simple refer-
ential properties of predicates and their arguments.
The framework was used to construct a dataset
covering the full Universal Dependencies English
Web Treebank. Furthermore, Govindarajan et al.
(2019) presented models for predicting expressions
of linguistic generalization, which combine hand-
engineered type- and token-level features with
static and contextual learned representations.

In summary, although multiple prior works cover
genericity in NLP, the generic overgeneralization
effect has not yet been investigated specifically.

2.3 Knowledge Enhanced PLMs

Incorporating commonsense knowledge is neces-
sary and beneficial for language inference (LoBue
and Yates, 2011; Bowman et al., 2015; Rashkin
et al., 2018b), reading comprehension (Mihaylov
and Frank, 2018; Rashkin et al., 2018a), and gener-
ation based question answering (Chen et al., 2020).
Recent research has shown that PLMs do not suffi-
ciently capture factual commonsense world knowl-
edge from the text used in their pre-training (Wang
et al., 2021a; Yu et al., 2022; Gong et al., 2020). To
address this problem, knowledge embedding meth-
ods have been proposed with the aim of encoding
the relational facts in knowledge graphs through
entity embeddings (Liu et al., 2020; Tang et al.,
2020; Dai et al., 2020).

In this paper, we implement KEPLER (Wang
et al., 2021b) to inject factual knowledge into PLMs
(BERT and RoBERTa) with the aim of reducing the
GOG effect. KEPLER jointly optimizes parameters
with knowledge embedding and masked language
modelling objectives to blend factual knowledge
with language representations. The texts and en-
tities are encoded into a unified semantic space
using a single PLM encoder. For the knowledge
embedding objective, entity descriptions are en-
coded as entity embeddings and are trained simi-
larly to other knowledge embedding methods such
as AutoETER (Niu et al., 2020), which is a knowl-
edge graph embedding framework with automated

entity type representation. The masked language
modelling objective is implemented using existing
approaches such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019b).

3 The GOG Effect Evaluation Task

We introduce the GOG effect evaluation task, de-
scribe how the datasets were created, and discuss
how the factual knowledge about kinds that can be
used for knowledge injection was extracted.

3.1 Task Definition

We introduce two tasks: a classification task, and
a masked language modelling task. The classifica-
tion task evaluates whether a model can classify
a statement as generic or non-generic: PLMs can
be fine-tuned on this task using the training data
provided. However, this task does not evaluate the
GOG effect directly.

Secondly, we propose a masked language mod-
elling task to evaluate if PLMs exhibit the GOG
effect. We mask the position preceding a generic
statement and use the PLM to predict the token.
For example, given the generic “lions have manes”,
we ask a PLM to fill the blank in “[MASK] lions
have manes”. We use mean reciprocal rank (MRR)
on the predicted word distribution to evaluate the
PLM’s ability to fill the masked position; preci-
sion at 5 (P@5) measures the relevance of top 5
predicted words. We evaluate whether one of the
following universal quantifiers are predicted: all,
every, most, some, few and many. Here, we do not
consider the truthfulness of the quantified generic
statement; that is, although the resulting quantified
statement might not be factual, our aim is to eval-
uate if the PLMs would give a high probability to
quantifier tokens when asked to predict the mask
token. The higher the rank of the quantifiers, the
stronger the PLM exhibits the GOG effect; a very
low rank or low precision would indicate that the
PLM does not exhibit the GOG effect.

3.2 Task Data

The proposed tasks focus on minority and majority
characteristic of kind generics. These are generics
that are only true about a minority or majority of a
kind. We created a list of animals, which includes
reptiles, fish, birds, mammals and amphibians, and
used it to sample generic statements from Generic-
sKB (Bhakthavatsalam et al., 2020). GenericsKB is
a large repository of 3.4M standalone generics har-
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Animal
Types

ASCENT KB
Triplets

Generic
Statements

Minority
Generics

Majority
Generics

Amphibians 18 6 783 1 856 256 414
Reptiles 31 18 349 4 266 598 862
Fish 60 38 633 5002 471 788
Birds 76 63 967 10 604 1 051 1 811
Mammals 263 275 101 38 640 3 508 4 875

Total 448 402 833 60 368 5 884 8 750

Table 2: Datasets statistics. The minority and majority characteristic generic statements are used for evaluation
and excluded from the other generic statements used for training.

vested from a webcrawl of 1.7B sentences. Gener-
icsKB was constructed by first using a set of rules
to identify candidate standalone generic sentences,
and then applying a crowdsource-trained BERT
classifier to assign a confidence to each generic
sentence (Bhakthavatsalam et al., 2020).

Our list contains animals that are present in both
GenericsKB and in ASCENT KB; the latter is used
to sample factual assertions for each animal (see
§3.3). For each animal, we sampled generic sen-
tences with an associated confidence score greater
than 0.5. Table 2 shows the statistics of the datasets
we constructed. In total, we have three disjoint
generic statements datasets.

To construct the minority characteristic generics
dataset, we created a list of identifiers to sample
generic statements about each animal from Gener-
icsKB: female, male, infant, young, adult, mature,
and old. Furthermore, we sampled generic state-
ments from GenericsKB that have existential quan-
tifiers some and few. In the final dataset, we re-
moved the identifier words and the quantifiers from
all generic sentences. For example, a generic state-
ment such as “male lions have manes” is stored
in the minority characteristic generics dataset as
“lions have manes”.

We similarly constructed the majority charac-
teristic generics dataset by sampling quantified
generic statements from GenericsKB that had these
quantifiers: all, many, every, and most. Quantifiers
were also removed from the generic statements be-
fore adding them to the dataset. For example, a
generic statement such as “all zebras have differ-
ent stripes” is stored in the majority characteristic
generics dataset as “zebras have different stripes”.

The third dataset consists of other types of
generic statements about the animals in our list.
We use this dataset to train models for the classi-

fication task and to further pretrain the language
models, while the gold minority and majority char-
acteristic generics datasets were used for evaluation
and knowledge probing.

Additionally, we created a dataset of non-generic
statements for training the classifiers by sampling
sentences with a confidence score of les that 0.3
from GenericsKB. This dataset contains statements
such as “a pitbull mauled a child” and “the snake
laid some eggs”. These statements are not generics
because they apply only to a specific individual
member of a kind.

3.3 Commonsense Knowledge Data

In order to perform PLM knowledge injection us-
ing KEPLER we need factual knowledge in the
form of <Subject, Predicate, Object> triplets, and
textual description data for each subject in a given
triplet. We use the list of animals to sample SPO
triplets from ASCENT KB (Nguyen et al., 2021)
as a source of factual knowledge. For each ani-
mal in our list, we webcrawled A-Z-Animals.com2

and scrapped textual data that include description
like classification and evolution, anatomy and ap-
pearance, distribution and habitat, behaviour and
lifestyle, reproduction and life cycles, and diet and
prey. This information is then used as entity de-
scriptions for each subject in the SPO triplets. For
each SPO triplet, we align the textual description
data with each subject in the triplet. For example,
given a triplet <elephant, uses, its trunk>, we align
the textual data about Elephants crawled from A-Z-
Animals.com. Table 2 shows the number of SPO
triplets extracted from ASCENT KB for each of
the different types of animals in our list.

The factual data includes general information
about the kinds, and makes exceptions to generic

2https://a-z-animals.com/animals/

https://a-z-animals.com/animals/
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statements salient. For example, existence of al-
bino tigers implies that not all tigers have stripes.
Therefore we hypothesize that the factual knowl-
edge could be used to reduce the GOG effect in
language models with respect to universal majority
and minority characteristic generics. For majority
characteristic generics, the factual data includes
information about differences between sub-kinds
of a given kind, such as the color of fur and type of
food. For minor characteristic, it contains knowl-
edge that emphasizes gender differences such as
the different sizes or different roles of males and
females.

4 Task Results

4.1 Generics Classification Task

First we train and evaluate models to classify state-
ments as generics or not. As a baseline, we train
a bi-directional LSTM on the generic and non-
generic statements training dataset (which excludes
the minority and majority characteristic generics).
We use the base versions of BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019b) as PLMs
and fine-tune them on the same classification task.

For the classification task, we had 60k generic
statements, and sampled 50k non-generic sen-
tences from GenericsKB, which resulted in 110k
training sentences for the classification task. From
these, we used 20% of the sentences for testing
and then used the held out minority and majority
characteristic generics data for evaluation.

We report the F1-score and accuracy of the gener-
ics classification in Table 3, evaluated using the
minority generics dataset and majority generics
dataset. The results show that, as expected, the
PLMs outperformed our baseline on the classifica-
tion task.

4.2 The GOG Effect Evaluation Task

In this evaluation, we use the generics training data
(not include minority and majority characteristic
generics) to further pretrain the PLMs. The masked
token prediction task is used to determine if the
PLMs exhibit the GOG effect. We implement KE-
PLER (Wang et al., 2021b) to inject factual knowl-
edge into the PLMs, using the data extracted from
ASCENT KB (§3.3). The presence of quantifiers
in the highest-ranked words that the PLMs predict
in the masked positions would indicate that the
PLMs exhibit the GOG effect. For each minority
or majority characteristic generic statement in our

datasets, we evaluate whether one of the follow-
ing universal quantifiers are predicted: all, every,
most, some, few and many. We conduct separate ex-
periments for minority characteristic generics and
majority characteristic generics in order to demon-
strate which type of generics is more susceptible to
overgeneralization bias.

The results in Tables 4 and 5 show that the MRR
and P@5 scores are considerably lower after knowl-
edge injection for both BERT and RoBERTa. This
means that knowledge injection with KEPLER de-
creases the likelihood of predicting quantifiers, and
therefore reduces the GOG effect. The scores of
majority characteristic generics are higher than
those of minority characteristic generics, indicat-
ing that majority characteristic generics are more
susceptible to overgeneralization effect.

However the injection of factual knowledge re-
sults in a bigger reducing in the GOG effect for
majority characteristics, such that the overgener-
alization scores on minority and majority charac-
teristics are very similar after knowledge injection.
We postulate that this could be due to the quantity
of factual knowledge that made exceptions more
salient for majority characteristic generics. That
is, a higher number of triples sampled from AS-
CENT KB contain factual knowledge about major-
ity characteristic of kinds than factual knowledge
about minority characteristic of kinds. Thus, more
knowledge about majority characteristic of kinds
was injected in the PLMs compared to knowledge
about minority characteristic of kinds.

As a qualitative example, we asked BERT
and RoBERTa to fill in the mask in the state-
ment “[MASK] lions have manes” before and after
knowledge injection (Table 1). Without knowledge
injection, both models exhibits a preference for
universal quantifiers, although RoBERTa ranks the
conditional quantifier some highest, which suggests
less overgeneralization than BERT which ranks all
at the top. After knowledge injection the top three
words are no longer quantifiers, which shows that
overgeneralization is reduced. However, the pres-
ence of most among the top 5 predictions indicates
that the GOG effect has not been eliminated com-
pletely in either model.

5 Probing the Injected Knowledge

The results reported in the previous section war-
rant us to probe the injected knowledge in order to
determine if the PLMs “understand” the injected
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Minority Generics Majority Generics

Model F1 Accuracy F1 Accuracy

Bi-LSTM 0.80 0.83 0.82 0.86
BERT 0.88 0.90 0.89 0.91
RoBERTa 0.90 0.93 0.92 0.95

Table 3: Results of the generics classification task, comparing the PLMs (BERT and RoBERTa) against a Bi-LSTM
baseline on minority and majority characteristic generics datasets.

PLM PLM+KEPLER

Model MRR P@5 MRR P@5

BERT 0.326 0.305 0.137 0.106
RoBERTa 0.329 0.307 0.135 0.108

Table 4: Mean Reciprocal Rank (MRR) and Precision
at 5 (P@5) of universal quantifiers on the GOG ef-
fect evaluation task for minority characteristic generics.
We report the scores before and after injecting factual
knowledge into the PLMs with KEPLER. Lower scores
indicate less overgeneralization.

PLM PLM+KEPLER

Model MRR P@5 MRR P@5

BERT 0.337 0.318 0.138 0.109
RoBERTa 0.428 0.411 0.152 0.117

Table 5: Mean Reciprocal Rank (MRR) and Precision
at 5 (P@5) of universal quantifiers on the GOG ef-
fect evaluation task for majority characteristic generics.
We report the scores before and after injecting factual
knowledge into the PLMs with KEPLER. Lower scores
indicate less overgeneralization.

factual knowledge. For example, do the PLMs un-
derstand that it is only mature, male lions that can
have manes? Furthermore, do PLMs, with factual
knowledge, correctly predict relevant tokens that
could make quantified generic statements true?

5.1 Quantified Statement Classification

We fine-tune the knowledge-enhanced PLMs on
the generics classification task (§4.1) and test if
quantified statements are classified as generics. We
quantify the minority characteristic generics with
the quantifiers many and most, and the majority
characteristic generics with few and some. This al-
lows us to falsify the generics in both datasets. For
example, the statement “most lions have manes” is
not a true generic statement because only a minor-

ity of lions have manes. Similarly, “few tigers have
stripes” is also not a true generic statement because
most tigers do have stripes. Although the classi-
fiers were trained to classify if a given statement
is a generic, we aim to evaluate if the PLMs can
use the injected knowledge to resolve that the falsi-
fied generics are wrongly quantified statements and
should be classified as non-generic. This is because
the injected knowledge has factual information that
should contradict the falsified generics.

Table 6 reports the accuracy of zero-shot clas-
sification of universally quantified statements as
non-generics, before and after knowledge injection.
Knowledge injection almost doubles classification
accuracy, but all the models still overwhelmingly
predict that the statements are true generics. Knowl-
edge injection leads to a bigger (absolute) improve-
ment in accuracy for majority characteristic gener-
ics than for minority characteristic generics.

Based on this result, we postulate that the PLMs
do not understand that the quantifier all in a noun
phrase such as all lions implies male + female li-
ons. This is made evident by the presence of quan-
tifiers when asking to fill in the blank for a generic
sentence such as “[MASK] lions have manes”. We
sampled factual knowledge from ASCENT KB that
emphasizes minority and majority characteristic of
kinds. This includes assertions such as “male lions
have manes”; therefore, natural language inference
should lead to the conclusion that “all lions have
manes” cannot be a true generic statement because
the factual knowledge emphasized gender differ-
ences, thus making exceptions more salient.

5.2 GOG Effect Evaluation Probing

We extend the evaluation of the effect of PLM
knowledge injection on the GOG effect (§4.2) to
probe whether knowledge injection enables the
model to distinguish between which quantifiers
make a minority or majority characteristic generics
true and which quantifiers make them false. For ex-
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Quantified Minority Generics Quantified Majority Generics

Model PLM PLM+KEPLER PLM PLM+KEPLER

BERT 0.083 0.14 0.10 0.18
RoBERTa 0.064 0.12 0.081 0.19

Table 6: Accuracy of classifying universally quantified versions of minority and majority generic statements in the
test set as false, using the PLM generics classifiers, before and after injecting factual knowledge with KEPLER.

# BERT RoBERTa

1 Eyes Heads
2 Manes Eyes
3 Heads Manes
4 Teeth Tails
5 Tails Teeth

Table 7: The top 5 words predicted by BERT and
RoBERTa, with injected factual knowledge, for filling
the mask in the generic “most lions have [MASK]”.

# BERT RoBERTa

1 Mountain Male
2 Female Female
3 White Mountain
4 All Young
5 Young All

Table 8: The top 5 words predicted by BERT and
RoBERTa, with injected factual knowledge, for filling
the mask in the generic “[MASK] lions are animals”.

ample, the token “stripes” should be ranked among
the top tokens that the PLM predict when asked
to fill in the mask token in the statement “most
tigers have [MASK]”. On the other hand, the PLM
should not predict the token “stripes” when asked
to fill in the blank for the statement ‘few tigers have
[MASK]”.

For this probing task, we evaluate statements us-
ing four quantifiers: few, many, most, and some. We
quantify both minority and majority characteristic
generics and mask the final token in the statement
(corresponding to the object or predicative com-
plement). We generate probing datasets using the
template: quantifier + (generic statement - final
token) + [MASK].

We report the mean reciprocal rank of both mi-
nority and majority characteristic generics for each
quantifier. If the model successfully learns how to
interpret each quantifier, the masked final tokens

should be ranked higher together with a quantifier
that makes the generic statement true and lower
with the quantifier that make the generic statement
false. Table 9 shows the results of this probing task.

The results show that for minority characteris-
tic generics the PLMs correctly assign a higher
masked token MRR to true statements quantified
by few or some than to statements quantified by
many or most. Conversely, for majority characteris-
tic generics the PLMs also correctly assign higher
MRR when statements are quantified by many or
most instead of with few or some. However, state-
ments with the quantifier some are still ranked rela-
tively high, indicating that the PLMs struggle more
to interpret that quantifier correctly.

The MRR for masked tokens in true statements
is higher for majority characteristics than minor-
ity characteristics, but the MRR for false state-
ments is relatively lower on minority character-
istics. Despite learning the distinction between
different kinds of quantifiers, the MRR across the
models and quantifiers is arguably still too high
with quantifiers that falsify a generic statement.

As an example, Table 7 shows the tokens pre-
dicted for the statement “most lions have [MASK]”.
Here we expect the original token, “manes”, not
to feature among the top predicted tokens for the
quantifier most because the injected factual data
should make salient the knowledge that it is only a
minority population of lions that have manes. How-
ever the two PLMs still rank “manes” as second and
third most likely token, respectively. In contrast,
when the first token in the statement is masked, i.e.,
“[MASK] lions are animals”, the only quantifier in
the top 5 is all, at position 4 and 5.

6 Conclusion

We investigated the generic overgeneralization
(GOG) effect in PLMs and demonstrated that PLMs
do overgeneralize and treat quantified statements
as if they were generics. We introduced datasets on
minority and majority characteristic generics that



3194

Minority Generics with Quantifier Majority Generics with Quantifier

Model Few Some Many Most Few Some Many Most

BERT 0.58 0.69 0.43 0.45 0.51 0.65 0.71 0.74
RoBERTa 0.61 0.70 0.38 0.40 0.49 0.63 0.76 0.80

Table 9: Mean Reciprocal Rank (MRR) scores of masked final tokens using PLMs with knowledge injection under
different quantifiers. Scores indicate how each model perform on the probing task for each quantifier when applied
to minority and majority characteristic generics.

can be used to evaluate the GOG effect, as well as a
source of factual knowledge about kinds to evaluate
PLM knowledge embedding methods. Our results
suggest that knowledge injection reduces the GOG
effect in PLMs but does not eliminate it, and that
majority characteristic generic statements are more
susceptible to overgeneralization bias. Probing the
models after knowledge injection, we were able
to determine which quantifiers make minority or
majority characteristic generics to remain as true
quantified generic statements and which quantifiers
make the generics to become non-generic state-
ments.

Our paper makes the case for future research
on methods for injecting commonsense into PLMs
more effectively so that they can perform better
natural language inference based on the knowledge
presented. This would be an important step towards
advancing commonsense reasoning in PLMs.
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