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Introduction

Welcome to the 12th edition of the Workshop on Cognitive Modeling and Computational Linguistics
(CMCL)!!

CMCL is traditionally the workshop of reference for research at the intersection between Computational
Linguistics and Cognitive Science. This year, for the first time CMCL will be held in hybrid mode:
virtual attendance will still be allowed, given the persistence of the COVID-19 pandemic, while the in-
person meeting will take place in the beautiful Dublin.

This year, we received 20 regular workshop submissions and we accepted 10 of them, for a global
50% acceptance rate. We also received two extended abstracts as non-archival submissions, and both
of them will be presented during the poster session. As in previous years, submissions have been hig-
hly varied across the cognitive sciences, with topics ranging from the relationship between vision and
human linguistic-semantic knowledge, the relationship between eye gaze and self-attention in Transfor-
mer language models, and an account of the game Codenames. Work ranges from deep neural network
approaches to Bayesian cognitive models, learning of phonetic and phonological categories, analyses of
neurolinguistic data, and much more. We are thrilled to continue a workshop with the breadth and depth
that is emblematic of the fields of cognitive science and natural language processing.

Last year, we held a shared task on eye-tracking prediction in a variety of measures. This year, we led
an additional shared task that built on the success of the previous edition. In the second edition of the
shared task on eye-tracking data prediction, this time we included multilingual data from English, Rus-
sian, German, Hindi, Chinese, Dutch and Danish, enabling research teams to try a variety of methods
and language models far beyond prior eye tracking tasks. A total of six teams participated, of which 5
submitted papers describing their systems.

As always, we are extremely grateful to the PC members, without whose efforts we would be unable to
ensure high-quality reviews and high-quality work for presentation at the workshop. We are indebted to
their generosity and are proud of the community that supports CMCL. We also thank our invited spea-
kers, Andrea E Martin and Vera Demberg for kindly accepting our invitation.

Finally, we thank our sponsors: the Japanese Society for the Promotion of Sciences and the Laboratoire
Parole et Langage. Through their generous support, we are able to offer fee waivers to PhD students who
were first authors of accepted papers, and to offset the participation costs of the invited speakers.

The CMCL 2022 Organizing Committee
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Abstract

Distributional semantic models capture word-
level meaning that is useful in many natural
language processing tasks and have even been
shown to capture cognitive aspects of word
meaning. The majority of these models are
purely text based, even though the human sen-
sory experience is much richer. In this paper we
create visually grounded word embeddings by
combining English text and images and com-
pare them to popular text-based methods, to see
if visual information allows our model to bet-
ter capture cognitive aspects of word meaning.
Our analysis shows that visually grounded em-
bedding similarities are more predictive of the
human reaction times in a large priming exper-
iment than the purely text-based embeddings.
The visually grounded embeddings also corre-
late well with human word similarity ratings.
Importantly, in both experiments we show that
the grounded embeddings account for a unique
portion of explained variance, even when we
include text-based embeddings trained on huge
corpora. This shows that visual grounding al-
lows our model to capture information that can-
not be extracted using text as the only source
of information.

1 Introduction

Distributional semantic models create word repre-
sentations that quantify word meaning based on the
idea that a word’s meaning depends on the contexts
in which the word appears. Such representations
(also called embeddings) are widely used as the
linguistic input for computational linguistic mod-
els, with research showing that they can account
for response times in lexical decision tasks (Man-
dera et al., 2017; Rotaru et al., 2018; Petilli et al.,
2021), decode brain data (Xu et al., 2016; Abnar
et al., 2018), account for brain activity during text
comprehension (Frank and Willems, 2017), and
correlate with human judgements of word similar-
ity (Kiela et al., 2018; Derby et al., 2018, 2020).

While such embeddings have proven useful, they
are not cognitively plausible as creating high qual-
ity embeddings requires billions of word tokens.
For instance, the GloVe embeddings developed by
Pennington et al. (2014) are trained on 840 bil-
lion words. It would require a human 80 years of
constant reading at about 330 words per second to
digest that much information. Obviously, humans
are able to understand language after much less ex-
posure, and furthermore, their sensory experience
is much richer than solely reading texts.

Embodied cognition theory poses that our con-
ceptual knowledge is based on the entirety of our
sensory experience (Barsalou, 2008; Foglia and
Wilson, 2013). For instance, reading the word dog
elicits sensory experiences we have with dogs, such
as their sound and how they look. Embodied cogni-
tion theory thus assumes that all our sensory experi-
ences contribute to our conceptual knowledge and
processing, which should be reflected in human be-
haviour. Early priming studies have indeed found
that visual similarities can elicit priming effects
(D’Arcais et al., 1985; Schreuder et al., 1998).

If visual features are part of our conceptual
knowledge, word embeddings incorporating vi-
sual features should be able to explain human be-
havioural data to a degree unattainable by purely
text-based methods (that is, if we assume visual
sensory experiences can never be fully captured
by textual descriptions). That is why recent re-
search has taken an interest in multimodal word
embeddings, combining text with a second source
of information, resulting in visually grounded em-
beddings (VGEs) in the case of visual information.

1.1 Related work

Using image tags as a source of visual context,
Bruni et al. (2013) create visual distributional se-
mantic embeddings and use dimensionality reduc-
tion to map visual and text-based embeddings to the
common VGE space. Derby et al. (2018) combine
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text-based embeddings with the network activa-
tions of an object recognition model and show that
these visual features improve the embeddings’ per-
formance in downstream tasks. Petilli et al. (2021)
use visual embeddings created by an object recog-
nition network, and show that the embedding simi-
larities are predictive of priming effects over and
above text-based similarities.

The studies described above involve separately
trained word and visual embeddings. An end-
to-end approach to combine visual and linguis-
tic information is through a deep neural network
based caption-to-image retrieval (C2I) models (e.g.,
Karpathy and Fei-Fei 2015; Kamper et al. 2017).
While these models are trained to encode images
and corresponding written or spoken captions in a
common embedding space such that relevant cap-
tions can be retrieved given an image and vice
versa, the resulting embeddings have been shown
to capture sentence-level semantics (Chrupała et al.,
2017; Merkx and Frank, 2019; Merkx et al., 2021).
Kiela et al. (2018) showed that pretrained embed-
dings correlated better with human intuition about
word meaning after being fine-tuned as learnable
parameters in their C2I model.

1.2 Current study

In this study we investigate whether VGEs cre-
ated by a C2I model explain human behavioural
data. Our research question is: can VGEs cap-
ture aspects of word meaning that (current) text-
based approaches cannot? To answer this question
we investigate novel end-to-end trained VGEs and
test them on two types of human behavioural data
thought to rely on conceptual/semantic knowledge.
Secondly, we take care to separate the contribution
of the image modality from that of the linguistic in-
formation to see whether visual grounding captures
word properties that cannot be learned by purely
text-based methods. We do this by comparing our
VGEs to three well-known text-based methods.

Throughout our experiments we will use two
versions of the text-based methods: custom trained
on the same data as our VGEs and pretrained on
large corpora. From a cognitive modelling perspec-
tive, the former of these is more interesting. While
the use of large corpora may not be problematic
for natural language processing applications where
performance comes first, we aim to create cogni-
tively plausible embeddings, that is, from a realistic
amount of linguistic exposure. However, the inclu-

sion of pretrained embeddings serves to answer our
main research question.

1.2.1 Semantic similarity judgements
In our first experiment we test whether the VGEs
correlate better with a measure of human intuition
about word meaning than text-based embeddings.
A well-known method to capture human intuition
about word meaning is simply by asking subjects
how similar two words are in meaning. To evaluate
word embeddings, one can then see if embedding
similarities for those word pairs correlate with the
human judgements (e.g., Bruni et al., 2013; Baroni
et al., 2014; Speer and Chin, 2016; Kiela et al.,
2018; Derby et al., 2020).

While the study by Kiela et al. (2018) performed
a similar investigation on pretrained word embed-
dings fine-tuned through their C2I model, they did
not take into account the fact that text might also
contain visual knowledge. It is not unreasonable to
assume that some visual knowledge can be gained
from a large corpus of sentences solely describing
visual scenes. We account for this visual knowl-
edge from text by incorporating word embeddings
trained on the image descriptions in order to in-
vestigate the contribution of the image modality
included in the VGEs.

Collecting word similarity ratings typically in-
volves showing participants two words and asking
them to rate how similar or related their meanings
are, or picking the most related out of several pairs.
Semantic relatedness refers to the strength of the
association between two word meanings. For in-
stance, ‘dog’ and ‘leash’ have a strong relationship
but are not similar in meaning. Semantic similarity
refers to two words sharing semantic properties, for
instance ‘dogs’ and ‘cats’ which are both animals
that people keep as pets (Hill et al., 2015).

1.2.2 Semantic priming
In the second experiment, we test whether our
VGEs are predictive of semantic priming effects
from a large priming experiment (Hutchison et al.,
2013). Semantic priming effects occur when acti-
vation of a semantically related prime word facil-
itates the processing of the target word, resulting
in shorter reaction times. If all our sensory experi-
ences contribute to word meaning, we would expect
visual perceptual properties of the prime-target pair
to influence the response times.

Petilli et al. (2021) performed a similar experi-
ment using visual embeddings derived from acti-
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vation features from an object recognition network
and text-based word embeddings. Their results
show that after accounting for the text-based simi-
larity, the visual embedding similarities contribute
to explaining the human reaction times only for
lexical decision trails with a short stimulus onset
asynchrony (SOA), and not for the naming task or
long SOA trials. They attribute this to: 1) the lexi-
cal decision task being more sensitive to semantic
effects than the naming task (Lucas, 2000), and 2)
visual information being activated in early linguis-
tic processing and rapidly decaying (Pecher et al.,
1984; Schreuder et al., 1998). We will further test
these interactions in our own experiment.

2 Methods

In our experiments, we compare the VGEs from
our own model with three well known text-based
distributional semantic models: FastText (Bo-
janowski et al., 2017), Word2Vec (Mikolov et al.,
2013a) and GloVe (Pennington et al., 2014). For
the purpose of this study, we take two approaches:
1) we train our own text-based distributional
models to allow for a fair comparison to the VGEs,
and 2) we use the pretrained models to investigate
whether our VGEs capture semantic information
that even models trained on large text corpora do
not. The code used in this study can be found
at https://github.com/DannyMerkx/
speech2image/tree/CMCL2022

2.1 Training data

MSCOCO is a database intended for training image
recognition, segmentation and captioning models
(Chen et al., 2015). It has 123,287 images and
605,495 written English captions, that is, five cap-
tions paired to each image. Captions were collected
by asking annotators to describe what they saw in
the picture. Five thousand images (25,000 captions)
are reserved as a development set.

The captions are provided in tokenised format.
In order to use them in our models we only de-
capitalised all words and removed the punctuation
at the end of each sentence. This results in a total
of 6,184,656 word tokens and 28,415 unique word
types, to which we add start- and end-of-sentence
tokens for training our visually grounded model.

The images are pre-processed by resizing the im-
ages such that the shortest side is 256 pixels, while
keeping the original aspect ratio. We take ten 224
by 224 crops of the image: one from each corner,

one from the middle and the same five crops for
the mirrored image. We use ResNet-152 (He et al.,
2016) pretrained on ImageNet to extract visual fea-
tures from these ten crops and then average the
features of the ten crops into a single vector with
2,048 features. These features are extracted by re-
moving ResNet’s classification layer and taking the
activations of the penultimate layer.

2.2 Models

2.2.1 Visually grounded model

Our visually grounded model is based on our im-
plementation presented in Merkx and Frank (2019),
and we refer to that paper for the details. Here
we will provide a brief overview of the model, any
differences with Merkx and Frank (2019) and the
parameter settings tested in this study.

The VGE model maps images and their corre-
sponding captions to a common embedding space.
It is trained to make the embeddings for matching
images and captions as similar as possible, and
those for mismatched images and captions dissim-
ilar. The model consists of two parts; an image
embedder and a caption embedder. The image em-
bedder is a single-layer linear projection on top of
the image features extracted with ResNet-152. We
train only the linear projection and do not further
fine-tune ResNet.

The caption embedder consists of a word embed-
ding layer followed by a two-layer bi-directional
recurrent Long Short Term Memory (LSTM) layer
and finally a self-attention layer. The embedding
layer has 300 dimensions and is used to represent
the input words as learnable embeddings. The pur-
pose of the LSTM is to create a contextualised hid-
den state for each time-step (input word). Its first
layer has 1028 hidden units, while its second layer
acts as a bottleneck with 300 hidden units. Finally,
the purpose of the attention layer is to weigh each
time-step in order to create a single fixed-length
embedding for the entire caption. The attention
layer has 128 hidden units.

The image embedder has 2 × 300 dimensions
so that the output matches the size of the caption
embeddings. Both image and caption embedding
are L2 normalised and we take their distance as the
loss signal for the batch hinge loss function (see
Merkx and Frank, 2019). The networks are trained
for 32 epochs using Adam with a cyclic learning
rate schedule based on Smith (2017), which varies
the learning rate smoothly between 10−3 and 10−6.
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The obvious way to extract word embeddings
from the trained model would be to use the trained
weights of the embedding layer. Unlike for instance
in GloVe, where each word’s embedding is based
on its full co-occurrence distribution, these embed-
dings are not trained specifically to capture word
context or meaning and they are not necessarily
the best word embeddings. However, our initial
tests showed that they performed very poorly as
semantic embeddings when trained from a random
initialisation 1. Rather than taking the input em-
beddings we create our own embeddings from the
hidden representations of the model.

We create our VGEs from the hidden activations
of the bottleneck LSTM layer. We use the trained
caption encoder to encode all training sentences in
MSCOCO. However, we remove the attention layer
that creates the sentence embedding and we retain
the individual activations of the LSTM at each time
step. As the word representations in this layer can
be used to create semantic sentence embeddings
that capture human intuition about sentence mean-
ing (as we showed for instance in Merkx and Frank,
2019 and Merkx et al., 2021), we expect these rep-
resentations to better capture word meaning than
the input embeddings.

The embedding for each word is then created by
summing and normalising its LSTM layer activa-
tions from all its occurrences in the dataset. As
opposed to Merkx and Frank (2019), where we
used a single recurrent layer and found no further
benefit of additional layers in terms of sentence
embedding quality, we found that the quality of our
VGEs improves when we use a two-layer LSTM,
with the second layer acting as a bottleneck from
which we derive the embeddings.

2.2.2 Text-based models
The text-based distributional models are trained on
the MSCOCO captions. We train Word2Vec and
FastText using the Gensim package (Řehůřek and
Sojka, 2010). We train GloVe using the code that
Pennington et al. (2014) made publicly available2.

Word2Vec and FastText were trained as the Skip-
gram variant with embedding size 300, a context
window of 10 and 10 negative samples. GloVe
was trained with embedding size 300 and a context
window of 10. All resulting word embeddings are

1Kiela et al. (2018) were able to use the input embeddings
because they were initialised using pretrained embeddings.

2https://nlp.stanford.edu/projects/
glove/

Table 1: Description of the word similarity/relatedness
evaluation datasets. #available is the number of word
pairs included in the evaluation. Type indicates whether
the dataset captures similarity or relatedness. NA in-
dicates subjects were not specifically instructed on the
difference.

Dataset #word-pairs #available type
WordSim353 353 240 NA
WordSim-S 203 147 Similarity
WordSim-R 252 166 Relatedness
SimLex999 999 793 Similarity
-SimLex999 Q1 249 141 Similarity
-SimLex999 Q4 250 249 Similarity
MEN 3000 2889 Relatedness
RareWords 2034 204 NA

then L2 normalised.
In addition, we use the following pretrained

vectors (all 300 dimensional): Word2Vec trained
on 100 billion tokens of the Google News corpus
(Mikolov et al., 2013b), FastText trained on 600
billion tokens of Common Crawl (Mikolov et al.,
2018) and GloVe trained on 840 billion tokens of
Common Crawl (Pennington et al., 2014).

2.3 Evaluation data
2.3.1 Semantic similarity judgements
We include both semantic relatedness and similar-
ity datasets in our analysis. It has been argued that
subjects’ intuitive understanding of similarity is not
necessarily in line with the ‘scientific’ notions of
similarity and relatedness explained in the intro-
duction (Hill et al., 2015). Thus, if subject are not
clearly instructed on these notions of similarity or
relatedness, we consider the nature of the dataset
undefined.

The WordSim353 dataset by Finkelstein et al.
(2002) contains 353 word pairs annotated with sim-
ilarity ratings. While the name suggests it is a simi-
larity rating dataset, more recent studies consider
it a hybrid dataset, as subjects were not specif-
ically instructed to judge relatedness or similar-
ity. In a later study by Agirre et al. (2009), the
WordSim353 data was split into similar and re-
lated pairs by annotating the word pairs. WordSim-
S (similar) contains word pairs annotated as be-
ing synonyms, antonyms, identical, or hyponym-
hyperonym. WordSim-R (related) contains word
pairs annotated as being meronym-holonym, and
pairs with none of the above relationships but with
a similarity score greater than 5 (out of 10). Both
sets contain all unrelated words (words not anno-
tated with any of the above relationships and a
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similarity lower than 5).
SimLex999 was created with the caveats of the

original WordSim353 in mind in order to create a
dataset of 999 word pairs annotated for similarity
rather than relatedness (Hill et al., 2015). Sim-
Lex999 furthermore contains concreteness ratings
for the word pairs. Hill et al. (2015) divided the
the dataset into concreteness quartiles based on the
sum of the concreteness ratings for each pair. Using
these quartiles we also look at the 25% most con-
crete word pairs versus the 25% most abstract pairs
in the dataset, of course expecting our grounded
model to perform best on the concrete words.

MEN contains 3000 word pairs annotated for
semantic relatedness (Bruni et al., 2013). Ratings
were collected by showing subjects two word pairs
and asking them to select the most related one.
MEN was specifically collected to test multi-modal
models, by selecting only words that have a visual
referent that appeared in a large image database.

The RareWords dataset contains 2034 word
pairs, where at least one word of each pair has
a low frequency in Wikipedia (Luong et al., 2013).
Modelling low-frequency words is a challenge for
many models of distributional semantics.

Not all of the words in these databases are avail-
able in our training data and thus some will not have
a word embedding. Table 1 contains an overview
of the datasets described here and the number of
word pairs that could be entered in our evaluations.

2.3.2 Semantic priming
The Semantic Priming Project (SPP) dataset
(Hutchison et al., 2013) contains lexical decision
times and naming times from a large priming ex-
periment. The database is large for its kind, with
1,661 target words (and 1,661 non-words for the
lexical decision task), each paired with a strong
and weak prime and two unrelated primes. Further-
more, each prime-target pair was presented with
a short (200ms) and a long (1200ms) SOA. Ev-
ery combination of prime-target and SOA received
responses from 32 subjects.

This gives us 26,576 (1661 target words × 4
priming conditions × 2 SOAs × 2 tasks) trials
(disregarding the non-word word trials). We pre-
processed the data by removing target words that
mistakenly had more or fewer than the required
four primes, trials with erroneous responses and
missing data. We also lowered any capitals in
the prime and target words, averaged the response
times over the 32 subjects, and removed any prime-

target pair that did not occur in our training data,
resulting in 18,326 datapoints.

2.4 Analysis
2.4.1 Semantic similarity judgements
To test whether the word embedding models cap-
ture human intuitions on word similarity, we use
the models to calculate embedding cosine similari-
ties for each word pair and correlate them with the
human annotations. From the correlations r we de-
riveR2 values, that is, the percentage of variance in
the human similarity judgements that is explained
by the model similarity scores. This allows us to
evaluate our custom trained word embeddings to
see which method best extracts word-level seman-
tics from the MSCOCO dataset.

Next, we also compute semi-partial correlations
between the human annotations and our VGE
model using each of the text-based models as
a control. Simply put, the semi-partial correla-
tion between the VGE similarities and human an-
notations removes the effect of the control (i.e.,
text-based similarities) from the VGE similarities.
Semi-partialR2 gives us the percentage of variance
that is uniquely explained by the VGE similarities.
Given that all models are trained on the same tex-
tual data, with only the VGEs having access to the
visual modality, this allows us to see whether visual
grounding captures information that the text-based
methods do not.

Finally we also test the semi-partial correlations
using the pretrained embeddings as a control. For
each pretrained model we also add in its custom
MSCOCO-trained equivalent as a control, to take
into account the information that text-based models
can extract from the MSCOCO captions.

2.4.2 Semantic priming
Using linear regression models, we analyse how
well embedding similarities predict human (log-
transformed) reaction times in the SPP data using
the Statsmodels package in Python (Seabold and
Perktold, 2010). We code SOA and Task as factor
variables. The reaction times are not on the same
scale due to differences in the required response
for the lexical decision and naming tasks so we
standardise the log-transformed reaction time data
separately for each combination of SOA and Task.
This removes the main effects of SOA and Task
but we include them in the regression as we are
interested in their interactions with the similarity
measures.
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We fit a baseline regression including the target
length (number of characters), Task and SOA as
regressors. We furthermore include several regres-
sors based on SUBTLEX-US (Brysbaert and New,
2009): log-transformed word-frequency counts,
contextual diversity (the number of SUBTLEX-US
documents a word appears in) and the orthographic
neighbourhood density (the number of SUBTLEX-
US words that are one character edit away) for the
target words.

Next, for each of our embedding models, we
include the prime-target embedding similarities as
a regressor to the baseline model. We also add
two two-way interactions to test the claims made in
Petilli et al. (2021): 1) the interaction between the
embedding similarities and Task to test the differ-
ence between lexical decision and naming in terms
of sensitivity to semantic effects and 2) the interac-
tion between the embedding similarities and SOA
to test their claim about the time-frame in which
visual information plays a role. These regression
models allow us to compare the word embedding
models to each other and to the baseline using the
Akaike Information Criterion (AIC), where a lower
AIC indicates a better model fit.

We also test if our VGEs can explain variance in
the human reaction times that the text-based meth-
ods do not. We do this by refitting the regression
models for each of the text-based similarity mea-
sures and adding the VGE similarity measures and
their interactions with Task and SOA as extra re-
gressors. For each of these regressions we then
calculate the log-likelihood ratio (LLR) with the
corresponding regression without the VGEs, indi-
cating the decrease in model deviance due to adding
the VGE similarity measures. Higher LLRs indi-
cate a larger contribution of the VGEs to explaining
variance in the human response times beyond what
the text-based embedding similarities explain. Be-
cause the LLR follows a χ2 distribution, we can
test whether including the VGEs significantly im-
proves the regression model.

We apply a similar approach to the pretrained
text-based embeddings, but we also want to account
for the information that text-based embedding mod-
els can extract from the MSCOCO captions. We do
this by fitting a regression model as in the previous
step except that we include both the pretrained and
MSCOCO trained embeddings and their interac-
tions with SOA and Task. We then follow the same
procedure as described above by adding the VGE

similarities and calculate LLRs to see if adding
VGEs improves the regression fit.

3 Results

3.1 Semantic similarity judgements

Figure 1 shows the R2 (explained variance) based
on the Pearson correlation coefficients between the
human similarity annotations and the embedding
similarities. On top of the text-basedR2 values, we
display the semi-partial R2 of the VGEs using the
text-based model as control. As total explained
variance equals the semi-partial R2 plus R2 of
the control(s), this clearly visualises both the total
amount of explained variance and the amount of ex-
tra variance that is uniquely explained by the VGEs.
All Pearson correlations were positive, as expected,
except for two non-significant semi-partial correla-
tions which are therefore not included in the figure.

For the MSCOCO models (left panel) we see that
while GloVe has the worst performance on each
dataset, there is no single best model. Furthermore,
while the VGEs are outperformed by FastText and
Word2Vec on SimLex999, we see that VGE per-
forms best on the most concrete words (Q4) in
SimLex999. A bit surprising then, is that VGE is
outperformed by FastText and Word2Vec on MEN,
which contains solely picturable nouns.

Looking at the semi-partial R2, that is, the extra
variance explained by the VGEs after controlling
for one of the other embedding models, we see
that for nearly every dataset and every model, the
VGEs explain a significant portion of variance that
is not explained by the text-based models. This is
not very surprising on WordSim, where the VGEs
were the best performing embeddings by quite a
margin. However, we also see that even though the
VGEs are outperformed by FastText and Word2Vec
on MEN, they still explain a large extra portion of
variance even though the R2 for these models was
already quite high.

Lastly, the pretrained models (right panel) out-
perform the MSCOCO models. This was expected,
as the used training data is several orders of mag-
nitude larger than MSCOCO. However, the semi-
partial correlations still show that the VGEs ex-
plain a significant portion of extra variance on Sim-
Lex999 Q4 and MEN.

3.2 Semantic priming

The ∆AIC scores in Table 2 show that all word
embedding models trained on MSCOCO improve
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Figure 1: The coloured bars indicate the R2 scores of the four word embedding models. The grey-scale bars
on top of the R2 scores of the text-based models indicate the semi-partial R2 scores and their significance
(∗p < .05, ∗ ∗ p < .01, ∗ ∗ ∗p < .001, corrected using the Benjamini and Hochberg (1995) procedure with a false
discovery rate of 0.05) of the VGEs after controlling for the variance explained by that text-based model. Left panel:
models trained on MSCOCO. Right panel: pretrained text-based models.

Table 2: AIC comparison of regression models (lower
is better). ∆ indicates the difference in AIC compared
to the VGE model or the Baseline model. β indicates
the coefficient of the embedding similarity main effect
(lower is better) and its significance.

Model AIC ∆VGE ∆Baseline β

VGE 46997.55 — −211.04 −.67***
FastText 47101.90 104.35 −106.86 −.54***
GloVe 47163.70 166.15 −44.88 −.20**
Word2Vec 47184.45 186.90 −24.13 −.22**
Baseline 47208.58 211.03 — —

the regression fit above the baseline. The embed-
ding similarity effects were all negative, that is, a
higher similarity correctly predicts a lower reaction
time. We furthermore see that the VGE-derived
similarity measures result in the best model fit by
quite a margin, as evidenced by the AIC scores and
effect size.

We also find significant interactions between
Task and the embedding similarities for the VGE
(β = 0.201, P = 0.009) and FastText regression
models (β = 0.197, P = 0.027), meaning that the
effect of embedding similarity is stronger for the
lexical decision task. We find no significant in-
teractions between the embedding similarities and

Table 3: LLRs between regression models with the in-
dicated text-based similarity measures and the same
model with the VGE similarities as extra regressors. β
VGE are the regression coefficients for the VGE simi-
larities in each model. Higher LLRs indicate a larger
improvement in model quality due to adding the VGEs.

MSCOCO + Pretrained
LLR β VGE LLR β VGE

Word2Vec 193.72*** −.77*** 69.72*** −.49***
FastText 111.46*** −.63*** 47.32*** −.42***
GloVe 168.34*** −.72*** 49.80*** −.36***

SOA.

Table 3 shows the LLRs between regression
models including the (pretrained) text-based and
our VGE word similarity measures and the cor-
responding model including only the text-based
measures. We see that our VGEs significantly im-
prove the regression fit for every type of text-based
method, even when we include both the pretrained
and MSCOCO text-based measures. The coeffi-
cients of the VGE effects in these models are all
positive, meaning a higher VGE similarity predicts
a lower reaction time.

In the regression models including the VGEs and
the MSCOCO text-based embeddings we found
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significant interactions between the VGE similar-
ities and Task in the regression models that also
include Word2Vec (β = 0.239, P = 0.007) or
GloVe (β = 0.234, P = 0.01) and no other inter-
actions with Task or SOA.

Lastly, in the regression models including the
VGEs and both pretrained and MSCOCO text-
based embeddings, we find significant interactions
with Task for Word2Vec (β = 0.312, P < 0.001),
FastText (β = 0.297, P = 0.001) and GloVe
(β = 0.443, P < 0.001) vectors, and none for
the VGEs.

4 Discussion

We created Visually Grounded Embeddings using
a caption-image retrieval model in order to test if
these embeddings can capture information about
word meaning that text-based approaches cannot.
Importantly, by testing our VGEs on human be-
havioural measures typically thought to rely on
conceptual/semantic knowledge, we test a central
idea of embodied cognition theory, namely that
our visual experiences contribute to our conceptual
knowledge.

4.1 Semantic similarity judgements

Our first experiment showed that, when trained on
the same corpus, our VGEs are on par with text-
based methods. While there is no clear overall
best method, the VGEs perform well on WordSim
and, as might be expected, on the datasets with
concrete picturable nouns. Even though the text-
based methods outperform the VGEs on one of
these (MEN), the VGEs still explain a significant
amount of extra variance over and above what is ex-
plained by the text-based methods. This indicates
that the text-based embeddings and VGEs capture
non-overlapping conceptual knowledge, which we
attribute to the visual grounding of the VGEs, given
that the training materials were otherwise equal.

The only database where the VGEs performed
notably worse than the text-based methods was
RareWords. This is perhaps because during train-
ing, the VGEs are grounded in the image corre-
sponding to the text input, even if not all words
in the sentence are visible in the picture. As the
words in RareWords are generally not picturable
nouns, any visual information incorporated into the
word-embedding is unlikely to be helpful, or, as
evidenced by the results, counterproductive.

We furthermore found that our VGEs explain

additional variance in the human similarity ratings
even after accounting for both the MSCOCO text-
based models and pretrained models trained on
massive text corpora. The fact that the VGEs ex-
plain a significant amount of extra variance even
after the text-based models have seen billions of
tokens of text, suggests that some aspects of word
meaning cannot be captured solely from text and as
well as that visual similarity plays a role in human
intuition about word meaning.

4.2 Semantic priming

In our second experiment, the VGEs outperformed
the text-based methods on explaining human reac-
tion times from the Semantic Priming Project. Even
after we account for both the MSCOCO text-based
models and pretrained models in our regression, the
VGEs still explain a significant amount of variance
in the reaction times.

In previous work, Petilli et al. (2021) only found
a significant contribution of visual information in
the short SOA lexical decision task. We found no
further proof for their hypothesis that visual infor-
mation is activated in early linguistic processing
and thereafter rapidly decays. Rather, we find that
our VGEs improve the model quality for both short
and long SOA trials.

We did find a significant positive interaction with
Task, meaning that the word embeddings explain
less variance in the naming task than in the lexical
decision task. This interaction was not specific to
the VGEs but also occurred in the models including
FastText and for all the pretrained embeddings. As
claimed in Petilli et al. (2021) and Lucas (2000)
this suggests that naming tasks are in general less
sensitive to semantic effects.

5 Conclusion

We set out to test an end-to-end approach to com-
bining visual and textual input in a single embed-
ding, trained on a cognitively plausible amount of
data. The results from our two experiments suggest
that VGEs capture aspects of word meaning that
text-based approaches cannot. Even though we in-
clude word embeddings trained on corpora several
orders of magnitude greater than any human’s ex-
posure to language, our VGEs still explain a unique
portion of variance in both human behavioural mea-
sures.

While our results indicate that visual grounding
can provide complementary information for certain
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words, it may not play a role in our conceptual
knowledge of rare, abstract words, as shown by our
results on the RareWords corpus. Similar to Petilli
et al. (2021) this then does not support the strongest
formulations of embodied cognition theory which
suggest total equivalence between conceptual and
sensorimotor processing (Glenberg, 2015).

Of course, one could always claim that it is just
current word-embedding models that do not fully
capture word meaning yet. However, given that
VGEs trained on a relatively small amount of vi-
sual data can complement text-based embeddings,
we do not think even larger text-corpora or more
complex embedding models can ever fully capture
human semantic knowledge. The human experi-
ence is rich and varied, and our computational mod-
els can never fully capture human word knowledge
while ignoring visual aspects of this experience.
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Abstract

We propose a new neural model for word em-
beddings, which uses Unitary Matrices as the
primary device for encoding lexical informa-
tion. It uses simple matrix multiplication to de-
rive matrices for large units, yielding a sentence
processing model that is strictly compositional,
does not lose information over time steps, and
is transparent, in the sense that word embed-
dings can be analysed regardless of context.
This model does not employ activation func-
tions, and so the network is fully accessible
to analysis by the methods of linear algebra at
each point in its operation on an input sequence.
We test it in two NLP agreement tasks and ob-
tain rule like perfect accuracy, with greater sta-
bility than current state-of-the-art systems. Our
proposed model goes some way towards offer-
ing a class of computationally powerful deep
learning systems that can be fully understood
and compared to human cognitive processes for
natural language learning and representation.

1 Introduction

The word embeddings that deep neural networks
(DNNs) learn are encoded as vectors. The vari-
ous dimensions of the vectors correspond to distri-
butional properties of words, as measured in cor-
pora. Combining word embeddings into phrasal
and sentence vectors can be achieved through vari-
ous means, often through task-specific models with
many parameters of their own, optimised by gradi-
ent descent.

In this paper we use unitary matrices in place
of arbitrary vector embeddings. Arjovsky et al.
(2016) propose Unitary-Evolution Recurrent Neu-
ral Networks (URNs), to eliminate exploding or
vanishing gradients in gradient descent. By the
definition of unitary-evolution, at each step, a uni-
tary transformation is applied to the state of the
RNN. This means that each input symbol is inter-
preted as a unitary transformation, or equivalently
as a unitary matrix. No activation functions are

applied between the time-steps. This design pro-
vides a lightweight DNN, with several attractive
mathematical and computational properties. URNs
are strictly compositional. The effect of embed-
dings can be analysed independently of context.
Therefore the model is transparent, in the sense
that it can be analysed by direct inspection, rather
than through black box testing methods. So, for
example, researchers are forced to resort to probe
techniques (Hewitt and Manning, 2019) to ascer-
tain the syntactic structure which transformers and
other DNNs represent.

Because of the reversibility of unitary trans-
formations, long distance dependency relations
can, in principle, be reliably and efficiently recog-
nised, without additional special-purpose machin-
ery of the kind required in an LSTM. This has
been demonstrated to hold for copying and adding
tasks (Arjovsky et al., 2016; Jing et al., 2017;
Vorontsov et al., 2017) (See also section 6.4).

Here we view the unitary matrices learned by
a URN as word embeddings. Doing so gives a
richer structure to embeddings, with computational
and formal advantages that are absent from the
traditional vector format that dominates current
work in deep learning.

We demonstrate these advantages by applying
the URN architecture to two tasks: (i) bracket
matching in a generalised Dyck language, and (ii)
the more challenging task of subject-verb number
agreement in English. These experiments confirm
the long-distance capabilities of URNs, even on a
linguistically interesting and difficult task.

The richer structure of unitary embeddings per-
mits us to measure the relative effects and distances
of different words and phrases. We illustrate the
application of such metrics for both experiments.

In section 2 we describe the design of the URN,
and our implementation of it. Sections 4 and 5
present our experiments and their results, leverag-
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ing the theory presented in section 3.1 We discuss
related work in section 6, and we draw conclusions
and sketch future work in section 7.

The computational perspicuity of URNs allows
them to be compared to psychologically and neu-
rologically attested models of human learning and
representation. Most deep neural networks, partic-
ularly powerful transformers, use non-linear activa-
tion functions which render their operation opaque
and difficult to understand. By contrast, the com-
putations of an URN are explicitly given as simple
matrix multiplications, and they are open to inspec-
tion at each point in the processing sequence.

2 Models

In its full generality, a recurrent network is a func-
tion from an input state vector s0 and a sequence
of input vectors xi, such that the state at each time-
step is a function of the state at the previous step
and the input at that step: si+1 = f(xi, si). The
function f is constant across steps, and it is called
a “cell” of the network.

Since the simple recurrent networks of Elman
(1990), the dominant architectures of RNNs, in-
cluding the influential LSTM (Hochreiter and
Schmidhuber, 1997), use non-linear activation
functions (sigmoid , tanh , ReLU) at each time-
step. Transformer models, like BERT, are even
more opaque in their operations, due the their re-
liance on a large number of attention heads that ap-
ply non-linear functions at each level. By contrast
our URNs invoke only linear cells. In fact, the cell
that we use is a linear transformation of the unitary
space,2 so that it takes unit state vectors to unit state
vectors, hence the term “unitary-evolution”. Ex-
pressed as an equation, we have f(x, s) = Q(x)s,
where Q(x) is unitary. Therefore, only state vec-
tors si of norm 1 play a role in URNs.

In our implementation of the URN architecture
we limit ourselves to real numbers, and so Q(x)
is properly described as an orthogonal matrix. We
follow this terminology in what follows.

Let n be the dimension of the state vectors si,
and N the length of the sequence of inputs. We
will consider only the case of n even. In all our
experiments, we take s0 to be the vector [1, 0, . . . ]
without loss of generality. For predictions, we ex-
tract a probability distribution from state vectors

1The code and relevant linear algebra proofs for our model
is available at https://github.com/GU-CLASP/
unitary-recurrent-network.

2The subspace of vectors of unit norm

by applying a dense layer with softmax activation
to each si.

We need to ensure that Q(x) is (and remains)
orthogonal when it is subjected to gradient descent.
In general, subtracting a gradient to an orthogonal
matrix does not preserve orthogonality of the ma-
trix. So we cannot make Q(x) a simple lookup ta-
ble from symbol to orthogonal matrix without addi-
tional restrictions. While one could project the ma-
trix onto an orthogonal space (Wisdom et al., 2016;
Kiani et al., 2022), our solution is to use a lookup
table mapping each word to a skew-hermitian ma-
trix S(x).3 We follow Hyland and Rätsch (2017)
in doing this. We then let Q(x) = eS(x), which
ensures the orthogonality ofQ(x). It is not difficult
to ensure that S(x) is skew-symmetric. It suffices
to store only the elements of S(x) above the diago-
nal, and let those below it be their anti-symmetric
image, while the diagonal is set at zero.

Another important issue is that the number of
parameters in S(x) grows with the square of n.
This would entail that doubling a model’s power
requires quadrupling the number of its parameters.
To remedy this problem we limit ourselves to ma-
trices S(x) which have non-zero entries only on
the first k rows (and consequently k columns). In
this way we limit the total size of the embedding to
(n− 1) + (n− 2) + · · ·+ (n− k + 1), due to the
constraint of symmetry. Consequently, S(x) has
at most rank 2k. Below, we refer to this setup as
consisting of truncated embeddings.

As an example, the 3×3 skew-symmetric matrix(
0 a b
−a 0 c
−b −c 0

)
is 1-truncated if c = 0. This truncation

reduces its informational content to the single row
(and column) (a b).

We use the acronym URN to refer to the gen-
eral class of unitary-evolution networks, k-TURN
to refer to our specific model architecture with k-
truncation of embeddings (fig. 1), and Full-URN
for our model architecture with no truncation.

We employ a standard training regime for our
experiments. We apply a dropout function on both
inputs of f , so that some entries of si or Q(xi) will
be zeroed out according to a Bernoulli distribution

3A matrix S is skew-symmetric iff ST = −S. Here, we
rely on the the property that the exponential of any skew-
symmetric matrix is orthogonal . The mathematical tools that
we employ are standard (Gantmacher, 1959). The key results
and their proofs are available at https://github.com/
GU-CLASP/unitary-recurrent-network/blob/
main/proofs.pdf.
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Figure 1: TURN architecture. Each input symbol xi
indexes an embedding layer, yielding a skew-symmetric
matrix S(xi). Taking its exponential yields an orthog-
onal matrix Q(xi). Multiplying the state si by Q(xi)
yields the next state, si+1.

of rate ρ.4 The embeddings are optimised by means
of the Adam gradient descent algorithm (Kingma
and Ba, 2014), with no further adjustment. Our
implementation uses the TensorFlow (Abadi et al.,
2016) framework (version 2.2), including its imple-
mentation of matrix exponential.

3 Properties of Orthogonal Embeddings

The absence of activation functions in the URN
make it more amenable to theoretical analysis than
the general class of RNNs with activation functions,
including LSTMs and GRUs. The key feature of
this design is that the behaviour of the cell is en-
tirely defined by the matrix Q(x), the orthogonal
embedding of x. The cell only multiplies by word
embeddings, and we can focus solely on those em-
beddings to understand the model.

Since the work of Mikolov et al. (2013), vector
embeddings have proven to be an extremely suc-
cessful modelling tool. However, their structure is
opaque. The only way of analysing their relations
is through geometric distance metrics like cosine
similarity. The unit vectors u and v are deemed
similar if 〈u, v〉 is close to 1. Here we work with or-
thogonal matrix embeddings, which exhibit much
richer structure. We use mathematical analysis to
get a better sense of this structure, and relate it to
vector embeddings.

4Even though we follow this regime to be standard, experi-
ments indicate that dropout rates appear not critical when we
restrict transformations to be unitary.

Composition of Embeddings A decisive bene-
fit of unitary (and orthogonal) matrix embeddings
is that they form a group. We can obtain the in-
verse of a word embedding simply by transpos-
ing it: Q(x)−1 = Q(x)T . We can also com-
pose two embeddings to obtain an embedding
for the composition. Thanks to the associativ-
ity of multiplication, we have f(x1, f(x0, s0)) =
Q(x1)(Q(x0)s0) = (Q(x1) × Q(x0))s0. So, we
can define the embedding of any sequence as
Q(x0. . . xi) = Q(xi) × Q(xi−1) × · · · × Q(x0).
Using this notation, the final state of an URN is
Q(x0. . . xN−1)s0. Hence, the URN is composi-
tional by design.5

It is important to recognise that compositionality
is strictly a consequence of the structure of a URN.
It follows directly from the use of unitary matrix
multiplication, through which the successive states
in the RNN’s processing sequence are computed,
without activation functions, It is not necessary to
demonstrate this result experimentally, since it is
a formal consequence of the associativity of or-
thogonal matrix multiplication, as shown above.
Because URNs do not incorporate additional non-
linear activation functions, a simple matrix is al-
ways sufficient to express any combination of word
and phrasal embeddings.

Distance and Similarity For vector embeddings,
one often uses cosine similarity as a metric of prox-
imity. With unit vectors, this cosine similarity
is equal to the inner product 〈u, v〉 =

∑
i uivi.

In unitary space, it is equivalent to working with
euclidean distance squared, because ‖u− v‖2 =
2(1− 〈u, v〉).

Notions of vector similarity and distance can
be naturally extended to matrices. The Frobenius
inner product 〈P,Q〉 = ΣijPijQij extends co-
sine similarity, and the Frobenius norm ‖A‖2 =∑

ij A
2
ij extends euclidean norm. Furthermore, for

orthogonal matrices they relate in an analogous
way to unit vectors:‖P −Q‖2 = 2(n− 〈P,Q〉).

Why is the Frobenius norm a natural extension
of cosine similarity for vectors? It is not merely
due to the similarity of the respective formulas.

5One might expect that the composition of embeddings
can be done at the level of skew-symmetric embeddings:
S(x0x1) = S(x0) + S(x1). However, this will not work.
The law eS0+S1 = eS0eS1 holds only when S0 and S1 com-
mute, which is, in general, not true in our setup. This non-
commutativity makes it possible to obtain, by composition,
embeddings of higher rank, by which way we make use of all
the dimensions of the orthogonal group.
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The connection is deeper. A crucial property of the
Frobenius inner product (and associated norm) is
that it measures the average behaviour of orthogo-
nal matrices on state vectors. More precisely, the
following holds: Es[〈Ps,Qs〉] = 1

n〈P,Q〉 , and
Es[‖Ps−Qs‖2] = 1

n‖P −Q‖
2. In sum, as a fall-

back, one can analyse unitary embeddings using
the methods developed for plain vector embeddings.
Doing so is theoretically sound. Together with the
fact that matrix embeddings can be composed, it
means that one can analyse the distances between
phrases.

Average Effect A useful metric for unitary em-
beddings is the squared distance to the identity
matrix, ‖Q− I‖2. By the above result, it is the
average squared distance between s and Qs — es-
sentially, the average effect that Q has, relative
to the task for which the URN is trained. Note
that this sort of metric is unavailable when using
opaque vector embeddings. In particular, the norm
of a vector embedding is not directly interpretable
as a measure of its effect. In the case of an LSTM,
for example, vector embeddings first undergo linear
transformations followed by activation functions,
before effecting the state, in several separate stages.

Signature of Embeddings While the average ef-
fect is a useful measure, it is rather crude. Averag-
ing over random state vectors considers all features
as equivalent. But we might be interested in the
effect of Q along specific dimensions, measured
separately.

For this purpose, it is useful to note that any or-
thogonal matrix Q can be decomposed as the effect
of n/2 independent rotations, in n/2 orthogonal
planes. The angles of these rotations define how
strongly Q effects the state vectors lying in this
plane. We refer to such a list of angles as the sig-
nature of Q, and we denote it as sig(Q). When
displaying a signature, we omit any zero angle.
This is useful because a k-truncated embedding
has at most k non-zero angles in its signature. Non-
zero angles will be represented graphically as a
dial, with small angles pointing up , and large
angles pointing down .

4 Natural Language Agreement Task

It may seem that the extreme simplicity of the
TURN architecture renders it unsuitable for any
non-trivial processing task. In fact, this is not at all
the case.

0 1 2 3 4 5 6 7 8 9 10 11 12
0.7

0.8

0.9

1

3-TURN
LSTM, Linzen et al.

Figure 2: Accuracy per number of attractors for the
verb number agreement task. Linzen et al. (2016) do
not report performance of their LSTM past 4 attractors.
Error bars represent binomial 95% confidence intervals.

Our first experiment applies a TURN to a natural
language agreement task proposed by Linzen et al.
(2016). This task is to predict the number of third
person verbs in English text, with supervised train-
ing. In the phrase “The keys to the cabinet are on
the table”, the RNN is trained to predict the plural
“are” rather than the singular “is”.

The training data is composed of 1.7 million sen-
tences with a selected subject-verb pair, extracted
from Wikipedia. The vocabulary size is 50,000,
and out-of-vocabulary tokens are replaced by their
part-of-speech tag. Training is performed for ten
epochs, with a learning rate of 0.01, and a dropout
rate of ρ = 0.05. We use 90% of the data for
training and 10% for validation and testing. A de-
velopment subset is not necessary since no effort
was made to tune hyperparameters. Our first experi-
ment proved sufficient to illustrate our main claims.
In any case, a TURN has few hyperparameters to
optimise.

Linzen et al. (2016) point out that solving the
agreement task requires knowledge of hierarchical
syntactic structure. That is, if an RNN captures
the long-distance dependencies involved in agree-
ment relations, it cannot rely solely on the linear
sequence of nouns (in particular their number in-
flections) preceding the predicted verb in a sen-
tence. In particular, the accuracy must be sustained
as the number attractors increases. An attractor is
defined as a noun occurring between the subject
and the verb which additionally exhibits the wrong
number feature required to control the verb. In the
above example sentence, “cabinet” is an attractor.

Figure 2 shows the results for a 50-unit TURN
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word effect word effect word effect
. 0.22 an 3.70 for 4.62

the 1.44 as 3.76 in 4.62
his 1.47 he 3.95 have 4.62
its 2.17 had 3.95 who 4.68

also 2.27 to 3.96 were 4.88
their 2.54 a 4.06 that 5.00
not 2.73 of 4.09 was 5.55

been 2.82 from 4.09 ( 5.68
at 3.40 i 4.11 ) 5.74
or 3.46 it 4.14 are 6.25
by 3.50 and 4.18 but 6.27
one 3.54 on 4.33 is 6.38
this 3.62 with 4.36 which 7.75
be 3.65 has 4.41 , 8.35

Table 1: Table of average effects for agreement experi-
ment for the most frequent tokens in the corpus, ordered
by average effect, from least to greatest

with 3-truncated embeddings for the agreement
task, for up to 12 attractors. We see that the TURN
“solves” this task, with error rates well under one
percent. Crucially, there is no evidence of accu-
racy dropping as the number of attractors increases.
Even though the statistical uncertainty increases
with the number of attractors, due to decreasing
numbers of examples, the TURN makes no mis-
takes for the higher number of attractor cases.

4.1 Average effect
In this section we illustrate the notion of average
effect developed in 3, for this task.

We report the average effect for the embeddings
of the most common words in the dataset (table 1),
and other selected words and phrases obtained by
composition. We stress that this is not done by
measuring the average effect on the data set; but
rather using the formula‖Q− I‖2 for each unitary
embedding Q. Looking at the table of effects for
these words and phrases (ordered from smallest to
largest effect) confirms the analysis of 3: tokens
which are relevant to the task (e.g. verbs, relative
pronouns) generally have a larger effect than those
which are not (e.g. the dot, “not”).

We also computed the distance between pairs of
the most frequent nouns, with both singular and
plural inflections (table 2). We observe, as our
account predicts, that nouns with the same number
inflection tend to be grouped (with a distance of 7.5
or less between them), while nouns with differing
numbers are further apart (with a distance of 7.5 or

more).

5 Dyck-language modelling task

To evaluate the theoretical long-distance modelling
capabilities of an RNN in a way that abstracts
away from the noise in natural language, one
can construct synthetic data. Following Bernardy
(2018) we use a (generalised) Dyck language. This
language is composed solely of matching paren-
thesis pairs. So the strings “{([])}<>” and
“{()[<>]}” are part of the language, while “[}”
is not. This experiment is an idealised version
of the agreement task, where opening parentheses
correspond to subjects, and closing parentheses to
verbs. An attractor is an opening parenthesis oc-
curring between the pair, but of a different kind.
Matching of parentheses corresponds to agreement.
Because we use five distinct kinds of parentheses,
the majority class baseline is at 20%. This makes
it easier to evaluate the performance of a model on
the matching task than for the third person agree-
ment task, where the majority class baseline for the
training corpus is above 70%.

We complicate the matching task with an addi-
tional difficulty. We vary the nesting depth be-
tween training and test phases. The depth of
the string is the maximum nesting level reached
within it. For instance “[{}]” has depth 2, while
“{([()]<>)}” has depth 4. In this task, we use
strings with a length of exactly 20 characters. We
train on 102,400 randomly generated strings, with
maximum depth 3, and test it on 5120 random
strings of maximum depth 10. Training is per-
formed with a learning rate of 0.01, and a dropout
rate of ρ = 0.05, for 100 epochs.

The training phase treats the URN as a genera-
tive language model, applying a cross-entropy loss
function at each position in the string. At test time,
we evaluate the model’s ability to predict the right
kind of closing parenthesis at each point (this is
the equivalent of predicting the number of a verb).
We ignore predictions regarding opening parenthe-
ses, because they are always acceptable for the
language.

We ran three versions of this experiment. One
with truncated embeddings, one with full embed-
dings, and a third using a baseline RNN with full
embeddings that are not constrained to be orthog-
onal. In all cases, the size of matrices is 50 by
50. We report accuracy on the task by number of
attractors in fig. 3.
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article year area world family articles years areas worlds families
article 0.00 7.04 6.51 6.89 5.82 9.26 9.84 10.01 10.87 9.39
year 7.04 0.00 7.62 6.30 5.38 8.22 9.06 9.75 10.14 8.64
area 6.51 7.62 0.00 6.42 6.34 9.57 9.70 10.39 11.63 10.39
world 6.89 6.30 6.42 0.00 5.17 7.32 8.82 9.17 9.13 7.83
family 5.82 5.38 6.34 5.17 0.00 7.71 7.72 8.78 9.49 8.82
articles 9.26 8.22 9.57 7.32 7.71 0.00 5.11 4.79 4.28 4.57
years 9.84 9.06 9.70 8.82 7.72 5.11 0.00 6.42 6.61 7.14
areas 10.01 9.75 10.39 9.17 8.78 4.79 6.42 0.00 5.93 6.09
worlds 10.87 10.14 11.63 9.13 9.49 4.28 6.61 5.93 0.00 7.79
families 9.39 8.64 10.39 7.83 8.82 4.57 7.14 6.09 7.79 0.00

Table 2: Distances between embeddings of most frequent nouns and their plural variants. Words which can be both
nouns and verbs were excluded.
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Figure 3: Accuracy of closing parenthesis prediction by
number of attractors.

We note that even the baseline model is capable
of generalising to longer distances. Up to 9 attrac-
tors, it achieves performance that is well above a
majority class baseline (20%). However, it shows
steadily decreasing accuracy as the number of at-
tractors increases.

By contrast, the URN models remain accurate
as the number of attractors grows. Perhaps surpris-
ingly, the URN improves in relation to the number
of attractors. We will solve this apparent puzzle
below, through analysis of the embeddings. The
explanation will hinge on the fact that truncating
embeddings affects performance only when the
number of attractors is low.

Comparing the arbitrary embeddings model with
with full URN highlights the importance of limit-
ing the network to orthogonal matrices. The perfor-
mance of the full URN is better over the long term
and in general, with a validation loss of 1.47213
compared to 1.52914 for the arbitrary case. This
happens despite the fact that the orthogonal system

0.33 0.35 1.35
0.46 1.73 0.2
1.09 0.2 0.34

Table 3: Similarity for each pair of rotation planes, for
the embeddings of ( and [. Headers show the rotation
effected on the compared planes. A value of 2 indicates
that the planes are equal (up to rotation of the basis vec-
tors), and a value of 0 indicates that they are orthogonal.

is a special case of the arbitrary network, and so
orthogonal embeddings are, in principle, available
to the baseline RNN. But it is not able to converge
on the preferred solution (even for absolute loss).
In sum, restricting to orthogonal matrices acts like
a regularising constraint which offers a significant
net benefit in generalisation and tracking power.

5.1 Analysis

As in the previous experiment, matrix embeddings
can be analysed regardless of contexts, offering a
direct view of how the model works. We consider
the embeddings produced by training the 3-TURN
model, and we start with the embeddings of indi-
vidual characters and their signatures (table 4). The
average effect, and even the signatures of all em-
beddings are strikingly similar. This does not imply
that they are equal. Indeed, they rotate different
planes.

We see in table 3 that the planes which undergo
rotation by similar angles are far from orthogonal
to each other— one pair even exhibits a similarity
of 1.73. This corresponds to the fact that the trans-
formations of ( and [manipulate a common subset
of coordinates. On the other hand, those planes that
undergo rotation by different angles tend to be in a
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character average effect signature
( 14.79
< 14.34
{ 13.98
[ 14.25
+ 14.20
) 14.85
> 14.42
} 14.07
] 14.34
- 14.26
() 0.06
<> 0.06
{} 0.07
[] 0.06
+- 0.06

Table 4: Average effect and signatures of parenthesis
embeddings and matching pairs.

closer to orthogonal relationship.

Composition of Matching Parentheses To fur-
ther clarify the formal properties of our model let’s
look at the embeddings of matching pairs, com-
puted as the product of the respective embeddings
of the pairs. Such compositions are close to identity
(table 4). This observation explains the extraordi-
narily accurate long-distance performance of the
URN on the matching task. Because a matching
pair has essentially no effect on the state, by the
time all parentheses have been closed, the state
returns to its original condition. Accordingly, the
model experiences the highest level of confusion
when it is inside a deeply nested structure, and
not when a deep structure is inserted between the
governing opening parenthesis and the prediction
conditioned on that parenthesis.

6 Related Work

6.1 Explainable NLP

It has frequently been observed that DNNs are com-
plex and opaque in the way in which they operate.
It is often unclear how they arrive at their results, or
why they identify the patterns that they extract from
training data. This has given rise to a concerted
effort to render deep learning systems explainable
(Linzen et al., 2018, 2019). This problem has be-
come more acute with the rapid development of
very large pre-trained transformer models (Vaswani
et al., 2017), like BERT (Devlin et al., 2018), GPT2

(Solaiman et al., 2019), GPT3 (Brown et al., 2020),
and XLNet (Yang et al., 2019).

URNs avoid this difficulty by being composi-
tional by design. If they prove robust for a wide
variety of NLP tasks, they will go some way to
solving the problem of explainability in deep learn-
ing.

Learning Agreement The question of whether
generative language models can learn long-distance
agreement was proposed by Linzen et al. (2016).
If accuracy is insensitive to the number of attrac-
tors, then we know that the model can work on
long distances. The results of Linzen et al. (2016)
are inconclusive on this question. Even though the
model does better than the majority class baseline
for up to four attractors, accuracy declines steadily
as the number of attractor increases. This trend is
confirmed by Bernardy and Lappin (2017), who
ran the same experiment on a larger dataset and
thoroughly explored the space of hyperparameters.
It is also confirmed by Gulordava et al. (2018), who
analysed languages other than English. Marvin and
Linzen (2018) focused on other linguistic phenom-
ena, reaching similar conclusions. Lakretz et al.
(2021) recently showed that an LSTM may extract
bounded nested tree structures, without learning
a systematic recursive rule. These results do not
hold directly for BERT-style models, because they
are not generative, even though Goldberg (2019)
provides a tentative approach. For a more detailed
review of these results, see the recent account of
Lappin (2021).

Our experiment shows that URNs can surpass
state of the art results for this kind of task. This
is not surprising. URNs are designed so that they
cannot forget information, and so it is expected
that they will perform well on tracking long dis-
tance relations. The conservation of information
is explained by the fact that multiplying by an
orthogonal matrix conserves cosine similarities:
〈Qs0, Qs1〉 = 〈s0, s1〉. Therefore any embedding
Q, be it of a single word or of a long phrase, maps
a change in its input state to an equal change in
its output state. Considering all possible states as
a distribution, Q conserves the density of states.
Hence, contrary to the claims of Sennhauser and
Berwick (2018), URNs demonstrate that a class of
RNNs can achieve rule-like accuracy in syntactic
learning.

Dyck Languages Elman (1991) already ob-
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served that it is useful to experiment with artifi-
cial systems to filter out the noise of real world
natural language data. However, to ensure that
the model actually learns recursive patterns instead
of bounded-level ones, it is necessary to test on
more deeply nested structures than the ones that the
model is trained on, as we did. Generalised Dyck
languages are ideal for this purpose (Bernardy,
2018). While LSTMs (and GRUs) exhibit a certain
capacity to generalise to deeper nesting their per-
formance declines in proportion to the depth of the
nesting, as is the case with their handling of natu-
ral language agreement data. Other experimental
work has also illustrated this effect (Hewitt et al.,
2020; Sennhauser and Berwick, 2018). Similar con-
clusions are observed for generative self-attention
architectures (Yu et al., 2019), while BERT-like,
non-generative self-attention architectures simply
fail at this task (Bernardy et al., 2021).

By contrast URNs achieve excellent perfor-
mance on this task, without declining in relation
to either depth of nesting or the number of attrac-
tors. Careful analysis of the learned embeddings
explains this level of accuracy in a principled way,
as the direct consequence of their formal process-
ing design.

6.2 Quantum-Inspired Systems

Unitary matrices are essential elements of quantum
mechanics, and quantum computing. There, too,
they insure that the relevant system does not lose
information through time.

Coecke et al. (2010); Grefenstette et al. (2011)
propose what they describe as a quantum inspired
model of linguistic representation. It computes
vector values for sentences in a category theoretic
representation of the types of a pregroup grammar
(Lambek, 2008). The category theoretic structure
in which this grammar is formulated is isomorphic
with the one for quantum logic.6

A difficulty of this approach is that it requires
the input to be already annotated as parsed data.
Another problem is that the size of the tensors asso-
ciated with higher-types is very large, making them
hard to learn. By contrast, URNs do not require
a syntactic type system. In fact, our experiments
indicate that, with the right processing network, it
is possible to learn syntactic structure and semantic
composition from unannotated input.

Compositionality of phrase and sentence matri-

6See Lappin (2021) for additional discussion of this theory.

ces is intrinsic to the formal specification of the
network.

6.3 Tensor Recurrent Neural Networks

Sutskever et al. (2011) describe what they call a
“tensor recurrent neural network” in which the tran-
sition matrix is determined by each input symbol.
This design appears to be similar to URNs. How-
ever, unlike URNs, they use non-linear activation
functions, and so they inherit the complications
that these functions bring.

6.4 Unitary-Evolution Recurrent Networks

Arjovsky et al. (2016) proposed Unitary-Evolution
recurrent networks to solve the problem of explod-
ing and vanishing gradients, caused by the presence
of non-linear activation functions. Despite this, Ar-
jovsky et al. (2016) suggest that they use ReLU
activation between time-steps, unlike URNs. More-
over, we are primarily concerned with the structure
of the underlying unitary embeddings. The connec-
tion between the two lines work is that, if an RNN
suffers exploding/vanisihing gradients, it cannot
track long-term dependencies.

Arjovsky et al. (2016)’s embeddings are com-
putationally cheaper than ours, because they can
be multiplied in linear time. Like us, they do not
cover the whole space of unitary matrices. Jing
et al. (2017) propose another representation which
is computationally less expensive than ours, but
which has asymptotically the same number of pa-
rameters. A third option is let back-propagation
update the unitary matrices arbitrarily n × n,
and project them onto the unitary space periodi-
cally (Wisdom et al., 2016; Kiani et al., 2022).

Because we use a fully general matrix exponen-
tial implementation, our model is computationally
more expensive than all the other options men-
tioned above. We can however report that when
experimenting with the unitary matrix encodings
Jing et al. (2017) and Arjovsky et al. (2016), we got
much worse results for our experiments. This may
be because we do not include a ReLU activation,
while they do use one.

To the best of our knowledge, no previous study
of URNs has addressed agreement or other lan-
guage modelling tasks. Rather, they have been
directed at data-copying tasks, which is of lim-
ited linguistic interest. This includes the work of
Vorontsov et al. (2017), even though it is ostensibly
concerned with long distance dependencies.
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7 Conclusions and Future work

In conclusion, we have shown that the URN is a
useful architecture for syntactic tasks, for which it
can reach or surpass state-of-the art precision. We
strongly suspect that it will also prove effective for
NLP tasks requiring fine-grained semantic knowl-
edge. Unlike other DNNs, a URN is transparent
and mathematically grounded in straightforward
operations of linear algebra. It is possible to trace
and understand what is happening at each level of
the network, and at each point in the sequence that
makes up the processing flow of the network.

Additionally, URNs learn unitary embeddings.
These offer two important advantages. First, they
have a rich internal structure from which we can
analyse the learned model. Second they handle
compositionality without stipulated constraints, or
additional mechanisms. Therefore we can obtain
unitary embeddings for any phrase or sentence.

The refined distance, effect, and relatedness met-
rics that unitary embeddings facilitate, open up the
possibility of more interesting procedures for iden-
tifying natural syntactic and semantic word classes.
These can be textured and dynamic, rather than
static. They can focus on specific dimensions of
meaning and structure, and they can be driven by
specific NLP tasks. If additional types of input
data are encoded in a matrix, such as visual con-
tent, then these classes could also be grounded in
extralinguistic contexts.

In order to render URNs efficient, it is necessary
to reduce the number of parameters from which
the matrix can be derived. We found that a simple
k-truncation of underlying anti-symmetric matrices
is a useful strategy to limit the size of word embed-
dings. It also makes the learned embeddings more
accessible to formal analysis, because they can be
decomposed as rotations along k planes. For the
tasks that we considered, truncation does not seri-
ously degrade the performance of the TURN model.
Kiani et al. (2022) recently applied this strategy to
another subset of tasks, suggesting general viability
of this strategy.

In preliminary work we have applied URNs
to the recognition of mildly context-sensitive lan-
guages containing cross serial dependencies of the
sort found in Swiss German and in Dutch. The
performance of the model is even more robust and
stable than it is for the agreement tasks reported
here. We will be extending this work to a variety
of other linguistically and cognitively interesting

NLP tasks.
Given the radical computational transparency of

URN architecture, these models are natural candi-
dates for comparison with human processing sys-
tems, both at the neurological level, and on more
abstract psychological planes. Identifying and mea-
suring the content of their acquired knowledge for
particular tasks can be done through direct obser-
vation of their processing patterns, and the appli-
cation of straightforward distance metrics. In this
respect they are of particular interest in the study
of the cognitive foundations of linguistic learning
and representation.
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Abstract

Noun-noun compounds (NNCs) occur fre-
quently in the English language. Accurate
NNC interpretation, i.e. determining the im-
plicit relationship between the constituents of a
NNC, is crucial for the advancement of many
natural language processing tasks. Until now,
computational NNC interpretation has been
limited to approaches involving linguistic rep-
resentations only. However, research suggests
that grounding linguistic representations in vi-
sion or other modalities can increase perfor-
mance on this and other tasks. Our work is
a novel comparison of linguistic and visuo-
linguistic representations for the task of NNC
interpretation. We frame NNC interpretation
as a relation classification task, evaluating on a
large, relationally-annotated NNC dataset. We
combine distributional word vectors with image
vectors to investigate how visual information
can help improve NNC interpretation systems.
We find that adding visual vectors yields mod-
est increases in performance on several con-
figurations of our dataset. We view this as a
promising first exploration of the benefits of us-
ing visually grounded representations for NNC
interpretation.

1 Introduction

Conceptual combination is the cognitive process
that allows us to combine two mental concepts into
one, for example by juxtaposing or otherwise merg-
ing two concepts. For instance, a house located on
a beach might typically be called a ‘beach house’.
Noun-noun compounds (NNCs) are the linguistic
phenomenon in which two nouns are joined to form
one single, syntactically inseparable unit. The pro-
cess of combining nouns into new nominal units is
both highly prevalent and infinitely productive in
a language like English (Libben, 2014), and also
exists in various forms in many other languages,
including but not limited to German, Norwegian,
Hindi, Tamil, Japanese, Chinese, Bulgarian, and

Turkish (Nakov, 2013). In English, the head of
the NNC is usually the rightmost word, and de-
termines the semantic category of the compound.
The leftmost word in English NNCs is referred to
as the modifier. Although NNCs are a common
occurrence, the highly productive nature of com-
pounding (Algeo and Algeo, 1993) means that indi-
vidual NNCs tend to have relatively low frequency
counts (Kim and Baldwin, 2006). Compositional
models have therefore been of particular interest to
researchers working on computational NNC repre-
sentations (e.g. Shwartz, 2019; Dima, 2016).

Due to of the high prevalence and complex na-
ture of English NNCs, the ability to interpret com-
pounds would greatly improve several important
natural language processing tasks, such as machine
translation (Baldwin and Tanaka, 2004; Balyan and
Chatterjee, 2015), text summarization (e.g. Sil-
ber and McCoy, 2000), question answering (e.g.
Mann, 2002), and natural language inference (e.g.
MacCartney and Manning, 2008).

In this paper, we frame compound interpretation
as a classification problem. The goal is to identify
the semantic relationship between the nominal ele-
ments of a compound. We explicitly compare the
contribution of linguistic and multimodal (visuo-
linguistic) representations to this task.1 In part,
the motivation for this is theoretical, as a computa-
tional account of linguistic meaning has to address
the link between symbolic and non-symbolic in-
formation (Bender and Koller, 2020; Bisk et al.,
2020). A further motivation is the empirical ob-
servation that grounding representations in vision
gives rise to richer meaning representations (Bruni
et al., 2012; Collell Talleda and Moens, 2016).
Composition in the visual modality has also been
shown to be possible for certain NNCs (Pezzelle
et al., 2016). A final motivation comes from find-

1The code for our experiments, as well as our visual em-
beddings, can be found here: https://github.com/
ingalang/multimodal_NC_interpretation
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ings in cognitive science suggesting that visually
grounded word representations yield results closer
to human performance on some NNC processing
tasks (Günther et al., 2020). Our goal is to assess
to what extent visual grounding helps to accurately
identify the semantic relationship between NNC
constituents. For example, Figure 1 displays im-
ages of the constituents of ‘beach house’ as well
as the compound itself. Does the relationship be-
tween the constituents in the NNC become easy
to predict once such visual information is incorpo-
rated, in addition to the textual representation of
the constituents?

Figure 1: Picture of a beach, a house, and a beach house
from ImageNet.

2 Background

Early approaches to the automatic interpreta-
tion of noun compounds included rule-based ap-
proaches (Finin, 1980; Vanderwende, 1994) or
semi-automatic approaches requiring some user
interaction (Barker and Szpakowicz, 1998). Other
work utilized frequency statistics of NNC con-
stituents to build probabilistic models for NNC in-
terpretation (Lauer, 1995; Lapata and Keller, 2004).
Kim and Baldwin (2005, 2006) leveraged WordNet
(Miller, 1998) similarities in supervised training
approaches.

Some approaches to NNC interpretation deal
with identifying an appropriate paraphrase for
a compound which explicitly states the relation
between the compound’s constituents. Several
paraphrasing-based approaches have viewed the
task of freely paraphrasing noun compounds as a
goal in itself (Hendrickx et al., 2019; Ponkiya et al.,
2020; Shwartz and Dagan, 2019; Van de Cruys
et al., 2013), whereas others have used paraphrases
as inputs to a model, representing NNCs in some
way through their paraphrases.

Other approaches to NNC relation classification
tend to be centered around classifying NNCs based
on a pre-defined set of compound relations using
various representations of the compounds them-
selves as input. Both compositional and distri-
butional representations have been tested. Dima

(2016) and Shwartz (2019) both tested various
ways of representing noun compounds. Dima
(2016) performed the first experiments on composi-
tional representations of English NNCs, using com-
positional models such as the FullAdd model (Zan-
zotto et al., 2010) and the Matrix model (Socher
et al., 2012). Dima’s results, which were tested on
datasets by Tratz and Hovy (2010) and Ó Séaghdha
(2008), reached a similar performance to the re-
sults obtained by the creators of said datasets,
respectively. Yet, Dima’s work utilized simpler
methods and did not include lexical and relational
information, as opposed to Tratz and Hovy and
Ó Séaghdha.

Visuo-linguistic representations for NNC inter-
pretation have received far less attention. Günther
et al. (2020) created the first computational model
of visuo-linguistic conceptual combination, report-
ing positive results on several NNC processing
tasks. Pezzelle et al. (2016) found that certain com-
pounds can be composed in the visual domain by
simple addition of image feature vectors. However,
none of these studies have touched upon NNC in-
terpretation using visuo-linguistic data, an area that
remains unexplored, to our knowledge.

The present work focuses on the interpretation of
NNCs that possess at least some degree of composi-
tionality. This is justified on the grounds that novel
compounds, which are very common (Algeo and
Algeo, 1993), must be interpreted compositionally
on first encounter. We employ one compositional
model, called the Full Additive model (Zanzotto
et al., 2010), as well as simple vector concatenation,
in our experiments to construct compound vectors
from individual constituent vectors. We do this for
linguistic and visual vectors separately, and then
combine the two modalities using vector concate-
nation. The following section will describe how we
obtain our visual and linguistic vectors as well as
introduce the noun compound dataset that we use.

3 Data

To perform our experiments, we use two main
sources of data: a relationally-labeled NNC in-
terpretation dataset for training and testing Tratz
(2011), and ImageNet (Deng et al., 2009) to extract
visual feature embeddings. The following subsec-
tions will describe these datasets in more detail.
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Split Train Val Test

Coarse

random 13835 928 3701
lexical (full) 4650 1593 766
lexical (mod) 9555 5316 3593
lexical (head) 9048 5516 3900

Fine

random 13968 934 3725
lexical (full) 4614 1574 843
lexical (mod) 9511 5270 3846
lexical (head) 8938 5640 4049

Table 1: Number of samples in each configuration (split
and grain) of the Tratz (2011) dataset after our filtering.

3.1 Compound Dataset

Our main compound dataset for this work is a re-
vised version of the Tratz (2011) noun compound
dataset, which contains 19,158 distinct NNCs la-
beled with 37 fine-grained and 12 coarse-grained
relation labels. The dataset is based on a previ-
ous one first published by Tratz and Hovy (2010),
which contained 17509 compounds categorized by
43 fine-grained constituent relation labels. The
compounds were annotated using Amazon’s Me-
chanical Turk service.2 They used a weighted
majority-vote scheme based on ten annotation votes
per compound, where Turkers voted on the quality
on the other Turkers’ decisions in order to even out
potential inter-annotator disagreement. On their 43-
class annotation task, Tratz and Hovy (2010) report
a Cohen’s k (Cohen, 1960) of 0.57 as a measure of
inter-annotator agreement.

To be able to test how compound interpretation
models perform when dealing with unseen con-
stituents, the Tratz (2011) dataset is split in various
ways to ensure no previously seen constituents are
available in the validation and testing phase. Differ-
ent lexical splits ensure that the test and validation
dataset contain no constituents previously seen in
the training data – the lexical mod split ensures no
previously seen modifiers (e.g. ‘beach‘ in ‘beach
house’), the lexical head split ensures no previously
seen heads (e.g. ‘house’), and the lexical full split
ensures no previously seen constituents at all. The
random split does not take into account whether
constituents are found in the training data or not.

Before performing our experiments, we do
some filtering on the data in which we remove
the fine-grained classes PERSONAL NOUN, PER-
SONAL TITLE, and LEXICALIZED. Our reason
for removing the PERSONAL NOUN and PER-

2https://www.mturk.com/

SONAL TITLE classes is that there is some doubt
as to whether proper names and titles possess the
same semantic characteristics as common nouns
(Cumming, 2007). Several works on NNC inter-
pretation remove proper nouns from their data (e.g.
Kim and Baldwin, 2006; Shwartz, 2019). Others,
like (Dima and Hinrichs, 2015), choose to keep
these categories but still acknowledge that their
presence in the dataset is questionable. We remove
the LEXICALIZED class because our work is mainly
centered around how to interpret compounds that
have a certain degree of compositionality, seeing as
novel compounds, which likely make up the major-
ity of compound types in most corpora, will need
to be interpreted compositionally. Table 1 gives
an overview of the number of samples in the train,
validation, and test sets for each configuration of
the Tratz (2011) dataset.

3.2 Image Data
ImageNet (Deng et al., 2009) is a large-scale im-
age database which is structured using the WordNet
(Miller, 1998) taxonomy, using synsets to represent
sets of word meanings. Since many word classes
are difficult to represent visually, ImageNet only
contains nouns, and no other lexical categories,
from the WordNet hierarchy. ImageNet contains
14,197,122 images, indexed by 21841 synsets3,
which represent different senses of the words.

Selecting Synsets and Images from ImageNet
In order to collect the images needed for our task,
we have to select all the synsets that were linked
to each individual word in our dataset, and then
retrieve the image URLs linked to those specific
synsets. ImageNet is structured in such a way that
one word can be linked to several synsets, and one
synset can be linked to several words. Image URLs
are associated with specific synsets, not specific
words, so to retrieve an image URL from a word,
one needs to first select which synset(s) one wants
to use to represent that word.

Determining the appropriate sense to use for
each constituent in a sample based on their context
on the compound level is not trivial. We decide to
go for a simple heuristic approach, namely finding
the synset that most probably represents the most
common or basic meaning for each word, given
that the synset has images linked to it (where possi-
ble). Our heuristic method consists of the following
steps:

3As per January of 2022
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1. For a given word, let us call this our target
word, retrieve all synsets that have images
linked to them.

2. For each of the retrieved synsets, get the list
of words that contain that synset among its
synsets (representing the potential senses of
the word). Let us call this list of words com-
parison words.

3. For each list of comparison words, com-
pute the cosine similarity (by a pre-trained
word2vec model) between each comparison
word and the target word, and then take the
average of all of these cosine similarities.

4. The synset whose comparison words list has
the highest cosine similarity to the target word
is selected as the most common, or basic,
meaning.

Note that this method does not necessarily yield
the most common sense, but the most common im-
ageable sense, that is, the most common sense of
a word, out of those which have related images.
This choice was made on the basis of two assump-
tions: 1) it would give us the chance to collect
more images, as opposed to selecting images only
when the most common meaning is imageable,4

and 2) an imageable synset that does not reflect the
most common meaning of a word might still have
certain visual properties in common with another
less imageable, but more common, meaning of said
word.

ImageNet ResNet10 ResNet100 Total in data
Unique mods 38.7% 36.4% 32.4% 3126
Unique heads 40.1% 37.6% 31.6% 3187

Table 2: Overview of the percentages of unique modi-
fiers and heads in the coarse-grained random split of the
(Tratz, 2011) data that have ImageNet images available,
and that we could obtain ResNet10 and ResNet100 vec-
tors for.

Table 2 gives an example of the ImageNet cov-
erage of unique heads and modifiers in one dataset
configuration (the random + coarse setting).

4 Methods

We frame the NNC interpretation task as a classi-
fication problem, experimenting with passing lin-
guistic and visuo-linguistic vectors as inputs to an

4In this case, we use ‘imageable’ to mean that ImageNet
has images for it.

SVM classifier. Our experimental process can be
described in three steps:

1. Obtain linguistic vectors (from a pre-trained
word2vec model) and visual feature vectors
(from a pre-trained ResNet model) for the con-
stituents of a compound (head and modifier).
We experiment with both unimodal (word)
embeddings, and visuo-linguistic embeddings,
formed by concatenating the word embedding
of a compound to the visual representation of
a compound.

2. Combine the vector representations of each
constituent (either linguistic, or visuo-
linguistic).5 We use two methods of combi-
nation: (a) simple concatenation, and (b) the
Full Additive (FullAdd) method proposed by
Zanzotto et al. (2010).

3. Observe and evaluate the performance of a
setup depending on (a) modality of vectors
(purely linguistic, or visuo-linguistic) and (b)
mode of constituent vector combination.

To obtain linguistic vectors and visual vectors,
we utilize pre-trained word2vec (Mikolov et al.,
2013a) and ResNet (He et al., 2016) models, re-
spectively. Our models, as well as our experimen-
tal setups and baselines, will be described in this
section.

4.1 Models of Word Representation
We utilize a word2vec model (Mikolov et al.,
2013a) to represent words in the linguistic modal-
ity, and visual vectors obtained by using a ResNet
model (He et al., 2016) on ImageNet (Deng et al.,
2009) images. The following subsections will de-
scribe these approaches in more detail.

4.1.1 word2vec
To obtain word embeddings to use as our linguis-
tic vectors, we use a pre-trained word2vec model
(Mikolov et al., 2013a). We employ a popular set of
pre-trained word2vec embeddings that were trained
on about 100 billion words from the GoogleNews
dataset. These 300-dimensional word embeddings6

were trained using a skip-gram approach with neg-
ative sampling (SGNS for short), as described in
Mikolov et al. (2013b). Unlike previous work on

5In case a constituent lacks a vector representation in either
modality, we instead use a vector of zeros.

6https://code.google.com/archive/p/
word2vec/
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this dataset published by e.g. Shwartz (2019), we
decide to not train our own word2vec embeddings.
This decision was made because our goal is inves-
tigating the effect of combining linguistic repre-
sentations with visual ones, rather than comparing
different kinds of linguistic representations, like
Shwartz (2019) did.

4.1.2 ResNet
ResNet (He et al., 2016) is a deep residual neu-
ral network architecture for image recognition.
ResNet models learn residual functions instead of
unreferenced functions, allowing for the creation of
models that are deeper than previous CNN models
such as the VGG models (Chatfield et al., 2014),
while still being less complex and faster to train (He
et al., 2016). To extract visual embeddings based
on images from ImageNet, we use a ResNet152
model trained on ImageNet data, implemented in
the Keras (Chollet et al., 2015) library for Python.
ResNet is trained on an object classification task,
using 1.28 million images in its training phase. The
model learns to take an image vector as input and
outputs one out of the 1000 ImageNet category
labels included in its training data.

To extract visual features using ResNet152, we
flatten the final layer before the final classification
(softmax) layer of the model, which has the size 7 x
7 x 2048, resulting in vectors of size 100352. Since
a single, randomly selected image would not reflect
all the potential visual aspects of an object, and
finding the image that is closest to a prototypical
representation of a concept is not trivial, we take
the average of several image vectors to get a general
visual representation for each noun. We use two
experimental settings for visual features, where we
extract and average feature vectors for 10 or 100
ImageNet images. We will refer to these vectors as
ResNet10 and ResNet100, respectively. See Table 2
for a summary of the image availability in the Tratz
(2011) dataset. These vectors can then be reduced
to our desired vector dimensions, for example 300
in order for them to be compatible with pre-trained
300-dimensional word2vec embeddings. For our
ResNet vectors to be more appropriate as inputs to
our SVM classifiers, we scale our vectors so that
the values range from -1 to 1.

4.2 Modes of Vector Combination

To combine modifier and constituent vectors into
compound vectors, we test two different modes of
combination: simple vector concatenation, and the

FullAdd model (Zanzotto et al., 2010). In both
cases, the combination of a modifier vector and
a head vector only happens within one modality,
i.e. we would not combine a linguistic modifier
vector with a linguistic head vector. For our visuo-
linguistic setups, compound vectors are composed
in each modality and then the resulting vectors are
concatenated to form a visuo-linguistic representa-
tion of the compound. The following subsection
will describe the FullAdd model in more detail.

4.2.1 The Full Additive Model

The Full Additive model, also referred to as Full-
Add or the Estimated Additive model (Zanzotto
et al., 2010) is a model where the two vectors −→x
and −→y , representing the constituent words c1 and
c2, are multiplied by square matrices A and B,
respectively, and then added together to create a
compositional meaning representation of a phrase.
A and B are the same for each vector −→x and −→y ,
respectively, and are obtained through training on
a training set of compound nouns that contains
distributional vector representations of each com-
pound and each constituent word. We can think
of these vectors as being ordered in triples, where
any triple of words (z, x, y), which corresponds
to (compound, modifier, head) in English, is rep-
resented by a triple of vectors (−→z ,−→x ,−→y ). For
example, the training set could contain the vector
triple (−−−−−−−→soap opera,−−→soap,−−−→opera). The goal will be
to learn a composition function for any word vec-
tors −→x ,−→y such that −→p = f(−→x ,−→y ) approximates
−→z , where −→p is the composed vector for any given
noun compound, and −→z is the observed distribu-
tional vector for this noun compound. In other
words, the function is trained using compounds
for which we have a distributional representation,
and can then be used to create compositional rep-
resentations of compounds where a distributional
representation is not available.

Intuitively, one can think of the process of train-
ing the two matrices (one for modifiers and one for
heads) as finding a way of transforming a mean-
ing representation of a single word into its as-
constituent meaning. For example, by multiplying
the vector for chocolate with the modifier matrix
(which we call matrix A), we approximate the as-
modifer meaning of chocolate, as in chocolate cake.
The general equation for composing a compound
vector −→z given two constituent word vectors −→x
and −→y is given below:
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−→z = A−→x + B−→y (1)

To implement our FullAdd model, we use the
Distributional Semantic Composition Toolkit, or
DISSECT (Dinu et al., 2013), which allows for
the implementation of FullAdd as well as other
composition models. To prepare the necessary
data for FullAdd, we filter our training data so
that we only keep the compounds for which the
whole compound as well as the modifier and head
separately have vectors associated with them in our
word embedding model. Then we construct a se-
mantic space using those word embeddings. Due to
the requirements of the DISSECT implementation,
heads and modifiers cannot be repeated in the space
(e.g., we can not include both ‘cat food’ and ‘dog
food’). The two FullAdd matrices, A and B, can
then be trained in the way described above. The
resulting vectors are then used to compose compo-
sitional meaning vectors for our training, test, and
validation data. In our FullAdd experiments, we
train a FullAdd model for each modality (linguistic
and visual) and then create composed vectors for
each compound in each modality before combining
the two modalities using concatenation.

4.3 Experimental Setups
For our experiments, we create three majority-class
baselines in addition to our SVM classifier.7 In
this section, we will describe our baselines and our
main experimental setups.

4.3.1 Baselines
We implement the following majority-class base-
lines:

• Overall Majority: For a given data sample,
this baseline selects the overall majority class
as observed in the training data.

• Modifier Majority: For a given data sample,
this baseline selects the majority class repre-
sented among compounds in the training data
with the same modifier as the sample.

• Head Majority: For a given data sample, this
baseline selects the majority class represented
among compounds in the training data with
the same head as the sample.

7We did also perform a few NNC interpretation experi-
ments using a BERT model, which were not included in this
paper because of poor performance on the lexical splits of
the Tratz (2011) dataset. See Table 7 in the appendix for an
overview.

The ‘Modifier Majority’ and ‘Head Majority’
rely on using the modifiers or heads, respectively,
from the training data to determine the assigned
label of each data sample. However, we have sev-
eral dataset configurations in which the training
and test datasets do not share any heads, modifiers,
or any constituents at all – see Table 1 for a sum-
mary. Thus, in these configurations, the head or
modifier majority mechanism will not work. This
means that for the lexical + mod split of our data,
the Modifier Majority baseline will give the exact
same results as the Overall Majority baseline. The
same is the case for the lexical + head split together
with the Head Majority baseline, as well as the full
lexical split with both the Modifier Majority and
Head Majority baselines.

4.3.2 Classifier Setup
Our classifier is an SVM that takes as inputs
either linguistic representations (in the form of
word2vec vectors that have either been concate-
nated or composed using the FullAdd function) or
visuo-linguistic representations (in the form of lin-
guistic vectors concatenated with the visual vectors
described in section 4.1.2). We use an SVM with
a one-vs-rest scheme for multiclass classification.
The SVM has a linear kernel, L2 penalty and a C
value of 0.5. We train our classifier on the Tratz
(2011) data, passing either our linguistic or visuo-
linguistic vectors as inputs.

5 Results and Evaluation

We evaluate our setup on the Tratz (2011) dataset
and report F1 scores for all dataset configurations.

Split MC-O MC-M MC-H

Coarse

random 7.5 40.0 59.3
lexical (full) 6.7 – –
lexical (mod) 7.8 – 58.8
lexical (head) 7.0 38.6 –

Fine

random 5.3 34.5 54.1
lexical (full) 5.6 – –
lexical (mod) 6.3 – 52.6
lexical (head) 5.2 34.8 –

Table 3: F1 scores from our baseline classifiers. MC
stands for Majority Class; O stands for Overall, M for
Modifier, and H for Head.

Table 3 shows the weighted F1 scores of our
baseline classifiers. The modifier- and head-
majority classifiers require the test datasets to in-
clude previously seen modifiers and heads (respec-
tively), which is why the table has some cells that
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are marked with ‘–’, indicating that the score for
this cannot be computed with the given majority-
class strategy and thus would get the same score as
the overall majority baseline. For this reason, we
only have comparable scores from the modifier-
and head-majority classifiers in the case of the
random split, in which both the fine-grained set-
ting and the coarse-grained setting show that the
head-majority classifier performs the best. In other
words, it seems that having a common head is a
greater indicator of same-class membership than
having a common modifier in the Tratz (2011)
dataset.

Split w2v w2v + ResNet10 w2v + ResNet100

Coarse

random 66.3 66.0 - 0.3 66.4 + 0.1
lexical (full) 44.2 44.1 - 0.1 43.7 - 0.5
lexical (mod) 57.9 58.3 + 0.4 57.7 - 0.2
lexical (head) 50.8 51.0 + 0.2 51.3 + 0.5

Fine

random 66.7 66.6 - 0.1 66.7 +/- 0
lexical (full) 39.2 39.4 + 0.2 38.4 - 0.8
lexical (mod) 56.4 56.4 +/- 0 56.5 + 0.1
lexical (head) 47.1 47.5 + 0.4 46.9 - 0.2

(a) F1 scores using FullAdd-composed compound vectors

Split w2v w2v + ResNet10 w2v + ResNet100

Coarse

random 74.1 75.3 + 1.2* 75.2 + 1.1*
lexical (full) 49.1 50.8 + 1.7* 50.0 + 0.9
lexical (mod) 63.5 64.0 + 0.5 63.1 - 0.4
lexical (head) 55.5 56.7 + 1.2 56.0 + 0.5

Fine

random 73.0 75.0 + 2.0 75.0 + 2.0
lexical (full) 40.3 40.0 - 0.3 40.7 + 0.4
lexical (mod) 63.0 63.5 + 0.5 63.4 + 0.4
lexical (head) 50.6 51.6 + 1.0* 52.0 + 1.4*

(b) Results using concatenated compound vectors

Table 4: Weighted F1 scores from classification ex-
periments using linguistic and visuo-linguistic vectors.
The tables show results of using FullAdd-composed
vectors as well as concatenation-composed vectors,
with the change in F1 obtained when ResNet vectors
are included. An asterisk next to an increase in F1
score means the bimodal result is significantly different
from its unimodal counterpart following a Bonferroni-
corrected McNemar test.

Table 4 shows the results of our experiments
on the Tratz (2011) data after our filtering. All of
the scores given in the tables are F1 scores, and
an asterisk next to an increase in score means that
the increase was found to be significant following
a McNemar test (McNemar, 1947) and a Bonfer-
roni correction (Neyman and Pearson, 1928) of the
p-values.8 As is evident when comparing tables
4a and 4b, using concatenated vectors as opposed
to FullAdd composed vectors yields much higher
F1 scores. Additionally, the results in table 4b,

8We set our α level to the conventional 0.05, which resulted
in a p-value threshold of 0.00625 after a Bonferroni correction.

with concatenated vectors, are less ambiguous: in
this experiment, at least one of the visuo-linguistic
settings beats the purely linguistic setting in each
experimental setting.

As has been shown in previous research on this
dataset, the most challenging dataset split is the full
lexical split, where no constituents in the validation
and test data are previously seen in the training
data. As expected, the fine-grained setting is gener-
ally more challenging than the coarse-grained one.
As we can see from comparing tables 4a and 4b,
the results in the former table are more ambiguous,
meaning that we cannot conclude that one input
type (linguistic or visuo-linguistic vectors) is better
than another. In table 4b, however, we find that
our visuo-linguistic vectors help increase scores in
some cases. In the case of the ResNet10 vectors,
the increase in scores is significant for the random
and full lexical splits in the coarse-grained setting
as well as for the lexical (head) split in the fine-
grained setting. For our ResNet100 vectors, only
the coarse + random and the fine + lexical (head)
settings show a significant increase in scores. We
find small increases overall for most NNC relation
classes, rather than big increases for certain rela-
tion classes (see Figure 3 in Appendix A for an
example).

Table 5 shows results of experiments run on a
subset of the data for which ResNet10 vectors were
available for both the modifier and head of each
compound. We compare results on our baselines
as well as our FullAdd and concatenation models
with textual or visual vectors alone, on the same
subset. As with the results on the full dataset, the
concatenation method performs better than the Full-
Add model here. Additionally, it seems that the
visual vectors do contribute at least some valuable
information on their own. It is important to note
that Table 5 is not directly comparable to the tables
in 4, since the former shows results on just a small
subset of the data.

One might be inclined to question why our Full-
Add experiments on this dataset perform worse
than very similar experiments done by e.g. Shwartz
(2019) and Dima (2016). This is likely due to the
fact that Shwartz (2019) and Dima (2016) trained
their own word embeddings specifically for this
task, meaning that they were able to obtain dis-
tributed embeddings for more of the compounds
in the Tratz (2011) dataset than what we had avail-
able through our pre-trained model, and as a con-
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baselines word2vec ResNet10
grain split MC-O MC-M MC-H FullAdd concatenate FullAdd concatenate

Coarse

random 9.8 40.6 48.4 56.0 70.7 30.9 62.7
lexical (full) 3.9 – – 26.2 41.9 6.9 28.5
lexical (mod) 6.3 – 47.1 45.7 59.7 20.4 47.0
lexical (head) 5.7 32.0 – 30.8 47.1 19.8 40.4

Fine

random 3.3 32.5 38.9 53.7 66.6 16.9 59.1
lexical (full) 4.6 – – 23.6 31.2 5.7 18.6
lexical (mod) 2.8 – 36.1 34.4 51.3 10.7 41.1
lexical (head) 3.4 33.8 – 36.5 41.7 10.8 34.4

Table 5: Results (reported in F1) from experiments with
unimodal vectors in either modality (word2vec vectors
alone or ResNet10 vectors alone) on a subset of the data
for which ResNet10 vectors were available. Baseline
results on the same subset are included for comparison.
Scores in bold are cases in which the ResNet10 vectors
outperform the strongest baseline.

sequence had more training data for the FullAdd
model. As our goal with this work is not to com-
pare composition functions for linguistic vectors,
we saw training our own embeddings as being su-
perfluous for this study.

Overall, we see that, in our experiments with
concatenated compound vectors, adding visual in-
formation helps increase the scores in all cases,
and in some cases the increases are statistically
significant.

5.1 Concreteness Ratings
Intuitively, one could assume that visual informa-
tion (i.e. images) would be easier to obtain for more
concrete words, thus making visual information a
more appropriate and/or helpful addition for com-
pounds that have relatively concrete constituents.
If this is the case, then we should find a higher ben-
efit of incorporating visual information, the more
concrete a word is.

We quantify concreteness using a dataset of con-
creteness ratings of almost 40,000 English lemmas,
by Brysbaert et al. (2014). The ratings are contin-
uous values between 1 and 5, where 5 is the most
concrete. The ratings were obtained by surveying
more than 4,000 participants in a crowdsourcing
study and taking the mean of the ratings obtained
for each word.

As a first analysis of our results in light of these
concreteness ratings, we performed several logistic
regression analyses where we looked at the con-
creteness ratings of modifiers and heads as predic-
tors of classification success. Table 6 in Appendix
A gives a full overview of these results. What we
find is that the dataset configuration seems to matter
more than the modality, but that the concreteness
ratings of both modifiers and heads are, in some
cases, good predictors of classifier success. How-
ever, in the significant cases, we discover a negative

Figure 2: Word concreteness rating by number of avail-
able URLs in ImageNet

relationship between concreteness and classifica-
tion success – i.e., the higher the concreteness of a
modifier/head, the lower the chance of the classi-
fier predicting the correct class. We performed an
investigation into some of our results, filtering the
samples by image availability (specifically, whether
a constituent had fewer or more than 10 images
available in ImageNet). The full results are found
in Table 8 in Appendix A.

Figure 2 shows word concreteness ratings by
number of URLs available in ImageNet, as deter-
mined by our image selection heuristic, for each
of the words in the Tratz (2011) dataset that had
concreteness ratings in the Brysbaert et al. (2014)
dataset (regardless of whether they appeared as a
modifier or head).

A correlation analysis revealed a low to mod-
erate correlation between the concreteness ratings
and the URL counts (Pearson‘s r = 0.45, p< 0.001).
This indicates that, to some extent, the higher the
concreteness rating of a constituent in a compound,
the higher the chances of finding 10 or 100 images
to represent said constituent as part of our image
vectors. Yet, in experiments on the subset of com-
pounds for which both constituents had ResNet10
vectors available, we find that our visual vectors
alone are somewhat informative, as we saw in Ta-
ble 5. Examples of words for which we were not
able to obtain at least 10 images include minute
(concreteness rating 3.04), intelligence (concrete-
ness rating 2.24), and state (concreteness rating
3.52).

The negative relationship between constituent
concreteness and classifier success seems counter-
intuitive, but might be a result of a number of fac-

30



tors related to word frequency, polysemy, and the
distribution of concrete vs. non-concrete words
over the classes in the Tratz (2011) dataset. Al-
though one might expect compounds containing
concrete constituents to benefit more from visuo-
linguistic representations, we note that the negative
correlation between concreteness and classifica-
tion success is always found in the visuo-linguistic
modality whenever it is found in the linguistic
modality. In other words, this seems to be a gen-
eral finding rather than a modality-specific one. As
suggested by previous work, concrete and abstract
words differ in the kinds of contexts they tend to
appear in, where abstract words tend to occur near
other abstract words, and concrete words occur
in more varied contexts (Frassinelli et al., 2017).
Additionally, it has been found that distributional
semantic models like word2vec are worse at model-
ing word pair similarity for highly concrete words
than for highly abstract words (Hill et al., 2015).
Since our task is relation classification, our findings
might also be partially influenced by the distribu-
tion of relation labels for concrete and non-concrete
words. For example, abstract words may be more
restricted in which relations they can partake in,
and thus be easier to classify. We leave it up to
future work to investigate these relationships, but
we note that our visuo-linguistic representations
do tend to outperform the purely linguistic ones,
regardless of constituent concreteness ratings.

6 Conclusion and Future Work

In this paper, we have presented NNC interpre-
tation experiments on the Tratz (2011) dataset,
comparing linguistic and visuo-linguistic inputs
to an SVM classifier. We have found that, in our
best-performing case, concatenating visual feature
vectors with linguistic vectors (word embeddings)
helps increase F1 scores on the Tratz (2011) dataset
in almost all experimental settings. Our findings
indicate that utilizing visual information for this
NNC relation classification task might indeed be a
promising endeavor.

Future work should aim to further refine our
approach by for example using more sophisti-
cated methods for selecting images to represent
words, exploring ways to represent abstract or non-
imageable words, and finding better ways to vi-
sually ground polysemous words. In this regard,
recent multimodal encoders pretrained on visual
and linguistic data (e.g. Lu et al., 2019; Tan and

Bansal, 2019), are a promising way forward. An-
other possible angle for future work could be to
consider NNC interpretation in visual and linguis-
tic contexts. In the future, we would also be eager
to explore visual grounding in other aspects of com-
putational NNC related tasks, such as NNC genera-
tion. Additionally, our approach should be tested
on different datasets and in different circumstances,
for example in a task that determines the probability
of compound categories rather than fixed classes.
One final potential angle for future work could be
to look further into the task of visual composition.
A first step could be to more closely examine the
effects of using the FullAdd function with image
vectors.

To conclude, our results are in line with previous
work from both cognitive science and computa-
tional linguistics suggesting that more psychologi-
cally plausible models of NNC processing should
incorporate grounding.
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Appendix

A Detailed Results Tables

This appendix contains supplementary
tables that describe some of our find-
ings in more detail.

Figure 3 shows the F1 scores for each
relation in the random + coarse dataset
configuration for word2vec vectors and
word2vec + ResNet10 vectors. As op-
posed to Table 5, Figure 3 shows re-
sults from our full dataset, rather than
the subset of compounds with ‘image-
able’ constituents.

modifiers heads
L VL L VL

split coef p coef p coef p coef p

Coarse

random -0.2049 <0.001 -0.1675 <0.001 -0.18 0.008 -0.99 0.028
lexical (full) -0.1788 0.032 -0.1251 0.133 0.076 0.352 0.13 0.113
lexical (mod) -0.2322 <0.001 -0.2740 <0.001 -0.1924 <0.001 -0.2093 <0.001
lexical (head) -0.1710 <0.001 -0.2118 <0.001 0.0053 0.888 0.0432 0.252

Fine

random -0.2128 <0.001 -0.2073 <0.001 -0.268 <0.001 -0.27 <0.001
lexical (full) 0.1108 0.171 0.1665 0.041 0.0854 0.340 0.0296 0.741
lexical (mod) -0.1340 0.001 -0.1581 <0.001 -0.3257 <0.001 -0.3306 <0.001
lexical (head) 0.0393 0.278 0.0423 0.243 0.0659 0.090 0.0569 0.144

Table 6: Results from a logistic regression analysis of
modifier and head concreteness as a predictor of the
successful classification of compounds. The scores in
boldface are ones where the p-values are lower than a
Bonferroni-corrected α level of 0.05.

Table 6 contains a summary of sev-
eral logistic regression analyses per-
formed on our classification results in
both the linguistic and visuo-linguistic
modalities. The results show coeffi-
cients and p-values of analyses using
modifier and head concreteness (sep-
arately) as predictors of classification
success.

split grain BERT BERT + ResNet10 RAW BERT + ResNet10 NORM
F1 diff ϵ, (B<BMRAW ) F1 diff ϵ, (B<BMNORM )

random coarse 78.7 69.7 - 9 0.99 78.7 +/- 0 0.47*
random fine 57.9 50.7 - 7.2 0.94 65.1 + 7.2 0.024*
lexical (full) coarse 31.6 28.6 - 3 0.92 25.8 - 5.8 0.95
lexical (full) fine 19.5 14.5 - 5 1.00 15.0 - 4.5 0.79
lexical (mod) coarse 17.0 36.6 + 19.6 0.036* 6.7 - 10.3 0.98
lexical (mod) fine 8.3 27.0 + 18.7 0.005* 8.3 +/- 0 0.55
lexical (head) coarse 11.1 40.2 + 29.1 0.004* 5.0 - 6.1 0.84
lexical (head) fine 4.4 29.5 + 25.1 0.036* 2.8 - 1.6 0.78

Table 7: Results from fine-tuning BERT with and with-
out adding ResNet10 vectors after 50 epochs of training,
averaged over 10 runs. Each column of bimodal results
shows weighted F1, the change in F1 between the uni-
modal and the given bimodal setting, and the epsilon
value from the ASD algorithm that reveals to what ex-
tent the bimodal is better than the unimodal setting.

Table 7 shows the results of some
NNC interpretation experiments that
we did with a pre-trained BERT model
(Devlin et al., 2018) and our ResNet
visual embeddings. In these experi-
ments, we fed compounds to a BERT
model fitted with a linear classifier on
top in order to get the classifications of
the compounds. In the visuo-linguistic
modality, we concatenated BERT’s lin-
guistic embeddings with our visual
embeddings before passing them to a
linear classification layer. We exper-
imented with using raw ResNet em-
beddings (straight out of the ResNet
model, without applying anything but
dimensionality reduction) and normal-
ized ResNet embeddings. The table
shows F1 scores as well as the ϵ value
returned by the Almost Stochastic Dom-
inance (ASD) algorithm proposed by
Dror et al. (2019) for comparing the
performance of two neural network ar-
chitectures. The algorithm works in
such a way that an ϵ value of less than
0.5 means that algorithm B (in our case,
one of the visuo-linguistic settings) is
almost stochastically dominant over al-
gorithm A (in our case, the purely lin-
guistic setting).

Table 8 gives an overview of the re-
sults of our classification algorithm
when used on linguistic (L) and visuo-
linguistic (VL) vectors. The table
shows the F1 scores for subsets of our
test data, where we select data sam-
ples where either one, both, or none of
the constituents in each sample had a
ResNet10 vector available (i.e., had 10
or more images available in ImageNet).
The ‘no filtering’ column contains the
exact same results, for the full dataset,
as reported in our main article, and is
included for comparison.
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Figure 3: Per-relation F1 scores in the condition with the highest scores (the random + coarse configuration).

constituents with 10+ images: no filtering mods heads both none
split L VL L VL L VL L VL L VL

Coarse

random 74.1 75.3* 70.46 71.43 72.78 74.65 70.76 72.59 76.84 77.9
lexical (full) 49.1 50.8* 41.29 46.04 48.4 51.24 41.3 43.22 56.84 53.77
lexical (mod) 63.5 64.0 56.77 57.25 59.36 61.35 54.48 55.45 70.22 69.69
lexical (head) 55.5 56.7 54.3 55.7 50.85 54.64* 51.42 55.96* 58.99 59.14

Fine

random 73.0 75.0 69.49 71.72* 69.19 72.06* 66.13 69.43 76.09 77.78*
lexical (full) 40.3 40.0 41.19 40.91 39.21 35.04 42.03 38.94 42.33 44.59
lexical (mod) 63.0 63.5 60.13 60.2 54.32 55.77 51.88 53.38 68.71 69.35
lexical (head) 50.6 51.6* 52.06 53.35 51.18 51.6 52.88 53.91 50.17 51.53

Table 8: Results of our experiments using the concatenation method of composition and the ResNet10 vectors,
filtered by the imageability (as modeled by whether or not 10 or more images were available) of the constituents.
An asterisk next to a VL score means that the visuo-linguistic (VL) modality performed significantly better than the
linguistic (L) modality following a McNemar test with a Bonferroni correction of the p-values.
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Abstract

In this work, we use a transformer-based pre-
trained multimodal model, CLIP, to shed light
on the mechanisms employed by human speak-
ers when referring to visual entities. In par-
ticular, we use CLIP to quantify the degree
of descriptiveness (how well an utterance de-
scribes an image in isolation) and discrimi-
nativeness (to what extent an utterance is ef-
fective in picking out a single image among
similar images) of human referring utterances
within multimodal dialogues. Overall, our re-
sults show that utterances become less descrip-
tive over time while their discriminativeness
remains unchanged. Through analysis, we pro-
pose that this trend could be due to participants
relying on the previous mentions in the dia-
logue history, as well as being able to distill
the most discriminative information from the
visual context. In general, our study opens up
the possibility of using this and similar models
to quantify patterns in human data and shed
light on the underlying cognitive mechanisms.

1 Introduction

During a conversation, speakers can refer to an en-
tity (e.g., the girl in Fig. 1) multiple times within
different contexts. This has been shown to lead
to subsequent referring expressions that are usu-
ally shorter and that show lexical entrainment with
previous mentions (Krauss and Weinheimer, 1967;
Brennan and Clark, 1996). This trend has been
confirmed in recent vision-and-language (V&L)
datasets (Shore and Skantze, 2018; Haber et al.,
2019; Hawkins et al., 2020): referring utterances
become more compact (i.e., less descriptive), and
yet participants are able to identify the intended ref-
erent (i.e., they remain pragmatically informative).

Several approaches (Mao et al., 2016; Cohn-
Gordon et al., 2018; Schüz et al., 2021; Luo et al.,
2018, i.a.) have tackled the generation of image
captions from the perspective of pragmatic infor-
mativity; Coppock et al. (2020) have compared the

Figure 1: Referring utterance chain from PhotoBook
(Haber et al., 2019). The chain has 4 ranks (4 refer-
ences to the target image, in red outline). For simplicity,
only the 5 distractor images from rank 1 are shown.

informativity of image captions and of referring
expressions; and Haber et al. (2019); Hawkins et al.
(2020) have explored how dialogue history con-
tributes to discriminativeness. However, no work to
date has investigated how these two dimensions, de-
scriptiveness and discriminativeness or pragmatic
informativity, interact in referring expressions ut-
tered in dialogue.

In this work, we use a transformer-based pre-
trained multimodal model to study the interplay be-
tween descriptiveness and discriminativeness in hu-
man referring utterances produced in dialogue. Due
to their unprecedented success in numerous tasks,
pretrained V&L models—such as LXMERT (Tan
and Bansal, 2019), VisualBERT (Li et al., 2019),
UNITER (Chen et al., 2020) and ALIGN (Jia
et al., 2021)—have recently attracted a lot of in-
terest aimed at understanding the properties and
potential of their learned representations as well
as the effect their architectures and training setups
have (Bugliarello et al., 2021). These include prob-
ing such models in a zero-shot manner, i.e., with-
out any specific fine-tuning (Hendricks and Ne-
matzadeh, 2021; Parcalabescu et al., 2021); quanti-
fying the roles of each modality (Frank et al., 2021);
inspecting attention patterns (Cao et al., 2020); and
evaluating their learned multimodal representations
against human judgments (Pezzelle et al., 2021).

We focus on one model: Contrastive Language-
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Image Pre-training (CLIP, Radford et al., 2021),
which learns via contrasting images and texts that
can be aligned or unaligned with each other. This
contrastive objective makes CLIP particularly suit-
able for modelling referential tasks that inher-
ently include such comparisons. Here, we use
CLIP to gain insight into the strategies used by
humans in sequential reference settings, finding
that although the descriptiveness of referring ut-
terances decreases significantly, the utterances re-
main discriminative over the course of multimodal
dialogue. The code to reproduce our results is
available at https://github.com/ecekt/
clip-desc-disc.

2 Data

We focus on PhotoBook (PB; Haber et al., 2019),
a dataset of multimodal task-oriented dialogues
where players aim to pick the images they have in
common without seeing each other’s visual con-
texts (which consist of 6 images coming from the
same domain). The game is played over several
rounds in which the previously seen images reap-
pear in different visual contexts, giving the players
an opportunity to refer to such images again. As
a result, chains of utterances referring to a single
image are formed over the rounds as the players
build common ground. See Fig. 1 for a simplified
representation of a chain.1 In total, PB consists
of 2,500 games, 165K utterances, and 360 unique
images from COCO (Lin et al., 2014).

All our experiments are conducted on a sub-
set of 50 PB games with manually annotated re-
ferring utterances, which contains 364 referential
chains about 205 unique target images. We refer
to this subset as PB-GOLD.2 Although a dataset of
automatically-extracted chains using all PB data is
also available (Takmaz et al., 2020), as reported
by the authors these chains may contain errors.
We therefore opt for using the smaller but higher-
quality PB-GOLD subset since we are interested
in analysing human strategies. Given that we use a
pretrained model without fine-tuning, experiment-
ing with large amounts of data is not a requisite.

PB-GOLD’s chains contain 1,078 utterances, i.e.,
2.96 utterances per chain on average (min 1, max
4). We henceforth use the term ‘rank’ to refer to
the position of an utterance in a chain. The average

1Only 1 player’s perspective for 1 context is represented.
2We use the gold set of the utterance-based chains v2

available at https://dmg-photobook.github.io/.

token length of utterances is 13.34, 11.03, 9.23, and
7.82, respectively, for ranks 1, 2, 3, and 4.3 This
decreasing trend, which is statistically significant
at p < 0.01 with respect to independent samples
t-tests between the ranks, is in line with the trend
observed in the whole dataset (Haber et al., 2019).
PB-GOLD’s vocabulary consists of 926 tokens.

3 Model

We use CLIP (Radford et al., 2021), a model pre-
trained on a dataset of 400 million image-text pairs
collected from the internet using a contrastive ob-
jective to learn strong transferable vision represen-
tations with natural language supervision.4 In par-
ticular, we employ the ViT-B/32 version of CLIP,
which utilizes separate transformers to encode vi-
sion and language (Vaswani et al., 2017; Dosovit-
skiy et al., 2021; Radford et al., 2019, 2021).

As the model learns to align images and texts,
this enables zero-shot transfer to various V&L tasks
such as image-text retrieval and image classifica-
tion and even certain non-traditional tasks in a
simple and efficient manner (Radford et al., 2019;
Agarwal et al., 2021; Shen et al., 2021; Cafagna
et al., 2021; Hessel et al., 2021). This makes it an
intriguing tool to investigate the properties of vi-
sually grounded referring utterances. In this work,
we freeze CLIP’s weights and do not fine-tune the
model or perform prompt engineering, since we
aim to exploit the model’s pretrained knowledge
for the analysis of human referring strategies.

4 Descriptiveness

In our first experiment, we investigate the degree of
descriptiveness exhibited by referring utterances
in the PhotoBook game, i.e., the amount of in-
formation they provide about the image out of
context. We consider each target image and cor-
responding referential utterance at a given rank
in isolation, i.e., without taking into account the
other competing images nor the dialogue history.
We quantify descriptiveness as the alignment be-
tween an utterance and its image referent using
CLIPScore (Hessel et al., 2021), assuming that
a more descriptive utterance will attain a higher
score. For all the target image-utterance pairs
in the chains of PB-GOLD, we use CLIP to ob-
tain a vector t representing the utterance and a

3We use TweetTokenizer: https://www.nltk.org/
api/nltk.tokenize.html

4https://github.com/openai/CLIP
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Figure 2: Set of captions from COCO (Lin et al., 2014),
the order of captions is arbitrary.

vector v representing the image. CLIPScore
is then computed as the scaled cosine similarity
between these two vectors, with range [0, 2.5]:5

CLIPScore(t, v) = 2.5 ∗max(cos(t, v), 0). We
compute the average CLIPScore per rank over
the whole PB-GOLD dataset.

Results. We find that earlier utterances are better
aligned with the target image features and that there
is a monotonically decreasing trend over the 4 ranks
(Fig. 4, blue bars). The differences between all
pairs of ranks are statistically significant (according
to independent samples t-tests, p < 0.01), except
for the comparison between the last 2 ranks (p >
0.05). Since earlier referring utterances tend to be
longer (see Sec. 2), we check to what extent length
may be a confounding factor. We find that there is
only a weak correlation between token length and
CLIPScore (Spearman’s ρ = 0.29, p < 0.001).

We compare these results on PhotoBook with
text-to-image alignment computed with the same
method on two other datasets: (1) COCO (Lin
et al., 2014),6 which includes 5 captions per im-
age provided independently by different annotators
as shown in Fig. 2; here we do not expect to find
significant differences in the level of descriptive-
ness across the captions, and (2) Image Description
Sequences (IDS, Ilinykh et al., 2019)7 where one
participant describes an image incrementally as
shown in Fig. 3, by progressively adding sentences
with further details; here we do expect a similar

5The scaled factor was introduced by Hessel et al. (2021)
to account for the relatively low observed cosine values.

6We use the set of COCO images in PB-GOLD (N=205).
7The images are from ADE20k corpus (Zhou et al., 2017)

Figure 3: Sequential description from Image Descrip-
tion Sequences (Ilinykh et al., 2019).

pattern to PhotoBook, albeit for different reasons
(because participants add less salient information;
Ilinykh et al., 2019).

Fig. 4 shows that these expectations are con-
firmed. According to CLIP, COCO captions (green
bars) are more descriptive than IDS descriptions
and PB referring utterances, and are equally aligned
with the image across ‘ranks’ (the order is arbitrary
in this case). In contrast, IDS incremental descrip-
tions (yellow bars) are intrinsically ordered and
show a significant decreasing trend similar to PB.

5 Discriminativeness

In order for a listener to select the target image
among distractor images, a referring utterance
should be discriminative in its visual context. Our
results in the previous section show that descrip-
tiveness decreases over time—what is the trend
regarding discriminativeness? To address this ques-
tion, in our second experiment we use CLIP from
the perspective of reference resolution.

We focus on local text-to-image alignment, ini-
tially ignoring the previous dialogue history. To
this end, we feed CLIP a single referring utterance
together with the visual context of the speaker who
produced that utterance. CLIP yields softmax prob-
abilities for each image contrasted with the single
text. As a metric, we use accuracy: 1 if the target
image gets the highest probability; 0 otherwise.

Results. The overall accuracy is 80.15%, which
is well above the random baseline of 16.67%. In
Fig. 5, we break down the results per rank (blue
bars). A 4 × 2 chi-square test (4 ranks vs. cor-
rect/incorrect) did not yield significant differences
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Figure 4: Descriptiveness (CLIPScore) for PB-
GOLD, COCO and IDS. We only plot the first 4 ‘ranks’
(x-axis) for COCO and IDS for comparability with PB-
GOLD. The error bars illustrate the standard error.

in accuracy between the ranks, p > 0.05. Thus,
although descriptiveness decreases over time, dis-
criminativeness is not significantly affected. An
analysis of the entropy of the softmax distributions
reveals that entropy increases monotonically over
the ranks (this difference is statistically significant
according to an independent samples t-test between
ranks 1 and 4; H1 = 0.62, H4 = 0.79, p < 0.01).
That is, the model is more uncertain when try-
ing to resolve less descriptive utterances. There
is indeed a negative correlation between entropy
and CLIPScore computed between the target im-
age and the corresponding utterance (Spearman’s
ρ = −0.5, p < 0.001).

6 Analysis

How do participants manage to maintain discrim-
inativeness while decreasing descriptiveness? Do
they rely on the previous mentions present in the
dialogue history? Do they refine their referring
strategy by distilling the most discriminative infor-
mation in a given context?

6.1 Dialogue history
The results of our experiment in the previous sec-
tion show that the utterances in isolation are effec-
tive at referring; yet, uncertainty increases when
the less descriptive utterances are considered out
of context. To reduce such uncertainty, partici-
pants may rely on the dialogue history (Brennan
and Clark, 1996; Shore and Skantze, 2018; Tak-
maz et al., 2020). We consider a scenario where
participants keep in memory the previous mention
when processing the current referring utterance.
We model this scenario by prepending the previ-
ous referring utterance in the chain to the current
utterance and feeding this into the reference reso-
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Figure 5: Discriminativeness (reference resolution ac-
curacy, ACC) per rank with PB-GOLD utterances
(Utterance) and utterances with history (w/Prev. Utt),
along with their respective entropies (ENT).

lution model described in Section 5. As shown in
Fig. 5, the resulting discriminativeness is similar
to the one obtained earlier (the differences are not
significant; chi-square test, p < 0.05) and, as be-
fore, remains stable across ranks (chi-square test,
p > 0.05). However, taking into account the previ-
ous mentions leads to a significant reduction of the
entropy in general: e.g., at the last rank H4 = 0.79
vs. H ′

4 = 0.62 (t-test, p < 0.05). This suggests
that relying on the dialogue history allows speak-
ers to use less descriptive utterances by reducing
discriminative uncertainty.

6.2 Most discriminative information

Besides exploiting the dialogue history, partici-
pants may refine their referring strategy by distill-
ing the most discriminative information in a given
context. To gain insight into this hypothesis, we
explore what is discriminative in the images: we
compute the discriminative features vd of a target
image by taking the average of the visual repre-
sentations of distractor images to obtain the mean
context vector and then subtracting this vector from
the visual representation of the target image. We en-
code all 926 words in the vocabulary of PB-GOLD
using CLIP, and retrieve the top-10 words whose
representations are the closest to vd in terms of co-
sine similarity (amounting to 1% of the vocabulary).
We take these words to convey the most discrimina-
tive properties of an image in context. We analyse
whether at least one of these retrieved words is
mentioned exactly in the referring utterance, find-
ing that this is indeed the case for a remarkable 60%
of utterances.8 As an illustration, for the example
in Fig. 1, the words walking (mentioned at rank 1)

8Randomly sampling 10 words from the vocabulary for
each utterance yields 11% (average of 5 random runs).

39



and blue (used at ranks 1, 2, 3, 4) are among the
top-10 most discriminative words, while the word
water (mentioned at ranks 1, 2, 3, 4) is close to the
word beach, which is also retrieved as one of most
discriminative words in this case.

The most discriminative words are likely to be
reused in later utterances, even though the visual
context changes from rank to rank. For instance,
the most discriminative words mentioned at rank
1 constitute 60% of the discriminative words at
rank 2, indicating that entrainment is likely for
words that have high utility across contexts. We
also find a significant increase in the proportion
of discriminative content words to all the content
words per utterance (only between ranks 1 and 4,
14% vs. 19%, p < 0.01).

7 Conclusion

We used a pre-trained multimodal model claimed
to be a reference-free caption evaluator, CLIP (Rad-
ford et al., 2021), to quantify descriptiveness and
discriminativeness of human referring utterances
within multimodal dialogues. We showed that (i)
later utterances in a dialogue become less descrip-
tive in isolation while (ii) remaining similarly dis-
criminative against a visual context.

We found that the addition of dialogue history
helps decrease and control the entropy of resolu-
tion accuracy even when the speakers produce less
descriptive referring utterances. In addition, we
found that the proportion of discriminative words
increases over the ranks. These suggest that partic-
ipants playing the PhotoBook game (Haber et al.,
2019) show a tendency towards distilling discrim-
inative words and utilize the dialogue history to
keep task performance stable over the dialogue.
This outcome resonates with the findings by Giu-
lianelli et al. (2021) who observe that PhotoBook
dialogue participants tend to limit fluctuations in
the amount of information transmitted within refer-
ence chains, in line with uniform information den-
sity principles (e.g., Genzel and Charniak, 2002;
Jaeger and Levy, 2007).

Interestingly, future work could explore novel
ways of incorporating the CLIP model or its repre-
sentations into a reference resolution or generation
model embedding dialogue history and visual con-
text to obtain human-like outcomes.
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Abstract

Codenames is a popular board game, in which
knowledge and cooperation between players
play an important role. The task of a player
playing as a spymaster is to find words (clues)
that a teammate finds related to as many of
some given words as possible, but not to other
specified words. This is a hard challenge even
with today’s advanced language technology
methods.

In our study, we create spymaster agents us-
ing four types of relatedness measures that re-
quire only a raw text corpus to produce. These
include newly introduced ones based on co-
occurrences, which outperform FastText cosine
similarity on gold standard relatedness data.
To generate clues in Codenames, we combine
relatedness measures with four different scor-
ing functions, for two languages, English and
Hungarian. For testing, we collect decisions of
human guesser players in an online game, and
our configurations outperform previous agents
among methods using raw corpora only.

1 Introduction

One of the central subjects of artificial intelligence
research has long been the development of agents
that play various games at the human level or better.
Most studies in the field focus on combinatorial
games, that can be easily formalized mathemati-
cally, such as chess and go (see, for example, Allis
et al., 1994). The popular board game Codenames
is different from these in many aspects and may
provide an excellent experimental ground in areas
such as predicting human behavior or implement-
ing human-machine cooperation.

In the original game, two teams compete against
each other. A board of 25 word cards contains
cards belonging to the blue or red team, neutral
cards, and an instant defeat card (black). A team
wins if all cards of their team are revealed earlier
than the cards of the other team, or if the opponent
reveals the black card. However, only one person

(the spymaster) from both teams knows which card
is of what color. Therefore, the spymasters give
the team a clue each turn, which consists of a clue
word and a number. The other members of the team
(guessers), in consultation with each other, reveal
cards on the board they think are related to the clue
word, until they bet on a wrong card, or reach the
limit given by the spymaster as a number.

This means it is possible to create two types of
agents for the game, spymasters and guessers. The
main task of both agents is to be able to cooperate
with human players. To create agents capable of
such high-level cooperation, we need to be able
to predict human behavior in the game. This task
includes modeling the relatedness of words, with
the aim of obtaining relatedness measures that rep-
resent human perception well.

This task is highly related to word association
modeling, which has been studied extensively in
psycholinguistics for a long time (Palermo and
Jenkins, 1964; McNeill, 1966), but is by no means
equivalent to it. In word association experiments,
subjects should name any word associated with a
given word as quickly as possible, but in this case,
the spymaster’s task is to find a word that is related
to as many words from a given set as possible, but
not or significantly less closely to a set of other
words. The time allotted for the task is also limited
at most very loosely (by the patience of the other
players), and based on personal experiences, spy-
masters often use several minutes of thinking time
to come up with the right clue. For this reason, con-
nected words are often related in a complex way,
even indirectly. The task of agents – to find words
in the table related to the clue word – is more like
simple associations, but time is not dominant here
either, and more complex, indirect relations also
matter. In a game between people, the relationship
and common knowledge between the players can
also count, but this is not an influencing factor in a
game with an agent.
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2 A Mathematical Model of the Game

Suppose that for a dictionary V , a similarity matrix
S ∈ R|V |×|V | exists in which Sij = s(wi, wj)
is the exact measure of the relationship between
any two words wi, wj , that is, the relationships are
just as strong according to every person. Then
the implementation of the guesser agent is simple:
from the words on the board, always choose the
one that is most closely related to the clue word.
This way, a greedy spy-agent is also simple: let vi
be the i-th word of the dictionary, and for every i,
let [wi1, wi2, ..., win] be the unrevealed words on
the board, ordered by the relatedness to vi, from the
most closely related to the least related one. Then
we look for i for which the largest number k exists,
such that wi1, wi2, ..., wik are all words belonging
to the agent’s team. Then vi will be the clue word,
and k the number of targeted words.

However, under such conditions, the behavior
of the guessers is deterministic, which means the
two spymasters are playing against each other. The
dictionary, that is, the number of their possible
decisions is finite, and spymasters know the out-
come of each decision, which means they know
each other’s possible strategies. Thus, the game be-
comes a sequential game with perfect information,
like e.g. chess, go, or tic-tac-toe. A greedy deci-
sion is not necessarily optimal, since a spymaster
needs to consider what options they will have later,
depending on their own and the other spymasters’
decisions, and should optimize their move based on
that. Within such a framework, the development of
an optimal strategy may be the subject of further re-
search, but is no more connected to computational
and cognitive linguistics, so we will not discuss
this further in this article.

The above conditions are, of course, far from
reality, since such a distance function, which per-
fectly corresponds to the mental representations
of all people, certainly does not exist. This is
clear from the fact that in classical association tests,
where the actual task is to find nearest neighbors,
the subjects never give the same answer (Palermo
and Jenkins, 1964; Postman and Keppel, 2014).
However, it is a meaningful task to create a sim-
ilarity function and construct a similarity matrix
S ∈ RV×V , in which Sij = s(wi, wj) approxi-
mates the average similarity perceived by people.

Furthermore, based on the similarity approxima-
tions, we can define a scoring function for possible
clues, which realistically ranks them according to

how many correct guesses a human guesser player
is expected to give. Our distance matrix and our
scoring function together determine a greedy spy-
master agent. Since this task is challenging in itself,
we disregard the possible non-greedy strategies and
focus on optimizing similarity approximations and
clue scoring functions for one round only.

3 Related Work

3.1 Associations

Word associations have been a subject of active
research for a long time in cognitive science and
psycholinguistics for various reasons. They were
used to study mental functioning, memory, and cer-
tain diseases. Word associations were also applied
for modeling the cognitive lexicon and some lin-
guistic processes (summarized by Bel-Enguix et al.,
2019).

One can create a graph (Bel-Enguix, 2014), and
its transformation to a word embedding model (Bel-
Enguix et al., 2019), specifically for modeling as-
sociations, but these require difficult-to-obtain as-
sociation data. This would be a high resource re-
quirement and would make it difficult to apply such
methods in various languages.

Instead, we can use methods that require only
raw corpora. For this, the results of Spence and
Owens (1990) are the most important studies of
associations. They have shown that the amount
of co-occurrences of words in a corpus is a good
indicator of the semantic relationship between them
and is also suitable for measuring the strength of
associations. Bel Enguix et al. (2014) also predict
associations from co-occurrences, using a network
of bigram counts. Similar to their methods, we use
weighted co-occurrences explicitly to model the
connection of words (for details, see 4.1.).

3.2 Language graphs

Although the canonical way to represent words is
to assign them to vectors, if the goal is to model
connections between words, a graph structure is at
least as suitable. When each word is represented by
a vector, the similarity between them is most often
calculated as the cosine of the angle of the two
vectors. In the case of graph representations, all
words in the dictionary correspond to the vertices
of a large graph, and the distance between them can
be defined in many ways depending on the graph.
One option is the length or weight of the shortest
path between the two vertices. Knowledge graphs
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(Miller, 1992; Speer and Havasi, 2012; Navigli and
Ponzetto, 2010a) were already used to model word
connections in previous Codenames agents, but
other types of language graphs also exist, which
could be utilized for this task as well.

Hope and Keller (2013), for example, use a
graph of co-occurrences for word sense induction.
Later Pelevina et al. (2016) use a similar method to
disambiguate word embedding models.

Another graph, created as an alternative for word
embeddings, is GraphGlove (Ryabinin et al., 2020),
where the edges of the graph are optimized by the
cost function of GloVe (Pennington et al., 2014b),
so that the shortest path between two vertices gives
the distance of the corresponding words.

3.3 Codenames agents

To the best of our knowledge, the first algorithms
similar to Codenames agents have been created
by Shen et al. (2018) specifically to model human
associations. In their simplified game, the board
always consists of three nouns, and the agent gives
a clue that must be one of three adjectives, and
refers to exactly two of the board words. Their
clues were generated based on the following five
similarity functions:

• probability of bigrams relative to word fre-
quency,

• cosine similarity in Skip-gram (Mikolov et al.,
2013),

• cosine similarity in GloVe (Pennington et al.,
2014a),

• connection according to the knowledge graph
ConceptNet5 (Speer and Havasi, 2012),

• similarity in topic modeling.

They found that the behavior of human players
is best modeled on the probabilities of bigrams,
which is in line with the results of (Spence and
Owens, 1990) (although the latter calculated co-
occurrences with much larger window size).

Kim et al. (2019) were the first to build agents
designed explicitly to play the game. As a back-
ground to their relatedness measure, they used

• CBOW, Skip-gram and GloVe word embed-
dings (in multiple configurations),

• and the WordNet database (Miller, 1992) with
a number of different distance functions.

However, in their study, they do not evaluate the
performance of agents with human data, but by pair-

ing spymaster and guesser agents, which reveals
only the similarity of the two agents, regardless of
their ability to interact with humans.

Jaramillo et al. (2020) calculated similarity func-
tions from the following representations:

• TF-IDF similarity calculated from Wikipedia
articles and dictionary definitions,

• a naive-Bayesian classification of words, and

• word embeddings extracted from the first
layer of the GPT2 language model (Radford
et al., 2019).

Of these methods, they find GPT2 vectors best
suited to model word relatedness.

The latest article on the topic is (Koyyalagunta
et al., 2021), in which, in addition to the previously
used Skip-gram and GloVe word embeddings, to
produce their similarity matrices they use

• FastText (Bojanowski et al., 2017),

• the BERT model (Devlin et al., 2018),

• and the BabelNet knowledge graph (Navigli
and Ponzetto, 2010b), with a framework that
associates words according to special rules,
developed specifically for this purpose.

In addition to calculating the relatedness be-
tween words, the above works also differ in the
scoring functions of the possible clues. Without
limiting the generality, we assume that our agent
plays in the blue team, that is, our clues refer to the
blue words. Using the notations of Koyyalagunta
et al. (2021), let c̃ be a possible clue word, In a set
of targeted (intended) words, that is, the n closest
blue words to c̃, R the set of all bad words that
do not belong to the team (red words), and s(·, ·) a
function that calculates the similarity or relatedness
of two words. The scoring function of Kim et al.
(2019) is then

gKim(c̃, n) =





minb∈In s(c̃, b),
if minb∈In s(c̃, b) > maxr∈R s(c̃, r)

0, otherwise.
(1)

Jaramillo et al. (2020) takes the same function,
but adds penalties based on the color of the cards.
Koyyalagunta et al. (2021), on the other hand, de-
fine another scoring function:

gKoyy(c̃, n) =

( ∑

b∈In
s(c̃, b)

)
− λ

(
max
r∈R

s(c̃, r)
)
,

(2)
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where λ is configurable parameter.
In addition, they introduce another method to

score clues not only on the basis of word similari-
ties, but also on the basis of their frequency and the
similarity of Dict2vec vectors (Tissier et al., 2017)
– but this is actually a modification of the original
distance matrix.

Their results show that relatedness calculated
by GloVe performs best in combination with dic-
tionary definitions and frequency, but without the
latter, cosine similarity in FastText proves to be the
best measure.

Furthermore, Kumar et al. (2021) studied if the
decisions of human players can be predicted in an
amended version of Codenames. For the predic-
tions, they used word2vec and GloVe word em-
beddings, as well as several similarity measures
on free association datasets, in particular SWOW
(De Deyne et al., 2019) and USF (Nelson et al.,
2004). They found that similarity based on random
walks in SWOW performed the best, from which
they concluded that not only direct associations,
but indirect connections are also important in this
game.

4 Our Codenames Agents

Building on the studies of Spence and Owens
(1990), we introduce several word relatedness mea-
sures based on co-occurrences, which we expect
to be more suitable for modeling the human per-
ception of word connections than representation
methods created for other NLP tasks. We create
spymaster agents with several new clue scoring
functions combined to our relatedness measures.
This way, our methods only require a raw text cor-
pus of appropriate size, so they can be used for
any language. We evaluate them in two languages
(English and Hungarian), in an online game with
human players.1

4.1 Relatedness measures

Considering the previous results on the relationship
between associations and co-occurrences (Spence
and Owens, 1990; Shen et al., 2018), we create
our distance matrices not from the latest neural
methods of NLP, but from co-occurrences counted

1The game:
http://spymasters.herokuapp.com/

Source code and data:
https://github.com/xerevity/
CodeNamesAgent

in raw text. As English corpora we use the con-
catenation of the English Wikipedia and the En-
glish OpenSubtitles corpus, consisting of 5.692
billion tokens in total. For Hungarian, we use the
lemmatized version of the Hungarian Webcorpus
(Nemeskey, 2020), also including the Hungarian
Wikipedia (1.414 billion tokens). We work with
vocabulary sizes 15K in English and 10K in Hun-
garian, and remove stopwords.

4.1.1 FastText
Among the similarity measures of Koyyalagunta
et al. (2021), generally FastText seems to be the
best model. So, following the cited work, we create
a relatedness matrix based on the cosine similarity
of FastText vectors. That is, if vi, vj are vectors
corresponding to words wi, wj , then

sF (wi, wj) = cos(vi, vj).

For comparability with the other methods, we train
our FastText models on the above corpora for En-
glish and Hungarian in 300 dimensions, using win-
dow size 10.

4.1.2 Normalized PMI
A standard and probably the most common method
to calculate word relatedness from co-occurrences
is computing the pointwise mutual information
(PMI) of two words. However, PMI has well-
known shortcomings, such as overvaluing the re-
latedness of rare words, and lacking a fixed upper
and lower bound. Bouma (2009) introduced nor-
malized PMI as

PMInorm(x, y) =

(
ln

p(x, y)

p(x)p(y)

)/
− ln p(x, y),

(3)
which has 1 and −1 as upper and lower bounds, and
works well empirically as an association measure.
According to a known practice, we keep positive
values only.

Comparing this relatedness measure to data ob-
tained from humans (MEN, Bruni et al., 2012 and
WS-353 relatedness, Agirre et al., 2009), we found
that taking the square root of PMInorm increases the
Pearson correlation coefficient between human an-
notations and our calculated relatedness from 0.72
to 0.76 for MEN, and from 0.57 to 0.63 for WS-353.
Additionally, in our following methods, it is bene-
ficial if the values do not concentrate around zero,
therefore we use the square root of normalized PMI
hereinafter:

NPMI(x, y) =
√

PMInorm(x, y). (4)
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4.1.3 Squared NPMI matrix
In Codenames, to get ahead in the game, spymas-
ters have to give clues that are connected to many
words that are probably unconnected to each other.
As Kumar et al. (2021) showed, they might asso-
ciate words that are not in a strong direct connec-
tion, but are only indirectly related (e.g. religion is
not related to tree, but both are related to Christmas,
therefore religion could be a clue for tree).

To model such indirect connections, we multiply
the relatedness matrix by itself, and use the values
of the squared matrix S′ as the relatedness measure
between two words. By the definition of matrix
multiplication,

S′
ij =

n∑

k=1

si,k · sk,j ,

that is, if we define G0 as a graph whose neigh-
borhood matrix is the NPMI matrix then S′

ij is the
sum of the product of the weights on all two-length
paths vi − vk − vj in G0. Since all edge weights
are between 0 and 1, considering the weight of
a path as the product of its edge weights gives a
valid relatedness measure: longer paths and paths
that contain smaller weights will yield to smaller
relatedness values.

Artetxe et al. (2018) also showed on word em-
beddings, that different powers of embedding ma-
trices are beneficial for word similarity and word
relatedness tasks, and that the optimal power is
higher for relatedness than for similarity.

Another advantage of this method is, that it re-
duces the number of zeros in the matrix. This is
most important in the case of a guesser agent, be-
cause if the matrix consists of many zero values,
some clues may not have any related words on the
board according to our relatedness measure. How-
ever, if we have a nonzero value for all board words,
we can take the relatedness between the clue word
and the bad words into account, which might be
beneficial for a spymaster agent as well.

4.1.4 NPMI graph
In the method described above, we already used a
relatedness measure based on a graph constructed
from NPMI values, where the weight of a path
was the product of the weights of the edges on the
path. This way, a greater value of edge or path
weights corresponds to a stronger connection be-
tween the nodes. However, a more common way
is that edge weights represent distance, and path

NPMI NPMI2 Graph FastText

NPMI 0.495 0.820 0.393
NPMI2 0.349 0.578 0.621
Graph 0.442 0.602 0.427

FastText 0.295 0.524 0.319

Table 1: Pearson (upper tringle) and Spearman (lower
triangle) correlation coefficients between our related-
ness measures.

weights are the sum of the edges, so that stronger
connections belong to smaller path weights. Since
our NPMI values are between 0 and 1, we can de-
fine graph G as follows: an edge e(v1, v2) between
vertices corresponding to words w1 and w2 exists
if and only if NPMI(w1, w2) > 0, and its weight
is w(e(v1, v2)) = 1 − NPMI(w1, w2). Now the
distance between w1 and w2 is given by the weight
of the shortest path between v1 and v2:

dG(wi, wj) = min
π∈ΠG(vi,vj)

∑

ek∈π
w(ek), (5)

We can turn these distance values into relatedness
measures by subtracting them from 1:

sG(w1, w2) = 1− dG(wi, wj). (6)

This way, for two strongly related words, for which
the shortest path is the edge between them, we
get the NPMI as relatedness value. This method
therefore has some of the advantageous properties
of both above relatedness measures.

4.1.5 Comparison and evaluation of
relatedness measures

To investigate the relationship of the above defined
relatedness measures, we compute correlations be-
tween the score they assign to 100.000 random
word pairs. As Table 1 shows, none of the mea-
sures are near equivalent, but they have nonzero
correlations. They also show high positive correla-
tions with MEN (Bruni et al., 2012) and WS-353
relatedness (Agirre et al., 2009), as can be seen
in Table 2, which is hopeful for their usability as
relatedness in Codenames agents.

4.2 Clue scoring functions

Say that the agent plays in the blue team, i.e. we
want to generate clues associated to the blue words,
based on the distance functions above. The func-
tions of Kim et al. (2019) (see (1)) determined the
score of a possible reference based on relatedness
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MEN WS-353

Pearson Spearman Pearson Spearman

NPMI 0.761 0.749 0.632 0.649
NPMI2 0.627 0.670 0.502 0.545
Graph 0.754 0.735 0.650 0.647

FastText 0.732 0.737 0.562 0.564

Table 2: Correlation between our relatedness measures
and gold standard annotations.

of the clue word to the least related blue word tar-
geted. The shortcoming of this, however, is that
in addition to blue (good) words that are similar to
the clue word, there may be bad words of a differ-
ent color that are only very slightly less similar to
the clue. We can assume that in this case, agents
are less likely to choose the targeted words; or in
general, the smaller the difference between the dis-
tances of two words from the clue according to our
distance function, the more likely the human player
will perceive the order of the two words reversed.

To avoid such problems, Koyyalagunta et al.
(2021) (see (2)) add a penalty on the relatedness
of the closest bad word to their scoring functions.
This scoring function generally improves the qual-
ity of the generated clues, thus we use this as one of
our scoring functions. However, this function does
not require all bad words to be less similar to the
clue word than the targeted words, and in our exper-
iments there have been such cases that this caused
a problem. Therefore we define KoyyRestrict, a
restricted modification of gKoyy:

gKoyyR(c̃, n) =





gKoyy(c̃, n),
if minb∈In s(c̃, b) > maxr∈R s(c̃, r)

0, otherwise.
(7)

Another disadvantage of this scoring function is
that the sum of the similarities might be high even
if only one targeted word is very related to the clue
word, and the scores of the other targets are close
to the scores of the bad words. Regarding this,
replacing the sum (which is, in optimization for
a certain n, equivalent with the arithmetic mean)
with the harmonic mean of the relatedness scores
might also lead to an improvement, especially if
there are outliers among the vocabulary words with
very high relatedness to a blue word. Thus, we
introduce Harmonic scoring function as:

gH(c̃, n) =





H(b|b ∈ In)− λ ·maxr∈R s(c̃, r),
if minb∈In s(c̃, b) > maxr∈R s(c̃, r)

0, otherwise,
(8)

where H is the harmonic mean function:

H (x1, x2, . . . , xn) =
n

x−1
1 + x−1

2 + · · ·+ x−1
n
.

Finally, we also use a different version (Har-
monicDivide) of the above, where the penalty on
the bad words is performed as division instead of
subtraction:

gHD(c̃, n) =
H(b|b ∈ In)

max(n ·maxr∈R s(c̃, r), 1)
. (9)

We combine these four scoring functions with
all of the above relatedness measures, and evaluate
the agents thus obtained in the next section.

5 Evaluation and Analysis

Following Koyyalagunta et al. (2021), we use
λ = 0.5 for Koyyalagunta and KoyyRestrict scor-
ing functions, but also for the Harmonic function.
We pair all relatedness measures to all scoring func-
tions, creating 16 agents in total, and generate clues
for n = 2 and 3 targeted blue words using all of
them. Differently from Koyyalagunta et al. (2021),
we consider all of our vocabulary words as possi-
ble clue words. For each possible clue word, the
best target words in the set In are the n closest
words to the clue word, so scoring a possible clue
is computationally inexpensive.

We randomly create 100 boards, with each con-
taining 10 good and 10 bad words. For each board,
we generate clues with the 32 configurations de-
tailed above. This results in 1304 distinct clues in
English, and 1399 in Hungarian. For evaluation,
we create an online game, where human players
get a board with one of the corresponding clues
randomly, and have to choose the given number
of words from the board which they think the clue
refers to. The players do not know how the agents
work, and to avoid that through the game they learn
it at the end of the round they only see the color
of their chosen words. We collected 443 rounds
played in English, and 1365 in Hungarian. This
way, we have 31.5 rounds on average to evaluate
English configurations, and 64 rounds for Hungar-
ian. For one board, players on average spent 39
seconds on guessing in English, while 37 seconds
in Hungarian. We note that the players of the Hun-
garian game were most likely Hungarian native
speakers, while the same cannot be said about the
English game, therefore we consider the Hungarian
data more reliable.
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Evaluation Relatedness
Koyy KoyyR HM HM-Div Koyy KoyyR HM HM-Div

2 targets 3 targets

P@all

FastText 0.764 0.757 0.740 0.829 0.710 0.712 0.756 0.759
NPMI 0.747 0.747 0.776 0.715 0.707 0.708 0.733 0.695
NPMI2 0.722 0.742 0.725 0.744 0.666 0.696 0.746 0.729
Graph 0.795 0.795 0.827 0.715 0.727 0.735 0.759 0.695

P@targets

FastText 0.558 0.567 0.581 0.625 0.531 0.518 0.585 0.582
NPMI 0.504 0.504 0.519 0.546 0.515 0.513 0.503 0.495
NPMI2 0.529 0.547 0.554 0.479 0.503 0.513 0.556 0.550
Graph 0.533 0.533 0.574 0.546 0.541 0.542 0.511 0.495

Table 3: Rate of correct guesses made by human players in the Hungarian game. Numbers falling into the
bootstrapped confidence interval of the best score are underlined in each category.

Evaluation Relatedness
Koyy KoyyR HM HM-Div Koyy KoyyR HM HM-Div

2 targets 3 targets

P@all

FastText 0.707 0.726 0.783 0.722 0.711 0.742 0.755 0.760
NPMI 0.727 0.727 0.670 0.682 0.764 0.764 0.725 0.716
NPMI2 0.611 0.583 0.604 0.729 0.645 0.583 0.638 0.649
Graph 0.714 0.714 0.679 0.682 0.750 0.750 0.723 0.716

P@targets

FastText 0.487 0.535 0.581 0.555 0.549 0.495 0.577 0.520
NPMI 0.420 0.420 0.397 0.426 0.549 0.549 0.541 0.508
NPMI2 0.377 0.361 0.372 0.445 0.354 0.369 0.370 0.470
Graph 0.392 0.392 0.384 0.426 0.552 0.552 0.533 0.508

Table 4: Rate of correct guesses made by human players in the English game. Numbers falling into the bootstrapped
confidence interval of the best score are underlined in each category.

Similar to Koyyalagunta et al. (2021), we com-
pute the precision of the agents as

P@targets =
|In ∩ U |

n
,

where In is the set of the targeted words, and U is
the set of words chosen by the players. However,
the scoring functions optimize clue words to stay
away from red words, but not from non-targeted
blue words, which might be almost as related to the
clue as the targeted ones. If the user chooses such
an untargeted word, the agent still performs well.
So we define P@all,

P@all =
|A ∩ U |

n
,

where A is the set of all good (blue) words. In
Table 3 and Table 4, we show the mean precision
of the players’ guesses on the clues of each agent.
In each category (defined by language, evaluation
method, and the number of targets), we construct
a 0.95 level confidence interval for the best mean

precision using bootstrap, and mark the numbers
falling into this interval underlined.

Among the configurations, FastText similarity
combined with the Koyyalagunta scoring function
was evaluated previously by Koyyalagunta et al.
(2021), where it was the best agent without any
language-specific resource, i.e. using raw corpora
only. The results show that this is outperformed by
many of our new configurations.

On FastText relatedness, our Harmonic and Har-
monicDivide scoring functions result in a substan-
tial improvement. Most of the best performing
configurations use FastText as similarity measure
combined with these functions, although the advan-
tage of these methods is less significant when the
guesses are evaluated on all blue words instead of
the targets of the agent. Also, the only agent that
performs within the confidence interval of the best
agent in their category is FastText combined with
HarmonicDivide, therefore we consider it as our
highest performing agent. The second best agents
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in this regard, falling short in one category only, are
the Graph similarity combined with Koyyalagunta
and KoyyalaguntaRestrict functions.

As we can see, different relatedness measures
fit different scoring functions. As mentioned in
4.2, we think that the Harmonic functions are more
beneficial where outliers with high relatedness can
be found; more generally, the optimal clue scoring
function depends on the distribution of the relat-
edness measures. The exact connection between
them seems to be an exciting direction for future
work.

Interestingly, the correlations of the related-
ness measures to human-annotated relatedness data
(seen in 4.1.5) are not predictive of their perfor-
mance in Codenames, as in those experiments Fast-
Text had been outperformed by both NPMI and
Graph relatedness. The results in the two languages
are not perfectly in line either. For example, in En-
glish NPMI2 and graph relatedness perform worse
than the two other relatedness measures, while the
same does not appear in Hungarian. We suspect
that this is because NPMI2 and graph relatedness
capture more indirect connections, which are more
problematic to see for non-native speakers.

6 Summary and Future Work

In this work, we separated the Codenames spy-
master agent’s task into two parts. To cooperate
with humans, we first need to specify a related-
ness matrix that sufficiently approximates the rela-
tionships as judged by humans, and then define a
scoring function on top of this that ranks the pos-
sible clues according to how many good guesses a
human player is expected to give.

Based on previous research on associations, we
generated some of our relatedness matrices based
on co-occurrences between words in a corpus. We
evaluated these relatedness measures with human-
annotated relatedness data. However, we found that
these scores were not predictive of the performance
of the Codenames agents based on these measures.

We also introduced innovations in terms of scor-
ing functions, firstly by refining the scoring func-
tion of Koyyalagunta et al. (2021), and secondly by
using the harmonic mean of the relatedness to the
clue word. This improved the performance of the
best agents substantially.

Our best agents overall were FastText cosine
similarity combined with a function using har-
monic mean, and path weights in a graph of co-

occurrences, combined with functions using arith-
metic mean of similarities. This raises the question
about what relationship is there between related-
ness and scoring functions.

In future work, we would like to collect data
on human spymaster-player decisions and evaluate
guesser agents on them, which will directly allow
the optimization of the relatedness measure.

Although many NLP methods have already been
used to generate distance matrices, others are worth
trying. Examples include graph embedding of
associations (Bel-Enguix, 2014) and GraphGlove
(Ryabinin et al., 2020).

As each relatedness measure can be defined by
a matrix, it is also possible to aggregate several
matrices generated in different ways. For example,
creating distance matrices based on co-occurrences,
neural word representations, and knowledge graphs
at the same time seems to be a promising new direc-
tion. The comparison of such different relatedness
matrices could also provide important lessons in
cognitive modeling and the interpretability of neu-
ral word representations.
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A Appendix: Example clues

Figure 1 is a board we used for evaluation, and
Table 5 contains the clues generated by all of our
agents for this board.
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Figure 1: An example board used in evaluation

Relatedness Scoring Number Clue word Target words

FastText Koyyalagunta 2 chapel church, crane
FastText Koyyalagunta 3 raven unicorn, crane, spike
FastText KoyyRestrict 2 chapel church, crane
FastText KoyyRestrict 3 shark unicorn, crane, spike
FastText Harmonic 2 menu table, server
FastText Harmonic 3 bean root, crane, spike
FastText HarmonicDivide 2 doll unicorn, spike
FastText HarmonicDivide 3 preview cover, server, spike

NPMI Koyyalagunta 2 directory root, server
NPMI Koyyalagunta 3 altar church, table, server
NPMI KoyyRestrict 2 directory root, server
NPMI KoyyRestrict 3 altar church, table, server
NPMI Harmonic 2 directory root, server
NPMI Harmonic 3 altar church, table, server
NPMI HarmonicDivide 2 directory root, server
NPMI HarmonicDivide 3 altar church, table, server

NPMI2 Koyyalagunta 2 user server, root
NPMI2 Koyyalagunta 3 voiced crane, spike, unicorn
NPMI2 KoyyRestrict 2 user server, root
NPMI2 KoyyRestrict 3 voiced crane, spike, unicorn
NPMI2 Harmonic 2 node root, server
NPMI2 Harmonic 3 voiced crane, spike, unicorn
NPMI2 HarmonicDivide 2 download server, cover
NPMI2 HarmonicDivide 3 itunes server, cover, unicorn

Graph Koyyalagunta 2 directory root, server
Graph Koyyalagunta 3 directory root, server, table
Graph KoyyRestrict 2 directory root, server
Graph KoyyRestrict 3 directory root, server, table
Graph Harmonic 2 directory root, server
Graph Harmonic 3 altar church, table, server
Graph HarmonicDivide 2 directory root, server
Graph HarmonicDivide 3 altar church, table, server

Table 5: Clues generated for the board in Figure 1.
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Abstract

I investigate how to use pretrained static word
embeddings to deliver improved estimates of
bilexical co-occurrence probabilities: condi-
tional probabilities of one word given a sin-
gle other word in a specific relationship. Such
probabilities play important roles in psycholin-
guistics, corpus linguistics, and usage-based
cognitive modeling of language more gener-
ally. I propose a log-bilinear model taking pre-
trained vector representations of the two words
as input, enabling generalization based on the
distributional information contained in both
vectors. I show that this model outperforms
baselines in estimating probabilities of adjec-
tives given nouns that they attributively mod-
ify, and probabilities of nominal direct objects
given their head verbs, given limited training
data in Arabic, English, Korean, and Spanish.

1 Introduction

Word co-occurrence probabilities are a key ingre-
dient in usage-based cognitive models of language.
By word co-occurrence probabilities, I mean the
probability of a word w given some other single
word c, p(w | c), where words w and c have some
specific relationship, for example adjectives that at-
tributively modify nouns or nouns serving as direct
objects of verbs (Gries and Durrant, 2020).

These co-occurrence probabilities are psy-
cholinguistically relevant because they feed into
information-theoretic measures of ‘thematic fit’
and selectional restriction (Resnik, 1996; Lap-
ata et al., 1999; Padó et al., 2007; Vecchi et al.,
2017) which are relevant in predicting human on-
line processing difficulty (e.g. McRae et al., 1998;
Trueswell et al., 1994), and play a key role in lan-
guage acquisition (Erickson and Thiessen, 2015).
Most prominently, the widely-used pointwise mu-
tual information (PMI) measure of association
strength, PMI (w, c) = log p(w|c)

p(w) (Fano, 1961;
Church and Hanks, 1990), relies on these condi-

tional probabilities as an input. PMI makes appear-
ances in models of grammar induction from text
(Magerman and Marcus, 1990; Yuret, 1998; Clark
and Fijalkow, 2020; Hoover et al., 2021), online
sentence comprehension and production (Futrell
et al., 2020b; Ranjan et al., 2022), and quantita-
tive theories of word order variation (Futrell et al.,
2020a; Sharma et al., 2020).

Word co-occurrence probabilities are hard to es-
timate accurately from text data because empiri-
cal counts of a particular pair of words in a par-
ticular relation are often sparse. This limitation
makes it hard to evaluate cognitive theories that
operate on co-occurrence probabilities. Although
high-performance pretrained language models now
exist (Radford et al., 2019; Devlin et al., 2019, etc.),
the probabilities of interest often cannot be read off
of these models directly, because w and c might
be defined by relations that cannot be straightfor-
wardly detected in terms of linear word order or
templates. For example, suppose we are interested
in the distribution of adjectives attributively modi-
fying a noun in English. It would not do to ask a
language model for the distribution of words im-
mediately preceding a noun, because some of these
words will not be attributive adjectives.

I propose to improve the estimation of word co-
occurrence probabilities by leveraging pretrained
static word embeddings to enhance generalization
from potentially small training sets. My method
enables generalization based on the semantic and
syntactic information contained in word embed-
dings for both words w and c.

2 Model

Setting We are given a vocabulary of words V ,
a finite target word set W ⊆ V , a dataset of
N pairs of words {〈wi, ci〉}Ni=1 where the target
word w is an element of target word set W and the
context word c is an element of the full vocabu-
lary V , and a pretrained mapping from words to
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D-dimensional static embeddings E : V → RD.
Supposing the dataset consists of iid samples from
some distribution p (w, c) = p(c)p(w | c), our
goal is to find a conditional distribution q(w | c)
with support W to approximate p(w | c) in a way
that leverages the static embeddings E.

Proposed model I propose a log-bilinear model
(Mnih and Hinton, 2007, 2008) using word embed-
dings as input:1

q(w | c) = 1

Z(c)
exp

{
φ(w)>Aψ(c)

}
(1)

Z(c) =
∑

w∈W
exp

{
φ(w)>Aψ(c)

}
, (2)

where w = E(w) and c = E(c) are the
static embeddings of target word w and context
word c respectively, the target word encoder
φ(·) : RD → RK and context word encoder
ψ(·) : RD → RL are functions which may
be parameterized as feed-forward neural networks
with parameters denoted φ and ψ respectively, and
A is a K × L interaction matrix. The model pa-
rameters φ, ψ, and A are trained to minimize the
cross-entropy loss

J (φ, ψ,A) = −
N∑

n=1

log q(wn | cn). (3)

Modeling decisions A modeler applying this ap-
proach needs to make a number of decisions, in-
cluding the choice of static word embeddings and
the structure of the word encoders φ(·) and ψ(·).
It is also possible to set ψ = φ, using the same
function to encode both the target word and the
context word; this setup can reduce the number of
parameters at the cost of less flexibility in fitting
the training data.

Another major modeling decision involves the
target word vocabulary W , which determines the
support of q(w | c) and is summed over during
the calculation of the partition function (Eq. 2). In
some cases, the modeler may not have access to a
finite set W of possible target words. As long as
the full vocabulary V is finite, it is possible to set
W = V and learn a probability distribution with
support on all words in V .

Setting W = V has the advantage that it al-
lows the modeler not to commit to any particular
target word set, thus avoiding the risk of prema-
turely excluding legitimate target words. It has the

1I have suppressed bias terms from the notation.

disadvantages that (1) calculation of the partition
function (Eq. 2) is slower and/or more memory
intensive, and (2) the learning problem is more dif-
ficult because probability mass is initially spread
over the set V as opposed to a potentially much
smaller set W .

Implementation In all experiments reported be-
low, stochastic gradient descent is performed us-
ing the Adam algorithm with default initial learn-
ing rate (Kingma and Ba, 2015). All experi-
ments are implemented in PyTorch with use of
opt_einsum to compute the partition function
(Smith and Gray, 2018; Paszke et al., 2019).

To handle out-of-vocabulary items, I include an
unknown-word symbol UNK in the target word set
W and full vocabulary V . If a target word w in a
dataset is not present in the target word set W , or a
context word c is not present in the full vocabulary
V , then that word is mapped to UNK. In the embed-
ding map, UNK is assigned to a normalized random
vector drawn from a Gaussian distribution.

3 Related work

Distributional similarity information has been used
to improve modeling of word co-occurrence prob-
abilities in previous work. Dagan et al. (1994,
1999) defined a kernel-based interpolated language
model where probability mass is explicitly spread
over similar words, with variant models along these
lines found in Wang et al. (2005) and Yarlett (2008).
These models leverage similarity information about
target words but not context words. In contrast,
Bíró et al. (2007) proposed a method which uses
similarity information about the context word but
not the target word. Toutanova et al. (2004) de-
veloped a method that can exploit similarity in-
formation about both target and context, using a
Markov Chain algorithm incorporating distribu-
tional and WordNet similarities. None of this previ-
ous work derived word similarity information from
pretrained embeddings, because such embeddings
did not exist at the time.

The log-bilinear model for conditional word
probabilities was introduced in a language mod-
eling context by Mnih and Hinton (2007, 2008).
Mikolov et al. (2013a) influentially proposed to use
the vector representations output by the word en-
coder in such a model as general word embeddings.
The current work aims to return log-bilinear models
to their language modeling roots, evaluating the ca-
pabilities of these models to estimate co-occurrence
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probabilities using pretrained embeddings as input,
with a focus on word distributions where training
data is limited. Here the target word vocabulary
is typically small enough that the partition func-
tion (Eq. 2) can be computed directly on modern
hardware, so that approximations such as noise-
contrastive estimation (Mikolov et al., 2013b) are
not necessary.

Recently Nikkarinen et al. (2021) introduced a
neural-Bayesian nonparametric estimator for prob-
ability distributions on single words. Their setting
has an unknown and generally infinite vocabulary
V , and their model generalizes using a character-
level LSTM. In contrast, the current model assumes
a pre-existing known vocabulary V with embed-
dings, and generalizes based on those embeddings.
A hybrid model may be possible in future work.

A related literature in corpus linguistics and NLP
has explored the nature of restricted binary word
co-occurrences, called collocations (for recent ex-
amples, see Savary et al., 2017; Kutuzov et al.,
2017; Garcia et al., 2021; Espinosa Anke et al.,
2021). This work focuses narrowly on the estima-
tion of bilexical conditional probabilities, which
are often inputs to models for collocation detection.

4 Experiments

I study the ability of the embedding-based log-
bilinear model to estimate conditional distributions
for (1) adjectives attributively modifying nouns and
(2) nominal direct objects modifying verbs, in Ara-
bic, English, Korean, and Spanish. I compare the
model against baselines:

• Additive smoothing with α = 1:

padd(w | c;α) ∝ count(c, w) + α,

where count(c, w) is the frequency of the pair
of words c and w in the training data.

• An interpolated smoothed estimator:

pinterp(w | c) = padd(w | c;α) + λpMLE(w),

where pMLE is a maximum likelihood estimate,
λ = 1

4 , and α = 1.

• A softmax distribution on target words as a
function of the context word embedding c (as
proposed by Bíró et al., 2007):

psoftmax(w | c) ∝ exp
{
θ>wψ (c)

}
,

where θw is an optimized weight vector for the
target word w. This baseline uses the context
word embedding c but not the target word
embedding w. It is equivalent to having the
target word encoder return a one-hot vector
representation of target word w.

• Models without word encoders, achieved by
setting φ(·) and ψ(·) to identity functions.
Such models decode target words from the
word embeddings directly.

All baselines are subject to the same vocabulary
restrictions and out-of-vocabulary policy as the full
log-bilinear models. As a standard test metric, I
report the average negative log likelihood (NLL)
of held-out data. I report NLLs for the full test
set, as well as the challenging subset of the test set
consisting of word pairs where the context word
was never seen during training.

Below, I describe the experimental setting for
the two tasks, and then I describe the results.

4.1 Distribution of attributive adjectives
given nouns

I examine the distribution of attributive adjectives
given the nouns that they modify, for example
adjectives like red modifying nouns like ball in
phrases like the red ball.

Data I use Universal Dependencies (UD) 2.82

(Nivre et al., 2020) and the automatically-parsed
Wikipedia datasets released as part of the CoNLL
2017 Shared Task (Zeman et al., 2017) as a source
of attributive adjective–noun pairs. I extract all
pairs of words linked by a dependency of type
amod where the head has universal part-of-speech
(UPOS) NOUN and the dependent has UPOS ADJ. I
represent the pair using the downcased wordforms
of the adjective and noun.

For each language, I use the fastText aligned
word vectors (Bojanowski et al., 2017; Joulin et al.,
2018),3 limiting the vocabulary set V to the top
200,000 vectors by frequency. For the target word
vocabulary W , I take the 10,000 most frequent
wordforms among all attributive adjectives ex-
tracted from the entire CoNLL Wikipedia dataset.

As training sets, I use 99,000 adjective–noun
pairs drawn randomly from the Wikipedia datasets
for each language, so training set size is fixed

2http://hdl.handle.net/11234/1-3687
3https://fasttext.cc/docs/en/

aligned-vectors.html
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Attributive adjectives given nouns Direct objects given verbs

Softmax Log-Bilinear Softmax Log-Bilinear

Data Add. Interp. No Enc. Enc. No Enc. Enc. Add. Interp. No Enc. Enc. No Enc. Enc.

Arabic 8.50 7.05 8.31 8.04 5.79 5.89 9.78 9.78 9.17 9.00 8.63 8.47
Unseen c 9.15 9.60 8.31 8.52 6.93 6.98 9.71 9.84 9.03 8.86 9.09 8.76

English 8.75 7.17 7.15 7.16 6.40 6.41 9.64 8.99 8.64 8.58 8.16 8.04
Unseen c 9.01 8.40 7.21 7.22 6.99 6.96 9.89 9.96 8.62 8.56 8.39 8.35

Spanish 8.70 7.49 8.13 8.10 6.27 6.27 9.70 9.10 8.64 8.52 7.96 7.84
Unseen c 9.17 9.50 8.15 8.21 7.16 7.09 9.80 9.62 8.48 8.48 8.35 8.18

Korean 7.96 5.39 5.51 5.61 4.81 4.82 9.71 9.76 9.20 9.18 8.34 7.99
Unseen c 7.16 5.92 5.45 5.48 5.44 5.40 9.67 9.91 9.16 9.14 9.58 8.76

Table 1: Average NLLs of adjectives given nouns and direct objects given verbs in UD corpora for models and
baselines. ‘Add.’ is the additive smoothing baseline. ‘Enc.’ and ‘No Enc.’ refer to models with and without word
encoders, respectively. Unseen c indicates performance on pairs where the context (the head noun for adjectives
given nouns, and the head verb for direct objects given verbs) was never observed at train time.

across languages. I use an additional 1,000 pairs
from the Wikipedia datasets as development sets
for hyperparameter tuning and early stopping, and
for test sets I extract all pairs from the relevant UD
corpora.4 Pairs where the target word w is not in
the target word vocabulary W are removed from
the development and test sets.

Training and hyperparameters Each model is
trained for the number of iterations that gives min-
imum loss on the Wikipedia dev set. The word
encoders are feed-forward neural networks with
one hidden layer of 300 units and an output layer
of 300 units, with ReLU activation. In training, I
use batch size 32; I also experimented with batch
size 512 but this resulted in rapid overfitting.

4.2 Distribution of nominal direct objects
given verbs

I examine the distribution of nominal direct objects
given verbs; for example, from a sentence such as
I kicked the red ball, one would be interested in the
probability of the direct object ball given its head
noun kicked. All procedures here are the same as
for the distribution of attributive adjectives given
nouns except as described below.

Data I extracted direct objects as all pairs of
words linked in a dependency of type obj where
the head has UPOS VERB and the dependent has
UPOS NOUN. Because nouns are more open-class
than adjectives, I used a target word vocabulary of
size 20,000.

4For English, I concatenate EWT and GUM. For Arabic, I
concatenate NYUAD and PADT. For Spanish, I concatenate
AnCora and GSD. For Korean, I concatenate Kaist and GSD.

4.3 Results

Results are shown in Table 1. The log-bilinear
models outperform all others. In several cases (see
for example Spanish and Korean adjectives), only
the log-bilinear model is capable of outperforming
the interpolated baseline.

When predicting adjectives from nouns, the log-
bilinear models without word encoders sometimes
outperform those with word encoders. These is
perhaps not surprising: the input word embeddings
were trained to be used in a log-bilinear skip-gram
probability model, so they already form useful rep-
resentations for word prediction.

Overall performance on predicting objects from
verbs is worse than when predicting adjectives from
nouns. This reflects the harder nature of the task
and the larger support size required to model nouns
rather than adjectives.

4.4 Additional experiments

I also trained full log-bilinear models with a num-
ber of other settings. I found that tying the word
and context encoders does not substantially change
performance, but that fine-tuning the input word
embeddings leads to severe overfitting. Remov-
ing the target word vocabulary restriction (setting
W = V ) also substantially negatively impacts per-
formance: for adjectives, the best test set NLL is
6.57 for Arabic, 6.75 for English, 6.95 for Spanish,
and 4.89 for Korean.

5 Conclusion

I evaluated log-bilinear modeling as means to
leverage pretrained word embeddings for the es-
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timation of co-occurrence probabilities in differ-
ent syntactic configurations. I found that this
method delivers accurate probability estimates
across languages, outperforming baselines. This
method will be useful in all applications requir-
ing such probabilities. Code implementing the
method can be found at https://github.
com/langprocgroup/vectorprob.
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jič, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr.,
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Çağrı Çöltekin, Umut Sulubacak, Hans Uszkoreit,
Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily
Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirch-
ner, Hector Fernandez Alcalde, Jana Strnadová,
Esha Banerjee, Ruli Manurung, Antonio Stella, At-
suko Shimada, Sookyoung Kwak, Gustavo Men-
donça, Tatiana Lando, Rattima Nitisaroj, and Josie
Li. 2017. CoNLL 2017 shared task: Multilingual
parsing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 1–19, Vancouver, Canada. Associa-
tion for Computational Linguistics.

60



Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 61 - 67
May 26, 2022 ©2022 Association for Computational Linguistics

Modeling the Relationship between Input Distributions and Learning
Trajectories with the Tolerance Principle

Jordan Kodner
Stony Brook University

Department of Linguistics
Institute for Advanced Computational Science

Stony Brook, NY, USA
Jordan.Kodner@stonybrook.edu

Abstract

Child language learners develop with remark-
able uniformity, both in their learning trajecto-
ries and ultimate outcomes, despite major dif-
ferences in their learning environments. In this
paper, we explore the role that the frequencies
and distributions of irregular lexical items in
the input plays in driving learning trajectories.
I conclude that while the Tolerance Principle,
a type-based model of productivity learning,
accounts for inter-learner uniformity, it also
interacts with input distributions to drive cross-
pattern variation in learning trajectories.

1 Introduction

One of the most striking characteristics of child lan-
guage acquisition is its uniformity (Labov, 1972).
Children in the same speech community acquire
the same grammars despite the lexical variation in
each child’s individual input: a recent quantitative
study of child-directed speech (CDS) finds Jaccard
similarities of only 0.25-0.37 between individual
portions of the Providence Corpus (Richter, 2021),
not much higher than the lexical similarity between
CDS and adult genres (Kodner, 2019). Thus, to
explain uniformity of outcomes, grammar learning
must not depend primarily on lexical identity but
on more general patterns in the learner’s input.

Learners not only acquire the essentially same
grammars but acquire them following similar trajec-
tories. For example, English learners consistently
acquire the verbal -s and -ing before the past -ed
(Brown, 1973), the last of which shows a u-shaped
developmental regression (Ervin and Miller, 1963;
Pinker and Prince, 1988). Individuals may show
relative delays correlating to estimated working vo-
cabulary size (Fenson et al., 1994, ch. 5-6), but
variability is otherwise limited. However, while
individuals learning the same pattern show unifor-
mity, expected learning paths vary across patterns.
Among English learners, for example, -ing does
not show u-shaped learning, unlike -ed. Children

Figure 1: Visualizing the Tolerance Principle on a num-
ber line. e falls in the range [0, N ]. If it lies below
θ (gold), then the learner should acquire the pattern
and memorize the exceptions. If e lies above θ (blue),
the learner should resort to memorization instead. The
number line extends as the learner’s vocabulary grows.

learning Spanish verb stem alternations also show
u-shaped learning, but they begin to over-regularize
a year earlier than English past tense learners (Clah-
sen et al., 2002). One potential reason for this, dif-
ferences in patterns’ distributions in the input, is
investigated here.

This paper introduces a quantitative means of
assessing the role that the distribution of linguistic
patterns in learner input plays in shaping learning
trajectories and variation even prior to the grammar
and individual cognitive factors. Adopting the Tol-
erance Principle (TP; Yang, 2016) as a type-based
model of productivity learning, we find that the
type-frequency and (indirectly) token frequency of
exceptions to linguistic patterns have a dramatic
effect on the expected learning trajectories across
patterns while also quantifying expected uniformity
across individuals within a given pattern.

2 The Learning Model

The Tolerance Principle (TP; Yang, 2016) is a
cognitively motivated type-based learning model
which casts generalization in terms of productiv-
ity in the face of exceptions. The model has
gained support in recent years through its success-
ful application to problems in syntax and seman-
tics (e.g., Yang, 2016; Irani, 2019; Lee and Kod-
ner, 2020), morphology (e.g., Yang, 2016; Kod-
ner, 2020; Björnsdóttir, 2021; Belth et al., 2021),
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and phonology (e.g., Yang, 2016; Sneller et al.,
2019; Kodner and Richter, 2020; Richter, 2021).
It has increasingly received backing from a range
of psycholinguistic experiments (Schuler, 2017;
Koulaguina and Shi, 2019; Emond and Shi, 2020).
It is adopted here because it makes categorical and
auditable predictions about productivity and thus
provides a clear means for investigating and the
relationship between distributions in the input and
the dynamics of learning.

The TP serves as a decision procedure for the
learner. Once the learner hypothesizes a general-
ization in the grammar, it establishes the threshold
θN at which it becomes more economical in terms
of lexical access time to accept the hypothesis and
exceptions rather than to just memorize items in-
dividually. (1) formalizes the TP. The tolerance
threshold θN is defined as the number of known
types that a generalization should apply to divided
by its natural logarithm.1

(1) Tolerance Principle (Yang, 2016, p. 8):
If R is a productive rule applicable to
N candidates, then the following relation
holds between N and e, the number of ex-
ceptions that could but do not follow R:

e ≤ θN where θN :=
N

lnN

The derivation of the TP acknowledges that
items in the input follow long-tailed Zipfian fre-
quency distributions (Zipf, 1949) in which few
items are well-attested and others are rarely attested
in the input. Zipfian and other long-tailed distribu-
tions are quite common throughout language and
are very prominent in lexical and inflectional fre-
quencies (e.g., Miller, 1957; Jelinek, 1997; Baroni,
2005; Chan, 2008; Yang, 2013; Lignos and Yang,
2018)

Figure 1 provides a visualization of the Toler-
ance Principle over individual development. Cru-
cially, N depends on a learner’s current working
vocabulary and is not a comment on the language’s
vocabulary in general. An individual learner’s N
and e increase as they learn more vocabulary, and
a pattern may fall in and out of productivity.

3 Input Distributions driving Trajectories

This section uses the Tolerance Principle to calcu-
late likely learning trajectories and variability in

1See Yang (2016, pp. 10, 144) for the full mathematical
derivation. θN approximates the N th harmonic number

learning trajectories given distributions of regular
and irregular forms in the input, and it discusses
the impact that input distributions have on learning
paths. It presents two illustrative examples and a
case study from English past tense learning. For
clarity, Ntgt and etgt are used here to represent the
expected mature learner state, since N and e prop-
erly represent speaker-internal quantities and are
not a description of the target language.

3.1 Calculating Trajectories with the TP

In the first illustrative example, Ntgt = 82 and
etgt = 32. This pattern should not be produc-
tive for a mature speaker (etgt > θNtgt = 18.6),
but learners may pass through a period of over-
generalization if their N and e support it at some
point during development. To help with concep-
tualizing these developments, I introduce a visu-
alization called a Tolerance Principle state space
for this system in Figure 2. The x-axis indicates
the number of regular forms that an individual has
learned so far (N − e), and the y-axis indicates the
number of irregular forms learned so far. Color
indicates whether or not a learner at (N − e, e)
should learn a productive generalization. These
are the two “zones” in the state space. The bottom
left corner, N = 0, indicates the initial state for
all learners, and the top right corner (N = Ntgt),
indicates the mature state. In this example, the final
state is in the non-productive zone.2

As learners mature, they “move” through the
state space along some path from the bottom left
to top right. The paths that individuals take are
a function of the order in which they personally
acquired regular and irregular items. Learners may
pass in and out of the productive zone as they de-
velop. In this example, a learner who passes tem-
porarily through the productive zone may produce
over-generalization errors, one source of u-shaped
learning.

Not all paths through the state space are equally
likely. It would be strange, for example, if a learner
acquired all the irregular items before any of the
regular items, or vice-versa. One could ask, for
a learner who knows a given N , what is the like-
lihood that e of those are irregulars? Or equiv-
alently in the state space, what is the likelihood
that a learner should pass through a given point
(N − e, e)? This can be modeled probabilistically

2The TP breaks down for very small N . This area is placed
in the non-productive zone by convention.
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Figure 2: Tolerance Principle state space indicating
productivity for every (N − e, e) pair that a learner
may pass through during vocabulary learning. Ntgt=82,
etgt=32.
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Figure 3: Likelihood of (N − e, e) for each N . Darker
indicates more likely path through the Fig. 2 TP space.

as a function of the relative token frequencies of
the items. If irregulars are distributed uniformly
throughout the distribution of types, path likelihood
is well-approximated by a central hypergeometric
distribution calculated for each N . Diagonals from
top left to bottom right are “lines of constant N .”
Figure 3 visualizes this, with darker colors indicat-
ing more likely ratios of regulars and irregulars for
a given N .

It is now possible to calculate the probability of
falling in the productive and non-productive zones
for each vocabulary size by summing over lines
of constant N . The results, visualized in Figure 4
can be interpreted as the probability that a learner
will generalize at each vocabulary size. Correlated
with vocabulary size estimates by age, this can pre-
dict developmental trajectories. In this example,
learners are will pass through a phase of early over-
generalization. This falls rapidly such that only
about half should overgeneralize at N = 15. There
is still a non-zero chance of over-generalizing be-
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Figure 4: Likelihood of generalization and non-
generalization by vocabulary size for Figs. 2-3.

fore N = 45, but after that point, all learners con-
verge on adult-like non-productivity.

Note that productivity is driven entirely by the
relative number of lexical items that follow or dis-
obey the learner’s hypothesized generalization and
not the presence or absence of any individual lex-
ical items. Learner outcomes are instead driven
directly by the type frequency of patterns and the
TP. Token frequencies play an indirect but crucial
role as well. They determine the likely relative
order that regular and irregular items are learned.
The second illustration demonstrates this.

3.2 Effect of Irregular Token Frequency

This illustrative example examines the effect of
irregular token frequency on learning trajectories
by adopting a more realistic Zipfian input distribu-
tion.3 The pattern Ntgt = 90, etgt = 18 should
be acquired productively (Ntgt is in the productive
zone of the state space visualized in Figure 5).

The 90 items are assumed to be distributed ac-
cording to a Zipfian distribution. This should bow
the most likely path through the state space, po-
tentially pushing it into our out of the productive
zone.4 For example, if irregulars tend to fall on the
frequent end of the distributions, these will tend
to be heard, and therefore acquired earlier. This
should bow the likely path upward and deeper into
the non-productive zone. Three irregular distribu-

3Irregulars are often clustered in the high-frequency range
(e.g., English past tense), but this is not universal. Other
irregulars are more uniformly distributed in CDS (e.g., English
plurals, Spanish verbs (Fratini et al., 2014)).

4Directly calculating each (N − e, e) probability is in-
tractable if every item has its own frequency. Wallenius’
noncentral hypergeometric distr. allows class but not item
weighting and was found to be a poor approximation. Thus,
probabilities were calculated by simulating 100,000 trials.
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Figure 5: TP state space for Ntgt = 90, etgt = 18. This
pattern should be acquired productively.

Figure 6: Likelihood of (N − e, e) for each N and a)
top-heavy, b) split, c) bottom-heavy e distributions.

tions are tested: They are a) the 18 most frequent
items (the head of the Zipfian curve), b) the 9 most
frequent and 9 least frequent items, and c) the 18
least frequent items. They are visualized in Figure
6 for three distributions of irregulars:

Even though the type distribution is the same
in each case, the expected learning trajectories dif-
fer dramatically (Fig. 7). In the top-heavy case,
nearly no learners are expected to be productive
between N = 20 and N = 80, then everyone
rapidly achieves productivity. In the bottom-heavy
all learners achieve productivity as soon as they
hypothesize the generalization. The split case pre-
dicts transient variation where all early learners are
essentially adult-like, but many temporarily aban-
don productivity before relearning it later. This is
because the likely path through the TP state space
skirts the tolerance threshold, so slight variation
in each individual’s e predicts a large categorical
difference in the grammar.
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Figure 7: Likelihood of generalization and non-
generalization by vocabulary size given Fig. 6.

3.3 Application to English Past Tense

This section applies the methods described thus far
to real data: English past tense items extracted
with frequencies from the CHILDES database
(MacWhinney, 2000). Two expected learning paths
were calculated: the default past -ed (N = 1328,
e = 98 in this data) and the relatively common sing-
sang, ring-rung sub-pattern (N=26, e=8). English
learning children consistently acquire productive
-ed around age three (Berko, 1958; Marcus et al.,
1992). In contrast, the sing-sang pattern is not pro-
ductive, though there is some transient variation
(Berko, 1958; Xu and Pinker, 1995; Yang, 2016).
This is because it has many exceptions (e.g., sting-
stung, bring-brought).
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Figure 8: Generalization probability by vocabulary size
for English past tense -ed and sing-sang. -ed was calcu-
lated on all data but trimmed toN=700 for visualization.

Figure 8 visualizes the results. Learners are pre-
dicted to show great uniformity in the acquisition
of -ed. They consistently acquire the rule when
they know 400-500 verbs. This qualitative uni-
formity is consistent with known developmental
facts, but it is not immediately clear whether these
particular numbers line up with the empirical ev-
idence. Estimates of vocabulary size by age vary
by method, but Marcus et al. (1992, ch. 5) re-
port that Sarah and Adam from the Brown Corpus
have produced 300-350 unique verbs by age three,
but productive vocabulary underestimates working
knowledge (Fenson et al., 1994, ch. 5-6), which is
what is being modeled here.

The predictions for sing-sang is quite a bit differ-
ent. There is significant variability when vocabu-
lary size is small, but learners uniformly decide on
non-productivity by around N=12. This appears
to be consistent with wug-test results for children.
In the original Berko (1958) study, only three of
86 pre-schoolers produce an -ang(ed) past form for
stimuli gling+PAST or bing+PAST, suggesting low
variability and low-productivity in that age group.5

5Adults and children seem to approach the wug test dif-
ferently (Schütze, 2005), with many adults treating it as an
analogy game (Derwing and Baker, 1977). Adults can be
prompted to analogize the sing-sang pattern Berko (1958)

4 Discussion

This paper presents a means of modeling expected
learning trajectories for productivity using the Tol-
erance Principle. As a type-based model of produc-
tivity learning, the TP only relies directly on the
type attestation of regular and irregular items in the
input. Since the grammar which is learned only
depends on which side of the tolerance threshold
the number of irregulars falls and not the lexical
identity of the items or their exact number, it ex-
plains the general uniformity of outcomes observed
across individual learners.

The TP was derived assuming that learners ex-
pect long-tailed frequency distributions in their
input, and it provides an indirect role for token-
frequency in learning. Higher frequency items are
more likely to be attested early and learned early.
Thus while the type distribution of irregulars gov-
erns the ultimate learning outcome, their token dis-
tribution drives the learning trajectory: the vocabu-
lary size at which the adult-like grammar is settled
on, the likelihood of over-regularization, and the
degree of variability among individual learners.

One advantage of the TP for the purposes of this
type of modeling is that it makes clear binary pre-
dictions about productivity. This study provides a
novel means for making concrete predictions about
the learning paths predicted by the TP. It remains to
be seen how well these predictions fit the empirical
data in a wider range of case studies. Another open
question is whether other generalization models
would make similar or different predictions, and if
so, which best fit the empirical data.

The distribution of irregulars in the input can
be measured empirically from corpora of child-
directed speech since it is a property of the lexicon
and of discourse concerns. The input has a clear
effect on the path of learning even prior to adopting
specific assumptions about the underlying grammar
that children acquire. This suggests quantitatively
re-evaluating the input as a way forward for explain-
ing cross-linguistic differences in child language
development as a complement to cross-linguistic
theoretical and experimental work.
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Abstract

Scalar implicature (SI) arises when a speaker
uses an expression (e.g., some) that is seman-
tically compatible with a logically stronger al-
ternative on the same scale (e.g., all), leading
the listener to infer that they did not intend
to convey the stronger meaning. Prior work
has demonstrated that SI rates are highly vari-
able across scales, raising the question of what
factors determine the SI strength for a partic-
ular scale. Here, we test the hypothesis that
SI rates depend on the listener’s confidence in
the underlying scale, which we operationalize
as uncertainty over the distribution of possible
alternatives conditioned on the context. We use
a T5 model fine-tuned on a text infilling task to
estimate this distribution. We find that scale un-
certainty predicts human SI rates, measured as
entropy over the sampled alternatives and over
latent classes among alternatives in sentence
embedding space. Furthermore, we do not find
a significant effect of the surprisal of the strong
scalemate. Our results suggest that pragmatic
inferences depend on listeners’ context-driven
uncertainty over alternatives.

1 Introduction

Human communication involves not only the trans-
mission of linguistic signals, but also context-
guided inference over the beliefs and goals of other
conversational agents (e.g., Sperber and Wilson,
1986; Grice, 1975). One signature pattern of this
pragmatic reasoning is scalar implicature (SI). The
standard view is that SIs arise as a result of ordered
relationships between linguistic items – when a
weaker (less informative) item of a scale is uttered,
then a listener can infer that the speaker did not
have grounds to utter the stronger (more informa-
tive) item on that scale. For example, if Alice
says “Some of the students passed the exam”, Bob
can draw the scalar inference that not all students
passed the exam, even though Alice’s utterance
would still be semantically true in that scenario.

While this view predicts that SIs are context-
independent and generally strong – known as the
Homogeneity Assumption (Degen, 2015) – empiri-
cal studies have demonstrated a remarkable amount
of variance in SI rates both within (Degen, 2015;
Li et al., 2021) and across lexical scales (Doran
et al., 2009; van Tiel et al., 2016; Gotzner et al.,
2018; Pankratz and van Tiel, 2021). This raises the
question of what factors determine the SI strength
for a particular scale. In a landmark study, van Tiel
et al. (2016) test two classes of potential predictors
of SI strength: the availability of the strong scale-
mate given the weak scalemate, and the degree to
which scalemates can be distinguished from each
other. They demonstrate that availability is not a
reliable predictor of SI strengths (but see Westera
and Boleda 2020), while measures of scalemate
distinctness, such as the boundedness of the scale,
do robustly predict SI. More recent studies (e.g.,
Gotzner et al., 2018; Sun et al., 2018; Pankratz and
van Tiel, 2021; Ronai and Xiang, 2022) have pro-
posed a variety of other factors such as negative
strengthening, polarity, and extremeness.

Here, we revisit the hypothesis that SI rates de-
pend on the availability of the strong scalemate.
While prior work has operationalized availabil-
ity with measures of the strong scalemate such
as word frequency or similarity/association with
the weak scalemate (van Tiel et al., 2016; Westera
and Boleda, 2020; Ronai and Xiang, 2022), we
re-frame availability as the listener’s confidence in
the underlying scale. Upon hearing a scalar ex-
pression, listeners must determine the items on the
scale as well as the ordering metric before infer-
ence proceeds (Hirschberg, 1985). If the listener
is less certain about the scale, then they will be
less likely to exclude the meaning of a particular
strong scalemate. We operationalize scale uncer-
tainty as uncertainty over the alternatives that could
serve as a strong scalemate to the observed scalar
expression. To estimate the alternatives predicted
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by humans, we use a T5 model (Raffel et al., 2020)
fine-tuned on a text infilling task. While prior stud-
ies have treated alternatives as linguistic forms, we
also consider the idea that listeners reason about
alternatives at a conceptual level (Buccola et al.,
2021) by treating alternatives as latent classes in
a conceptual space. Our results support the role
of scale uncertainty in determining SI rates, and
suggest a new way of testing conceptual theories
of alternatives for scalar inference.

2 Human data

To obtain human SI strengths, we use the data from
Experiment 2 by van Tiel et al. (2016). In our
analyses, we only consider the adjectival scales
from van Tiel et al.’s original materials, result-
ing in 32 scales. Each scale is a pair of adjec-
tives ⟨[WEAK], [STRONG]⟩, where the meaning of
[STRONG] entails the meaning of [WEAK] (e.g.,
⟨intelligent, brilliant⟩). The experiment measures
whether humans exclude the meaning of [STRONG]
upon observing a speaker use [WEAK].

On each trial of the experiment, participants read
a prompt of the form “John says: [NP] is [WEAK]”,
where [WEAK] is an adjective scalar item that may
trigger a scalar inference, and [NP] is a noun phrase
that sets the context for the scalar item. There were
3 such sentences per scale, which differ from each
other only in the NP. For example, the weak scalar
item intelligent is associated with the sentences
“This student/That professor/The assistant is intelli-
gent”. Participants were then asked: “Would you
conclude from this that, according to John, [NP]P
is not [STRONG]?”, where [STRONG] is the strong
scalemate to [WEAK], and [NP]P is a pronominal-
ized version of the [NP] in the speaker’s original
utterance (e.g., “she is not brilliant”). Participants
marked their response as Yes or No. The SI rate
for a scale is computed as the proportion of Yes
responses averaged over participants and sentences.

3 Predictors

We use T5 (Raffel et al., 2020) to estimate all
probabilities in our analyses. T5 is a sequence-
to-sequence Transformer model (Vaswani et al.,
2017) trained to represent language processing
tasks as text-to-text problems. Our model is based
on the pre-trained T5-base model from Hugging-
face Transformers (Wolf et al., 2020). Since the
off-the-shelf T5 model is not optimized for text gen-
eration, we use a T5 model that has been fine-tuned

on a text infilling task (Qian and Levy, 2022). The
model is fine-tuned on a 10-million-token subset
of the 2007 portion of the New York Times Corpus
(Sandhaus, 2008). The supervision signal is gen-
erated by randomly masking some spans of words
in a sentence to get the fragmentary context and a
plausible completion. At inference time, the model
decodes autoregressively via greedy sampling.

3.1 Predictability of strong scalemate
As a baseline, we first consider whether SI rates
– i.e., the rate at which [WEAK] is taken to ex-
clude the meaning of [STRONG] – are explained by
the context-conditioned predictability of the tested
strong scalemate. This is similar to production-
based measures of availability, such as the tendency
of humans to mention the strong scalemate in a
Cloze task (van Tiel et al., 2016; Ronai and Xiang,
2022). However, these metrics are expensive to
estimate, especially if we wish to estimate the full
distribution of alternatives. We address this by us-
ing T5 as a proxy of human predictions, taking the
view that humans maintain expectations about pos-
sible alternatives via a predictive language model
optimized on the surface statistics of language.

To measure the predictability of a certain lin-
guistic expression as a strong scalemate under T5,
we leverage scalar constructions (Hearst, 1992;
de Melo and Bansal, 2013; Pankratz and van Tiel,
2021). Scalar constructions are patterns such as X,
but not Y, which indicate a scalar relationship be-
tween a weak item X and strong item Y . For each
weak scalar item in our test materials, we construct
a scalar template of the following form:

[NP] is [WEAK], but not . (1)

We have 3 such templates for each scale, where
[NP] is given by the 3 sentences from van Tiel
et al.’s materials. By embedding the weak scalar
item within the X, but not Y construction, the model
should set up expectations for a potential scale-
mate in the masked position. For each ⟨[WEAK],
[STRONG]⟩ pair from van Tiel et al.’s items, we
substitute the strong scalemate into the masked po-
sition and compute the surprisal (i.e., negative log
probability) at that token under T5.1 Language
model surprisal has been shown to predict psy-
chometric measures of human sentence processing
(e.g., Smith and Levy, 2013; Goodkind and Bick-
nell, 2018; Wilcox et al., 2020), suggesting that

1When scalar items are split into multiple tokens, we obtain
surprisals by summing over these sub-word tokens.
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the distribution learned by these models captures
expectations deployed by humans during real-time
language comprehension.

3.2 Scale uncertainty
Next, we test the hypothesis that SI depends on the
listener’s uncertainty about the scale implied by the
speaker’s utterance. Depending on the context, a
single word (e.g., bad) could lie on multiple scales –
e.g., “The food is bad” might imply that the food is
not rotten, whereas “The score is bad” might imply
that the score is not failing. This uncertainty is
not a function of a particular scalemate (unlike the
availability measure described in Section 3.1 and
in prior work), but rather a property of the scalar
trigger and the context in which it is observed.

We operationalize scale uncertainty as uncer-
tainty over the distribution of possible alternatives
conditioned on the context. To obtain a set of can-
didate alternatives A, we sample N = 100 comple-
tions from the T5 infilling model given the scalar
template in Equation (1).2 During decoding, we
restrict the maximum number of generated tokens
to 5, and only keep the unique completions. We
further process the outputs by removing punctua-
tion and casing, and only keep the first word of the
sequence (e.g., “always” and “always,” would be
collapsed into “always”). After this step, we also
removed completions that consisted only of stop-
words.3 We performed these processing steps in or-
der to reduce the sensitivity of the model-generated
alternatives distribution to low-level features like
punctuation, and to account for the model’s ten-
dency to output high-frequency function words.

3.3 Strings vs. concepts
For each of our surprisal and scale uncertainty mea-
sures, we consider two operationalizations that re-
flect differing theories of alternatives. The first
assumes that surface-level linguistic forms (i.e.,
strings) are the alternatives driving SI. The second
view is that listeners reason about alternatives at a
conceptual level (Buccola et al., 2021), which we
estimate using sentence embeddings.

String-based measures. We first consider the
string-based view of alternatives. We obtain string-
based surprisal by plugging the strong scalemate

2The completions are not guaranteed to be scalar items,
but we take this to be a first approximation. All results are
averaged over 4 random seeds for the sampling of alternatives.

3https://gist.github.com/sebleier/
554280

into the blank in Equation (1) (i.e., Y in the X,
but not Y construction) and computing its context-
conditioned surprisal under T5. Similarly, to ob-
tain a string-based measure of scale uncertainty,
we compute uncertainty over the strings that fill
the masked position in the scalar template (Equa-
tion (1)). That is, we normalize the probabilities of
each a ∈ A to obtain a probability distribution over
alternatives, and then compute the Shannon entropy
over this distribution. We predict that lower sur-
prisal reflects a more predictable alternative, and
thus results in a stronger SI. Similarly, lower en-
tropy reflects lower uncertainty over the underlying
scale, and should lead to a stronger SI.

This method implicitly assumes that surface-
level linguistic forms (i.e., strings) are the alterna-
tives driving scalar inferences. As a single concept
can be expressed with multiple forms, however, the
surprisal over forms may not be a good estimate
of the surprisal of the underlying concept. This
motivates using hierarchical methods to identify la-
tent classes among alternatives in some conceptual
representation.

Hierarchical measures. An alternate view is that
listeners do not reason about alternatives at the
level of linguistic forms (i.e., strings), but instead a
deeper conceptual level (Buccola et al., 2021). As a
proxy for a conceptual representation of an alterna-
tive, we use sentence embeddings from Sentence-
T5 (Ni et al., 2021). Prior work has shown that
clustering over word embeddings has been shown
to uncover latent topics, suggesting that there is
usable conceptual information represented in the
embedding spaces induced by large language mod-
els (e.g., Sia et al., 2020; Thompson and Mimno,
2020; Meng et al., 2022). For each sampled al-
ternative a ∈ A, we substitute a into the masked
position in the scalar template (Equation (1)) to
obtain a full sentence, and then feed this as input to
Sentence-T5 to obtain a 768-dimensional embed-
ding of the entire sentence.4 We assume sentences
close in this space are more likely to reflect the
same underlying scale, and distant sentences are
likely to reflect different scales.

To formalize the idea of conceptual alternatives
for scalar inference, we treat scales as latent classes
that may give rise to multiple alternative strings.
On this view, the surprisal of a strong scalemate is
the surprisal of its underlying class, and scale uncer-

4We use the PyTorch implementation via SentenceTrans-
formers (Reimers and Gurevych, 2019).
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Figure 1: Best-fit linear relationship between human SI rates (van Tiel et al., 2016) and four predictors (Section 3):
(a) String-based surprisal of the strong scalemate under T5. (b) Entropy over alternative strings sampled by T5.
(c) Surprisal of latent class assigned to the strong scalemate by the Gaussian mixture model. (d) Entropy over
probabilities of classes identified by the Gaussian mixture model.

tainty is uncertainty over these classes. To identify
latent classes among alternative sentence embed-
dings, we fit a Gaussian mixture model (GMM) for
each set of alternatives (i.e., one per weak scalar
item, sentence template, and random seed). To
determine the number of latent classes k, we fit
a GMM for each k ∈ {1, 2, 3} and chose the k
that minimized the Bayesian information criterion
(BIC) of the fitted model.5

After fitting a GMM on the alternative embed-
dings for each weak scalemate, we predict the class
for each alternative. We obtain a score for each
class by summing the probabilities assigned by T5
to each alternative within that class. We compute
class-based surprisal as the negative log of the score
assigned to the class containing the strong scale-
mate, and class-based scale uncertainty as the en-
tropy over the normalized class scores. As before,
we expect that lower surprisal and lower entropy
should result in higher SI.

4 Results

We computed the four metrics described in Sec-
tion 3 on the data from Experiment 2 of van Tiel
et al. (2016), and evaluated the causal roles of each
metric in predicting scalar inference rates across
scales. For each of the four metrics, we fit a linear

5For speed of convergence, we assumed diagonal covari-
ance matrices for each estimated class distribution.

regression model to predict mean SI rates for each
scale (averaged across trials). In all models, we
included scale boundedness as an additional predic-
tor, as it is the factor explaining the most variance
in van Tiel et al.’s (2016) study.

Our first model tested string-based surprisal as a
predictor of SI rates. In line with van Tiel et al.’s
results, boundedness is a highly significant pre-
dictor (p < 10−16). Furthermore, surprisal of
the strong scalemate is not a significant predictor
(t = −0.09, p = 0.928). Figure 1a shows the lack
of relationship between in-context surprisal of the
strong scalemate and SI rate. Each point represents
a scale, with values averaged over the trials and
sentence templates (three per scale) presented in
van Tiel et al.’s Experiment 2. This lack of relation-
ship concords with van Tiel et al.’s original finding
that availability is not predictive of SI rate.

Our second model tested the predictive power of
string-based scale uncertainty (i.e., the entropy over
completions sampled from T5 in a scalar construc-
tion). We found string-based entropy to be a signif-
icant predictor of SI rate (t = −3.28, p = 0.001),
suggesting that uncertainty over alternatives (as
string forms) may play a role in scalar inference.
Figure 1b shows the negative relationship between
SI rates and string-based entropy.

Next, we turn to the hierarchical metrics, which
treat alternatives as latent classes in sentence em-
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Figure 2: Example of classes (distinguished by color
and marker) identified by Gaussian mixture model
among alternatives in sentence embedding space. Sen-
tence embeddings are projected into 2 dimensions via
PCA for visualization.

bedding space. In general, the pattern mirrors what
we found for the string-based metrics. Our third
model did not find class-based surprisal to be a
significant predictor of SI rates (t = −1.33, p =
0.186; Figure 1c), and our fourth model found
class-based entropy to be a significant predictor
(t = −2.4, p = 0.01; Figure 1d).

Finally, we performed a qualitative evaluation
of the classes identified by the Gaussian mixture
models (GMMs). Figure 2 shows the alternatives
generated by T5 for the template “The salary is
adequate, but not .”, with each point obtained
by projecting the Sentence-T5 embedding into 2-
dimensional space via PCA. The BIC-minimizing
GMM identifies two latent classes, distinguished
by color and marker, among the alternatives gener-
ated by T5 for the weak scalar item adequate. First,
we examine the cluster containing good, the strong
scalemate tested in van Tiel et al.’s experiments
(marked with boldface and outline). This cluster
(indicated by blue triangles) contains good as well
as semantically similar alternatives such as “great”,
“sufficient”, and “enough”. In general, the alterna-
tives in this cluster appear to suggest a scale where
high salaries are positive (e.g., from an employee’s
perspective), with strong scalar items like “gener-
ous”, “ideal”, and “competitive”. In contrast, the
second cluster (indicated by red circles) contains al-
ternatives such as “extravagant” and “overcharged”,

capturing the potential of adequate to be on a scale
where higher salaries are not always desirable (e.g.,
from an employer’s perspective). While the model-
generated alternatives and clusters are noisy, we
take this to illustrate that a single weak scalar item
(like adequate) can plausibly be interpreted as be-
longing to multiple scales.

5 Discussion

We tested the hypothesis that SI rates depend on
the listener’s confidence in the underlying scale, us-
ing two operationalizations of alternatives (surface-
level string forms and latent classes in a sentence
embedding space). Using data from a previously
conducted experiment (van Tiel et al., 2016), we
found that scale uncertainty was a significant pre-
dictor of SI rates: on average, when uncertainty
over alternatives (i.e., entropy over sampled alter-
natives, or over classes of alternatives in sentence
embedding space) is lower, humans are more likely
to draw a scalar inference. On the other hand, the
predictability of the strong scalemate (as measured
by surprisal of the string form, or of its underlying
cluster) was not a significant predictor of SI rates.

An open question is why scale uncertainty pre-
dicts SI rates, while strong scalemate surprisal and
the availability measures from van Tiel et al. (2016)
are poor predictors. We conjecture that the pre-
dictability of the strong scalemate may be shrouded
by the paradigm used in experimental investiga-
tions of scalar diversity. In these experiments,
the participant is explicitly asked to reason about
the strong scalemate in the prompt (e.g., “John
says: This student is intelligent. Would you con-
clude from this that, according to John, she is not
brilliant?”). Thus, the effort required to retrieve the
strong scalemate (e.g., “brilliant”), which may be
captured by its in-context predictability, may no
longer be relevant in this setting. We note, how-
ever, that our findings likely depend on the chosen
clustering algorithm and conceptual representation
of the alternatives. We intend to explore this space
more broadly in future work.

Looking forward, our methods can be applied
to scales that are ordered by ad-hoc relationships
instead of entailment (Hirschberg, 1985). Beyond
predicting scalar diversity, our approach suggests
a way to derive quantitative behavioral predictions
from non-linguistic alternatives (Buccola et al.,
2021), and supports the idea that context-driven
expectations may give rise to pragmatic behaviors.
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Neşet Özkan Tan, Paul Michael Corballis, Patricia Riddle, and Michael Witbrock

University of Auckland

Abstract

Attention describes cognitive processes that
are important to many human phenomena in-
cluding reading. The term is also used to de-
scribe the way in which transformer neural
networks perform natural language processing.
While attention appears to be very different
under these two contexts, this paper presents
an analysis of the correlations between trans-
former attention and overt human attention
during reading tasks. An extensive analysis
of human eye tracking datasets showed that
the dwell times of human eye movements were
strongly correlated with the attention patterns
occurring in the early layers of pre-trained
transformers such as BERT. Additionally, the
strength of a correlation was not related to
the number of parameters within a transformer.
This suggests that something about the trans-
formers’ architecture determined how closely
the two measures were correlated.

1 Introduction

Attention is a process that is associated with both
reading in humans and with Natural Language Pro-
cessing (NLP) by state-of-the-art Deep Neural Net-
works (DNN) (Bahdanau et al., 2015). In both
cases, it is the words within a sentence that are
attended to during processing. In DNNs, attention
results from mechanisms built into the network.
Specifically, in the current state-of-the-art method
Transformers (Vaswani et al., 2017), this attention
process is the result of the dot product of two vec-
tors that represent individual words in the text. For
humans, attention processes are more complex as
they can be broken into overt and covert attention
(Posner, 1980). Overt attention is characterized by
observable physical movements of which eye gaze
is a well known example that is relevant to read-
ing (Rayner, 2009). Covert attention, on the other
hand, is characterized by mental shifts in focus and,

∗Email: josh.bensemann@auckland.ac.nz

therefore, not directly observable. For this study
we have focused on the overt attention measure of
eye gaze, with words at the center of an eye fixa-
tion being the words that we assume were being
attended.

While attention in human reading processes and
transformers appear to be completely different, this
paper will present an analysis showing the rela-
tionship between the two1. Specifically, attention
in well-known transformers such as BERT (De-
vlin et al., 2019), and its derivatives are closely
related to humans’ eye fixations during reading.
We observed strong to moderate strength correla-
tions between the dwell times of eyes over words
and the self-attention in transformers such as BERT.
We have explored some reasons for these different
correlation levels and speculated on others.

This analysis is part of an ongoing research line
where we attempt to overcome attention limits in
transformers. When using transformers, both mem-
ory and computational requirements grow quadrat-
ically as the sequence length increases because
every token attends to all other tokens. In previous
work, we have used the attention mechanisms of
pre-trained transformers as attention filters that can
reduce a sequence length for a sentiment analysis
task by 99% while still maintaining 70% accuracy
(Tan et al., 2021). Our motivation for this paper
was to explore the possibility of using models of
eye gaze as an alternative filter. Strong correlations
between the attentions produced by transformers
and the overt attention of humans would suggest
that models of eye movements could potentially be
used in computationally inexpensive methods for
approximating transformer attention. Alternatively
we could use eye movements to train transformer
attention towards overt attention patterns2.

1Code and Full Results available at https://github.
com/Strong-AI-Lab/Eye-Tracking-Analysis

2See appendix for a preliminary attempt.

75



1.1 Transformers
Transformers (Vaswani et al., 2017) have domi-
nated the leader boards for NLP tasks since their
introduction to the deep learning community. Addi-
tionally, transformers have had an impact on com-
puter vision (Dosovitskiy et al., 2021), including
generative networks (Jiang et al., 2021). The gen-
eral superior performance of transformers at these
tasks is due to its attention mechanism:

Attention(Q,K,V) = softmax

(
QK>√

n

)
V

(1)
where the word vectors representations of the text
sequence Q are compared to those from sequence
K. This is used to determine the amount of informa-
tion word representations from the former should
incorporate from the latter. If the query and key se-
quence are the same, as in a transformers encoder,
it is called self-attention. The results of the atten-
tion process are then multiplied by sequence V to
get the final outputs from the attention layer. V
contains different representations for the words in
K.

The more relevant a word in K is to those in Q,
the more attention Q words allocate to that word.
Research has examined the Q x K part of the at-
tention mechanism to understand how transformers
process information. Vaswani et al. (2017) showed
that transformers could use words in Q to learn
anaphora resolution by appropriately attending the
word "its" in K.

The introduction of transformers was quickly
followed by a proliferation of pre-trained models
using the transformers architecture. Arguably, the
most famous of these models is BERT, a.k.a. the
Bidirectional Encoder Representations from Trans-
formers model (Devlin et al., 2019). BERT was
designed to encode information from whole pas-
sages of text into a single vector representation. Its
bidirectional structure means that each word token
is placed in the context of the entire sequence in-
stead of just the tokens appearing before it. This
structure provided an increase in performance on
the GLUE benchmarks (Wang et al., 2019b) over
mono-directional models such as the original GPT
(Radford et al., 2018).

To ensure that the model learned to attend to the
sequence as the whole, BERT was trained using
Masked Language Modeling (MLM), a task in-
spired by the Cloze procedure (Taylor, 1953) from
human reading comprehension studies. In MLM,

random words from a sequence are hidden during
input. The model then has to predict what word
was hidden based on the context of surrounding
words. BERT was also trained to perform Next
Sentence Prediction (NSP) during MLM, forcing
words from one sentence to attend to words in other
sentences. BERT achieved state-of-the-art perfor-
mance in multiple NLP benchmarks following this
training regime, which led to its widespread adop-
tion.

BERT’s impact on the field can be seen in the
number of subsequent models that are its direct
descendants. Examples include models such as
RoBERTa (Liu et al., 2019), which uses BERT’s
architecture but was trained via different methods.
Other models, such as ALBERT (Lan et al., 2020),
were created to condense BERT for faster perfor-
mance with minimal accuracy loss. Even mod-
els such as XLNet (Yang et al., 2019) extended
BERT’s architecture to include recurrence mecha-
nisms introduced in other models (Dai et al., 2019).
In turn, some of these descendant models have
been used to create other models. For example,
BIGBIRD (Zaheer et al., 2020) was built using
RoBERTa as its base.

1.2 Combining Transformers and Eye Gaze

There is a growing field of research that combines
pre-trained transformers with eye-tracking data.
Researchers have used outputs from BERT as fea-
tures for machine learning models to predict eye
fixations. In some instances, these outputs are com-
bined with other features (Choudhary et al., 2021);
in other instances, BERT itself is fine-tuned to pre-
dict eye fixations. For example Hollenstein et al.
(2021a) have shown that BERT can be effective at
predicting eye movements for texts written in mul-
tiple languages, including English, Dutch, German,
and Russian.

Given the strong relationship between eye gaze
and attention, it is unsurprising that there have been
attempts to compare eye gaze to attention generated
in transformers. Sood et al. (2020a) compared eye
movements in reading comprehension task to three
different neural networks, including XLNet. After
fine-tuning XLNet, they compared attention from
the last encoder layer to eye gaze and reported a
non-significant correlation. However, their compar-
ison only reported the correlation for the final atten-
tion layer of the network, while other studies com-
paring transformer attention to human metrics have
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indicated that the strength of an association can
differ by layer (Toneva and Wehbe, 2019). There-
fore, the present study calculated correlations with
eye movements from all layers of the transformers.
With that said, our results focused on the first layer
as it generally produced the strongest correlations
to eye gaze data.

Following the work of Sood et al. (2020a), the
present study is a large-scale analysis of the rela-
tionship between attention in pre-trained transform-
ers and human attention derived from eye gaze. We
compared the self-attention values of 31 variants
from 11 different transformers, including BERT, its
descendants, and a few other state-of-the-art trans-
formers (Table 1). No fine-tuning was performed;
models were the same as those reported in their
respective papers. Using the BERT-based models
with their original parameter weights allowed us to
investigate the effect that training regime had on
how closely the attention was related to overt eye-
based attention. Using non-BERT models allowed
us to examine what effect model architecture had
on this relationship. Finally, the different datasets
enabled an exploration into how the human partic-
ipants’ task also affects this relationship. Results
showed significant correlations between attention
in the first layer of the transformers and total dwell
time. These correlations were unrelated to the size
of the model.

2 Related Work

There have been attempts to combine DNNs with
eye data to perform various tasks. Some basic tasks
include predicting how an eye will move across
presented stimuli, whether text-based (Sood et al.,
2020b) or images in general (Ghariba et al., 2020;
Li and Yu, 2016; Harel et al., 2006; Huang et al.,
2015; Tavakoli et al., 2017). These predictions can
be used to create saliency maps that show what
areas of a visual display are attractive to the eye.

In turn, saliency maps can be used to either un-
derstand biological visual processes or be incorpo-
rated as meta-data into machine learning models.
The later endeavor has led to some improvements
in task performance. In a recent example, Sood
et al. (2020b) achieved state-of-the-art results in a
text compression task by creating a Text Saliency
Model (TSM) using a BiLSTM network that out-
puts embeddings into transformer self-attention lay-
ers. The TSM was pre-trained on synthetic data
simulated by the E-Z reader model (Reichle et al.,

1998) and fine-tuned on human eye-tracking data.
The model’s output was used to neuromodulate
(Vecoven et al., 2020) a task-specific model via
multiplicative attention.

Eye gaze data itself can be used to inspire new
ways for neural networks to perform NLP tasks
(Zheng et al., 2019). For example, it is well known
that the human eye does not fixate on every word
during reading (Duggan and Payne, 2011). Nev-
ertheless, humans, until recently, performed well
above machines in many NLP tasks (Fitzsimmons
et al., 2014; He et al., 2021). These observations
imply that the word skipping process is not detri-
mental to reading tasks. Some researchers have
exploited this process by explicitly training their
models to ignore words (Yu et al., 2017; Seo et al.,
2018; Hahn and Keller, 2016). For example, Yu
et al. (2017) trained LSTM models to predict the
number of words to skip while performing senti-
ment analysis and found that the model could skip
several words at a time and still be as accurate, if
not more accurate, than the non-skipping models.
Additionally, Hahn and Keller (2018) showed that
the skipping processes could be modelled using
actual eye movements and achieve the same result.
These word skipping models exploit overt attention
only, and it would be interesting to know what hap-
pens if skipping was modelled on covert attention
instead.

Other research exploring the relationship be-
tween DNNs and human data has examined how
closely the metrics used to measure eye movement
are related to metrics used for machine language
models. Studies of this type require identifying
comparable processes between the two different
systems and a suitable dataset. For example, Hao
et al. (2020) compared model perplexity to psy-
cholinguistic features.

There have even been comparisons of DNN at-
tention to what humans attend to during reading
tasks. Sen et al. (2020) compared the attention of
humans during a sentiment analysis task to RNN
models. Crowdsourced workers were asked to rate
sentiments of YELP reviews and then highlight
the important words for their decision-making pro-
cess. They found correlations between the RNN
outputs and human behavior. The strength of these
correlations diminished as the length of the text
increased.

Closely related to our study is the work of Sood
et al. (2020a) who attempted to compare eye gaze
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to the attention mechanisms of three different neu-
ral network architectures. One of the models was
the BERT-based transformer, XLNet (Yang et al.,
2019). The other two networks were bespoke CNN
and LSTM models. All models were trained on the
MovieQA dataset (Tapaswi et al., 2016), and atten-
tion values were taken from the later levels of the
networks. Several questions for the original dataset
were selected for human testing, where the par-
ticipants’ eye gazes were tracked while they read
and answered the questions. Sood et al. (2020a)
observed that the attention scores from both the
CNN and LSTM networks had strong negative cor-
relations with the eye data. However, there was
no significant correlation between eye gaze and
XLNet.

Finally, there has been recent work using trans-
former representations to predict brain activity. For
example, Toneva and Wehbe (2019) used layer rep-
resentations of different transformers, including
BERT and Transformer-XL, to predict activation
in areas of the brain. They found that the mid-
dle layers best predict the activation as the con-
text (sequence length) grew. Toneva and Wehbe
(2019) tentatively suggested that this means there
is a relationship between the layer and the type
of processing occurring. To their surprise, they
also found that modifying lower levels of BERT
to produce uniform attention improved prediction
performance.

Schrimpf et al. (2021) performed a similar anal-
ysis using many of the models included in the
present study. They found that the output of some
transformers could be used to predict their partic-
ipants brain behavior to almost perfect accuracy.
Prediction performance differed by model size and
training regime, with GPT-2 performing best (Rad-
ford et al., 2019). Surprisingly, Schrimpf et al.
(2021) found that untrained models also produced
above chance prediction, leading them to suggest
that the architecture of transformers captures im-
portant features of language before training occurs.

3 Analysis of Self-Attention Against Eye
Gaze

All analyses used HuggingFace’s (Wolf et al., 2020)
version of the transformer and associated tokenizer.
The models’ weights were identical to those down-
loaded from HuggingFace; no fine-tuning was con-
ducted. All analyses report Spearman correlations
(Coefficient, 2008) to avoid data normality issues

and provide a direct comparison to previously re-
ported work.

3.1 Datasets

Six different datasets were used in our study. In
all cases, eye-tracking data were captured from
participants performing reading tasks in English.

The GECO Corpus (Cop et al., 2017) contains
data from 19 Dutch bilingual and 14 English read-
ers who read "The Mysterious Affair at Styles" by
Agatha Christie across four sessions. Comprehen-
sion tests occurred between sessions. The bilingual
participants completed two sessions in English and
two in Dutch. We selected all English sessions for
our analysis, regardless of the participant’s bilin-
gual status.

The PROVO Corpus (Luke and Christianson,
2018) contains 55 passages (average of 2.5 sen-
tences). Passages were taken from online news
articles, magazines, and works of fiction. Partici-
pants were 84 native English speakers instructed to
read for comprehension.

The ZuCo Corpus (Hollenstein et al., 2018) is a
combined reading, eye-tracking, and EEG dataset.
Data was captured from 12 native English speakers
who could read at their own pace with sentences
presented one at a time. The participants completed
three different tasks. Task 1 was a sentiment anal-
ysis task. Task 2 was a standard reading compre-
hension task where questions were presented after
reading the text. Task 3 was also a reading com-
prehension task; however, the question appeared
onscreen while the participant was reading.

We also used data from Sood et al. (2020a).
They collected data from 32 passages taken from
the MovieQA (Tapaswi et al., 2016) dataset. In
Study 1, 18 participants answered questions from
16 passages under varying conditions such as multi-
choice, free answer with text present, and free an-
swer from memory. In Study 2, 4 participants an-
swered multi-choice questions from the remaining
16 passages.

Additionally, we used data from Frank et al.
(2013) where 48 participants read 205 sentences
from unpublished novels for comprehension. The
dataset contains eye movements from both native
and non-native English speakers. Participants oc-
casionally answered yes/no questions following a
sentence.

The final dataset comes from Mishra et al. (2016)
who conducted a sarcasm detection task. The
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Table 1: List of models used in this paper

Model Pre-trained models in Huggingface repository
ALBERT (Lan et al., 2020) albert-base-v1, albert-base-v2, albert-large-v2, albert-xlarge-v2, albert-xxlarge-

v2
BART (Lewis et al., 2020) facebook-bart-base, facebook-bart-large
BERT (Devlin et al., 2019) bert-base-uncased, bert-large-uncased, bert-base-cased, bert-large-cased, bert-

base-multilingual-cased
BIGBIRD (Zaheer et al., 2020) google-bigbird-roberta-base, google-bigbird-roberta-large
DeBERTa (He et al., 2021) microsoft-deberta-base, microsoft-deberta-large, microsoft-deberta-xlarge,

microsoft-deberta-v2-xlarge, microsoft-deberta-v2-xxlarge
DistilBERT (Sanh et al., 2019) distilbert-base-uncased, distilbert-base-cased, distilbert-base-multilingual-cased
Muppet (Aghajanyan et al., 2021) facebook-muppet-roberta-base, facebook-muppet-roberta-large
RoBERTa (Liu et al., 2019) roberta-base, roberta-large
SqueezeBERT (Iandola et al., 2020) squeezebert-squeezebert-uncased
XLM (Conneau et al., 2020) xlm-roberta-base, xlm-roberta-large
XLNet (Yang et al., 2019) xlnet-base-cased, xlnet-large-cased

dataset was taken from a wide variety of sources, all
short passages containing a maximum of 40 words.
Participants were non-native English speakers who
were highly proficient in English.

3.2 Models
Table 1 lists the 31 variants from the 11 differ-
ent bidirectional transformers models that we used.
Our analysis method required all tokens to attend to
all other tokens in a sequence. Therefore, unidirec-
tional models such as GPT-2 (Radford et al., 2019)
were excluded as they prevent tokens early in a se-
quence from attending tokens later in that sequence.
We grouped the models into three types: 1) Basic
models have the same architecture as BERT. 2)
Compact models are those designed to be smaller
versions of basic models. 3) Alternative models
are those that greatly differ from the basic models.

3.2.1 Basic Models
BERT (Devlin et al., 2019): On release, BERT
was state-of-the-art. It was trained using MLM, in
which 15% of tokens were masked. Training also
incorporated NSP by forcing the model to predict
whether two sentences were contiguous or not. Our
analysis includes a multilingual BERT and both the
cased and uncased versions of English BERT.

RoBERTa (Liu et al., 2019): RoBERTa has an
architecture identical to BERT but was trained for
longer, with larger batch sizes and more data. The
MLM examples were dynamically generated dur-
ing a batch, unlike BERT which used the same
mask patterns every time a sample was used. The
NSP task was dropped as it did not affect perfor-
mance.

We have also included the MUPPET version of

RoBERTa (Aghajanyan et al., 2021), trained using
multitask learning with tasks from four domains:
classification, commonsense reasoning, reading
comprehension, and summarization. Finally, we
have included XLM-RoBERTa (Conneau et al.,
2020), a multilingual version of RoBERTa.

3.2.2 Compact Models
ALBERT (Lan et al., 2020): A Lite BERT is a
BERT-based model that uses two tricks to reduce
the number of parameters and time taken required
to train the model. 1) Factorized embedding pa-
rameterization - decomposing the large vocabu-
lary embedding matrix into two small matrices; 2)
Cross-layer sharing - parameters for all layers are
shared.

DistilBERT (Sanh et al., 2019): This model used
a Teacher – Student method for the distillation
of knowledge (Buciluǎ et al., 2006; Hinton et al.,
2015). Sanh et al. (2019) started with a full model
and kept every second layer to create the student.
The student was then trained on original training
data. This procedure resulted in an almost as pow-
erful model but half the size.

SqueezeBERT (Iandola et al., 2020): Squeeze-
BERT is Bert but with grouped convolutional lay-
ers instead of feed-forward layers. The model was
trained using the same methods as ALBERT.

3.2.3 Alternative Attention Mechanisms
DeBERTa (He et al., 2021): DeBERTa differs from
others on this list in that it decouples attention by
word semantics from attention by word location.
Version 2 of the model used a form of adversar-
ial training to improve model generalization and
surpassed human performance on Super GLUE
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benchmarks. We have used the RoBERTa based
versions in this analysis.

One problem with transformers is the quadratic
memory, and computational growth as sequence
length increases because every token attends to all
other tokens. Some have dealt with this problem
by modifying the attention patterns to approximate
this full attention pattern without requiring all of
the attention comparisons. BIGBIRD (Zaheer et al.,
2020) is an example that uses this attention approx-
imation. The model uses a combination of global,
sparse, and random attention. Again, we have used
the RoBERTa based version of the model.

3.2.4 Alternative Architectures
XLNet (Yang et al., 2019): This model is a BERT
extension using random permutations of word or-
der during training. The model also incorporates
the recurrence mechanism used in Transformer-XL
(Dai et al., 2019).

BART (Lewis et al., 2020): BART is an encoder-
decoder model that is to recover data from cor-
rupted text input. BART has approximately 10%
more parameters than comparable BERT models
and no final feed-forward layer. Pre-training was
based on corrupting the inputs using token masking,
token deletion, token infilling, sentence permuta-
tion, and document rotation.

3.3 Analysis Method

The transformer data were created by converting
the original texts into sentences and then tokeniz-
ing those sentences to create sequences. The next
step was inputting tokenized sequences into the
transformer and extracting the attention matrices
produced for each attention head. In terms of Equa-
tion 1, we took the output of the softmax function
before it was multiplied by V as that provided a
normalized value indicating what proportion of at-
tention each token payed to all others.

The attention value for each token was calcu-
lated by averaging across attention heads and ma-
trix rows. This calculation produced a single vector
representing the amount of attention allocated to
each token by all others in the sentence. Our pro-
cedure differs from Sood et al. (2020a) who used
the maximum attention from each word instead of
the mean. Some preliminary analyses suggested
that the mean attention values provided more stable
results across datasets. The results using the maxi-
mum values are available on our GitHub repository
for comparison purposes. If a word was tokenized

into sub-words, those sub-words were also aver-
aged to produce a single value. The special tokens
[CLS] and [SEP] were used for the attention calcu-
lations but dropped from the final word-level atten-
tion vector. Finally, attention was normalized by
sentence by calculating the proportion of attention
allocated to each word.

Dwell time was used for the overt human atten-
tion data. Dwell time is a measurement of the total
time that a participant’s eye fixated on a word. This
choice was necessary for consistency between anal-
yses as it was the only measure to appear in all
datasets. Dwell time data was extracted for each
word in a sentence, with one sentence being pro-
duced for each participant in the original data. The
dwell time data were also normalized by sentence
by calculating the dwell time proportion for each
word. The data from individual participants were
then averaged to create one normalized sentence
for each sentence in the text.

Data from the transformers and human partici-
pants were then matched so that each word in the
text had a sentence normalized attention score from
the transformers and the average participant. After
matching, all the words from a text were pooled
and used to calculate the Spearman correlation val-
ues. One-word sentences were removed as both
scores were always 1.0, which inflated the correla-
tion scores.

3.4 Results and Discussion

There were significant positive correlations be-
tween the total dwell time and the attention from
all layers of the different models. This finding was
an apparent departure from the results of Sood et al.
(2020a) who reported a non-significant correlation
of -.16 between the last layer of XLNet and their
dataset. For comparison, we obtained a .428 cor-
relation for their Study 1 data and .327 for their
Study 2 data from XLNet’s last layer. Although
they did not directly specify the normalization they
used, we suspect that the difference in results is due
to us using sentence-level normalization and Sood
et al. (2020a) using paragraph normalization. For
comparison, we ran the same procedure using para-
graph normalization and obtained non-significant
correlations just as they did. In general, many of
the correlations obtained using sentence normal-
ization become much weaker when using the para-
graph normalization. This finding corresponds well
with the Sen et al. (2020) finding that attention for
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Figure 1: The relative position of the layer with the highest correlation. 0 is the first layer, 1 is the last layer. There
are multiple dots for each model because each dot represents the highest correlation from a different dataset.

Figure 2: The correlations between the first layer attention patterns and eye gaze data from all models. The box
plots represent the spread of correlation values across datasets.

non-transformer neural networks became less cor-
related with eye movements as the length of the
text increased. All analyses presented here refer to
sentence-level correlations. Paragraph-level analy-
ses can be found in our GitHub repository.

Our first analysis investigated which attention
layer was most closely correlated with the eye gaze
data. Figure 1 shows the relative position of the
layer with the highest correlation by model. In
many cases, the highest correlation was produced
by the earlier layers of each model, in 66.2% of

cases this was the first layer (position 0). Notable
exceptions to this rule are the multilingual versions
of BERT and RoBERTa (i.e., XLM) and many com-
pact models. Although further studies are needed,
the finding that multilingual variants of models do
not behave like monolingual variants is in line with
some previously reported studies (Conneau et al.,
2020; Hollenstein et al., 2021b; Vulić et al., 2020),
where some studies report multilingual benefits and
while others do not.

Further investigations found that when the first
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Table 2: First layer correlations By dataset. Strongest correlations have been bolded.

Model GECO Mishra Provo Sood S1 Sood S2 ZuCo S1 ZuCo S2 ZuCo S3 Frank et al
albert-v1 0.744 0.754 0.497 0.450 0.326 0.501 0.580 0.325 0.652
albert-v2 0.748 0.739 0.492 0.460 0.329 0.503 0.585 0.326 0.637
bart 0.729 0.758 0.526 0.451 0.323 0.511 0.550 0.313 0.638
bert-cased 0.802 0.783 0.668 0.584 0.410 0.643 0.679 0.328 0.744
bert-multilingual-cased 0.753 0.727 0.525 0.459 0.338 0.489 0.622 0.324 0.603
bert-uncased 0.816 0.791 0.710 0.626 0.434 0.693 0.722 0.324 0.746
birdbird-roberta 0.775 0.774 0.600 0.511 0.363 0.582 0.565 0.319 0.693
deberta-v1 0.731 0.735 0.511 0.432 0.310 0.502 0.533 0.289 0.549
deberta-v2 0.824 0.770 0.708 0.601 0.423 0.688 0.712 0.306 0.660
distilbert-cased 0.786 0.772 0.623 0.523 0.378 0.629 0.632 0.341 0.670
distilbert-multilingual-cased 0.742 0.740 0.513 0.452 0.337 0.487 0.620 0.333 0.602
distilbert-uncased 0.796 0.780 0.649 0.576 0.396 0.649 0.678 0.319 0.725
roberta 0.709 0.755 0.523 0.453 0.329 0.504 0.537 0.291 0.632
roberta-muppet 0.712 0.763 0.527 0.460 0.329 0.501 0.542 0.297 0.665
squeezebert 0.730 0.769 0.505 0.458 0.320 0.499 0.549 0.348 0.650
xlm 0.690 0.715 0.391 0.358 0.271 0.379 0.476 0.313 0.532
xlnet 0.678 0.736 0.436 0.369 0.287 0.408 0.470 0.297 0.584

layer did not produce the highest correlation, the
first-layer correlation value was on average, 0.055
lower than the best correlation value. In 75% of
cases, this difference was less than 0.082. There-
fore, the first layer value appears to be a good rep-
resentation of the correlation between the model
and the eye gaze data. An extreme example of
this were the ALBERT variants, which, likely due
to weight sharing during training, have virtually
identical correlations from attention values from
each of its levels (Figure 3). Due to its general best
performance, the first layer results have been used
at the best performance for all models. Analyses
using the actual best performance can be observed
in our GitHub repository, although those results are
highly similar to those reported here.

Our next analysis compared performance across
models based on the first layer correlations. Figure
2 shows that, in general, the size of the model does
not determine the correlation between the human
eye and transformer attention. Evidence for this
can be seen in minor differences between various-
sized variants of the same model. For example,
the cased and uncased versions of BERT-base and
BERT-large are very similar, despite the large vari-
ant containing 340 million parameters compared
to the base variants’ 110 million. Similar obser-
vations can be observed across the other models,
especially DeBERTa, where the largest variants
have 1.5 billion parameters, and the smaller ones
contain less than 1/3 of that number. This observa-
tion was confirmed with a non-significant sign test
(p = .090) that compared each variant to the next
smallest variant in its model type. Due to this simi-

larity, results in Table 2 reports a single value per
model type that is an average for each size variant.
Table 3 shows the highest correlation by dataset. In
most cases, this model was either BERT-uncased
or DeBERTa-V2.

While the number of parameters is not what de-
termines the correlations, comparing across models
in Figure 2 suggests that training is essential for
determining those relationships. For example, the
BERT models have identical architectures to vari-
ous RoBERTa models, yet Table 2 shows that the
BERT correlations were consistently higher than
the RoBERTa based models. The other clear ex-
amples of training effects can be seen in the dif-
ferences between DeBERTa V1 and V2, where V2
models use the Scale-invariant-Fine-Tuning (SiFT)
algorithm introduced in the original paper. Interest-
ingly, the addition of the SiFT algorithm allowed
DeBERTa V2 to surpass human performance on
the SuperGLUE benchmarks (Wang et al., 2019a),
and Table 3 shows that this model was often the
second-highest correlated model. While it would
be great to find a direct relationship between how
human-like a model’s performance is and how cor-
related its attention patterns are to eye movements,
that is not the case. Excluding the compact models,
the BERT descendants outperform it on many of
the benchmarks, yet only DeBERTA comes close
to having stronger correlations to human eye move-
ments. In most cases, attention patterns less corre-
lated with overt human attention produced better
overall performance on NLP tasks.

Tables 2 and 3 show the rankings by correlation
are similar between datasets, with BERT-uncased
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Table 3: The three models with strongest correlation to eye-tracking data for each dataset. The uncased version of
BERT produced the strongest correlation in 7 out of 9 cases.

GECO Mishra Provo Sood S1 Sood S2 ZuCo S1 ZuCo S2 ZuCo S3 Frank-et-al
1 deberta-v2 bert-uncased bert-uncased bert-uncased bert-uncased bert-uncased bert-uncased squeezebert bert-uncased
2 bert-uncased bert-cased deberta-v2 deberta-v2 deberta-v2 deberta-v2 deberta-v2 distilbert-cased bert-cased
3 bert-cased distilbert-uncased bert-cased bert-cased bert-cased distilbert-uncased bert-cased distilbert-multilingual distilbert-uncased

producing the highest correlation in all but two
cases. In one of the exceptions, the GECO dataset,
BERT-uncased, was ranked second. In the other ex-
ception, ZuC0 Task 3, the ranking was much lower.
In general, the correlations from ZuCo Task 3 differ
greatly from the other datasets. The correlations
are lower for all models, and the model rankings
are very different, with two of the compact models,
SqueezeBERT and DistillBERT, ranking highest,
and BERT-uncased, ninth. Task 3’s participants
were the same as Tasks 1 and 2. Those first two
tasks produced results closer to the other datasets,
meaning Task 3’s lower correlations were likely
due to the task itself.

Interestingly, in Task 3, the participants were
presented with the question on the screen, allowing
them to direct their eye gaze to find the informa-
tion they required. This contrasts with most of
the other datasets where the questions about the
data were presented after reading. The only excep-
tions to this were some tasks by Sood et al. (2020a)
where the question appeared on screen in Study 2
and in 2/3s of the tests in Study 1. Furthermore,
the correlations from Sood et al. (2020a) Studies
2 and 1 were also the second and third lowest of
the datasets, respectively (Table 2). While further
study is needed, the lower correlations from SOOD
et al. and ZuCo Task 3 may indicate that while
transformer attention patterns produce strong cor-
relations when reading typically, the relationship
drops when the reader actively searches for infor-
mation.

Our final analysis looked at correlations across
levels of BERT (Figure 3). The results of Toneva
and Wehbe (2019) suggest that the middle layers
of BERT provided the best features for predict-
ing brain activity in humans. They speculated that
these relationships could mean that the middle lay-
ers of BERT could be related to the kinds of pro-
cessing that occurs in those brain levels. Our re-
sults show that the attention patterns from BERT’s
first layer were closely related to eye gaze data.
Again, while speculative, our results combined
with Toneva and Wehbe (2019) would suggest that
for BERT at least, the lower levels correspond best

Figure 3: The average correlations across layers for
bert-base-cased and albert-base-v1.

to text information entering the eyes. In contrast,
the middle layers correspond to specific processing.
With that said, not all transformers produced the
strongest correlations from their first layer. For
example, as mentioned above, Figure 3 shows the
data from ALBERT-V1 where the correlations from
all levels were relatively the same.

4 Conclusion

This paper analyzed the correlations between atten-
tion in pre-trained transformers and human atten-
tion derived from eye gaze. We found correlations
between the two that were generally stronger in
the earlier layers of the model and, in most cases,
strongest in the first layer. These correlations were
unaffected by the model’s size, as different sized
variants of models produced similar correlations.
The training the models received did appear to
matter, although the present study cannot deter-
mine the full extent of that relationship. We found
that correlations were weaker from eye-tracking
studies where the participants could actively guide
their reading towards seeking the information they
needed than when presented with questions after
reading. While we found a relationship between
overt human attention and attention in some pre-
trained transformers, additional research would be
required before models of eye gaze could be used
to replace attention in transformers.
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A Investigating the Effect of Injecting
Eye Gaze Bias During Training

As a preliminary experiment, we investigated the
effect of injecting human eye gaze bias during train-
ing on test accuracy. We used the BERT model (De-
vlin et al., 2019) and the sarcasm-detection dataset
published in Mishra et al. (2016) as a case study.

A.1 Method
The Mishra et al. (2016) dataset was originally
proposed to predict non-native English speakers’
understanding of sarcasm by using eye-tracking in-
formation. The dataset contains information on the
fixation duration of each word for each participant.
We injected the eye-gazing bias during training by
optimising the following loss function:

L = H(y, ŷ) + αH(p, p̂) (2)

where H(y, ŷ) is the cross-entropy loss of the
binary classification task of sarcasm detection, and
H(p, p̂) computes the divergence of the first-layer
attention values from the distribution of the nor-
malised fixation duration values given a sentence.
The hyperparameter α controls the weight of the
second term in the loss function.

Our experiments only used the fixation dura-
tion values from Participant 6 because they had
the highest overall accuracy for sarcasm detection
(90.29%). All the hyperparameters were tuned on a
validation set extracted from the training set before
being applied to the entire training set.

A.2 Results
The results are plotted in Figure 4. As expected, the
models fine-tuned from pre-trained BERT models
had significantly better test accuracy on both the
small and large training sets than models trained
from scratch on the Mishra et al. (2016) dataset.

A t-test confirmed that when the models were
trained on the large training set without pre-
training, an eye gaze bias injection during train-
ing hurt the performance (p < .05). With pre-
training, both models in Figure 4(b) performed
better than the best participant in the Mishra et al.
(2016) dataset. The bias injection still lowered
the mean accuracy, although the difference was
no longer statistically significant. When the small
training set was used to train the models, we found
no significant difference after the bias injection.

Comparing our results to Sood et al. (2020b)
suggests that training a model to predict eye gaze
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Figure 4: Comparison of the BERT models trained
with eye gaze bias against the models trained without
in terms of test accuracy. Models in plots (a) and (b)
were trained on 693 examples, and the results were ob-
tained after 20 runs. Models in plots (c) and (d) were
trained on only 70 examples, and the experiments were
repeated 50 times. The same test set (300 examples)
was used for all the experiments.

improves text compression performance, whereas
using eye gaze data to regulate sarcasm detection
decreased performance. It is unknown whether the
difference in results is due to our task choice or to
our method of using human data.
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Abstract
Aspect is a linguistic concept that describes
how an action, event, or state of a verb phrase
is situated in time. In this paper, we explore
whether different transformer models are capa-
ble of identifying aspectual features. We focus
on two specific aspectual features: telicity and
duration. Telicity marks whether the verb’s ac-
tion or state has an endpoint or not (telic/atelic),
and duration denotes whether a verb expresses
an action (dynamic) or a state (stative). These
features are integral to the interpretation of nat-
ural language, but also hard to annotate and
identify with NLP methods. We perform ex-
periments in English and French, and our re-
sults show that transformer models adequately
capture information on telicity and duration in
their vectors, even in their non-finetuned forms,
but are somewhat biased with regard to verb
tense and word order.

1 Introduction

Aspect is a linguistic concept that characterizes
how an action, event, or state (expressed by a
verb phrase) relates to time, beyond the scope of
the verb’s tense; via aspect, information such as
frequency, duration, and completion is conveyed.
Some verbs express events or actions that have or
do not have a clearly-defined endpoint because of
their meaning (lexical aspect or aktionsart), while
others can express different temporal properties in
different contexts and forms (grammatical aspect).
Languages may express aspect in various ways, e.g.
by using grammatical verb tense (incomplete ac-
tions with continuous/progressive, perfect progres-
sive and imperfect, complete actions with perfect),
morphemes (e.g. Finnish, Czech) or with aspect
markers (e.g. Mandarin Chinese). However, certain
aspectual features cannot simply be deduced from
morphosyntax and require some degree of semantic
knowledge. In this paper, we focus on two of these
aspectual features: telicity and duration. Telicity
is related to the goal-oriented nature of the verb

phrase. The verb’s action is said to be telic if it has
an endpoint; for example, verbs which demonstrate
an action such as kick, eat (“I kicked the ball.”,
“I eat an apple.”) are telic, because the action de-
scribed has a perceived ending. When the verb
denotes a state, e.g. exist, or when the completion
of the verb’s action is either indefinite, impossible
or irrelevant, e.g. agree, stay (“I agree with you.”,
“We stayed at the hotel.”), then the verb phrase is
characterized as atelic. Duration is another aspec-
tual feature, different from telicity: it distinguishes
between verbs that describe a state (stative, e.g. oc-
cupy, lie) or an action (durative, e.g. run, knock) re-
gardless of whether they have a perceived endpoint
or not. The perception of telicity and duration is the
outcome of the entire verbal phrase, and not solely
the verb’s features (Krifka, 1998). Besides, the con-
text can also place constraints on the aspectual class
of a verb (Siegel, 1998). Therefore, making sound
judgments on aspectual features such as telicity
and duration, especially in a morphologically-poor
language like English, is not always an easy task—
our datasets in Section 4.1 provide some examples
of sentences where these features are hard to as-
sess, even for a human. Aspect has been exploited
for tasks where semantic knowledge is necessary,
since it provides information on temporal relations
(Costa and Branco, 2012), textual entailment (Hos-
seini et al., 2018; Kober et al., 2019) and event
ordering (Chambers et al., 2014).

In recent years, transformer-based models have
shown great success in NLP tasks which tradition-
ally require in-depth language analysis and com-
plex strategies on capturing dependencies, seman-
tic information, and world knowledge. However,
it remains unclear whether the success of these
models is due to a genuine capability to accu-
rately model linguistic meaning, or whether the
models are just very good at picking up statisti-
cal correlations, but fail to capture fine-grained
semantic distinctions (Ettinger, 2020). With this

88



research question in mind, our goal is to investi-
gate whether transformer-based architectures (both
with and without fine-tuning) are able to capture
the semantic information related to telicity and du-
ration. To do so, we make use of two datasets anno-
tated for telicity and duration (Friedrich and Gateva,
2017; Alikhani and Stone, 2019), and we conduct a
range of experiments using several pretrained trans-
former architectures in two languages (English and
French). We extend our experiments from Methen-
iti et al. (2021), where we only made use of the
Friedrich and Gateva dataset and only in English.
We aim to explore the capabilities of transformer ar-
chitectures in classifying aspect beyond mere quan-
titative evaluation: we made custom qualitative
datasets in order to observe how complex context,
verb tense and prepositional phrases affect classifi-
cation.1

We find that classification with fine-tuned mod-
els is very successful—both for telicity and
duration—and this success can be largely attributed
to the knowledge built up during pre-training, as
contextual word embeddings by themselves are al-
ready quite capable of capturing this information.
We noticed that complex cases where the context
was conflicting with the verbal aspect were harder
for the models to classify, and we provide evidence
that misclassification in complex sentences is re-
lated to verb tense and word order. Finally, compar-
ing the two languages we investigate, even though
the French models show lower accuracy, they were
more successful in classifying more difficult cases
of telicity and duration, because of the properties
of verbal tense in French.

2 Acquisition of telicity and duration

Before examining how transformer models han-
dle telicity and duration, it is important to briefly
present how humans learn to identify and express
these concepts. Complex semantic features are
learned by humans with the use of multiple ex-
emplars in the speaker’s L1 (mother language), in
order to create constructions which encapsulate ab-
stract concepts, such as the perceived duration of an
action and the presence or absence of an outcome
(Christiansen and Chater, 2001). Frequency (El-
lis, 2002) and distributional bias (Andersen, 1993)
are crucial for the acquisition of a language’s spe-

1Our code and hand-crafted datasets are made available
at https://github.com/lenakmeth/telicity_
classification/.

cific patterns of expressing these concepts, how-
ever, their semantics and lexical properties are sep-
arate from the grammar of the language and interact
with it, to understand and express concepts.

Focusing on lexical aspect, Shirai (1991) and
Shirai and Andersen (1995) present the aspect hy-
pothesis, claiming that children associate past and
perfective marking to telic verbs (applying it to
activity, accomplishment and achievement verbs
in this order) and avoid such marking with sta-
tive verbs. Wulff et al. (2009) confirm this hy-
pothesis experimentally, showing that there is a
strong negative correlation between telicity and
progressivity (e.g. speakers will mostly avoid us-
ing progressive tenses with telic verbs). Todor-
ova et al. (2000) observed, in a self-paced reading
experiment, that the combination of aspectually
conflicting predicate and temporal modifiers in sen-
tences produced a delay in processing – this sug-
gests that humans have some preferred temporal
association with verbs and modifiers, and when
there is contradicting context, there is a need for
reassessment of the given structure. Proctor et al.
(2004) also conducted experiments of self-paced
reading, with sentences with verbs whose telicity
degree depends—to some extent—on the verb’s
object (e.g. consumption verbs with a finite/infinite
object), and observed that there was no time cost
in the processing of these sentences (also pointed
out by Todorova et al.), which leads to the conclu-
sion that the processing of a predicate, even with
conflicting telicity marking, is simpler than the
additional information of a temporal preposition.
However, Van Hout (1998) claims that prepositions
are mentally learned as markers of telicity earlier
in life than the presence of bound/unbound objects
(in experiments with Dutch as L1), meaning that
some function words are also considered important
for the final telicity degree of an utterance.

Regarding duration, in earlier stages of language
acquisition, it has been observed that children may
erroneously assign stativity to an action without
immediate change at the time of utterance (Rocca,
2002), and such mistakes also occur in L2 learners
of English (i.e. people who are learning as a foreign
language). Wen (1997) also noted that L2 learners
of Chinese acquired the perfectivity markers before
the duration markers. Such findings further support
the aspect hypothesis, showing that the perception
of time requires a significant amount of processing
and contextualizing for humans, and that the lexi-
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cal aspect of a verb (and therefore, the telicity and
duration of its presented action/state) is eventually
learned and preferred, but can be overwritten (in-
tentionally, in complex cases, at a computational
cost, or erroneously, in earlier stages of language
acquisition).

3 Previous Work

Siegel and McKeown (2000) were the first to pro-
pose natural language processing methods for as-
pectual classification; they used decision trees, ge-
netic programming, and logistic regression to lo-
cate linguistic indicators of stativity and complete-
ness, and observed that there was an improvement
on the classification of these features, especially
with supervised methods, compared to unsuper-
vised classification.

Friedrich and Palmer (2014) use a semi-
supervised approach for learning lexical aspect,
combining linguistic and distributional features, in
order to predict a verb’s stativity/duration, and also
released two datasets of annotated sentences for sta-
tivity. Friedrich and Pinkal (2015) extended this ap-
proach by classifying verbal lexical aspect into mul-
tiple categories of duration, habitual/episodic/static,
and Friedrich et al. (2016) expanded their datasets
and categories, achieving 76% accuracy on su-
pervised classification compared to the 80% of
their human baseline. In their most recent work,
Friedrich and Gateva (2017) have released two
datasets in English with gold and silver annotations
of telicity and duration (gold is human annotated;
silver is obtained from parallel English–Czech cor-
pora where aspectual features were extracted from
Czech morphological markers). With these datasets
and an L1-regularized multi-class logistic regres-
sion model, they report significant improvement on
automatic telicity classification.

Loáiciga and Grisot (2016) exploit telicity in
order to improve on French–English machine trans-
lation; they are using verb classification of telicity
(defined as boundedness) and notice improvement
on the translation of tense. Falk and Martin (2016)
also use a machine learning approach, alongside
morpho-syntactic and semantic annotations, to pre-
dict the aspect of French verbs in different contexts
(verb readings). Moving away from hard-coded
annotations and lexical aspect, Peng (2018) uses
two different compositional models to classify as-
pect, exploring the entire clause and not only the
verb, with the use of distributional vectors and with-

out annotated linguistic features, and highlights the
importance of the verbal phrase and the verb’s de-
pendents in the interpretation of telicity. Kober et al.
(2020) propose modeling aspect of English verbs
in context, with the use of compositional distribu-
tional models, and confirm that a verb’s context
and closed-class words of tense are strong features
for aspect classification.

4 Methodology

4.1 English Datasets

Telicity and duration-annotated sentences will be
used as two separate datasets for our experiments.
The two datasets from which we are sourcing sen-
tences are constructed by Friedrich and Gateva
(2017) and by Alikhani and Stone (2019).

Friedrich and Gateva’s dataset2 includes gold-
and silver-annotations of telicity (telic/atelic) and
duration (stative/durative). The gold annotations
are based on the MASC dataset (Ide et al., 2008),
while the silver annotations were crafted on the ba-
sis of the InterCorp parallel corpus of English and
Czech (Čermák and Rosen, 2012), extracting the
annotations from the Czech morphological markers
of telicity and duration and applying them to the
English translations. Each annotation corresponds
to a specific verb in each sentence and not the entire
clause.

The “Captions” dataset3 by Alikhani and Stone
(2019) was created from five image–text corpora, in
order to study inferential connections in sentences.
It has been annotated for telicity (telic/atelic) and
duration (stative/durative/punctual) based on the
verb’s aspect. Even though the focus of the orig-
inal work was on the head verb of each sentence,
the verbs were not separately annotated, therefore
we used dependency parsing with spaCy (Honni-
bal et al., 2020) in order to extract the verb and
its position for our experiments. We noticed some
inconsistencies in annotation, which we corrected,
and we also excluded the sentences annotated with
the punctual label, since there were too few sen-
tences to warrant a third category or to combine
with the durative label.

In Table 1 we present the sizes of the datasets and
our final dataset. We split this dataset in training,
validation and test sets with a ratio of 80-10-10%.

We also created some smaller datasets for testing

2https://github.com/annefried/telicity
3https://github.com/malihealikhani/

Captions
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purposes, in order to observe specific phenomena
in our models. First, we created forty sentences
annotated for telicity, and forty for duration, a sam-
ple of which can be found in Table 2. We also
crafted “minimal pairs” of sentences with telicity
annotations, where each pair includes the same
verb but in a context that has a different degree
of telicity (see examples in Table 3). We also cre-
ated variations for some of these sentences, moving
prepositional phrases to different positions in the
sentence or changing the verb tense without chang-
ing the meaning or the degree of telicity, in order
to test whether the models are sensitive not only
to specific verbs but also word position and tenses
(see Table 4).

4.2 Verb position

Aspect is generally attributed to the verb; we there-
fore want to indicate the position of the verb in
the sentence. To do so, we make use of a binary
mask that indicates the position of the verb form
without auxiliaries (or multiple positions, when the
verb is split into subwords by the model tokenizer).
Technically, we implement the binary mask by mak-
ing use of so-called token_type_ids vectors.
These vectors’ intended use is to mark tokens of
different segments (when performing classification
tasks for pairs of sentences)—but since our input
consists of a single sentence, we can employ them
for specifying the position of the verb. An exam-
ple is shown in Table 5. Unfortunately, RoBERTa
based models (RoBERTa and CamemBERT) do
not support the use of token_type_ids vec-
tors; we will therefore use these models without an
explicit indication of verb position.

4.3 Transformer models

Transformers are neural network models which as-
sign weighted attention to the different parts of the
input with a sequence of alternating neural feed-
forward layers and self-attention layers. These
models have proven to be very successful in a va-
riety of NLP tasks, and they have been shown to
implicitly capture syntactic and semantic informa-
tion and dependencies. In this work, we are us-
ing pretrained transformer models provided by the
transformers library (Wolf et al., 2020).

BERT (Devlin et al., 2019) is a transformer-
based bi-directional encoder, which is trained by
randomly masking words in the input sequence and
learning to fill the word in the masked position,

Type Label Friedrich Captions Current Total

telicity telic 1,831 785 2,885 6,173atelic 2,661 1,256 3,288

duration stative 1,860 419 2,036
4,081durative 38 1,843 2,045

Table 1: Number of sentences and annotations in each
dataset, and our final dataset sizes.

label sentence

telic I ate a fish for lunch.
telic John built a house in a year.
telic The cat drank all the milk.
atelic John watched TV.
atelic I always spill milk when I pour it in my mug.
atelic Cork floats on water.

stative Bread consists of flour, water and yeast.
stative This box contains a cake.
stative I have disliked mushrooms for years.

durative She plays tennis every Friday.
durative The snow melts every spring.
durative The boxer is hitting his opponent.

Table 2: A sample from our qualitative dataset.

label sentence

telic I will receive new stock on Friday.
atelic I will receive new stock on Fridays.

telic The boy is eating an apple.
atelic The boy is eating apples.

telic I drank the whole bottle.
atelic I drank juice.

telic The Prime Minister made that declaration yesterday.
atelic The Prime Minister made that declaration for months.

Table 3: A sample of minimal pairs for telicity.

label sentence

telic John built a house in a year.
telic John had built a house in a year.
telic In a year, John built a house.
telic In a year, John had built a house.

atelic We swim in the lake in the afternoons.
atelic We swim in the lake each afternoon.
atelic In the afternoons, we swim in the lake.
atelic Each afternoon, we swim in the lake.

Table 4: A sample of variations of tense and word order.

tokens He worked well and earned much .

vector 0 1 0 0 0 0 0

tokens He work ###ed well and earn ###ed much .

vector 0 1 1 0 0 0 0 0 0

Table 5: Sentence tokens and the corresponding
token_type_ids vectors, depending on tokeniza-
tion. Each sequence also includes the model’s special
tokens and padding.
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while also learning to predict the next sentence
given the first sentence.

RoBERTa (Liu et al., 2019) has the same model
architecture as BERT, but focuses only on the
masked language modeling objective, and expands
BERT’s use of subwords from unseen words to
almost all tokens. The model modifies key hyper-
parameters in BERT, has been trained with much
larger mini-batches and learning rates, and has im-
proved results on the masked language modeling
objective and on downstream task performance.

XLNet (Yang et al., 2019) is an auto-regressive
pretraining model which introduces permutation
language modeling, where all tokens are predicted
but in random order (unlike BERT, which predicts
only the masked tokens). This method allows the
model to better learn dependencies and relations
between words. XLNet reportedly outperforms
BERT on tasks such as question answering, senti-
ment analysis, and document ranking.

ALBERT (Lan et al., 2019) is a transformer ar-
chitecture, based on BERT but using fewer parame-
ters more efficiently; the vocabulary is decomposed
into two small matrices and the size of the hidden
layer embeddings (which learn context-dependent
representations) is separated from the vocabulary
embeddings (which learn context-independent rep-
resentations). ALBERT has managed to outper-
form BERT on tasks such as reading comprehen-
sion, proving that better exploitation of contextual
representations could be more beneficial than larger
training and parameter sizes.

4.4 Fine-tuning & binary classification

One of our experiments explores the process of fine-
tuning a transformer model for binary sequence
classification of telicity and duration (separately),
and testing the fine-tuned model’s accuracy on pre-
dicting the telicity or duration annotated label of a
sentence. Fine-tuning is the strategy of adapting a
pretrained model to a specific task, by adding an
extra layer on top of the existing ones and special-
izing it on the given task. Thus, we can exploit
the existing model’s knowledge from its contextual
word embeddings, and further specialize the model
on a specific task without the need for large spe-
cialized resources, large computational power and
long training times; in many tasks, fine-tuned trans-
former models have consistently provided state-of-
the-art results (Sun et al., 2019).

In order to perform binary classification of telic-

ity (telic/atelic) or duration (stative/durative), we
first fine-tune the pretrained models on some anno-
tated examples of telicity and duration. The input
is entire sentences, with or without the verb po-
sition information (presented in Section 4.2), and
their label of telicity or duration. We fine-tune the
models as Devlin et al. (2019) have recommended,
with some modifications; we use a batch size of 32
and a learning rate of 2× 10−5. We apply dropout
with probability p = 0.1 and weight decay with
λ = 0.01. We use the PyTorch’s ADAM as our op-
timizer (AdamW) without bias correction. We fine-
tune each model for a maximum of 4 epochs, fol-
lowing the recommendation of Devlin et al. (2019)
to train for 2-4 epochs when fine-tuning on a spe-
cific task. For base models each training epoch
took ~3 minutes and for large models ~7 min-
utes, on one GPU system of a computing cluster,
with CUDA acceleration.

As baselines, we make use of two standard bi-
nary classification models trained and tested on the
same sets: a simple bag-of-words logistic regres-
sion model, implemented with the Python library
scikit-learn (Pedregosa et al., 2011) with default
parameters and data scaling, and a one-layer convo-
lutional neural network model (CNN) implemented
with Pytorch (Paszke et al., 2019) and trained
for 50 epochs, which is commonly used for text
classification tasks (Kim, 2014). The CNN model
is trained with the fastText 300-dimensional em-
beddings (Bojanowski et al., 2017), embedding
dimension of 300, filter size of [3, 4, 5], 100 filters
per dimension, dropout rate of 0.5, learning rate of
0.01 and the Adadelta optimizer.

4.5 Classification with layer embeddings and
logistic regression

Pretrained models already contain linguistic infor-
mation in their contextualized word embeddings,
which we can extract and use with task-specific
models for classification. The process of extracting
the knowledge of a transformer model’s embed-
dings has been explored since the popularization of
contextual word embeddings with ELMo (Peters
et al., 2018), since it allows for faster computations
with results comparable to fine-tuned transformer
models (Tang et al., 2019). We equally conduct
an experiment without any finetuning, where we
apply a logistic regression to the contextual embed-
dings of each layer as provided by the pre-trained
model. We extract the contextual word embeddings
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(for the annotated verb) from each layer of a trans-
former model, and we train a logistic regression
model (using scikit-learn) to classify telicity
and duration, in order to examine how much infor-
mation relevant to telicity and duration has been
learned by each layer.

4.6 Classification in French

We also wanted to examine whether telicity and du-
ration were classifiable in a different language with
transformer models. We chose French, as it differs
from English in the way verb tenses are formed
(conjugation, compound tenses) and used (present
continuous is morphologically the same as present
simple), but it does not have a dedicated morpheme
to expressing telicity such as Finnish and Czech.
We are using the two monolingual French trans-
former models available from the transform-
ers library, CamemBERT (Martin et al., 2020)
and FlauBERT (Le et al., 2020). CamemBERT
is built based on the RoBERTa architecture and
trained on monolingual data. FlauBERT is a BERT-
based model trained with multiple, heterogeneous
corpora, and a more extensive tokenization proce-
dure.

Since there are no available annotations of telic-
ity and duration in French, we translated our En-
glish datasets with the DeepL translator4 and re-
viewed manually a portion of the datasets (200
sentences) for translation accuracy and annotation
correctness. Our average score for the accuracy
of the machine-translated sentences was 88% and
for the accuracy of the annotated labels was 73.5%.
We also extracted the verb-head word of each sen-
tence with the spaCy dependency parser to train
with/without verb position, but we are not entirely
confident in the results, therefore we are not testing
the models’ verb embeddings per layer and the un-
seen verbs of the test set, as we did in English. We
use the resulting datasets to fine-tune the FlauBERT
and CamemBERT models, and assess their abilities
on aspectual classification. In addition, we man-
ually translated our qualitative test sets and made
appropriate changes (when verb tense did not con-
vey the desired telicity, for example), and in lieu of
the 80 sentences on variations of word order and
verb tense, we created more minimal pairs with
variations on prepositional phrases.

4https://www.deepl.com/translator

5 Results for English

5.1 Quantitative analysis
During the fine-tuning process, we were able to
identify via validation which models were most
and least successful in predicting binary tags. The
results for validation are presented in Table 6 for
telicity and Table 7 for duration. In Appendix A.1
we are comparing the probability distributions for
the binary labels, for the most successful model (in
terms of accuracy).

On classifying telicity, the best performing
model was bert-large-cased. Overall,
BERT models outperformed the other architectures,
but all models achieved accuracy of > 0.80. When
trained with the extra information of verb position
in the sentence, accuracy improved for all models
and sets (+0.01−0.04). Examining the probability
distribution of the two labels, we observed that the
BERT models, both base and large, with the
use of the verb position, were the most confident
in assigning a label to a sentence (with the proba-
bility of each label being > 0.9) while the large
versions of other models were the ones whose prob-
ability distribution included more cases with lower
label probability. The models were overall more
confident with correct predictions, and only very
slightly less confident (with a few labels closer to
0.4 − 0.6, but still the majority above > 0.9) for
wrong predictions.

Our findings on classifying duration were simi-
lar to the ones on telicity, with the models perform-
ing overall better on this classification task despite
the dataset being smaller. The BERT models were
the most successful ones, achieving accuracy of up
to 0.96, however all models achieved accuracy of
> 0.93. The effect of the use of the verb position in-
formation is not apparent in this classification task,
since we notice an improvement or deterioration
of 0.01 in most models. Examining the probabil-
ity distribution of the two labels, all models were
very confident in classifying sentences, regardless
of their accuracy, and high confidence in both right
and wrong predictions (erroneously).

In both cases, the fine-tuned transformers models
outperformed the baselines we have established.

5.2 Qualitative analysis
As mentioned, we also created our own annotated
datasets of telicity and duration, in order to study
aspectual properties beyond the scope of classifica-
tion metrics. We took a closer look at the correct
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Model Verb Acc. Prec. Rec. F1

bert-base-uncased
yes 0.86 0.86 0.86 0.86
no 0.81 0.81 0.81 0.81

bert-base-cased
yes 0.87 0.87 0.87 0.87
no 0.81 0.80 0.80 0.80

bert-large-uncased
yes 0.86 0.86 0.86 0.86
no 0.81 0.80 0.80 0.80

bert-large-cased
yes 0.88 0.87 0.87 0.87
no 0.81 0.81 0.80 0.80

roberta-base no 0.84 0.84 0.84 0.84
roberta-large no 0.80 0.81 0.79 0.79

xlnet-base-cased
yes 0.82 0.82 0.82 0.82
no 0.81 0.81 0.81 0.80

xlnet-large-cased
yes 0.82 0.82 0.82 0.82
no 0.80 0.80 0.80 0.80

albert-base-v2
yes 0.84 0.84 0.84 0.84
no 0.81 0.80 0.80 0.80

albert-large-v2
yes 0.80 0.80 0.80 0.80
no 0.82 0.81 0.81 0.81

CNN (50 epochs) no 0.75 0.75 0.75 0.75
Log. Regr. BoW no 0.61 0.61 0.61 0.61

Table 6: Results of classification accuracy on the telicity
test set. ‘Verb’ refers to training the model with the
added information of the verb position.

Model Verb Acc. Prec. Rec. F1

bert-base-uncased
yes 0.96 0.96 0.96 0.96
no 0.94 0.94 0.94 0.94

bert-base-cased
yes 0.96 0.96 0.96 0.96
no 0.96 0.95 0.96 0.96

bert-large-uncased
yes 0.96 0.96 0.96 0.96
no 0.95 0.95 0.94 0.94

bert-large-cased
yes 0.96 0.96 0.96 0.96
no 0.95 0.95 0.95 0.95

roberta-base no 0.95 0.95 0.95 0.95
roberta-large no 0.95 0.95 0.95 0.95

xlnet-base-cased
yes 0.94 0.94 0.94 0.94
no 0.95 0.95 0.95 0.95

xlnet-large-cased
yes 0.94 0.94 0.94 0.94
no 0.95 0.95 0.95 0.95

albert-base-v2
yes 0.95 0.95 0.95 0.95
no 0.95 0.95 0.95 0.95

albert-large-v2
yes 0.96 0.96 0.96 0.96
no 0.96 0.96 0.96 0.96

CNN (50 epochs) no 0.88 0.88 0.88 0.88
Log. Regr. BoW no 0.70 0.70 0.69 0.69

Table 7: Results of classification accuracy on the dura-
tion test set. ‘Verb’ refers to training the model with the
added information of the verb position.

and incorrect predictions of the models, in order to
determine which cases were easier or more difficult
for models to classify. For the sake of brevity, we
are presenting only a few examples of successes
and failures; our goal was to manually examine the
strengths and weaknessess of the models in diffi-
cult and conflicting cases of classification, hence
the smaller qualitative datasets and the presentation
of the most interesting examples.

For telicity, overall, models were quite success-
ful in classifying the sentences of our qualitative

dataset.For example, all models were able to iden-
tify that sentences with statements are atelic, such
as Cork floats on water. and The Earth revolves
around the Sun., and sentences with an action were
correctly classified almost all the time: I spilled
the milk. was correctly classified as telic, and I al-
ways spill milk when I pour it in my mug. was also
correctly classified as atelic (except for the xlnet
models).

For the majority of the models, the errors in
classification could be located in some specific sen-
tences, where the verb or the verbal phrase would
be considered (a)telic, but part of the context de-
fines the temporal aspect of the sentence in the
opposite way, either a prepositional phrase (e.g. I
eat a fish for lunch on Fridays.; eat with an object
would be considered telic, but the prepositional
phrase on Fridays shows an action without per-
ceived ending) or a grammatical tense (e.g. The
inspectors are always checking every document
very carefully.; even though the action should have
a perceived ending, the continuous tense and the
presence of the adverb always render this sentence
atelic).

Moving to our minimal pairs of telic-atelic sen-
tences, we observe that, in most cases, most models
are able to classify correctly a sentence based both
on the verb action and the context; I drank the
whole bottle. and I drank juice. were correctly
classified as telic and atelic respectively, despite of
the presence of the same verb and tense. However,
in our qualitative dataset, we noticed that the sen-
tence The cat drank all the milk. was incorrectly
classified as atelic by all the models. Another in-
teresting mistake we noticed was the classification
of the pair The boy is eating an apple. and The
boy is eating apples. as both atelic; in the former
sentence, the action is telic for pragmatic reasons
(one apple that will be finished), but the tense is
continuous.

In order to observe specific tenses, word posi-
tions and context more extensively, we can exam-
ine the variations of a sentence and see whether the
models classified them all with the same label or
not. The telic sentence I ate a fish for lunch at noon.
has confused some of the models, whether the
prepositional phrase at noon was at the beginning
or the end. However, the same sentences regard-
less of the phrase’s position, with past perfect tense
had eaten is always classified as telic. In some
complex cases, such as the sentence The Prime
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Minister made that declaration for months. we
notice that most models fail to classify it as atelic
in all its variations, except for when the preposi-
tional phrase is at the start and the tense is present
perfect continuous (has been making). We noticed
that even sentences with a more obvious degree of
telicity (John Wilkes Booth killed Lincoln on 1865.
– telic) were sometimes labeled incorrectly, when
the prepositional phrase was at the end rather than
the start.

Regarding duration, the models were less suc-
cessful at classifying stative sentences than dura-
tive; even some sentences with intransitive verbs,
such as Bread consists of flour, water and yeast.
and This cookbook includes a recipe for bread.
were classified as durative. However, stative sen-
tences with animate subjects such as I disagree with
you. were correctly classified. Durative sentences,
despite of verb tense and context, were always cor-
rectly classified, e.g. She plays tennis every Friday.
and She’s playing tennis right now..

5.3 Layer verb embeddings
By extracting the contextual word embeddings for
the verb of each sentence, from each layer, and
training a logistic regression model with these em-
beddings, we were able to examine how much in-
formation on telicity and duration is learned by
each layer. In Appendix, Figure 3, we present the
accuracy for each layer of the base models. Mod-
els achieved accuracy of up to 79% for telicity
classification and up to 90% for duration classifi-
cation, which is comparable to the performance of
the finetuned models. Improvement of accuracy is
not proportional as we move to higher layers; we
notice that for telicity, some models achieve high
accuracy in the middle layers, and again in the final
layers, with accuracy sometimes dropping in the
last layer.

5.4 Unseen verbs
In our training and test datasets, there was a large
variety of verb-head words, which allowed us to
test the classification success on sentences where
the verb has not been observed by the model. For
telicity, 267 verb forms which were the head of
their phrase were not “seen” by the model in the
training set (and 146 of them were not split in
subwords), and for duration, 117 verbs (and 80
intact). We tested which of the corresponding sen-
tences were marked incorrectly, and the models’
average probability of the assigned label. Overall,

few sentences were labeled incorrectly (see results
in Table 10), with labels of either category for both
classification tasks. This suggests that the context
plays an important role for the models’ choices,
even when the verb form has not been observed by
the model.

6 Results for French

6.1 Quantitative analysis

The results of the classification for telicity and du-
ration are presented in Tables 8 and 9. Accuracy is
overall lower than English, and the CNN classifier
baseline performed equally well or sometimes out-
performed some models. We questioned whether
this was a problem of the machine translation pro-
cess, but since all sets were created in the same way,
we consider this unlikely. However, the fact that
the additional verb position information was almost
always detrimental is probably a problem caused
by parsing, since French makes use of compound
tenses more often than English.

Model Verb Acc. Prec. Rec. F1
camembert-base no 0.77 0.77 0.78 0.77
camembert-large no 0.76 0.77 0.77 0.77

flaubert-small-cased
yes 0.69 0.70 0.70 0.69
no 0.73 0.73 0.73 0.72

flaubert-base-uncased
yes 0.74 0.75 0.74 0.72
no 0.76 0.76 0.76 0.75

flaubert-base-cased
yes 0.76 0.76 0.77 0.76
no 0.77 0.78 0.78 0.78

flaubert-large
yes 0.73 0.74 0.74 0.72
no 0.75 0.76 0.76 0.74

CNN (50 epochs) no 0.71 0.69 0.65 0.65
Log. Regr. BoW no 0.61 0.59 0.59 0.59

Table 8: Accuracy metrics for telicity classification with
French transformer models.

Model Verb Acc. Prec. Rec. F1
camembert-base no 0.82 0.82 0.82 0.82
camembert-large no 0.87 0.87 0.87 0.87

flaubert-small-cased
yes 0.79 0.79 0.79 0.79
no 0.81 0.81 0.81 0.8

flaubert-base-uncased
yes 0.80 0.81 0.80 0.80
no 0.84 0.84 0.84 0.84

flaubert-base-cased
yes 0.81 0.82 0.82 0.81
no 0.83 0.83 0.83 0.83

flaubert-large
yes 0.81 0.81 0.81 0.80
no 0.87 0.87 0.87 0.87

CNN (50 epochs) no 0.80 0.82 0.82 0.82
Log. Regr. BoW no 0.68 0.68 0.67 0.67

Table 9: Accuracy metrics for duration classification
with French transformer models.
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6.2 Qualitative analysis

We notice that for French, the fine-tuned models
performed better on the qualitative sets than their
English counterparts, avoiding common mistakes
such as classifying the atelic sentence Je mange un
poisson à midi le vendredi. (“I eat a fish for lunch
of Fridays.”) as telic. However, there were (fewer,
but some) common mistakes through the models
which did not exist for English, e.g. Je renverse
toujours le lait quand je le verse dans ma tasse.
(“I always spill milk when I pour it in my mug.” –
atelic) and Jenny a travaillé comme médecine toute
sa vie. (“Jenny worked as a doctor her whole life.”
– atelic) in which the context affects telicity more
than the verb. Comparing minimal pairs, we notice
that, unlike in English, the sentence J’ai bu du jus
de fruit. (“I drank juice.” – atelic) was frequently
marked as telic by the models, and so did its pair
J’ai bu toute la bouteille. (“I drank the whole bot-
tle.” – telic). And unlike the common mistake
of marking both sentences as telic in English, the
French models marked the sentences Le garçon
mange [une pomme / des pommes]. (“The boy is
eating [an apple / apples]) both as atelic.

For the duration classification, as in English, we
observe that stative sentences were the ones which
were occasionally or always incorrectly classified
by the models; sentences with statements such as
Le pain est composé de farine, d’eau et de levure.
(“Bread consists of flour, water and yeast.”) or
J’aime le chocolat. (“I love chocolate.”) were
labeled incorrectly.

7 Discussion

Transformer models were quite successful in the
classification tasks, outperforming our baselines to
a large extent, and they proved to be quite success-
ful even without fine-tuning. Contextual embed-
dings proved to be an efficient way to encode the
aspectual information of a verb and its interaction
with its context, and this knowledge is probably
already learned in the pretraining process.

The superior performance of the duration clas-
sification with fine-tuned models did raise a ques-
tion: from our datasets, most stative questions came
from the Friedrich dataset and most durative sen-
tences from the Captions dataset; did the models
learn to classify duration or to identify the differ-
ent corpora? With our qualitative analysis on two
languages, we can conclude that the models are in-
deed able to classify duration and were successful

because of the little overlap between stative and
durative verbs and contexts. However, the models
struggled with sentences for which world knowl-
edge is crucial, which is a known issue (Rogers
et al., 2021).

From our experiment with verb tenses and prepo-
sitional phrases, we noticed that perfect and contin-
uous tenses are beneficial to classification by the
models, and leading a sentence with a prepositional
phrase of time sometimes improved predictions.
However, conflicting context will almost always
confuse the models.

In addition, our findings on the French datasets
showed that, even with our lower-performing mod-
els, the syntactic and semantic choices that a lan-
guage makes in expressing aspect did affect the
models’ capabilities of classifying aspect.The dif-
ferences in classification errors and successes that
we observed, between the qualitative datasets of
the two languages, may also indicate that there is
a different way in which languages are semanti-
cally represented by transformer models, even with
different model architectures.

8 Conclusion

In this study, we conducted several experiments
that test the capability of transformer models to
grasp aspectual categories, viz. telicity and dura-
tion. We tested this capability using a binary classi-
fication setting. Using two annotated datasets for
telicity and duration (Friedrich and Gateva, 2017;
Alikhani and Stone, 2019), we fine-tuned trans-
former models of different architectures and in two
languages and found that transformer models were
very successful on the classification of aspect even
when trained on small datasets. Providing the verb
position as additional information improved perfor-
mance in both telicity and duration classification
for English. The pretrained transformer models
also possess knowledge of aspect even without fine-
tuning (when looking at layerwise contextual word
embeddings). However, our qualitative analysis
also revealed weaknesses; for complex sentences,
where the verbal aspect contradicted the temporal
information in the context (e.g. telic verb with an
atelic prepositional phrase, resulting in an over-
all atelic sentence), the models classified based
on verb rather than context, meaning that they are
able to distinguish the most important part of the
sequence but not capture more fine-grained infor-
mation when it is necessary.
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A Additional figures

A.1 Probability distributions (English)

Figure 1: Probability distribution for the
telicity labels, for the most successful model
(bert-large-cased with verb position).

Figure 2: Probability distribution for the du-
ration labels, for the most successful model
(bert-large-cased with verb position).
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A.2 Correct label predictions on unseen verbs in test set (English)

Model Verb
Telicity Duration

Seen verbs Unseen Verbs Seen verbs Unseen Verbs
Correct Wrong Acc. Correct Wrong Acc. Correct Wrong Acc. Correct Wrong Acc.

bert-base-uncased
yes 1286 240 0.84 180 41 0.81 681 26 0.96 142 6 0.96
no 1194 336 0.78 170 50 0.77 678 29 0.96 143 5 0.97

bert-base-cased
yes 1290 218 0.86 169 31 0.85 665 17 0.98 129 5 0.96
no 1169 342 0.77 162 37 0.81 661 21 0.97 128 6 0.96

bert-large-uncased
yes 1292 234 0.85 190 31 0.86 687 20 0.97 142 6 0.96
no 1191 339 0.78 177 43 0.8 688 19 0.97 143 5 0.97

bert-large-cased
yes 1308 200 0.87 168 32 0.84 666 16 0.98 128 6 0.96
no 1167 344 0.77 153 46 0.77 667 15 0.98 127 7 0.95

roberta-base no 1243 291 0.81 185 41 0.82 662 19 0.97 126 8 0.94
roberta-large no 1157 377 0.75 176 50 0.78 667 14 0.98 127 7 0.95

xlnet-base-cased
yes 1196 327 0.79 174 43 0.8 651 30 0.96 127 8 0.94
no 1175 350 0.77 171 45 0.79 656 25 0.96 129 6 0.96

xlnet-large-cased
yes 1190 333 0.78 174 43 0.8 653 28 0.96 127 8 0.94
no 1182 343 0.78 169 47 0.78 652 29 0.96 125 10 0.93

albert-base-v2
yes 1281 271 0.83 186 44 0.81 698 16 0.98 138 5 0.97
no 1194 362 0.77 187 42 0.82 696 18 0.97 137 6 0.96

albert-large-v2
yes 1204 348 0.78 174 56 0.76 690 24 0.97 137 6 0.96
no 1212 344 0.78 184 45 0.8 698 16 0.98 137 6 0.96

Table 10: The results on the test set, for sentences with seen/unseen verbs in the training set, for telicity and duration.
The ratio of correct/incorrect labels is similar, with seen and unseen verbs, both for telicity and duration.

A.3 Classification with pretrained word embeddings and logistic regression (English)

Figure 3: Accuracy of classification of logistic regression, per layer of embeddings, for base models.
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Abstract

Eye tracking data during reading is a useful
source of information to understand the cogni-
tive processes that take place during language
comprehension processes. Different languages
account for different cognitive triggers, how-
ever there seems to be some uniform indicators
across languages. In this paper, we describe
our submission to the CMCL 2022 shared task
on predicting human reading patterns for multi-
lingual dataset. Our model uses text represen-
tations from transformers and some hand engi-
neered features with a regression layer on top
to predict statistical measures of mean and stan-
dard deviation for 2 main eye-tracking features.
We train an end-to-end model to extract mean-
ingful information from different languages
and test our model on two separate datasets.
We compare different transformer models and
show ablation studies affecting model perfor-
mance. Our final submission ranked 4th place
for SubTask-1 and 1st place for SubTask-2 for
the shared task.

1 Introduction

Eye tracking provides an accurate millisecond
record of where people are looking while read-
ing and is useful for descriptive study of language
processing and understanding of the cognitive pro-
cessing of brain related to reading. Eye movements
are many times language-specific because they de-
pend on structure and ordering of words which are
language dependent, however some features tend
to be stable and universal and can be observed in all
languages. Modeling of human reading has been
widely explored in psycholinguistics. The ability to
accurately predict eye tracking between languages
pushes this field forward, facilitating comparisons
between models and analysis of their various func-
tions.

In this paper, we compare our eye-tracking pre-
diction results with some simple baselines using
token-level features, which we improve upon with

our zero shot cross lingual model which we have
described in section 3.

2 Task Description

2.1 Problem Statement
In this section we briefly describe the task at hand
which is the challenge of predicting eye-tracking
features recorded during sentence processing of
multiple languages. This task is more complex
as compared to previous editions of the shared
task due to changes made compared to the pre-
vious edition (Hollenstein et al., 2021); (i) Mul-
tilingual data: We use an eye movement dataset
with sentences from six languages (Chinese, Dutch,
English, German, Hindi, Russian) and (ii) Eye-
tracking features: To take into account the indi-
vidual differences between readers, the task is not
limited to predict the mean eye tracking features
across readers, but also the standard deviation of
the feature values. The task details can be found in
Hollenstein et al. (2022).

We formulate the task as a regression task to
predict 2 eye-tracking features and the correspond-
ing standard deviation across readers. The targets
are briefly described here: first fixation duration
(FFDAvg), the duration of the first fixation on the
prevailing word; standard deviation (FFDStd)
across readers; total reading time (TRTAvg), the
sum of all fixation durations on the current word,
including regressions; standard deviation (TRT-
Std) across readers.

The shared task is modelled as two related sub-
tasks of increasing complexity :

Subtask 1: Predict eye-tracking features for sen-
tences of the 6 provided languages

Subtask 2: Predict eye-tracking features for sen-
tences from a new surprise language

2.2 Related Work
Multiple deep learning approaches have been ex-
plored in the past on cognitive modelling with lin-
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Training Set Dev Set Test Set

Name Abbreviation Language Subjects Sentences Tokens Sentences Tokens Sentences Tokens Source

Beijing Sentence Corpus BSC ZH 60 120 1355 7 82 23 248 Pan et al. (2021)

Postdam-Allahabad Hindi Eye-
tracking Corpus

PAHEC HI 30 122 2021 7 142 24 433 Husain et al. (2015)

Russian Sentence Corpus RSC RU 84 115 1140 7 59 22 218 Laurinavichyute et al. (2019)

Provo Corpus Provo EN 30 107 2067 6 152 21 440 Luke and Christianson (2018)

ZuCo 1.0 Corpus (NR) ZuCo1 EN 12 240 5235 15 269 45 994 Hollenstein et al. (2018)

ZuCo 2.0 Corpus (NR) ZuCo2 EN 18 279 5398 17 303 53 1127 Hollenstein et al. (2019)

GECO Corpus (Dutch L1 part) GECO-NL NL 18 640 7462 40 405 120 1475 Cop et al. (2017)

Potsdam Textbook Corpus PoTeC DE 75 80 1463 5 139 16 293 Jäger et al. (2021)

Copenhagen Corpus CopCo DA - - - - - 402 6767 -

Table 1: Overview of the selected datasets

guistic perspective on English datasets ZuCo (Hol-
lenstein et al., 2018, 2019) and Provo(Luke and
Christianson, 2018). Salicchi and Lenci (2021)
uses cosine similarity and surprisal within regres-
sion architecture to model the surprisal character-
istic of a new word. Li and Rudzicz (2021); Yu
et al. (2021) use the transformer methods to extract
the linguistic embeddings; the former applying en-
sembling methods while the latter using surface,
linguistic and behavioral features in combination
with the linguistic embeddings.

2.3 Dataset

The dataset comprises of the eye-tracking data
recorded during natural reading from 8 datasets in
6 languages. The training data contains 1703 sen-
tences, the development set contains 104 sentences,
and the test set 324 sentences. The data provided
contains scaled features in the range between 0 and
100 to facilitate evaluation via the mean absolute
average (MAE). The eye-tracking feature values
are averaged over all readers.

The detailed dataset information about the num-
ber of sentences in each datasource and the token-
wise information is shown in table 1.

3 Our Approach

Our models heavily use contextualised embeddings
extracted from the pretrained models based on
transformer architecture (Vaswani et al., 2017).
We experiment on the training dataset with mul-
tilingual transformer models which are briefly de-
scribed below :

mBERT (Devlin et al., 2019) a deep contextual
representation based on a series of transformers
trained by a self-supervised objective with data
from Wikipedia in 104 languages. It has been
trained with masked language modelling objective

and training makes no use of explicit cross-lingual
signal.

XLM (Lample and Conneau, 2019) is a
Transformer-based model that, like BERT, is
trained with the masked language modeling (MLM)
objective. Additionally, XLM is trained with a
Translation Language Modeling (TLM) objective
in an attempt to force the model to learn similar
representations for different languages.

XLM-RoBERTa (Conneau et al., 2020) uses
self-supervised training techniques to achieve state-
of-the-art performance in cross-lingual understand-
ing. It is trained on unlabeled text in 100 languages
extracted from CommonCrawl datasets.

These transformer methods use either WordPiece
or BytePair model for tokenization, due to which
we use only the first token embedding of the tok-
enized word by these methods. We use the above
three tranformer models and attach the extracted
output embeddings from these models to the manu-
ally constructed features which we have described
in 3.1. The entire model architecture is explained
in Figure 1.

3.1 Features

Along with the encoder representations from the
multilingual transformer models, we use 3 addi-
tional features, which we use to help us provide
information to our embeddings. We discard other
features like POS-Tag and word_freq, due to
non-uniformity in cross-lingual setting and unavail-
ability of reliable and enormous word-frequency
list for some of the languages which could reduce
the performance and create bias for some languages
during training time.

The first two length based features use word divi-
sion information and the word length information.
During neurological processing of language, brain
takes up dual pathways to process a word as shown
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Sample Text  
सुनीत ने दो त�ीर� पेश की।ं

▁सुन '◌ीत ▁ने ▁दो ▁त�ीर� ▁पेश ▁की '◌ं । </s><s>

MultiLingual Transformer Model

Tokenizer
Transformer Embedding

rel_len 

word_char_len 

tok_len 

Linear Layer

FFD FFDStd TRT TRTStd

Figure 1: Model Representation

in MacGregor and Shtyrov (2013). The third fea-
ture is based on the relative length of the word as
compared to preceding word.

tok_len : This feature is length of the parts of
words when the word is tokenized measured in
number of parts, which focuses on the complexity
of the word based on length as cognitively longer
words as processed.

word_char_len : This second feature is based
on the apparent space taken up by the word evalu-
ated by the number of characters it takes up when
represented in UTF-8 format. This feature is in-
spired by studies shown in Joseph et al. (2009).

rel_len: The third feature is the relative length
of the word as compared to its preceding word.
This can capture a sense of ease in reading a short
word immediately after reading a word with great
character length. For starting words of the sentence,
we take the previous word length as zero.

3.2 Baselines

We start by implementing some simple baselines us-
ing token-level features using length based ideas as
word-length is a commonality which can be found
in multilingual settings which we described in sec-
tion 3.1. We start with a median baseline model
which takes the median of all the training token la-
bels, instead of using an average baseline to prevent
offsetting the predictions by a language with higher
or lower valued variables. Along with the median
baseline , we also use 5 commonly used machine

learning regression models (i) Linear Regression
(lr) ,(ii) Support Vector Regression (svr),(iii) Gradi-
ent Boosting Methods (lgbm, xgboost) , (iv) Multi-
Layer Perceptron (MLPRegressor) as our baselines.
These baselines do not contain any contextual in-
formation.

3.3 Implementation and Hyperparameter
Details

The models were trained with MSE(mean squared
error) as loss function and the final evaluation was
done using MAE(Mean Absolute Error) measure.
For the baseline, models were trained taking each
label as a regression target variable to remove label
correlation if a regressor performs poorly in a multi
output regression setting, while when using trans-
former based models, we trained a single model
with a 4 length output regressor head which cor-
responded each to the final output target variables.
Before the final regression layer, we used a hidden
linear layer after the embedding output. The model
evaluation for task submission was done using dev
set after every epoch to measure the performance
improvement and prevent overfitting. The imple-
mentation can be found here 1.

The details of the hyperparameters used for the
training are given in table 4.

1https://github.com/hvarS/CMCL-2022
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Dev Set Test Set - SubTask1 Test Set - SubTask2

Model FFDAvg FFDStd TRTAvg TRTStd Overall FFDAvg FFDStd TRTAvg TRTStd Overall FFDAvg FFDStd TRTAvg TRTStd Overall
Baselinemedian 5.931 2.578 8.999 5.886 5.848 5.448 2.440 8.361 5.661 5.478 3.459 2.436 6.524 5.857 4.569
Baselinelr 5.615 2.570 8.574 5.768 5.632 5.243 2.465 8.289 5.750 5.437 4.755 3.002 8.721 7.252 5.932
Baselinesvr 5.203 2.492 8.118 5.650 5.366 4.848 2.356 7.700 5.465 5.092 3.580 2.399 6.588 5.798 4.591
Baselinelgbm 5.209 2.528 8.004 5.534 5.319 4.835 2.415 7.869 5.584 5.176 4.390 2.966 8.407 7.127 5.723
BaselineMLPRegressor 5.268 2.531 8.195 5.701 5.423 4.914 2.418 7.972 5.734 5.260 4.315 2.904 8.136 7.328 5.671
Baselinexgboost 5.210 2.532 8.050 5.566 5.340 4.834 2.413 7.871 5.591 5.178 4.302 2.942 8.337 7.106 5.672
mBERTuncased 5.014 2.512 7.981 5.523 5.257 4.795 2.325 7.267 5.409 4.949 3.756 3.012 5.578 5.841 4.546
mBERTcased 5.025 2.492 8.011 5.498 5.369 4.801 2.413 7.342 5.124 4.920 3.754 3.056 5.579 5.764 4.538
XLM100 4.914 2.584 8.134 5.512 5.286 4.902 2.425 7.814 5.414 5.138 3.331 2.944 5.448 5.798 4.380
XLM-RoBERTabase 4.892 2.486 8.231 5.504 5.278 4.745 2.327 7.321 5.738 5.031 3.214 2.987 5.556 5.666 4.355
XLM-RoBERTalarge 4.845 2.482 7.943 5.491 5.215 4.738 2.364 7.268 5.223 4.898 2.945 2.726 5.602 5.654 4.232

Table 2: MAE results on the dev and test set. Bold entries are the best performing models for that particular target

SubTask-1 SubTask-2

Model Version FFDAvg FFDStd TRTAvg TRTStd FFDAvg FFDStd TRTAvg TRTStd

XLM-RoBERTalarge 4.738 2.364 7.268 5.223 2.945 2.726 5.602 5.654

- tok_len 4.746 2.486 7.314 5.463 2.944 2.692 5.605 5.640
- word_char_len 4.976 2.484 7.454 5.478 3.014 2.696 5.712 5.642
- rel_len 4.787 2.486 7.457 5.466 3.121 2.703 6.241 5.644
- tok_len,word_char_len 5.012 2.427 7.785 5.421 3.154 2.710 6.785 5.546
- tok_len,rel_len 5.097 2.497 7.854 5.601 3.564 2.731 6.645 5.645
- word_char_len,rel_len 5.124 2.492 7.771 5.671 3.452 2.722 6.621 5.664
- tok_len,word_char_len,rel_len 5.465 2.488 8.370 5.684 4.371 2.744 7.186 5.678

Table 3: Feature Importance Ablation Study. The best performing model XLM-RoBERTa is taken for ablation

Parameter Value

Optimizer AdamW
Warm-Up Steps (%) 10%
epochs 100
learning rate 5e-2
weight decay 1e-2
dropout 0.5
batch size 64
hidden layer size 1024

Table 4: Hyperparameter Details

4 Results and Discussion

Table 2 shows the evaluation results on the dev set
and the two test sets for SubTask-1 and SubTask-2
respectively based on MAE on the 4 target vari-
ables. Our transformer based models strongly out-
performed the baseline approaches. The best per-
forming model was XLM-RoBERTalarge model,
edging over the transformer models. mBERT
model performed better than the XLM model
on SubTask-1, but XLM outperforms the former
on SubTask-2, suggesting better zero shot perfor-
mance of XLM for this subtask. Also, the large
models tended to perform better than their base
counterpart implying higher parameter count re-
sulted in better cross-lingual and zero shot cross-
lingual performance. Also since originally the
XLM-RoBERTa, mBERT and XLM models were

trained for masked language modelling purpose,
they have inherent inner representations of over
100 languages which helps in cross-lingual down-
stream tasks. One possible reason that mBERT
performs better than XLM on SubTask-1 could be
that XLM models are used for general sentence
representations which mBERT identifies language
from context and infers accordingly. For the same
mentioned reason, it is possible that XLM performs
better in zero shot setting.

4.1 Feature Importance

To evaluate the effectiveness of the engineered
features ; tok_len, word_char_len and
rel_len, an ablation study was conducted us-
ing the best performing model. We employ the
strategy similar to used in Oh (2021); the three in-
put features were ablated by simply replacing them
with zeros during inference, which allowed us to
effectively analyse the influence of these additional
features. Table 3 shows the effects of model perfor-
mance without the permutation of the engineered
features.

Ablations on the external features show that
these features affect the mean (µ) feature values,
specifically the FFDAvg and the TRTAvg, indicat-
ing that these external features influence the final
model performance for target mean values while
the contextualised embedding portion takes care
of the standard deviation (σ) of the targets. It can
be observed that the word_char_len feature af-
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fects the target FFDAvg value to a large extent,
while rel_len clearly affects the model perfor-
mance on SubTask-2. One of the possible reasons
could be the infusion of previous word contextual
knowledge captured by rel_len. Also, the fea-
ture tok_len in combination with other features
also improves the model performance, which may
indicate it being not a very strong sole indicator.

5 Conclusion and Future Work

In this paper, we presented our approach to the
CMCL 2022 Shared Task on eye-tracking data pre-
diction. Our models use the fusion model that
involve using the multilingual contextualized token
representations using transformer architecture and
attaching input features that we created that aid
the model performance in predicting eye tracking
features. This approach helped us become lan-
guage agnostic which essentially helped the model
to perform well in the zero shot cross-lingual set-
ting in Subtask-2. Our best model based on XLM-
RoBERTa outperforms the baseline and is also com-
petitive with other systems submitted to the shared
for both SubTask-1 and SubTask-2. Although the
embeddings from large language models as shown
previously work fairly well as they consider the
context of the sentence into consideration as well,
possibly they can be improved further if take into
consideration the surprisal index which would pos-
itively correlate with the reading time and fixation
duration as shown in Salicchi and Lenci (2021).
In future, we aim to use more etymological fea-
tures based on shared language history and also use
the cross language lexical similarity index when
predicting in cross lingual setting .
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Abstract

In this paper, we present a unified model that
works for both multilingual and crosslingual
prediction of reading times of words in various
languages. The secret behind the success of
this model is in the preprocessing step where
all words are transformed to their universal
language representation via the International
Phonetic Alphabet (IPA). To the best of our
knowledge, this is the first study to favorably
exploit this phonological property of language
for the two tasks. Various feature types were
extracted covering basic frequencies, n-grams,
information theoretic, and psycholinguistically-
motivated predictors for model training. A
finetuned Random Forest model obtained best
performance for both tasks with 3.8031 and
3.9065 MAE scores for mean first fixation du-
ration (FFDAvg) and mean total reading time
(TRTAvg) respectively1.

1 Introduction

Eye movement data has been one of the most used
and most important resource that has pushed var-
ious interdisciplinary fields such as development
studies, literacy, computer vision, and natural lan-
guage processing research into greater heights. In
a technical point of view, correctly determining
theoretically grounded and cognitively plausible
predictors of eye movement will allow opportuni-
ties to make computational systems leveraging on
these properties to be more human-like (Sood et al.,
2020).

Common human reading prediction works make
use of the standard Latin alphabet as it is in-
ternationally used. However, investigating eye
movement and reading patterns in other non-
Anglocentric writing systems such as Chinese and
Bengali is as equally as important (Share, 2008;
Liversedge et al., 2016). Fortunately, there is a

1https://github.com/imperialite/
cmcl2022-unified-eye-tracking-ipa

growing number of previous works exploring mul-
tilinguality in eye tracking prediction both in data
collection and novel prediction approaches. The
study of Liversedge et al. (2016) was the first to
explore potential crosslinguality of Chinese, En-
glish and Finnish which differ in aspects of visual
density, spacing, and orthography to name a few.
The results of the study favorably support possi-
ble universality of representation in reading. In
the same vein, Hollenstein et al. (2021) was the
first to try use of large finetuned multilingual lan-
guage models like BERT (Devlin et al., 2019) and
XLM (Conneau and Lample, 2019) in a crosslin-
gual setting to predict eye tracking features across
English, Dutch, German, and Russian. Data-wise,
the published works of Siegelman et al. (2022) for
MECO, Pynte and Kennedy (2006) for the Dundee
corpus, and Cop et al. (2017) for GECO have made
significant impact in the field where they covered
curation and collection of eye-tracking corpus for
other languages in addition to English.

2 Task Definition and Data

The CMCL 2022 Shared Task (Hollenstein et al.,
2022)2 describes two challenges: predicting eye-
tracking features in a multilingual and crosslin-
gual setup. The eye movement dataset for this
Shared Task contains sentences written in six lan-
guages: Mandarin Chinese (Pan et al., 2021), Hindi
(Husain et al., 2015), Russian (Laurinavichyute
et al., 2019), English (Luke and Christianson, 2018;
Hollenstein et al., 2018, 2020), Dutch (Cop et al.,
2017), and German (Jäger et al., 2021). The mean
first fixation duration (FFDAvg) and mean total
reading time (TRTAvg) as well as their correspond-
ing standard deviations (FFDStd and TRTStd) are
the four main eye-tracking features that need to
be predicted by the participants through proposed
computational means. For the multilingual task,

2https://cmclorg.github.io/shared_task
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the training, validation, and testing datasets con-
form to the identified six languages. While for the
crosslingual task, a surprise language (Danish) is
provided as the test dataset.

3 Eye-Tracking Prediction in Universal
Language Space

The proposed solution in this work is inspired by
both classical and recent previous works in speech
recognition systems (Schultz and Waibel, 1998,
2001; Dalmia et al., 2019) with multilingual and
crosslingual capabilities through the transformation
of words or similar sounding units in one global
shared space using the International Phonetic Al-
phabet (IPA). This functionality allows models to
generalize and adapt parameters to new languages
while maintaining a stable vocabulary size for char-
acter representation. By definition, the IPA con-
tains 107 characters for consonants and vowels, 31
for diacritics for modifying said consonants and
vowels, and 17 signs to emphasize suprasegmental
properties of phonemes such as stress and intona-
tion (Association et al., 1999).

Figure 1 describes the unified methodology used
for tackling both the multilinguality and crosslin-
guality challenge of the Shared Task. The back-
bone of this proposed solution lies with the pho-
netic transcription preprocessing step to convert the
raw terms from the data written in Mandarin Chi-
nese, Hindi, Russian, English, Dutch, and German
to their IPA form. We used Epitran by Mortensen
et al. (2018) for this process. The surprise language
for the crosslingual task, Danish, is not currently
supported by Epitran. We instead resorted to use
Automatic Phonetic Transcriber3, a paid transcrip-
tion service that caters the Danish language. The
transcription cost of the Danish test data is C15.

3.1 Feature Extraction

After obtaining the phonetic transcriptions, a
total of fourteen features based on various types
were extracted spanning general frequencies,
n-grams, based on information theory, and based
on motivations from psycholinguistics.

Frequency and Length Features. The simplest
features are frequency and length-based predictors.
Studies have shown that the length of words
correlate with fixation duration as long words
would obviously take time to read (Rayner, 1977;

3http://tom.brondsted.dk/text2phoneme/

Hollenstein and Beinborn, 2021). For this study,
we extracted the (a) word length (word_len),
(b) IPA length (ipa_len), (c) IPA vowels count
per term (ipa_count), and (d) normalized IPA
vowel count per term over length (ipa_norm).

N-Gram Features. Language model-based
features is a classic in eye-tracking prediction
research as they capture word probabilities
through frequency. We extracted raw count of
unique n-grams per word (bigram_count,
trigram_count), raw count of total n-grams
per term (bigram_sum, trigram_sum),
and normalized counts over word length
(bigram_norm, trigram_norm) for charac-
ter bigrams and trigrams in IPA form guided by
the general formula for n-gram modelling below:

P (wn | wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(1)

Psycholinguistially-Motivated Features. Fea-
tures with theoretical grounding are more prac-
tical to use when invetigating phenomena in hu-
man reading. In line with this, we extracted two
psycholinguistically-motivated features: image-
ability and concreteness. When reading, humans
tend to visualize words and scenarios as they are
formed in context. This measure of ease of how
words or phrases can easily be visualized in the
min from a verbal material is quantified as image-
ability (Lynch, 1964; Richardson, 1976). On the
other hand, concreteness is a measure of lexical
organization where words are easily perceived by
the senses. In the example of Schwanenflugel et al.
(1988), words such as chair or computer are bet-
ter understood than abstract words like freedom.
Words with high concreteness scores are better re-
called from the mental lexicon than abstract words
as they have better representation in the imaginal
system (Altarriba et al., 1999). We use these two
features as we posit that the visualization and re-
trieval process of imageability and concreteness
respectively can contribute to the reading time in
milliseconds.

For this task, we used the crosslingual word
embedding-based approximation for all the seven
languages present in the dataset from the the work
of Ljubešić et al. (2018).

Information Theoretic Features. Features in-
spired by information theory such as the concept
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Figure 1: The proposed unified approach to multilingual and crosslingual human reading pattern prediction in
universal language space via IPA.

of surprisal have thoroughly used in human read-
ing pattern prediction (Hale, 2001; Levy, 2008;
Demberg and Keller, 2008, 2009; Goodkind and
Bicknell, 2018). Surprisal describes that process-
ing time of a word to be read is proportional to
its negative log based on a probability given by
context as shown below:

surprisal(wi) = −log2 P (wi | w1...wi−1) (2)

Thus, if a word is more likely to occur in its con-
text, it is read more quickly (Shannon, 1948). For
this task, since words are converted to a universal
language space, the correct terminology in this case
is bits per phoneme or phonotactic complexity as
coined by Pimentel et al. (2020).

While surprisal quantifies the word’s predictabil-
ity or processing cost during reading, we also ob-
tain the entropyH of each word x from the corpus.
The entropy quantifies the expected value of in-
formation from an event as shown in the formula
below:

H(X) = −
n∑

i=1

(
counti
N

) log2 (
counti
N

) (3)

where counti is the count of character ni and
each word N consists of n characters. With this
measure, a higher entropy score entails higher un-
certainty for a word, thus, leading to increased
reading time at the millisecond level.

3.2 Model Training Setup
We used four machine learning algorithms via
WEKA (Witten and Frank, 2002) for modelling the
features with FFDAvg and TRTAvg: linear regres-
sion (LinReg), multilayer perceptron (MLP), ran-
dom forest (RF), and k-Nearest Neighbors (kNN).

We only used the finetuned RF model for the predic-
tion of FFDAvg and TRTAvg. Meanwhile, FFDStd
and TRTStd are obtained by using the top models
of all the four algorithms, re-running them to get
FFDAvg and TRTAvg, and calculating the standard
deviation. For TRTAvg, we added the predicted
FFDAvg from the best model as an additional fea-
ture as we posit that the first fixation duration is a
contributor to the overall reading time.

4 Results

Table 1 describes the main results of the exper-
iments for predicting FFDAvg and TRTAvg us-
ing multiple finetuned supervised techniques evalu-
ated through mean absolute error (MAE) and root
mean squared error (RMSE). As mentioned pre-
viously, since the methodology used in this study
cuts across multilingual and crosslingual tasks, the
results reported in this applied are applicable to
both. From the Table, the RF models outperformed
the other three models in predicting FFDAVg and
TRTAvg using 100% and 75% random selected fea-
tures respectively and across 100 iterations. The RF
model’s effectivity can be attributed to its structure
of multiple decision trees which normalize overfit-
ting (Ho, 1995). Following RF in performance is
kNN using Euclidean distance observing the same
pattern as RF with different hyperparameter values
such as 5 and 20 for the nearest neighbor for pre-
dicting FFDAvg and TRTAvg. On the other hand,
both LinReg and MLP have no improvements re-
gardless of hyperparameter values. For LinReg,
using an M5 feature selection only provides ex-
tremely minor improvement in performances for
FFDAvg and TRTAvg prediction. For MLP, using
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Model FFDAvg TRTAvg

MAE RMSE MAE RMSE

LinReg (k=10, M5)*† 5.2361 6.7267 4.3419 7.0546
LinReg (k=10, greedy) 5.2361 6.7267 4.3420 7.0545
LinReg (k=10, none) 5.2363 6.7274 4.3429 7.0594

MLP (k=10, lr=0.005, m=0.2)*† 4.9898 6.4169 4.1744 6.2140
MLP (k=10, lr=0.5, m=0.2) 6.7916 8.3791 4.8475 7.0840
MLP (k=10, lr=0.005, m=0.002) 5.0018 6.4299 4.1862 6.2177
MLP (k=10, lr=0.5, m=0.002) 6.4447 8.0110 4.9528 6.9668
MLP (k=10, lr=0.0005, m=0.0002) 5.5024 7.0474 4.2956 6.3823

RF (k=10, iters = 100)* 3.8031 5.2750 3.9600 5.8446
RF (k=10, iters = 100, 50% feats) 3.8045 5.2766 3.9094 5.8015
RF (k=10, iters = 100, 75% feats†) 3.8056 5.2762 3.9065 5.8006

kNN (k=10, nn=5, dist=euc)* 4.3335 5.9651 4.2953 6.3741
kNN (k=10, nn=10, dist=euc) 4.4263 6.0133 4.2053 6.2436
kNN (k=10, nn=20, dist=euc)† 4.5646 6.1284 4.1793 6.2432

Table 1: Results of predicting mean first fixation duration (FFDAvg) and mean total reading time (TRTAvg) using
hyperparameter-tuned traditional supervised models over cross-fold validation of k=10. The tuned Random Forest
(RF) model achieved the best performance which was used for both tasks of multilingual and crosslingual prediction.
Top performing models from the four algorithm class were used for predicting the held-out test data to get the
standard deviation of FFDAvg (*) and TRTAvg (†).

FFDAvg TRTAvg

bigram_norm -0.1751 FFDAvg 0.8068
trigram_norm -0.1393 bigram_count 0.2219
word_len -0.1334 trigram_count 0.2156
bigram_sum -0.1304 phonetic_comp -0.2107
trigram_sum -0.1101 ipa_ent 0.1925
imageability 0.1101 ipa_len 0.1921
concreteness 0.1044 trigram_norm -0.1886

Table 2: Top 7 predictors for FFDAvg and TRTAvg with
the highest absolute correlation coefficients.

default values in WEKA for momentum and learn-
ing rate obtained the best performance similarly for
for FFDAvg and TRTAvg prediction.

4.1 Feature Importance

Viewing the results in a correlation analysis per-
spective, Table 2 shows the top 50% of the pre-
dictors, total 7, which are significantly correlated
with FFDAvg and TRTAvg respectively. Only one
predictor is common for both values, the normal-
ized trigrams in IPA space which is fairly high in
FFDAvg along with normalized bigrams than in
TRTAvg. This may hint that normalized n-gram
features may be plausible features of eye move-
ment only for first passes over the word and not
with the total accumulated time of fixations. Like-
wise, the psycholinguistically-motivated features,
imageability and concreteness, were only seen in
the FFDAvg section as well proving their poten-
tial plausibility for the same observation. All the

length-based features such as word, IPA, bigram,
and trigram-based counts were considered as top
predictors for FFDAvg and TRTAvg. This unsur-
prisingly supports the results from the classical
work of Rayner (1977) on correlation of lengths
with fixations. Lastly, the strong correlation of
first fixation duration with the total reading time
with a score of r = 0.8068 proves the theoretical
grounding of the proposed methodology as stated
in Figure 1 albeit in post-hoc.

5 Conclusion

Precise eye movement datasets in multiple lan-
guages are considered one of the most important
contributions that benefit various interdisciplinary
fields such as psycholinguistics, developmental
studies, behavioral studies, computer vision, and
natural language processing. In this paper, we
present a novel method of transforming multilin-
gual eye-tracking data (English, Mandarin, Hindi,
Russian, German, Dutch, and Danish) to their IPA
equivalent, enforcing a single vocabulary space
which allows competitive results for both multilin-
gual and crosslingual tasks in a regression analysis
setup. Future directions of this paper can explore
more cognitively and theoretically plausible fea-
tures that can be extracted as well as deeper inter-
pretation studies of the predictive models trained.
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Abstract

Eye movement data are used in psycholinguis-
tic studies to infer information regarding cogni-
tive processes during reading. In this paper, we
describe our proposed method for the Shared
Task of Cognitive Modeling and Computational
Linguistics (CMCL) 2022 - Subtask 1, which
involves data from multiple datasets on 6 lan-
guages. We compared different regression mod-
els using features of the target word and its
previous word, and target word surprisal as re-
gression features. Our final system, using a
gradient boosting regressor, achieved the low-
est mean absolute error (MAE), resulting in the
best system of the competition.

1 Introduction

This year’s Cognitive Modeling and Computational
Linguistics (CMCL) workshop proposed a Shared
Task focused on eye-tracking data prediction (Hol-
lenstein et al., 2022). Differently from the last
edition (Hollenstein et al., 2021), the 2022 Shared
Task includes two subtasks: "Predict eye-tracking
features for sentences of the 6 provided languages"
and "Predict eye-tracking features for sentences
from a new surprise language". In this paper, we
present our proposed method for the first subtask.

In this task, the teams were asked to predict 4
eye-tracking features for 6 different languages (Chi-
nese, Dutch, English, German, Hindi, and Russian);
the features were: first fixation duration (FFD,
which refers to the duration of the first fixation
on the prevailing word), the standard deviation of
the FFD across readers, total reading time (TRT,
which refers to the sum of all fixation durations on
the current word, including regressions), and the
standard deviation of TRT across readers.

One of the challenging aspects of this task
is the substantially different nature of these
languages; they belong to different language
families or different branches within the same
family (i.e., Germanic, Balto-Slavic, Indo-Iranian,

Sino-Tibetan) and 4 different writing systems are
involved (i.e., Latin alphabet, Cyrillic alphabet,
Devanagari abugida, and logograms). Therefore,
we proposed a unified method that could be applied
to account for the similarities and differences
exhibited in the datasets of these 6 languages;
this method includes regression features of the
target word and of its previous word, and the
surprisal for the target word within the context.
Our codes are shared on Github at: https:
//github.com/laviniasalicchi/
HkAmsters_CMCL2022.

2 Related work

Eye movement data provide valuable evidence re-
garding the cognitive processes underlying read-
ing, and thus revealing how language is elaborated
in our brain in every aspect, from morphology
(Clifton Jr et al., 2007) to syntax (Van Schijndel and
Schuler, 2015) to semantics (Ehrlich and Rayner,
1981). Since the early studies published in the last
century, several studies have revealed that some
features of the words themselves may influence
language processing and, consequently, reading be-
havior; these features include word position, word
length, word frequency, and the number of sylla-
bles within the word (Just and Carpenter, 1980). In
addition, the spillover effect (Rayner et al., 1989)
infers that the cognitive load of a word due to
its frequency and length (Pollatsek et al., 2008)
may influence the processing of its following word.
Considering the multilingual nature of this task, in
addition to the aforementioned features, we also
included whether the word is all in uppercase, and
whether it begins with a capital letter.

One additional factor that influences language
comprehension is the sentence-level predictability
of a word given the previous context (Kliegl et al.,
2004), and in recent years, with the growth of com-
putational linguistics, some attempts to model this
kind of dynamic have been successfully achieved
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using the surprisal (i.e., the negative logarithm
of the probability of encountering a word given
the context) computed by language models (Hale,
2001; Levy, 2008; Fossum and Levy, 2012).

In the last year’s shared task, a regression model
was proposed using the following features: two-
word features (i.e., word length and word fre-
quency), the cosine similarity between the vector
representing the target word and the vector repre-
senting the sentence context, and the surprisal com-
puted word-by-word (Salicchi and Lenci, 2021).
However, Frank (2017) showed that given the over-
laps in the information conveyed by cosine similar-
ity and the surprisal, the latter alone is sufficient for
the effective modeling of eye movements. Further-
more, in Frank’s model the frequency and length
of the word preceding the target one are included
in the regression for modeling the spillover effect.

For these reasons, we modified the previously
proposed method, increasing the number of word-
specific features, and excluding the cosine similar-
ity in our system.

3 Datasets

The shared task is formulated as a regression task
to predict 2 eye-tracking features and their cor-
responding standard deviation across readers: (1)
FFD; (2) the standard deviation of FFD across read-
ers; (3) TRT; and (4) the standard deviation of TRT
across readers. Subtask 1 (multilingual prediction)
requires systems to predict these four eye-tracking
features of words in 6 provided languages. The
dataset includes materials from 8 openly available
eye movement corpora:

• Chinese: Beijing Sentence Corpus (Pan et al.,
2021).

• Dutch: GECO Corpus (Cop et al., 2017) .

• English: Provo Corpus (Luke and Christian-
son, 2018), ZuCo 1.0 Corpus (Hollenstein
et al., 2018), and ZuCo 2.0 Corpus (Hollen-
stein et al., 2019).

• German: Potsdam Textbook Corpus (Jäger
et al., 2021).

• Hindi: Postdam-Allahabad Hindi Eyetrack-
ing Corpus (Husain et al., 2015).

• Russian: Russian Sentence Corpus (Lauri-
navichyute et al., 2019).

Data statistics are given in Table 1.

Data Source Train Dev Test
Chinese 1,355 82 248
Dutch 7,462 403 1,475
English(ZuCo1) 5,325 269 994
English(ZuCo2) 5,398 303 1,127
English(Provo) 5,314 152 440
German 1,463 139 293
Hindi 2,021 142 433
Russian 1,140 59 218

Table 1: Dataset statistics. The instance numbers for
each portion are given.

4 Methodology

In this section, we introduce the selected features,
inspired by psycholinguistic studies relying on eye-
tracking data, and the investigated regression algo-
rithms. The same set of features was used for each
regression model.

4.1 Features

Given the multilingual nature of Subtask 1, we
adopted several lexical features as hand-crafted
features. The Word position index was used to
provide the sequential information of a word . The
word length of the current word and previous one
was also included. Furthermore, we added two
Boolean features: Capitalization and Upper. The
first feature was set to 1 if the first letter of the
target word was uppercase, and it was set to 0 oth-
erwise; the second feature was set to 1 if all the
letters of the target word were uppercase, and it
was set to 0 otherwise. We also used language-
specific tools for the following features: Word
frequencies for all the 6 languages were computed
using wordfreq1. These frequencies were col-
lected for both the current and previous word. Syl-
lables counts for Hindi words were computed us-
ing the syllable package2 of Indic NLP
Library, whereas the other languages were avail-
able in textstat3. Finally, to compute Sur-
prisal, 6 different GPT versions were used: Rus-
sian GPT by Grankin et al.4, Hindi GPT5 by Par-
mar, Chinese GPT6 by Du (2019), Dutch GPT7 by

1pypi.org/project/wordfreq/
2github.com/anoopkunchukuttan/indic_nlp_library/find/master
3pypi.org/project/textstat/
4github.com/mgrankin/ru_transformers
5huggingface.co/surajp/gpt2-hindi
6github.com/Morizeyao/GPT2-Chinese
7github.com/wietsedv/gpt2-recycle
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de Vries and Nissim (2021), and German GPT8.
More specifically, for each word (w) we computed
the surprisal as the negative logarithm of its prob-
ability given the previous context, from the be-
ginning of the sentence to the word immediately
preceding the target one:

Surprisal(wn) = − log(P (wn|w0, w1, ..., wn−1))
(1)

with P being the probability computed by GPT.
A total of 9 features were extracted. We decided

to generate polynomial features from our set in
order to exploit potential interactions. We used
the PolynomialFeatures functionality of the
scikit-learn Python package to generate in-
teraction features of order 2, and we used only
interaction features, so that the final number of
features that were fed to the regressors was 46.

4.2 Regressors
Once we had computed all the regression features,
we ran several experiments to find the best regres-
sion model for each language and each feature,
using the mean absolute error (MAE) for all the
words within the same language as our main index.
We tested several regression algorithms using the
implementations in the scikit-learn Python
package. The adopted scikit-learn API and the
main hyper-parameters are listed below:

• RR (Ridge): Ridge regression solves a re-
gression model in which the loss function is
the linear least-squares function, and regular-
ization is given by the l2 norm. alpha=1.0,
normalize=True.

• MLP (MLPRegressor): The multi-
layer perceptron regressor optimizes the
squared-loss using L-BFGS algorithm
or stochastic gradient descent. hidden
layer size=5, activation=identity,
solver=adam.

• PLSR (PLSRegression): PLS regression
implements the PLS2, which blocks regres-
sion in the case of a one-dimensional response.
components=5.

• BRR (BayesianRidge): A Bayesian
Ridge model implements the optimization
of the regularization parameters lambda
and alpha. alpha_1,alpha_2==1.0e-6,
lambda_1,lambda_2=1.0e-6.

8huggingface.co/dbmdz/german-gpt2

• LR (LinearRegression): Linear regres-
sion is trained based on an ordinary least-
squares function. normalize=True.

• RF (RandomForestRegressor): A ran-
dom forest is a meta estimator that fits a num-
ber of classifying decision trees on various
sub-samples of the dataset and uses averaging
to improve the predictive accuracy and con-
trol over-fitting. min_samples_split=2,
min_samples_leaf=1.

• SVR (SupportVectorRegressor):
SVR is short for epsilon-support vector
regression. It uses the kernel trick to map
data to map the original data space to a
high-dimensional space. kernel=’rbf’,
epsilon=0.1, degree=3.

• Elast (ElastRegressor): Elast regressor
uses linear regression with combined L1 and
L2 priors as the regularizer. alpha=1.0,
l1_ratio=0.5, selection=’cyclic’.

• LGB (LGBMRegressor): LightGBM is a
gradient boosting framework that uses tree-
based learning algorithms. It is designed to be
distributed and is efficient with faster training
speed and higher efficiency. objective
=’regression’,learning_rate=0.05,
mum_leaves=31.

4.3 Metrics
The performance of the participating systems was
evaluated in terms of the mean absolute error
(MAE), mean squared error (MSE), R-Square
(R2), Pearson correlation (Pears.), and Spearman
correlation (Spear.) between the outputs and the
annotated values. In the Results and Discussion
section, MAE is adopted as the main comparison
index.

5 Results and Discussion

To use a single model that could be applied to mul-
tilingual data, we selected the model with gener-
ally better performance. Table 2 shows the perfor-
mances of different regressors over the FFD for one
of the target languages. LGB, which is the gradient
boosting regressor with the regression feature inter-
acting, provided the best predictions. LGB not only
had the lowest MAE, but also achieved the best
results in terms of MSE, R2, Pearson correlation,
and Spearman correlation.
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Regressor MAE MSE R2 Pears. Spear.

LGB 2.31 10.35 0.20 0.48 0.45
BRR 2.44 10.77 0.17 0.42 0.37
RR 2.46 10.75 0.17 0.43 0.39
PLSR 2.47 11.17 0.14 0.38 0.33
Elast 2.51 11.52 0.11 0.34 0.32
LR 2.51 11.01 0.15 0.41 0.37
SVR 2.51 11.39 0.12 0.39 0.35
RF 2.56 15.03 -0.16 0.25 0.36
MLP 2.63 13.49 -0.04 0.19 0.22

Table 2: Performance of different regressors over FFD for Hindi. Evaluation metrics including MAE, MSE, R2,
Pears., Spear. are provided. LGB is the best performed model for Hindi. BRR and RR are the second and third
best models, but the performance gap is rather marginal.

Considering how regressors accounted for each
language dataset, we present the lowest MAE val-
ues for each feature and each language in Table
3. Despite the generally good performances of
LGB1, this model was not always the best. A fu-
ture direction may be to identify regression features
and regression models that are more suitable for
a specific language and the relevant eye-tracking
features.

This conclusion is reinforced by a further anal-
ysis of the performance of our system (Table 6,
Appendix); it revealed that TRTAvg was the hard-
est feature to predict with a mean error across lan-
guages of 5.1. Regarding the mean error, the lan-
guages that performed better in our model regard-
ing TRTAvg were Dutch (mean error 3.37, standard
deviation (std) 3.34) and English (mean error 4.76,
std 4.7), but their coefficients of variation were
higher, compared with other languages (English:
0.993, Dutch: 0.993), such as Hindi, for which
our model registered a high mean error of 8.81
(std 7.045) but the lowest coefficient of variation
(0.799). For both Russian and Chinese, LGB1 had
high mean errors (approximately 10) and high coef-
ficients of variation (0.867 and 0.931, respectively).

Given the differences in the amount of data
among language datasets, our comparison mainly
follows the coefficient of variation, which reveals
that for FFDAvg, English, German, and Hindi were
the languages for which our system performed
better, followed by Dutch, Russian and Chinese.
For TRTStd, the better performances were on the
datasets of Hindi, Chinese, and Russian, whereas
the most difficult portions of the dataset for this
feature were those in English, Dutch, and German.
Finally, regarding the errors for FFDStd, English

Feature Language Model MAE
FFD Chinese ELAST1 3.18

Dutch LGB0 1.72
English LGB0 5.37
German SVR0 0.451
Hindi LGB1 2.31
Russian SVR1 2.45

FFD sd Chinese LGB1 3.61
Dutch ELAST0 1.47
English LGB1 2.21
German SVR1 0.45
Hindi LGB1 2.64
Russian SVR1 2.43

TRT Chinese LR1 6.52
Dutch LGB0 3.34
English LGB1 8.28
German RF0 3.052
Hindi LGB1 5.32
Russian SVR0 9.71

TRT sd Chinese LR1 6.84
Dutch LGB0 2.78
English LGB1 5.42
German RF0 2.57
Hindi BRR1 5.23
Russian LGB0 6.34

Table 3: Best models for each language and feature to
be predicted. Models in this table with ‘0’ do not have
interaction between regression features while models in
this table with ‘1’ take advantage of interaction between
regression features.

was undoubtedly the language for which our sys-
tem performed the best, and it showed the worst
results for Chinese and Hindi datasets.

Finally, we performed an ablation study for the
German dataset, in order to examine the contribu-
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MAE MSE R2 Pearson Spearman
w/o w w/o w w/o w w/o w w/o w

FFD 0.467- 0.457 0.363- 0.362 0.140- 0.142 0.406- 0.407 0.325- 0.399
FFD sd 0.464- 0.456 0.432- 0.425 0.036- 0.051 0.245- 0.274 0.272- 0.327
TRT 3.517+ 3.520 29.337+ 30.181 0.628+ 0.618 0.865- 0.875 0.793- 0.803
TRT sd 2.892- 2.872 20.397- 20.090 0.510- 0.517 0.780- 0.788 0.717+ 0.716

Table 4: Feature analyses for whether using Capital letters in processing the German dataset. ’+’ indicates a better
performance compared with all features training, while vice verses for ’-’.

FFD FFD sd TRT TRT sd
Word position index 0.451+ 0.463- 3.520 2.981-
Word length 0.452+ 0.463- 3.612- 2.879-
Previous word length 0.456+ 0.456 3.543- 2.869+
Word log frequency 0.468- 0.475- 3.677- 3.055-
Previous word log frequency 0.459- 0.470- 3.470+ 2.853+
Uppercase 0.457 0.456 3.520 2.872
Capitalization 0.467- 0.464- 3.517+ 2.892-
Syllable count 0.459- 0.457- 3.527- 2.933-
Surprisal score 0.456+ 0.452+ 3.573- 2.889-
all 0.457 0.456 3.520 2.872

Table 5: An ablation study for the German dataset (no Uppercase). The MAE results are presented using leave-one
comparison. ’+’ indicates a better performance compared with all features training, while vice verses for ’-’.

tion of the different features. Table 4 shows the
results of whether using the feature Capitalization.
Despite some minor performance drop (especially
for TRT), using Capitalization generally improves
the evaluation metrics. Table 5 summarizes the
MAE results of feature ablation study for the Ger-
man dataset. In general, every feature incorporated
in the proposed system contributes to the best prac-
tice. These preliminary results suggest that the
features we adopted are tenable. We leave a more
comprehensive cross-lingual comparison along this
line for the future study.

In summary, in our system, TRTAvg was the
most difficult one to predict, but TRTAvg and TRT-
Std showed better performance in Hindi, and FF-
DAvg and FFDStd were better in English. Our
proposed system outperformed the Shared Task
baseline with an average MAE of 3.0112, resulting
in the best system of the competition.

6 Conclusions

In this paper, we described the system we proposed
for the CMCL2022 Shared Task - Subtask 1 on
multilingual data. Using a gradient boosting re-
gressor with features of the target words as well as
their previous word, and the surprisal between the
target word and the previous context as regression

features, we predicted two eye-tracking features
and two standard deviations: first fixation duration,
total reading time, and their standard deviations
across readers.

Despite the multilingual nature of this task, we
were able to reach our goal of creating a unified
system capable of modeling the human reading be-
havior in 6 substantially different languages. Our
results showed a tendency of better performances
with FFD related features than with TRT related
ones. This may partly reflect the fact that in our sys-
tem, more word-level hand-crafted features were
included, which could favor this token-level predic-
tion task, given that FFD is often assumed to reflect
lexical information processing, whereas TRT may
be related to a later stage of language processing
related to information-structural integration.
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Appendix

FFDAvg FFDStd TRTAvg TRTStd
Chinese
Mean 5.884 7.152 10.096 7.804
Stddev 7.688 11.216 9.396 6.396
CV 1.307 1.568 0.931 0.820
Dutch
Mean 1.754 1.484 3.367 2.798
Stddev 1.741 1.385 3.343 2.714
CV 0.993 0.933 0.993 0.970
English(Zuco1)
Mean 0.960 1.010 4.180 4.102
Stddev 0.819 0.865 4.335 4.649
CV 0.853 0.856 1.037 1.133
English(Zuco2)
Mean 1.682 1.841 4.672 4.169
Stddev 1.383 1.459 4.805 4.169
CV 0.822 0.793 1.028 1.000
English(Provo)
Mean 2.061 2.014 5.434 5.167
Stddev 1.682 1.857 4.969 4.872
CV 0.816 0.922 0.915 0.943
German
Mean 0.457 0.456 3.520 2.872
Stddev 0.392 0.468 4.233 3.453
CV 0.857 1.025 1.203 1.202
Hindi
Mean 6.615 9.716 8.814 9.904
Stddev 6.034 11.296 7.045 7.265
CV 0.912 1.163 0.799 0.734
Russian
Mean 2.669 2.703 10.152 6.649
Stddev 2.934 1.942 8.805 6.140
CV 1.099 0.719 0.867 0.923

Table 6: Error analysis on the performance of our proposed system on every portion of the dev dataset. Mean refers
to the average of the absolute error of all words in a portion. Stddev refers to the standard deviation of the absolute
error of all words in a portion. CV refers to the coefficient of variation (representing a relative standard deviation),
which is a statistical measure of the dispersion of the absolute error of all words in a portion.
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Abstract

We present the second shared task on eye-
tracking data prediction of the Cognitive Mod-
eling and Computational Linguistics Workshop
(CMCL). Differently from the previous edition,
participating teams are asked to predict eye-
tracking features from multiple languages, in-
cluding a surprise language for which there
were no available training data. Moreover, the
task also included the prediction of standard
deviations of feature values in order to account
for individual differences between readers.

A total of six teams registered to the task. For
the first subtask on multilingual prediction, the
winning team proposed a regression model
based on lexical features, while for the sec-
ond subtask on cross-lingual prediction, the
winning team used a hybrid model based on a
multilingual transformer embeddings as well
as statistical features.

1 Introduction

The benefits of eye movement data for machine
learning have been assessed in various domains, in-
cluding NLP (Barrett et al., 2016, 2018; McGuire
and Tomuro, 2021) and computer vision (Shan-
muga Vadivel et al., 2015; Kruthiventi et al., 2017;
Bautista and Naval, 2020; Tseng et al., 2020). Eye-
tracking provides millisecond-accurate records on
where humans look when they are reading and are
useful in explanatory research of language process-
ing. Eye movements depend on the stimulus and
are therefore language-specific, but there are also
universal tendencies that have been observed across
languages (Liversedge et al., 2016).

Figure 1: An example sentence from the Russian Sen-
tence Corpus (Laurinavichyute et al., 2019) averaged
across all readers. A wider diameter of the markers
represents a higher standard deviation.

Modelling human reading has been researched
extensively in psycholinguistics (Reichle et al.,
1998; Matthies and Søgaard, 2013; Hahn and
Keller, 2016). In NLP, eye-tracking prediction
has been used to determine linguistic complexity
(Singh et al., 2016; Sarti et al., 2021) or to ana-
lyze language models’ ability to account for mea-
sures of human reading effort (Merkx and Frank).
Being able to accurately predict eye-tracking fea-
tures across languages will advance this field and
will facilitate comparisons between models and the
analysis of their varying capabilities.

In this shared task, we address the challenge of
predicting eye-tracking features recorded during
sentence processing of multiple languages. We are
interested in both cognitive modelling approaches
as well as linguistically motivated approaches (i.e.,
language models). This shared task is hosted on
CodaLab, where the instructions and pre-processed
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eye-tracking datasets are available.1

Compared to the CMCL 2021 Shared Task on
eye-tracking prediction (Hollenstein et al., 2021a),
we introduce two major changes:

• Multilingual data: We provide an eye move-
ment dataset with sentences from six different
languages (Chinese, Dutch, English, German,
Hindi, Russian) for Subtask 1 and a new Dan-
ish test set for Subtask 2.

• Eye-tracking features: To take into account
the individual differences between readers, the
task is not limited to predict the mean eye
tracking features across readers, but also the
standard deviation of the feature values.

2 Related Work

2.1 Eye-Tracking and Language Models
It is widely acknowledged by researchers on natu-
ralistic reading that fixation patterns are influenced
by the words’ contextual predictability (Ehrlich and
Rayner, 1981), although there is some substantial
disagreement about the nature of this link (Broth-
ers and Kuperberg, 2021). In Natural Language
Processing, the most influential account of this phe-
nomenon comes from surprisal theory (Hale, 2001;
Levy, 2008). This theory claims that the processing
difficulty of a word is proportional to its surprisal,
i.e., the negative logarithm of the probability of the
word given the context, and it served as a reference
framework for several studies on language mod-
els and eye-tracking data prediction (Demberg and
Keller, 2008; Frank and Bod, 2011; Fossum and
Levy, 2012). Surprisal is not necessarily the only
factor involved: for example, word length, word
frequency, and other local statistics (e.g., bigram
and trigram probabilities) also affect reading times
(Rayner and Raney, 1996; Williams and Morris,
2004; Goodkind and Bicknell, 2021). Embedding-
based semantic similarity was also found to be cor-
related with eye-tracking metrics (Mitchell et al.,
2010; Salicchi et al., 2021; Yu et al., 2021), al-
though it is not clear whether its effect is indepen-
dent of surprisal (Frank, 2017).

Later research work brought evidence that lan-
guage models with a lower perplexity are better at
fitting to human reading times (Goodkind and Bick-
nell, 2018; Aurnhammer and Frank, 2019; Wilcox
et al., 2020; Merkx and Frank). However, other

1https://competitions.codalab.org/
competitions/36415

studies suggested that perplexity may not tell the
whole story. For example, Hao et al. (2020) pointed
out that such a metric cannot be used for comparing
models with different vocabularies and proposed,
as a more reliable predictor, the correlation between
surprisal values computed by a language model
and the surprisal values obtained from humans by
means of a Cloze test. Moreover, while most work
on eye-tracking and language modeling focused
on English, recent experiments on typologically
distant languages like Japanese showed that lower-
perplexity models may not be necessarily better at
predicting eye-movement data (Kuribayashi et al.,
2021). Therefore, multilingual evaluation is an
important step for building cognitively plausible
models of human reading processes.

2.2 Multilingual Eye-Tracking Corpora

Comparing monolingual and multilingual Trans-
former models, Hollenstein et al. (2021b) found
that the latter are surprisingly accurate in predicting
eye-tracking features across languages. In particu-
lar, multilingual BERT (Devlin et al., 2019) shows
the best crosslinguistic transfer ability, even with-
out being explicitly trained on the target language,
while the XLM models (Lample and Conneau,
2019) achieve better in-language performance after
fine-tuning.

Psycholinguistic research in the last two decades
has led to the introduction of corpora with eye-
tracking recordings in several languages, includ-
ing English (Cop et al., 2017; Luke and Christian-
son, 2017; Hollenstein et al., 2018, 2020), German
(Kliegl et al., 2006; Jäger et al., 2021), Hindi (Hu-
sain et al., 2015), Japanese (Asahara et al., 2016),
Dutch (Cop et al., 2017), Russian (Laurinavichyute
et al., 2019), Mandarin Chinese (Pan et al., 2021),
and Danish (Hollenstein et al., 2022). However, it
is not optimal to combine datasets recorded in dif-
ferent settings. The most recent release is the Mul-
tilingual Eye-Movement Corpus (MECO; Siegel-
man et al. 2022), a new resource including parallel
data from 580 readers of 13 different languages
following the same experiment protocol. The no-
table differences between these corpora and other
psycholinguistic studies is the naturally occurring
stimuli, the presentation of full sentences or longer
text spans, and that the participants were able to
read in their own speed.
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Corpus Lang. Sents. Tokens Subjects Reference

BSC ZH 150 1685 60 Pan et al. (2021)
PAHEC HI 153 2596 30 Husain et al. (2015)
RSC RU 144 1417 102 Laurinavichyute et al. (2019)
Provo EN 189 2659 84 Luke and Christianson (2017)
ZuCo 1.0 EN 300 6588 12 Hollenstein et al. (2018)
ZuCo 2.0 EN 349 6828 18 Hollenstein et al. (2020)
GECO-NL NL 800 9218 18 Cop et al. (2017)
PoTeC DE 101 1895 75 Jäger et al. (2021)
CopCo (Subtask 2 only) DK 402 6768 5 Hollenstein et al. (2022)

Table 1: Datasets used in the shared task. Note that the number of sentences and tokens refers to the text materials
we have selected and not necessarily to the complete original datasets.

Feature min max mean (std)

FFDAVG 0.0 56.74 13.02 (7.34)
FFDSTD 0.0 58.54 4.47 (3.55)
TRTAVG 0.0 100.0 18.87 (11.57)
TRTSTD 0.0 100.0 9.86 (8.01)

Table 2: Minimum, maximum, mean and standard devi-
ation of the scaled feature values in both training and
test data of Subtask 1, after averaging across readers.

3 Task Description

The shared task is formulated as a regression task
to predict 2 eye-tracking features and the corre-
sponding standard deviation across readers for each
word:

1. FFDAVG: first fixation duration (FFD), the
duration of the first fixation on the prevailing
word;

2. FFDSTD: standard deviation of FFD across
readers;

3. TRTAVG: total reading time (TRT), the sum
of all fixation durations on the current word,
including regressions;

4. TRTSTD: standard deviation of TRT across
readers.

3.1 Subtask 1
The goal of the first subtask is multilingual eye
tracking prediction, i.e., to predict the eye-tracking
features for sentences of the 6 provided languages
in the training data on held-out sentences of the
same languages in the test data. The dataset con-
tains sentences from a range of openly available
eye-tracking corpora.

3.2 Subtask 2
The second subtask test the models’ performances
in a cross-lingual prediction scenario. The training
and development data are identical to Subtask 1,
but the test data contains eye-tracking data from a
new language. The participants were only informed
about which language would be included in this
subtask at the beginning of the evaluation phase.

4 Data

4.1 Subtask 1
The dataset contains sentences from the follow-
ing openly available eye-tracking corpora: the Bei-
jing Sentence Corpus (BSC; Pan et al. 2021), the
Postdam-Allahabad Hindi Eye Tracking Corpus
(PAHEC; Husain et al. 2015), the Russian Sen-
tence Corpus (RSC; Laurinavichyute et al. 2019),
the Provo Corpus (Luke and Christianson, 2017),
the Zurich Cognitive Language Processing Corpus
(ZuCo; Hollenstein et al. 2018, 2020), The Dutch
part of the Ghent Eye-Tracking Corpus (GECO-
NL; Cop et al. 2017), and the Potsdam Textbook
Corpus (PoTeC; Jäger et al. 2021). These datasets
cover a diverse range of text domains, including
news articles, novels, Wikipedia sentences, scien-
tific textbook passages, etc. The details are pre-
sented in Table 1.

The training data contains 1703 sentences, the
development set contains 104 sentences, and the
test set 324 sentences.

4.2 Subtask 2
As described, the training and development data
are identical to Subtask 1, but the test data contains
eye-tracking data from a new language, namely
Danish. The Danish eye-tracking data contains 402
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Figure 2: Boxplots showing the feature value distri-
butions of the training data and the test sets of both
subtasks. Below each box is the median value of each
feature.

sentences read by 5 readers, extracted from the
CopCo corpus (Hollenstein et al., 2022).

4.3 Preprocessing

Tokenization The tokens in the sentences are
split in the same manner as they were presented
to the participants during the reading experiments.
Hence, this does not necessarily follow a linguis-
tically correct tokenization. For example, the se-
quences “(except,” and “don’t” were presented as
such to the reader and not split into “(”, “except”,
“,” and “do”, “n’t” as a tokenizer would do. It is
the participants’ decision how to deal with these
tokens.

Feature Extraction The data contains scaled fea-
tures in the range between 0 and 100 to facilitate
evaluation via the mean absolute average (MAE).
The eye-tracking feature values (FFDAVG and TR-
TAVG) are averaged over all available readers of a
corpus. This preprocessing step is done separately
for each corpus before combining them. Table 2
shows the scaled features values across the full
dataset of Subtask 1. In Figure 2, we present the
distributions of the feature values for the training
set and the test set of Subtasks 1 and 2. Finally,
Figure 3 in the Appendix shows the individual plots
for each language.

5 Evaluation

In this section, we describe the evaluation proce-
dure used to assess the submitted predictions of the
participating teams.

Any additional data source was allowed to train
the models, as long as it is freely available to the
research community. For example, additional eye-
tracking corpora, additional features such as brain
activity signals, pre-trained language models, etc.

5.1 Scoring Metric

The submitted predictions are evaluated against the
real eye-tracking feature values using the mean ab-
solute error (MAE) metric, a measure of errors be-
tween paired observations including comparisons
of predicted (y) versus observed (x) values for each
word in the test set:

MAE =

∑n
i=1 |yi − xi|

n
(1)

The winning system is defined as the one with the
lowest average MAE across all 4 features. We
reported additional metrics for analysis, namely
R2 for all features individually and aggregated, but
only MAE was used for the ranking.

5.2 Mean Baseline

We use the mean central tendency as a baseline for
this regression problem, i.e., we calculate the mean
value for each feature from the training data and
use it as a prediction for all words in the test data.
Table 3 shows the MAE scores achieved by this
mean baseline for each eye-tracking feature.

For Subtask 1, we add an additional stronger
mean baseline calculated over the training set of
each language individually. This baseline assumes
that the language of each sentence is known to the
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Rank Team Name MAE FFDAVG FFDSTD TRTAVG TRTSTD R2 Reference

1 HkAmsters 3.01 4.40 4.15 1.76 1.73 0.61 Salicchi et al. (2022)
2 DMG 3.65 5.65 4.43 2.61 1.92 0.49 Takmaz (2022)

- Lang. baseline 4.27 3.55 2.03 6.56 4.94 0.34 -

3 NU HLT 5.49 6.67 8.38 3.93 2.99 -0.18 Imperial (2022)
4 Poirot 5.50 8.37 5.68 5.47 2.50 -0.03 Srivastava (2022)
5 UFAL 5.72 8.81 5.73 5.77 2.58 0.00 Bhattacharya et al. (2022)

- Mean baseline 5.73 8.82 5.89 5.69 2.54 0.00 -

6 TorontoCL 11.09 18.84 8.89 13.06 3.57 -2.04

Table 3: Overall results of Subtask 1 showing the best submission per team and the mean baselines, including the
overall MAE and R2 scores, as well as the individual MAE scores for each feature. The teams are ranked by the
MAE averaged across all five eye-tracking features (third column).

Rank Team Name MAE FFDAVG FFDSTD TRTAVG TRTSTD R2 Reference

1 Poirot 4.23 5.60 5.65 2.95 2.73 -0.26 Srivastava (2022)
2 DMG 4.97 6.90 5.77 5.45 1.73 -0.57 Takmaz (2022)

- Mean baseline 5.73 8.82 5.89 5.69 2.54 0.00 -

3 NU HLT 7.09 14.65 4.04 7.53 2.12 -1.83 Imperial (2022)

Table 4: Overall results of Subtask 2 showing the best submission per team and the mean baseline, including the
overall MAE and R2 scores, as well as the individual MAE scores for each feature. The teams are ranked by the
MAE averaged across all five eye-tracking features (third column).

system. This second baseline was not reported in
the rankings, but serves for further analysis.

6 Participating Teams & Systems

Six teams and a total of 37 participants registered
on the competition website. All six teams submit-
ted their predictions during the evaluation phase
for Subtask 1. Four of the teams also submitted
predictions for Subtask 2. Each team was allowed
three submissions for each subtask during the eval-
uation phases. Finally, 5 teams published system
description papers outlining their approaches (see
Table 3 for all references).

6.1 Methods

The participating teams submitted predictions gen-
erated from various approaches, from regression
algorithms such as random forests (NU HLT)
and linear regression models (HkAmsters) with a
wide range of lexical, cognitively and phonetically-
motivated features (NU HLT), to neural approaches
that fine-tune large pre-trained transformer mod-
els with additional regression heads, and inte-
grate adapters into pre-trained transformer lan-
guage models (DMG) (Pfeiffer et al., 2020; Han
et al., 2021).

Some teams chose to build language-specific

models (e.g., HkAmsters, DMG), while others
merged the words from all languages into a com-
mon vocabulary space in which all words are con-
verted to their IPA forms (NU HLT). Moreover, rep-
resentations from both monolingual models such
as GPT-2 (Radford et al., 2019) as well as multi-
lingual transformer models such as mBERT (De-
vlin et al., 2019) and XLM (Lample and Conneau,
2019) were also included (Poirot). For the second
subtask, dealing with a new unseen language was
handled again through a common phonetic vocab-
ulary space (NU HLT), through translation (i.e.,
translating the Danish text to German and then us-
ing a German model for prediction) (DMG), or
zero-shot learning (Poirot).

7 Results

In this section, we describe the prediction perfor-
mance achieved by the participating teams. The
official results of this shared task are presented in
Tables 3 and 4 for Subtask 1 and 2, respectively.
The best results for the first subtask on multilin-
gual prediction were achieved by Team HkAmsters
with language-specific regression models based on
word-level features such as word length, word fre-
quency, and surprisal scores estimated with GPT-2
(Radford et al., 2019). For the second subtask on
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cross-lingual prediction, the winning team (Poirot)
used a zero-shot hybrid model based on a multilin-
gual transformer embeddings as well as statistical
features.

8 Outlook & Conclusion

We presented the results of the second shared
task on predicting token-level eye-tracking fea-
tures recorded during natural reading of sentences
or longer text spans. In this second edition, we
focused on multilingual and crosslingual predic-
tion. We hope the CMCL Shared Task makes a
lasting contribution to the field of linguistic cog-
nitive modelling by providing researchers with a
standard evaluation framework and a high quality
dataset. Despite the limited size of the training and
test sets as well as the diversity of text domains
within the eye-tracking corpora, many previously
reached conclusions can now be tested more thor-
oughly and future models can be compared on a
shared multilingual benchmark.
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A Appendix

Figure 3 shows the distributions of the feature values for the data of all six languages.
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Figure 3: Boxplots showing the feature value distributions of the eye-tracking data of all languages of Subtask 1.
Below each box is the median value of each feature.

129



Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 130 - 135
May 26, 2022 ©2022 Association for Computational Linguistics

Team ÚFAL at CMCL 2022 Shared Task: Figuring out the correct recipe
for predicting Eye-Tracking features using Pretrained Language Models

Sunit Bhattacharya, Rishu Kumar and Ondřej Bojar
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Abstract

Eye-Tracking data is a very useful source of
information to study cognition and especially
language comprehension in humans. In this
paper, we describe our systems for the CMCL
2022 shared task on predicting eye-tracking in-
formation. We describe our experiments with
pretrained models like BERT and XLM and the
different ways in which we used those repre-
sentations to predict four eye-tracking features.
Along with analysing the effect of using two dif-
ferent kinds of pretrained multilingual language
models and different ways of pooling the token-
level representations, we also explore how con-
textual information affects the performance of
the systems. Finally, we also explore if factors
like augmenting linguistic information affect
the predictions. Our submissions achieved an
average MAE of 5.72 and ranked 5th in the
shared task. The average MAE showed further
reduction to 5.25 in post task evaluation.

1 Introduction and Motivation

In the last decade that has seen rapid developments
in AI research, the emergence of the Transformer
architecture (Vaswani et al., 2017) marked a piv-
otal point in Natural Language Processing (NLP).
Fine-tuning pretrained language models to work on
various downstream tasks has become a dominant
method of obtaining state-of-the-art performance
in different areas. Their capability to capture lin-
guistic knowledge and learn powerful contextual
word embeddings (Liu et al., 2019) have made the
transformer based models the work-horses in many
NLP tasks. Pretrained models like the multilin-
gual BERT (Devlin et al., 2019) and XLM (Con-
neau et al., 2020) have also shown state-of-the-art
performance on cross-lingual understanding tasks
(Wu and Dredze, 2019; Artetxe et al., 2019). In
some cases like machine translation, there are even
claims that deep learning systems reach transla-
tion qualities that are comparable to professional
translators (Popel et al., 2020).

Language processing and its links with cognition
is a very old research problem which has revealed
how cognitive data (eg. gaze, fMRI) can be used
to investigate human cognition. Attempts at using
computational methods for such studies (Mitchell
et al., 2008; Dehghani et al., 2017) have also shown
encouraging results. However recently, there have
been a number of works that have tried to incorpo-
rate human cognitive data collected during reading
for improving the performance of NLP systems
(Hollenstein et al., 2019). The CMCL 2022 Shared
Task of multilingual and cross-lingual prediction of
human reading behavior (Hollenstein et al., 2022)
explores how eye-gaze attributes can be algorithmi-
cally predicted given reading data in multilingual
settings.

Informed by the previous attempts at using pre-
trained multilingual language models to predict
human reading behavior (Hollenstein et al., 2021)
we experiment with multilingual BERT and XLM
based models to test which fares better in this task.
For the experiments with the pretrained models, we
use the trained weights from Huggingface (Wolf
et al., 2020) and perform the rest of our experiments
using PyTorch1. Inspired by the psycholinguistic
research on investigating context length during pro-
cessing (Wochna and Juhasz, 2013), we experiment
how different contexts affect model performance.
Finally, we merged the principles of the "classi-
cal" approach of feature-based prediction with the
pretrained-language model based prediction for fur-
ther analysis. In the following sections, we present
our results from a total of 48 different models.

2 Task Description

The CMCL 2022 Shared Task of Multilingual and
Cross-lingual prediction of human reading behav-
ior frames the task of predicting eye-gaze attributes
associated with reading sentences as a regression

1https://pytorch.org/
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task. The data for the task was comprised of eye
movements corresponding to reading sentences in
six languages (Chinese, Dutch, English, German,
Hindi, Russian). The training data for the task con-
tained 1703 sentences while the development set
and test set contained 104 and 324 sentences re-
spectively. The data was presented in a way such
that for each word in a sentence there were four
associated eye-tracking features in the form of the
mean and standard deviation scores of the Total
Reading Time (TRT) and First Fixation Duration
(FFD). The features in the data were scaled in the
range between 0 and 100 to facilitate evaluation via
the mean absolute average (MAE).

3 Experiments

A total of 48 models of different configurations
were trained with the data provided for the shared
task. The different configurations used to construct
the models are based on intuition and literature
survey.

Thee models were primarily categorized as
System-1 (sys1) and System-2 (sys2) models. For
some word corresponding to a sentence in the
dataset, System-1 models provided no additional
context information. System-2 models on the other
hand, contained the information of all the words in
the sentence that preceded the current word, provid-
ing additional context. This setting was inspired by
works (Khandelwal et al., 2018; Clark et al., 2019)
on how context is used by language models.

All systems under the System-1/2 labels were
further trained as a BERT (bert) based system or a
XLM (xlm) based system. BERT embeddings were
previously used by Choudhary et al. (2021) for
the eye-tracking feature prediction task in CMCL
2021.

Corresponding to each such language models
(bert and xlm), the impact of different fine-tuning
strategies(Sun et al., 2019) on system performance
was studied. Hence, for one setting, only the con-
textualized word representation (CWR) was uti-
lized by freezing the model weights and putting
a learnable regression layer on top of the model
output layer (classifier). Alternatively, the mod-
els were fine-tuned with the regression layer on
top of them (whole). This setting is similar to the
one used by Li and Rudzicz (2021). However in
our case, we experiment with a BERT and XLM
pretrained model.

Additionally, we also performed experiments

with pooling strategies for the layer representations
by either using the final hidden representation of
the first sub-word encoding of the input (first) or
aggregating the representations of all sub-words
using mean-pooling (mean) or sum-pooling (sum).
The rationale behind using different pooling strate-
gies was to have a sentence-level representation of
the input tokens. The impact of different pooling
strategies has previously been studied (Shao et al.,
2019; Lee et al., 2019) for different problems. In
this paper, we analyze the effect of pooling feature-
space embeddings in the context of eye-tracking
feature prediction.

Finally, for the experiments where we aug-
mented additional lexical features (augmented) to
the neural features for regression, we used word
length and word-frequency as the additional infor-
mation following Vickers et al. (2021).

Constructing the experiments in this manner pro-
vided us with models with a diverse set of proper-
ties and in turn provided insights into how well the
model behaves when all other things stay the same,
and only one aspect of learning is changed.

4 Results

The results corresponding to the top 10 systems
based on the experiments described above are
shown in Table 1.

Model MAE
bert_sys2_augmented_sum_classifier 5.251

bert_sys2_unaugmented_first_classifier 5.267
bert_sys2_augmented_mean_classifier 5.272
bert_sys1_augmented_mean_classifier 5.279
bert_sys2_augmented_first_classifier 5.295
xlm_sys1_augmented_first_classifier 5.341

xlm_sys2_augmented_first_whole 5.346
bert_sys1_augmented_sum_classifier 5.353

bert_sys2_augmented_sum_whole 5.367
xlm_sys2_augmented_first_classifier 5.373

Table 1: Top 10 best performing systems

It was observed that the maximum MAE scores
(and the maximum variance of scores) for all the
models was obtained for the attribute "TRT_Avg".
The attribute wise variances corresponding to the
test-data for all the models are shown in Table 2.
Similarly, the mean values of the attributes for all
models are shown in Table 3.

An analysis of the models based on the different
experimental configurations are described in the
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FFD_Avg FFD_Std TRT_Avg TRT_Std
0.194 0.403 0.637 0.489

Table 2: Attribute wise variance of scores for all models

FFD_Avg FFD_Std TRT_Avg TRT_Std
5.691 2.646 8.633 5.806

Table 3: Attribute wise mean of scores for all models

following sections.

4.1 System-1 vs System-2

Table 4 shows the average model performance
across System-1 and System-2 configurations for
both BERT and XLM based models (based on the
average MAE values of the configurations). We see
that for the BERT based models, the average MAE
for System-1 is lower than that of System-2. But
for XLM-based models, the difference is almost
non-existent.

Model Average MAE across models
Sys1_BERT 5.66
Sys1_XLM 5.70
Sys2_BERT 5.72
Sys2_XLM 5.69

Table 4: System-1 vs System-2 performance across
models

However, it should be noted that 12 out of the
first 20 best performing models were System-2
models. Hence we posit that although the avail-
ability of the full sentence context is a factor for
having more efficient systems, independently the
factor does not seem to boost the overall perfor-
mance much.

4.2 BERT vs XLM

Table 5 shows that there is only a tiny difference
in average MAE for all four attributes (FFD_µ,
FFD_σ, TRT_µ, TRT_σ) for all BERT vs XLM
models . However, a brief look at Table 6 and
Table 7 reveal that it was the XLM models that were
responsible for slightly decreased MAE scores for
3 of the 4 attributes that were being predicted.

We also see that the amount of variance for XLM
based models was also smaller for 3 of the 4 at-
tributes.

Model Average MAE across models
BERT 5.6920
XLM 5.6960

Table 5: BERT vs XLM performance across models

Model FFD_µ FFD_σ TRT_µ TRT_σ
BERT 0.141 0.776 0.952 0.792
XLM 0.236 0.045 0.349 0.204

Table 6: Attribute wise variance of scores for all BERT
and XLM based models

Model FFD_µ FFD_σ TRT_µ TRT_σ
BERT 5.592 2.679 8.645 5.852
XLM 5.789 2.612 8.622 5.760

Table 7: Attribute wise mean of scores for all BERT and
XLM based models

4.3 Augmented vs Un-Augmented models

Fig. 1 shows that augmented models. i.e. models
that were fed information like word-frequency and
word-length along with the neural representation
information before being fed to the regression layer
performed better than models that used only con-
textual word embeddings resulting from pretrained
language models. Table 8 and Table 9 show the 5
best performing models of this category sorted by
their MAE.

Model MAE
bert_sys2_unaugmented_first_classifier 5.267

bert_sys2_unaugmented_mean_classifier 5.405
xlm_sys1_unaugmented_mean_classifier 5.5
xlm_sys2_unaugmented_mean_classifier 5.55
xlm_sys1_unaugmented_mean_classifier 5.557

Table 8: Performance of 5 best Un-Augmented models.

Model MAE
bert_sys2_augmented_sum_classifier 5.251
bert_sys2_augmented_mean_classifier 5.272
bert_sys1_augmented_mean_classifier 5.279
bert_sys2_augmented_first_classifier 5.295
xlm_sys1_augmented_first_classifier 5.341

Table 9: Performance of 5 best Augmented models

The mean and variance of attributes across mod-
els of these families presented in Table 10 & 11
show that augmented models show way less vari-
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Model FFD_µ FFD_σ TRT_µ TRT_σ
Aug 5.502 2.511 8.181 5.436
Uaug 5.88 2.78 9.086 6.176

Table 10: Attribute wise mean of scores for all Aug-
mented and Un-augmented models

Model FFD_µ FFD_σ TRT_µ TRT_σ
Aug 0.017 0.004 0.015 0.007
Uaug 0.292 0.749 0.823 0.678

Table 11: Attribute wise variance of scores for all Aug-
mented and Un-augmented models

ance in their predictions in comparison with neural-
representation only model families.

Figure 1: Augmented vs Un-augmented model perfor-
mance. The x-axis represents the 24 different models of
each category. The y-axis shows the MAE correspond-
ing to each model.

4.4 Nature of representation of input tokens
(Pooling strategies)

Fig. 2 shows that using the first sub-word token or
the mean-pooled representation of the entire input
gives lesser MAE scores than the sum-pooled rep-
resentations. It was also observed that for System-2
family of models, the mean-pooled representations
were associated with lesser MAE scores in com-
parison to the first sub-word representation. The
attribute wise mean in Table 15 and attribute wise
variance of model MAEs shown in Table 16 illus-
trates this point. Table 12,Table 13 and Table 14
show the 5 best performing models of this category
sorted by their MAE.

4.5 Fine-tuning

Fine-tuning on large pretrained language models
has become the standard way to conduct NLP re-

Model MAE
bert_sys2_unaugmented_first_classifier 5.267

bert_sys2_augmented_first_classifier 5.295
xlm_sys1_augmented_first_classifier 5.341

xlm_sys2_augmented_first_whole 5.346
xlm_sys2_augmented_first_classifier 5.373

Table 12: Performance of 5 best first models

Model MAE
bert_sys2_augmented_mean_classifier 5.272
bert_sys1_augmented_mean_classifier 5.279

bert_sys2_augmented_mean_whole 5.375
bert_sys2_unaugmented_mean_classifier 5.405

xlm_sys1_augmented_mean_whole 5.413

Table 13: Performance of 5 best Mean models

Model MAE
bert_sys2_augmented_sum_classifier 5.251
bert_sys1_augmented_sum_classifier 5.353

bert_sys2_augmented_sum_whole 5.367
bert_sys1_augmented_sum_whole 5.402

xlm_sys2_augmented_sum_classifier 5.456

Table 14: Performance of 5 best Sum models

Model FFD_µ FFD_σ TRT_µ TRT_σ
first 5.549 2.505 8.434 5.615

Mean 5.57 2.538 8.416 5.636
Sum 5.954 2.894 9.05 6.167

Table 15: Attribute wise mean of scores for models with
different input token representations

Model FFD_µ FFD_σ TRT_µ TRT_σ
first 0.036 0.004 0.118 0.054

Mean 0.047 0.005 0.118 0.048
Sum 0.383 1.082 1.374 1.139

Table 16: Attribute wise variance of scores for models
with different input token representations

search after the widespread adoption of the trans-
former architecture. And unsurprisingly, our exper-
iments reveal (Fig. 3) that fine-tuning of models
give smaller MAE scores than training only the
regression layers. The stark difference in the vari-
ance for the predicted attributes between fine-tuned
models and regression only models (as illustrated
in Table 17-18) further demonstrates the advantage
of fine-tuning.
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Figure 2: Model performance based on the nature of
representation of input tokens.The x-axis represents the
16 different models of each category. The y-axis shows
the MAE corresponding to each model.

Model FFD_µ FFD_σ TRT_µ TRT_σ
Aug 5.502 2.511 8.181 5.436
Uaug 5.88 2.78 9.086 6.176

Table 17: Attribute wise variance of scores for fine-
tuned models vs regression-layer only models

Model FFD_µ FFD_σ TRT_µ TRT_σ
Aug 0.017 0.004 0.015 0.007
Uaug 0.292 0.749 0.823 0.678

Table 18: Attribute wise mean of scores for fine-tuned
models vs regression-layer only models

Figure 3: Fine-tuning vs training only regression layer
in the models. The x-axis represents the 24 different
models of each category. The y-axis shows the MAE
corresponding to each model.

5 Conclusion

In this paper, we have described our experiments
with different kinds of models that were trained
on the data provided for this shared-task. We have
identified five ways in which we can make better

systems to predict eye-tracking features based on
eye-tracking data from a multilingual corpus. First,
the experiments demonstrate that the inclusion of
context (previous words occurring in the sentence)
helps the models to predict eye-tracking attributes
better. This reaffirms previous observations made
with language models that more context is always
helpful. Second, we find that XLM based mod-
els perform relatively better than the BERT based
models. Third, our experiments show the advan-
tages of augmenting additional linguistic features
(word length and word frequency information in
this case) to the contextual word representations to
make better systems. This is in agreement with the
findings from eye-tracking prediction tasks from
last iterations of CMCL. Fourth, we see how dif-
ferent pooling methods applied on the input token
representations affect the final performance of the
systems. Finally, the experiments re-validate the ap-
proach of fine-tuning pretrained language models
for specific tasks. Hence we conclude that contextu-
alized word representations from language models
pretrained with many different languages, if care-
fully augmented, engineered, and fine-tuned, can
predict eye-tracking features quite successfully.
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Abstract
In this paper, we present the details of our ap-
proaches that attained the second place in the
shared task of the ACL 2022 Cognitive Mod-
eling and Computational Linguistics Work-
shop. The shared task is focused on multi-
and cross-lingual prediction of eye movement
features in human reading behavior, which
could provide valuable information regarding
language processing. To this end, we train
‘adapters’ inserted into the layers of frozen
transformer-based pretrained language mod-
els. We find that multilingual models equipped
with adapters perform well in predicting eye-
tracking features. Our results suggest that uti-
lizing language- and task-specific adapters is
beneficial and translating test sets into similar
languages that exist in the training set could
help with zero-shot transferability in the pre-
diction of human reading behavior.

1 Introduction

Eye movements provide valuable information
about the contents of underlying cognitive pro-
cesses and where our attention falls (Rayner, 1977).
Predicting human reading behavior as reflected in
eye movements is an important task that requires
capturing universal aspects of language process-
ing as well as its language-specific properties (Li-
versedge et al., 2016; Hollenstein et al., 2021b).
This task could help us gain insight into language-
related eye movements and the predictive capabili-
ties of the models of human reading behavior.

Various approaches have been proposed for the
modeling of human reading behavior (Rayner,
1998; Reichle et al., 1998; Hahn and Keller, 2016).
The CMCL 2021 shared task focused on the pre-
diction of ‘monolingual’ reading behavior and the
participants applied various methodologies to pre-
dict eye-tracking features, e.g. gradient boosting,
ensembling, using handcrafted features, deep learn-
ing (Hollenstein et al., 2021a; Bestgen, 2021; Li
and Rudzicz, 2021; Oh, 2021; Vickers et al., 2021).

With regard to deep learning-based approaches,
there exist findings suggesting that, as compared to
transformer-based models (Vaswani et al., 2017),
recurrent neural networks exhibit attention patterns
closer to human attention (Sood et al., 2020). How-
ever, more recently, transformer-based models have
been shown to better account for human reading
behavior than recurrent neural networks (Merkx
and Frank, 2021). Moreover, pretrained language
models (PLM) such as BERT (Devlin et al., 2019)
and XLM (Conneau and Lample, 2019) can predict
multilingual human reading behavior well (Hollen-
stein et al., 2021b), in addition to having advanced
the state-of-the-art in many downstream NLP tasks.

The focus of the CMCL 2022 shared task (Hol-
lenstein et al., 2022) is to predict four eye-tracking
features for data containing sentences in 6 different
languages as well as transferring to a new language.
For this purpose, we train ‘adapters’ inserted into
transformer layers of frozen PLMs (Houlsby et al.,
2019). We find that training adapters for each lan-
guage separately within multilingual transformers
leads to good performance, attaining the second
place in the leaderboard. In addition, we show that
such models can transfer to new languages via sim-
ply translating the new test sets into closely-related
languages (e.g. lexically or grammatically) that the
model was exposed to during training.1

2 Background

2.1 Data and Subtasks

The CMCL 2022 shared task consists of 2 subtasks.
The data for Subtask 1 includes publicly-available
eye-tracking corpora for 6 languages (English, Chi-
nese, Russian, Hindi, German, Dutch). These cor-
pora differ in size as well as the nature of the sen-
tences they contain (i.e. news articles, scientific
texts, Wikipedia entries). The data is already par-

1Our repository: https://github.com/ecekt/
cmcl2022_dmg
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titioned into train, validation and test splits. For
Subtask 2, we are only supplied with a test set com-
prised of Danish sentences. We only use the data
provided in the shared task and preprocess the tex-
tual input utilizing the tokenizers of PLMs. For
more details, see Appendix A.

The eye-tracking features provided in the data
correspond to ‘first fixation duration’ (FFD, dura-
tion of the first fixation on the current word) and
‘total reading time’ (TRT, total duration of all fix-
ations on the current word including regressions).
The values of these features were provided per to-
ken entry, averaged across all the readers: FFDAvg
and TRTAvg. In addition, to account for the indi-
vidual differences between readers, the data also
includes the standard deviations of these features
across readers: FFDStd and TRTStd.

The aim of the subtasks is to predict these 4
features for each token. The submissions are
ranked with respect to test-set Mean Absolute Error
(MAE): the average of the absolute differences be-
tween the ground-truth values and the values output
by the model (see Appendix B). The shared task
system also reports coefficients of determination
(R2), which we provide in Appendix F.

2.2 Adapters

The common method for using PLMs in down-
stream tasks is to fine-tune them for each task. If
there are multiple tasks the model should handle at
the same time, this could lead to some issues (Pfeif-
fer et al., 2021). For instance, learning tasks in
parallel could cause interference and the model
might learn a certain task better than the others. In
the case of sequential training, we might observe
catastrophic forgetting, where the model forgets
the previously learned tasks. In addition, usually
the whole model is fine-tuned; hence, we might
need to save a new model per task, which increases
compute and memory requirements.

To overcome these issues, ‘adapters’ have been
proposed (Houlsby et al., 2019; Bapna and Firat,
2019). Adapters are bottleneck layers consisting of
new weights integrated into each layer of a trans-
former model. They first project down (WD ∈
Rh×d) the dimensions of the transformer hidden
state hl at layer l, apply a non-linearity, and then
project the activations back up (WU ∈ Rd×h) to the
original dimensions. The outcome is then summed
up with the residual rl via a skip-connection to

obtain the output of the adapter Al:

Al =WU (ReLU(WDhl)) + rl (1)

Keeping the pretrained model frozen and only
training adapters have been shown to yield perfor-
mances close to those of fully-fine-tuned models
while also maintaining efficiency (Houlsby et al.,
2019; Bapna and Firat, 2019; Rücklé et al., 2021).
Various types of adapters, insertion and training
schemes have been proposed for machine trans-
lation, multi-task settings and cross-lingual trans-
fer (Ansell et al., 2021; Pfeiffer et al., 2020b, 2021;
Philip et al., 2020; Üstün et al., 2020, 2021; Poth
et al., 2021).

Given their relevant advantages, we use Adapters
from AdapterHub framework (Pfeiffer et al.,
2020a)2 built on HuggingFace Transformers (Wolf
et al., 2020), to insert trainable adapters into frozen
PLMs for the prediction of eye-tracking features.
Then, we train language- and task-specific adapters
and store their trained weights along with a sin-
gle model. The details of the models and adapters
used in Subtasks 1 and 2 are provided in Sections
3 and 4, respectively. For reproducibility, the hy-
perparameters for the best models selected with
respect to their MAE scores on the validation set
and the details of the development environment are
provided in Appendices C and D.

3 Subtask 1: Multi-lingual

In this subtask, the aim is to predict eye-tracking
features for data from 6 languages, for which we
have training, validation and test sets. We focus
on comparing a single setup for all languages vs.
separate setups for different languages.

3.1 Methodology
Single adapter for all languages We first train a
single task-specific adapter integrated into a frozen
PLM on all the languages per eye-tracking fea-
ture. We utilize the XLM-RoBERTa-base (XLM-
R) model (Conneau et al., 2020), which is a mul-
tilingual version of RoBERTa (Liu et al., 2019),
trained with the masked language modeling objec-
tive on 100 languages covering all of the shared
task languages.3

We place a token-level regression head on top of
XLM-R. We then train this head and the adapters

2https://adapterhub.ml
3https://huggingface.co/

xlm-roberta-base
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to predict eye-tracking features for each contextu-
alized token in a given sentence. Since we keep the
underlying model frozen, this method only learns
a small set of parameters for the eye-tracking fea-
tures, which we expect would capture universal
patterns in human reading behavior.

Language-specific adapters When a single
model is trained on multiple languages, its capac-
ity for certain languages might decrease, which is
called ‘the curse of multilinguality’ (Conneau et al.,
2020; Pfeiffer et al., 2020b). To avoid this issue, we
increase the language-specific capacity by training
adapters separately for each language.

In this approach, we train a single adapter that is
specific to a language-task pair (yielding 6∗4 = 24
adapters) integrated into frozen XLM-R. In addi-
tion, we also implement another setup where we
stack language- and task-specific adapters on top
each other (Pfeiffer et al., 2020b). In the latter
setup, per language, we utilize a frozen language-
specific adapter that was trained on Wikipedia ar-
ticles with the masked language modeling objec-
tive, as provided on AdapterHub (Pfeiffer et al.,
2020b, 2021).4 We train the new task-specific
adapter and the token regression head to predict
eye-tracking features specific to each language. For
Dutch, AdapterHub did not have a language adapter
trained on Wikipedia; therefore, we only use a sin-
gle new adapter.5

PLM tokenizers produce multiple wordpieces for
some tokens. For such tokens, the models output
predictions for each wordpiece. We calculate their
average value and assign it as the prediction for the
whole token entry. To explore whether the way the
wordpieces are treated has an effect on accuracy,
we also train and test the stacked setup only keeping
the first wordpiece to represent the full token entry.

3.2 Results

In the top half of Table 1, we present the results
for Subtask 1. Overall, our models outperform
the mean baseline and seem to predict FFD fea-
tures better than TRT features. XLM-R with new
adapters trained from scratch on all languages

4https://adapterhub.ml/explore/text_
lang/ The names of the language-specific adapters are
‘{x}/wiki@ukp’, where {x} is to be replaced by the abbrevia-
tion corresponding to the language, e.g. ‘en/wiki@ukp’.

5We also experiment with training two new adapters
stacked together for Dutch to make the setups more compara-
ble. See Appendix E for the outcomes of additional models
including the use of RoBERTa and XLM-RoBERTa-large.

together performs the worst. XLM-R with new
language-specific adapters further improves the re-
sults, in particular decreasing the MAE of features
corresponding to averages.

The XLM-R setup that stacks adapters per lan-
guage yields our best results for Subtask 1 achiev-
ing second place in the leaderboard of the shared
task (MAE = 3.6533, our second submission). The
breakdown of results per language is provided in
Table 2 in Appendix E. It can be observed from this
table that the model performs well for languages
such as German and Dutch, yet struggles with lan-
guages such as Chinese and Russian, which could
be due to the differences in their typologies, the na-
ture of the corpora, vocabulary size and the issues
that might have been caused by the multilinguality
of the underlying PLM.

Finally, utilizing only the first wordpieces seems
to degrade the performance across the features
(MAE = 3.7261, our third submission). This find-
ing indicates that retaining all wordpieces provides
a better picture of the value to be predicted, as each
wordpiece might contribute to the processing of the
full token, affecting fixation duration times.

4 Subtask 2: Cross-lingual

For this subtask, we conduct various experiments to
obtain results for the Danish test set in the absence
of training and validation data in this language.

4.1 Methodology

Zero-shot We first feed the Danish test set di-
rectly into the XLM-R all-languages model. Since
the adapters in this case are expected to have
learned universal eye movement features and XLM-
R includes Danish in its training, we expect to see
this model to transfer well to Danish without being
exposed to eye-tracking data in this language.

Translate train In this approach, we translate
the training and validation set from their source
language into the target language to be used in the
training of a new model (Conneau et al., 2018). We
have chosen English as the source language, as it
constitutes almost half of the whole shared task
data and XLM-R performs well in English (Con-
neau et al., 2020). We translate the English train-
ing and validation data word-by-word6 into Danish

6Sentence-by-sentence translation could yield more reli-
able outcomes; however, it may cause issues in word order and
count: source and translated text would need to be aligned.
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Model setup FFDAvg FFDStd TRTAvg TRTStd MAE

All languages together 3.1449 1.9697 6.4339 4.6253 4.0434
Language-specific 2.8563 1.9741 5.5682 4.6956 3.7736
Language-specific-stack 2.6086 1.9219 5.6542 4.4284 3.6533
First wordpiece-only 2.6876 1.9609 5.7059 4.5501 3.7261

Zero-shot 3.4955 2.7370 7.1336 7.1502 5.1291
Translate train 14.6278 4.4001 19.8624 14.2824 13.2932
Translate test - EN 13.7903 5.1338 20.9214 13.5084 13.3385
Translate test - EN (without Provo) 4.5843 3.9382 9.3022 6.8426 6.1668
Translate test - DE 5.4512 1.7349 6.9036 5.7730 4.9657

Mean baseline 5.6858 2.5395 8.8200 5.8877 5.7332

Table 1: Test set results for Subtask 1 and Subtask 2. The best models per subtask are indicated in bold.

using the MarianMT en-da model.7 Since Adapter-
Hub currently does not host a language-specific
adapter for Danish, we do not implement stacking
and only train task-specific adapters for Danish.

Translate test In this setup, we translate the test
set into a language for which we have training and
validation data (Conneau et al., 2018) using Mari-
anMT models. We first translate the Danish test set
into English word-by-word. Using the best English
model we obtained in Subtask 1, we generate pre-
dictions for the translated test set. In addition, we
notice that the Provo corpus (Luke and Christian-
son, 2018) in the English subset has rather higher
values for the features as compared to the other
English corpora existing in the data. As a result,
we retrain the best English setup using the same
hyperparameters and skipping the Provo data.

In our final setup for Subtask 2, we translate Dan-
ish into German and utilize the best German model
from Subtask 1 to obtain predictions. The main rea-
son for opting for German was to better account for
the effects of word order, e.g. inversions in main
and subordinate clauses, exploiting the syntactic
similarities between Danish and German.

4.2 Results

The bottom half of Table 1 provides the results
for Subtask 2. First of all, the translate train ap-
proach does not seem to be a viable option, as its
accuracy is much lower than the mean baseline
(MAE = 13.2932, our first submission). Using the
translate test approach in English yields very simi-
lar results. However, as we hypothesized, remov-

7https://huggingface.co/docs/
transformers/model_doc/marian

ing the Provo corpus from the training improves
the translate test performance substantially (MAE
= 6.1668, our second submission), albeit still un-
derperforming. The zero-shot setup, on the other
hand, yields a MAE score better than the mean
baseline, suggesting that our adapters learn univer-
sal eye-tracking feature across languages combined
with the multilingual pretraining of XLM-R.

Finally, the translate test setup in German yields
our best results for this subtask achieving second
place in the leaderboard (MAE = 4.9657, our third
submission). These results indicate that the selec-
tion of source language and data has an effect on
the results. Furthermore, it can be claimed that
translate test is a viable option for adapters inte-
grated into PLMs for achieving good transfer to a
test set in a new language, without being exposed
to actual eye-tracking data in this language.

5 Conclusion

We have trained language- and task-specific
adapters for the prediction of eye-tracking features
reflecting human reading behavior in multi- and
cross-lingual settings. Our best models performed
well, attaining the second place in the CMCL 2022
leaderboard. This suggests that pretrained language
models enhanced with small adapter layers possess
the capability to predict eye-tracking features.

In addition to our setups, other methods such
as dropping adapters or adapter fusion could be
implemented (Rücklé et al., 2021; Pfeiffer et al.,
2021). It would also be informative to consider
autoregressive models and the possibility of mak-
ing use of various lexical and syntactic features
and additional cognitive signals. The prediction of
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each eye-tracking feature could also be informed
by other eye-tracking features, as each of them
represents different aspects of human reading be-
havior. Similar approaches could also be of help
in the modeling of other human cognitive signals,
opening up novel ways of predicting and inspecting
cognitive processes in humans.
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Appendix

A Data preprocessing

We use the XLM-RoBERTa tokenizer containing
250002 tokens. When converting the words into
IDs, the tokenizer maintains the cases of the words,
which could provide crucial information regarding
human reading behavior. However, the way the
tokens were presented to the readers differ from
how the tokenizer would partition a given sentence.
For instance, in the data, we see full stop appended
to the last word or ‘(1917-1919)’ as a single en-
try. For such cases, the tokenizer yields multiple
wordpieces per token. We assign the eye-tracking
feature values of the full entry to each of its word-
pieces and during training and validation, we in-
clude them in the loss separately. For the test set
predictions, we calculate the average of the predic-
tions for the wordpieces and assign it as a single
prediction for the whole entry.

We combine the token entries having the same
sentence ID into a single sentence. Since the sen-
tences do not include start- and end-of-sentence
tokens, we also add such special tokens where nec-
essary. In addition, we pad or truncate the input
to maintain a total wordpiece length of 200. For
all special tokens, we assign ‘-1’ as the dummy
eye-tracking feature value.

B Metric

We implement MAE as below:

∑N
i=1 |oi − ti|

N
(2)

where N is the number of tokens in the data, oi is
the value output by the model for a given token,
and ti is the ground-truth value for this token. We
calculate MAE for all 4 eye-tracking features and
take their average to obtain the final MAE.

C Hyperparameters

For each model, we have performed hyperparame-
ter search for learning rate (0.001, 0.0001, 0.00001,
0.00002) and batch size (4, 8, 16, 32). All the
models were trained up to 50 epochs.8 We saved
the best model based on the validation MAE per
epoch and ran random initializations of the best
model with 4 different seeds. The adapters were
optimized using the AdamW optimizer (Loshchilov
and Hutter, 2019) with respect to MSELoss follow-
ing a linear learning rate schedule. In Table 3, we
provide the hyperparameters of our best models for
Subtask 1 and Subtask 2.

D Environment details

We use AdapterHub version 2.2.0 based on Hug-
gingFace Transformers version 4.11.3.9 We imple-
ment and train our models in Python version 3.7.11
and PyTorch version 1.10.1.10 All models were run
on a computer cluster running Debian Linux OS,
with 4 NVIDIA GeForce GTX 1080 Ti GPUs with
driver version 470.103.01 and CUDA version 11.4.

E More results

RoBERTa + NER Our first submission to Sub-
task 1 was built on RoBERTa-base (Liu et al.,
2019),11 with a Named Entity Recognition (NER)
adapter trained on the CoNLL2003 dataset12 (Poth
et al., 2021; Tjong Kim Sang and De Meulder,
2003). We used the NER adapter as we noticed
a lot of named entities in the data. In this setup,
we remove the NER token classification head and
create a token-level regression head. The head is
trained from scratch and the NER adapter is fine-
tuned. The results revealed that this setup already

8It is possible that a higher epoch cap could produce bet-
ter results; however, in most cases, we observed declining
performance as the number of epochs approached 50.

9https://huggingface.co/docs/
transformers/

10https://pytorch.org/
11https://huggingface.co/docs/

transformers/model_doc/roberta
12https://adapterhub.ml/adapters/

AdapterHub/roberta-base-pf-conll2003/
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Model setup FFDAvg FFDStd TRTAvg TRTStd MAE Baseline MAE

EN stack 3.2360 1.9582 6.8383 4.9501 4.2456
EN large stack 3.0390 1.9921 6.1242 4.8968 4.0130

5.2736

ZH stack 3.1586 3.3608 6.8213 6.6955 5.0091
ZH large stack 3.1571 3.4448 7.3876 6.5892 5.1447

5.4616

DE stack 0.4304 0.4346 3.7796 2.8918 1.8841 2.8679

HI stack 2.5493 2.7178 5.7471 5.5693 4.1459 4.5668

RU stack 2.6062 2.6443 8.3637 5.5609 4.7938 4.9007

NL 1 new 1.8772 1.5720 3.3467 2.9443 2.4351
NL 2 new stack 1.8904 1.5911 3.2836 3.0673 2.4581

2.4176

Table 2: Test set results for Subtask 1 for the XLM-R language-specific models with stacking, broken down into
languages. Baseline MAE is calculated with respect to the means of the language-specific data. EN: English, ZH:
Chinese, DE: German, HI: Hindi, RU: Russian, NL: Dutch.

Model LR Batch size Seed

EN stack 0.0001 4 42
ZH stack 0.001 4 8
DE stack 0.001 8 42
HI stack 0.001 4 42
RU stack 0.001 4 8
NL 1 new 0.001 4 42

Table 3: Hyperparameters for our best submission for
Subtask 1 (Language-specific-stack). DE stack model
is also used in obtaining our best results for Subtask 2.
LR: Learning rate.

improves over the mean baseline across all fea-
tures (MAE = 4.0317, our first submission). Al-
though RoBERTa is monolingual (English) and its
vocabulary is much smaller than XLM-R’s vocabu-
lary (50265, also its tokenizer converts non-Latin
scripts into unintelligible wordpieces), this model
seemed to work quite well. However, we wanted
to make sure that the wordpieces work properly
and that the underlying frozen PLM was exposed
to multilingual data, which is why we switched to
XLM-RoBERTa.

Language breakdown The details of the
language-specific-stack models for Subtask 1 are
provided in Table 2. The majority of these models
outperform the corresponding mean baselines
computed with respect to the language-specific
means (except for the Dutch setup, which does not
include a pretrained language-specific adapter).

Dutch-specific models For Dutch, we only em-
ployed a single adapter as we did not have a Dutch-
specific adapter pretrained on Wikipedia articles.
As a result, we also tried stacking 2 new adapters.
This setup yielded slightly worse scores than the
former setup. Therefore, we opted for keeping the
single-adapter model in our submissions.

Large models We also use the large version of
XLM-RoBERTa.13 At the time of writing, only En-
glish and Chinese Wikipedia MLM adapters were
available on AdapterHub (Pfeiffer et al., 2020b,
2021).14 For English, the utility of the large model
was not substantially high, and for Chinese, the
large model caused a decrease in accuracy. These
findings suggest that the adapters are able to cap-
ture the patterns in eye-tracking features, without
the need to resort to larger language models. How-
ever, more hyperparameter tuning could be benefi-
cial to explore the capacity of the large models.

F R2 scores

In Table 4, we provide the R2 (coefficient of de-
termination) scores as reported by the shared task
system. The top half lists the results for Subtask 1
and the bottom half for Subtask 2.

13https://huggingface.co/
xlm-roberta-large

14EN: https://adapterhub.ml/adapters/
ukp/xlm-roberta-large-en-wiki_pfeiffer/,
ZH: https://adapterhub.ml/adapters/ukp/
xlm-roberta-large-zh-wiki_pfeiffer/
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Model FFDAvg FFDStd TRTAvg TRTStd R2

RoBERTa + NER 0.6963 0.3437 0.3293 0.2677 0.4093
Language-specific-stack 0.7581 0.3689 0.4868 0.3517 0.4914
First wordpiece-only 0.7506 0.3564 0.4836 0.3362 0.4817

Translate train -13.5708 -3.1490 -6.1914 -5.4032 -7.0786
Translate test - EN (without Provo) -1.0249 -2.3468 -0.8361 -0.7824 -1.2475
Translate test - DE -1.2176 -0.1296 -0.4203 -0.4929 -0.5651

Table 4: R2 scores for the submissions to Subtask 1 and 2.
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