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Introduction

Welcome to the 12th edition of the Workshop on Cognitive Modeling and Computational Linguistics
(eMmcL)!!

CMCL is traditionally the workshop of reference for research at the intersection between Computational
Linguistics and Cognitive Science. This year, for the first time CMCL will be held in hybrid mode:
virtual attendance will still be allowed, given the persistence of the COVID-19 pandemic, while the in-
person meeting will take place in the beautiful Dublin.

This year, we received 20 regular workshop submissions and we accepted 10 of them, for a global
50% acceptance rate. We also received two extended abstracts as non-archival submissions, and both
of them will be presented during the poster session. As in previous years, submissions have been hig-
hly varied across the cognitive sciences, with topics ranging from the relationship between vision and
human linguistic-semantic knowledge, the relationship between eye gaze and self-attention in Transfor-
mer language models, and an account of the game Codenames. Work ranges from deep neural network
approaches to Bayesian cognitive models, learning of phonetic and phonological categories, analyses of
neurolinguistic data, and much more. We are thrilled to continue a workshop with the breadth and depth
that is emblematic of the fields of cognitive science and natural language processing.

Last year, we held a shared task on eye-tracking prediction in a variety of measures. This year, we led
an additional shared task that built on the success of the previous edition. In the second edition of the
shared task on eye-tracking data prediction, this time we included multilingual data from English, Rus-
sian, German, Hindi, Chinese, Dutch and Danish, enabling research teams to try a variety of methods
and language models far beyond prior eye tracking tasks. A total of six teams participated, of which 5
submitted papers describing their systems.

As always, we are extremely grateful to the PC members, without whose efforts we would be unable to
ensure high-quality reviews and high-quality work for presentation at the workshop. We are indebted to
their generosity and are proud of the community that supports CMCL. We also thank our invited spea-
kers, Andrea E Martin and Vera Demberg for kindly accepting our invitation.

Finally, we thank our sponsors: the Japanese Society for the Promotion of Sciences and the Laboratoire
Parole et Langage. Through their generous support, we are able to offer fee waivers to PhD students who

were first authors of accepted papers, and to offset the participation costs of the invited speakers.

The CMCL 2022 Organizing Committee
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Seeing the advantage: visually grounding word embeddings to better
capture human semantic knowledge

Danny Merkx
Radboud University
Nijmegen, The Netherlands
danny.merkx@ru.nl

Abstract

Distributional semantic models capture word-
level meaning that is useful in many natural
language processing tasks and have even been
shown to capture cognitive aspects of word
meaning. The majority of these models are
purely text based, even though the human sen-
sory experience is much richer. In this paper we
create visually grounded word embeddings by
combining English text and images and com-
pare them to popular text-based methods, to see
if visual information allows our model to bet-
ter capture cognitive aspects of word meaning.
Our analysis shows that visually grounded em-
bedding similarities are more predictive of the
human reaction times in a large priming exper-
iment than the purely text-based embeddings.
The visually grounded embeddings also corre-
late well with human word similarity ratings.
Importantly, in both experiments we show that
the grounded embeddings account for a unique
portion of explained variance, even when we
include text-based embeddings trained on huge
corpora. This shows that visual grounding al-
lows our model to capture information that can-
not be extracted using text as the only source
of information.

1 Introduction

Distributional semantic models create word repre-
sentations that quantify word meaning based on the
idea that a word’s meaning depends on the contexts
in which the word appears. Such representations
(also called embeddings) are widely used as the
linguistic input for computational linguistic mod-
els, with research showing that they can account
for response times in lexical decision tasks (Man-
dera et al., 2017; Rotaru et al., 2018; Petilli et al.,
2021), decode brain data (Xu et al., 2016; Abnar
et al., 2018), account for brain activity during text
comprehension (Frank and Willems, 2017), and
correlate with human judgements of word similar-
ity (Kiela et al., 2018; Derby et al., 2018, 2020).

Stefan L. Frank
Radboud University
Nijmegen, The Netherlands
stefan.frank@ru.nl mirjam.ernestus@ru.nl
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Mirjam Ernestus
Radboud University
Nijmegen, The Netherlands

While such embeddings have proven useful, they
are not cognitively plausible as creating high qual-
ity embeddings requires billions of word tokens.
For instance, the GloVe embeddings developed by
Pennington et al. (2014) are trained on 840 bil-
lion words. It would require a human 80 years of
constant reading at about 330 words per second to
digest that much information. Obviously, humans
are able to understand language after much less ex-
posure, and furthermore, their sensory experience
is much richer than solely reading texts.

Embodied cognition theory poses that our con-
ceptual knowledge is based on the entirety of our
sensory experience (Barsalou, 2008; Foglia and
Wilson, 2013). For instance, reading the word dog
elicits sensory experiences we have with dogs, such
as their sound and how they look. Embodied cogni-
tion theory thus assumes that all our sensory experi-
ences contribute to our conceptual knowledge and
processing, which should be reflected in human be-
haviour. Early priming studies have indeed found
that visual similarities can elicit priming effects
(D’ Arcais et al., 1985; Schreuder et al., 1998).

If visual features are part of our conceptual
knowledge, word embeddings incorporating vi-
sual features should be able to explain human be-
havioural data to a degree unattainable by purely
text-based methods (that is, if we assume visual
sensory experiences can never be fully captured
by textual descriptions). That is why recent re-
search has taken an interest in multimodal word
embeddings, combining text with a second source
of information, resulting in visually grounded em-
beddings (VGEs) in the case of visual information.

1.1 Related work

Using image tags as a source of visual context,
Bruni et al. (2013) create visual distributional se-
mantic embeddings and use dimensionality reduc-
tion to map visual and text-based embeddings to the
common VGE space. Derby et al. (2018) combine

Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 1 - 11
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text-based embeddings with the network activa-
tions of an object recognition model and show that
these visual features improve the embeddings’ per-
formance in downstream tasks. Petilli et al. (2021)
use visual embeddings created by an object recog-
nition network, and show that the embedding simi-
larities are predictive of priming effects over and
above text-based similarities.

The studies described above involve separately
trained word and visual embeddings. An end-
to-end approach to combine visual and linguis-
tic information is through a deep neural network
based caption-to-image retrieval (C2I) models (e.g.,
Karpathy and Fei-Fei 2015; Kamper et al. 2017).
While these models are trained to encode images
and corresponding written or spoken captions in a
common embedding space such that relevant cap-
tions can be retrieved given an image and vice
versa, the resulting embeddings have been shown
to capture sentence-level semantics (Chrupata et al.,
2017; Merkx and Frank, 2019; Merkx et al., 2021).
Kiela et al. (2018) showed that pretrained embed-
dings correlated better with human intuition about
word meaning after being fine-tuned as learnable
parameters in their C2I model.

1.2 Current study

In this study we investigate whether VGEs cre-
ated by a C2I model explain human behavioural
data. Our research question is: can VGEs cap-
ture aspects of word meaning that (current) text-
based approaches cannot? To answer this question
we investigate novel end-to-end trained VGEs and
test them on two types of human behavioural data
thought to rely on conceptual/semantic knowledge.
Secondly, we take care to separate the contribution
of the image modality from that of the linguistic in-
formation to see whether visual grounding captures
word properties that cannot be learned by purely
text-based methods. We do this by comparing our
VGE:s to three well-known text-based methods.
Throughout our experiments we will use two
versions of the text-based methods: custom trained
on the same data as our VGEs and pretrained on
large corpora. From a cognitive modelling perspec-
tive, the former of these is more interesting. While
the use of large corpora may not be problematic
for natural language processing applications where
performance comes first, we aim to create cogni-
tively plausible embeddings, that is, from a realistic
amount of linguistic exposure. However, the inclu-

2

sion of pretrained embeddings serves to answer our
main research question.

1.2.1 Semantic similarity judgements

In our first experiment we test whether the VGEs
correlate better with a measure of human intuition
about word meaning than text-based embeddings.
A well-known method to capture human intuition
about word meaning is simply by asking subjects
how similar two words are in meaning. To evaluate
word embeddings, one can then see if embedding
similarities for those word pairs correlate with the
human judgements (e.g., Bruni et al., 2013; Baroni
et al., 2014; Speer and Chin, 2016; Kiela et al.,
2018; Derby et al., 2020).

While the study by Kiela et al. (2018) performed
a similar investigation on pretrained word embed-
dings fine-tuned through their C2I model, they did
not take into account the fact that text might also
contain visual knowledge. It is not unreasonable to
assume that some visual knowledge can be gained
from a large corpus of sentences solely describing
visual scenes. We account for this visual knowl-
edge from text by incorporating word embeddings
trained on the image descriptions in order to in-
vestigate the contribution of the image modality
included in the VGEs.

Collecting word similarity ratings typically in-
volves showing participants two words and asking
them to rate how similar or related their meanings
are, or picking the most related out of several pairs.
Semantic relatedness refers to the strength of the
association between two word meanings. For in-
stance, ‘dog’ and ‘leash’ have a strong relationship
but are not similar in meaning. Semantic similarity
refers to two words sharing semantic properties, for
instance ‘dogs’ and ‘cats’ which are both animals
that people keep as pets (Hill et al., 2015).

1.2.2 Semantic priming

In the second experiment, we test whether our
VGEs are predictive of semantic priming effects
from a large priming experiment (Hutchison et al.,
2013). Semantic priming effects occur when acti-
vation of a semantically related prime word facil-
itates the processing of the target word, resulting
in shorter reaction times. If all our sensory experi-
ences contribute to word meaning, we would expect
visual perceptual properties of the prime-target pair
to influence the response times.

Petilli et al. (2021) performed a similar experi-
ment using visual embeddings derived from acti-



vation features from an object recognition network
and text-based word embeddings. Their results
show that after accounting for the text-based simi-
larity, the visual embedding similarities contribute
to explaining the human reaction times only for
lexical decision trails with a short stimulus onset
asynchrony (SOA), and not for the naming task or
long SOA trials. They attribute this to: 1) the lexi-
cal decision task being more sensitive to semantic
effects than the naming task (Lucas, 2000), and 2)
visual information being activated in early linguis-
tic processing and rapidly decaying (Pecher et al.,
1984; Schreuder et al., 1998). We will further test
these interactions in our own experiment.

2 Methods

In our experiments, we compare the VGEs from
our own model with three well known text-based
distributional semantic models: FastText (Bo-
janowski et al., 2017), Word2Vec (Mikolov et al.,
2013a) and GloVe (Pennington et al., 2014). For
the purpose of this study, we take two approaches:
1) we train our own text-based distributional
models to allow for a fair comparison to the VGEs,
and 2) we use the pretrained models to investigate
whether our VGEs capture semantic information
that even models trained on large text corpora do
not. The code used in this study can be found
at https://github.com/DannyMerkx/
speech2image/tree/CMCL2022

2.1 Training data

MSCOCO is a database intended for training image
recognition, segmentation and captioning models
(Chen et al., 2015). It has 123,287 images and
605,495 written English captions, that is, five cap-
tions paired to each image. Captions were collected
by asking annotators to describe what they saw in
the picture. Five thousand images (25,000 captions)
are reserved as a development set.

The captions are provided in tokenised format.
In order to use them in our models we only de-
capitalised all words and removed the punctuation
at the end of each sentence. This results in a total
of 6,184,656 word tokens and 28,415 unique word
types, to which we add start- and end-of-sentence
tokens for training our visually grounded model.

The images are pre-processed by resizing the im-
ages such that the shortest side is 256 pixels, while
keeping the original aspect ratio. We take ten 224
by 224 crops of the image: one from each corner,

one from the middle and the same five crops for
the mirrored image. We use ResNet-152 (He et al.,
2016) pretrained on ImageNet to extract visual fea-
tures from these ten crops and then average the
features of the ten crops into a single vector with
2,048 features. These features are extracted by re-
moving ResNet’s classification layer and taking the
activations of the penultimate layer.

2.2 Models
2.2.1 Visually grounded model

Our visually grounded model is based on our im-
plementation presented in Merkx and Frank (2019),
and we refer to that paper for the details. Here
we will provide a brief overview of the model, any
differences with Merkx and Frank (2019) and the
parameter settings tested in this study.

The VGE model maps images and their corre-
sponding captions to a common embedding space.
It is trained to make the embeddings for matching
images and captions as similar as possible, and
those for mismatched images and captions dissim-
ilar. The model consists of two parts; an image
embedder and a caption embedder. The image em-
bedder is a single-layer linear projection on top of
the image features extracted with ResNet-152. We
train only the linear projection and do not further
fine-tune ResNet.

The caption embedder consists of a word embed-
ding layer followed by a two-layer bi-directional
recurrent Long Short Term Memory (LSTM) layer
and finally a self-attention layer. The embedding
layer has 300 dimensions and is used to represent
the input words as learnable embeddings. The pur-
pose of the LSTM is to create a contextualised hid-
den state for each time-step (input word). Its first
layer has 1028 hidden units, while its second layer
acts as a bottleneck with 300 hidden units. Finally,
the purpose of the attention layer is to weigh each
time-step in order to create a single fixed-length
embedding for the entire caption. The attention
layer has 128 hidden units.

The image embedder has 2 x 300 dimensions
so that the output matches the size of the caption
embeddings. Both image and caption embedding
are L2 normalised and we take their distance as the
loss signal for the batch hinge loss function (see
Merkx and Frank, 2019). The networks are trained
for 32 epochs using Adam with a cyclic learning
rate schedule based on Smith (2017), which varies
the learning rate smoothly between 10~ and 1075,



The obvious way to extract word embeddings
from the trained model would be to use the trained
weights of the embedding layer. Unlike for instance
in GloVe, where each word’s embedding is based
on its full co-occurrence distribution, these embed-
dings are not trained specifically to capture word
context or meaning and they are not necessarily
the best word embeddings. However, our initial
tests showed that they performed very poorly as
semantic embeddings when trained from a random
initialisation !. Rather than taking the input em-
beddings we create our own embeddings from the
hidden representations of the model.

We create our VGEs from the hidden activations
of the bottleneck LSTM layer. We use the trained
caption encoder to encode all training sentences in
MSCOCO. However, we remove the attention layer
that creates the sentence embedding and we retain
the individual activations of the LSTM at each time
step. As the word representations in this layer can
be used to create semantic sentence embeddings
that capture human intuition about sentence mean-
ing (as we showed for instance in Merkx and Frank,
2019 and Merkx et al., 2021), we expect these rep-
resentations to better capture word meaning than
the input embeddings.

The embedding for each word is then created by
summing and normalising its LSTM layer activa-
tions from all its occurrences in the dataset. As
opposed to Merkx and Frank (2019), where we
used a single recurrent layer and found no further
benefit of additional layers in terms of sentence
embedding quality, we found that the quality of our
VGEs improves when we use a two-layer LSTM,
with the second layer acting as a bottleneck from
which we derive the embeddings.

2.2.2 Text-based models

The text-based distributional models are trained on
the MSCOCO captions. We train Word2Vec and
FastText using the Gensim package (Rehiifek and
Sojka, 2010). We train GloVe using the code that
Pennington et al. (2014) made publicly available?.

Word2Vec and FastText were trained as the Skip-
gram variant with embedding size 300, a context
window of 10 and 10 negative samples. GloVe
was trained with embedding size 300 and a context
window of 10. All resulting word embeddings are

'Kiela et al. (2018) were able to use the input embeddings
because they were initialised using pretrained embeddings.

https://nlp.stanford.edu/projects/
glove/

Table 1: Description of the word similarity/relatedness
evaluation datasets. #available is the number of word
pairs included in the evaluation. Type indicates whether
the dataset captures similarity or relatedness. NA in-
dicates subjects were not specifically instructed on the
difference.

Dataset #word-pairs #available type
WordSim353 353 240 NA
WordSim-S 203 147 Similarity
WordSim-R 252 166 Relatedness
SimLex999 999 793 Similarity
-SimLex999 Q1 249 141 Similarity
-SimLex999 Q4 250 249 Similarity
MEN 3000 2889 Relatedness
RareWords 2034 204 NA

then L2 normalised.

In addition, we use the following pretrained
vectors (all 300 dimensional): Word2Vec trained
on 100 billion tokens of the Google News corpus
(Mikolov et al., 2013b), FastText trained on 600
billion tokens of Common Crawl (Mikolov et al.,
2018) and GloVe trained on 840 billion tokens of
Common Crawl (Pennington et al., 2014).

2.3 Evaluation data

2.3.1 Semantic similarity judgements

We include both semantic relatedness and similar-
ity datasets in our analysis. It has been argued that
subjects’ intuitive understanding of similarity is not
necessarily in line with the ‘scientific’ notions of
similarity and relatedness explained in the intro-
duction (Hill et al., 2015). Thus, if subject are not
clearly instructed on these notions of similarity or
relatedness, we consider the nature of the dataset
undefined.

The WordSim353 dataset by Finkelstein et al.
(2002) contains 353 word pairs annotated with sim-
ilarity ratings. While the name suggests it is a simi-
larity rating dataset, more recent studies consider
it a hybrid dataset, as subjects were not specif-
ically instructed to judge relatedness or similar-
ity. In a later study by Agirre et al. (2009), the
WordSim353 data was split into similar and re-
lated pairs by annotating the word pairs. WordSim-
S (similar) contains word pairs annotated as be-
ing synonyms, antonyms, identical, or hyponym-
hyperonym. WordSim-R (related) contains word
pairs annotated as being meronym-holonym, and
pairs with none of the above relationships but with
a similarity score greater than 5 (out of 10). Both
sets contain all unrelated words (words not anno-
tated with any of the above relationships and a



similarity lower than 5).

SimLex999 was created with the caveats of the
original WordSim353 in mind in order to create a
dataset of 999 word pairs annotated for similarity
rather than relatedness (Hill et al., 2015). Sim-
Lex999 furthermore contains concreteness ratings
for the word pairs. Hill et al. (2015) divided the
the dataset into concreteness quartiles based on the
sum of the concreteness ratings for each pair. Using
these quartiles we also look at the 25% most con-
crete word pairs versus the 25% most abstract pairs
in the dataset, of course expecting our grounded
model to perform best on the concrete words.

MEN contains 3000 word pairs annotated for
semantic relatedness (Bruni et al., 2013). Ratings
were collected by showing subjects two word pairs
and asking them to select the most related one.
MEN was specifically collected to test multi-modal
models, by selecting only words that have a visual
referent that appeared in a large image database.

The RareWords dataset contains 2034 word
pairs, where at least one word of each pair has
a low frequency in Wikipedia (Luong et al., 2013).
Modelling low-frequency words is a challenge for
many models of distributional semantics.

Not all of the words in these databases are avail-
able in our training data and thus some will not have
a word embedding. Table 1 contains an overview
of the datasets described here and the number of
word pairs that could be entered in our evaluations.

2.3.2 Semantic priming

The Semantic Priming Project (SPP) dataset
(Hutchison et al., 2013) contains lexical decision
times and naming times from a large priming ex-
periment. The database is large for its kind, with
1,661 target words (and 1,661 non-words for the
lexical decision task), each paired with a strong
and weak prime and two unrelated primes. Further-
more, each prime-target pair was presented with
a short (200ms) and a long (1200ms) SOA. Ev-
ery combination of prime-target and SOA received
responses from 32 subjects.

This gives us 26,576 (1661 target words x 4
priming conditions x 2 SOAs x 2 tasks) trials
(disregarding the non-word word trials). We pre-
processed the data by removing target words that
mistakenly had more or fewer than the required
four primes, trials with erroneous responses and
missing data. We also lowered any capitals in
the prime and target words, averaged the response
times over the 32 subjects, and removed any prime-

target pair that did not occur in our training data,
resulting in 18,326 datapoints.

2.4 Analysis

2.4.1 Semantic similarity judgements

To test whether the word embedding models cap-
ture human intuitions on word similarity, we use
the models to calculate embedding cosine similari-
ties for each word pair and correlate them with the
human annotations. From the correlations r we de-
rive R? values, that is, the percentage of variance in
the human similarity judgements that is explained
by the model similarity scores. This allows us to
evaluate our custom trained word embeddings to
see which method best extracts word-level seman-
tics from the MSCOCO dataset.

Next, we also compute semi-partial correlations
between the human annotations and our VGE
model using each of the text-based models as
a control. Simply put, the semi-partial correla-
tion between the VGE similarities and human an-
notations removes the effect of the control (i.e.,
text-based similarities) from the VGE similarities.
Semi-partial R? gives us the percentage of variance
that is uniquely explained by the VGE similarities.
Given that all models are trained on the same tex-
tual data, with only the VGEs having access to the
visual modality, this allows us to see whether visual
grounding captures information that the text-based
methods do not.

Finally we also test the semi-partial correlations
using the pretrained embeddings as a control. For
each pretrained model we also add in its custom
MSCOCO-trained equivalent as a control, to take
into account the information that text-based models
can extract from the MSCOCO captions.

2.4.2 Semantic priming

Using linear regression models, we analyse how
well embedding similarities predict human (log-
transformed) reaction times in the SPP data using
the Statsmodels package in Python (Seabold and
Perktold, 2010). We code SOA and Task as factor
variables. The reaction times are not on the same
scale due to differences in the required response
for the lexical decision and naming tasks so we
standardise the log-transformed reaction time data
separately for each combination of SOA and Task.
This removes the main effects of SOA and Task
but we include them in the regression as we are
interested in their interactions with the similarity
measures.



We fit a baseline regression including the target
length (number of characters), Task and SOA as
regressors. We furthermore include several regres-
sors based on SUBTLEX-US (Brysbaert and New,
2009): log-transformed word-frequency counts,
contextual diversity (the number of SUBTLEX-US
documents a word appears in) and the orthographic
neighbourhood density (the number of SUBTLEX-
US words that are one character edit away) for the
target words.

Next, for each of our embedding models, we
include the prime-target embedding similarities as
a regressor to the baseline model. We also add
two two-way interactions to test the claims made in
Petilli et al. (2021): 1) the interaction between the
embedding similarities and Task to test the differ-
ence between lexical decision and naming in terms
of sensitivity to semantic effects and 2) the interac-
tion between the embedding similarities and SOA
to test their claim about the time-frame in which
visual information plays a role. These regression
models allow us to compare the word embedding
models to each other and to the baseline using the
Akaike Information Criterion (AIC), where a lower
AIC indicates a better model fit.

We also test if our VGEs can explain variance in
the human reaction times that the text-based meth-
ods do not. We do this by refitting the regression
models for each of the text-based similarity mea-
sures and adding the VGE similarity measures and
their interactions with Task and SOA as extra re-
gressors. For each of these regressions we then
calculate the log-likelihood ratio (LLR) with the
corresponding regression without the VGEs, indi-
cating the decrease in model deviance due to adding
the VGE similarity measures. Higher LLRs indi-
cate a larger contribution of the VGEs to explaining
variance in the human response times beyond what
the text-based embedding similarities explain. Be-
cause the LLR follows a x? distribution, we can
test whether including the VGEs significantly im-
proves the regression model.

We apply a similar approach to the pretrained
text-based embeddings, but we also want to account
for the information that text-based embedding mod-
els can extract from the MSCOCO captions. We do
this by fitting a regression model as in the previous
step except that we include both the pretrained and
MSCOCO trained embeddings and their interac-
tions with SOA and Task. We then follow the same
procedure as described above by adding the VGE
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similarities and calculate LLRs to see if adding
VGEs improves the regression fit.

3 Results

3.1 Semantic similarity judgements

Figure 1 shows the R? (explained variance) based
on the Pearson correlation coefficients between the
human similarity annotations and the embedding
similarities. On top of the text-based R? values, we
display the semi-partial R? of the VGEs using the
text-based model as control. As total explained
variance equals the semi-partial R? plus R? of
the control(s), this clearly visualises both the total
amount of explained variance and the amount of ex-
tra variance that is uniquely explained by the VGEs.
All Pearson correlations were positive, as expected,
except for two non-significant semi-partial correla-
tions which are therefore not included in the figure.

For the MSCOCO models (left panel) we see that
while GloVe has the worst performance on each
dataset, there is no single best model. Furthermore,
while the VGEs are outperformed by FastText and
Word2Vec on SimLex999, we see that VGE per-
forms best on the most concrete words (Q4) in
SimLex999. A bit surprising then, is that VGE is
outperformed by FastText and Word2Vec on MEN,
which contains solely picturable nouns.

Looking at the semi-partial R2, that is, the extra
variance explained by the VGEs after controlling
for one of the other embedding models, we see
that for nearly every dataset and every model, the
VGE:s explain a significant portion of variance that
is not explained by the text-based models. This is
not very surprising on WordSim, where the VGEs
were the best performing embeddings by quite a
margin. However, we also see that even though the
VGEs are outperformed by FastText and Word2Vec
on MEN, they still explain a large extra portion of
variance even though the R? for these models was
already quite high.

Lastly, the pretrained models (right panel) out-
perform the MSCOCO models. This was expected,
as the used training data is several orders of mag-
nitude larger than MSCOCO. However, the semi-
partial correlations still show that the VGEs ex-
plain a significant portion of extra variance on Sim-
Lex999 Q4 and MEN.

3.2 Semantic priming

The AAIC scores in Table 2 show that all word
embedding models trained on MSCOCO improve
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Figure 1: The coloured bars indicate the R? scores of the four word embedding models. The grey-scale bars
on top of the R? scores of the text-based models indicate the semi-partial R? scores and their significance
(xp < .05, % x p < .01, % % xp < .001, corrected using the Benjamini and Hochberg (1995) procedure with a false
discovery rate of 0.05) of the VGEs after controlling for the variance explained by that text-based model. Left panel:
models trained on MSCOCO. Right panel: pretrained text-based models.

Table 2: AIC comparison of regression models (lower
is better). A indicates the difference in AIC compared
to the VGE model or the Baseline model. § indicates
the coefficient of the embedding similarity main effect
(lower is better) and its significance.

Table 3: LLRs between regression models with the in-
dicated text-based similarity measures and the same
model with the VGE similarities as extra regressors. 3
VGE are the regression coefficients for the VGE simi-
larities in each model. Higher LLRs indicate a larger
improvement in model quality due to adding the VGEs.

Model AIC AVGE ABaseline /3

VGE 46997.55 — —211.04 —.67%%* MSCOCO + Pretrained

FastText 47101.90 104.35 —106.86 —.54%** LLR BVGE LLR B8 VGE

GloVe 47163.70  166.15 —44.88 —.20%* Word2Vec | 193.72%%%  _ J7¥%% 9. 72%%*  — AQk**

Word2Vec | 47184.45 186.90 —24.13 —.22%* FastText 111.46%**  — 63%*% 47 32%k*  _ gD%**

Baseline 47208.58 211.03 —_ — GloVe 168.34%**  _ J2%¥%k 40 B(k**  _ 3oH*E
the regression fit above the baseline. The embed- ~ SOA.

ding similarity effects were all negative, that is, a
higher similarity correctly predicts a lower reaction
time. We furthermore see that the VGE-derived
similarity measures result in the best model fit by

quite a margin, as evidenced by the AIC scores and
effect size.

We also find significant interactions between
Task and the embedding similarities for the VGE
(8 = 0.201, P = 0.009) and FastText regression
models (5 = 0.197, P = 0.027), meaning that the
effect of embedding similarity is stronger for the
lexical decision task. We find no significant in-
teractions between the embedding similarities and
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Table 3 shows the LLRs between regression
models including the (pretrained) text-based and
our VGE word similarity measures and the cor-
responding model including only the text-based
measures. We see that our VGEs significantly im-
prove the regression fit for every type of text-based
method, even when we include both the pretrained
and MSCOCO text-based measures. The coeffi-
cients of the VGE effects in these models are all
positive, meaning a higher VGE similarity predicts
a lower reaction time.

In the regression models including the VGEs and
the MSCOCO text-based embeddings we found



significant interactions between the VGE similar-
ities and Task in the regression models that also
include Word2Vec (8 = 0.239, P = 0.007) or
GloVe (8 = 0.234, P = 0.01) and no other inter-
actions with Task or SOA.

Lastly, in the regression models including the
VGEs and both pretrained and MSCOCO text-
based embeddings, we find significant interactions
with Task for Word2Vec (5 = 0.312, P < 0.001),
FastText (8 = 0.297, P = 0.001) and GloVe
(8 = 0.443, P < 0.001) vectors, and none for
the VGEs.

4 Discussion

We created Visually Grounded Embeddings using
a caption-image retrieval model in order to test if
these embeddings can capture information about
word meaning that text-based approaches cannot.
Importantly, by testing our VGEs on human be-
havioural measures typically thought to rely on
conceptual/semantic knowledge, we test a central
idea of embodied cognition theory, namely that
our visual experiences contribute to our conceptual
knowledge.

4.1 Semantic similarity judgements

Our first experiment showed that, when trained on
the same corpus, our VGEs are on par with text-
based methods. While there is no clear overall
best method, the VGEs perform well on WordSim
and, as might be expected, on the datasets with
concrete picturable nouns. Even though the text-
based methods outperform the VGEs on one of
these (MEN), the VGE:s still explain a significant
amount of extra variance over and above what is ex-
plained by the text-based methods. This indicates
that the text-based embeddings and VGEs capture
non-overlapping conceptual knowledge, which we
attribute to the visual grounding of the VGEs, given
that the training materials were otherwise equal.

The only database where the VGEs performed
notably worse than the text-based methods was
RareWords. This is perhaps because during train-
ing, the VGEs are grounded in the image corre-
sponding to the text input, even if not all words
in the sentence are visible in the picture. As the
words in RareWords are generally not picturable
nouns, any visual information incorporated into the
word-embedding is unlikely to be helpful, or, as
evidenced by the results, counterproductive.

We furthermore found that our VGEs explain

additional variance in the human similarity ratings
even after accounting for both the MSCOCO text-
based models and pretrained models trained on
massive text corpora. The fact that the VGEs ex-
plain a significant amount of extra variance even
after the text-based models have seen billions of
tokens of text, suggests that some aspects of word
meaning cannot be captured solely from text and as
well as that visual similarity plays a role in human
intuition about word meaning.

4.2 Semantic priming

In our second experiment, the VGEs outperformed
the text-based methods on explaining human reac-
tion times from the Semantic Priming Project. Even
after we account for both the MSCOCO text-based
models and pretrained models in our regression, the
VGE:s still explain a significant amount of variance
in the reaction times.

In previous work, Petilli et al. (2021) only found
a significant contribution of visual information in
the short SOA lexical decision task. We found no
further proof for their hypothesis that visual infor-
mation is activated in early linguistic processing
and thereafter rapidly decays. Rather, we find that
our VGEs improve the model quality for both short
and long SOA trials.

We did find a significant positive interaction with
Task, meaning that the word embeddings explain
less variance in the naming task than in the lexical
decision task. This interaction was not specific to
the VGEs but also occurred in the models including
FastText and for all the pretrained embeddings. As
claimed in Petilli et al. (2021) and Lucas (2000)
this suggests that naming tasks are in general less
sensitive to semantic effects.

5 Conclusion

We set out to test an end-to-end approach to com-
bining visual and textual input in a single embed-
ding, trained on a cognitively plausible amount of
data. The results from our two experiments suggest
that VGEs capture aspects of word meaning that
text-based approaches cannot. Even though we in-
clude word embeddings trained on corpora several
orders of magnitude greater than any human’s ex-
posure to language, our VGEs still explain a unique
portion of variance in both human behavioural mea-
sures.

While our results indicate that visual grounding
can provide complementary information for certain



words, it may not play a role in our conceptual
knowledge of rare, abstract words, as shown by our
results on the RareWords corpus. Similar to Petilli
et al. (2021) this then does not support the strongest
formulations of embodied cognition theory which
suggest total equivalence between conceptual and
sensorimotor processing (Glenberg, 2015).

Of course, one could always claim that it is just
current word-embedding models that do not fully
capture word meaning yet. However, given that
VGE:s trained on a relatively small amount of vi-
sual data can complement text-based embeddings,
we do not think even larger text-corpora or more
complex embedding models can ever fully capture
human semantic knowledge. The human experi-
ence is rich and varied, and our computational mod-
els can never fully capture human word knowledge
while ignoring visual aspects of this experience.
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Abstract

We propose a new neural model for word em-
beddings, which uses Unitary Matrices as the
primary device for encoding lexical informa-
tion. It uses simple matrix multiplication to de-
rive matrices for large units, yielding a sentence
processing model that is strictly compositional,
does not lose information over time steps, and
is transparent, in the sense that word embed-
dings can be analysed regardless of context.
This model does not employ activation func-
tions, and so the network is fully accessible
to analysis by the methods of linear algebra at
each point in its operation on an input sequence.
We test it in two NLP agreement tasks and ob-
tain rule like perfect accuracy, with greater sta-
bility than current state-of-the-art systems. Our
proposed model goes some way towards offer-
ing a class of computationally powerful deep
learning systems that can be fully understood
and compared to human cognitive processes for
natural language learning and representation.

1 Introduction

The word embeddings that deep neural networks
(DNNs) learn are encoded as vectors. The vari-
ous dimensions of the vectors correspond to distri-
butional properties of words, as measured in cor-
pora. Combining word embeddings into phrasal
and sentence vectors can be achieved through vari-
ous means, often through task-specific models with
many parameters of their own, optimised by gradi-
ent descent.

In this paper we use unitary matrices in place
of arbitrary vector embeddings. Arjovsky et al.
(2016) propose Unitary-Evolution Recurrent Neu-
ral Networks (URNs), to eliminate exploding or
vanishing gradients in gradient descent. By the
definition of unitary-evolution, at each step, a uni-
tary transformation is applied to the state of the
RNN. This means that each input symbol is inter-
preted as a unitary transformation, or equivalently
as a unitary matrix. No activation functions are
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applied between the time-steps. This design pro-
vides a lightweight DNN, with several attractive
mathematical and computational properties. URNs
are strictly compositional. The effect of embed-
dings can be analysed independently of context.
Therefore the model is transparent, in the sense
that it can be analysed by direct inspection, rather
than through black box testing methods. So, for
example, researchers are forced to resort to probe
techniques (Hewitt and Manning, 2019) to ascer-
tain the syntactic structure which transformers and
other DNNs represent.

Because of the reversibility of unitary trans-
formations, long distance dependency relations
can, in principle, be reliably and efficiently recog-
nised, without additional special-purpose machin-
ery of the kind required in an LSTM. This has
been demonstrated to hold for copying and adding
tasks (Arjovsky et al., 2016; Jing et al., 2017;
Vorontsov et al., 2017) (See also section 6.4).

Here we view the unitary matrices learned by
a URN as word embeddings. Doing so gives a
richer structure to embeddings, with computational
and formal advantages that are absent from the
traditional vector format that dominates current
work in deep learning.

We demonstrate these advantages by applying
the URN architecture to two tasks: (i) bracket
matching in a generalised Dyck language, and (ii)
the more challenging task of subject-verb number
agreement in English. These experiments confirm
the long-distance capabilities of URNS, even on a
linguistically interesting and difficult task.

The richer structure of unitary embeddings per-
mits us to measure the relative effects and distances
of different words and phrases. We illustrate the
application of such metrics for both experiments.

In section 2 we describe the design of the URN,
and our implementation of it. Sections 4 and 5
present our experiments and their results, leverag-
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ing the theory presented in section 3. We discuss
related work in section 6, and we draw conclusions
and sketch future work in section 7.

The computational perspicuity of URNs allows
them to be compared to psychologically and neu-
rologically attested models of human learning and
representation. Most deep neural networks, partic-
ularly powerful transformers, use non-linear activa-
tion functions which render their operation opaque
and difficult to understand. By contrast, the com-
putations of an URN are explicitly given as simple
matrix multiplications, and they are open to inspec-
tion at each point in the processing sequence.

2 Models

In its full generality, a recurrent network is a func-
tion from an input state vector sy and a sequence
of input vectors x;, such that the state at each time-
step is a function of the state at the previous step
and the input at that step: s;+1 = f(z;, ;). The
function f is constant across steps, and it is called
a “cell” of the network.

Since the simple recurrent networks of Elman
(1990), the dominant architectures of RNNs, in-
cluding the influential LSTM (Hochreiter and
Schmidhuber, 1997), use non-linear activation
functions (sigmoid, tanh, ReLU) at each time-
step. Transformer models, like BERT, are even
more opaque in their operations, due the their re-
liance on a large number of attention heads that ap-
ply non-linear functions at each level. By contrast
our URNSs invoke only linear cells. In fact, the cell
that we use is a linear transformation of the unitary
space,’ so that it takes unit state vectors to unit state
vectors, hence the term “unitary-evolution”. Ex-
pressed as an equation, we have f(x,s) = Q(z)s,
where Q)(z) is unitary. Therefore, only state vec-
tors s; of norm 1 play a role in URNS.

In our implementation of the URN architecture
we limit ourselves to real numbers, and so Q(z)
is properly described as an orthogonal matrix. We
follow this terminology in what follows.

Let n be the dimension of the state vectors s;,
and N the length of the sequence of inputs. We
will consider only the case of n even. In all our
experiments, we take sq to be the vector [1,0,...]
without loss of generality. For predictions, we ex-
tract a probability distribution from state vectors

'The code and relevant linear algebra proofs for our model
is available at https://github.com/GU-CLASP/

unitary-recurrent-network.
The subspace of vectors of unit norm
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by applying a dense layer with softmax activation
to each s;.

We need to ensure that Q(x) is (and remains)
orthogonal when it is subjected to gradient descent.
In general, subtracting a gradient to an orthogonal
matrix does not preserve orthogonality of the ma-
trix. So we cannot make ()(x) a simple lookup ta-
ble from symbol to orthogonal matrix without addi-
tional restrictions. While one could project the ma-
trix onto an orthogonal space (Wisdom et al., 2016;
Kiani et al., 2022), our solution is to use a lookup
table mapping each word to a skew-hermitian ma-
trix S(z).> We follow Hyland and Riitsch (2017)
in doing this. We then let Q(z) = %), which
ensures the orthogonality of Q(x). It is not difficult
to ensure that S(z) is skew-symmetric. It suffices
to store only the elements of S(x) above the diago-
nal, and let those below it be their anti-symmetric
image, while the diagonal is set at zero.

Another important issue is that the number of
parameters in S(x) grows with the square of n.
This would entail that doubling a model’s power
requires quadrupling the number of its parameters.
To remedy this problem we limit ourselves to ma-
trices S(x) which have non-zero entries only on
the first k rows (and consequently £ columns). In
this way we limit the total size of the embedding to
(n—=1)4+(Mn—-2)+---+(n—k+1),due to the
constraint of symmetry. Consequently, S(z) has
at most rank 2k. Below, we refer to this setup as
consisting of truncated embeddings.
<:Z _0C (c)) is 1-truncated if ¢ = 0. This truncation
reduces its informational content to the single row
(and column) (a b).

As an example, the 3 x3 skew-symmetric matrix
0 ab

We use the acronym URN to refer to the gen-
eral class of unitary-evolution networks, k-TURN
to refer to our specific model architecture with k-
truncation of embeddings (fig. 1), and Full-URN
for our model architecture with no truncation.

We employ a standard training regime for our
experiments. We apply a dropout function on both
inputs of f, so that some entries of s; or Q(z;) will
be zeroed out according to a Bernoulli distribution

3 A matrix S is skew-symmetric iff ST = —S. Here, we
rely on the the property that the exponential of any skew-
symmetric matrix is orthogonal . The mathematical tools that
we employ are standard (Gantmacher, 1959). The key results
and their proofs are available at https://github.com/
GU-CLASP/unitary-recurrent—-network/blob/
main/proofs.pdf.
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Figure 1: TURN architecture. Each input symbol z;
indexes an embedding layer, yielding a skew-symmetric
matrix S(z;). Taking its exponential yields an orthog-
onal matrix Q(z;). Multiplying the state s; by Q(x;)
yields the next state, s;1.

of rate p.* The embeddings are optimised by means
of the Adam gradient descent algorithm (Kingma
and Ba, 2014), with no further adjustment. Our
implementation uses the TensorFlow (Abadi et al.,
2016) framework (version 2.2), including its imple-
mentation of matrix exponential.

3 Properties of Orthogonal Embeddings

The absence of activation functions in the URN
make it more amenable to theoretical analysis than
the general class of RNNs with activation functions,
including LSTMs and GRUs. The key feature of
this design is that the behaviour of the cell is en-
tirely defined by the matrix Q(z), the orthogonal
embedding of z. The cell only multiplies by word
embeddings, and we can focus solely on those em-
beddings to understand the model.

Since the work of Mikolov et al. (2013), vector
embeddings have proven to be an extremely suc-
cessful modelling tool. However, their structure is
opaque. The only way of analysing their relations
is through geometric distance metrics like cosine
similarity. The unit vectors u and v are deemed
similar if (u, v) is close to 1. Here we work with or-
thogonal matrix embeddings, which exhibit much
richer structure. We use mathematical analysis to
get a better sense of this structure, and relate it to
vector embeddings.

“Bven though we follow this regime to be standard, experi-

ments indicate that dropout rates appear not critical when we
restrict transformations to be unitary.
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Composition of Embeddings A decisive bene-
fit of unitary (and orthogonal) matrix embeddings
is that they form a group. We can obtain the in-
verse of a word embedding simply by transpos-
ing it: Q(z)~! = Q(x)T. We can also com-
pose two embeddings to obtain an embedding
for the composition. Thanks to the associativ-
ity of multiplication, we have f(x1, f(zo, o)) =
Qz1)(Q(x0)s0) = (Q(x1) X Q(x0))s0. So, we
can define the embedding of any sequence as
Q(a:gac,) Q(l’z) X Q(xi_l) X oo X Q(JZ())
Using this notation, the final state of an URN is
Q(zo...zN—1)s0. Hence, the URN is composi-
tional by design.’

It is important to recognise that compositionality
is strictly a consequence of the structure of a URN.
It follows directly from the use of unitary matrix
multiplication, through which the successive states
in the RNN’s processing sequence are computed,
without activation functions, It is not necessary to
demonstrate this result experimentally, since it is
a formal consequence of the associativity of or-
thogonal matrix multiplication, as shown above.
Because URNSs do not incorporate additional non-
linear activation functions, a simple matrix is al-
ways sufficient to express any combination of word
and phrasal embeddings.

Distance and Similarity For vector embeddings,
one often uses cosine similarity as a metric of prox-
imity. With unit vectors, this cosine similarity
is equal to the inner product (u,v) = ). u;v;.
In unitary space, it is equivalent to working with
euclidean distance squared, because ||u — v||* =
2(1 — (u,v)).

Notions of vector similarity and distance can
be naturally extended to matrices. The Frobenius
inner product (P, Q) = X;;P;;Q;; extends co-
sine similarity, and the Frobenius norm HAH2 =
> j Afj extends euclidean norm. Furthermore, for
orthogonal matrices they relate in an analogous
way to unit vectors: | P — Q||> = 2(n — (P, Q)).

Why is the Frobenius norm a natural extension
of cosine similarity for vectors? It is not merely
due to the similarity of the respective formulas.

>One might expect that the composition of embeddings
can be done at the level of skew-symmetric embeddings:
S(zox1) = S(zo) + S(x1). However, this will not work.
The law e50+51 = ¢50¢51 holds only when So and S; com-
mute, which is, in general, not true in our setup. This non-
commutativity makes it possible to obtain, by composition,
embeddings of higher rank, by which way we make use of all
the dimensions of the orthogonal group.



The connection is deeper. A crucial property of the
Frobenius inner product (and associated norm) is
that it measures the average behaviour of orthogo-
nal matrices on state vectors. More precisely, the
following holds: E,[(Ps,Qs)] = 1(P,Q) , and
E,[[|Ps — Qs||] = L||P — Q|*. In sum, as a fall-
back, one can analyse unitary embeddings using
the methods developed for plain vector embeddings.
Doing so is theoretically sound. Together with the
fact that matrix embeddings can be composed, it
means that one can analyse the distances between
phrases.

Average Effect A useful metric for unitary em-
beddings is the squared distance to the identity
matrix, ||Q — I||®>. By the above result, it is the
average squared distance between s and Qs — es-
sentially, the average effect that () has, relative
to the task for which the URN is trained. Note
that this sort of metric is unavailable when using
opaque vector embeddings. In particular, the norm
of a vector embedding is not directly interpretable
as a measure of its effect. In the case of an LSTM,
for example, vector embeddings first undergo linear
transformations followed by activation functions,
before effecting the state, in several separate stages.

Signature of Embeddings While the average ef-
fect is a useful measure, it is rather crude. Averag-
ing over random state vectors considers all features
as equivalent. But we might be interested in the
effect of () along specific dimensions, measured
separately.

For this purpose, it is useful to note that any or-
thogonal matrix () can be decomposed as the effect
of n/2 independent rotations, in n/2 orthogonal
planes. The angles of these rotations define how
strongly @) effects the state vectors lying in this
plane. We refer to such a list of angles as the sig-
nature of (), and we denote it as sig(()). When
displaying a signature, we omit any zero angle.
This is useful because a k-truncated embedding
has at most k& non-zero angles in its signature. Non-
zero angles will be represented graphically as a
dial, with small angles pointing up (J), and large
angles pointing down ().

4 Natural Language Agreement Task

It may seem that the extreme simplicity of the
TURN architecture renders it unsuitable for any
non-trivial processing task. In fact, this is not at all
the case.
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Figure 2: Accuracy per number of attractors for the
verb number agreement task. Linzen et al. (2016) do
not report performance of their LSTM past 4 attractors.
Error bars represent binomial 95% confidence intervals.

Our first experiment applies a TURN to a natural
language agreement task proposed by Linzen et al.
(2016). This task is to predict the number of third
person verbs in English text, with supervised train-
ing. In the phrase “The keys to the cabinet are on
the table”, the RNN is trained to predict the plural
“are” rather than the singular “is”.

The training data is composed of 1.7 million sen-
tences with a selected subject-verb pair, extracted
from Wikipedia. The vocabulary size is 50,000,
and out-of-vocabulary tokens are replaced by their
part-of-speech tag. Training is performed for ten
epochs, with a learning rate of 0.01, and a dropout
rate of p = 0.05. We use 90% of the data for
training and 10% for validation and testing. A de-
velopment subset is not necessary since no effort
was made to tune hyperparameters. Our first experi-
ment proved sufficient to illustrate our main claims.
In any case, a TURN has few hyperparameters to
optimise.

Linzen et al. (2016) point out that solving the
agreement task requires knowledge of hierarchical
syntactic structure. That is, if an RNN captures
the long-distance dependencies involved in agree-
ment relations, it cannot rely solely on the linear
sequence of nouns (in particular their number in-
flections) preceding the predicted verb in a sen-
tence. In particular, the accuracy must be sustained
as the number attractors increases. An attractor is
defined as a noun occurring between the subject
and the verb which additionally exhibits the wrong
number feature required to control the verb. In the
above example sentence, “cabinet” is an attractor.

Figure 2 shows the results for a 50-unit TURN



word effect | word effect | word effect
. 0.22 an 3.70 for 4.62
the 1.44 as 3.76 in 4.62
his 1.47 he 3.95 | have 4.62
its 2.17 | had 3.95 | who 4.68
also 2.27 to 3.96 | were 4.88
their  2.54 a 4.06 | that 5.00
not 2.73 of 4.09 | was 5.55
been 2.82 | from  4.09 ( 5.68
at 3.40 i 4.11 ) 5.74
or 3.46 it 4.14 are 6.25
by 3.50 | and 4.18 but 6.27
one 3.54 | on 4.33 is 6.38
this 3.62 | with 4.36 | which  7.75
be 3.65 | has 4.41 , 8.35

Table 1: Table of average effects for agreement experi-
ment for the most frequent tokens in the corpus, ordered
by average effect, from least to greatest

with 3-truncated embeddings for the agreement
task, for up to 12 attractors. We see that the TURN
“solves” this task, with error rates well under one
percent. Crucially, there is no evidence of accu-
racy dropping as the number of attractors increases.
Even though the statistical uncertainty increases
with the number of attractors, due to decreasing
numbers of examples, the TURN makes no mis-
takes for the higher number of attractor cases.

4.1 Average effect

In this section we illustrate the notion of average
effect developed in 3, for this task.

We report the average effect for the embeddings
of the most common words in the dataset (table 1),
and other selected words and phrases obtained by
composition. We stress that this is not done by
measuring the average effect on the data set; but
rather using the formula |Q — I||* for each unitary
embedding (). Looking at the table of effects for
these words and phrases (ordered from smallest to
largest effect) confirms the analysis of 3: tokens
which are relevant to the task (e.g. verbs, relative
pronouns) generally have a larger effect than those
which are not (e.g. the dot, “not™).

We also computed the distance between pairs of
the most frequent nouns, with both singular and
plural inflections (table 2). We observe, as our
account predicts, that nouns with the same number
inflection tend to be grouped (with a distance of 7.5
or less between them), while nouns with differing
numbers are further apart (with a distance of 7.5 or
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more).

5 Dyck-language modelling task

To evaluate the theoretical long-distance modelling
capabilities of an RNN in a way that abstracts
away from the noise in natural language, one
can construct synthetic data. Following Bernardy
(2018) we use a (generalised) Dyck language. This
language is composed solely of matching paren-
thesis pairs. So the strings “{ ([]) }<>" and
“{ () [<>]}” are part of the language, while “[ }”
is not. This experiment is an idealised version
of the agreement task, where opening parentheses
correspond to subjects, and closing parentheses to
verbs. An attractor is an opening parenthesis oc-
curring between the pair, but of a different kind.
Matching of parentheses corresponds to agreement.
Because we use five distinct kinds of parentheses,
the majority class baseline is at 20%. This makes
it easier to evaluate the performance of a model on
the matching task than for the third person agree-
ment task, where the majority class baseline for the
training corpus is above 70%.

We complicate the matching task with an addi-
tional difficulty. We vary the nesting depth be-
tween training and test phases. The depth of
the string is the maximum nesting level reached
within it. For instance “[ { } ] has depth 2, while
“{ ([ ()1<>)}” has depth 4. In this task, we use
strings with a length of exactly 20 characters. We
train on 102,400 randomly generated strings, with
maximum depth 3, and test it on 5120 random
strings of maximum depth 10. Training is per-
formed with a learning rate of 0.01, and a dropout
rate of p = 0.05, for 100 epochs.

The training phase treats the URN as a genera-
tive language model, applying a cross-entropy loss
function at each position in the string. At test time,
we evaluate the model’s ability to predict the right
kind of closing parenthesis at each point (this is
the equivalent of predicting the number of a verb).
We ignore predictions regarding opening parenthe-
ses, because they are always acceptable for the
language.

We ran three versions of this experiment. One
with truncated embeddings, one with full embed-
dings, and a third using a baseline RNN with full
embeddings that are not constrained to be orthog-
onal. In all cases, the size of matrices is 50 by
50. We report accuracy on the task by number of
attractors in fig. 3.



article = year area world family articles years areas worlds families
article 0.00 7.04 651 6.89 5.82 9.26 9.84 10.01 10.87 9.39
year 7.04 000 7.62 6.30 5.38 822 906 975 10.14 8.64
area 6.51 7.62 0.00 642 6.34 9.57 9.70 1039 11.63 10.39
world 6.890 630 642 0.00 5.17 732 882 9.7 9.13 7.83
family 582 538 634 517 0.00 701 7.2 878 9.49 8.82
articles 926 822 957 7.32 7.71 0.00 511 479 4.28 4.57
years 9.84 9.06 970 8.82 7.72 511 000 6.42 6.61 7.14
areas 10.01  9.75 1039 9.17 8.78 479 642 0.00 5.93 6.09
worlds 10.87 10.14 11.63 9.13 9.49 428 6.61 593 0.00 7.79
families 9.39 8.64 1039 7.83 8.82 457 7.14  6.09 7.79 0.00

Table 2: Distances between embeddings of most frequent nouns and their plural variants. Words which can be both

nouns and verbs were excluded.
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Figure 3: Accuracy of closing parenthesis prediction by
number of attractors.

We note that even the baseline model is capable
of generalising to longer distances. Up to 9 attrac-
tors, it achieves performance that is well above a
majority class baseline (20%). However, it shows
steadily decreasing accuracy as the number of at-
tractors increases.

By contrast, the URN models remain accurate
as the number of attractors grows. Perhaps surpris-
ingly, the URN improves in relation to the number
of attractors. We will solve this apparent puzzle
below, through analysis of the embeddings. The
explanation will hinge on the fact that truncating
embeddings affects performance only when the
number of attractors is low.

Comparing the arbitrary embeddings model with
with full URN highlights the importance of limit-
ing the network to orthogonal matrices. The perfor-
mance of the full URN is better over the long term
and in general, with a validation loss of 1.47213
compared to 1.52914 for the arbitrary case. This
happens despite the fact that the orthogonal system
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Table 3: Similarity for each pair of rotation planes, for
the embeddings of ( and [. Headers show the rotation
effected on the compared planes. A value of 2 indicates
that the planes are equal (up to rotation of the basis vec-
tors), and a value of 0 indicates that they are orthogonal.

is a special case of the arbitrary network, and so
orthogonal embeddings are, in principle, available
to the baseline RNN. But it is not able to converge
on the preferred solution (even for absolute loss).
In sum, restricting to orthogonal matrices acts like
a regularising constraint which offers a significant
net benefit in generalisation and tracking power.

5.1 Analysis

As in the previous experiment, matrix embeddings
can be analysed regardless of contexts, offering a
direct view of how the model works. We consider
the embeddings produced by training the 3-TURN
model, and we start with the embeddings of indi-
vidual characters and their signatures (table 4). The
average effect, and even the signatures of all em-
beddings are strikingly similar. This does not imply
that they are equal. Indeed, they rotate different
planes.

We see in table 3 that the planes which undergo
rotation by similar angles are far from orthogonal
to each other— one pair even exhibits a similarity
of 1.73. This corresponds to the fact that the trans-
formations of ( and [ manipulate a common subset
of coordinates. On the other hand, those planes that
undergo rotation by different angles tend to be in a



character average effect  signature
( 14.79 OI%]10)
< 14.34 OI%]%)
{ 13.98 OIZ]1%)
[ 14.25 OIZI0)
+ 14.20 OIZ]10)
) 14.85 OI%]10)
> 14.42 OI%Z10;
} 14.07 OIZ]1%)
1 14.34 OIZ10)
- 14.26 OIZ]10)
() 0.06 OOOO®
<> 0.06 OIVIVIV)
{} 0.07 OOOO®
(] 0.06 DODOD®
+- 0.06 DODODOD

Table 4: Average effect and signatures of parenthesis
embeddings and matching pairs.

closer to orthogonal relationship.

Composition of Matching Parentheses To fur-
ther clarify the formal properties of our model let’s
look at the embeddings of matching pairs, com-
puted as the product of the respective embeddings
of the pairs. Such compositions are close to identity
(table 4). This observation explains the extraordi-
narily accurate long-distance performance of the
URN on the matching task. Because a matching
pair has essentially no effect on the state, by the
time all parentheses have been closed, the state
returns to its original condition. Accordingly, the
model experiences the highest level of confusion
when it is inside a deeply nested structure, and
not when a deep structure is inserted between the
governing opening parenthesis and the prediction
conditioned on that parenthesis.

6 Related Work

6.1 Explainable NLP

It has frequently been observed that DNNs are com-
plex and opaque in the way in which they operate.
It is often unclear how they arrive at their results, or
why they identify the patterns that they extract from
training data. This has given rise to a concerted
effort to render deep learning systems explainable
(Linzen et al., 2018, 2019). This problem has be-
come more acute with the rapid development of
very large pre-trained transformer models (Vaswani
et al., 2017), like BERT (Devlin et al., 2018), GPT2
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(Solaiman et al., 2019), GPT3 (Brown et al., 2020),
and XLNet (Yang et al., 2019).

URNSs avoid this difficulty by being composi-
tional by design. If they prove robust for a wide
variety of NLP tasks, they will go some way to
solving the problem of explainability in deep learn-
ing.

Learning Agreement The question of whether
generative language models can learn long-distance
agreement was proposed by Linzen et al. (2016).
If accuracy is insensitive to the number of attrac-
tors, then we know that the model can work on
long distances. The results of Linzen et al. (2016)
are inconclusive on this question. Even though the
model does better than the majority class baseline
for up to four attractors, accuracy declines steadily
as the number of attractor increases. This trend is
confirmed by Bernardy and Lappin (2017), who
ran the same experiment on a larger dataset and
thoroughly explored the space of hyperparameters.
It is also confirmed by Gulordava et al. (2018), who
analysed languages other than English. Marvin and
Linzen (2018) focused on other linguistic phenom-
ena, reaching similar conclusions. Lakretz et al.
(2021) recently showed that an LSTM may extract
bounded nested tree structures, without learning
a systematic recursive rule. These results do not
hold directly for BERT-style models, because they
are not generative, even though Goldberg (2019)
provides a tentative approach. For a more detailed
review of these results, see the recent account of
Lappin (2021).

Our experiment shows that URNs can surpass
state of the art results for this kind of task. This
is not surprising. URNs are designed so that they
cannot forget information, and so it is expected
that they will perform well on tracking long dis-
tance relations. The conservation of information
is explained by the fact that multiplying by an
orthogonal matrix conserves cosine similarities:
(Qs0,Qs1) = (S0, $1). Therefore any embedding
Q, be it of a single word or of a long phrase, maps
a change in its input state to an equal change in
its output state. Considering all possible states as
a distribution, ) conserves the density of states.
Hence, contrary to the claims of Sennhauser and
Berwick (2018), URNs demonstrate that a class of
RNNSs can achieve rule-like accuracy in syntactic
learning.

Dyck Languages Elman (1991) already ob-



served that it is useful to experiment with artifi-
cial systems to filter out the noise of real world
natural language data. However, to ensure that
the model actually learns recursive patterns instead
of bounded-level ones, it is necessary to test on
more deeply nested structures than the ones that the
model is trained on, as we did. Generalised Dyck
languages are ideal for this purpose (Bernardy,
2018). While LSTMs (and GRUSs) exhibit a certain
capacity to generalise to deeper nesting their per-
formance declines in proportion to the depth of the
nesting, as is the case with their handling of natu-
ral language agreement data. Other experimental
work has also illustrated this effect (Hewitt et al.,
2020; Sennhauser and Berwick, 2018). Similar con-
clusions are observed for generative self-attention
architectures (Yu et al., 2019), while BERT-like,
non-generative self-attention architectures simply
fail at this task (Bernardy et al., 2021).

By contrast URNs achieve excellent perfor-
mance on this task, without declining in relation
to either depth of nesting or the number of attrac-
tors. Careful analysis of the learned embeddings
explains this level of accuracy in a principled way,
as the direct consequence of their formal process-
ing design.

6.2 Quantum-Inspired Systems

Unitary matrices are essential elements of quantum
mechanics, and quantum computing. There, too,
they insure that the relevant system does not lose
information through time.

Coecke et al. (2010); Grefenstette et al. (2011)
propose what they describe as a quantum inspired
model of linguistic representation. It computes
vector values for sentences in a category theoretic
representation of the types of a pregroup grammar
(Lambek, 2008). The category theoretic structure
in which this grammar is formulated is isomorphic
with the one for quantum logic.®

A difficulty of this approach is that it requires
the input to be already annotated as parsed data.
Another problem is that the size of the tensors asso-
ciated with higher-types is very large, making them
hard to learn. By contrast, URNs do not require
a syntactic type system. In fact, our experiments
indicate that, with the right processing network, it
is possible to learn syntactic structure and semantic
composition from unannotated input.

Compositionality of phrase and sentence matri-

8See Lappin (2021) for additional discussion of this theory.
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ces is intrinsic to the formal specification of the
network.

6.3 Tensor Recurrent Neural Networks

Sutskever et al. (2011) describe what they call a
“tensor recurrent neural network” in which the tran-
sition matrix is determined by each input symbol.
This design appears to be similar to URNs. How-
ever, unlike URNS, they use non-linear activation
functions, and so they inherit the complications
that these functions bring.

6.4 Unitary-Evolution Recurrent Networks

Arjovsky et al. (2016) proposed Unitary-Evolution
recurrent networks to solve the problem of explod-
ing and vanishing gradients, caused by the presence
of non-linear activation functions. Despite this, Ar-
jovsky et al. (2016) suggest that they use ReLU
activation between time-steps, unlike URNs. More-
over, we are primarily concerned with the structure
of the underlying unitary embeddings. The connec-
tion between the two lines work is that, if an RNN
suffers exploding/vanisihing gradients, it cannot
track long-term dependencies.

Arjovsky et al. (2016)’s embeddings are com-
putationally cheaper than ours, because they can
be multiplied in linear time. Like us, they do not
cover the whole space of unitary matrices. Jing
et al. (2017) propose another representation which
is computationally less expensive than ours, but
which has asymptotically the same number of pa-
rameters. A third option is let back-propagation
update the unitary matrices arbitrarily n X n,
and project them onto the unitary space periodi-
cally (Wisdom et al., 2016; Kiani et al., 2022).

Because we use a fully general matrix exponen-
tial implementation, our model is computationally
more expensive than all the other options men-
tioned above. We can however report that when
experimenting with the unitary matrix encodings
Jing et al. (2017) and Arjovsky et al. (2016), we got
much worse results for our experiments. This may
be because we do not include a ReLLU activation,
while they do use one.

To the best of our knowledge, no previous study
of URNs has addressed agreement or other lan-
guage modelling tasks. Rather, they have been
directed at data-copying tasks, which is of lim-
ited linguistic interest. This includes the work of
Vorontsov et al. (2017), even though it is ostensibly
concerned with long distance dependencies.



7 Conclusions and Future work

In conclusion, we have shown that the URN is a
useful architecture for syntactic tasks, for which it
can reach or surpass state-of-the art precision. We
strongly suspect that it will also prove effective for
NLP tasks requiring fine-grained semantic knowl-
edge. Unlike other DNNs, a URN is transparent
and mathematically grounded in straightforward
operations of linear algebra. It is possible to trace
and understand what is happening at each level of
the network, and at each point in the sequence that
makes up the processing flow of the network.

Additionally, URNSs learn unitary embeddings.
These offer two important advantages. First, they
have a rich internal structure from which we can
analyse the learned model. Second they handle
compositionality without stipulated constraints, or
additional mechanisms. Therefore we can obtain
unitary embeddings for any phrase or sentence.

The refined distance, effect, and relatedness met-
rics that unitary embeddings facilitate, open up the
possibility of more interesting procedures for iden-
tifying natural syntactic and semantic word classes.
These can be textured and dynamic, rather than
static. They can focus on specific dimensions of
meaning and structure, and they can be driven by
specific NLP tasks. If additional types of input
data are encoded in a matrix, such as visual con-
tent, then these classes could also be grounded in
extralinguistic contexts.

In order to render URNSs efficient, it is necessary
to reduce the number of parameters from which
the matrix can be derived. We found that a simple
k-truncation of underlying anti-symmetric matrices
is a useful strategy to limit the size of word embed-
dings. It also makes the learned embeddings more
accessible to formal analysis, because they can be
decomposed as rotations along k planes. For the
tasks that we considered, truncation does not seri-
ously degrade the performance of the TURN model.
Kiani et al. (2022) recently applied this strategy to
another subset of tasks, suggesting general viability
of this strategy.

In preliminary work we have applied URNs
to the recognition of mildly context-sensitive lan-
guages containing cross serial dependencies of the
sort found in Swiss German and in Dutch. The
performance of the model is even more robust and
stable than it is for the agreement tasks reported
here. We will be extending this work to a variety
of other linguistically and cognitively interesting

NLP tasks.

Given the radical computational transparency of
URN architecture, these models are natural candi-
dates for comparison with human processing sys-
tems, both at the neurological level, and on more
abstract psychological planes. Identifying and mea-
suring the content of their acquired knowledge for
particular tasks can be done through direct obser-
vation of their processing patterns, and the appli-
cation of straightforward distance metrics. In this
respect they are of particular interest in the study
of the cognitive foundations of linguistic learning
and representation.
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Abstract

Noun-noun compounds (NNCs) occur fre-
quently in the English language. Accurate
NNC interpretation, i.e. determining the im-
plicit relationship between the constituents of a
NNG, is crucial for the advancement of many
natural language processing tasks. Until now,
computational NNC interpretation has been
limited to approaches involving linguistic rep-
resentations only. However, research suggests
that grounding linguistic representations in vi-
sion or other modalities can increase perfor-
mance on this and other tasks. Our work is
a novel comparison of linguistic and visuo-
linguistic representations for the task of NNC
interpretation. We frame NNC interpretation
as a relation classification task, evaluating on a
large, relationally-annotated NNC dataset. We
combine distributional word vectors with image
vectors to investigate how visual information
can help improve NNC interpretation systems.
We find that adding visual vectors yields mod-
est increases in performance on several con-
figurations of our dataset. We view this as a
promising first exploration of the benefits of us-
ing visually grounded representations for NNC
interpretation.

1 Introduction

Conceptual combination is the cognitive process
that allows us to combine two mental concepts into
one, for example by juxtaposing or otherwise merg-
ing two concepts. For instance, a house located on
a beach might typically be called a ‘beach house’.
Noun-noun compounds (NNCs) are the linguistic
phenomenon in which two nouns are joined to form
one single, syntactically inseparable unit. The pro-
cess of combining nouns into new nominal units is
both highly prevalent and infinitely productive in
a language like English (Libben, 2014), and also
exists in various forms in many other languages,
including but not limited to German, Norwegian,
Hindi, Tamil, Japanese, Chinese, Bulgarian, and
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Turkish (Nakov, 2013). In English, the head of
the NNC is usually the rightmost word, and de-
termines the semantic category of the compound.
The leftmost word in English NNC:s is referred to
as the modifier. Although NNCs are a common
occurrence, the highly productive nature of com-
pounding (Algeo and Algeo, 1993) means that indi-
vidual NNCs tend to have relatively low frequency
counts (Kim and Baldwin, 2006). Compositional
models have therefore been of particular interest to
researchers working on computational NNC repre-
sentations (e.g. Shwartz, 2019; Dima, 2016).

Due to of the high prevalence and complex na-
ture of English NNCs, the ability to interpret com-
pounds would greatly improve several important
natural language processing tasks, such as machine
translation (Baldwin and Tanaka, 2004; Balyan and
Chatterjee, 2015), text summarization (e.g. Sil-
ber and McCoy, 2000), question answering (e.g.
Mann, 2002), and natural language inference (e.g.
MacCartney and Manning, 2008).

In this paper, we frame compound interpretation
as a classification problem. The goal is to identify
the semantic relationship between the nominal ele-
ments of a compound. We explicitly compare the
contribution of linguistic and multimodal (visuo-
linguistic) representations to this task.! In part,
the motivation for this is theoretical, as a computa-
tional account of linguistic meaning has to address
the link between symbolic and non-symbolic in-
formation (Bender and Koller, 2020; Bisk et al.,
2020). A further motivation is the empirical ob-
servation that grounding representations in vision
gives rise to richer meaning representations (Bruni
et al., 2012; Collell Talleda and Moens, 2016).
Composition in the visual modality has also been
shown to be possible for certain NNCs (Pezzelle
et al., 2016). A final motivation comes from find-

"The code for our experiments, as well as our visual em-
beddings, can be found here: https://github.com/
ingalang/multimodal_NC_interpretation
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ings in cognitive science suggesting that visually
grounded word representations yield results closer
to human performance on some NNC processing
tasks (Giinther et al., 2020). Our goal is to assess
to what extent visual grounding helps to accurately
identify the semantic relationship between NNC
constituents. For example, Figure 1 displays im-
ages of the constituents of ‘beach house’ as well
as the compound itself. Does the relationship be-
tween the constituents in the NNC become easy
to predict once such visual information is incorpo-
rated, in addition to the textual representation of
the constituents?

Figure 1: Picture of a beach, a house, and a beach house
from ImageNet.

2 Background

Early approaches to the automatic interpreta-
tion of noun compounds included rule-based ap-
proaches (Finin, 1980; Vanderwende, 1994) or
semi-automatic approaches requiring some user
interaction (Barker and Szpakowicz, 1998). Other
work utilized frequency statistics of NNC con-
stituents to build probabilistic models for NNC in-
terpretation (Lauer, 1995; Lapata and Keller, 2004).
Kim and Baldwin (2005, 2006) leveraged WordNet
(Miller, 1998) similarities in supervised training
approaches.

Some approaches to NNC interpretation deal
with identifying an appropriate paraphrase for
a compound which explicitly states the relation
between the compound’s constituents. Several
paraphrasing-based approaches have viewed the
task of freely paraphrasing noun compounds as a
goal in itself (Hendrickx et al., 2019; Ponkiya et al.,
2020; Shwartz and Dagan, 2019; Van de Cruys
et al., 2013), whereas others have used paraphrases
as inputs to a model, representing NNCs in some
way through their paraphrases.

Other approaches to NNC relation classification
tend to be centered around classifying NNCs based
on a pre-defined set of compound relations using
various representations of the compounds them-
selves as input. Both compositional and distri-
butional representations have been tested. Dima
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(2016) and Shwartz (2019) both tested various
ways of representing noun compounds. Dima
(2016) performed the first experiments on composi-
tional representations of English NNCs, using com-
positional models such as the FullAdd model (Zan-
zotto et al., 2010) and the Matrix model (Socher
et al., 2012). Dima’s results, which were tested on
datasets by Tratz and Hovy (2010) and O Séaghdha
(2008), reached a similar performance to the re-
sults obtained by the creators of said datasets,
respectively. Yet, Dima’s work utilized simpler
methods and did not include lexical and relational
information, as opposed to Tratz and Hovy and
O Séaghdha.

Visuo-linguistic representations for NNC inter-
pretation have received far less attention. Giinther
et al. (2020) created the first computational model
of visuo-linguistic conceptual combination, report-
ing positive results on several NNC processing
tasks. Pezzelle et al. (2016) found that certain com-
pounds can be composed in the visual domain by
simple addition of image feature vectors. However,
none of these studies have touched upon NNC in-
terpretation using visuo-linguistic data, an area that
remains unexplored, to our knowledge.

The present work focuses on the interpretation of
NNC:s that possess at least some degree of composi-
tionality. This is justified on the grounds that novel
compounds, which are very common (Algeo and
Algeo, 1993), must be interpreted compositionally
on first encounter. We employ one compositional
model, called the Full Additive model (Zanzotto
etal., 2010), as well as simple vector concatenation,
in our experiments to construct compound vectors
from individual constituent vectors. We do this for
linguistic and visual vectors separately, and then
combine the two modalities using vector concate-
nation. The following section will describe how we
obtain our visual and linguistic vectors as well as
introduce the noun compound dataset that we use.

3 Data

To perform our experiments, we use two main
sources of data: a relationally-labeled NNC in-
terpretation dataset for training and testing Tratz
(2011), and ImageNet (Deng et al., 2009) to extract
visual feature embeddings. The following subsec-
tions will describe these datasets in more detail.



Split Train | Val | Test
random 13835 928 | 3701
Coarse lexical (full) 4650 | 1593 | 766
lexical (mod) 9555 | 5316 | 3593
lexical (head) | 9048 | 5516 | 3900
random 13968 | 934 | 3725
Fine lexical (full) 4614 | 1574 | 843
lexical (mod) 9511 | 5270 | 3846
lexical (head) | 8938 | 5640 | 4049

Table 1: Number of samples in each configuration (split
and grain) of the Tratz (2011) dataset after our filtering.

3.1 Compound Dataset

Our main compound dataset for this work is a re-
vised version of the Tratz (2011) noun compound
dataset, which contains 19,158 distinct NNCs la-
beled with 37 fine-grained and 12 coarse-grained
relation labels. The dataset is based on a previ-
ous one first published by Tratz and Hovy (2010),
which contained 17509 compounds categorized by
43 fine-grained constituent relation labels. The
compounds were annotated using Amazon’s Me-
chanical Turk service.> They used a weighted
majority-vote scheme based on ten annotation votes
per compound, where Turkers voted on the quality
on the other Turkers’ decisions in order to even out
potential inter-annotator disagreement. On their 43-
class annotation task, Tratz and Hovy (2010) report
a Cohen’s k (Cohen, 1960) of 0.57 as a measure of
inter-annotator agreement.

To be able to test how compound interpretation
models perform when dealing with unseen con-
stituents, the Tratz (2011) dataset is split in various
ways to ensure no previously seen constituents are
available in the validation and testing phase. Differ-
ent lexical splits ensure that the test and validation
dataset contain no constituents previously seen in
the training data — the lexical mod split ensures no
previously seen modifiers (e.g. ‘beach’ in ‘beach
house’), the lexical head split ensures no previously
seen heads (e.g. ‘house’), and the lexical full split
ensures no previously seen constituents at all. The
random split does not take into account whether
constituents are found in the training data or not.

Before performing our experiments, we do
some filtering on the data in which we remove
the fine-grained classes PERSONAL_NOUN, PER-
SONAL_TITLE, and LEXICALIZED. Our reason
for removing the PERSONAL_NOUN and PER-

https://www.mturk.com/
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SONAL_TITLE classes is that there is some doubt
as to whether proper names and titles possess the
same semantic characteristics as common nouns
(Cumming, 2007). Several works on NNC inter-
pretation remove proper nouns from their data (e.g.
Kim and Baldwin, 2006; Shwartz, 2019). Others,
like (Dima and Hinrichs, 2015), choose to keep
these categories but still acknowledge that their
presence in the dataset is questionable. We remove
the LEXICALIZED class because our work is mainly
centered around how to interpret compounds that
have a certain degree of compositionality, seeing as
novel compounds, which likely make up the major-
ity of compound types in most corpora, will need
to be interpreted compositionally. Table 1 gives
an overview of the number of samples in the train,
validation, and test sets for each configuration of
the Tratz (2011) dataset.

3.2 Image Data

ImageNet (Deng et al., 2009) is a large-scale im-
age database which is structured using the WordNet
(Miller, 1998) taxonomy, using synsets to represent
sets of word meanings. Since many word classes
are difficult to represent visually, ImageNet only
contains nouns, and no other lexical categories,
from the WordNet hierarchy. ImageNet contains
14,197,122 images, indexed by 21841 synsets3,
which represent different senses of the words.

Selecting Synsets and Images from ImageNet
In order to collect the images needed for our task,
we have to select all the synsets that were linked
to each individual word in our dataset, and then
retrieve the image URLs linked to those specific
synsets. ImageNet is structured in such a way that
one word can be linked to several synsets, and one
synset can be linked to several words. Image URLs
are associated with specific synsets, not specific
words, so to retrieve an image URL from a word,
one needs to first select which synset(s) one wants
to use to represent that word.

Determining the appropriate sense to use for
each constituent in a sample based on their context
on the compound level is not trivial. We decide to
go for a simple heuristic approach, namely finding
the synset that most probably represents the most
common or basic meaning for each word, given
that the synset has images linked to it (where possi-
ble). Our heuristic method consists of the following
steps:

3 As per January of 2022



. For a given word, let us call this our target
word, retrieve all synsets that have images
linked to them.

. For each of the retrieved synsets, get the list
of words that contain that synset among its
synsets (representing the potential senses of
the word). Let us call this list of words com-
parison words.

. For each list of comparison words, com-
pute the cosine similarity (by a pre-trained
word2vec model) between each comparison
word and the target word, and then take the
average of all of these cosine similarities.

. The synset whose comparison words list has
the highest cosine similarity to the rarget word
is selected as the most common, or basic,
meaning.

Note that this method does not necessarily yield
the most common sense, but the most common im-
ageable sense, that is, the most common sense of
a word, out of those which have related images.
This choice was made on the basis of two assump-
tions: 1) it would give us the chance to collect
more images, as opposed to selecting images only
when the most common meaning is imageable,*
and 2) an imageable synset that does not reflect the
most common meaning of a word might still have
certain visual properties in common with another
less imageable, but more common, meaning of said
word.

ImageNet | ResNetl0 | ResNet100 | Total in data
Unique mods 38.7% 36.4% 32.4% 3126
Unique heads 40.1% 37.6% 31.6% 3187

Table 2: Overview of the percentages of unique modi-
fiers and heads in the coarse-grained random split of the
(Tratz, 2011) data that have ImageNet images available,
and that we could obtain ResNet;, and ResNet;og vec-
tors for.

Table 2 gives an example of the ImageNet cov-
erage of unique heads and modifiers in one dataset
configuration (the random + coarse setting).

4 Methods

We frame the NNC interpretation task as a classi-
fication problem, experimenting with passing lin-
guistic and visuo-linguistic vectors as inputs to an

“In this case, we use ‘imageable’ to mean that ImageNet
has images for it.
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SVM classifier. Our experimental process can be
described in three steps:

1. Obtain linguistic vectors (from a pre-trained
word2vec model) and visual feature vectors
(from a pre-trained ResNet model) for the con-
stituents of a compound (head and modifier).
We experiment with both unimodal (word)
embeddings, and visuo-linguistic embeddings,
formed by concatenating the word embedding
of a compound to the visual representation of
a compound.

. Combine the vector representations of each
constituent (either linguistic, or visuo-
linguistic).> We use two methods of combi-
nation: (a) simple concatenation, and (b) the
Full Additive (FullAdd) method proposed by
Zanzotto et al. (2010).

. Observe and evaluate the performance of a
setup depending on (a) modality of vectors
(purely linguistic, or visuo-linguistic) and (b)
mode of constituent vector combination.

To obtain linguistic vectors and visual vectors,
we utilize pre-trained word2vec (Mikolov et al.,
2013a) and ResNet (He et al., 2016) models, re-
spectively. Our models, as well as our experimen-
tal setups and baselines, will be described in this
section.

4.1 Models of Word Representation

We utilize a word2vec model (Mikolov et al.,
2013a) to represent words in the linguistic modal-
ity, and visual vectors obtained by using a ResNet
model (He et al., 2016) on ImageNet (Deng et al.,
2009) images. The following subsections will de-
scribe these approaches in more detail.

4.1.1 word2vec

To obtain word embeddings to use as our linguis-
tic vectors, we use a pre-trained word2vec model
(Mikolov et al., 2013a). We employ a popular set of
pre-trained word2vec embeddings that were trained
on about 100 billion words from the GoogleNews
dataset. These 300-dimensional word embeddings®
were trained using a skip-gram approach with neg-
ative sampling (SGNS for short), as described in
Mikolov et al. (2013b). Unlike previous work on

5In case a constituent lacks a vector representation in either
modality, we instead use a vector of zeros.

®https://code.google.com/archive/p/
word2vec/



this dataset published by e.g. Shwartz (2019), we
decide to not train our own word2vec embeddings.
This decision was made because our goal is inves-
tigating the effect of combining linguistic repre-
sentations with visual ones, rather than comparing
different kinds of linguistic representations, like
Shwartz (2019) did.

4.1.2 ResNet

ResNet (He et al., 2016) is a deep residual neu-
ral network architecture for image recognition.
ResNet models learn residual functions instead of
unreferenced functions, allowing for the creation of
models that are deeper than previous CNN models
such as the VGG models (Chatfield et al., 2014),
while still being less complex and faster to train (He
et al., 2016). To extract visual embeddings based
on images from ImageNet, we use a ResNet152
model trained on ImageNet data, implemented in
the Keras (Chollet et al., 2015) library for Python.
ResNet is trained on an object classification task,
using 1.28 million images in its training phase. The
model learns to take an image vector as input and
outputs one out of the 1000 ImageNet category
labels included in its training data.

To extract visual features using ResNet152, we
flatten the final layer before the final classification
(softmax) layer of the model, which has the size 7 x
7 x 2048, resulting in vectors of size 100352. Since
a single, randomly selected image would not reflect
all the potential visual aspects of an object, and
finding the image that is closest to a prototypical
representation of a concept is not trivial, we take
the average of several image vectors to get a general
visual representation for each noun. We use two
experimental settings for visual features, where we
extract and average feature vectors for 10 or 100
ImageNet images. We will refer to these vectors as
ResNet;o and ResNet, g, respectively. See Table 2
for a summary of the image availability in the Tratz
(2011) dataset. These vectors can then be reduced
to our desired vector dimensions, for example 300
in order for them to be compatible with pre-trained
300-dimensional word2vec embeddings. For our
ResNet vectors to be more appropriate as inputs to
our SVM classifiers, we scale our vectors so that
the values range from -1 to 1.

4.2 Modes of Vector Combination

To combine modifier and constituent vectors into
compound vectors, we test two different modes of
combination: simple vector concatenation, and the
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FullAdd model (Zanzotto et al., 2010). In both
cases, the combination of a modifier vector and
a head vector only happens within one modality,
i.e. we would not combine a linguistic modifier
vector with a linguistic head vector. For our visuo-
linguistic setups, compound vectors are composed
in each modality and then the resulting vectors are
concatenated to form a visuo-linguistic representa-
tion of the compound. The following subsection
will describe the FullAdd model in more detail.

4.2.1 The Full Additive Model

The Full Additive model, also referred to as Full-
Add or the Estimated Additive model (Zanzotto
et al., 2010) is a model where the two vectors 7
and 7, representing the constituent words c¢; and
c9, are multiplied by square matrices A and B,
respectively, and then added together to create a
compositional meaning representation of a phrase.
A and B are the same for each vector 7 and 7,
respectively, and are obtained through training on
a training set of compound nouns that contains
distributional vector representations of each com-
pound and each constituent word. We can think
of these vectors as being ordered in triples, where
any triple of words (z, x, y), which corresponds
to (compound, modifier, head) in English, is rep-
resented by a triple of vectors (7, 7, 7) For
example, the training set could contain the vector
triple (soap opera, soap, opera). The goal will be
to learn a composition function for any word vec-
tors 7, 7 such that 7 = f (?, 7) approximates
2, where ? is the composed vector for any given
noun compound, and 7 is the observed distribu-
tional vector for this noun compound. In other
words, the function is trained using compounds
for which we have a distributional representation,
and can then be used to create compositional rep-
resentations of compounds where a distributional
representation is not available.

Intuitively, one can think of the process of train-
ing the two matrices (one for modifiers and one for
heads) as finding a way of transforming a mean-
ing representation of a single word into its as-
constituent meaning. For example, by multiplying
the vector for chocolate with the modifier matrix
(which we call matrix A), we approximate the as-
modifer meaning of chocolate, as in chocolate cake.
The general equation for composing a compound
vector 7 given two constituent word vectors z
and 7 is given below:



Z =A7 +BY (1)

To implement our FullAdd model, we use the
Distributional Semantic Composition Toolkit, or
DISSECT (Dinu et al., 2013), which allows for
the implementation of FullAdd as well as other
composition models. To prepare the necessary
data for FullAdd, we filter our training data so
that we only keep the compounds for which the
whole compound as well as the modifier and head
separately have vectors associated with them in our
word embedding model. Then we construct a se-
mantic space using those word embeddings. Due to
the requirements of the DISSECT implementation,
heads and modifiers cannot be repeated in the space
(e.g., we can not include both ‘cat food’ and ‘dog
food’). The two FullAdd matrices, A and B, can
then be trained in the way described above. The
resulting vectors are then used to compose compo-
sitional meaning vectors for our training, test, and
validation data. In our FullAdd experiments, we
train a FullAdd model for each modality (linguistic
and visual) and then create composed vectors for
each compound in each modality before combining
the two modalities using concatenation.

4.3 Experimental Setups

For our experiments, we create three majority-class
baselines in addition to our SVM classifier.” In
this section, we will describe our baselines and our
main experimental setups.

4.3.1 Baselines

We implement the following majority-class base-
lines:

* Overall Majority: For a given data sample,
this baseline selects the overall majority class
as observed in the training data.

* Modifier Majority: For a given data sample,
this baseline selects the majority class repre-
sented among compounds in the training data
with the same modifier as the sample.

* Head Majority: For a given data sample, this
baseline selects the majority class represented
among compounds in the training data with
the same head as the sample.

"We did also perform a few NNC interpretation experi-

ments using a BERT model, which were not included in this
paper because of poor performance on the lexical splits of

the Tratz (2011) dataset. See Table 7 in the appendix for an
overview.
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The ‘Modifier Majority’ and ‘Head Majority’
rely on using the modifiers or heads, respectively,
from the training data to determine the assigned
label of each data sample. However, we have sev-
eral dataset configurations in which the training
and test datasets do not share any heads, modifiers,
or any constituents at all — see Table 1 for a sum-
mary. Thus, in these configurations, the head or
modifier majority mechanism will not work. This
means that for the lexical + mod split of our data,
the Modifier Majority baseline will give the exact
same results as the Overall Majority baseline. The
same is the case for the lexical + head split together
with the Head Majority baseline, as well as the full
lexical split with both the Modifier Majority and
Head Majority baselines.

4.3.2 Classifier Setup

Our classifier is an SVM that takes as inputs
either linguistic representations (in the form of
word2vec vectors that have either been concate-
nated or composed using the FullAdd function) or
visuo-linguistic representations (in the form of lin-
guistic vectors concatenated with the visual vectors
described in section 4.1.2). We use an SVM with
a one-vs-rest scheme for multiclass classification.
The SVM has a linear kernel, L2 penalty and a C
value of 0.5. We train our classifier on the Tratz
(2011) data, passing either our linguistic or visuo-
linguistic vectors as inputs.

5 Results and Evaluation

We evaluate our setup on the Tratz (2011) dataset
and report F1 scores for all dataset configurations.

Split MC-O | MC-M | MC-H
random 7.5 40.0 59.3
Coarse lexical (full) 6.7 - -
lexical (mod) 7.8 - 58.8
lexical (head) 7.0 38.6 -
random 5.3 34.5 54.1
. lexical (full) 5.6 - -
Fine | |exical (mod) 6.3 ~| 526
lexical (head) 5.2 34.8 -

Table 3: F1 scores from our baseline classifiers. MC
stands for Majority Class; O stands for Overall, M for
Modifier, and H for Head.

Table 3 shows the weighted F1 scores of our
baseline classifiers. The modifier- and head-
majority classifiers require the test datasets to in-
clude previously seen modifiers and heads (respec-
tively), which is why the table has some cells that



are marked with ‘—’, indicating that the score for
this cannot be computed with the given majority-
class strategy and thus would get the same score as
the overall majority baseline. For this reason, we
only have comparable scores from the modifier-
and head-majority classifiers in the case of the
random split, in which both the fine-grained set-
ting and the coarse-grained setting show that the
head-majority classifier performs the best. In other
words, it seems that having a common head is a
greater indicator of same-class membership than
having a common modifier in the Tratz (2011)
dataset.

Split w2v | w2v + ResNetl0 | w2v + ResNet100
random 66.3 | 66.0 -0.3 | 66.4 +0.1
Coarse lexical (full) | 44.2 | 44.1 -0.1 |43.7 -0.5
lexical (mod) | 57.9 | 58.3 +04 | 577 -0.2
lexical (head) | 50.8 | 51.0 +0.2 | 51.3 +0.5
random 66.7 | 66.6 -0.1 | 66.7 +/-0
Fine lexical (full) | 39.2 | 39.4 +0.2 | 384 -0.8
lexical (mod) | 56.4 | 56.4 +/-0 | 56.5 +0.1
lexical (head) | 47.1 | 47.5 +0.4 | 46.9 -0.2

(a) F1 scores using FullAdd-composed compound vectors

Split w2v | w2v + ResNetl10 | w2v + ResNet100
random 74.1 | 75.3 +1.2% | 75.2 + 1.1%
Coarse lexical (full) | 49.1 | 50.8 + 1.7% | 50.0 +0.9
lexical (mod) | 63.5 | 64.0 +0.5 | 63.1 -04
lexical (head) | 55.5 | 56.7 + 1.2 | 56.0 +0.5
random 73.0 | 75.0 +2.0| 750 +2.0
Fine lexical (full) | 40.3 | 40.0 -0.3 | 40.7 +0.4
lexical (mod) | 63.0 | 63.5 +0.5 | 634 + 0.4
lexical (head) | 50.6 | 51.6 + 1.0% | 52.0 + 1.4%

(b) Results using concatenated compound vectors

Table 4: Weighted F1 scores from classification ex-
periments using linguistic and visuo-linguistic vectors.
The tables show results of using FullAdd-composed
vectors as well as concatenation-composed vectors,
with the change in F1 obtained when ResNet vectors
are included. An asterisk next to an increase in F1
score means the bimodal result is significantly different
from its unimodal counterpart following a Bonferroni-
corrected McNemar test.

Table 4 shows the results of our experiments
on the Tratz (2011) data after our filtering. All of
the scores given in the tables are F1 scores, and
an asterisk next to an increase in score means that
the increase was found to be significant following
a McNemar test (McNemar, 1947) and a Bonfer-
roni correction (Neyman and Pearson, 1928) of the
p-values.® As is evident when comparing tables
4a and 4b, using concatenated vectors as opposed
to FullAdd composed vectors yields much higher
F1 scores. Additionally, the results in table 4b,

8We set our « level to the conventional 0.05, which resulted
in a p-value threshold of 0.00625 after a Bonferroni correction.
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with concatenated vectors, are less ambiguous: in
this experiment, at least one of the visuo-linguistic
settings beats the purely linguistic setting in each
experimental setting.

As has been shown in previous research on this
dataset, the most challenging dataset split is the full
lexical split, where no constituents in the validation
and test data are previously seen in the training
data. As expected, the fine-grained setting is gener-
ally more challenging than the coarse-grained one.
As we can see from comparing tables 4a and 4b,
the results in the former table are more ambiguous,
meaning that we cannot conclude that one input
type (linguistic or visuo-linguistic vectors) is better
than another. In table 4b, however, we find that
our visuo-linguistic vectors help increase scores in
some cases. In the case of the ResNet;( vectors,
the increase in scores is significant for the random
and full lexical splits in the coarse-grained setting
as well as for the lexical (head) split in the fine-
grained setting. For our ResNet; oo vectors, only
the coarse + random and the fine + lexical (head)
settings show a significant increase in scores. We
find small increases overall for most NNC relation
classes, rather than big increases for certain rela-
tion classes (see Figure 3 in Appendix A for an
example).

Table 5 shows results of experiments run on a
subset of the data for which ResNet;( vectors were
available for both the modifier and head of each
compound. We compare results on our baselines
as well as our FullAdd and concatenation models
with textual or visual vectors alone, on the same
subset. As with the results on the full dataset, the
concatenation method performs better than the Full-
Add model here. Additionally, it seems that the
visual vectors do contribute at least some valuable
information on their own. It is important to note
that Table 5 is not directly comparable to the tables
in 4, since the former shows results on just a small
subset of the data.

One might be inclined to question why our Full-
Add experiments on this dataset perform worse
than very similar experiments done by e.g. Shwartz
(2019) and Dima (2016). This is likely due to the
fact that Shwartz (2019) and Dima (2016) trained
their own word embeddings specifically for this
task, meaning that they were able to obtain dis-
tributed embeddings for more of the compounds
in the Tratz (2011) dataset than what we had avail-
able through our pre-trained model, and as a con-



word2vec
FullAdd |
56.0

baselines
MC-O [ MC-M [ MC-H
98 406 484

ResNet10
FullAdd |
309

grain split

random

70.7
419
59.7
47.1
66.6

62.7
28.5
470
40.4
59.1
18.6
411
344

lexical (full)
lexical (mod)
lexical (head)
random
lexical (full)
lexical (mod)
lexical (head)

39
6.3
5.7
33
4.6
2.8
34

26.2
45.7
30.8
537
236
344
36.5

47.1

6.9
204
19.8
16.9

Coarse

320
325

38.9
31.2
51.3
41.7

57
10.7
10.8

36.1

Fine

33.8

Table 5: Results (reported in F1) from experiments with
unimodal vectors in either modality (word2vec vectors
alone or ResNet;o vectors alone) on a subset of the data
for which ResNet;y vectors were available. Baseline
results on the same subset are included for comparison.
Scores in bold are cases in which the ResNet;, vectors
outperform the strongest baseline.

sequence had more training data for the FullAdd
model. As our goal with this work is not to com-
pare composition functions for linguistic vectors,
we saw training our own embeddings as being su-
perfluous for this study.

Overall, we see that, in our experiments with
concatenated compound vectors, adding visual in-
formation helps increase the scores in all cases,
and in some cases the increases are statistically
significant.

5.1 Concreteness Ratings

Intuitively, one could assume that visual informa-
tion (i.e. images) would be easier to obtain for more
concrete words, thus making visual information a
more appropriate and/or helpful addition for com-
pounds that have relatively concrete constituents.
If this is the case, then we should find a higher ben-
efit of incorporating visual information, the more
concrete a word is.

We quantify concreteness using a dataset of con-
creteness ratings of almost 40,000 English lemmas,
by Brysbaert et al. (2014). The ratings are contin-
uous values between 1 and 5, where 5 is the most
concrete. The ratings were obtained by surveying
more than 4,000 participants in a crowdsourcing
study and taking the mean of the ratings obtained
for each word.

As a first analysis of our results in light of these
concreteness ratings, we performed several logistic
regression analyses where we looked at the con-
creteness ratings of modifiers and heads as predic-
tors of classification success. Table 6 in Appendix
A gives a full overview of these results. What we
find is that the dataset configuration seems to matter
more than the modality, but that the concreteness
ratings of both modifiers and heads are, in some
cases, good predictors of classifier success. How-
ever, in the significant cases, we discover a negative
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Figure 2: Word concreteness rating by number of avail-
able URLs in ImageNet

relationship between concreteness and classifica-
tion success — i.e., the higher the concreteness of a
modifier/head, the lower the chance of the classi-
fier predicting the correct class. We performed an
investigation into some of our results, filtering the
samples by image availability (specifically, whether
a constituent had fewer or more than 10 images
available in ImageNet). The full results are found
in Table 8 in Appendix A.

Figure 2 shows word concreteness ratings by
number of URLSs available in ImageNet, as deter-
mined by our image selection heuristic, for each
of the words in the Tratz (2011) dataset that had
concreteness ratings in the Brysbaert et al. (2014)
dataset (regardless of whether they appeared as a
modifier or head).

A correlation analysis revealed a low to mod-
erate correlation between the concreteness ratings
and the URL counts (Pearson‘s r = 0.45, p < 0.001).
This indicates that, to some extent, the higher the
concreteness rating of a constituent in a compound,
the higher the chances of finding 10 or 100 images
to represent said constituent as part of our image
vectors. Yet, in experiments on the subset of com-
pounds for which both constituents had ResNet;g
vectors available, we find that our visual vectors
alone are somewhat informative, as we saw in Ta-
ble 5. Examples of words for which we were not
able to obtain at least 10 images include minute
(concreteness rating 3.04), intelligence (concrete-
ness rating 2.24), and state (concreteness rating
3.52).

The negative relationship between constituent
concreteness and classifier success seems counter-
intuitive, but might be a result of a number of fac-



tors related to word frequency, polysemy, and the
distribution of concrete vs. non-concrete words
over the classes in the Tratz (2011) dataset. Al-
though one might expect compounds containing
concrete constituents to benefit more from visuo-
linguistic representations, we note that the negative
correlation between concreteness and classifica-
tion success is always found in the visuo-linguistic
modality whenever it is found in the linguistic
modality. In other words, this seems to be a gen-
eral finding rather than a modality-specific one. As
suggested by previous work, concrete and abstract
words differ in the kinds of contexts they tend to
appear in, where abstract words tend to occur near
other abstract words, and concrete words occur
in more varied contexts (Frassinelli et al., 2017).
Additionally, it has been found that distributional
semantic models like word2vec are worse at model-
ing word pair similarity for highly concrete words
than for highly abstract words (Hill et al., 2015).
Since our task is relation classification, our findings
might also be partially influenced by the distribu-
tion of relation labels for concrete and non-concrete
words. For example, abstract words may be more
restricted in which relations they can partake in,
and thus be easier to classify. We leave it up to
future work to investigate these relationships, but
we note that our visuo-linguistic representations
do tend to outperform the purely linguistic ones,
regardless of constituent concreteness ratings.

6 Conclusion and Future Work

In this paper, we have presented NNC interpre-
tation experiments on the Tratz (2011) dataset,
comparing linguistic and visuo-linguistic inputs
to an SVM classifier. We have found that, in our
best-performing case, concatenating visual feature
vectors with linguistic vectors (word embeddings)
helps increase F1 scores on the Tratz (2011) dataset
in almost all experimental settings. Our findings
indicate that utilizing visual information for this
NNC relation classification task might indeed be a
promising endeavor.

Future work should aim to further refine our
approach by for example using more sophisti-
cated methods for selecting images to represent
words, exploring ways to represent abstract or non-
imageable words, and finding better ways to vi-
sually ground polysemous words. In this regard,
recent multimodal encoders pretrained on visual
and linguistic data (e.g. Lu et al., 2019; Tan and
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Bansal, 2019), are a promising way forward. An-
other possible angle for future work could be to
consider NNC interpretation in visual and linguis-
tic contexts. In the future, we would also be eager
to explore visual grounding in other aspects of com-
putational NNC related tasks, such as NNC genera-
tion. Additionally, our approach should be tested
on different datasets and in different circumstances,
for example in a task that determines the probability
of compound categories rather than fixed classes.
One final potential angle for future work could be
to look further into the task of visual composition.
A first step could be to more closely examine the
effects of using the FullAdd function with image
vectors.

To conclude, our results are in line with previous
work from both cognitive science and computa-
tional linguistics suggesting that more psychologi-
cally plausible models of NNC processing should
incorporate grounding.
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Appendix
A Detailed Results Tables

This appendix contains supplementary
tables that describe some of our find-
ings in more detail.

Figure 3 shows the F1 scores for each
relation in the random + coarse dataset
configuration for word2vec vectors and
word2vec + ResNety vectors. As op-
posed to Table 5, Figure 3 shows re-
sults from our full dataset, rather than
the subset of compounds with ‘image-
able’ constituents.

modifiers heads

L

coef |
-0.2049
-0.1788
-0.2322
-0.1710
-0.2128
0.1108
-0.1340
0.0393

VL
P
<0.001
0.133
<0.001
<0.001
<0.001

L
coef |
-0.18

VL
coef |
-0.99

coef
-0.1675
-0.1251
-0.2740
-0.2118
-0.2073
0.1665
-0.1581
0.0423

split
random

P
<0.001
0.032
<0.001
<0.001
<0.001
0.171
0.001
0.278

P
0.008
0.352

<0.001
0.888
<0.001
0.340
<0.001
0.090

P
0.028
0.113

<0.001
0.252
<0.001
0.741
<0.001
0.144

0.076
-0.1924
0.0053
-0.268

0.13
-0.2093
0.0432
-0.27

lexical (full)
lexical (mod)
lexical (head)
random
lexical (full)
lexical (mod)
lexical (head)

Coarse

0.041
<0.001
0.243

0.0854
-0.3257
0.0659

0.0296
-0.3306
0.0569

Fine

Table 6: Results from a logistic regression analysis of
modifier and head concreteness as a predictor of the
successful classification of compounds. The scores in
boldface are ones where the p-values are lower than a
Bonferroni-corrected « level of 0.05.

Table 6 contains a summary of sev-
eral logistic regression analyses per-
formed on our classification results in
both the linguistic and visuo-linguistic
modalities. The results show coeffi-
cients and p-values of analyses using
modifier and head concreteness (sep-
arately) as predictors of classification
success.

BERT + ResNetjo gaw
FI | _dift | ¢, (B<BMpaw)
69.7 - 0.99
50.7 -7.2
28.6 -3
14.5 -5
+19.6
+18.7
+29.1
+25.1

BERT + ResNet g xorm
FI_ | diff | ¢, (B<BMyonw)
787 +/-0 0.47*
651 +7.2 0.024%
258 -5.8 0.95
150 -45 0.79
-103 0.98
+/-0 0.55
_6.1 0.84
-1.6 0.78

split grain | BERT

random
random
lexical (full)
Texical (full)
lexical (mod)
lexical (mod)
lexical (head)
lexical (head)

coarse
fine

78.7
5719
316
19.5
17.0

83
11.1

4.4

9

0.94
0.92
1.00

coarse
fine
coarse
fine

36.6
27.0
40.2
29.5

0.036*
0.005*
0.004*
0.036*

6.7
83
5.0
2.8

coarse
fine

Table 7: Results from fine-tuning BERT with and with-
out adding ResNet;( vectors after 50 epochs of training,
averaged over 10 runs. Each column of bimodal results
shows weighted F1, the change in F1 between the uni-
modal and the given bimodal setting, and the epsilon
value from the ASD algorithm that reveals to what ex-
tent the bimodal is better than the unimodal setting.
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Table 7 shows the results of some
NNC interpretation experiments that
we did with a pre-trained BERT model
(Devlin et al., 2018) and our ResNet
visual embeddings. In these experi-
ments, we fed compounds to a BERT
model fitted with a linear classifier on
top in order to get the classifications of
the compounds. In the visuo-linguistic
modality, we concatenated BERT’s lin-
guistic embeddings with our visual
embeddings before passing them to a
linear classification layer. We exper-
imented with using raw ResNet em-
beddings (straight out of the ResNet
model, without applying anything but
dimensionality reduction) and normal-
ized ResNet embeddings. The table
shows F1 scores as well as the € value
returned by the Almost Stochastic Dom-
inance (ASD) algorithm proposed by
Dror et al. (2019) for comparing the
performance of two neural network ar-
chitectures. The algorithm works in
such a way that an € value of less than
0.5 means that algorithm B (in our case,
one of the visuo-linguistic settings) is
almost stochastically dominant over al-
gorithm A (in our case, the purely lin-
guistic setting).

Table 8 gives an overview of the re-
sults of our classification algorithm
when used on linguistic (L) and visuo-
linguistic (VL) vectors. The table
shows the F1 scores for subsets of our
test data, where we select data sam-
ples where either one, both, or none of
the constituents in each sample had a
ResNet;( vector available (i.e., had 10
or more images available in ImageNet).
The ‘no filtering’ column contains the
exact same results, for the full dataset,
as reported in our main article, and is
included for comparison.
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Figure 3: Per-relation F1 scores in the condition with the highest scores (the random + coarse configuration).

constituents with 10+ images: | no filtering mods heads both none
split L \ VL L \ VL L \ VL L \ VL L \ VL
random 74.1 753* | 7046 7143 | 72.78  74.65 | 70.76  72.59 | 76.84 71.9
Coarse lexical (full) 49.1 50.8* | 41.29 46.04 | 484 51.24 | 413 4322 | 56.84 53.77
lexical (mod) 63.5 64.0 | 56.77 57.25 | 59.36  61.35 | 5448 5545|7022  69.69
lexical (head) 555 567 | 543 55.7 | 50.85 54.64* | 51.42 55.96* | 58.99  59.14
random 73.0 75.0 | 69.49 71.72*% | 69.19 72.06* | 66.13 69.43 | 76.09 77.78*
Fine lexical (full) 40.3  40.0 | 41.19 4091 | 39.21 35.04 | 42.03 3894 | 4233  44.59
lexical (mod) 63.0 635 60.13 60.2 | 5432 5577 | 51.88 53.38 | 68.71  69.35
lexical (head) 50.6 51.6% | 52.06  53.35 | 51.18 51.6 | 52.88 5391 | 50.17 51.53

Table 8: Results of our experiments using the concatenation method of composition and the ResNet;o vectors,
filtered by the imageability (as modeled by whether or not 10 or more images were available) of the constituents.
An asterisk next to a VL score means that the visuo-linguistic (VL) modality performed significantly better than the
linguistic (L) modality following a McNemar test with a Bonferroni correction of the p-values.
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Abstract

In this work, we use a transformer-based pre-
trained multimodal model, CLIP, to shed light
on the mechanisms employed by human speak-
ers when referring to visual entities. In par-
ticular, we use CLIP to quantify the degree
of descriptiveness (how well an utterance de-
scribes an image in isolation) and discrimi-
nativeness (to what extent an utterance is ef-
fective in picking out a single image among
similar images) of human referring utterances
within multimodal dialogues. Overall, our re-
sults show that utterances become less descrip-
tive over time while their discriminativeness
remains unchanged. Through analysis, we pro-
pose that this trend could be due to participants
relying on the previous mentions in the dia-
logue history, as well as being able to distill
the most discriminative information from the
visual context. In general, our study opens up
the possibility of using this and similar models
to quantify patterns in human data and shed
light on the underlying cognitive mechanisms.

1 Introduction

During a conversation, speakers can refer to an en-
tity (e.g., the girl in Fig. 1) multiple times within
different contexts. This has been shown to lead
to subsequent referring expressions that are usu-
ally shorter and that show lexical entrainment with
previous mentions (Krauss and Weinheimer, 1967;
Brennan and Clark, 1996). This trend has been
confirmed in recent vision-and-language (V&L)
datasets (Shore and Skantze, 2018; Haber et al.,
2019; Hawkins et al., 2020): referring utterances
become more compact (i.e., less descriptive), and
yet participants are able to identify the intended ref-
erent (i.e., they remain pragmatically informative).

Several approaches (Mao et al., 2016; Cohn-
Gordon et al., 2018; Schiiz et al., 2021; Luo et al.,
2018, i.a.) have tackled the generation of image
captions from the perspective of pragmatic infor-
mativity; Coppock et al. (2020) have compared the

36

o N

. Do you have the girl with the blue umbrella
walking by water?

. I have the girl with the blue umbrella by the
water this time

. What about the blue umbrella girl by the water?

. Do you have the blue umbrella water girl?

Figure 1: Referring utterance chain from PhotoBook
(Haber et al., 2019). The chain has 4 ranks (4 refer-
ences to the target image, in red outline). For simplicity,
only the 5 distractor images from rank 1 are shown.

informativity of image captions and of referring
expressions; and Haber et al. (2019); Hawkins et al.
(2020) have explored how dialogue history con-
tributes to discriminativeness. However, no work to
date has investigated how these two dimensions, de-
scriptiveness and discriminativeness or pragmatic
informativity, interact in referring expressions ut-
tered in dialogue.

In this work, we use a transformer-based pre-
trained multimodal model to study the interplay be-
tween descriptiveness and discriminativeness in hu-
man referring utterances produced in dialogue. Due
to their unprecedented success in numerous tasks,
pretrained V&L models—such as LXMERT (Tan
and Bansal, 2019), VisualBERT (Li et al., 2019),
UNITER (Chen et al., 2020) and ALIGN (Jia
et al., 2021)—have recently attracted a lot of in-
terest aimed at understanding the properties and
potential of their learned representations as well
as the effect their architectures and training setups
have (Bugliarello et al., 2021). These include prob-
ing such models in a zero-shot manner, i.e., with-
out any specific fine-tuning (Hendricks and Ne-
matzadeh, 2021; Parcalabescu et al., 2021); quanti-
fying the roles of each modality (Frank et al., 2021);
inspecting attention patterns (Cao et al., 2020); and
evaluating their learned multimodal representations
against human judgments (Pezzelle et al., 2021).

We focus on one model: Contrastive Language-
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Image Pre-training (CLIP, Radford et al., 2021),
which learns via contrasting images and texts that
can be aligned or unaligned with each other. This
contrastive objective makes CLIP particularly suit-
able for modelling referential tasks that inher-
ently include such comparisons. Here, we use
CLIP to gain insight into the strategies used by
humans in sequential reference settings, finding
that although the descriptiveness of referring ut-
terances decreases significantly, the utterances re-
main discriminative over the course of multimodal
dialogue. The code to reproduce our results is
available at https://github.com/ecekt/
clip—-desc-disc.

2 Data

‘We focus on PhotoBook (PB; Haber et al., 2019),
a dataset of multimodal task-oriented dialogues
where players aim to pick the images they have in
common without seeing each other’s visual con-
texts (which consist of 6 images coming from the
same domain). The game is played over several
rounds in which the previously seen images reap-
pear in different visual contexts, giving the players
an opportunity to refer to such images again. As
a result, chains of utterances referring to a single
image are formed over the rounds as the players
build common ground. See Fig. 1 for a simplified
representation of a chain.! In total, PB consists
of 2,500 games, 165K utterances, and 360 unique
images from COCO (Lin et al., 2014).

All our experiments are conducted on a sub-
set of 50 PB games with manually annotated re-
ferring utterances, which contains 364 referential
chains about 205 unique target images. We refer
to this subset as PB-GOLD.? Although a dataset of
automatically-extracted chains using all PB data is
also available (Takmaz et al., 2020), as reported
by the authors these chains may contain errors.
We therefore opt for using the smaller but higher-
quality PB-GOLD subset since we are interested
in analysing human strategies. Given that we use a
pretrained model without fine-tuning, experiment-
ing with large amounts of data is not a requisite.

PB-GOLD’s chains contain 1,078 utterances, i.€.,
2.96 utterances per chain on average (min 1, max
4). We henceforth use the term ‘rank’ to refer to
the position of an utterance in a chain. The average

'Only 1 player’s perspective for 1 context is represented.
2We use the gold set of the utterance-based chains v2
available at https://dmg-photobook.github.io/.
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token length of utterances is 13.34, 11.03, 9.23, and
7.82, respectively, for ranks 1, 2, 3, and 4.3 This
decreasing trend, which is statistically significant
at p < 0.01 with respect to independent samples
t-tests between the ranks, is in line with the trend
observed in the whole dataset (Haber et al., 2019).
PB-GOLD’s vocabulary consists of 926 tokens.

3 Model

We use CLIP (Radford et al., 2021), a model pre-
trained on a dataset of 400 million image-text pairs
collected from the internet using a contrastive ob-
jective to learn strong transferable vision represen-
tations with natural language supervision.* In par-
ticular, we employ the ViT-B/32 version of CLIP,
which utilizes separate transformers to encode vi-
sion and language (Vaswani et al., 2017; Dosovit-
skiy et al., 2021; Radford et al., 2019, 2021).

As the model learns to align images and texts,
this enables zero-shot transfer to various V&L tasks
such as image-text retrieval and image classifica-
tion and even certain non-traditional tasks in a
simple and efficient manner (Radford et al., 2019;
Agarwal et al., 2021; Shen et al., 2021; Cafagna
et al., 2021; Hessel et al., 2021). This makes it an
intriguing tool to investigate the properties of vi-
sually grounded referring utterances. In this work,
we freeze CLIP’s weights and do not fine-tune the
model or perform prompt engineering, since we
aim to exploit the model’s pretrained knowledge
for the analysis of human referring strategies.

4 Descriptiveness

In our first experiment, we investigate the degree of
descriptiveness exhibited by referring utterances
in the PhotoBook game, i.e., the amount of in-
formation they provide about the image out of
context. We consider each target image and cor-
responding referential utterance at a given rank
in isolation, i.e., without taking into account the
other competing images nor the dialogue history.
We quantify descriptiveness as the alignment be-
tween an utterance and its image referent using
CLIPScore (Hessel et al., 2021), assuming that
a more descriptive utterance will attain a higher
score. For all the target image-utterance pairs
in the chains of PB-GOLD, we use CLIP to ob-
tain a vector t representing the utterance and a

3We use TweetTokenizer: https://www.nltk.org/
api/nltk.tokenize.html
*https://github.com/openai/CLIP



. girl lying on a bed surfing the internet on a laptop computer
. a girl sleeping on her belly on top of a bed looking at a laptop.
. woman laying on her stomach on a bed in front of a laptop.

. a girl with long brown hair with streaks of red lays on a bed

AW N~

and looks at an open laptop computer.
. a young girl laying on a bed using her laptop.

Figure 2: Set of captions from COCO (Lin et al., 2014),
the order of captions is arbitrary.

vector v representing the image. CLIPScore
is then computed as the scaled cosine similarity
between these two vectors, with range [0, 2.5]:
CLIPScore(t,v) = 2.5 xmax(cos(t,v),0). We
compute the average CLIPScore per rank over
the whole PB-GOLD dataset.

Results. We find that earlier utterances are better
aligned with the target image features and that there
is amonotonically decreasing trend over the 4 ranks
(Fig. 4, blue bars). The differences between all
pairs of ranks are statistically significant (according
to independent samples t-tests, p < 0.01), except
for the comparison between the last 2 ranks (p >
0.05). Since earlier referring utterances tend to be
longer (see Sec. 2), we check to what extent length
may be a confounding factor. We find that there is
only a weak correlation between token length and
CLIPScore (Spearman’s p = 0.29,p < 0.001).
We compare these results on PhotoBook with
text-to-image alignment computed with the same
method on two other datasets: (1) COCO (Lin
et al., 2014),% which includes 5 captions per im-
age provided independently by different annotators
as shown in Fig. 2; here we do not expect to find
significant differences in the level of descriptive-
ness across the captions, and (2) Image Description
Sequences (IDS, Ilinykh et al., 2019)” where one
participant describes an image incrementally as
shown in Fig. 3, by progressively adding sentences
with further details; here we do expect a similar

5The scaled factor was introduced by Hessel et al. (2021)
to account for the relatively low observed cosine values.

%We use the set of COCO images in PB-GOLD (/N=205).

"The images are from ADE20k corpus (Zhou et al., 2017)
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2. There is a red wall painted behind the cooker section.

3. There is a wooden table to the right with pale floor tiles on the floor.
4. There is a sink to the left with a window near the sink.

5. There is a bunch of flowers beside the window.

Figure 3: Sequential description from Image Descrip-
tion Sequences (Ilinykh et al., 2019).

pattern to PhotoBook, albeit for different reasons
(because participants add less salient information;
Ilinykh et al., 2019).

Fig. 4 shows that these expectations are con-
firmed. According to CLIP, COCO captions (green
bars) are more descriptive than IDS descriptions
and PB referring utterances, and are equally aligned
with the image across ‘ranks’ (the order is arbitrary
in this case). In contrast, IDS incremental descrip-
tions (yellow bars) are intrinsically ordered and
show a significant decreasing trend similar to PB.

5 Discriminativeness

In order for a listener to select the target image
among distractor images, a referring utterance
should be discriminative in its visual context. Our
results in the previous section show that descrip-
tiveness decreases over time—what is the trend
regarding discriminativeness? To address this ques-
tion, in our second experiment we use CLIP from
the perspective of reference resolution.

We focus on local text-to-image alignment, ini-
tially ignoring the previous dialogue history. To
this end, we feed CLIP a single referring utterance
together with the visual context of the speaker who
produced that utterance. CLIP yields softmax prob-
abilities for each image contrasted with the single
text. As a metric, we use accuracy: 1 if the target
image gets the highest probability; O otherwise.

Results. The overall accuracy is 80.15%, which
is well above the random baseline of 16.67%. In
Fig. 5, we break down the results per rank (blue
bars). A 4 x 2 chi-square test (4 ranks vs. cor-
rect/incorrect) did not yield significant differences



Descriptiveness

|

>
| | ||

NN

/0
|
|
| |

CLIPScore

1 2 3

4

Figure 4: Descriptiveness (CLIPScore) for PB-
GOLD, COCO and IDS. We only plot the first 4 ‘ranks’
(x-axis) for COCO and IDS for comparability with PB-
GOLD. The error bars illustrate the standard error.

in accuracy between the ranks, p > 0.05. Thus,
although descriptiveness decreases over time, dis-
criminativeness is not significantly affected. An
analysis of the entropy of the softmax distributions
reveals that entropy increases monotonically over
the ranks (this difference is statistically significant
according to an independent samples t-test between
ranks 1 and 4; H, = 0.62, H4 = 0.79, p < 0.01).
That is, the model is more uncertain when try-
ing to resolve less descriptive utterances. There
is indeed a negative correlation between entropy
and CLIPScore computed between the target im-
age and the corresponding utterance (Spearman’s
p=—0.5,p < 0.001).

6 Analysis

How do participants manage to maintain discrim-
inativeness while decreasing descriptiveness? Do
they rely on the previous mentions present in the
dialogue history? Do they refine their referring
strategy by distilling the most discriminative infor-
mation in a given context?

6.1 Dialogue history

The results of our experiment in the previous sec-
tion show that the utterances in isolation are effec-
tive at referring; yet, uncertainty increases when
the less descriptive utterances are considered out
of context. To reduce such uncertainty, partici-
pants may rely on the dialogue history (Brennan
and Clark, 1996; Shore and Skantze, 2018; Tak-
maz et al., 2020). We consider a scenario where
participants keep in memory the previous mention
when processing the current referring utterance.
We model this scenario by prepending the previ-
ous referring utterance in the chain to the current
utterance and feeding this into the reference reso-
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Figure 5: Discriminativeness (reference resolution ac-
curacy, ACC) per rank with PB-GOLD utterances
(Utterance) and utterances with history (w/Prev. Utt),
along with their respective entropies (ENT).

lution model described in Section 5. As shown in
Fig. 5, the resulting discriminativeness is similar
to the one obtained earlier (the differences are not
significant; chi-square test, p < 0.05) and, as be-
fore, remains stable across ranks (chi-square test,
p > 0.05). However, taking into account the previ-
ous mentions leads to a significant reduction of the
entropy in general: e.g., at the last rank H4 = 0.79
vs. Hj = 0.62 (t-test, p < 0.05). This suggests
that relying on the dialogue history allows speak-
ers to use less descriptive utterances by reducing
discriminative uncertainty.

6.2 Most discriminative information

Besides exploiting the dialogue history, partici-
pants may refine their referring strategy by distill-
ing the most discriminative information in a given
context. To gain insight into this hypothesis, we
explore what is discriminative in the images: we
compute the discriminative features v, of a target
image by taking the average of the visual repre-
sentations of distractor images to obtain the mean
context vector and then subtracting this vector from
the visual representation of the target image. We en-
code all 926 words in the vocabulary of PB-GOLD
using CLIP, and retrieve the top-10 words whose
representations are the closest to v, in terms of co-
sine similarity (amounting to 1% of the vocabulary).
We take these words to convey the most discrimina-
tive properties of an image in context. We analyse
whether at least one of these retrieved words is
mentioned exactly in the referring utterance, find-
ing that this is indeed the case for a remarkable 60%
of utterances.® As an illustration, for the example
in Fig. 1, the words walking (mentioned at rank 1)

$Randomly sampling 10 words from the vocabulary for
each utterance yields 11% (average of 5 random runs).



and blue (used at ranks 1, 2, 3, 4) are among the
top-10 most discriminative words, while the word
water (mentioned at ranks 1, 2, 3, 4) is close to the
word beach, which is also retrieved as one of most
discriminative words in this case.

The most discriminative words are likely to be
reused in later utterances, even though the visual
context changes from rank to rank. For instance,
the most discriminative words mentioned at rank
1 constitute 60% of the discriminative words at
rank 2, indicating that entrainment is likely for
words that have high utility across contexts. We
also find a significant increase in the proportion
of discriminative content words to all the content
words per utterance (only between ranks 1 and 4,
14% vs. 19%, p < 0.01).

7 Conclusion

We used a pre-trained multimodal model claimed
to be a reference-free caption evaluator, CLIP (Rad-
ford et al., 2021), to quantify descriptiveness and
discriminativeness of human referring utterances
within multimodal dialogues. We showed that (i)
later utterances in a dialogue become less descrip-
tive in isolation while (ii) remaining similarly dis-
criminative against a visual context.

We found that the addition of dialogue history
helps decrease and control the entropy of resolu-
tion accuracy even when the speakers produce less
descriptive referring utterances. In addition, we
found that the proportion of discriminative words
increases over the ranks. These suggest that partic-
ipants playing the PhotoBook game (Haber et al.,
2019) show a tendency towards distilling discrim-
inative words and utilize the dialogue history to
keep task performance stable over the dialogue.
This outcome resonates with the findings by Giu-
lianelli et al. (2021) who observe that PhotoBook
dialogue participants tend to limit fluctuations in
the amount of information transmitted within refer-
ence chains, in line with uniform information den-
sity principles (e.g., Genzel and Charniak, 2002;
Jaeger and Levy, 2007).

Interestingly, future work could explore novel
ways of incorporating the CLIP model or its repre-
sentations into a reference resolution or generation
model embedding dialogue history and visual con-
text to obtain human-like outcomes.
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Abstract

Codenames is a popular board game, in which
knowledge and cooperation between players
play an important role. The task of a player
playing as a spymaster is to find words (clues)
that a teammate finds related to as many of
some given words as possible, but not to other
specified words. This is a hard challenge even
with today’s advanced language technology
methods.

In our study, we create spymaster agents us-
ing four types of relatedness measures that re-
quire only a raw text corpus to produce. These
include newly introduced ones based on co-
occurrences, which outperform FastText cosine
similarity on gold standard relatedness data.
To generate clues in Codenames, we combine
relatedness measures with four different scor-
ing functions, for two languages, English and
Hungarian. For testing, we collect decisions of
human guesser players in an online game, and
our configurations outperform previous agents
among methods using raw corpora only.

1 Introduction

One of the central subjects of artificial intelligence
research has long been the development of agents
that play various games at the human level or better.
Most studies in the field focus on combinatorial
games, that can be easily formalized mathemati-
cally, such as chess and go (see, for example, Allis
etal., 1994). The popular board game Codenames
is different from these in many aspects and may
provide an excellent experimental ground in areas
such as predicting human behavior or implement-
ing human-machine cooperation.

In the original game, two teams compete against
each other. A board of 25 word cards contains
cards belonging to the blue or red team, neutral
cards, and an instant defeat card (black). A team
wins if all cards of their team are revealed earlier
than the cards of the other team, or if the opponent
reveals the black card. However, only one person
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(the spymaster) from both teams knows which card
is of what color. Therefore, the spymasters give
the team a clue each turn, which consists of a clue
word and a number. The other members of the team
(guessers), in consultation with each other, reveal
cards on the board they think are related to the clue
word, until they bet on a wrong card, or reach the
limit given by the spymaster as a number.

This means it is possible to create two types of
agents for the game, spymasters and guessers. The
main task of both agents is to be able to cooperate
with human players. To create agents capable of
such high-level cooperation, we need to be able
to predict human behavior in the game. This task
includes modeling the relatedness of words, with
the aim of obtaining relatedness measures that rep-
resent human perception well.

This task is highly related to word association
modeling, which has been studied extensively in
psycholinguistics for a long time (Palermo and
Jenkins, 1964; McNeill, 1966), but is by no means
equivalent to it. In word association experiments,
subjects should name any word associated with a
given word as quickly as possible, but in this case,
the spymaster’s task is to find a word that is related
to as many words from a given set as possible, but
not or significantly less closely to a set of other
words. The time allotted for the task is also limited
at most very loosely (by the patience of the other
players), and based on personal experiences, spy-
masters often use several minutes of thinking time
to come up with the right clue. For this reason, con-
nected words are often related in a complex way,
even indirectly. The task of agents — to find words
in the table related to the clue word — is more like
simple associations, but time is not dominant here
either, and more complex, indirect relations also
matter. In a game between people, the relationship
and common knowledge between the players can
also count, but this is not an influencing factor in a
game with an agent.

Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 43 - 53
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2 A Mathematical Model of the Game

Suppose that for a dictionary V, a similarity matrix
S € RIVIXIVI exists in which S;; = s(w;,w;)
is the exact measure of the relationship between
any two words w;, w;, that is, the relationships are
just as strong according to every person. Then
the implementation of the guesser agent is simple:
from the words on the board, always choose the
one that is most closely related to the clue word.
This way, a greedy spy-agent is also simple: let v;
be the i-th word of the dictionary, and for every ¢,
let [w;1, wy2, ..., wi,| be the unrevealed words on
the board, ordered by the relatedness to v;, from the
most closely related to the least related one. Then
we look for ¢ for which the largest number £ exists,
such that w;, w;2, ..., w;i are all words belonging
to the agent’s team. Then v; will be the clue word,
and k the number of targeted words.

However, under such conditions, the behavior
of the guessers is deterministic, which means the
two spymasters are playing against each other. The
dictionary, that is, the number of their possible
decisions is finite, and spymasters know the out-
come of each decision, which means they know
each other’s possible strategies. Thus, the game be-
comes a sequential game with perfect information,
like e.g. chess, go, or tic-tac-toe. A greedy deci-
sion is not necessarily optimal, since a spymaster
needs to consider what options they will have later,
depending on their own and the other spymasters’
decisions, and should optimize their move based on
that. Within such a framework, the development of
an optimal strategy may be the subject of further re-
search, but is no more connected to computational
and cognitive linguistics, so we will not discuss
this further in this article.

The above conditions are, of course, far from
reality, since such a distance function, which per-
fectly corresponds to the mental representations
of all people, certainly does not exist. This is
clear from the fact that in classical association tests,
where the actual task is to find nearest neighbors,
the subjects never give the same answer (Palermo
and Jenkins, 1964; Postman and Keppel, 2014).
However, it is a meaningful task to create a sim-
ilarity function and construct a similarity matrix
S € RV*V, in which S;; = s(w;,w;) approxi-
mates the average similarity perceived by people.

Furthermore, based on the similarity approxima-
tions, we can define a scoring function for possible
clues, which realistically ranks them according to
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how many correct guesses a human guesser player
is expected to give. Our distance matrix and our
scoring function together determine a greedy spy-
master agent. Since this task is challenging in itself,
we disregard the possible non-greedy strategies and
focus on optimizing similarity approximations and
clue scoring functions for one round only.

3 Related Work

3.1 Associations

Word associations have been a subject of active
research for a long time in cognitive science and
psycholinguistics for various reasons. They were
used to study mental functioning, memory, and cer-
tain diseases. Word associations were also applied
for modeling the cognitive lexicon and some lin-
guistic processes (summarized by Bel-Enguix et al.,
2019).

One can create a graph (Bel-Enguix, 2014), and
its transformation to a word embedding model (Bel-
Enguix et al., 2019), specifically for modeling as-
sociations, but these require difficult-to-obtain as-
sociation data. This would be a high resource re-
quirement and would make it difficult to apply such
methods in various languages.

Instead, we can use methods that require only
raw corpora. For this, the results of Spence and
Owens (1990) are the most important studies of
associations. They have shown that the amount
of co-occurrences of words in a corpus is a good
indicator of the semantic relationship between them
and is also suitable for measuring the strength of
associations. Bel Enguix et al. (2014) also predict
associations from co-occurrences, using a network
of bigram counts. Similar to their methods, we use
weighted co-occurrences explicitly to model the
connection of words (for details, see 4.1.).

3.2 Language graphs

Although the canonical way to represent words is
to assign them to vectors, if the goal is to model
connections between words, a graph structure is at
least as suitable. When each word is represented by
a vector, the similarity between them is most often
calculated as the cosine of the angle of the two
vectors. In the case of graph representations, all
words in the dictionary correspond to the vertices
of a large graph, and the distance between them can
be defined in many ways depending on the graph.
One option is the length or weight of the shortest
path between the two vertices. Knowledge graphs



(Miller, 1992; Speer and Havasi, 2012; Navigli and
Ponzetto, 2010a) were already used to model word
connections in previous Codenames agents, but
other types of language graphs also exist, which
could be utilized for this task as well.

Hope and Keller (2013), for example, use a
graph of co-occurrences for word sense induction.
Later Pelevina et al. (2016) use a similar method to
disambiguate word embedding models.

Another graph, created as an alternative for word
embeddings, is GraphGlove (Ryabinin et al., 2020),
where the edges of the graph are optimized by the
cost function of GloVe (Pennington et al., 2014b),
so that the shortest path between two vertices gives
the distance of the corresponding words.

3.3 Codenames agents

To the best of our knowledge, the first algorithms
similar to Codenames agents have been created
by Shen et al. (2018) specifically to model human
associations. In their simplified game, the board
always consists of three nouns, and the agent gives
a clue that must be one of three adjectives, and
refers to exactly two of the board words. Their
clues were generated based on the following five
similarity functions:

* probability of bigrams relative to word fre-
quency,

cosine similarity in Skip-gram (Mikolov et al.,
2013),

cosine similarity in GloVe (Pennington et al.,
2014a),

connection according to the knowledge graph
ConceptNet5 (Speer and Havasi, 2012),
similarity in topic modeling.

They found that the behavior of human players
is best modeled on the probabilities of bigrams,
which is in line with the results of (Spence and
Owens, 1990) (although the latter calculated co-
occurrences with much larger window size).

Kim et al. (2019) were the first to build agents
designed explicitly to play the game. As a back-
ground to their relatedness measure, they used

* CBOW, Skip-gram and GloVe word embed-
dings (in multiple configurations),

¢ and the WordNet database (Miller, 1992) with
a number of different distance functions.

However, in their study, they do not evaluate the
performance of agents with human data, but by pair-
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ing spymaster and guesser agents, which reveals
only the similarity of the two agents, regardless of
their ability to interact with humans.

Jaramillo et al. (2020) calculated similarity func-
tions from the following representations:

» TF-IDF similarity calculated from Wikipedia
articles and dictionary definitions,

* a naive-Bayesian classification of words, and

* word embeddings extracted from the first
layer of the GPT2 language model (Radford
et al., 2019).

Of these methods, they find GPT2 vectors best
suited to model word relatedness.

The latest article on the topic is (Koyyalagunta
et al., 2021), in which, in addition to the previously
used Skip-gram and GloVe word embeddings, to
produce their similarity matrices they use

* FastText (Bojanowski et al., 2017),
* the BERT model (Devlin et al., 2018),

* and the BabelNet knowledge graph (Navigli
and Ponzetto, 2010b), with a framework that
associates words according to special rules,
developed specifically for this purpose.

In addition to calculating the relatedness be-
tween words, the above works also differ in the
scoring functions of the possible clues. Without
limiting the generality, we assume that our agent
plays in the blue team, that is, our clues refer to the
blue words. Using the notations of Koyyalagunta
et al. (2021), let ¢ be a possible clue word, I, a set
of targeted (intended) words, that is, the n closest
blue words to ¢, R the set of all bad words that
do not belong to the team (red words), and s(-,-) a
function that calculates the similarity or relatedness
of two words. The scoring function of Kim et al.
(2019) is then

gKim(57 n) = {
(1

Jaramillo et al. (2020) takes the same function,
but adds penalties based on the color of the cards.
Koyyalagunta et al. (2021), on the other hand, de-
fine another scoring function:

)

mineer, s(¢,b),
if minyer,, s(¢,b) > max,cr s(é,r)
0, otherwise.

IKoyy(En) = (Z s(¢, b)

bely,

— A(r%aé( s(é,r)),
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where ) is configurable parameter.

In addition, they introduce another method to
score clues not only on the basis of word similari-
ties, but also on the basis of their frequency and the
similarity of Dict2vec vectors (Tissier et al., 2017)
— but this is actually a modification of the original
distance matrix.

Their results show that relatedness calculated
by GloVe performs best in combination with dic-
tionary definitions and frequency, but without the
latter, cosine similarity in FastText proves to be the
best measure.

Furthermore, Kumar et al. (2021) studied if the
decisions of human players can be predicted in an
amended version of Codenames. For the predic-
tions, they used word2vec and GloVe word em-
beddings, as well as several similarity measures
on free association datasets, in particular SWOW
(De Deyne et al., 2019) and USF (Nelson et al.,
2004). They found that similarity based on random
walks in SWOW performed the best, from which
they concluded that not only direct associations,
but indirect connections are also important in this
game.

4 Our Codenames Agents

Building on the studies of Spence and Owens
(1990), we introduce several word relatedness mea-
sures based on co-occurrences, which we expect
to be more suitable for modeling the human per-
ception of word connections than representation
methods created for other NLP tasks. We create
spymaster agents with several new clue scoring
functions combined to our relatedness measures.
This way, our methods only require a raw text cor-
pus of appropriate size, so they can be used for
any language. We evaluate them in two languages
(English and Hungarian), in an online game with
human players.!

4.1 Relatedness measures

Considering the previous results on the relationship
between associations and co-occurrences (Spence
and Owens, 1990; Shen et al., 2018), we create
our distance matrices not from the latest neural
methods of NLP, but from co-occurrences counted

!The game:
http://spymasters.herokuapp.com/

Source code and data:
https://github.com/xerevity/
CodeNamesAgent
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in raw text. As English corpora we use the con-
catenation of the English Wikipedia and the En-
glish OpenSubtitles corpus, consisting of 5.692
billion tokens in total. For Hungarian, we use the
lemmatized version of the Hungarian Webcorpus
(Nemeskey, 2020), also including the Hungarian
Wikipedia (1.414 billion tokens). We work with
vocabulary sizes 15K in English and 10K in Hun-
garian, and remove stopwords.

4.1.1 FastText

Among the similarity measures of Koyyalagunta
et al. (2021), generally FastText seems to be the
best model. So, following the cited work, we create
a relatedness matrix based on the cosine similarity
of FastText vectors. That is, if v;, v; are vectors
corresponding to words w;, w;, then

sp(w;, wj) = cos(vi, vj).

For comparability with the other methods, we train
our FastText models on the above corpora for En-
glish and Hungarian in 300 dimensions, using win-
dow size 10.

4.1.2 Normalized PMI

A standard and probably the most common method
to calculate word relatedness from co-occurrences
is computing the pointwise mutual information
(PMI) of two words. However, PMI has well-
known shortcomings, such as overvaluing the re-
latedness of rare words, and lacking a fixed upper
and lower bound. Bouma (2009) introduced nor-

malized PMI as
PMIyorm (2, y) = <ln )/ —Inp(z,vy),
3)

which has 1 and —1 as upper and lower bounds, and
works well empirically as an association measure.
According to a known practice, we keep positive
values only.

Comparing this relatedness measure to data ob-
tained from humans (MEN, Bruni et al., 2012 and
WS-353 relatedness, Agirre et al., 2009), we found
that taking the square root of PMI,opy, increases the
Pearson correlation coefficient between human an-
notations and our calculated relatedness from 0.72
t0 0.76 for MEN, and from 0.57 to 0.63 for WS-353.
Additionally, in our following methods, it is bene-
ficial if the values do not concentrate around zero,
therefore we use the square root of normalized PMI
hereinafter:

NPMI(z,y) = v/PMlnorm (2, y).

p(z,y)
p(x)p(y)

“)



4.1.3 Squared NPMI matrix

In Codenames, to get ahead in the game, spymas-
ters have to give clues that are connected to many
words that are probably unconnected to each other.
As Kumar et al. (2021) showed, they might asso-
ciate words that are not in a strong direct connec-
tion, but are only indirectly related (e.g. religion is
not related to tree, but both are related to Christmas,
therefore religion could be a clue for tree).

To model such indirect connections, we multiply
the relatedness matrix by itself, and use the values
of the squared matrix S’ as the relatedness measure
between two words. By the definition of matrix
multiplication,

n

!
Sij =D sik " Sk

k=1

that is, if we define GG as a graph whose neigh-
borhood matrix is the NPMI matrix then S ; 1s the
sum of the product of the weights on all two-length
paths v; — v, — v; in Gy. Since all edge weights
are between 0 and 1, considering the weight of
a path as the product of its edge weights gives a
valid relatedness measure: longer paths and paths
that contain smaller weights will yield to smaller
relatedness values.

Artetxe et al. (2018) also showed on word em-
beddings, that different powers of embedding ma-
trices are beneficial for word similarity and word
relatedness tasks, and that the optimal power is
higher for relatedness than for similarity.

Another advantage of this method is, that it re-
duces the number of zeros in the matrix. This is
most important in the case of a guesser agent, be-
cause if the matrix consists of many zero values,
some clues may not have any related words on the
board according to our relatedness measure. How-
ever, if we have a nonzero value for all board words,
we can take the relatedness between the clue word
and the bad words into account, which might be
beneficial for a spymaster agent as well.

4.1.4 NPMI graph

In the method described above, we already used a
relatedness measure based on a graph constructed
from NPMI values, where the weight of a path
was the product of the weights of the edges on the
path. This way, a greater value of edge or path
weights corresponds to a stronger connection be-
tween the nodes. However, a more common way
is that edge weights represent distance, and path
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NPMI NPMI?> Graph FastText
NPMI 0.495  0.820 0.393
NPMIZ  0.349 0.578 0.621
Graph 0442  0.602 0.427
FastText 0295  0.524 0319

Table 1: Pearson (upper tringle) and Spearman (lower
triangle) correlation coefficients between our related-
ness measures.

weights are the sum of the edges, so that stronger
connections belong to smaller path weights. Since
our NPMI values are between 0 and 1, we can de-
fine graph G as follows: an edge e(v1, v2) between
vertices corresponding to words w; and ws exists
if and only if NPMI(wq,w2) > 0, and its weight
is w(e(vy,v2)) = 1 — NPMI(wy,ws). Now the
distance between w; and wo is given by the weight
of the shortest path between vy and vs:

min
TI'GHG (’Ui ,’Uj) ene

®)

w(ek)a

da(wi, wj) =

We can turn these distance values into relatedness
measures by subtracting them from 1:

(6)

sq(wr, w2) =1 — dg(w;, wy).

This way, for two strongly related words, for which
the shortest path is the edge between them, we
get the NPMI as relatedness value. This method
therefore has some of the advantageous properties
of both above relatedness measures.

4.1.5 Comparison and evaluation of
relatedness measures

To investigate the relationship of the above defined
relatedness measures, we compute correlations be-
tween the score they assign to 100.000 random
word pairs. As Table 1 shows, none of the mea-
sures are near equivalent, but they have nonzero
correlations. They also show high positive correla-
tions with MEN (Bruni et al., 2012) and WS-353
relatedness (Agirre et al., 2009), as can be seen
in Table 2, which is hopeful for their usability as
relatedness in Codenames agents.

4.2 Clue scoring functions

Say that the agent plays in the blue team, i.e. we
want to generate clues associated to the blue words,
based on the distance functions above. The func-
tions of Kim et al. (2019) (see (1)) determined the
score of a possible reference based on relatedness



MEN WS-353
Pearson Spearman Pearson  Spearman
NPMI 0.761 0.749 0.632 0.649
NPMI? 0.627 0.670 0.502 0.545
Graph 0.754 0.735 0.650 0.647
FastText  0.732 0.737 0.562 0.564

Table 2: Correlation between our relatedness measures
and gold standard annotations.

of the clue word to the least related blue word tar-
geted. The shortcoming of this, however, is that
in addition to blue (good) words that are similar to
the clue word, there may be bad words of a differ-
ent color that are only very slightly less similar to
the clue. We can assume that in this case, agents
are less likely to choose the targeted words; or in
general, the smaller the difference between the dis-
tances of two words from the clue according to our
distance function, the more likely the human player
will perceive the order of the two words reversed.

To avoid such problems, Koyyalagunta et al.
(2021) (see (2)) add a penalty on the relatedness
of the closest bad word to their scoring functions.
This scoring function generally improves the qual-
ity of the generated clues, thus we use this as one of
our scoring functions. However, this function does
not require all bad words to be less similar to the
clue word than the targeted words, and in our exper-
iments there have been such cases that this caused
a problem. Therefore we define KoyyRestrict, a
restricted modification of g oyy:

{ groyy(C,m),
groyyR(E,m) = if minger, $(¢,b) > max,cr s(¢,r)
0, otherwise.
O]
Another disadvantage of this scoring function is
that the sum of the similarities might be high even
if only one targeted word is very related to the clue
word, and the scores of the other targets are close
to the scores of the bad words. Regarding this,
replacing the sum (which is, in optimization for
a certain n, equivalent with the arithmetic mean)
with the harmonic mean of the relatedness scores
might also lead to an improvement, especially if
there are outliers among the vocabulary words with
very high relatedness to a blue word. Thus, we
introduce Harmonic scoring function as:

gu(é,n) = if minger,, s(¢,b) > max,yer s(¢é, 1)

H(blb € I,) — X\ - maxyer s(G,r),
0, otherwise,

®
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where H is the harmonic mean function:

n
) Tn) = — 1 R

H (xz1,x9,...

Finally, we also use a different version (Har-
monicDivide) of the above, where the penalty on
the bad words is performed as division instead of
subtraction:

H(blb € I,,)
max(n - maxycr (¢, r),1)’

gup(E,n) = ©)

We combine these four scoring functions with
all of the above relatedness measures, and evaluate
the agents thus obtained in the next section.

5 [Evaluation and Analysis

Following Koyyalagunta et al. (2021), we use
A = 0.5 for Koyyalagunta and KoyyRestrict scor-
ing functions, but also for the Harmonic function.
We pair all relatedness measures to all scoring func-
tions, creating 16 agents in total, and generate clues
for n = 2 and 3 targeted blue words using all of
them. Differently from Koyyalagunta et al. (2021),
we consider all of our vocabulary words as possi-
ble clue words. For each possible clue word, the
best target words in the set [, are the n closest
words to the clue word, so scoring a possible clue
is computationally inexpensive.

We randomly create 100 boards, with each con-
taining 10 good and 10 bad words. For each board,
we generate clues with the 32 configurations de-
tailed above. This results in 1304 distinct clues in
English, and 1399 in Hungarian. For evaluation,
we create an online game, where human players
get a board with one of the corresponding clues
randomly, and have to choose the given number
of words from the board which they think the clue
refers to. The players do not know how the agents
work, and to avoid that through the game they learn
it at the end of the round they only see the color
of their chosen words. We collected 443 rounds
played in English, and 1365 in Hungarian. This
way, we have 31.5 rounds on average to evaluate
English configurations, and 64 rounds for Hungar-
ian. For one board, players on average spent 39
seconds on guessing in English, while 37 seconds
in Hungarian. We note that the players of the Hun-
garian game were most likely Hungarian native
speakers, while the same cannot be said about the
English game, therefore we consider the Hungarian
data more reliable.



Evaluation Relatedness Koyy KoyyR HM HM-Div | Koyy KoyyR HM HM-Div
2 targets 3 targets
FastText | 0.764 0.757 0.740 0.829 | 0.710 0.712 0.756  0.759
P@all NPMI 0.747 0.747 0.776  0.715 | 0.707 0.708 0.733  0.695
NPMI? 0722 0.742 0.725 0.744 | 0.666 0.696 0.746  0.729
Graph 0.795 0.795 0.827 0.715 | 0.727 0.735 0.759  0.695
FastText | 0.558 0.567 0.581 0.625 | 0.531 0.518 0.585 0.582
P@targets NPMI 0.504 0.504 0519 0546 | 0.515 0.513 0503  0.495
NPMI? 0.529 0.547 0.554 0479 | 0503 0513 0.556  0.550
Graph 0.533 0.533 0.574 0546 | 0541 0.542 0511 0495

Table 3: Rate of correct guesses made by human players in the Hungarian game. Numbers falling into the
bootstrapped confidence interval of the best score are underlined in each category.

Evaluation Relatedness Koyy KoyyR HM HM-Div | Koyy KoyyR HM HM-Div
2 targets 3 targets
FastText | 0.707 0.726 0.783 0.722 | 0.711 0.742 0.755 0.760
P@all NPMI 0.727 0.727 0.670 0.682 | 0.764 0.764 0.725 0.716
NPMI? 0.611 0583 0.604 0.729 | 0.645 0.583 0.638  0.649
Graph 0.714 0.714 0.679 0.682 | 0.750 0.750 0.723  0.716
FastText | 0.487 0.535 0.581 0.555 |0.549 0495 0.577 0.520
P@targets NPMI 0420 0420 0397 0426 | 0.549 0.549 0.541 0.508
NPMI? 0.377 0361 0372 0445 | 0354 0369 0370 0470
Graph 0392 0392 0384 0426 | 0.552 0.552 0.533 0.508

Table 4: Rate of correct guesses made by human players in the English game. Numbers falling into the bootstrapped
confidence interval of the best score are underlined in each category.

Similar to Koyyalagunta et al. (2021), we com-
pute the precision of the agents as

P@targets =

)

[, N U
n

where I, is the set of the targeted words, and U is
the set of words chosen by the players. However,
the scoring functions optimize clue words to stay
away from red words, but not from non-targeted
blue words, which might be almost as related to the
clue as the targeted ones. If the user chooses such
an untargeted word, the agent still performs well.
So we define P@all,

p@all = A" U',
n

where A is the set of all good (blue) words. In
Table 3 and Table 4, we show the mean precision
of the players’ guesses on the clues of each agent.
In each category (defined by language, evaluation
method, and the number of targets), we construct
a 0.95 level confidence interval for the best mean

49

precision using bootstrap, and mark the numbers
falling into this interval underlined.

Among the configurations, FastText similarity
combined with the Koyyalagunta scoring function
was evaluated previously by Koyyalagunta et al.
(2021), where it was the best agent without any
language-specific resource, i.e. using raw corpora
only. The results show that this is outperformed by
many of our new configurations.

On FastText relatedness, our Harmonic and Har-
monicDivide scoring functions result in a substan-
tial improvement. Most of the best performing
configurations use FastText as similarity measure
combined with these functions, although the advan-
tage of these methods is less significant when the
guesses are evaluated on all blue words instead of
the targets of the agent. Also, the only agent that
performs within the confidence interval of the best
agent in their category is FastText combined with
HarmonicDivide, therefore we consider it as our
highest performing agent. The second best agents



in this regard, falling short in one category only, are
the Graph similarity combined with Koyyalagunta
and KoyyalaguntaRestrict functions.

As we can see, different relatedness measures
fit different scoring functions. As mentioned in
4.2, we think that the Harmonic functions are more
beneficial where outliers with high relatedness can
be found; more generally, the optimal clue scoring
function depends on the distribution of the relat-
edness measures. The exact connection between
them seems to be an exciting direction for future
work.

Interestingly, the correlations of the related-
ness measures to human-annotated relatedness data
(seen in 4.1.5) are not predictive of their perfor-
mance in Codenames, as in those experiments Fast-
Text had been outperformed by both NPMI and
Graph relatedness. The results in the two languages
are not perfectly in line either. For example, in En-
glish NPMI? and graph relatedness perform worse
than the two other relatedness measures, while the
same does not appear in Hungarian. We suspect
that this is because NPMI? and graph relatedness
capture more indirect connections, which are more
problematic to see for non-native speakers.

6 Summary and Future Work

In this work, we separated the Codenames spy-
master agent’s task into two parts. To cooperate
with humans, we first need to specify a related-
ness matrix that sufficiently approximates the rela-
tionships as judged by humans, and then define a
scoring function on top of this that ranks the pos-
sible clues according to how many good guesses a
human player is expected to give.

Based on previous research on associations, we
generated some of our relatedness matrices based
on co-occurrences between words in a corpus. We
evaluated these relatedness measures with human-
annotated relatedness data. However, we found that
these scores were not predictive of the performance
of the Codenames agents based on these measures.

We also introduced innovations in terms of scor-
ing functions, firstly by refining the scoring func-
tion of Koyyalagunta et al. (2021), and secondly by
using the harmonic mean of the relatedness to the
clue word. This improved the performance of the
best agents substantially.

Our best agents overall were FastText cosine
similarity combined with a function using har-
monic mean, and path weights in a graph of co-
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occurrences, combined with functions using arith-
metic mean of similarities. This raises the question
about what relationship is there between related-
ness and scoring functions.

In future work, we would like to collect data
on human spymaster-player decisions and evaluate
guesser agents on them, which will directly allow
the optimization of the relatedness measure.

Although many NLP methods have already been
used to generate distance matrices, others are worth
trying. Examples include graph embedding of
associations (Bel-Enguix, 2014) and GraphGlove
(Ryabinin et al., 2020).

As each relatedness measure can be defined by
a matrix, it is also possible to aggregate several
matrices generated in different ways. For example,
creating distance matrices based on co-occurrences,
neural word representations, and knowledge graphs
at the same time seems to be a promising new direc-
tion. The comparison of such different relatedness
matrices could also provide important lessons in
cognitive modeling and the interpretability of neu-
ral word representations.
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A Appendix: Example clues

Figure 1 is a board we used for evaluation, and
Table 5 contains the clues generated by all of our
agents for this board.



ALPS CHINA CLIFF SINK ROOT

| CHURCH | SPELL = SERVER  COVER m
‘ CRANE ‘ TABLE SPIKE
Figure 1: An example board used in evaluation

Relatedness Scoring Number Clue word Target words
FastText Koyyalagunta 2 chapel church, crane
FastText Koyyalagunta 3 raven unicorn, crane, spike
FastText KoyyRestrict 2 chapel church, crane
FastText KoyyRestrict 3 shark unicorn, crane, spike
FastText Harmonic 2 menu table, server
FastText Harmonic 3 bean root, crane, spike
FastText HarmonicDivide 2 doll unicorn, spike
FastText HarmonicDivide 3 preview cover, server, spike
NPMI Koyyalagunta 2 directory  root, server

NPMI Koyyalagunta 3 altar church, table, server
NPMI KoyyRestrict 2 directory  root, server

NPMI KoyyRestrict 3 altar church, table, server
NPMI Harmonic 2 directory  root, server

NPMI Harmonic 3 altar church, table, server
NPMI HarmonicDivide 2 directory  root, server

NPMI HarmonicDivide 3 altar church, table, server
NPMI? Koyyalagunta 2 user server, root

NPMI? Koyyalagunta 3 voiced crane, spike, unicorn
NPMI? KoyyRestrict 2 user server, root

NPMI? KoyyRestrict 3 voiced crane, spike, unicorn
NPMI? Harmonic 2 node root, server

NPMI? Harmonic 3 voiced crane, spike, unicorn
NPMI? HarmonicDivide 2 download  server, cover

NPMI? HarmonicDivide 3 itunes SErver, cover, unicorn
Graph Koyyalagunta 2 directory  root, server

Graph Koyyalagunta 3 directory  root, server, table
Graph KoyyRestrict 2 directory  root, server

Graph KoyyRestrict 3 directory  root, server, table
Graph Harmonic 2 directory root, server

Graph Harmonic 3 altar church, table, server
Graph HarmonicDivide 2 directory  root, server

Graph HarmonicDivide 3 altar church, table, server

Table 5: Clues generated for the board in Figure 1.
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Abstract

I investigate how to use pretrained static word
embeddings to deliver improved estimates of
bilexical co-occurrence probabilities: condi-
tional probabilities of one word given a sin-
gle other word in a specific relationship. Such
probabilities play important roles in psycholin-
guistics, corpus linguistics, and usage-based
cognitive modeling of language more gener-
ally. I propose a log-bilinear model taking pre-
trained vector representations of the two words
as input, enabling generalization based on the
distributional information contained in both
vectors. I show that this model outperforms
baselines in estimating probabilities of adjec-
tives given nouns that they attributively mod-
ify, and probabilities of nominal direct objects
given their head verbs, given limited training
data in Arabic, English, Korean, and Spanish.

1 Introduction

Word co-occurrence probabilities are a key ingre-
dient in usage-based cognitive models of language.
By word co-occurrence probabilities, I mean the
probability of a word w given some other single
word ¢, p(w | ¢), where words w and ¢ have some
specific relationship, for example adjectives that at-
tributively modify nouns or nouns serving as direct
objects of verbs (Gries and Durrant, 2020).

These co-occurrence probabilities are psy-
cholinguistically relevant because they feed into
information-theoretic measures of ‘thematic fit’
and selectional restriction (Resnik, 1996; Lap-
ata et al., 1999; Pado et al., 2007; Vecchi et al.,
2017) which are relevant in predicting human on-
line processing difficulty (e.g. McRae et al., 1998;
Trueswell et al., 1994), and play a key role in lan-
guage acquisition (Erickson and Thiessen, 2015).
Most prominently, the widely-used pointwise mu-
tual information (PMI) measure of association
strength, PMI (w,¢) = log 29 (Fano, 1961;

p(w)
Church and Hanks, 1990), relies on these condi-
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tional probabilities as an input. PMI makes appear-
ances in models of grammar induction from text
(Magerman and Marcus, 1990; Yuret, 1998; Clark
and Fijalkow, 2020; Hoover et al., 2021), online
sentence comprehension and production (Futrell
et al., 2020b; Ranjan et al., 2022), and quantita-
tive theories of word order variation (Futrell et al.,
2020a; Sharma et al., 2020).

Word co-occurrence probabilities are hard to es-
timate accurately from text data because empiri-
cal counts of a particular pair of words in a par-
ticular relation are often sparse. This limitation
makes it hard to evaluate cognitive theories that
operate on co-occurrence probabilities. Although
high-performance pretrained language models now
exist (Radford et al., 2019; Devlin et al., 2019, etc.),
the probabilities of interest often cannot be read off
of these models directly, because w and ¢ might
be defined by relations that cannot be straightfor-
wardly detected in terms of linear word order or
templates. For example, suppose we are interested
in the distribution of adjectives attributively modi-
fying a noun in English. It would not do to ask a
language model for the distribution of words im-
mediately preceding a noun, because some of these
words will not be attributive adjectives.

I propose to improve the estimation of word co-
occurrence probabilities by leveraging pretrained
static word embeddings to enhance generalization
from potentially small training sets. My method
enables generalization based on the semantic and
syntactic information contained in word embed-
dings for both words w and c.

2 Model

Setting We are given a vocabulary of words V,
a finite target word set W C V, a dataset of
N pairs of words {(w;, ¢;)}Y | where the target
word w is an element of target word set W and the
context word c is an element of the full vocabu-
lary V, and a pretrained mapping from words to

Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 54 - 60
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D-dimensional static embeddings E : V — RP.
Supposing the dataset consists of iid samples from
some distribution p (w,c¢) = p(c)p(w | ¢), our
goal is to find a conditional distribution g(w | ¢)
with support W to approximate p(w | ¢) in a way
that leverages the static embeddings F.

Proposed model I propose a log-bilinear model
(Mnih and Hinton, 2007, 2008) using word embed-
dings as input:!

dtw]e) =z e{om)TavE}
z2(0)= Y ex{ow)TAv(©)}, @

weW
where w = FE(w) and ¢ = FE(c) are the

static embeddings of target word w and context
word c respectively, the target word encoder
() : RP — RX and context word encoder
w(+) RP  — RE are functions which may
be parameterized as feed-forward neural networks
with parameters denoted ¢ and ¢ respectively, and
A is a K x L interaction matrix. The model pa-
rameters ¢, ¥, and A are trained to minimize the
cross-entropy loss

N
T (¢, A) == logq(wn | ). (3)
n=1

Modeling decisions A modeler applying this ap-
proach needs to make a number of decisions, in-
cluding the choice of static word embeddings and
the structure of the word encoders ¢(-) and ¥ (-).
It is also possible to set 1) = ¢, using the same
function to encode both the target word and the
context word; this setup can reduce the number of
parameters at the cost of less flexibility in fitting
the training data.

Another major modeling decision involves the
target word vocabulary W, which determines the
support of g(w | ¢) and is summed over during
the calculation of the partition function (Eq. 2). In
some cases, the modeler may not have access to a
finite set W of possible target words. As long as
the full vocabulary V is finite, it is possible to set
W = V and learn a probability distribution with
support on all words in V.

Setting W = V has the advantage that it al-
lows the modeler not to commit to any particular
target word set, thus avoiding the risk of prema-
turely excluding legitimate target words. It has the

'T have suppressed bias terms from the notation.

55

disadvantages that (1) calculation of the partition
function (Eq. 2) is slower and/or more memory
intensive, and (2) the learning problem is more dif-
ficult because probability mass is initially spread
over the set V' as opposed to a potentially much
smaller set .

Implementation In all experiments reported be-
low, stochastic gradient descent is performed us-
ing the Adam algorithm with default initial learn-
ing rate (Kingma and Ba, 2015). All experi-
ments are implemented in PyTorch with use of
opt_einsum to compute the partition function
(Smith and Gray, 2018; Paszke et al., 2019).

To handle out-of-vocabulary items, I include an
unknown-word symbol UNK in the target word set
W and full vocabulary V. If a target word w in a
dataset is not present in the target word set W, or a
context word c is not present in the full vocabulary
V, then that word is mapped to UNK. In the embed-
ding map, UNK is assigned to a normalized random
vector drawn from a Gaussian distribution.

3 Related work

Distributional similarity information has been used
to improve modeling of word co-occurrence prob-
abilities in previous work. Dagan et al. (1994,
1999) defined a kernel-based interpolated language
model where probability mass is explicitly spread
over similar words, with variant models along these
lines found in Wang et al. (2005) and Yarlett (2008).
These models leverage similarity information about
target words but not context words. In contrast,
Biré6 et al. (2007) proposed a method which uses
similarity information about the context word but
not the target word. Toutanova et al. (2004) de-
veloped a method that can exploit similarity in-
formation about both target and context, using a
Markov Chain algorithm incorporating distribu-
tional and WordNet similarities. None of this previ-
ous work derived word similarity information from
pretrained embeddings, because such embeddings
did not exist at the time.

The log-bilinear model for conditional word
probabilities was introduced in a language mod-
eling context by Mnih and Hinton (2007, 2008).
Mikolov et al. (2013a) influentially proposed to use
the vector representations output by the word en-
coder in such a model as general word embeddings.
The current work aims to return log-bilinear models
to their language modeling roots, evaluating the ca-
pabilities of these models to estimate co-occurrence



probabilities using pretrained embeddings as input,
with a focus on word distributions where training
data is limited. Here the target word vocabulary
is typically small enough that the partition func-
tion (Eq. 2) can be computed directly on modern
hardware, so that approximations such as noise-
contrastive estimation (Mikolov et al., 2013b) are
not necessary.

Recently Nikkarinen et al. (2021) introduced a
neural-Bayesian nonparametric estimator for prob-
ability distributions on single words. Their setting
has an unknown and generally infinite vocabulary
V', and their model generalizes using a character-
level LSTM. In contrast, the current model assumes
a pre-existing known vocabulary V' with embed-
dings, and generalizes based on those embeddings.
A hybrid model may be possible in future work.

A related literature in corpus linguistics and NLP
has explored the nature of restricted binary word
co-occurrences, called collocations (for recent ex-
amples, see Savary et al., 2017; Kutuzov et al.,
2017; Garcia et al., 2021; Espinosa Anke et al.,
2021). This work focuses narrowly on the estima-
tion of bilexical conditional probabilities, which
are often inputs to models for collocation detection.

4 Experiments

I study the ability of the embedding-based log-
bilinear model to estimate conditional distributions
for (1) adjectives attributively modifying nouns and
(2) nominal direct objects modifying verbs, in Ara-
bic, English, Korean, and Spanish. I compare the
model against baselines:

* Additive smoothing with v = 1:
Padd(w | ¢; @) o count(e, w) + a,

where count(c, w) is the frequency of the pair
of words c and w in the training data.

* An interpolated smoothed estimator:

Pinterp(W | €) = Pada(w | ¢; @) + Apmre(w),

where pyg 1s @ maximum likelihood estimate,
A= i, and o = 1.

* A softmax distribution on target words as a
function of the context word embedding c (as
proposed by Biro6 et al., 2007):

Protimax( | €) o< exp{ 00 (c) },
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where 60, is an optimized weight vector for the
target word w. This baseline uses the context
word embedding c but not the target word
embedding w. It is equivalent to having the
target word encoder return a one-hot vector
representation of target word w.

Models without word encoders, achieved by
setting ¢(-) and ®(-) to identity functions.
Such models decode target words from the
word embeddings directly.

All baselines are subject to the same vocabulary
restrictions and out-of-vocabulary policy as the full
log-bilinear models. As a standard test metric, I
report the average negative log likelihood (NLL)
of held-out data. I report NLLs for the full test
set, as well as the challenging subset of the test set
consisting of word pairs where the context word
was never seen during training.

Below, I describe the experimental setting for
the two tasks, and then I describe the results.

4.1 Distribution of attributive adjectives
given nouns

I examine the distribution of attributive adjectives
given the nouns that they modify, for example
adjectives like red modifying nouns like ball in
phrases like the red ball.

Data I use Universal Dependencies (UD) 2.8
(Nivre et al., 2020) and the automatically-parsed
Wikipedia datasets released as part of the CoNLL
2017 Shared Task (Zeman et al., 2017) as a source
of attributive adjective—noun pairs. I extract all
pairs of words linked by a dependency of type
amod where the head has universal part-of-speech
(UPOS) NOUN and the dependent has UPOS ADJ. I
represent the pair using the downcased wordforms
of the adjective and noun.

For each language, I use the fastText aligned
word vectors (Bojanowski et al., 2017; Joulin et al.,
2018),? limiting the vocabulary set V to the top
200,000 vectors by frequency. For the target word
vocabulary W, I take the 10,000 most frequent
wordforms among all attributive adjectives ex-
tracted from the entire CONLL Wikipedia dataset.

As training sets, I use 99,000 adjective—noun
pairs drawn randomly from the Wikipedia datasets
for each language, so training set size is fixed

http://hdl.handle.net/11234/1-3687
‘https://fasttext.cc/docs/en/
aligned-vectors.html



Attributive adjectives given nouns

Direct objects given verbs

Softmax Log-Bilinear Softmax Log-Bilinear
Data Add. Interp. NoEnc. Enc. NoEnc. Enc. Add. Interp. NoEnc. Enc. NoEnc. Enc.
Arabic 8.50 7.05 831 8.04 579 589 9.78 9.78 9.17 9.00 8.63 8.47
Unseenc  9.15 9.60 831 852 693 698 9.71 9.84 9.03 8.86 9.09 8.76
English 8.75 7.17 7.15  17.16 640 641 9.64 8.99 8.64 8.58 8.16 8.04
Unseenc  9.01 8.40 721 722 699 696 9.89 9.96 8.62 8.56 839 835
Spanish 8.70 7.49 8.13 8.10 6.27 627 9.70 9.10 8.64 852 796 7.84
Unseenc  9.17 9.50 8.15 821 7.16  7.09 9.80 9.62 8.48 8.48 835 8.18
Korean 7.96 5.39 551 561 481 482 9.71 9.76 920 9.18 834 17.99
Unseenc  7.16 5.92 545 548 544 540 9.67 9.91 9.16 9.14 9.58 8.76

Table 1: Average NLLs of adjectives given nouns and direct objects given verbs in UD corpora for models and
baselines. ‘Add.” is the additive smoothing baseline. ‘Enc.” and ‘No Enc.” refer to models with and without word
encoders, respectively. Unseen c indicates performance on pairs where the context (the head noun for adjectives
given nouns, and the head verb for direct objects given verbs) was never observed at train time.

across languages. I use an additional 1,000 pairs
from the Wikipedia datasets as development sets
for hyperparameter tuning and early stopping, and
for test sets I extract all pairs from the relevant UD
corpora.* Pairs where the target word w is not in
the target word vocabulary W are removed from
the development and test sets.

Training and hyperparameters Each model is
trained for the number of iterations that gives min-
imum loss on the Wikipedia dev set. The word
encoders are feed-forward neural networks with
one hidden layer of 300 units and an output layer
of 300 units, with ReLU activation. In training, I
use batch size 32; I also experimented with batch
size 512 but this resulted in rapid overfitting.

4.2 Distribution of nominal direct objects
given verbs

I examine the distribution of nominal direct objects
given verbs; for example, from a sentence such as
I kicked the red ball, one would be interested in the
probability of the direct object ball given its head
noun kicked. All procedures here are the same as
for the distribution of attributive adjectives given
nouns except as described below.

Data I extracted direct objects as all pairs of
words linked in a dependency of type obj where
the head has UPOS VERB and the dependent has
UPOS NOUN. Because nouns are more open-class
than adjectives, I used a target word vocabulary of
size 20,000.

“For English, I concatenate EWT and GUM. For Arabic, |
concatenate NYUAD and PADT. For Spanish, I concatenate
AnCora and GSD. For Korean, I concatenate Kaist and GSD.

4.3 Results

Results are shown in Table 1. The log-bilinear
models outperform all others. In several cases (see
for example Spanish and Korean adjectives), only
the log-bilinear model is capable of outperforming
the interpolated baseline.

When predicting adjectives from nouns, the log-
bilinear models without word encoders sometimes
outperform those with word encoders. These is
perhaps not surprising: the input word embeddings
were trained to be used in a log-bilinear skip-gram
probability model, so they already form useful rep-
resentations for word prediction.

Overall performance on predicting objects from
verbs is worse than when predicting adjectives from
nouns. This reflects the harder nature of the task
and the larger support size required to model nouns
rather than adjectives.

4.4 Additional experiments

T also trained full log-bilinear models with a num-
ber of other settings. 1 found that tying the word
and context encoders does not substantially change
performance, but that fine-tuning the input word
embeddings leads to severe overfitting. Remov-
ing the target word vocabulary restriction (setting
W = V) also substantially negatively impacts per-
formance: for adjectives, the best test set NLL is
6.57 for Arabic, 6.75 for English, 6.95 for Spanish,
and 4.89 for Korean.

5 Conclusion

I evaluated log-bilinear modeling as means to
leverage pretrained word embeddings for the es-
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timation of co-occurrence probabilities in differ-
ent syntactic configurations. 1 found that this
method delivers accurate probability estimates
across languages, outperforming baselines. This
method will be useful in all applications requir-
ing such probabilities. Code implementing the

method can be found at https://github.

com/langprocgroup/vectorprob.

Acknowledgments

This work was supported by NSF Grant #1947307
and an NVIDIA GPU Grant to the author. I thank
Charles Torres, Gregory Scontras, and William
Dyer for helpful discussion.

References

Istvan Bird, Zoltan Szamonek, and Csaba Szepesvari.
2007. Sequence prediction exploiting similarity in-
formation. In Proceedings of the 20th International
Joint Conference on Artifical Intelligence, pages
1576-1581.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics, 16(1):22-29.

Alexander Clark and Nathanaél Fijalkow. 2020. Con-
sistent Unsupervised Estimators for Anchored
PCFGs. Transactions of the Association for Com-
putational Linguistics, 8:409-422.

Ido Dagan, Lillian Lee, and Fernando CN Pereira.

1999. Similarity-based models of word cooccur-
rence probabilities. Machine Learning, 34(1):43—
69.

Ido Dagan, Fernando CN Pereira, and Lillian Lee.
1994. Similarity-based estimation of word cooc-
currence probabilities. In 32nd Annual Meeting of
the Association for Computational Linguistics, Las
Cruces, New Mexico, USA. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

58

Lucy C Erickson and Erik D Thiessen. 2015. Statisti-
cal learning of language: Theory, validity, and pre-
dictions of a statistical learning account of language
acquisition. Developmental Review, 37:66—108.

Luis Espinosa Anke, Joan Codina-Filba, and Leo Wan-
ner. 2021. Evaluating language models for the re-
trieval and categorization of lexical collocations. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1406—1417, Online.
Association for Computational Linguistics.

Robert M Fano. 1961. Transmission of Information:
A Statistical Theory of Communication. MIT Press,
Cambridge, MA.

Richard Futrell, William Dyer, and Greg Scontras.
2020a. What determines the order of adjectives in
English? Comparing efficiency-based theories us-
ing dependency treebanks. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2003-2012, Online. As-
sociation for Computational Linguistics.

Richard Futrell, Edward Gibson, and Roger P Levy.
2020b. Lossy-context surprisal: An information-
theoretic model of memory effects in sentence pro-
cessing. Cognitive Science, 44(3):e12814.

Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton,
Marco Idiart, and Aline Villavicencio. 2021. Assess-
ing the representations of idiomaticity in vector mod-
els with a noun compound dataset labeled at type
and token levels. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2730-2741, Online. Association for
Computational Linguistics.

Stefan Th Gries and Philip Durrant. 2020. Analyz-
ing co-occurrence data. In A Practical Handbook
of Corpus Linguistics, pages 141-159. Springer.

Jacob Louis Hoover, Wenyu Du, Alessandro Sordoni,
and Timothy J. O’Donnell. 2021. Linguistic de-
pendencies and statistical dependence. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2941-2963,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Armand Joulin, Piotr Bojanowski, Tomas Mikolov,
Hervé Jégou, and Edouard Grave. 2018. Loss in
translation: Learning bilingual word mapping with
a retrieval criterion. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2979-2984, Brussels, Bel-
gium. Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.



Andrey Kutuzov, Elizaveta Kuzmenko, and Lidia Pivo-
varova. 2017. Clustering of Russian adjective-noun
constructions using word embeddings. In Proceed-
ings of the 6th Workshop on Balto-Slavic Natural
Language Processing, pages 3—13, Valencia, Spain.
Association for Computational Linguistics.

Maria Lapata, Scott McDonald, and Frank Keller. 1999.
Determinants of adjective-noun plausibility. In
Ninth Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 30—
36, Bergen, Norway. Association for Computational
Linguistics.

David M Magerman and Mitchell P Marcus. 1990.
Parsing a natural language using mutual information
statistics. In AAAI, volume 90, pages 984-989.

Ken McRae, Michael J Spivey-Knowlton, and
Michael K Tanenhaus. 1998. Modeling the influ-
ence of thematic fit (and other constraints) in on-line
sentence comprehension. Journal of Memory and
Language, 38(3):283-312.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Ist International Con-
ference on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111-3119.

Andriy Mnih and Geoffrey E Hinton. 2007. Three new
graphical models for statistical language modelling.
In ICML ’07: Proceedings of the 24th International
Conference on Machine Learning, pages 641-648.

Andriy Mnih and Geoffrey E Hinton. 2008. A scalable
hierarchical distributed language model. Advances
in Neural Information Processing Systems, 21:1081—
1088.

Irene Nikkarinen, Tiago Pimentel, Damidn Blasi, and
Ryan Cotterell. 2021. Modeling the unigram dis-
tribution. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3721-3729, Online. Association for Computational
Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Haji¢, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4034-4043, Mar-
seille, France. European Language Resources Asso-
ciation.

59

Sebastian Padd, Ulrike Padd, and Katrin Erk. 2007.
Flexible, corpus-based modelling of human plausi-
bility judgements. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 400-409,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019.  Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024—-8035. Curran Asso-
ciates, Inc.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAl blog, 1(8):9.

Sidharth Ranjan, Rajakrishnan Rajkumar, and Sumeet
Agarwal. 2022. Locality and expectation effects
in Hindi preverbal constituent ordering. Cognition,
223:104959.

Philip Resnik. 1996. Selectional constraints: An
information-theoretic model and its computational
realization. Cognition, 61(1-2):127-159.

Agata Savary, Carlos Ramisch, Silvio Cordeiro, Fed-
erico Sangati, Veronika Vincze, Behrang Qasem-
iZadeh, Marie Candito, Fabienne Cap, Voula Giouli,
Ivelina Stoyanova, and Antoine Doucet. 2017. The
PARSEME shared task on automatic identification
of verbal multiword expressions. In Proceedings of
the 13th Workshop on Multiword Expressions (MWE
2017), pages 31-47, Valencia, Spain. Association
for Computational Linguistics.

Kartik Sharma, Richard Futrell, and Samar Husain.
2020. What determines the order of verbal depen-
dents in Hindi? Effects of efficiency in comprehen-
sion and production. In Proceedings of the Work-
shop on Cognitive Modeling and Computational Lin-
guistics, pages 1-10, Online. Association for Com-
putational Linguistics.

Daniel GA Smith and Johnnie Gray. 2018. Opt_einsum
— A Python package for optimizing contraction or-
der for einsum-like expressions. Journal of Open
Source Software, 3(26):753.

Kristina Toutanova, Christopher D Manning, and An-
drew Y Ng. 2004. Learning random walk models
for inducing word dependency distributions. In Pro-
ceedings of the Twenty-First International Confer-
ence on Machine Learning, page 103.



John C Trueswell, Michael K Tanenhaus, and Susan M
Garnsey. 1994. Semantic influences on parsing: Use
of thematic role information in syntactic ambigu-

ity resolution. Journal of Memory and Language,
33(3):285-318.

Eva M Vecchi, Marco Marelli, Roberto Zamparelli, and
Marco Baroni. 2017. Spicy adjectives and nominal
donkeys: Capturing semantic deviance using com-
positionality in distributional spaces. Cognitive Sci-
ence, 41(1):102-136.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin.
2005.  Strictly lexical dependency parsing. In
Proceedings of the Ninth International Workshop
on Parsing Technology, pages 152—-159, Vancouver,
British Columbia. Association for Computational
Linguistics.

Daniel G Yarlett. 2008. Similarity-based generaliza-
tion in language. Ph.D. thesis, Stanford University.

Deniz Yuret. 1998. Discovery of linguistic relations
using lexical attraction. Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge, MA.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
ji¢, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkovd, Jan Haji¢ jr.,
Jaroslava Hlavacova, Vdclava Kettnerova, Zdernka
Uresovd, Jenna Kanerva, Stina Ojala, Anna Mis-
sild, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
de Paiva, Kira Droganova, Héctor Martinez Alonso,
Cagrt Coltekin, Umut Sulubacak, Hans Uszkoreit,
Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily
Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirch-
ner, Hector Fernandez Alcalde, Jana Strnadova,
Esha Banerjee, Ruli Manurung, Antonio Stella, At-
suko Shimada, Sookyoung Kwak, Gustavo Men-
donga, Tatiana Lando, Rattima Nitisaroj, and Josie
Li. 2017. CoNLL 2017 shared task: Multilingual
parsing from raw text to Universal Dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 1-19, Vancouver, Canada. Associa-
tion for Computational Linguistics.

60



Modeling the Relationship between Input Distributions and Learning
Trajectories with the Tolerance Principle

Jordan Kodner
Stony Brook University
Department of Linguistics
Institute for Advanced Computational Science
Stony Brook, NY, USA
Jordan.Kodner@stonybrook.edu

Abstract

Child language learners develop with remark-
able uniformity, both in their learning trajecto-
ries and ultimate outcomes, despite major dif-
ferences in their learning environments. In this
paper, we explore the role that the frequencies
and distributions of irregular lexical items in
the input plays in driving learning trajectories.
I conclude that while the Tolerance Principle,
a type-based model of productivity learning,
accounts for inter-learner uniformity, it also
interacts with input distributions to drive cross-
pattern variation in learning trajectories.

1 Introduction

One of the most striking characteristics of child lan-
guage acquisition is its uniformity (Labov, 1972).
Children in the same speech community acquire
the same grammars despite the lexical variation in
each child’s individual input: a recent quantitative
study of child-directed speech (CDS) finds Jaccard
similarities of only 0.25-0.37 between individual
portions of the Providence Corpus (Richter, 2021),
not much higher than the lexical similarity between
CDS and adult genres (Kodner, 2019). Thus, to
explain uniformity of outcomes, grammar learning
must not depend primarily on lexical identity but
on more general patterns in the learner’s input.
Learners not only acquire the essentially same
grammars but acquire them following similar trajec-
tories. For example, English learners consistently
acquire the verbal -s and -ing before the past -ed
(Brown, 1973), the last of which shows a u-shaped
developmental regression (Ervin and Miller, 1963;
Pinker and Prince, 1988). Individuals may show
relative delays correlating to estimated working vo-
cabulary size (Fenson et al., 1994, ch. 5-6), but
variability is otherwise limited. However, while
individuals learning the same pattern show unifor-
mity, expected learning paths vary across patterns.
Among English learners, for example, -ing does
not show u-shaped learning, unlike -ed. Children
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Figure 1: Visualizing the Tolerance Principle on a num-
ber line. e falls in the range [0, N]. If it lies below
0 (gold), then the learner should acquire the pattern
and memorize the exceptions. If e lies above 6§ (blue),
the learner should resort to memorization instead. The
number line extends as the learner’s vocabulary grows.

learning Spanish verb stem alternations also show
u-shaped learning, but they begin to over-regularize
a year earlier than English past tense learners (Clah-
sen et al., 2002). One potential reason for this, dif-
ferences in patterns’ distributions in the input, is
investigated here.

This paper introduces a quantitative means of
assessing the role that the distribution of linguistic
patterns in learner input plays in shaping learning
trajectories and variation even prior to the grammar
and individual cognitive factors. Adopting the Tol-
erance Principle (TP; Yang, 2016) as a type-based
model of productivity learning, we find that the
type-frequency and (indirectly) token frequency of
exceptions to linguistic patterns have a dramatic
effect on the expected learning trajectories across
patterns while also quantifying expected uniformity
across individuals within a given pattern.

2 The Learning Model

The Tolerance Principle (TP; Yang, 2016) is a
cognitively motivated type-based learning model
which casts generalization in terms of productiv-
ity in the face of exceptions. The model has
gained support in recent years through its success-
ful application to problems in syntax and seman-
tics (e.g., Yang, 2016; Irani, 2019; Lee and Kod-
ner, 2020), morphology (e.g., Yang, 2016; Kod-
ner, 2020; Bjornsdéttir, 2021; Belth et al., 2021),
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and phonology (e.g., Yang, 2016; Sneller et al.,
2019; Kodner and Richter, 2020; Richter, 2021).
It has increasingly received backing from a range
of psycholinguistic experiments (Schuler, 2017;
Koulaguina and Shi, 2019; Emond and Shi, 2020).
It is adopted here because it makes categorical and
auditable predictions about productivity and thus
provides a clear means for investigating and the
relationship between distributions in the input and
the dynamics of learning.

The TP serves as a decision procedure for the
learner. Once the learner hypothesizes a general-
ization in the grammar, it establishes the threshold
0 at which it becomes more economical in terms
of lexical access time to accept the hypothesis and
exceptions rather than to just memorize items in-
dividually. (1) formalizes the TP. The tolerance
threshold 0y is defined as the number of known
types that a generalization should apply to divided
by its natural logarithm.'

(1) Tolerance Principle (Yang, 2016, p. 8):
If R is a productive rule applicable to
N candidates, then the following relation
holds between N and e, the number of ex-
ceptions that could but do not follow R:

N

e < Oy where Oy := LN
n

The derivation of the TP acknowledges that
items in the input follow long-tailed Zipfian fre-
quency distributions (Zipf, 1949) in which few
items are well-attested and others are rarely attested
in the input. Zipfian and other long-tailed distribu-
tions are quite common throughout language and
are very prominent in lexical and inflectional fre-
quencies (e.g., Miller, 1957; Jelinek, 1997; Baroni,
2005; Chan, 2008; Yang, 2013; Lignos and Yang,
2018)

Figure 1 provides a visualization of the Toler-
ance Principle over individual development. Cru-
cially, N depends on a learner’s current working
vocabulary and is not a comment on the language’s
vocabulary in general. An individual learner’s NV
and e increase as they learn more vocabulary, and
a pattern may fall in and out of productivity.

3 Input Distributions driving Trajectories

This section uses the Tolerance Principle to calcu-
late likely learning trajectories and variability in

'See Yang (2016, pp. 10, 144) for the full mathematical
derivation. 6 approximates the Nth harmonic number
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learning trajectories given distributions of regular
and irregular forms in the input, and it discusses
the impact that input distributions have on learning
paths. It presents two illustrative examples and a
case study from English past tense learning. For
clarity, V4 and e;4; are used here to represent the
expected mature learner state, since N and e prop-
erly represent speaker-internal quantities and are
not a description of the target language.

3.1 Calculating Trajectories with the TP

In the first illustrative example, N;g; = 82 and
etgt = 32. This pattern should not be produc-
tive for a mature speaker (€15t > Onigr = 18.6),
but learners may pass through a period of over-
generalization if their NV and e support it at some
point during development. To help with concep-
tualizing these developments, I introduce a visu-
alization called a Tolerance Principle state space
for this system in Figure 2. The x-axis indicates
the number of regular forms that an individual has
learned so far (N — e), and the y-axis indicates the
number of irregular forms learned so far. Color
indicates whether or not a learner at (N — e, e)
should learn a productive generalization. These
are the two “zones” in the state space. The bottom
left corner, N = 0, indicates the initial state for
all learners, and the top right corner (N = Ng),
indicates the mature state. In this example, the final
state is in the non-productive zone.?

As learners mature, they “move” through the
state space along some path from the bottom left
to top right. The paths that individuals take are
a function of the order in which they personally
acquired regular and irregular items. Learners may
pass in and out of the productive zone as they de-
velop. In this example, a learner who passes tem-
porarily through the productive zone may produce
over-generalization errors, one source of u-shaped
learning.

Not all paths through the state space are equally
likely. It would be strange, for example, if a learner
acquired all the irregular items before any of the
regular items, or vice-versa. One could ask, for
a learner who knows a given N, what is the like-
lihood that e of those are irregulars? Or equiv-
alently in the state space, what is the likelihood
that a learner should pass through a given point
(N — e, e)? This can be modeled probabilistically

*The TP breaks down for very small N. This area is placed
in the non-productive zone by convention.
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Figure 3: Likelihood of (N — e, ) for each N. Darker
indicates more likely path through the Fig. 2 TP space.

as a function of the relative token frequencies of
the items. If irregulars are distributed uniformly
throughout the distribution of types, path likelihood
is well-approximated by a central hypergeometric
distribution calculated for each N. Diagonals from
top left to bottom right are “lines of constant N.”
Figure 3 visualizes this, with darker colors indicat-
ing more likely ratios of regulars and irregulars for
a given N.

It is now possible to calculate the probability of
falling in the productive and non-productive zones
for each vocabulary size by summing over lines
of constant N. The results, visualized in Figure 4
can be interpreted as the probability that a learner
will generalize at each vocabulary size. Correlated
with vocabulary size estimates by age, this can pre-
dict developmental trajectories. In this example,
learners are will pass through a phase of early over-
generalization. This falls rapidly such that only
about half should overgeneralize at N = 15. There
is still a non-zero chance of over-generalizing be-

63

N_tgt=82, e_tgt=32: Productivity by N

100

>

=

S 801

©

Q

o

a 601 .

c H I Non-Productive

S |l Productive

© 404

E

2 201

()

(G]
0 . . . : . " " .
0 10 20 30 40 50 60 70 80

N (Vocabularv Size)

Figure 4: Likelihood of generalization and non-
generalization by vocabulary size for Figs. 2-3.

fore N = 45, but after that point, all learners con-
verge on adult-like non-productivity.

Note that productivity is driven entirely by the
relative number of lexical items that follow or dis-
obey the learner’s hypothesized generalization and
not the presence or absence of any individual lex-
ical items. Learner outcomes are instead driven
directly by the type frequency of patterns and the
TP. Token frequencies play an indirect but crucial
role as well. They determine the likely relative
order that regular and irregular items are learned.
The second illustration demonstrates this.

3.2 Effect of Irregular Token Frequency

This illustrative example examines the effect of
irregular token frequency on learning trajectories
by adopting a more realistic Zipfian input distribu-
tion.> The pattern Ny = 90, e4q¢ = 18 should
be acquired productively (N4 is in the productive
zone of the state space visualized in Figure 5).
The 90 items are assumed to be distributed ac-
cording to a Zipfian distribution. This should bow
the most likely path through the state space, po-
tentially pushing it into our out of the productive
zone.* For example, if irregulars tend to fall on the
frequent end of the distributions, these will tend
to be heard, and therefore acquired earlier. This
should bow the likely path upward and deeper into
the non-productive zone. Three irregular distribu-

3Trregulars are often clustered in the high-frequency range
(e.g., English past tense), but this is not universal. Other
irregulars are more uniformly distributed in CDS (e.g., English
plurals, Spanish verbs (Fratini et al., 2014)).

*Directly calculating each (N — e, e) probability is in-
tractable if every item has its own frequency. Wallenius’
noncentral hypergeometric distr. allows class but not item
weighting and was found to be a poor approximation. Thus,
probabilities were calculated by simulating 100,000 trials.
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Figure 6: Likelihood of (N — e, e) for each N and a)
top-heavy, b) split, c) bottom-heavy e distributions.

tions are tested: They are a) the 18 most frequent
items (the head of the Zipfian curve), b) the 9 most
frequent and 9 least frequent items, and c) the 18
least frequent items. They are visualized in Figure
6 for three distributions of irregulars:

Even though the type distribution is the same
in each case, the expected learning trajectories dif-
fer dramatically (Fig. 7). In the top-heavy case,
nearly no learners are expected to be productive
between N = 20 and N = 80, then everyone
rapidly achieves productivity. In the bottom-heavy
all learners achieve productivity as soon as they
hypothesize the generalization. The split case pre-
dicts transient variation where all early learners are
essentially adult-like, but many temporarily aban-
don productivity before relearning it later. This is
because the likely path through the TP state space
skirts the tolerance threshold, so slight variation
in each individual’s e predicts a large categorical
difference in the grammar.
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generalization by vocabulary size given Fig. 6.

3.3 Application to English Past Tense

This section applies the methods described thus far
to real data: English past tense items extracted
with frequencies from the CHILDES database
(MacWhinney, 2000). Two expected learning paths
were calculated: the default past -ed (N = 1328,
e = 98 in this data) and the relatively common sing-
sang, ring-rung sub-pattern (N=26, e=8). English
learning children consistently acquire productive
-ed around age three (Berko, 1958; Marcus et al.,
1992). In contrast, the sing-sang pattern is not pro-
ductive, though there is some transient variation
(Berko, 1958; Xu and Pinker, 1995; Yang, 2016).
This is because it has many exceptions (e.g., sting-
stung, bring-brought).
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lated on all data but trimmed to N=700 for visualization.

Figure 8 visualizes the results. Learners are pre-
dicted to show great uniformity in the acquisition
of -ed. They consistently acquire the rule when
they know 400-500 verbs. This qualitative uni-
formity is consistent with known developmental
facts, but it is not immediately clear whether these
particular numbers line up with the empirical ev-
idence. Estimates of vocabulary size by age vary
by method, but Marcus et al. (1992, ch. 5) re-
port that Sarah and Adam from the Brown Corpus
have produced 300-350 unique verbs by age three,
but productive vocabulary underestimates working
knowledge (Fenson et al., 1994, ch. 5-6), which is
what is being modeled here.

The predictions for sing-sang is quite a bit differ-
ent. There is significant variability when vocabu-
lary size is small, but learners uniformly decide on
non-productivity by around N=12. This appears
to be consistent with wug-test results for children.
In the original Berko (1958) study, only three of
86 pre-schoolers produce an -ang(ed) past form for
stimuli gling+PAST or bing+PAST, suggesting low
variability and low-productivity in that age group.’

3 Adults and children seem to approach the wug test dif-
ferently (Schiitze, 2005), with many adults treating it as an

analogy game (Derwing and Baker, 1977). Adults can be
prompted to analogize the sing-sang pattern Berko (1958)
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4 Discussion

This paper presents a means of modeling expected
learning trajectories for productivity using the Tol-
erance Principle. As a type-based model of produc-
tivity learning, the TP only relies directly on the
type attestation of regular and irregular items in the
input. Since the grammar which is learned only
depends on which side of the tolerance threshold
the number of irregulars falls and not the lexical
identity of the items or their exact number, it ex-
plains the general uniformity of outcomes observed
across individual learners.

The TP was derived assuming that learners ex-
pect long-tailed frequency distributions in their
input, and it provides an indirect role for token-
frequency in learning. Higher frequency items are
more likely to be attested early and learned early.
Thus while the type distribution of irregulars gov-
erns the ultimate learning outcome, their token dis-
tribution drives the learning trajectory: the vocabu-
lary size at which the adult-like grammar is settled
on, the likelihood of over-regularization, and the
degree of variability among individual learners.

One advantage of the TP for the purposes of this
type of modeling is that it makes clear binary pre-
dictions about productivity. This study provides a
novel means for making concrete predictions about
the learning paths predicted by the TP. It remains to
be seen how well these predictions fit the empirical
data in a wider range of case studies. Another open
question is whether other generalization models
would make similar or different predictions, and if
so, which best fit the empirical data.

The distribution of irregulars in the input can
be measured empirically from corpora of child-
directed speech since it is a property of the lexicon
and of discourse concerns. The input has a clear
effect on the path of learning even prior to adopting
specific assumptions about the underlying grammar
that children acquire. This suggests quantitatively
re-evaluating the input as a way forward for explain-
ing cross-linguistic differences in child language
development as a complement to cross-linguistic
theoretical and experimental work.
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Abstract

Scalar implicature (SI) arises when a speaker
uses an expression (e.g., some) that is seman-
tically compatible with a logically stronger al-
ternative on the same scale (e.g., all), leading
the listener to infer that they did not intend
to convey the stronger meaning. Prior work
has demonstrated that SI rates are highly vari-
able across scales, raising the question of what
factors determine the SI strength for a partic-
ular scale. Here, we test the hypothesis that
SI rates depend on the listener’s confidence in
the underlying scale, which we operationalize
as uncertainty over the distribution of possible
alternatives conditioned on the context. We use
a T5 model fine-tuned on a text infilling task to
estimate this distribution. We find that scale un-
certainty predicts human SI rates, measured as
entropy over the sampled alternatives and over
latent classes among alternatives in sentence
embedding space. Furthermore, we do not find
a significant effect of the surprisal of the strong
scalemate. Our results suggest that pragmatic
inferences depend on listeners’ context-driven
uncertainty over alternatives.

1 Introduction

Human communication involves not only the trans-
mission of linguistic signals, but also context-
guided inference over the beliefs and goals of other
conversational agents (e.g., Sperber and Wilson,
1986; Grice, 1975). One signature pattern of this
pragmatic reasoning is scalar implicature (SI). The
standard view is that Sls arise as a result of ordered
relationships between linguistic items — when a
weaker (less informative) item of a scale is uttered,
then a listener can infer that the speaker did not
have grounds to utter the stronger (more informa-
tive) item on that scale. For example, if Alice
says “Some of the students passed the exam”, Bob
can draw the scalar inference that not all students
passed the exam, even though Alice’s utterance
would still be semantically true in that scenario.

rplevy@mit.edu,
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While this view predicts that SIs are context-
independent and generally strong — known as the
Homogeneity Assumption (Degen, 2015) — empiri-
cal studies have demonstrated a remarkable amount
of variance in SI rates both within (Degen, 2015;
Li et al., 2021) and across lexical scales (Doran
et al., 2009; van Tiel et al., 2016; Gotzner et al.,
2018; Pankratz and van Tiel, 2021). This raises the
question of what factors determine the SI strength
for a particular scale. In a landmark study, van Tiel
et al. (2016) test two classes of potential predictors
of SI strength: the availability of the strong scale-
mate given the weak scalemate, and the degree to
which scalemates can be distinguished from each
other. They demonstrate that availability is not a
reliable predictor of SI strengths (but see Westera
and Boleda 2020), while measures of scalemate
distinctness, such as the boundedness of the scale,
do robustly predict SI. More recent studies (e.g.,
Gotzner et al., 2018; Sun et al., 2018; Pankratz and
van Tiel, 2021; Ronai and Xiang, 2022) have pro-
posed a variety of other factors such as negative
strengthening, polarity, and extremeness.

Here, we revisit the hypothesis that SI rates de-
pend on the availability of the strong scalemate.
While prior work has operationalized availabil-
ity with measures of the strong scalemate such
as word frequency or similarity/association with
the weak scalemate (van Tiel et al., 2016; Westera
and Boleda, 2020; Ronai and Xiang, 2022), we
re-frame availability as the listener’s confidence in
the underlying scale. Upon hearing a scalar ex-
pression, listeners must determine the items on the
scale as well as the ordering metric before infer-
ence proceeds (Hirschberg, 1985). If the listener
is less certain about the scale, then they will be
less likely to exclude the meaning of a particular
strong scalemate. We operationalize scale uncer-
tainty as uncertainty over the alternatives that could
serve as a strong scalemate to the observed scalar
expression. To estimate the alternatives predicted
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by humans, we use a TS model (Raffel et al., 2020)
fine-tuned on a text infilling task. While prior stud-
ies have treated alternatives as linguistic forms, we
also consider the idea that listeners reason about
alternatives at a conceptual level (Buccola et al.,
2021) by treating alternatives as latent classes in
a conceptual space. Our results support the role
of scale uncertainty in determining SI rates, and
suggest a new way of testing conceptual theories
of alternatives for scalar inference.

2 Human data

To obtain human SI strengths, we use the data from
Experiment 2 by van Tiel et al. (2016). In our
analyses, we only consider the adjectival scales
from van Tiel et al.’s original materials, result-
ing in 32 scales. Each scale is a pair of adjec-
tives ( , ), where the meaning of
entails the meaning of (e.g.,
(intelligent, brilliant)). The experiment measures
whether humans exclude the meaning of
upon observing a speaker use
On each trial of the experiment, participants read
a prompt of the form “John says: [NP] is ”
where is an adjective scalar item that may
trigger a scalar inference, and [NP] is a noun phrase
that sets the context for the scalar item. There were
3 such sentences per scale, which differ from each
other only in the NP. For example, the weak scalar
item intelligent is associated with the sentences
“This student/That professor/The assistant is
. Participants were then asked: “Would you
conclude from this that, according to John, [NP|p
is not 7, where is the strong
scalemate to , and [NP]p is a pronominal-
ized version of the [NP] in the speaker’s original
utterance (e.g., “she is not ). Participants
marked their response as Yes or No. The SI rate
for a scale is computed as the proportion of Yes
responses averaged over participants and sentences.

3 Predictors

We use TS5 (Raffel et al., 2020) to estimate all
probabilities in our analyses. TS5 is a sequence-
to-sequence Transformer model (Vaswani et al.,
2017) trained to represent language processing
tasks as text-to-text problems. Our model is based
on the pre-trained T5-base model from Hugging-
face Transformers (Wolf et al., 2020). Since the
off-the-shelf TS model is not optimized for text gen-
eration, we use a TS5 model that has been fine-tuned
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on a text infilling task (Qian and Levy, 2022). The
model is fine-tuned on a 10-million-token subset
of the 2007 portion of the New York Times Corpus
(Sandhaus, 2008). The supervision signal is gen-
erated by randomly masking some spans of words
in a sentence to get the fragmentary context and a
plausible completion. At inference time, the model
decodes autoregressively via greedy sampling.

3.1 Predictability of strong scalemate

As a baseline, we first consider whether SI rates
— 1.e., the rate at which is taken to ex-
clude the meaning of — are explained by
the context-conditioned predictability of the tested
strong scalemate. This is similar to production-
based measures of availability, such as the tendency
of humans to mention the strong scalemate in a
Cloze task (van Tiel et al., 2016; Ronai and Xiang,
2022). However, these metrics are expensive to
estimate, especially if we wish to estimate the full
distribution of alternatives. We address this by us-
ing TS as a proxy of human predictions, taking the
view that humans maintain expectations about pos-
sible alternatives via a predictive language model
optimized on the surface statistics of language.

To measure the predictability of a certain lin-
guistic expression as a strong scalemate under T5,
we leverage scalar constructions (Hearst, 1992;
de Melo and Bansal, 2013; Pankratz and van Tiel,
2021). Scalar constructions are patterns such as X,
but not Y, which indicate a scalar relationship be-
tween a weak item X and strong item Y. For each
weak scalar item in our test materials, we construct
a scalar template of the following form:

[NP] is (D

We have 3 such templates for each scale, where
[NP] is given by the 3 sentences from van Tiel
et al.’s materials. By embedding the weak scalar
item within the X, but not Y construction, the model
should set up expectations for a potential scale-
mate in the masked position. For each ( ,

) pair from van Tiel et al.’s items, we
substitute the strong scalemate into the masked po-
sition and compute the surprisal (i.e., negative log
probability) at that token under T5.! Language
model surprisal has been shown to predict psy-
chometric measures of human sentence processing
(e.g., Smith and Levy, 2013; Goodkind and Bick-
nell, 2018; Wilcox et al., 2020), suggesting that

, but not

"When scalar items are split into multiple tokens, we obtain
surprisals by summing over these sub-word tokens.



the distribution learned by these models captures
expectations deployed by humans during real-time
language comprehension.

3.2 Scale uncertainty

Next, we test the hypothesis that SI depends on the
listener’s uncertainty about the scale implied by the
speaker’s utterance. Depending on the context, a
single word (e.g., bad) could lie on multiple scales —
e.g., “The food is bad” might imply that the food is
not rotten, whereas “The score is bad” might imply
that the score is not failing. This uncertainty is
not a function of a particular scalemate (unlike the
availability measure described in Section 3.1 and
in prior work), but rather a property of the scalar
trigger and the context in which it is observed.

We operationalize scale uncertainty as uncer-
tainty over the distribution of possible alternatives
conditioned on the context. To obtain a set of can-
didate alternatives A, we sample N = 100 comple-
tions from the TS5 infilling model given the scalar
template in Equation (1).? During decoding, we
restrict the maximum number of generated tokens
to 5, and only keep the unique completions. We
further process the outputs by removing punctua-
tion and casing, and only keep the first word of the
sequence (e.g., “always” and “always,” would be
collapsed into “always’). After this step, we also
removed completions that consisted only of stop-
words.?> We performed these processing steps in or-
der to reduce the sensitivity of the model-generated
alternatives distribution to low-level features like
punctuation, and to account for the model’s ten-
dency to output high-frequency function words.

3.3 Strings vs. concepts

For each of our surprisal and scale uncertainty mea-
sures, we consider two operationalizations that re-
flect differing theories of alternatives. The first
assumes that surface-level linguistic forms (i.e.,
strings) are the alternatives driving SI. The second
view is that listeners reason about alternatives at a
conceptual level (Buccola et al., 2021), which we
estimate using sentence embeddings.

String-based measures. We first consider the
string-based view of alternatives. We obtain string-
based surprisal by plugging the strong scalemate

>The completions are not guaranteed to be scalar items,
but we take this to be a first approximation. All results are
averaged over 4 random seeds for the sampling of alternatives.

Shttps://gist.github.com/sebleier/
554280
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into the blank in Equation (1) (i.e., Y in the X,
but not Y construction) and computing its context-
conditioned surprisal under T5. Similarly, to ob-
tain a string-based measure of scale uncertainty,
we compute uncertainty over the strings that fill
the masked position in the scalar template (Equa-
tion (1)). That is, we normalize the probabilities of
each a € A to obtain a probability distribution over
alternatives, and then compute the Shannon entropy
over this distribution. We predict that lower sur-
prisal reflects a more predictable alternative, and
thus results in a stronger SI. Similarly, lower en-
tropy reflects lower uncertainty over the underlying
scale, and should lead to a stronger SI.

This method implicitly assumes that surface-
level linguistic forms (i.e., strings) are the alterna-
tives driving scalar inferences. As a single concept
can be expressed with multiple forms, however, the
surprisal over forms may not be a good estimate
of the surprisal of the underlying concept. This
motivates using hierarchical methods to identify la-
tent classes among alternatives in some conceptual
representation.

Hierarchical measures. An alternate view is that
listeners do not reason about alternatives at the
level of linguistic forms (i.e., strings), but instead a
deeper conceptual level (Buccola et al., 2021). Asa
proxy for a conceptual representation of an alterna-
tive, we use sentence embeddings from Sentence-
T5 (Ni et al., 2021). Prior work has shown that
clustering over word embeddings has been shown
to uncover latent topics, suggesting that there is
usable conceptual information represented in the
embedding spaces induced by large language mod-
els (e.g., Sia et al., 2020; Thompson and Mimno,
2020; Meng et al., 2022). For each sampled al-
ternative ¢ € A, we substitute ¢ into the masked
position in the scalar template (Equation (1)) to
obtain a full sentence, and then feed this as input to
Sentence-T5 to obtain a 768-dimensional embed-
ding of the entire sentence.* We assume sentences
close in this space are more likely to reflect the
same underlying scale, and distant sentences are
likely to reflect different scales.

To formalize the idea of conceptual alternatives
for scalar inference, we treat scales as latent classes
that may give rise to multiple alternative strings.
On this view, the surprisal of a strong scalemate is
the surprisal of its underlying class, and scale uncer-

*We use the PyTorch implementation via SentenceTrans-
formers (Reimers and Gurevych, 2019).
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Figure 1: Best-fit linear relationship between human SI rates (van Tiel et al., 2016) and four predictors (Section 3):
(a) String-based surprisal of the strong scalemate under T5. (b) Entropy over alternative strings sampled by T5.
(c) Surprisal of latent class assigned to the strong scalemate by the Gaussian mixture model. (d) Entropy over
probabilities of classes identified by the Gaussian mixture model.

tainty is uncertainty over these classes. To identify
latent classes among alternative sentence embed-
dings, we fit a Gaussian mixture model (GMM) for
each set of alternatives (i.e., one per weak scalar
item, sentence template, and random seed). To
determine the number of latent classes k, we fit
a GMM for each k € {1,2,3} and chose the k
that minimized the Bayesian information criterion
(BIC) of the fitted model.”

After fitting a GMM on the alternative embed-
dings for each weak scalemate, we predict the class
for each alternative. We obtain a score for each
class by summing the probabilities assigned by T5
to each alternative within that class. We compute
class-based surprisal as the negative log of the score
assigned to the class containing the strong scale-
mate, and class-based scale uncertainty as the en-
tropy over the normalized class scores. As before,
we expect that lower surprisal and lower entropy
should result in higher SI.

4 Results

We computed the four metrics described in Sec-
tion 3 on the data from Experiment 2 of van Tiel
et al. (2016), and evaluated the causal roles of each
metric in predicting scalar inference rates across
scales. For each of the four metrics, we fit a linear

>For speed of convergence, we assumed diagonal covari-
ance matrices for each estimated class distribution.
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regression model to predict mean SI rates for each
scale (averaged across trials). In all models, we
included scale boundedness as an additional predic-
tor, as it is the factor explaining the most variance
in van Tiel et al.’s (2016) study.

Our first model tested string-based surprisal as a
predictor of SI rates. In line with van Tiel et al.’s
results, boundedness is a highly significant pre-
dictor (p < 107!6). Furthermore, surprisal of
the strong scalemate is not a significant predictor
(t = —0.09,p = 0.928). Figure 1a shows the lack
of relationship between in-context surprisal of the
strong scalemate and SI rate. Each point represents
a scale, with values averaged over the trials and
sentence templates (three per scale) presented in
van Tiel et al.’s Experiment 2. This lack of relation-
ship concords with van Tiel et al.’s original finding
that availability is not predictive of SI rate.

Our second model tested the predictive power of
string-based scale uncertainty (i.e., the entropy over
completions sampled from T5 in a scalar construc-
tion). We found string-based entropy to be a signif-
icant predictor of SI rate (t = —3.28,p = 0.001),
suggesting that uncertainty over alternatives (as
string forms) may play a role in scalar inference.
Figure 1b shows the negative relationship between
SI rates and string-based entropy.

Next, we turn to the hierarchical metrics, which
treat alternatives as latent classes in sentence em-
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Figure 2: Example of classes (distinguished by color
and marker) identified by Gaussian mixture model
among alternatives in sentence embedding space. Sen-
tence embeddings are projected into 2 dimensions via
PCA for visualization.

bedding space. In general, the pattern mirrors what
we found for the string-based metrics. Our third
model did not find class-based surprisal to be a
significant predictor of Sl rates ({ = —1.33,p =
0.186; Figure 1c), and our fourth model found
class-based entropy to be a significant predictor
(t = —2.4,p = 0.01; Figure 1d).

Finally, we performed a qualitative evaluation
of the classes identified by the Gaussian mixture
models (GMMs). Figure 2 shows the alternatives
generated by T5 for the template “The salary is
adequate, but not ., with each point obtained
by projecting the Sentence-T5 embedding into 2-
dimensional space via PCA. The BIC-minimizing
GMM identifies two latent classes, distinguished
by color and marker, among the alternatives gener-
ated by T5 for the weak scalar item adequate. First,
we examine the cluster containing good, the strong
scalemate tested in van Tiel et al.’s experiments
(marked with boldface and outline). This cluster
(indicated by blue triangles) contains good as well
as semantically similar alternatives such as “great”,
“sufficient”, and “enough”. In general, the alterna-
tives in this cluster appear to suggest a scale where
high salaries are positive (e.g., from an employee’s
perspective), with strong scalar items like “gener-
ous”, “ideal”, and “competitive”. In contrast, the
second cluster (indicated by red circles) contains al-
ternatives such as “extravagant” and “overcharged”,
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capturing the potential of adequate to be on a scale
where higher salaries are not always desirable (e.g.,
from an employer’s perspective). While the model-
generated alternatives and clusters are noisy, we
take this to illustrate that a single weak scalar item
(like adequate) can plausibly be interpreted as be-
longing to multiple scales.

5 Discussion

We tested the hypothesis that SI rates depend on
the listener’s confidence in the underlying scale, us-
ing two operationalizations of alternatives (surface-
level string forms and latent classes in a sentence
embedding space). Using data from a previously
conducted experiment (van Tiel et al., 2016), we
found that scale uncertainty was a significant pre-
dictor of SI rates: on average, when uncertainty
over alternatives (i.e., entropy over sampled alter-
natives, or over classes of alternatives in sentence
embedding space) is lower, humans are more likely
to draw a scalar inference. On the other hand, the
predictability of the strong scalemate (as measured
by surprisal of the string form, or of its underlying
cluster) was not a significant predictor of SI rates.

An open question is why scale uncertainty pre-
dicts SI rates, while strong scalemate surprisal and
the availability measures from van Tiel et al. (2016)
are poor predictors. We conjecture that the pre-
dictability of the strong scalemate may be shrouded
by the paradigm used in experimental investiga-
tions of scalar diversity. In these experiments,
the participant is explicitly asked to reason about
the strong scalemate in the prompt (e.g., “John
says: This student is intelligent. Would you con-
clude from this that, according to John, she is not
brilliant?”’). Thus, the effort required to retrieve the
strong scalemate (e.g., “brilliant””), which may be
captured by its in-context predictability, may no
longer be relevant in this setting. We note, how-
ever, that our findings likely depend on the chosen
clustering algorithm and conceptual representation
of the alternatives. We intend to explore this space
more broadly in future work.

Looking forward, our methods can be applied
to scales that are ordered by ad-hoc relationships
instead of entailment (Hirschberg, 1985). Beyond
predicting scalar diversity, our approach suggests
a way to derive quantitative behavioral predictions
from non-linguistic alternatives (Buccola et al.,
2021), and supports the idea that context-driven
expectations may give rise to pragmatic behaviors.
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Abstract

Attention describes cognitive processes that
are important to many human phenomena in-
cluding reading. The term is also used to de-
scribe the way in which transformer neural
networks perform natural language processing.
While attention appears to be very different
under these two contexts, this paper presents
an analysis of the correlations between trans-
former attention and overt human attention
during reading tasks. An extensive analysis
of human eye tracking datasets showed that
the dwell times of human eye movements were
strongly correlated with the attention patterns
occurring in the early layers of pre-trained
transformers such as BERT. Additionally, the
strength of a correlation was not related to
the number of parameters within a transformer.
This suggests that something about the trans-
formers’ architecture determined how closely
the two measures were correlated.

1 Introduction

Attention is a process that is associated with both
reading in humans and with Natural Language Pro-
cessing (NLP) by state-of-the-art Deep Neural Net-
works (DNN) (Bahdanau et al., 2015). In both
cases, it is the words within a sentence that are
attended to during processing. In DNNs, attention
results from mechanisms built into the network.
Specifically, in the current state-of-the-art method
Transformers (Vaswani et al., 2017), this attention
process is the result of the dot product of two vec-
tors that represent individual words in the text. For
humans, attention processes are more complex as
they can be broken into overt and covert attention
(Posner, 1980). Overt attention is characterized by
observable physical movements of which eye gaze
is a well known example that is relevant to read-
ing (Rayner, 2009). Covert attention, on the other
hand, is characterized by mental shifts in focus and,

Email: josh.bensemann@auckland.ac.nz
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therefore, not directly observable. For this study
we have focused on the overt attention measure of
eye gaze, with words at the center of an eye fixa-
tion being the words that we assume were being
attended.

While attention in human reading processes and
transformers appear to be completely different, this
paper will present an analysis showing the rela-
tionship between the two'. Specifically, attention
in well-known transformers such as BERT (De-
vlin et al., 2019), and its derivatives are closely
related to humans’ eye fixations during reading.
We observed strong to moderate strength correla-
tions between the dwell times of eyes over words
and the self-attention in transformers such as BERT.
We have explored some reasons for these different
correlation levels and speculated on others.

This analysis is part of an ongoing research line
where we attempt to overcome attention limits in
transformers. When using transformers, both mem-
ory and computational requirements grow quadrat-
ically as the sequence length increases because
every token attends to all other tokens. In previous
work, we have used the attention mechanisms of
pre-trained transformers as attention filters that can
reduce a sequence length for a sentiment analysis
task by 99% while still maintaining 70% accuracy
(Tan et al., 2021). Our motivation for this paper
was to explore the possibility of using models of
eye gaze as an alternative filter. Strong correlations
between the attentions produced by transformers
and the overt attention of humans would suggest
that models of eye movements could potentially be
used in computationally inexpensive methods for
approximating transformer attention. Alternatively
we could use eye movements to train transformer

attention towards overt attention patterns?.

!Code and Full Results available at https://github.
com/Strong-Al-Lab/Eye-Tracking—Analysis
2See appendix for a preliminary attempt.

Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 75 - 87
May 26, 2022 ©2022 Association for Computational Linguistics



1.1 Transformers

Transformers (Vaswani et al., 2017) have domi-
nated the leader boards for NLP tasks since their
introduction to the deep learning community. Addi-
tionally, transformers have had an impact on com-
puter vision (Dosovitskiy et al., 2021), including
generative networks (Jiang et al., 2021). The gen-
eral superior performance of transformers at these
tasks is due to its attention mechanism:
Attention(Q, K, V) = softmax (QK > A%
N4D

(1)
where the word vectors representations of the text
sequence Q are compared to those from sequence
K. This is used to determine the amount of informa-
tion word representations from the former should
incorporate from the latter. If the query and key se-
quence are the same, as in a transformers encoder,
it is called self-attention. The results of the atten-
tion process are then multiplied by sequence V to
get the final outputs from the attention layer. V
contains different representations for the words in
K.

The more relevant a word in K is to those in Q,
the more attention Q words allocate to that word.
Research has examined the Q x K part of the at-
tention mechanism to understand how transformers
process information. Vaswani et al. (2017) showed
that transformers could use words in Q to learn
anaphora resolution by appropriately attending the
word "its" in K.

The introduction of transformers was quickly
followed by a proliferation of pre-trained models
using the transformers architecture. Arguably, the
most famous of these models is BERT, a.k.a. the
Bidirectional Encoder Representations from Trans-
formers model (Devlin et al., 2019). BERT was
designed to encode information from whole pas-
sages of text into a single vector representation. Its
bidirectional structure means that each word token
is placed in the context of the entire sequence in-
stead of just the tokens appearing before it. This
structure provided an increase in performance on
the GLUE benchmarks (Wang et al., 2019b) over
mono-directional models such as the original GPT
(Radford et al., 2018).

To ensure that the model learned to attend to the
sequence as the whole, BERT was trained using
Masked Language Modeling (MLM), a task in-
spired by the Cloze procedure (Taylor, 1953) from
human reading comprehension studies. In MLM,

T
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random words from a sequence are hidden during
input. The model then has to predict what word
was hidden based on the context of surrounding
words. BERT was also trained to perform Next
Sentence Prediction (NSP) during MLM, forcing
words from one sentence to attend to words in other
sentences. BERT achieved state-of-the-art perfor-
mance in multiple NLP benchmarks following this
training regime, which led to its widespread adop-
tion.

BERT’s impact on the field can be seen in the
number of subsequent models that are its direct
descendants. Examples include models such as
RoBERTa (Liu et al., 2019), which uses BERT’s
architecture but was trained via different methods.
Other models, such as ALBERT (Lan et al., 2020),
were created to condense BERT for faster perfor-
mance with minimal accuracy loss. Even mod-
els such as XLNet (Yang et al., 2019) extended
BERT’s architecture to include recurrence mecha-
nisms introduced in other models (Dai et al., 2019).
In turn, some of these descendant models have
been used to create other models. For example,
BIGBIRD (Zaheer et al., 2020) was built using
RoBERTa as its base.

1.2 Combining Transformers and Eye Gaze

There is a growing field of research that combines
pre-trained transformers with eye-tracking data.
Researchers have used outputs from BERT as fea-
tures for machine learning models to predict eye
fixations. In some instances, these outputs are com-
bined with other features (Choudhary et al., 2021);
in other instances, BERT itself is fine-tuned to pre-
dict eye fixations. For example Hollenstein et al.
(2021a) have shown that BERT can be effective at
predicting eye movements for texts written in mul-
tiple languages, including English, Dutch, German,
and Russian.

Given the strong relationship between eye gaze
and attention, it is unsurprising that there have been
attempts to compare eye gaze to attention generated
in transformers. Sood et al. (2020a) compared eye
movements in reading comprehension task to three
different neural networks, including XI.Net. After
fine-tuning XL Net, they compared attention from
the last encoder layer to eye gaze and reported a
non-significant correlation. However, their compar-
ison only reported the correlation for the final atten-
tion layer of the network, while other studies com-
paring transformer attention to human metrics have



indicated that the strength of an association can
differ by layer (Toneva and Wehbe, 2019). There-
fore, the present study calculated correlations with
eye movements from all layers of the transformers.
With that said, our results focused on the first layer
as it generally produced the strongest correlations
to eye gaze data.

Following the work of Sood et al. (2020a), the
present study is a large-scale analysis of the rela-
tionship between attention in pre-trained transform-
ers and human attention derived from eye gaze. We
compared the self-attention values of 31 variants
from 11 different transformers, including BERT, its
descendants, and a few other state-of-the-art trans-
formers (Table 1). No fine-tuning was performed;
models were the same as those reported in their
respective papers. Using the BERT-based models
with their original parameter weights allowed us to
investigate the effect that training regime had on
how closely the attention was related to overt eye-
based attention. Using non-BERT models allowed
us to examine what effect model architecture had
on this relationship. Finally, the different datasets
enabled an exploration into how the human partic-
ipants’ task also affects this relationship. Results
showed significant correlations between attention
in the first layer of the transformers and total dwell
time. These correlations were unrelated to the size
of the model.

2 Related Work

There have been attempts to combine DNNs with
eye data to perform various tasks. Some basic tasks
include predicting how an eye will move across
presented stimuli, whether text-based (Sood et al.,
2020b) or images in general (Ghariba et al., 2020;
Li and Yu, 2016; Harel et al., 2006; Huang et al.,
2015; Tavakoli et al., 2017). These predictions can
be used to create saliency maps that show what
areas of a visual display are attractive to the eye.
In turn, saliency maps can be 