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Short texts (STs) present in a variety of scenarios, including query, dialog, and entity names.
Most of the exciting studies in neural machine translation (NMT) are focused on tackling
open problems concerning long sentences rather than short ones. The intuition behind is that,
with respect to human learning and processing, short sequences are generally regarded as easy
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examples. In this article, we first dispel this speculation via conducting preliminary experiments,
showing that the conventional state-of-the-art NMT approach, namely, TRANSFORMER (Vaswani
et al. 2017), still suffers from over-translation and mistranslation errors over STs. After em-
pirically investigating the rationale behind this, we summarize two challenges in NMT for STs
associated with translation error types above, respectively: (1) the imbalanced length distribution
in training set intensifies model inference calibration over STs, leading to more over-translation
cases on STs; and (2) the lack of contextual information forces NMT to have higher data uncer-
tainty on short sentences, and thus NMT model is troubled by considerable mistranslation errors.
Some existing approaches, like balancing data distribution for training (e.g., data upsampling)
and complementing contextual information (e.g., introducing translation memory) can alleviate
the translation issues in NMT for STs. We encourage researchers to investigate other challenges
in NMT for STs, thus reducing ST translation errors and enhancing translation quality.

1. Introduction

Short texts (STs) refer to examples that contain fewer tokens within sequences.1 Translat-
ing STs from one language to another plays a crucial part in natural language processing
(NLP) scenarios, including the modeling of query (Huang et al. 2016; Song, Kim, and
Park 2017; Saleh and Pecina 2020; Bi et al. 2020; Yao et al. 2020a, 2020b), dialogue
(Wang et al. 2017; Liu et al. 2018), title (Kreutzer et al. 2018; Karakanta, Dehdari, and
van Genabith 2018; Darwish and Sayaheen 2019; Etchegoyhen and Gete 2020; Banar,
Daelemans, and Kestemont 2020), entity name (Jiang et al. 2007; Zhao et al. 2020), and
text matching (Chen et al. 2020; Lyu et al. 2021).

With the length of one sentence being short, fewer tokens are involved to form the
completeness of its semantic. With the perspective of human linguistic intuition, STs are
generally engaged with fewer combinations of lexical components. Consequently, they
are regarded as more easily learned and translated compared with longer sentences
(Le, Martinez, and Matsumoto 2017), as the corresponding complexity of examples
decreases exponentially with their length (Jiang et al. 2015). This intuition is widely
mentioned in related research with respect to neural machine translation (NMT, Kocmi
and Bojar 2017; Hasler et al. 2017; Liu et al. 2019) and results in the lack of exploration
on NMT for STs.

However, the speculation “STs are easy for NMT learning,” which originates from
linguistics, is hardly well supported empirically. Modern NMT engines still give in-
appropriate translations when input source sentences become shorter (see Table 1).
Additionally, based on experimental results derived from existing studies (Cho et al.
2014; Bahdanau, Cho, and Bengio 2015; Toral and Sánchez-Cartagena 2017; Neishi
and Yoshinaga 2019), the translation quality over STs is hardly improved compared
with sequences with other length ranges. To confirm this, we represent an empirical
study in Figure 1. As shown, we compare the translation quality between phrase-based
statistical machine translation (PBSMT, Koehn 2004) and NMT (Vaswani et al. 2017)
over different length buckets.2 Compared with PBSMT, NMT consistently reduces the
translation error rates across all length buckets, showing its dominant performance.

1 Following previous studies (Bahdanau, Cho, and Bengio 2015; Zhang et al. 2016; Murray and Chiang
2018), sequences that contain no more than 10 tokens are treated as STs in this research.

2 Experimental settings are concluded in Section 4.3.
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Table 1
Zh⇒En ST translation examples. For each case, HYP1 denotes the translation using website
engine (https://fanyi.baidu.com), and HYP2 is derived via trained machine translation
system on WMT’17 Zh⇒En dataset. Chinese word “ ” (help) is directly translated, leading the
phrase “ ... ” (stop . . . from fighting) mistranslated. For the second case, the word “ ”
(not fighting) is under-translated, and the order of clause is better located at the start of output.

Figure 1
Comparison on TER scores over each bucket of WMT14 En⇒De dev set with phrase-based
statistical machine translation (PBSMT, Koehn, Och, and Marcu 2003) and neural machine
translation (NMT, Vaswani et al. 2017) model. Lower score is better. NMT significantly improves
translation quality compared with PBSMT except ST set. Interestingly, PBSMT gives the best
performance over STs compared with other buckets, whereas NMT does not.

Nevertheless, the performance gap over short sequences (bucket [1, 10]) is relatively
marginal compared with other buckets. More interestingly, consistent with previous
research (Toral and Sánchez-Cartagena 2017), the PBSMT model gives the lowest error
rate when translating STs, whereas the NMT model performs best over sequences with
medium lengths (bucket [11, 20]).

In this article, we promote our research on investigating why the NMT model
does not achieve excellent translation quality over STs, as well as promising ap-
proaches to improve corresponding translation accuracy. First, we categorize translation
errors (Snover et al. 2006; Tu et al. 2016) into four types—over-translation, under-
translation, mistranslation, and misorder—to arrange the comparison of translation
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quality with a more precise and concrete manner. By conducting experiments over
WMT’14 English⇒German (En⇒De) and WMT’17 Chinese⇒English (Zh⇒En) MT
tasks, we have derived interesting findings and conclusions as follows:

• Data imbalance: We first observe that, with the sequence length being
longer, the ratio of over-translation errors generated by NMT model tends
to decrease first, and then increase until the longest range. We assume that
this phenomenon is created by the imbalanced distribution of training
data with respect to sequence length. By quantifying the inference
miscalibration (Wang et al. 2020) over all length buckets, we find that the
length range whose distribution dominates among all length buckets is
engaged with a higher level of miscalibration when decoding. We find that
balancing the data used when training, for example, upsampling the
training data with a smaller portion of the entire set (Hendrycks et al.
2018), can relieve the model inference miscalibration, thus improve NMT
translation quality over STs. This verifies that the over-translation issue
over STs is caused by data distribution.

• Contextual information: We also find that a higher ratio of mistranslation
errors is assigned with shorter sequences. We presume that the reason
behind this phenomenon remains the insufficiency of contextual
information, as STs contain less semantic information due to their short
lengths. With the help of model uncertainty measurement (Dong, Quirk,
and Lapata 2018), we demonstrate that NMT has a higher level of model
uncertainty over STs. We empirically prove that providing additional
contextual semantics for the NMT model, for example, leveraging
translation memory (Cao and Xiong 2018), is helpful for reducing model
uncertainty, thus can increase the output quality when translating STs.

These findings verify that, for modern NMT approaches, STs may not be learned
and translated as easily as we intuitively thought. In this research, to our best knowl-
edge, we are the first to investigate the shortcomings when an NMT model translates
STs empirically. We hope that this work can appeal to other NLP researchers, as well
as increase their interest on further investigating the topic of NMT for STs. We are also
excited to see if the NLP community can further investigate other possible reasons why
translation quality of NMT for ST is unsatisfying, as well as propose other promising
solutions to pursue better ST translation quality.

2. Related Work

NMT has proven its superior translation quality in recent years (Sutskever, Vinyals, and
Le 2014; Bahdanau, Cho, and Bengio 2015; Luong, Pham, and Manning 2015; Vaswani
et al. 2017; Ott et al. 2018; Nguyen et al. 2020). The distribution of training data is
always of vital importance in NMT model training and analysis. Some length ranges
represent only a small part of the training examples, meaning that model training is less
frequent for sentences of these corresponding lengths. This thus degrades the accuracy
of generated outputs. In this section, we give an overview of existing studies that are
related to such an idea.
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2.1 Model Training on Sequence Length

On one hand, many studies were motivated by the following human intuition: Longer
sequences are more difficult to learn. As modeling those sequences is a challenge due
to the long-term dependency problem (Sutskever, Vinyals, and Le 2014; Cho et al. 2014;
Liu et al. 2019), enhancing the ability of processing long sentences can also improve
the overall translation quality. Sutskever, Vinyals, and Le (2014) and Cho et al. (2014)
proposed to use recurrent neural networks (RNNs, Elman 1990) with gated mechanism,
that is, long short-term memory (LSTM, Hochreiter and Schmidhuber 1997) and gated
recurrent unit (GRU, Cho et al. 2014), to help preserve the semantic information at
longer distance; Bahdanau, Cho, and Bengio (2015) used the attention mechanism where
target representation can leverage the semantic information from the source side for
reference; Luong, Pham, and Manning (2015) proposed the local attention module,
which constrains the source of attentive representations with a fixed window size; and
Vaswani et al. (2017) introduced TRANSFORMER to utilize the token wise semantic with
a sentence-level attention paradigm, which can also be implemented with self-attention
at the source or target side only.

Additionally, some model training accelerations are inspired by this intuition.
Curriculum learning (Bengio et al. 2009), which trains the model by mimicking the
learning process of humans, suggests arranging the training data in an easy-to-hard
order. After designing the required curricula carefully, easy examples are applied to
form the “warm-up” phase, heuristically accelerating the convergence of the model. In
NMT, Kocmi and Bojar (2017) proposed gathering the examples with similar sequential
lengths to accelerate model training; Platanios et al. (2019) used two metrics, namely,
word rarity and sequence length, for identifying the data difficulty to fix up the training
order of examples; Zhang et al. (2018) further investigated the effectiveness of involved
curriculum learning approaches of different curricular designs, confirming the effec-
tiveness of short sequences being the easiest curricula for model training.

To conclude, the studies above are all derived from the speculation that longer
examples are harder for both human and NMT models, and shorter examples can ease
human learning and NMT model training.

2.2 Model Analyses on Sequence Length

On the other hand, many studies investigated the performance of NMT, as well as
PBSMT models, over various sets of length ranges. Cho et al. (2014) showed that a
RNN model performs worse over short and long sentences, whereas PBSMT is more
stable when handling these cases; Bahdanau, Cho, and Bengio (2015) showed that a
RNN model with attention mechanism can ameliorate the translation quality of long
sequences, whereas the gap of performance over short sequences is rather marginal
compared with an RNN model without the attention mechanism; Toral and Sánchez-
Cartagena (2017) investigated the translation quality between PBSMT and NMT sys-
tems at the level of character; Neishi and Yoshinaga (2019) showed that TRANSFORMER
translation quality over the bucket of examples with given range is impacted by the
unevenness of corresponding data distribution.

2.3 Our Work

Different from previous research, we focus on NMT for ST scenarios only. In this article,
we take the analysis further by categorizing translation errors in a more fine-grained
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manner. We also apply two metrics, namely, inference miscalibration (Wang et al. 2020)
and model uncertainty (Gal and Ghahramani 2016), to analyze model performance with
newer perspectives aside from overall translation quality.

3. Background

In this section, we briefly introduce NMT, and, more importantly, the model architecture
of the TRANSFORMER model.

3.1 A Brief Introduction to NMT

NMT aims to build a deep neural network that accepts a sequence S = {S1, S2, · · · , SI}
from the source language and generates its corresponding result T = {T1, T2, · · · , TJ} on
the target side automatically. Specifically, the state-of-the-art NMT model architecture
TRANSFORMER (Vaswani et al. 2017) follows the paradigmatic design of an autoencoder,
where the encoder is in charge of encoding source tokens S to contextual representation
C ∈ RI×dm . Here I and dm are the length of source sequence and embedding dimension-
ality, respectively.

Multihead attention modules play a crucial role in the TRANSFORMER model.
The inputted representations are linearly transformed into query Q ∈ RH×L1×dh , key
K ∈ RH×L2×dh , and value representation V ∈ RH×L2×dh ; H and dh represent the number
of heads and the dimensionality in each head, respectively. For the h-th (1 6 h 6 H)
head, the attention network first calculates the attention energy to describe how the
l1-th (1 6 l1 6 L1) query vector Qh,l1,· ∈ Rdh should attend to all key vectors Kh,·,· ∈
RL2×dh , and derives the output representation by weighted-sum over all value vectors
Vh,·,· ∈ RL2×dh :

Ah,l1,· = softmax(
Qh,l1,·K>h,·,·√

dm
) ∈ RL2 (1)

Hh,l1,· =

L2∑
k=1

Ah,l1,kVh,k,· ∈ Rdh (2)

In total, three types of attention networks are involved in the conventional TRANS-
FORMER model:

• The encoder self-attention networks (enc-SANs), which globally gather
source semantics from all positions (L1 = L2 = I);

• The decoder self-attention networks (dec-SANs), which collect semantics
at target to comply with the auto-regressive process (L1 = L2 = J);

• The encoder-decoder cross-attention networks (CANs), which devote into
aligning two semantic spaces (L1 = J, L2 = I).

The learning objective is to maximize the probability of generating sequence T
following a teacher forcing paradigm (Sutskever, Vinyals, and Le 2014):

P(T) =
J∏

j=1

P(Tj|T<j, C,θ) (3)
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Table 2
Number of sentences and tokens over WMT14 En⇒De and WMT17 Zh⇒En datasets. Results
are conducted on source side at the level of subword units. M: million. For En⇒De experiments,
we concatenate official released subsets from newstest2013 to newstest2016 for further
analyses. As for Zh⇒En, the test set is collected among newstest2017 to newstest2020.

En⇒De Zh⇒En

# Sents # Tokens # Sents # Tokens
Train 4.56M 132M 20.6M 485M
Dev 3,000 74,957 2,002 56,374
Test 11,171 286,290 9,982 302,077
ST 1,273 9,807 717 5,418

where θ is the set of model parameters. For inference, the probability of generated
sequence T̃ = {T̃1, T̃2, · · · , T̃J̃} is the accumulative multiplicative production based on
the output of the model itself. When decoding at the j̃-th (1 6 j̃ 6 J̃) step, the output of
model T̃<j̃ is used as the generated output to guide the model inference.

4. Preliminary Materials

In this section, we first describe the MT tasks involved for analysis and data pre-
processing. Then, we introduce the experimental details and our method for further
analysis that categorizes translation errors into four types. After counting the ratio of
each translation error type, we directly check the effectiveness over baseline model
training, as well as see that simply tuning the hyperparameters for decoding does not
significantly improve the translation quality over STs. Last, we observe two interesting
phenomena by counting the ratio of all error types over all length ranges, raising our
interest in further investigating the rationale behind them.

4.1 Dataset

In this research, we choose two MT tasks for analysis: WMT’14 English⇒German
(En⇒De) and WMT’17 Chinese⇒English (Zh⇒En), containing around 4.50 million and
20.1 million training examples, respectively. All datasets are tokenized, truecased,3 and
segmented into subword units by 32k byte-pair encoding (BPE) merging operations
(Sennrich, Haddow, and Birch 2016). In addition, we use Jieba segmentation4 to tokenize
the Chinese datasets to maintain better performance, and BPE merging steps are learned
separately. Note that, to preserve the quality of STs for analyses, as well as prevent data
leaking and domain mismatching between training and test datasets, we collect WMT
test sets from adjacent years for further analyses, resulting in 1,273 and 717 ST sentence
pairs for En⇒De and Zh⇒En task, respectively (see Table 2).

For efficiency of model training, we remove all sequences that contain over 256
tokens in either language. Our experiments are conducted with the fairseq5 open-
source toolkit.

3 https://github.com/moses-smt/mosesdecoder.
4 https://github.com/fxsjy/jieba.
5 https://github.com/pytorch/fairseq.
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4.2 Types of Translation Errors

As the BLEU metric (Papineni et al. 2002) can hardly reveal to what degree each type
of translation error affects the MT model (Snover et al. 2006), and it prefers longer
sequences for observing more n-grams and penalizes short sequences heavily (Och
2003; Nakov, Guzmán, and Vogel 2012), we propose to use more fine-grained statistics
for further analyses. Inspired by the TER metric (Snover et al. 2006) and related research
about translation error analysis (Tu et al. 2016), we directly involve all subentries of edit
moves in TER: insertion, deletion, substitution, and shift, and assign them with four
typical types of translation errors, respectively:

• Over-translation (Over.): candidate contains token(s) excluded from
references;

• Under-translation (Under.): candidate fails to generate tokens for
sufficiency;

• Mistranslation (Mistr.): candidate token is inaccurate compared with
reference;

• Misorder (Misor.): candidate token (or a text span) is located in an
incorrect position;

The reason behind this is that the listed translation error types above are highly re-
lated to each type of edit movement. Specifically, insertion means that some tokens
are inserted into ground truth to obtain a translation candidate, which is identical to
the case of over-translation; deleting several tokens from ground truth leads to under-
translation issues; substituting candidate tokens in ground truth to obtain candidate
results in mistranslation errors; and shifting tokens in ground truth to other positions is
identical to misorder problems.

Then, to evaluate the translation quality with multiple aspects of translation errors,
as well as fairly compare performance across different length buckets, here we calculate
the ratio of each error type by normalizing the number of error cases with the number
of tokens in the reference set:

rt =
# of edit moves for type t
# of tokens in reference (4)

where t ∈ {Over., Under., Mistr., Misor}. Note here that some types of errors can be
transited into other types, for example, a mistranslation case is equivalent to the union
of an over-translation and an under-translation case. In this research, we only consider
the least number of required edits to recover from hypothesis to reference, as in Snover
et al. (2006).

4.3 Hyperparameter Setting

For NMT approaches, we train both baseline and our models following the
TRANSFORMER-Base setting (Vaswani et al. 2017; Ott et al. 2018). Each training mini-
batch consists of approximately 32,768 source tokens. We use the learning rate schedule
(Vaswani et al. 2017) where the linear warm-up phase takes 12k steps, reaching its max-
imum value at 0.0008 (Ott et al. 2018). Checkpoints are stored after every 1k steps, and
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the whole training process takes 150k and 200k steps in total for En⇒De and Zh⇒En,
respectively. We apply dropout regularization with a ratio of 0.1 for embedding layers,
attention weights, ReLU activations, and residual connections. All NMT experiments
are conducted on 4 Nvidia V100 GPUs.

For model inference, we apply beam size 4 and decoding alpha 0.6 (Vaswani et al.
2017) over the En⇒De dev set. As for the Zh⇒En task, the beam size and decoding
alpha are 10 and 1.5, respectively. For each machine translation task, we conduct 5
independent runs, and leverage the checkpoints with best performance on the dev
set for further analysis. As a result, our reimplementation gives 28.01 and 24.27 BLEU
scores on average over the En⇒De newstest2014 and Zh⇒En newstest2017 test set,
respectively. Compared with the reimplementations of other research (Vaswani et al.
2017; Wang et al. 2019; Ghazvininejad et al. 2019), our results show consistently higher
BLEU scores, thus confirming the appropriateness of our further analyses.

As for PBSMT, we follow Koehn, Och, and Marcu (2003) and apply minimum risk
training (Och 2003). The hyperparameters of log-linear models are automatically tuned
over the dev set.

4.4 Model Performance

One may ask whether the NMT for ST can be simply improved by carefully tuning the
hyperparameters for inference, that is, beam size and decoding alpha (Wu et al. 2016).
Specifically, the former is in charge of controlling the number of top candidates, and
the latter is used to regulate the penalty of candidate length. To check whether these
two hyper-parameters can significantly improve ST translation quality, we conduct two
series of experiments by tuning them respectively. As shown in Figure 2a, although
larger beam size can decrease the ratio of mistranslation and over-translation cases,
it significantly increases the under-translation errors. This is similar to previous find-
ings that, with larger beam size, NMT prefers to generate shorter translations, leading
to worse translation quality (Koehn and Knowles 2017; Yang, Huang, and Ma 2018;
Murray and Chiang 2018). As to decoding alpha (Figure 2b), the ratio of each type of
erroneous case does not vary much. Overall, tuning both hyperparameters does not
improve the general translation quality. These experimental results dispel our concern,
revealing that NMT for ST is hardly improved by simply tuning hyperparameters
during inference.

4.5 Translation Error Analysis

To check why the performance of NMT over STs is unsatisfied, we directly accumulate
different types of translation errors over the NMT baseline model. Following the cate-
gories of translation error types in Section 4.2, we construct error ratios of all types over
each bucket in Figure 3. We can see that as sequences become longer, under-translation
and misorder errors increase slightly. However, two phenomena in this figure raise our
interests:

• 1) More over-translation errors are observed over the ST set than other buckets;

• 2) Mistranslation errors show a slight trend of increasing as the sequences become
shorter.
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Figure 2
Comparison on different translation error types with multiple settings of beam size and
decoding alpha over En⇒De ST set. For different beam sizes, we check results by setting it as 1,
4, 5, 10, 25, and 100, respectively. As to decoding alpha, it varies from−1.0 to 1.0, with an interval
being 0.2. As seen, larger beam size decreases mistranslation (Mistr.) and over-translation (Over.)
issues, whereas it significantly increases the under-translation (Under.) problem. Additionally,
larger decoding alpha value increases the ratio of over-translation cases, while other types show
marginal turbulance. Tuning both hyper-parameters merely affects the number of misorder
cases (Misor.). Aside from the default setting, carefully tuning both hyper-parameters cannot
reduce the summation of all kinds of translation errors. The same conclusion can be derived
from Zh⇒ En.

The former observation demonstrates that the NMT model tends to generate longer
translation candidates when given STs, leading to massive over-translation errors. We
think the reason lies in the distribution of data, where short sequences are rarely trained
compared with examples from other length ranges (He et al. 2016). The latter observa-
tion reveals that the NMT model cannot provide adequate accurate translations over
STs, unlike other buckets. We believe this is related to the insufficiency of contextual
information, where the model is troubled by a limitation on the number of tokens
engaged within ST examples. Translating STs is more difficult because the contextual
information is not adequate to generate precise predictions.

Following these two ideas, we propose to investigate the reasons behind poor NMT
performance over STs with (1) Imbalance of data distribution, and (2) Insufficiency of
contextual information.
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Figure 3
Translation error ratio (%) of each bucket from the En⇒De test set by NMT model. For longer
sequences, the percentage of under-translation errors (Under.) varies marginally, and the model
gives more misorder errors (Misor.). However, STs involve more over-translation (Over.) and
mistranslation (Mistr.) errors.

5. Imbalance of Data Distribution

The distribution of the training dataset has a transforming influence over model infer-
ence (He et al. 2016; Shen et al. 2016; Wang et al. 2018). Generally, most of the learned
positional information is relevant to the bucket, which possesses a dominant proportion
over the whole training set. In this section, we investigate how the imbalance of data
distribution affects NMT performance over STs.

5.1 Inference Miscalibration

To measure how critically the NMT model suffers from imbalance of data, we propose
to explore the translation quality with model miscalibration (Guo et al. 2017; Müller,
Kornblith, and Hinton 2019; Wang et al. 2020). Specifically, this represents the gap
between model accuracy and confidence, which is also tightly aligned with exposure
bias (Ranzato et al. 2016; Wang et al. 2020) in sequence learning. To quantify how a
model is miscalibrated during inference, we apply the inference expected calibration
error (Inf-ECE, Wang et al. 2020) which is calculated at the token level:

Inf-ECE =
N∑

n=1

|Dn|
N |acc(Dn)− conf (Dn)| (5)

where N is the number of partitions in total, Dn is the n-th partitioned bin containing
the samples whose confidence scores lie in corresponding range, and |Dn| is the number
of samples in Dn. The accuracy score acc denotes the ratio of candidate tokens that
are not required to be modified (i.e., those cases excluded from translation errors),
and the confidence score conf is equivalent to the predicted probability of a candidate
token (Wang et al. 2020). By averaging the differential values between accuracy and
confidence scores, this gap reveals how miscalibrated the model is during inference
(Müller, Kornblith, and Hinton 2019).
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Figure 4
Left: Model performance following baseline (Baseline) and the upsampling setting
(Upsampling), as well as data distribution at the sentence-level (Dist.Sent). Right: Inference
Expected Calibration Error (Inf-ECE, Wang et al. 2020) over En⇒De dev buckets following
baseline (Baseline) and the upsampling setting (Upsampling). Lower TER score denotes better
model performance, and higher Inf-ECE denotes more severe inference miscalibration. For the
baseline model, it gives better performance over the bucket composed of more training
examples, and shows higher inference miscalibration. Upsampling those buckets with small
proportions significantly alleviates Inf-ECE, where miscalibration issue of translating short texts
(STs) decreases the most. ST-NMT benefits most from upsampling. Similar trends can also be
observed over the Zh⇒En dev set.

Following Wang et al. (2020), we set the number of partitions N as 10, and conduct
the Inf-ECE over each bucket in Figure 4b. We can see that, as the sequences become
longer, Inf-ECE decreases first, then increases until the bucket composed of the longest
sequences. Interestingly, we find that the model Inf-ECE is highly related to model
performance, where a higher Inf-ECE level leads to worse translation performance (TER
score in Figure 4a). This confirms our hypothesis, that the imbalanced distribution of STs
leads to a rather high inference miscalibration, thus determines worse model performance when
translating STs.

5.2 Balancing Data Sampling in Training

Following the conclusion above, balancing the distribution of training data is likely a
promising way to alleviate inference miscalibration for NMT over STs. We thus check
this method by upsampling the examples whose bucket contributes a lower proportion
over the entire training set in experiments. Specifically, within each training epoch, the
model is required to gain the same number of updates over different buckets of training
examples (Dong, Quirk, and Lapata 2018; Schuster et al. 2019). As a consequence, exam-
ples from the same bucket that contributes less to the whole training set are repeatedly
sampled for training within each epoch until it reaches the balance of sampling.6

As seen in Figure 4b, with balanced data sampling, the Inf-ECE values over all
buckets decrease significantly, among which Inf-ECE for STs decreases the most. As

6 Although it is more reasonable to achieve this balance via counting the number of trained tokens, our
token-level experiments give worse translation quality over STs. After conducting statistical tests, we find
that STs contribute a lower proportion of training data at the token-level than sentence-level, thus easily
leading to the over-fitting problem.
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Table 3
BLEU (%) score, TER (%) score, and human evaluation (HE) over short texts. BLEU and TER
scores are conducted over 5 independent runs, and HE score is conducted via the checkpoint
with intermediate performance. ↑/↓: higher/lower is better. Upsampling (Up.) can increase ST
translation quality.

En⇒De Zh⇒En

BLEU↑ TER↓ BLEU↑ TER↓ HE↑
Baseline 30.51 ± 0.17 54.17 ± 0.16 19.49 ± 0.13 65.71 ± 0.21 2.58
Up. 32.13 ± 0.19 51.26 ± 0.15 20.44 ± 0.14 63.14 ± 0.18 3.11

Figure 5
Ratio of each translation error type over En⇒De and Zh⇒En short text (ST) set. For both
En⇒De and Zh⇒En tasks, upsampling decreases the ratio of mistranslation (Mistr.) and
over-translation (Over.) errors, whereas it increases the under-translation (Under.) cases. The
ratio of misorder (Misor.) errors marginally fluctuates.

a consequence, NMT performance over STs is significantly improved, whereas the per-
formances of other buckets fluctuate (Figure 4a). As shown in Table 3, the upsampling
method shows significant improvements over baseline over both tasks. Additionally,
we also randomly selected 100 translated candidates from models trained with both
the default setting and the upsampling strategy. We collect human assessments from 10
volunteers, who are asked to provide an integer score from 1 to 4 to describe how well
the translation output expresses the reference for each data item, resulting in 3.11 versus
2.58 on average, respectively. Those results verify our hypothesis about the imbalance
of data distribution.

To investigate further, we calculate the ratio of each translation error type from
baseline and our approaches in Figure 5. As shown, for both tasks, upsampling can
mitigate the mistranslation issue, whereas it also raises more from under-translation.
More importantly, the upsampling method significantly reduces over-translation cases.
Integrating this with the findings in Figure 4, we thus conclude that balancing the data
distribution can relieve model miscalibration at inference, thus improving the ST translation
quality on reducing over-translation cases.

6. Insufficiency of Contextual Information

Although we see that decreasing miscalibration can reduce over-translation errors, the
portion of mistranslation errors changes marginally after introducing training data
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upsampling. This indicates that mistranslation cases are mainly caused by some other
reasons aside from miscalibration. In fact, as the length of sentence becomes shorter, the
sequence will carry fewer tokens for processing. Elaborating the semantic information
of STs for translation is rather difficult compared with those examples with adequate
tokens. As a consequence, such a lack of contextual information aggravates semantic
disambiguation (Brunner et al. 2020; Xu et al. 2021a) and cross-lingual alignments (Cao
and Xiong 2018) in the NMT model. We think such a constraint is the reason why
translating STs generates more mistranslation errors than other buckets (Figure 3). In
this section, we continue our analyses on the insufficiency of contextual information in
ST scenarios of NMT.

6.1 Model Uncertainty

To investigate how the quantity of contextual information influences the translation
quality of STs, we propose to use model uncertainty (Gal and Ghahramani 2016; Wang
et al. 2019) to identify to what degree the model is uncertain about its own output.
Such an uncertainty estimation is implemented using Monte Carlo Dropout Sampling
(MCDS, Gal and Ghahramani 2016; Dong, Quirk, and Lapata 2018), where each sam-
pling time is arranged after partially disabling model parameters randomly with a
dropout mask (Srivastava et al. 2014). The uncertainty value represents how much the
model hesitates when generating translated candidates.

After taking a glimpse of all modules in the conventional TRANSFORMER model,
it is easy to see that the attention networks are the only ones where semantic pro-
cessing is arranged across positions inside the sequence. The other modules, such as
positional encoding and feedforward networks, gather the representations in a position-
wise manner, where the output at one specific position is only contributed to by the
input at its corresponding place. We speculate that MCDS, by applying dropout over
all model parameters (Wang et al. 2019; Zhou et al. 2020), cannot appropriately mimic
the insufficiency of contextual information. Here we propose to strictly arrange MCDS
over three types of attention networks (Section 3.1): enc-SAN, dec-SAN, and CAN,
respectively. Specifically, the MCDS is applied over the attention weights, thus it can
check how the model is affected by the insufficiency of contextual information. Aside
from Equation 2, the output of the attention network is then redefined as follows:

u ∼ Bernoulli(p) ∈ {0, 1}L2 (6)

Ãh,l1,· = dropout(Ah,l1,·, u) ∈ RL2 (7)

H̃h,l1,· =

L2∑
k=1

Ãh,l1,kVh,k,· ∈ Rdh (8)

where u ∈ RI denotes the dropout mask that follows the Bernoulli distribution with
probability p, α̃ ∈ RI contains the attention weights after applying dropout, and p is the
ratio of disabled neurons (Srivastava et al. 2014). The dropout masks among multiple
MCDS operations are randomly generated for each tensor, resulting in the fact that the
sampled probabilities of target sequence P(T) fluctuates. For these sets of probabilities
that show a higher level of turbulence, the model tends to become more uncertain over
corresponding examples (Dong, Quirk, and Lapata 2018; Xiao and Wang 2019; Zhou
et al. 2020). In this test, we simply assign the model uncertainty over the corresponding
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Figure 6
Model uncertainty values of NMT models with/without translation memory (up) and their
differences (down) over each bucket from the En⇒De dev set. On the left, solid and dashed lines
denote the uncertainty values of baseline model and translation memory (TM) model,
respectively. The uncertainty value is consistently larger and the sequence lengths are shorter. As
can be seen, short texts (STs) are severely hindered by insufficiency of contextual information.
After applying TMs in training, the uncertainty values all decrease, with that of the ST set
decreasing most. Similar trends can be observed over Zh⇒En dev buckets.

sequence with the variance of sampled probabilities by MCDS. To avoid underflow
issues, we use negative log-likelihood probabilities (Wang et al. 2019; Wan et al. 2020b)
instead. As well as giving a more fair comparison across different buckets of various
lengths, we use the sequence length of each sentence J to normalize the values:

um = σ(−1
J

J∑
j=1

logP(Tj|T<j, C,θ, m, p))K
k=1 (9)

where σ(·) denotes the variance of input tensors, m ∈ {enc-SAN, dec-SAN, CAN} de-
notes the module set applied with MCDS, and K is the number of sampling times.
Following this paradigm, a larger um value denotes a higher level of model uncertainty
over the corresponding sequence T. This design results in discrimination showing that
a higher model uncertainty value indicates a more severe impact of the insufficiency of
contextual information on translation quality.

Using this design, we calculate the averaged model uncertainty value over exam-
ples from each length bucket. Following a previous study (Xiao and Wang 2019), we
set the dropout ratio p as 0.1. Additionally, although a higher number for sampling K
denotes a more accurate estimation of variance, it requires more time to accomplish
the computation. After conducting preliminary experiments and carefully tuning, we
determine to collect model output probabilities by K = 5 times, as setting this value
larger does not result in an obvious change in variance values.

Results are shown in Figure 6. As can be seen, the uncertainty values derived by
randomly disabling CAN attention weights are the highest across all example buckets.
We believe this highlights the intuition that the semantic transformation from source
to target is the most crucial among NMT model functionalities. Also, shorter sequences
have a higher degree of uncertainty, indicating that they suffer heavily from insufficient
contextual information. We thus conclude that comparing other examples containing more
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Table 4
BLEU (%) score, TER (%) score, and human evaluation (HE) over short texts. ↑/↓: higher/lower
is better. BLEU and TER scores are conducted over 5 independent runs, and HE score is
conducted via the checkpoint with intermediate performance. Translation memory (TM)
improves ST translation quality.

En⇒De Zh⇒En

BLEU↑ TER↓ BLEU↑ TER↓ HE↑
Baseline 30.51 ± 0.17 54.17 ± 0.16 19.49 ± 0.13 65.71 ± 0.21 2.58
TM 31.41 ± 0.20 53.24 ± 0.16 20.16 ± 0.20 63.76 ± 0.24 2.92

tokens, translating STs with the NMT model is more easily affected by the inadequacy of
contextual information.

6.2 Complementing Contextual Information

As the NMT for ST is highly troubled by the lack of contextual information, we believe
that incorporating additional information for ST translation is potentially helpful. Trans-
lation memory (TM), which addresses our aim, has been shown to be an efficient way
to relieve the insufficiency of contextual information (Cao and Xiong 2018; Eriguchi,
Rarrick, and Matsushita 2019; Kim, Tran, and Ney 2019). Specifically, TM is derived from
extra examples that are similar to the inputted sentence pair. It augments the integrity of
contextual information by providing extra reliable information from TM, thus can ease
NMT model learning (Cao and Xiong 2018).

To check whether TM helps NMT for ST, we conduct experiments by incorporating
TM into NMT model training. Empirically, following recent studies (Cao and Xiong
2018; Kim, Tran, and Ney 2019), we first derive the TM of each training example by
calculating the similarity of two sequences based on token-level Levenshtein distance:

Sim(S, Ŝ) = 1− Levenshtein(S, Ŝ)
max(J, Ĵ)

(10)

where Ŝ is the example different from input sequence S at source side, and Ĵ is the length
of Ŝ. Here the Levenshtein distance measurement Levenshtein(·, ·) gives the number of
required edit moves when transforming one sequence to another at the token level.
Additionally, to normalize the difference between S and Ŝ, we use the maximum
value of sequence lengths to normalize the score. Therefore, for those sequence pairs
whose lexical choices and token orders have little overlap, the normalized Levenshtein
distance is large, thus giving a lower similarity score. When implementing such an idea,
for simpler and faster TM searching, we restrict the TM candidates inside the same
document where S is located.

As seen in Figure 6, after introducing TM into NMT training, the model uncertainty
value of short sequences also downgrades. Specifically, as the sequences become shorter,
the drop of model uncertainty becomes rather larger. This indicates that complementing
contextual information can decrease the level of model uncertainty, which benefits NMT
for ST the most. As seen in Table 4, translation errors over STs drop significantly with
given TM, indicating that the additional contextual information is constructive for ST
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Figure 7
Ratio of each translation error type over En⇒De and Zh⇒En short text (ST) set. Translation
memory (TM) significantly mitigates mistranslation (Mistr.) and under-translation (Under.).
However, the model is hampered by more over-translation (Over.) cases. The ratio of misorder
(Misor.) errors marginally fluctuates.

translation scenarios. This demonstrates that the sufficiency of contextual information
is beneficial to translation quality.

To further investigate which part and to what degree TM improves NMT for ST
translation performance, we calculate the ratio of all translation error types of the
outputs from the NMT model trained with TM. As shown in Figure 7, TM significantly
reduces the mistranslation cases, as well as under-translation errors. However, it creates
more over-translation issues compared to baseline. These results demonstrate that pro-
viding contextual information can significantly reduce model uncertainty over ST, and the NMT
model gains significant improvement of translation quality over STs when incorporating TM.

7. Conclusion

In this study, we investigated the challenges of neural machine translation over short
texts. To obtain more fine-grained analyses, we categorize translation errors into four
types, namely, mistranslation, over-translation, under-translation, and misorder (Sec-
tion 4.2). Our contributions are as follows:

• Based on empirical analyses, we bring out two challenges in NMT for ST,
which may encourage the NLP community to pay more attention to such
scenarios (Section 4.5);

• By identifying inference miscalibration, we confirm that imbalanced data
distribution leads to higher miscalibration, thus raising more
over-translation errors for NMT for ST (Section 5.1);

• By quantifying the model uncertainty, we verify that the lack of contextual
information leads to higher uncertainty, which results in more
mistranslation errors for NMT for ST (Section 6.1);

• Based on the above findings, we also suggest two potential directions,
namely, balancing the sampling of training data (Section 5.2) and
complementing contextual information (Section 6.2), which can alleviate
the over-translation and mistranslation issue in NMT for ST, respectively.
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We believe that some existing NMT research topics, for example, title translation
and entity translation, are also included in the scenario of translating STs. In this
research, we conducted experiments on the news domain, and an ST set for analytic
experiments mainly composed of titles and entities. Considering that many scenarios
heavily rely on understanding and processing titles/entities (e.g., Web site search,
information retrieval, keyword search, and cross-lingual search), we believe that inves-
tigating the shortcomings of title/entity translation is another interesting research topic.
We welcome more reports on this topic in the future.

Additionally, as our work mainly explores the challenges of NMT for ST, following
the findings of this research, we believe that some approaches related to data distribu-
tion imbalance and contextual information insufficiency may also help improve NMT
for ST translation quality. These approaches are mainly engaged in potential research di-
rections such as data augmentation (Sugiyama and Yoshinaga 2019; Li and Specia 2019;
Wan et al. 2020a), localness modeling (Yang et al. 2018; Shaw, Uszkoreit, and Vaswani
2018; Wu et al. 2019; Xu et al. 2019), and contextual representation enhancement (Voita,
Sennrich, and Titov 2019; Maruf, Martins, and Haffari 2019; Yang et al. 2019; Zhang
et al. 2021; Xu et al. 2021b). We leave these promising approaches as potential solutions
to ameliorate NMT for ST performance, as well as other aspects of translation quality
estimation for NMT for ST interpretability, to future work.
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