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Abstract

Automatic extraction of event structures from
text is a promising way to extract important
facts from the evergrowing amount of biomed-
ical literature. We propose BEEDS, a new
approach on how to mine event structures
from PubMed based on a question-answering
paradigm. Using a three-step pipeline compris-
ing a document retriever, a document reader,
and an entity normalizer, BEEDS is able to
fully automatically extract event triples in-
volving a query protein or gene and to store
this information directly in a knowledge base.
BEEDS applies a transformer-based architec-
ture for event extraction and uses distant super-
vision to augment the scarce training data in
event mining. In a knowledge base population
setting, it outperforms a strong baseline in find-
ing post-translational modification events con-
sisting of enzyme-substrate-site triples while
achieving competitive results in extracting bi-
nary relations consisting of protein-protein and
protein-site interactions.

1 Introduction

Cellular processes such as DNA damage repair or
cell division are realized by the orchestration of
simple biochemical events into larger structures
called pathways. Pathways play a crucial role in
Biology research, for example in network analysis
(Barabasi and Oltvai, 2004) or enrichment analy-
sis (Reimand et al., 2019). For these applications,
accurate and exhaustive lists of biochemical reac-
tions are crucial. Examples for databases collect-
ing such biochemical events are KEGG (Kanehisa
et al., 2002), the Protein Interaction Database (PID,
Schaefer et al., 2009) and Reactome (Fabregat et al.,
2018). Although pathway knowledge bases strive
to include as much information as possible their
foremost goal is the correctness of provided data
and they mostly rely on manual collection and re-
view of data. Thus, they are notoriously incomplete

despite extensive curation efforts (Weber et al.,
2020).

In this work, we present BEEDS (Biomedical
Event Extraction using Distant Supervision), a
novel approach to biomedical event extraction from
a large corpus, i.e., PubMed. BEEDS takes ques-
tions like What phosphorylates JAK2? or What
regulates expression of JAK2? to find typed inter-
actions between molecular entities and follow up
questions like Which sites does EPO phosphory-
late in JAK2? to expand upon previously found
answers, as a basis to recover complex event struc-
tures. To answer such questions, BEEDS uses a
pipeline of three steps: retrieval, machine read-
ing and entity normalization. In the first step, our
model retrieves documents relevant to the query
from all PubMed abstracts and PubMed Central
full texts. In the second step, we feed the retrieved
documents to a transformer-based model to identify
and extract answer spans in each document. In the
third step, we apply an entity normalizer to map the
identified entities to canonical database identifiers
before returning them as answers.

As training data for event mining is notoriously
scarce, BEEDS applies distant supervision for ob-
taining a more comprehensive model. Specifically,
it extracts biochemical events from curated path-
way knowledge bases and transforms these into
text annotations, by sourcing text spans containing
the pair of proteins from a knowledge base event.
This creates a distant supervision training set, as
we do not know whether a found text span actu-
ally describes the respective event. To the best
of our knowledge, this is the first approach for
distantly supervised biomedical event extraction.
We augment this distantly supervised training set
with gold standard text annotations for biomedical
event structures from (Kim et al., 2011) and (Ohta
et al., 2013). For evaluation, we again make use
of pathway knowledge base data by checking how
many of their reactions are found by our model.
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Compared to EVEX (Van Landeghem et al., 2013)
as baseline, our experiments indicate that BEEDS
is well able to mine biomedical event structures
from the literature achieving a rise in recall of
about 13 percentage points (pp) when mining for
enzyme-substrate-site triples of post-translational
modifications (PTMs). In mining of binary rela-
tions like protein-protein and protein-site interac-
tions, BEEDS gains about two pp in recall when
compared to EVEX.

The rest of this paper is structured as follows: In
Section 2, we give a brief overview over related
work in event mining. In Section 3, we describe
the event extraction task and our used data sets,
explain each part of our model pipeline in detail
and provide the evaluation setup together with our
baseline. In Section 4 and Section 5, we present
and discuss our results. In Section 6, we make final
remarks and conclude this work.

The code for reproducing this paper is
freely available under https://github.com/
WangXII/BEEDS.

2 Related Work

The two approaches which are closest to BEEDS
are EVEX (Van Landeghem et al., 2013) and PEDL
(Weber et al., 2020). Both aim to solve the task of
populating pathway knowledge bases with automat-
ically extracted event structures from the literature.
EVEX differs from BEEDS as it does not use a
retriever component so its document reader has to
be applied to every document in PubMed which
is expensive in terms of computing resources. Ad-
ditionally, it is only able to learn from manually
labeled, directly supervised data and cannot incor-
porate noisy, distantly supervised text annotations
for training. PEDL’s main difference to BEEDS is
that it is a relation extraction system and can only
extract binary relations but not more complex event
structures with three or more participants.

Regarding the formulation of biomedical event
extraction as question answering with a document
reader, BEEDS builds upon our previous approach
introduced in Wang et al. (2020). DeepEventMine
(Trieu et al., 2020), another approach for biomedi-
cal event extraction, solves the task by employing
a multi-layered model structure each responsible
for a different step in event construction like entity
detection and event merging. However, both these
methods only make use of directly supervised train-
ing data. Furthermore, they both only cover the

machine reading component of biomedical event
extraction and have not been applied to large-scale
biomedical event extraction.

Similar approaches combining a retriever reader
model to pose questions directly to a corpus in-
clude DrQA (Chen et al., 2017), REALM (Guu
et al., 2020) and Lewis et al. (2020). DrQA an-
swers questions posed to a Wikipedia corpus and
uses two models, the BM25 algorithm for retrieval
(Robertson and Walker, 1994) and a deep learning
model consisting of an LSTM (Long short-term
memory) for reading. The BM25 algorithm is still
a widely used document retrieval algorithm, e.g., in
the internal retrieval tool of PubMed, Best Match
(Fiorini et al., 2018), where it is complemented by
a machine learning model reranking its top 500
retrieved documents. REALM and Lewis et al. fol-
low a similar idea like introduced in DrQA but use
dense retrieval methods, i.e., a retriever employ-
ing a deep learning model, and unite the retriever
and reader components in a joint deep learning
model which can be optimized end-to-end. Com-
pared to BEEDS, these systems lack a normalizing
component and have neither been applied to event
extraction nor in the biomedical domain.

3 Material and methods

3.1 Event types and data sets

BEEDS can extract three types of biomedical
events: Post-translational modifications (PTMs),
gene expressions and regulation events in general.
Regulation events include the former two event
types plus other forms of state changes. For PTMs,
such as phosphorylation, we extract relation triples
of theme, cause and amino acid site. For gene ex-
pression and regulation, we extract relation pairs of
theme and cause. Themes are always given by a sin-
gle protein or gene, causes or controllers may also
include other types of molecules. For the remainder
of the document, we use the terms protein and gene
interchangeably. BEEDS neither recognizes event
modifiers like negation or speculation, i.e., it may
extract negated or speculated events without dis-
cerning the negations or speculations themselves,
nor the polarities of events, like positive or negative
regulation.

BEEDS uses a data set for training that consists
of two portions: The first portion is a distantly
supervised, knowledge base data set containing
presumable descriptions of events from the union
of the following seven pathway databases: KEGG,

https://github.com/WangXII/BEEDS
https://github.com/WangXII/BEEDS
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PID, Reactome, HumanCyc (Romero et al., 2005),
INOH (Yamamoto et al., 2011), PANTHER (Mi
et al., 2017) and NetPath (Kandasamy et al., 2010).
The second portion is a directly supervised data set
containing gold annotations from the GENIA (Kim
et al., 2011) and Pathway Curation (Ohta et al.,
2013) challenges; in the following, we call the
former the KB data set and the latter the BioNLP
data set.

3.2 Question answering for event extraction

For each of the three event types that BEEDS can
extract, we define templates to construct the natural
language questions from a given query entity. For
regulations and gene expression, we define only
one template, i.e., to find the controller for a given
protein of interest. The template for regulations is:

What regulates [theme entity] ?

where [theme entity] is filled with the protein of
interest. For PTMs, we define several question
templates, each to extract a different participant
in the event structure: One template to find the
controller/enzyme of a given event, one to find
modified amino acid sites on the given protein, and
a third to find modified amino acid sites for a theme-
cause pair found in a previous question from the
first template. See Table 1 for an example and an
overview of the question templates. We call all
questions that build upon the answer of a previous
question "multi-turn questions" and all other ones
"single-turn questions".

We transform all event structures from our two
data sets into question-answer pairs. The size of
the transformed data sets can be found in Table 2.
Note that for the KB data, each canonical protein
entity (with a unique database identifier) occurs
at maximum once for a combination of event and
question type. For the BioNLP data, each occur-
rence of a protein entity in a different document
counts as a separate question. We split the data sets
into train, development and test sets across indi-
vidual theme entities/proteins, e.g., all events with
AKT1 as theme go into one split and all events with
GSK3B as theme go into another one. To further
reduce the danger of information leakage, we also
grouped together all proteins belonging to the same
function (as defined by Pfam Mistry et al., 2021)
and assign them to the same data split, i.e., all AKT
proteins (like AKT1, AKT2 or AKT3) are assigned
to the same split.

Question for a given protein/gene:
(Phosphorylation, Substrate Entrez 4772)

Document Retriever

Document Reader

Entity Normalizer

Answer:
(Phosphorylation, Substrate Entrez 4772,

Enzyme Entrez 1432)

Build question:
What causes phosphorylation of 
NFAT2 or NFATC?

Find relevant documents:
More specifically, p38 and JNK would 
directly phosphorylate NFATC1 serine 
residues. (Derbré et al., 2016)

Mark answers: More specifically, p38 and 
JNK would directly phosphorylate NFATC1 
serine residues. 

Normalize answers:
(p38, Entrez 1432)

Figure 1: Model overview

3.3 BEEDS overview
BEEDS implements a pipeline consisting of three
main components: the document retriever, the
document reader and the entity normalizer. An
overview is shown in Figure 1. We now describe
each component in detail.

3.4 Document retriever
During document retrieval, we want to select the
documents probably relevant to our query, which
we define of those containing the query protein and
a trigger term for the query event. If retrieval fails,
then our subsequent machine reading model has
no chance of finding correct answers and events in
the provided documents. A reliable document re-
triever is the BM25 model (Robertson and Walker,
1994) which ranks documents based on their cosine
similarity between query and document in TF-IDF
representation. We use Apache Lucene1 to index
all documents and to perform the BM25-based re-
trieval.

Our document corpus consists of all currently
available PubMed2 abstracts plus the full texts from
the open access portion of PubMed Central3. For

1https://lucene.apache.org
2https://pubmed.ncbi.nlm.nih.gov/

about/
3https://pubmed.ncbi.nlm.nih.gov/

https://lucene.apache.org
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
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Event type Question type Example

PTM Cause What regulates phosphorylation of CLIP1?
Site Where is CLIP1 phosphorylated?
Cause + Site Where does mTOR phosphorylate CLIP1?

Expression Cause What induces gene expression of MIP-1-beta?

Regulation Cause What regulates RUNX2?

Table 1: Overview of extracted events and corresponding question types.

BioNLP KB
Qu. Ans. Qu. Ans.

Phosphorylation Cause 272 440 674 2,452
Phosphorylation Site 214 404 546 1,792
Acetylation Cause 19 32 72 215
Acetylation Site 8 16 66 159
Ubiquitination Cause 16 19 134 271
Ubiquitination Site 3 4 54 100
Expression Cause 671 813 721 2,868
Regulation Cause 1,878 3,244 1,584 7,171
Single Turn 3,081 4,972 3,851 15,028

Phospho. Cause + Site 61 67 1,783 4,247
Acety. Cause + Site 4 4 148 264
Ubiquit. Cause + Site 0 0 87 158
Multi Turn 65 71 2,018 4,669

All 3,146 5,043 5,869 19,697

Table 2: Number of questions (Qu.) and answers (Ans.)
for the BioNLP and the KB data sets after transforma-
tion to question-answer pairs.

indexing and retrieval, each PubMed abstract and
each paragraph of a PubMed Central full text are
considered as one document, resulting in a set of
~140 million documents. An important hyperpa-
rameter of BEEDS is the maximal number r of
top-ranked documents that are considered as poten-
tial answer sources for a given query.

To enhance retrieval performance, we slightly
adjust our retrieval queries to obtain better ranking
results. In a first step, we remove all tokens from
the full question except the tokens for the protein
and event type. We then expand the protein with a
list of all its known synonyms, e.g., for AKT1 we
add PKB-alpha, RAC, protein kinase b alpha etc.
This list is extracted from NCBI Gene4 and helps to
cope with the severe synonym problem in protein
naming. For the event types, we conduct a similar
expansion by including further event triggers as
defined in the BioNLP data set. In the end, we

about/
4https://ftp.ncbi.nih.gov/gene/DATA/

gene_info.gz

receive a list of subjects/objects and predicates as
the retrieval query where at least one synonym for
each entity has to be matched.

3.5 Document reader

For document reading, we employ BERT (Devlin
et al., 2018), a popular transformer-based deep
learning model. More specifically we use a pre-
trained checkpoint of the model called SciBERT
(Beltagy et al., 2019). Question answering with
BERT is modeled as a sequence labeling task where
the input consists of the tokenized question, fol-
lowed by a special separating token and a tok-
enized document from the retrieval. In the output
sequence, corresponding answers in the tokenized
document are marked using the IOB2 tagging nota-
tion where B and I stand for the start and middle of
an answer token, O for a non-answer token and X
for a continuation of a token from a previous word,
respectively. Token splits are made automatically
by the tokenizer and the X tag signalizes to defer
labeling of a subtoken to its respective starting to-
ken. This tagging is realized by a fully connected
output layer on top of BERT with the output dimen-
sion d × n, where d denotes the number of possible
sequence labels (4 in our case) and n denotes the
maximum sequence length of the input. For each
sequence position i ∈ {1, ..., n}, we obtain a d-
dimensional vector denoting the log probabilities
for each possible label. An example of input and
output from the BERT document reader is shown
in Figure 2. Detailed hyperparameter settings for
BEEDS can be found in appendix A.

Generating distantly supervised training
instances
As a distinct feature, BEEDS is able to also learn
from noisy training annotations extracted from
pathway knowledge bases. These samples are cre-
ated as follows. Given a question-answer pair in
the training set, we tag all answer synonyms that
are near the question entities (protein, event type

https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://pubmed.ncbi.nlm.nih.gov/about/
https://ftp.ncbi.nih.gov/gene/DATA/gene_info.gz
https://ftp.ncbi.nih.gov/gene/DATA/gene_info.gz
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Figure 2: Question answering as sequence tagging. Depiction of the input tokens fed into the BERT model and of
the output tags produced.

and possibly amino acid site) as a valid answer sim-
ilarly to the strategies carried out in Quirk and Poon
(2017) and Peng et al. (2017). We define "near"
by restricting the number of sentences between a
question entity and our answer candidate to three.
For amino acid sites, the set of valid synonyms
is defined as the full name of the amino acid and
its abbreviations in form of one and of three letter
codes. For instance, synonyms for the amino acid
site Y183 include tyrosine183, Tyr183 and Y183
and the further combinations with either a whites-
pace, a hyphen or brackets, e.g., Y 183, Y-183 and
Y(183).

Distant supervision and multi-instance learning

In the classic distant supervision setting as de-
scribed by Mintz et al. (2009), all automatically
generated annotations are assumed to be correct
and thus valid learning examples. However, in
many settings, including the one described here,
examples contain noisy, false positive training ex-
amples which may lead to conflicting signals for
the learner and degraded model performance (Sur-
deanu et al., 2012). In the multi-instance learn-
ing formulation, Surdeanu et al. (2012) alleviate
this problem by relaxing the assumptions on the
generated annotations. Instead of assuming every
generated annotation to be right, their idea was to
require only at least one of the generated annota-
tions to be correct. We follow this idea and thus
assume that only at least one of the text snippets
per query-answer pair in the KB data set is correct,
which means that our model does not need to fit
every training example but nevertheless may do
so. We call the collection of examples for a given
question-answer pair a bag and use the hyperparam-
eter b as maximal bag size (b = 100 in BEEDS).
If retrieval size r is greater than the maximal bag
size b, retrieved documents are split across multiple
bags so that no bag exceeds size b.

A sequence annotation during training is deemed
correct if the labels for each output token are tagged

correctly. In the BioNLP data set, this is simply
given by the gold standard tags. For the KB data set,
this is given by our generated, distantly supervised
annotations. The output tag at position k in the
sequence of length n is determined by the tag with
the highest output emission score eyik(xi). The
overall log probability of an output sequence y
given the input sequence x is determined by the
sum of log probabilities of its individual output
labels:

logP (y|x) = log

n∏
i=1

P (yi|xi) =
n∑

i=1

logP (yi|xi)

=
n∑

k=1

max
k=1,...,d

eyik(xi)−
d∑

k=1

eyik(xi)

For our learning objective, we separate the whole
bag of training examples into a positive and a nega-
tive bag. The positive bag contains all the output
sequences which have marked at least one answer,
i.e., one token at least has a B or I label. The
negative bag on the other hand contains all noisy
annotations where no token is marked as a potential
answer. Applying the multi-instance learning for-
mulation for each bag separately ensures that our
model learns when to label an answer with a B or I
token instead of just labelling every token with an
O token. We apply the multi-instance formulation
by calculating the maximum of all sequence log
probabilities for both the positive and negative bag.
For training stability and optimization purposes,
we use the smooth approximation of the maximum
function, logsumexp, in our computations instead
of the maximum preventing a sparse gradient flow
(c.f. Weber et al., 2020). As our objective loss func-
tions are to be minimized instead of maximized, we
multiply the resulting probability by -1. We sum up
our positive loss ℓpos and negative loss score ℓneg
to obtain the final objective function ℓdistant:
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ℓpos = − log
∑

yj∈pos
expP (yj |xj)

ℓdistant = ℓpos + ℓneg, ℓneg analogous

For directly supervised examples, loss calcula-
tion is more straightforward. We use the same
formulas but always set the bag size b to 1 which
corresponds to a standard sequence labeling loss

ℓdirect = − logP (y|x).

We do not use negative examples and bags for di-
rectly supervised examples. We introduce the addi-
tional hyperparameter w which is multiplied with
each direct loss ℓdirect allowing us to control the
relative importance of direct examples in compari-
son to distantly supervised examples. During each
training step, we either choose one directly super-
vised example or one bag with distantly supervised
examples resulting in the final loss

ℓ =

{
ℓdistant , if distantly supervised sample,
w · ℓdirect , else.

3.6 Entity normalizer

For entity normalization, we use the existing nor-
malizer PubTator Central5 from Wei et al. (2019). It
provides mention-level and document-level normal-
izations for proteins in every PubMed and PubMed
Central article by mapping mentions to NCBI En-
trez Gene identifiers. Because proteins in our
knowledge bases are identified using UniProt iden-
tifiers, we map the UniProt identifiers to their cor-
responding Entrez Gene identifiers using UniProt
ID mappings6. In addition, most of our knowledge
bases focus on interactions in human. To handle
homologous genes from other species, we use Ho-
moloGene7 to map genes to their human orthologs
(NCBI taxonomy ID 9606) whenever possible.

Entities which we cannot normalize to a
gene/protein mention using PubTator Central are
normalized to CHEBI8 identifiers using a simple
dictionary lookup. For amino acid site strings, our

5ftp://ftp.ncbi.nlm.nih.gov/pub/lu/
PubTatorCentral/

6ftp://ftp.uniprot.org/pub/databases/
uniprot/current_release/knowledgebase/
idmapping/idmapping_selected.tab.gz

7https://ftp.ncbi.nih.gov/pub/
HomoloGene/current/homologene.data

8https://www.ebi.ac.uk/chebi/

normalization performs the reverse way as the syn-
onym expansion for sites (see Section 3.5), i.e.,
we try to transform every possible extracted amino
acid sites from text to their canonical symbols. For
instance, serine 123 would be normalized to S123.

3.7 Baseline and evaluation
We use EVEX (Van Landeghem et al., 2013) as a
strong and still popular baseline for event mining.
To allow adequate comparison to our results, we
only consider documents published before 2013
for our document retrieval. We have downloaded
all EVEX annotations9 (one annotation file for
each PubMed/PubMed Central article) and trans-
formed the extracted events structures into the same
question-answering format as used by our model.
Mapping of the BioNLP/EVEX events to our event
types is straightforward and can be found in the
appendix Table 8.

Our evaluation setup consists of two experi-
ments: knowledge base evaluation and sample eval-
uation. Knowledge base evaluation is a fully auto-
mated evaluation where we measure how many of
the event structures in the test set of the KB data
set are found by each method. As evaluation met-
rics, we use knowledge base recall and the number
of predicted question-answer pairs; note that for
those not in the DB data set we cannot decide auto-
matically whether they are correct or not and thus
cannot compute a precision. In such a setting, the
number of predicted question-answer pairs is help-
ful to put the achieved recall value into perspective.

Sample evaluation involves manual review of
some randomly chosen events extracted by BEEDS
and some events extracted by the baseline and al-
lows to estimate precision. A further advantage
of this evaluation, though laborious, is that it also
considers new predictions, i.e., those events not
already present in a knowledge base.

4 Results

4.1 Knowledge base evaluation
We present the results of the knowledge base evalu-
ation in Table 3. Overall BEEDS achieves a ~5pp
higher recall than EVEX. The difference is more
pronounced in multi-turn questions where BEEDS
achieves a recall of 14.30% while EVEX results
are close to zero. Note that for knowledge base
evaluation of multi-turn questions, we only count

9http://evexdb.org/download/
standoff-annotation/

ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/
ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping_selected.tab.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping_selected.tab.gz
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping_selected.tab.gz
https://ftp.ncbi.nih.gov/pub/HomoloGene/current/homologene.data
https://ftp.ncbi.nih.gov/pub/HomoloGene/current/homologene.data
https://www.ebi.ac.uk/chebi/
http://evexdb.org/download/standoff-annotation/
http://evexdb.org/download/standoff-annotation/
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the theme-cause-site triples where the theme-cause
pair extracted from the previous single-turn ques-
tion has been correct, i.e., the theme-cause pair
has been curated in one of our knowledge bases.
The multi-turn question itself is answered correctly
if the whole event triple was extracted correctly.
Compared to single-turn questions, recall in multi-
turn questions falls off in both approaches, e.g., in
BEEDS from 35% to about 14%. In single-turn
questions, BEEDS outperforms EVEX in PTMs
with a difference of 0pp to 48pp for the different
types of PTM, whereas EVEX outperforms BEEDS
in expression and general regulations by ~4pp.

Interestingly, BEEDS achieves this higher over-
all recall with only half of the number of predic-
tions (29,867 versus 56,482). The discrepancy in
number of predictions is especially high for the
single-turn questions of expressions and regula-
tions. In contrast, BEEDS extracts many more for
all other event types. For instance, BEEDS is able
to return about 2,000 controller-cause-site triples
(given a valid controller-cause pair) whereas EVEX
is only able to return 56 of such triples.

4.2 Sample evaluation

We present the results for the sample precision in
Table 4. For each model, we randomly sampled
109 predictions and evaluated the correctness of the
textual annotations manually (excluding entity nor-
malization). We made sure that the number of each
question type and each event type is roughly the
same for our model and for the baseline. BEEDS
achieves a total sample precision of 49.09% com-
pared to EVEX with 63.30%.

In Table 5, we show events extracted by BEEDS.
The first five samples are events not present in any
of the knowledge bases showing that the model is
able to extract new event structures. The last two
are examples of typical errors.

5 Discussion

5.1 Comparison to EVEX

The higher number of predictions in EVEX likely
stems from the fact that EVEX for each query anal-
yses all PubMed abstracts whereas BEEDS con-
siders only a limited amount of matches for each
question, as controlled by the hyperparameter r
(with r = 1000 in the experiments). This is espe-
cially true for the general regulation type which not
only contains PTMs and expression events but also
event types like transport or unspecific inhibitions

and activations. Nonetheless, the limited amount
of documents per question is sufficient for BEEDS
to achieve a higher overall recall than EVEX show-
ing that our retriever component is able to extract
relevant documents.

For single-turn questions, BEEDS and EVEX
achieve similar results. The advantages of BEEDS
lie (a) in the important class of PTMs and (b) in
multi-turn questions where simple event structures
are merged to form larger event structures. Errors
propagate in both models, i.e., wrongly extracted
theme-cause pairs automatically lead to wrong
theme-cause-site pairs, but event merging is more
often successful in BEEDS. Multiplying the recalls
for the Phosphorylation Cause question and the
Phosphorylation Site question for BEEDS results
in an expected recall of about 15% for the Phospho-
rylation Cause and Site question which is almost
the exact recall the model achieves with 14.96%.
Multiplying the same recalls in EVEX results in
an expected recall of about 5% while the actually
achieved recall of 0.84% is much lower. However,
the higher number of merged events likely leads to
a lower sample precision in BEEDS compared to
EVEX (~37% versus ~69%).

It may be that recall improvement of BEEDS
over EVEX is in part because of the newer Gen-
NormPlus (Wei et al., 2015) normalization algo-
rithm used in BEEDS compared to the older Gen-
Norm (Wei and Kao, 2011) used in EVEX. How-
ever, the increase in F1-score performance from
GenNorm to GenNormPlus (80.10% to 86.70%,
see Wei et al., 2019) does not solely explain the
significant discrepancy in recall for the multi-turn
questions.

In the sample evaluation, BEEDS achieves much
lower results in multi-turn question than in single-
turn questions compared to EVEX. We hypothe-
size that BEEDS is more prone to error propaga-
tion than EVEX: Mainly, in extending falsely ex-
tracted event pairs to event triples whereas EVEX
uses a more conservative approach to event merg-
ing. This is in line with our previous results from
(Wang et al., 2020) where the machine reading com-
ponent of EVEX, TEES (Björne and Salakoski,
2011), achieves a slightly worse precision than
the machine reading component in BEEDS on the
GENIA11 dataset (Kim et al., 2011, 57.65% to
59.33%) and a much better precision on the Path-
way Curation dataset (Ohta et al., 2013, 55.78% to
48.74%). The former dataset contains more sim-
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Knowledge Base BEEDS EVEX
KB Gold KB Recall Predictions KB Recall Predictions

Phosphorylation Cause 715 36.92 3,175 24.75 3,398
Phosphorylation Site 546 42.12 3,076 19.96 797
Acetylation Cause 25 56.00 39 8.00 7
Acetylation Site 22 22.72 25 22.72 14
Ubiquitination Cause 57 36.84 217 26.31 80
Ubiquitination Site 9 33.33 17 22.22 7
Expression Cause 896 29.01 5,262 32.47 13,580
Regulation Cause 1,901 36.64 16,069 40.87 38,534
Single Turn 4,171 35.81 27,880 33.03 56,426

Phosphorylation Cause + Site 1,302 14.59 1,946 0.84 55
Acetylation Cause + Site 57 8.77 24 0.00 0
Ubiquitination Cause + Site 18 11.11 17 0.00 1
Multi Turn 1,377 14.30 1,987 0.79 56

All 5,548 30.47 29,867 25.03 56,482

Table 3: Results from knowledge base evaluation. Knowledge base (KB) recall values given in percent. In multi-turn
questions, we only count the theme-cause-site triples where the extracted theme-cause pair from the previous
single-turn question has been correct, i.e., the theme-cause pair has been curated in one of our knowledge bases.

Precision Samples BEEDS EVEX

Single Turn 80 53.75 61.25
Multi Turn 29 36.66 68.96
All 109 49.09 63.30

Table 4: Precision on sampled text spans

ple events corresponding to single-turn questions
and the latter more complex events correspond-
ing to multi-turn questions. Overall, F1-scores of
the BEEDS machine reading component in (Wang
et al., 2020) and TEES show similar performances
in the context of directly supervised tasks: 58.33%
for BEEDS compared to 53.30% for EVEX in GE-
NIA11 and 48.29% compared to 51.10% in Path-
way Curation, respectively.

Another source of error decreasing the preci-
sion for multi-turn questions in BEEDS may be the
distantly supervised training examples. Distantly
supervised event triples likely contain much more
noise than corresponding event pairs as one more
entity must be mapped from the database event to
potential events in the biomedical literature.

5.2 Importance of the retrieval size

In Table 6, we evaluate the impact of the retrieval
size r on the final model performance (columns
"BEEDS" versus "BEEDS (100 docs)"). Going
from a retrieval size of 100 to 1,000 during eval-
uation almost doubles the knowledge base recall
from 17.77 to 30.29%, implying that a tenfold in-
crease in retrieval size has approximately resulted

in a twofold increase in recall. In future work, we
plan to perform additional experiments to explore
the impact of r.

5.3 Importance of directly supervised data
We evaluate the impact of adding directly super-
vised data to our training set by evaluating model
predictions specifically on the development set of
the BioNLP data set. In Table 7, we see a consid-
erable improvement of the ability of the model to
extract correct text spans when giving gold anno-
tations during training: On the BioNLP data, the
recall increases from 4.84% to 65.23% and the pre-
cision improves from 41.46% to 68.45%. In Table
6, we can see similar results when evaluating the
KB data set: With access to directly supervised
data during training, the knowledge base recall in-
creases from 23.01% to 30.29%.

5.4 Importance of the normalizer
In Table 6, we show results from an experiment
where we evaluate how much performance is lost
due to insufficient normalization of extracted text
spans. We examine this step by constructing a sim-
ple dictionary lookup which inverts the mappings
from all EntrezGene database identifiers to their
respective entity synonyms. Then, we identify an-
swer spans extracted by the machine reading com-
ponent which have no corresponding normaliza-
tion in PubTatorCentral. We match these text spans
to the corresponding database identifiers from the
lookup dictionary. This simple mapping would in-
crease the recall by about a third from 30.29% to
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Question Type Substrate(s) Kinase/Target Document Source Correctness
Text Evidence

Acetylation Cause EGID 9126 EGID 850584 (Ben-Shahar et al., 2008) True
What acetylates SMC3? [...] we show that SMC3 is acetylated in an ECO1 -dependent manner [...]

Phosphorylation Site EGID 84335 S183 (Bönig et al., 1996) True
Where is PRAS40 or AKT1S1 phosphorylated? PRAS40(Ser183) phosphorylation was also inhibited [...]

Phosphorylation Cause + Site EGID 5970, 7124 S276 (Vermeulen et al., 2003) True
Where does TNF phosphorylate p65? Mutational analysis of p65 revealed Ser276 [...] phosphorylation [...] in response to TNF.

Expression Cause EGID 2353 EGID 3586 (Oshiro et al., 2007) True
What causes expression of FOS or c-FOS? Interleukin 10 induced c-FOS expression in human B cells [...]

Regulation Cause EGID 8313 EGID 1869 (Hughes and Brady, 2005) True
What regulates AXIN2? E2F1 up-regulates the expression of the tumor suppressor AXIN2 [...]

Phosphorylation Site EGID 2309 253 (Schwab et al., 2005) False
Where is FKHLR1 or FOXO3 phosphorylated? IGF-I induced phosphorylation of FKHR (Ser 253), FKHRL1 (Ser 256) [...]

Acetylation Cause EGID 4303 EGID 23411 (Chuang et al., 2011) False
What acetylates FOXO4? [...] AGE increases FOXO4 acetylation and suppresses expression of the SIRT1 protein deacetylase.

Table 5: Samples of correctly and wrongly extracted text spans by BEEDS.

KB Dev Set Questions Answers Answers KB Recall

BEEDS 452 671 12,495 30.29
BEEDS (Norm) 479 859 27,435 38.76
BEEDS (Distant) 433 510 7,767 23.01
BEEDS (100 Docs) 414 394 3,807 17.77

KB Gold 681 2,216

Table 6: Ablation studies on the KB development (dev)
set for BEEDS: BEEDS (Norm) estimating the upper
bound for the KB recall, BEEDS (Distant) without ac-
cess to the BioNLP data set and BEEDS (100 Docs)
reducing the retrieval size to 100 from 1,000.

BioNLP Dev set Gold Preds Recall Precision F1

BEEDS 351 335 65.24 68.35 66.76
BEEDS (Distant) 351 41 4.84 41.46 8.67

Table 7: Performance on the BioNLP dev set with and
without access to gold data during training.

38.76% (but would also create many false positives
decreasing model precision). This shows room for
future optimization of the normalizer.

6 Conclusion

In this work, we have presented BEEDS, a new
approach towards large-scale biomedical event ex-
traction. We used question answering to iteratively
extend biomedical event structures, first retrieving
relevant documents and then applying a machine
reader and normalizer to identify answer spans.
On a knowledge base population task, BEEDS
achieves similar results to an EVEX baseline for
events with two participants and a much higher
recall than EVEX on PTMs with three participants.

For future work, it remains to be examined how
well other current biomedical event extraction ap-
proaches like DeepEventMine can be scaled up for
large-scale curation efforts and how they compare
to our model. We also plan to test other retrieval ap-
proaches like dense retrieval methods which might
be able to improve the retrieval performance over
BM25.
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A Implementation Details

For implementation, parsing of the knowledge base
event structures is done by INDRA10 (Gyori et al.,
2017). Mapping the event types in INDRA to our
custom types is straightforward, events with a sub-
strate and an enzyme without a corresponding event
type in BEEDS are just mapped to the regulation
event type.

The retrieval size r for our noisy training sets is
100. During evaluation in the development and test
sets, we have found out that a larger retrieval size
improves the recall considerably (see Table 6), so
r = 1000 there. The bag size for multi-instance
learning is b = 100. The additional weight factor
that we multiply directly supervised examples with
is w = 4. Model training is halted using the early
stopping criterion.

Weight parameter of BERT are initialized to
the configuration of the pretrained SciBERT (Belt-
agy et al., 2019) checkpoint. Maximum sequence
length for a document is 384, longer documents are
truncated so that the question entities remain in the
document. Further hyperparameters to the BERT
model are a learning rate of 2e-5, the proportion
of warmup steps set to 0.1 and a weight decay of
0.01. Dropout probability for every weight in the
network is set to 0.1, we use one step for gradient
accumulation and a maximum norm of one before
we apply gradient clipping. Input parameters to the
AdamW optimizer use the default values of β1 =
0.9, β2 = 0.999 and ϵ = 1e-8.

B Transformation of BioNLP and EVEX
data

In Table 8, we report the mapping from EVEX and
BioNLP event types to our event types in BEEDS.

C Binding and Complex events

During our model development, we have also ex-
perimented with extracting protein complexes of
either two (question type complex pair) or three
participants (question type complex triple). The
number of gold knowledge base question answer

10https://indra.readthedocs.io/en/
latest/modules/statements.html

https://indra.readthedocs.io/en/latest/modules/statements.html
https://indra.readthedocs.io/en/latest/modules/statements.html
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EVEX/BioNLP event types BEEDS event types

REGULATION of (de-)phosphorylation Phosphorylation
REGULATION of (de-)acetylation Acetylation
REGULATION of (de-)ubiquitination Ubiquitination
REGULATION of gene expression,
transcription Expression
All REGULATIONs including above Regulation

Table 8: Mapping of EVEX/BioNLP event types to
our event types. REGULATION refers to one of the
four regulation types in EVEX: Catalysis, Regulation,
Positive Regulation and Negative Regulation.

pairs is much larger than for the other event types.
This is most likely due to the worse evidence for
protein complexes curated in the pathway knowl-
edge bases compared to the evidence of the other
question types as many complex relations are deter-
mined automatically by transitive nature between
separate protein complexes. A sample question
for complex pairs would be "What protein is in
complex with AKT-1?". A corresponding sample
question for complex triples would be "What pro-
tein is in complex with AKT-1 and AKT-2?".

Complex pair Questions Answers in KB Answers Recall

BEEDS 997 1,494 27,880 35.81
EVEX 938 1,378 56,426 33.03

KB Gold 1,074 4,171

Table 9: Single-turn question Complex pair.

Complex triple Questions Answers in KB Answers Recall

BEEDS 106 432 1,914 0.05
EVEX 1,334 630 4,818 0.07

KB Gold 20,453 832,875

Table 10: Multi-turn question Complex triple.

We report the results for the single-turn question
of complex pairs in Table 9 and for the multi-turn
question of complex triples in 10. As the number of
gold knowledge base question answer pairs is much
higher in these two question types, the resulting
recall values are much lower for both BEEDS and
EVEX. EVEX has access to whole PubMed during
prediction time, so the number of predictions is
much higher than in BEEDS which translates into
a larger recall value for both question types.
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