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Introduction

This year marks the 17th edition of the Workshop on Innovative Use of NLP for Building Educational
Applications. We received an impressive number of 66 submissions, from which we accepted 4 papers
as oral and 27 as poster presentations, for an overall acceptance rate of 47 percent. We in the Organizing
Committee were excited to see so many truly diverse and excellent submissions and selecting the ones
to be presented at the workshop was often a hard decision. The papers accepted were selected on the
basis of several factors, including the relevance to a core educational problem space, the novelty of the
approach or domain, and the strength of the research. As always, excellence in research was one of the
main factors considered. Each paper was reviewed by at least three members of the Program Committee
who we believed to be most appropriate for the paper. As in the previous years, we also continue to have
a strong policy to deal with conflicts of interest and double submission policy.

Being a long-running workshop, we are glad to see novel research and publications from the regular BEA
authors. At the same time, we are also very happy to welcome our new authors who are publishing their
work with BEA for the first time this year. We hope the new authors will become active members of the
BEA and the SIGEDU communities. We also hope that with our relatively high acceptance rate, we were
able to include a diverse set of papers on a variety of topics and from a wide set of institutions, which is
itself a clear indicator of the growing variety of research interests in the field of educational applications.

In addition to oral and poster presentation, BEA 2022 is hosting two invited talks: by Klinton Bicknell, a
staff research scientist at Duolingo, where he co-leads the Learning AI Lab, and by Alexandra I. Cristea,
Professor, Deputy Head, Director of Research and Head of the Artificial Intelligence in Human Systems
research group in the Department of Computer Science at Durham University. As in the previous years,
we are also hosting an ambassador paper talk from one of the sister societies from the International Al-
liance to Advance Learning in the Digital Era (IAALDE). This year, the talk will be given by James
Fiacco (Carnegie Mellon University) from the International Society of the Learning Sciences (ISLS).

This year, a number of authors released their data and code for the benefit of the educational community;
we list these resources below. The papers present a wide variety of approaches: from traditional NLP
and ML models to the state-of-the-art techniques applied to the educational applications. In addition, it
is exciting to see a variety of domains and applications addressed in this year’s papers – from language
learning to engineering and math education. Last but not least, this year’s submissions represent a wide
variety of applications developed for languages other than English. Three papers address applications
to German: Rietsche et al. introduce an automatic peer-to-peer feedback classification model; Weiss
and Meurers present a new state-of-the-art readability assessment model for German L2 readers; and
Laarmann-Quante et al. explore acceptability of spelling variants in free-text answers to listening com-
prehension prompts. In addition, Moner and Volodina introduce a synthetic error dataset for Swedish;
Chang et al. perform automatic short answer assessment on texts written in Finnish; while Reyes et
al. present a baseline readability model for Cebuano; and Ahumada et al. introduce a tool aimed at
supporting educational activities in Mapuzugun. It is exciting to see educational applications developed
for such a wide variety of languages, many of which are traditionally considered to be low resource, and
we hope to see even more publications addressing other languages in the coming years.

The BEA 2022 workshop has presentations on a variety of topics, including automated writing evalua-
tion, item generation, readability, discourse analysis, dialogue, annotation, speech, grammatical error
detection and correction, feedback, and multi-modal approaches.

Automated Writing Evaluation (AWE) and Grading: Four papers address this topic. Bexte et al.
introduce an architecture that efficiently learns a similarity model for content scoring and find that re-
sults on the standard ASAP dataset are on par with a BERT-based classification approach. Takano and
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Ichikawa present a BERT-based automated scoring model for short-answer questions that benefits from
pre-training on a large amount of general text data. Chang et al. investigate the grouping of short textual
answers, which is approached as a paraphrase identification task and evaluated on a dataset consisting of
textual answers from various disciplines written in Finnish. Jalota et al. discuss debiasing approaches to
mitigate the impact of an author’s L1 on automated CEFR classification.

Automated Item Generation (AIG): Four papers present various approaches to automated item gene-
ration. Zou et al. propose an unsupervised True / False Question Generation approach (TF-QG) that
automatically generates questions from a given passage for reading comprehension and show that this
approach can generate valuable testing items. Keim and Littman explore a novel approach that leverages
large language models to select inline challenges and automatically generate context cloze items that
discourage skipping during reading. Rathod et al. propose a new Multi-Question Generation task aimed
at generating multiple semantically similar but lexically diverse questions assessing the same concept in
reading comprehension and report preliminary results from sampling multiple questions from their mo-
del. Heck and Meurers present a tool that builds on a language-aware search engine that helps identify
suitable texts for readers and generates practice exercises from authentic texts.

Reading and Text Complexity: In addition to the papers that generate testing items for reading com-
prehension, three more focus on readability assessment models. Reyes et al. present the first baseline
readability model for the Cebuano language, the second most used native language in the Philippines
with about 27.5 million speakers. Weiss and Meurers present a new state-of-the-art sentence-wise rea-
dability assessment model for German L2 readers and make a number of insightful conclusions about
this model. Finally, North et al. investigate the performance of binary comparative Lexical Complexity
Prediction (LCP) models for complex word identification applied to CompLex 2.0 dataset that was used
in SemEval-2021 Task 1.

Discourse and dialogue: This year, a number of papers focused on various aspects of discourse analysis
in educational contexts and on dialogue and conversational systems. Among them, Suresh et al. investi-
gate the feasibility of using enriched contextual cues to improve model performance on the classification
of talk moves – discursive strategies used by teachers and students to facilitate conversations in classroo-
ms; they apply their models to the publicly available TalkMoves dataset and report new state of the art
over previously published results on this task. Alic et al. propose the task of computationally detecting
funneling and focusing questions in classroom discourse, create and release an annotated dataset of tea-
cher utterances, and introduce a range of approaches to differentiate between these questions. Ding et al.
explore the role of topic information in student essays from an argument mining perspective and show
that, given the same amount of training data, prompt-specific training performs better than cross-prompt
training. Fiacco et al. propose a state-of-the-art method for automated analysis of structure and flow of
writing and lay a foundation for a generalizable approach to automated writing feedback related to these
aspects. Ganesh et al. introduce a new task called response construct tagging (RCT), in which student re-
sponses to tailored survey questions are automatically tagged for six constructs measuring transformative
experiences and engineering identity of students. Finally, Tyen et al. make an initial foray into adapting
open-domain dialogue generation for second language learning, propose and implement decoding strate-
gies that can adjust the difficulty level of the chatbot according to the learner’s needs, and evaluate these
strategies using judgements from human examiners trained in language education.

Speech: Speech processing and assessment, as usual, are very popular topics at BEA. This year, we have
six presentations in these areas. Kwako et al. investigate potential biases of transformer-based models
for automated English speech assessment and report that no statistically significant difference that can
be related to biases was found in their preliminary experiments. Chen et al. report on their first effort of
using deep learning to evaluate L2 learners’ reduced form pronunciations, which are useful in training
ASR applications. Laarmann-Quante et al. present a corpus study in which they analyze human accep-
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tability decisions in a high stakes listening test for German; they show that spelling variants are harder to
score consistently than other answer variants and examine how the decision can be operationalized using
features that could be applied by an automatic scoring system. Skidmore and Moore explore the applica-
tion of laughter as a feature for incremental disfluency detection in spoken learner English and show that,
combined with silence, these features reduce the impact of learner errors on model precision and lead to
an overall improvement of model performance. Kyle et al. introduce and release a dependency treebank
of spoken L2 English that is annotated with part of speech (Penn POS) tags and syntactic dependencies
(Universal Dependencies) and then evaluate the impact of this treebank on training models for POS and
UD annotation tasks. The work by Dutta et al. explores the fusion of conversational speech and real-time
location in the context of cognitive development in children and provides preliminary evidence that the
use of speech technology in educational settings supports early childhood intervention.

Grammatical Error Detection (GED) and Correction (GEC): Remarkably, two more papers at BEA
are at the intersection of speech and grammatical error correction. Specifically, the work by Lu et al.
focuses on the assessment and development of spoken grammatical error correction (SGEC) systems
and discusses evaluation metrics, the problem of error propagation in cascaded approaches, and the im-
portance of accurate feedback for learners. In the same vein, Bannò and Matassoni address the task of
automatically predicting proficiency scores for spoken test responses of English as a second language
learners by training models on written data and using the presence of grammatical errors as a feature;
they investigate the impact of the feature extractor on spoken proficiency assessment and conclude that
their approach can be beneficial for assessing spoken language proficiency.

Feedback: The topic of feedback generation in learning environments also attracted a lot of attention
this year. For intstance, Jia et al. present a new paradigm, which they call incremental zero-shot lear-
ning (IZSL), to tackle the problem of lacking sufficient historical data for the task of peer assessment,
which is an effective pedagogical strategy for delivering feedback to learners. Rietsche et al. present
an automatic classification model to measure sentence specificity in written peer-to-peer feedback; they
train and test their models on student feedback texts written in German, and their results suggest that
specificity of feedback sentences weakly correlates with perceptions of helpfulness. Wambsganss et al.
present a novel tool to support and engage English language learners with feedback on the quality of their
argument structures, which automatically detects claim-premise structures and provides visual feedback
to learners to prompt them to repair any broken argumentation structures.

Annotation: Moner and Volodina generate a synthetic error dataset for Swedish by replicating errors
observed in the authentic error-annotated dataset.

Multi-modal approaches: Loginova and Benoit propose an adaptation of NLP techniques from the field
of machine comprehension to the area of mathematical educational data mining; they show that incorpo-
rating syntactic information can improve performance in predicting exercise difficulty.

Resources: Reyes et al. open-source the code and data used to develop the baseline readability mo-
del for the Cebuano language. The language tool presented by Ahumada et al. for Mapuzugun is also
publicly available through an online interface in both Mapuzugun and Spanish. Tyen et al. release the
code and demo of their controllable complexity chatbot. Moner and Volodina release for public use fa-
keDaLAJ (S-FinV), synthetic error dataset generated using error labels based on linguistic analysis of
real-life error-annotated learner data. Kyle et al. make their SL2E Treebank publicly available for non-
commercial purposes. Rietsche et al. release both code and annotated data used for their peer-to-peer
feedback evaluation model. Bexte et al. make their code for the S-BERT similarity-based content sco-
ring publicly available. Ding et al. release their code and clustering results for argument identification in
student writing. Rathod et al. release the code for their Multi-Question Generation model for reading
comprehension. Annotated data and code for distinguishing between funneling and focusing questions
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is also released by Alic et al. Finally, Ganesh et al. release the data, code and models for the Response
Construct Tagging task.

To conclude, we would like to thank everyone who showed interest and submitted a paper this year – all
of the authors for their contributions, the members of the Program Committee for their valuable feedback
and thoughtful reviews, and everyone who is attending the workshop. We hope to see many of you at the
workshop, both remotely and in person in Seattle.

Ekaterina Kochmar, University of Bath
Jill Burstein, Duolingo
Andrea Horbach, FernUniversität in Hagen
Ronja Laarmann-Quante, FernUniversität in Hagen
Nitin Madnani, Educational Testing Service
Anaïs Tack, Stanford University
Victoria Yaneva, National Board of Medical Examiners
Zheng Yuan, King’s College London
Torsten Zesch, FernUniversität in Hagen
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Keynote Talk: ML and NLP for Language Learning at Scale
Klinton Bicknell

Duolingo

Abstract: As scalable learning technologies become ubiquitous, it generates a large amount of student
data, which can be used with machine learning and NLP to develop new instructional technologies, such
as personalized practice schedules and adaptive lessons. Additionally, machine learning and NLP are
uniquely poised to solve the problems inherent in scaling language instruction to a large number of lan-
guages and courses. In this talk, I will describe several projects illustrating these two uses of ML and
NLP in language learning at scale at Duolingo – the world’s largest language education platform with
over 100 courses and around 40 million monthly active learners.

Keynote Talk: Aspects of Learning Analytics
Alexandra I. Cristea

Durham University

Abstract: My favourite definition of Learning Analytics (LA) is Eric Duval’s: LA means “collecting
traces that learners leave behind and using those traces to improve learning.”, and I’ll tell you more about
why during my talk. Whilst the term LA was coined relatively recently (2011), it is a growing area of
interest, with immediate practical application, albeit a growing research area at the same time, bringing
together many classic as well as cutting edge methodologies, such as statistics, data mining, machine
learning (including deep learning), network analysis and visualisation. This talk will bring together an
understanding of LA as an emerging discipline and research area, as well as new research directions
in LA, such as applications in gamification, explainable AI, predicting certification of students, urgent
instructor intervention (where we do use a bit of NLP), and further predict the development and maturity
of this area as a whole.

Keynote Talk: Taking Transactivity to the Next Level
James Fiacco

Carnegie Mellon University, USA

Ambassador paper presentation from the 2021 Annual Meeting of the ISLS (International Society of the Learning
Sciences), a member society of the IAALDE (International Alliance to Advance Learning in the Digital Era)

Abstract: Transactivity is a valued collaborative process, which has been associated with elevated lear-
ning gains, collaborative product quality, and knowledge transfer within teams. Dynamic forms of col-
laboration support have made use of real time monitoring of transactivity, and automation of its analysis
has been affirmed as valuable to the field. Early models were able to achieve high reliability within re-
stricted domains. More recent approaches have achieved a level of generality across learning domains.
In this study, we investigate generalizability of models developed primarily in computer science courses
to a new student population, namely, masters students in a leadership course, where we observe stri-
kingly different patterns of transactive exchange than in prior studies. This difference prompted both a
reformulation of the coding standards and innovation in the modeling approach, both of which we report
on here.
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Abstract

Recent advances in natural language processing
and transformer-based models have made it eas-
ier to implement accurate, automated English
speech assessments. Yet, without careful exam-
ination, applications of these models may ex-
acerbate social prejudices based on gender and
race. This study addresses the need to exam-
ine potential biases of transformer-based mod-
els in the context of automated English speech
assessment. For this purpose, we developed
a BERT-based automated speech assessment
system and investigated gender and racial bias
of examinees’ automated scores. Gender and
racial bias was measured by examining differ-
ential item functioning (DIF) using an item re-
sponse theory framework. Preliminary results,
which focused on a single verbal-response item,
showed no statistically significant DIF based
on gender or race for automated scores.

1 Introduction

Automated speech assessment systems have be-
come prominent at the K-12 and post-secondary
levels (Collier and Huang, 2020; Educational Test-
ing Service, 2005). Scores produced by automated
systems are used for high stakes decisions, such
as allocating public funds and determining univer-
sity admissions decisions. Compared to human
raters, automated assessments may be more effi-
cient and affordable (Evanini et al., 2017), and they
may improve reliability (Zechner, 2020). Yet auto-
mated assessments have a unique set of challenges
(Williamson et al., 2012), and it is important that

test developers and researchers continue to improve
the overall enterprise of automated speech assess-
ment.

Researchers have recently begun applying
transformer-based models (Devlin et al., 2018) to
English speech assessment. Largely, these research
efforts have been directed towards improving the
accuracy of automated scoring systems. For in-
stance, Ormerod et al. (2021) has conducted re-
search on BERT-based methods in automated essay
scoring. In English speech assessment, Wang et al.
(2021) compared the performance of BERT and
XLNet for the purpose of scoring examinees’ tran-
scribed responses. Results have demonstrated that
transformer-based models are highly accurate and
correlate strongly with human ratings.

Although transformer-based models can produce
accurate scores, less attention has been devoted to
examining the biases of these models. In the field
of English speech assessment, no such analyses
have been conducted to date. In the broader field
of natural language processing (NLP), research has
demonstrated that transformer-based models can
propagate and, in some cases, exacerbate gender
and racial prejudice (e.g. Zhao et al., 2017; Kir-
itchenko and Mohammad, 2018). Biased scoring
models certainly have the potential to cause allo-
cational harms (Blodgett et al., 2020), underscor-
ing the importance of conducting detailed analysis
prior to implementation.

Beyond text modeling, there are additional
sources of potential bias in audio processing. Au-
dio speech recognition (ASR), in particular, may be
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less accurate for certain language-minority groups
(e.g. Koenecke et al., 2020). Less accurate tran-
scripts, in turn, could lead to biased scores.

There are multiple ways to measure bias, and the
most appropriate method varies depending on the
specific research context. Most techniques, how-
ever, are similar in that they deteremine the ex-
tent to which language modeling outputs—whether
word embeddings (e.g. Dev et al., 2020) or infer-
ences (e.g. Zhang et al., 2020)—conform to pro-
stereotype expectations. This study takes a similar
overall approach, but is unique in using measure-
ment tools from educational assessment.

This study examines a type of bias known as
differential item function (DIF), which is defined
as the systematic difference (in scores) between
a reference group and a focal (minority) group,
while controlling for overall proficiency (Angoff,
1993). Although bias and fairness are conceptually
distinct in educational testing, detection of DIF may
provide evidence for a larger claim about fairness
for certain groups of examinees (Camilli, 2006).
Although analysis of DIF is common in educational
assessment, it has not been applied to studies of
bias in NLP.

In order to detect DIF, we use the Improved Wald
Test, which is rooted in item response theory (IRT)
(Cai, 2012). There are a variety of methods used
to detect DIF but, in general, IRT tends to offer
the most statistical power (Osterlind and Everson,
2009). The Improved Wald Test, in particular, has
gained widespread adoption because it is sensitive
to small group differences, holding constant exami-
nees’ overall proficiency (Woods et al., 2013).

The research design of this study involves three
principal components: (1) constructing an ASR
system, (2) training a transformer-based scoring
model, and (3) investigating potential gender and
racial bias based on these automated scores. Our
analyses focus on a single speaking item. Although
we found no statistically significant result in the
automated scores for this item, analyses will soon
be expanded to a larger pool of items and multiple
grade bands which may be more susceptible to
automated scoring bias.

2 Methods

Below, we describe the key methodological aspects
of the research project. These include (1) the source
of data used in analyses, (2) the design and develop-
ment of our automated English speech assessment

system, and (3) the statistical techniques used to
measure gender and racial bias.

2.1 Data
This study draws on data from the English Lan-
guage Proficiency Assessment for the Twenty-First
Century (ELPA21), a collaborative of 7 state ed-
ucation agencies in the United States (Huang and
Flores, 2018). Approval for this research project
was granted by the consortium and the a university
institutional review board. Confidentiality agree-
ments and ethical considerations prevent sharing
test items or student-level data publicly.

For test items in the speaking domain, students
speak into a microphone, and their responses are
recorded and subsequently sent to a third party
to be scored. Currently, all verbal responses are
scored by human raters.

For this study, we selected a single speaking
item that was administered to students in grade
2-3. This particular item elicited responses that
were short in duration (median response length =
4.8 seconds). Responses were scored 0, 1, or 2,
with the highest score being given to examinees
who correctly answered the question, even if small
grammatical mistakes were made. A score of 0
indicated that the question was not addressed at all.

Home language was used as an indicator of race
because it afforded several advantages. First, it was
more fine-grained, i.e., included more categories,
than the alternative indicator of race. Second, it
was more related to examinees’ speech, which was
a focal point of the study. Home language does
not necessarily indicate cultural identity, however,
or native language. Respondents whose home lan-
guage had fewer than 200 responses were removed
from analysis.

2.2 Automated Speech Assessment
Chen et al. (2018) enumerate four components of
automated speaking assessment systems. These
include (1) an automated speech recognition (ASR)
system, which includes speech-to-text transcrip-
tion, (2) the extraction of linguistic features from
audio and text data, (3) a filter model to remove
non-scorable responses, and (4) a scoring model
to combine linguistic features into a single score.
Below, we discuss each of these components in
turn.
ASR System We compared the performance of
several ASR systems, based on both accuracy and
efficiency (see Appendix A for details). Ultimately,
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n %
GENDER

Male 4, 988 52.5
Female 4, 517 47.5

LANGUAGE

Spanish 6, 881 72.4
Russian 858 9.0
Vietnamese 440 4.6
Chinese 420 4.4
Ukrainian 381 4.0
Arabic 321 3.4
Persian 204 2.1

Table 1: Descriptive Statistics of the Sample

we opted to use Google’s speech-to-text service to
generate text transcripts from examinees’ speech.
Of the 10, 147 total responses, Google produced
9, 505 non-blank transcripts, all of which were in-
cluded in analyses. Descriptive statistics of the sam-
ple, disaggregated by gender and home-language,
are presented in Table 1.

To assess Google’s transcription accuracy for
young, non-native speakers, we sampled 100 re-
sponses, listened to examinees’ audio recordings,
and manually transcribed them. Treating our own
annotations as ground truth, we measured the
word error rate (WER) of the Google-generated
transcripts. We determined the average WER to
be 22.3%—close to human parity for non-native
speech, which typically ranges from 15-20% (Zech-
ner, 2009).
Feature Extraction Linguistic features were not
manually specified, but were embedded latently in
the BERT scoring model.
Filtering Blank transcripts were not included in
model training or analysis of bias. In some cases,
blank transcripts were the result of silent audio files;
in other cases, however, Google returned blank tran-
scripts when it failed to detect speech (e.g. when
examinees whispered into the microphone). 642
blank transcripts were removed from analyses.
Scoring Model We compared BERT and RoBERTa
as two potential scoring models. Selection of the
scoring model was based on the accuracy of mod-
els’ predictions of examinees’ scores on the test
dataset. Because the particular speaking item that
we studied was imbalanced (e.g., 76.6% of re-
sponses were scored a 2), we chose to use a cross-
entropy loss function, weighted inversely to the
marginal frequency of the scores. Scoring models

were trained for 10 epochs. Batch size, dropout
ratio, and learning rate were set to 128, 0.1 and
2 · 10−5, respectively. Data were split 80%/20%
for training and testing sets.

Averaged across 3 random seeds, the most ac-
curate model was the BERT model. Test set ac-
curacy for BERT was 88.85%, marginally higher
than RoBERTa. Figure 1 presents the confusion
matrix of true and predicted scores using the above
scoring model for the test dataset. Details regard-
ing the series of experiments to optimize model
performance may be found in Appendix B.

Figure 1: BERT Confusion Matrix.

The automated scoring model was found to be
slightly more consistent than human raters. The
Spearman Correlation Coefficient among human
raters was calculated to be ρ = 0.81 (based on
n = 1, 929 doubly-scored responses). By com-
parison, the Spearman Correlation Coefficient of 2
BERT models, whose starting values and test-train
splits were determined by 2 different random seeds,
was found to be ρ = 0.88 (based on all 9, 505
responses).

2.3 Measurement of Bias

To measure bias, we used the Improved Wald Test
to examine differential item functioning (DIF) us-
ing an item response theory (IRT) framework (Cai,
2012; Woods et al., 2013). In IRT, the Wald Test is
used to measure and compare differences in item
parameters between two groups of examinees. For
the particular test item examined in this paper, IRT
parameters included one discrimination parameter,
a, and two item difficulty parameters, b. The dis-
crimination parameter captures the variability of
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scores, whereas the item difficult parameters cap-
ture how difficult the item is (in this case, how diffi-
cult it is for examinees to receive a score of 1 or 2).
See Cai et al. (2016) for a review of the Graded 2PL
model, which was used to model this item. When
weighted by the inverse of the variance-covariance
matrix, the difference in a (or b) is asymptotically
distributed as χ2.

If there is a statistically significant difference
between groups’ item parameters based on χ2

values, this may indicate that scores are biased
against certain groups of examinees, holding
constant examinees’ proficiency (Holland et al.,
1993; Osterlind and Everson, 2009). In mathe-
matical notation, DIF is present (i.e. bias against
examinees is present) if and only if

P (correct response|θ, g = 0) >
P (correct response|θ, g = 1),

where g = 0 refers to the reference group, g = 1
refers to the focal group, and θ is overall profi-
ciency. For multiple-group comparisons, multiple
pairs are tested separately against the same refer-
ence group.

To take an example, if the automated system was
excessively harsh toward female examinees, we
would see higher b for female examinees (as com-
pared to male examinees). If the automated system
was less reliable for female examinees, then we
would see higher a (as compared to male exami-
nees). Since these scaled differences are distributed
as χ2, we can calculate observed p-values for each
comparison.

The false discovery rate of multiple comparisons
was controlled using the Benjamini-Hochberg tech-
nique (Benjamini and Hochberg, 1995), which has
been shown to limit Type 1 errors to the nomi-
nal level while also maximizing statistical power
(Williams et al., 1999). This approach is common
in analysis of DIF using IRT (Edwards and Edelen,
2009).

3 Results

Table 2 shows the results of DIF for automated
scores of one speaking item, based on gender and
race differences. Reference groups were "Male"
and "Spanish" as these were the two majority
groups for gender and race, respectively. Results
were originally ordered in decreasing value of p-
observed (pobs.), as required by the Benjamini-

Hochberg adjustment; however, for ease of inter-
pretation, rows have been rearranged. In no com-
parison was pobs. found to be lower than p-critical
(pcrit.), which indicates that none of the compar-
isons were statistically significant.

Two Wald Tests were conducted for each DIF
comparison: one to test the significance of the dis-
crimination parameter, a, and the other to test the
significance of the difficulty parameters, b. b is
written in bold to indicate that it is a vector of diffi-
culty parameters. There are two degrees of freedom
for tests of differences of b, corresponding to the
two difficulty parameters. Observed p-values were
calculated based on χ2 and df .

Critical p-values were determined a-priori using
the Benjamini-Hochberg adjustment. Although not
shown, p-values would have been significant if any
pobs. had been lower than its corresponding pcrit..
Although not presented here, there were also no
significant differences found in human-rated scores,
based on gender or race.

4 Conclusion and Next Steps

Transformer-based models have gained widespread
attention due to their highly accurate predictions
and correlations with human ratings, yet it is im-
portant that issues of fairness be addressed con-
currently. Our study constitutes a step forward in
automated English speech assessment by examin-
ing bias in BERT-based scoring models. Our study
also demonstrates how item response theory can be
used to identify differential item functioning (DIF)
in the context of automated scoring—a practice that
is common in educational assessment, yet uncom-
mon in the field of natural language processing.

Although our analysis did not find any gender
or race DIF in automated scores produced by our
BERT-based model, we refrain from drawing gen-
eral conclusions about the bias of such models for
English speech assessment. In this instance, we
found no evidence of bias, yet it is possible that
such biases are more prominent in lengthier speak-
ing items, for older groups of examinees, or for
different language minorities. Indeed, based on
research of implicit bias (Spencer et al., 2016), we
might expect more bias in lengthier items or for
older students. The next step of our research project
is to take up these challenges by expanding DIF
analyses to different types of speaking items, mul-
tiple age groups, and respondents with different
home-languages.

4



Attribute Ref. Group Focal Group Parameter χ2 df pobs. pcrit.

Gender Male Female a 0.0 1 0.8438 0.0232
b 4.4 2 0.1082 0.0107

Language Spanish Persian a 0.0 1 0.9500 0.0250
b 9.1 2 0.0104 0.0036

Ukrainian a 4.9 1 0.0262 0.0071
b 1.4 2 0.5055 0.0214

Arabic a 5.1 1 0.0241 0.0054
b 2.2 2 0.3396 0.0196

Vietnamese a 1.0 1 0.3186 0.0179
b 11.9 2 0.0025 0.0018

Chinese a 2.0 1 0.1555 0.0125
b 2.8 2 0.2523 0.0161

Russian a 1.8 1 0.1747 0.0143
b 6.8 2 0.0327 0.0089

Table 2: Differential Item Functioning of Automated Scores by Gender and Language

In addition to expanding the scope of the cur-
rent analysis, next steps also include experimenting
with a wider variety of transformer-based models
and ASR systems. Incorporating audio data into the
scoring model, for instance, may improve accuracy
yet also change the behavior of the automated scor-
ing system. If biases are detected, then there will be
further opportunities to explore sources of bias and
to apply debiasing techniques that have been devel-
oped for other applications of transformer-based
models (Sun et al., 2019).
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A ASR Systems Comparison

We explored two different approaches to the au-
tomated speech recognition (ASR) task. First,
we looked into publicly-accessible transcribing
services provided by Cloud computing platforms.
Specifically, we tried services provided by Ama-
zon Web Service (AWS) and Google Cloud Plat-
form (GCP). Second, we considered implementing
our own ASR system, trained on our own audio
data. We experimented with the Librispeech ASR
Chain 1d model, a pre-trained Factorized Deep Ten-
sor Neural Network (DTNN-F)-based chain model
specifically targeting speech recognition tasks pro-
vided by Kaldi, an open-source speech recognition
toolkit for speech recognition and signal processing
tasks (Povey et al., 2011). Based on accuracy and
speed of transcription, we opted to use Google’s
speech-to-text service to generate text transcripts
based on examinees’ speech.
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B Scoring Model Optimization

We divided cleaned data into train and test datasets
with proportions of 0.8 and 0.2 using sickit-learn’s
train-test split function for training and evaluating
the NLP model. In order to get a better sense of the
generality of model performance, we experimented
with three different random seeds—0, 1, and 2.

We trained uncased, medium-sized BERT and
RoBERT models for 10 epochs with three different
random seeds during the training process. Hyperpa-
rameters batch size, dropout ratio and learning rate
were set to 128, 0.1 and 2 ·10−05, respectively. Ac-
curacy on test set and training loss were averaged
across the 3 different random seeds.

Model
Name

Seed Test Acc
(%)

Train
Loss

BERT 0 89.58 7.77
1 88.74 9.47
2 88.22 7.76
Average 88.85 8.33

RoBERTa 0 88.69 10.24
1 88.80 11.58
2 88.22 10.47
Average 88.57 10.76

Table 3: Model Performance on Score-stratified Dataset
Split with Seed 0

According to Table 3, BERT performed
(marginally) better than RoBERTa on both test
accuracy and training loss. Overall accuracy of
BERT, averaged across 3 different random seeds,
was found to be 88.85% with training loss of 8.33
(compared to 88.17% and 12.42 for RoBERTa).

Therefore, we choose to use the uncased BERT
base model for scoring examinees’ transcripts in
further experiments.
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Abstract 

Automated scoring technology for short-

answer questions has been attracting 

attention to improve the fairness of scoring 

and reduce the burden on the scorer. In 

general, a large amount of data is required 

to train an automated scoring model. The 

training data consists of the answer texts 

and the scoring data assigned to them. It 

may also include annotations indicating 

key word sequences. Many previous 

studies have created models with large 

amounts of training data specific to each 

question. This paper aims to achieve 

equivalent performance with less training 

data by utilizing a BERT model that has 

been pre-trained on a large amount of 

general text data not necessarily related to 

short answer questions. On the RIKEN 

dataset, the proposed method reduces the 

training data from the 800 data required in 

the past to about 400 data, and still achieves 

scoring accuracy comparable to that of 

humans. Annotating 400 data is still costly, 

but it is beneficial to reduce the number of 

data needed. 

1 Introduction 

Automatic short answer scoring (SAS) system 

using natural language processing technology has 

several advantages, such as the immediate return 

of scoring results and the ability to submit answers 

from any location over networks. To realize such 

interactive learning, a lot of research has been 

done on ASAP-SAS data. Assuming amount of 

scored short answers are available as training data, 

semantic similarity (Sultan et al. 2016) or machine 

learning (Zhao et al. 2017) is used for the score 

prediction. Also, as an attempt using deep learning, 

CNN and LSTM have been configured on top of 

word embedding to predict the holistic score 

directly (Riordan et al. 2017; Taghipour et al. 

2016).   

Unfortunately, predicting holistic scores directly 

from word sequences is not very promising 

because there are too big a leap between words and 

scores. With this background, RIKEN Center for 

AIP provided SAS dataset with analytic scores and 

annotations (justification cues) as well as holistic 

scores in public to help with research activities. 

The dataset includes sample responses from 2,100 

students for each of the six readings 

comprehension test prompts (RIKEN 2020).  

RIKEN Center also developed automatic scoring 

technology using deep learning for the dataset. 

Mizumoto et al. proposed a bidirectional LSTM 

model integrating a supervised attention 

mechanism estimating the justification cue for 

scoring (Mizumoto et al. 2019). The model was 

evaluated with various sizes of training data. It is 

reported that approximately 800 training data per 

question are needed to achieve the same accuracy 

as humans. However, we know it is difficult to 

prepare 800 training data manually in actual 

schools. 

Therefore, we consider using BERT model 

(Devlin et al. 2019) pre-trained with a large amount 

of general text not necessarily related to short 

answer questions, so to reduce the amount of 

specific training data required. Several research 

institutes provide pre-trained BERT models. They 

are well-trained with huge general corpus and 

supposed to be fine-tuned with small amount of 

specific corpus. 

Instead of using supervised attention in 

Mizumoto et al. 2019, this study uses BERT to 

annotate word sequences as the justification cues. 

The justification identification model is created by 

fine-tuning one of the pre-trained BERT models 

with a specific data set.  

Automatic scoring of short answers using justification cues 

estimated by BERT 
 

Shunya Takano, Osamu Ichikawa 

Faculty of Data Science, Shiga University 

Hikone, Japan 
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2 RIKEN dataset for short answer 

assessment 

Our study compares the performance and the 

required data size with the previous method by 

Mizumoto et al. 2019. Therefore, the same RIKEN 

dataset was used. This data was obtained by 

annotating and scoring the answers to Japanese 

writing questions in the mock examinations for 

high school students conducted by Yoyogi Seminar 

from 2014 to 2015 according to a predefined rubric. 

Answers are approximately 50 to 70 characters 

long (in Japanese). As shown in Figure 1, each 

answer is annotated with a "1" for words that 

contribute to the score and a "0" for words that do 

not. The overall score is calculated as the sum of 

the individual scores. In the example shown in 

Figure 1, there are four analytic criteria, A, B, C, 

and D, and annotations are assigned to each of 

them. Each item is then scored using this 

annotation as a justification cue. The overall score 

is calculated by summing the item scores and 

subtracting points for spelling errors and bad 

sentence endings etc. 

3 Proposed Method 

3.1 Justification prediction 

The RIKEN dataset includes justification cues 

(annotations) indicating the words in the answer 

text that support each of the analytic criteria, such 

as A, B, C, and D in Figure 1. Justification cues 

were integrated in the scoring model as supervised 

attention in the previous method (Mizumoto et al. 

2019). As our approach uses them to select 

embedding vectors, they must be explicitly 

predicted by a separate model. 

Figure 2 shows our proposed justification 

prediction model.  The pre-trained BERT model is 

fine-tuned with the answer text as input, and the 

"0" and "1" annotations as teacher signal. In this 

figure, taking scoring criterion B as an example, 

"1" annotations are output for words that support B. 

Note that prompt phrases are not used to predict 

annotations. The performance of the justification 

identification model solely depends on the quality 

of the annotated answer text used for training. 

3.2 Analytic score and holistic scores 

predictions 

Figure 3 shows the proposed model. First, the 

answer is divided into units of strings called tokens, 

which are converted into IDs and passed through 

the pre-trained BERT model. The tokens are then 

converted into 768-dimensional embedding 

vectors. It should be noted that the embedding 

vector of BERT is context-aware unlike the one of 

Word2Vec and etc. This is one of the advantages of 

using BERT. For each scoring criterion, we collect 

the embedding vectors of the word tokens that are 

annotated with "1", which indicating these words 

 
Figure 1: Example of data in Riken dataset 

(Translated from Japanese). Note this study does not 

consider point deductions based on the "error" 

criterion. 

 

 
Figure. 2:  Image of the justification identification 

model. 

 

 
Figure 3:  Image of the score prediction model. 
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support the analytic criteria. A new 768-

dimensional vector is generated by taking the 

maximum value for each dimension of the 

collected vectors. Using the vectors as features, 

analytic scores for each item are predicted by the 

respective LightGBM model trained on the same 

data used in the justification identification model. 

If the annotations are all "0", the score for the 

corresponding item is set to 0 because there is no 

vector to feed the score prediction model.  Finally, 

the holistic score is calculated by summing up all 

the item scores.  

4 Experiments 

The following experiments were conducted to 

evaluate the performance of the proposed method. 

Our experiments used the Japanese pre-trained 

BERT model published by the Inui-Suzuki 

Laboratory at Tohoku University (Inui Laboratory 

2021). 

4.1 Settings 

RIKEN Dataset for short answer assessment was 

used for the experiments. As in the previous study 

(Mizumoto et al. 2019), we used 6 out of 9 test 

prompts. They are denoted by Q1 through Q6 in 

the tables in this paper. There are 2100 answer 

sheets for each prompt. The holistic score was 

calculated by summing up all the item scores. In 

this study, deduction for errors of misspellings, 

omissions, sentence endings etc. was not 

considered. 

 To evaluate the performance of the models, we 

created several test cases with different sizes of 

training data such as 100, 200, 400, 800 and 1600. 

For example, in 100-training case, 100 answers 

were used as training data and the remaining 2000 

answers as test data. Similarly, in 400-training case, 

400 answers were used as training data and the 

remaining 1700 answers as test data. Each case 

consisted of five sets of training data selected to 

have as little overlap as possible  between the sets, 

and performance was measured by the average of 

the five sets. 

4.2 (Preliminary Experiment) Automatic 

scoring with / without correct 

justification cues 

To investigate the upper bound of the performance 

of the score prediction model shown in Section 3.2, 

we predict the item score and holistic scores with 

using the correct justification cues given by the 

dataset. Also, we investigated the lower bound 

without using any justification cues. Quadratic 

Weighted Kappa (QWK)1 (Cohen 1960) was used 

as evaluation metrics for the holistic score, and the 

mean values calculated on the five sets are shown 

in Table 1 and Table 2. Table 1 also shows the 

human scoring accuracy in QWK, which was 

reported in Mizumoto et al. 2019.  

1 Quadratic Weighted Kappa (QWK) is an evaluation 

metric for multi-class classification. It takes a value from 0 

to 1, with a higher value indicating a better fit of the 

prediction. In this study, we convert the predicted overall 

scores into integers by rounding off fractions and treat the 

integer scores as classes for QWK. 

 Q1 Q2 Q3 Q4 Q5 Q6 

100 train  0.97 0.96  0.91  0.89  0.93  0.94  

200 train 0.98 0.97 0.94 0.91 0.95 0.96 

400 train 0.98  0.98  0.95  0.93  0.96  0.96  

800 train 0.99 0.98 0.96 0.94 0.96 0.97 

1600 train 0.99  0.98  0.95  0.95 0.97  0.97  

Human 0.96 0.94 0.76 0.84 0.82 0.90 

Table 1: QWK with correct justification cue given. 

 
 Q1 Q2 Q3 Q4 Q5 Q6 

100 train  0.77  0.59  0.31  0.61  0.65  0.63  

200 train 0.81 0.71 0.38 0.66 0.70 0.70 

400 train 0.85  0.77  0.44  0.71  0.74  0.74  

800 train 0.87 0.82 0.47 0.73 0.77 0.77 

1600 train 0.90  0.84 0.53 0.75  0.79  0.79  

Table 2: QWK without using justification cue. 

 Precision Recall F-measure 

Current 0.848 0.895 0.866 

Mizumoto 0.837 0.703 0.758 

Table 3:  Performance of justification identification 

(100 training data case) 

 

100 train Q1 Q2 Q3 Q4 Q5 Q6 

Analytic 

criteria 

A 0.970 0.928 0.867 0.936 0.839 0.809 

B 0.912 0.914 0.840 0.859 0.883 0.891 

C 0.937 0.973 0.746 0.885 0.954 0.819 

D 0.922 0.844 0.468 ― ― ― 

Table 4: F-measure of annotation (100 train). 

 

400 train Q1 Q2 Q3 Q4 Q5 Q6 

Analytic 

criteria 

A 0.982 0.954 0.902 0.965 0.869 0.910 

B 0.940 0.949 0.890 0.872 0.896 0.923 

C 0.956 0.980 0.820 0.910 0.960 0.853 

D 0.942 0.869 0.724 ― ― ― 

Table 5: F-measure of annotation (400 train). 
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4.3 (Experiment 1) Justification 

identification 

We evaluated the performance of the justification 

identification model shown in Section 3.1. 

Although Figure 2 shows only scoring criterion B, 

we trained 21 BERT models to predict the 

annotations for all analytic criteria for each test 

prompt. 

The BERT models were prepared by fine-tuning 

the pre-trained BERT models with the number of 

epochs set to 10, batch size set to 16, optimization 

algorithm set to Adam, and loss function set to 

cross-entropy function. 

Table 3 outlines the performance of justification 

identification for the case of 100-training data. It 

also shows the supervised attention case reported 

in Mizumoto et al. 2019 which also reports 100-

training data case. Table 4 and Table 5 provide  

breakdowns of all analytic criteria in the 100-

training case and the 400-training case. Please note 

each of the six test prompts, from Q1 to Q6, has its 

own analytic criteria from A to D (or C). 

4.4 (Experiment 2) Automatic scoring using 

automatically predicted justification 

cues 

We evaluated the performance by combining both 

models shown in Section 3. The justification cues 

were predicted by the model shown in Section 3.1, 

and the item and holistic scores were predicted by 

the model shown in Section 3.2, using the 

predicted justification cues and embedding vectors. 

QWK was used as evaluation metrics, and the 

mean values2 of the five sets of the metric are 

shown in Table 6. 

4.5 Discussion of the experimental results 

As shown in Table 1, given the correct justification 

cues, the accuracy in QWK of automatic scoring 

by the proposed model is much higher than human 

scoring for all questions, even when using only 100 

training data. On the other hand, accuracy was poor 

when justification cues were not used. This 

indicates that justification cues are critically 

important in SAS, especially in our model 

proposed in Section 3.2. 

With respect to the accuracy of justification 

identification, Table 3 shows that our fine-tuned 

BERT model can identify cues much better than the 

supervised attention model reported in Mizumoto 

et al. 2019. Table 5 provides the details in F-

measure in 400-training data case. The BERT 

model worked well, with high accuracy on most 

items. One exception is criterion D of Q3, which 

concerns human emotions such as "frustration" and 

"distress", unlike the other analytic criteria. Even 

BERT may not be able to properly translate human 

emotions into numeric vectors. 

The performance of our proposed method 

integrating the two models is shown in Table 6. 

With 400 training data, the QWK values are quite 

close to human scoring. This means our 

justification identification model successfully 

selected the BERT embedding vectors that form 

the input to the analytic scoring model of 

LightGBM. However, comparing Table 6 and 

Table 1, the upper bound results using given 

correct justification cues are still much better. This 

suggests further refinement in justification 

identification model would be desirable in the 

future. 

Table 7 summarizes the experimental results for 

various sizes of training data. Given the correct 

justification cues, the performance degradation 

when training data is small is very small. As the 

proposed method improved cue prediction, it 

performed better than the comparative method 

(Mizumoto et al. 2019), especially when training 

data was small, such as 100 or 200 training data. 

2 The values have been updated since our last report in 

domestic meeting of FIT 2021, due to the calculation errors. 

Also, we found increasing epochs from 3 to 10 in fine-

tuning of BERT significantly improved the accuracy of 

justification cue prediction. 

 Q1 Q2 Q3 Q4 Q5 Q6 

100 train 0.94 0.88 0.65 0.80 0.82 0.83 

200 train 0.96 0.91 0.74 0.83 0.85 0.87 

400 train 0.97 0.92 0.77 0.85 0.86 0.89 

800 train 0.97 0.95 0.80 0.87 0.88 0.91 

1600 train 0.98 0.95 0.83 0.88 0.88 0.92 

Human 0.96 0.94 0.76 0.84 0.82 0.90 

Table 6: QWK with predicted justification cue. 

 
 100 200 400 800 1600 

No cues 0.590 0.659 0.706 0.737 0.766 

Given cues 0.934 0.950 0.959 0.965 0.969 

Predicted cues 0.820 0.857 0.877 0.894 0.906 

Mizumoto 0.776 0.827 0.856 0.876 0.892 

 

Table 7: QWK summaries of all experiments and 

references for training data of various sizes. 
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5 Conclusion 

This paper proposed the combined model of 

justification prediction and analytic scoring model. 

It includes fine-tuning of pre-trained BERT model 

that predicts justification cues (annotations), which 

are crucial for automatic scoring. BERT 

embedding vectors of annotated words are 

subsequently passed to LightGBM model (Ke et al. 

2017) for scoring.  The proposed model uses a 

BERT model that has been pre-trained with a large 

corpus of text in a general domain. As shown in 

Table 7, this helped automated scoring on specific 

data sets and showed that the accuracy of scoring 

on the RIKEN dataset can be comparable (0.88) to 

that of human scorers (average 0.873) with training 

data of only 400 answers per prompt. Compared to 

the comparative method (Mizumoto et al. 2019) 

which showed an accuracy of 0.87 with 800 

answers, almost 50% reduction of training data has 

been achieved. 
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Abstract

The role of an author’s L1 in SLA can be chal-
lenging for automated CEFR classification, in
that texts from different L1 groups may be
too heterogeneous to combine them as training
data. We experiment with recent debiasing ap-
proaches by attempting to devoid textual repre-
sentations of L1 features. This results in a more
homogeneous group when aggregating CEFR-
annotated texts from different L1 groups, lead-
ing to better classification performance. Using
iterative null-space projection, we marginally
improve classification performance for a linear
classifier by 1 point. An MLP (e.g. non-linear)
classifier remains unaffected by this procedure.
We discuss possible directions of future work
to attempt to increase this performance gain.

1 Introduction

The need for automated methods in establishing
both the readability of a piece of text and the level
of linguistic proficiency of its author has been
recognised decades before most students started
writing essays, compositions and other homework
assignments on computers. Motivations for creat-
ing such automated methods are diverse. Seminal
work by Page (1966) focused on alleviating work
load of language teachers and fast turn-around of
writing feedback to language students. Since then,
much progress has been made, and a comprehen-
sive overview of original and still standing chal-
lenges in this field is presented by Beigman Kle-
banov and Madnani (2020). Related to this is the
line of research on grammatical error correction
(Leacock et al., 2010; Bryant and Ng, 2015), ac-
companied by a number of shared tasks (Ng et al.,
2013, 2014; Bryant et al., 2019).

Much of the work in this sub-field of NLP is usu-
ally aggregated under the label Automated Essay
Scoring1. Scoring an essay, however, depends on a

1Or variations thereof: Automated Essay Grading, Auto-
mated Writing Evaluation, etc.

number of factors related to the background of the
author and moreover is not just about grading the
quality of language usage, but usually also about
the quality of content. The same essay about basic
concepts of quantum physics may receive a high
grade when written by a child in elementary school,
but a considerably lower grade when written by
a post-graduate physics student. A framework fo-
cusing solely on second language (L2) level skills,
attempting to propose an objective (i.e., indepen-
dent of native language) six-point scale is repre-
sented by the CEFR2 levels. Since our use case is
establishing the proficiency level of L2 language
learners and providing them with feedback on how
to improve, we experiment with CEFR classifica-
tion.

While the nature of the influence of one’s native
language (L1) on Second Language Acquisition
(SLA) is a topic of ongoing debate (Richards and
Rodgers, 2014) and the terms being used are de-
pendent on the assumed framework (interference
(Weinreich, 2010), transfer (Lado, 1957; Selinker,
1969), influence (Smith and Kellerman, 1986)) the
fact that there is interaction is uncontroversial. This
L1 interaction is problematic in the sense that a clas-
sifier trained on texts written by native speakers of
Chinese may perform poorly on texts written by
native speakers of Portuguese, for example.

Inspired by recent successes in debiasing
embeddings-based representations for particular
traits (Manzini et al., 2019; Sun et al., 2019; Rav-
fogel et al., 2020; Karimi Mahabadi et al., 2020;
Chowdhury et al., 2022), we set out to dispose the
representations that feed into the classifier of traits
that can be taken as signs of L1 influence, to train
a single CEFR classifier -devoid of L1 features (i.e.
learnerese)- that improves its performance when
trained on aggregated data from different native

2https://www.coe.int/en/web/
common-european-framework-reference-\
languages/level-descriptions
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speaker groups.
The rest of this paper is structured as follows:

Section 2 discusses earlier work on both CEFR
classification and debiasing strategies. Section 3
explains the data we used in our experiments. Sec-
tion 4 explains the classification setup. Section 5
discusses our results and provides pointers to fu-
ture work. Finally, Section 6 sums up our main
findings.

2 Related Work

The task of Automated Essay Scoring itself has
received a fair amount of attention over the last
decades, see Beigman Klebanov and Madnani
(2020) for a comprehensive overview of the cur-
rent state of the art. Individual sub-tasks that can
be taken as indicative for proficiency in a given
language, such as Grammatical Error Correction
(GEC), have been accompanied by a number of
popular shared tasks (Ng et al., 2013, 2014; Bryant
et al., 2019). The task of CEFR classification itself
however, seems to have received fewer attention.
Among the studies that address this problem for var-
ious languages are Santucci et al. (2020) (Italian),
Hancke and Meurers (2013) (German), Vajjala and
Lõo (2014) (Estonian) and Volodina et al. (2016)
(Swedish). Earlier work on English (our language
of interest) is represented by Tack et al. (2017),
who create their own annotated corpus and exper-
iment with automated classification using several
classification algorithms.

In this paper, we interpret the influence of L1 as
an issue of bias in the embeddings-based represen-
tation of the English texts. Particular word order,
article- or gender-based preferences or errors that
can be traced back to the native language of the
author, are likely to be more ubiquitous within the
same group of native speakers. To the best of our
knowledge, the CEFR classification problem has
not been combined before with methods attempting
to debias embeddings for L1 features.

Bias in NLP has attracted a lot of interest re-
cently (Bender et al., 2021; Costa-jussa et al., 2021;
Bokstaller et al., 2021; Garrido-Muñoz et al.,
2021), and the specific mitigation approach that
we follow in our work is that of Ravfogel et al.
(2020), who propose INLP - an iterative nullspace
projection algorithm to debias gender stereotypes
in text. Unlike previous approaches (Bolukbasi
et al., 2016; Dev and Phillips, 2019) that solely
rely on a contrastive wordlist to identify a linear

direction for debiasing, INLP debiases all linearly
present gender directions in a data-driven manner.
Considering that a classification task relies on a
certain feature that we want to remove, INLP itera-
tively trains a series of probing (linear) classifiers
to predict that feature until the probing classifier is
confounded. For more details, we encourage the
readers to read the original paper. In Chowdhury
et al. (2022), the potential of this approach was
explored for debiasing translation artifacts (which
carry similar stylistic differences as learnerese) in
human/machine-translated documents. Building
upon this work, we employ the algorithm for our
use-case.

3 Data

Our first experiments were done on the Interna-
tional Corpus Network of Asian Learners of En-
glish (ICNALE) (Ishikawa, 2019), a data set com-
prising essays from 2.800 authors from over 10
different native speaker groups, annotated for differ-
ent metrics indicating skill levels (TOEIC, TOEFL,
IELTS, etc.), including CEFR labels. When ag-
gregating all data from non-native English speak-
ers, using a vanilla BERT (Devlin et al., 2019)
classifier, we obtained a classification accuracy of
0.51, for 2.600 essays3. For individual native lan-
guage groups, however, we achieved comparable
performance while using considerably fewer train-
ing instances (for example, 0.50 on just 200 essays
whose authors are from Indonesia). At the same
time, some native speaker groups in ICNALE are
heavily imbalanced, resulting in simple majority
vote classifiers outperforming the trained classi-
fier for those native speaker groups. While these
preliminary findings initially inspired us to apply
debiasing strategies, we decided to use a larger, less
imbalanced corpus for the majority of the experi-
ments reported on in this paper.

We extracted a subset of the EF-Cambridge
Open Language Database (EFCAMDAT)
(Geertzen et al., 2014), consisting of 191,969
texts from authors from China, Japan and Korea.
Since all texts in EFCAMDAT are from language
learners, we combined this with 200 texts from
native English speakers from ICNALE to get
debiasing directions. Furthermore, EFCAMDAT
only provides information on the author’s country
of origin. Information on native language would be
more accurate, but unfortunately is not specified in

3In a 10-fold cross-validation setup.
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the corpus. For the purpose of this paper, we will
assume the country of origin and native language
to align. Table 1 summarises the key figures of the
subsets of EFCAMDAT and ICNALE we used in
our experiments.
In addition to the aforementioned English-L2
datasets, we conducted experiments on a subset
of the MERLIN (Boyd et al., 2014) corpus,
specifically the subset with German-L2 learners
(henceforth called MERLIN_DE). This subset
consists of 652 learner texts from 13 known
nationalities and 275 Target Hypotheses (i.e. texts
expected from the native speakers and written
by annotators.) Due to the skewness of this
dataset, we only consider data from the top three
represented nationalities. Table 2 summarises
the subset of the MERLIN_data we used for our
experiments.

4 Method & Results

As mentioned in Section 3, we were initially in-
spired by the fact that adding more training data
did not seem to improve classification performance.
In addition, earlier work indicated that classifying
the country of origin of an author based on their
English text provides good results, with Tang et al.
(2021) reporting an accuracy of 87% on all of IC-
NALE for this task. We argue that this points at
signals of L1 in the English learner texts that a clas-
sifier can pick up on, and that consequently, finding
a way to make input text more homogeneous to a
classifier through debiasing (Section 4.1) can lead
to CEFR classification performance gains (Section
4.2).

4.1 Country of Origin Classification and
Debiasing

To classify the country of origin of the author of
a learner text, we use multiple binary classifiers
(for example, China vs. EN, Japan vs. EN, Ko-
rea vs. EN). In particular, we first derive BERT
document-level representations (by mean-pooling
the token-level embeddings) of the text and then
feed them to a Logistic Regression classifier for the
binary classification task. Recall that country of
origin classification is just an intermediate step in
order to find directions to debias our embeddings.
For this task, we randomly sample 200 texts from
China, Japan and Korea to compare against the 200
from native English speakers (to keep the data bal-
anced) and we used a static train/dev/test split of

70/15/15, respectively. Following Ravfogel et al.
(2020), we proceed to get rid of any signals (in the
embeddings) that the classifier exploits to base its
decision on and found that this works surprisingly
well. After 300 iterations for null-space projection,
the perfect performance of 100 for country of ori-
gin classification for all three language pairs (to be
compared to 87% for all of ICNALE as reported by
Tang et al. (2021)) drops to approximately random
performance after debiasing (Table 3).
We follow similar steps for the country of origin
classification for the MERLIN_DE dataset. Recall
that in this setup, the direction for native-German
comes from Target Hypotheses (TH) and the num-
ber of Target Hypotheses (275) exceeds the number
of text samples coming from the three nationalities.
In order to achieve a balanced dataset for the bi-
nary classification, we randomly sample TH texts
equal to the number of Russian-DE, Polish-DE and
Spanish-DE texts, respectively. Thereafter, we ap-
ply INLP for 7 iterations on all three language pairs
and achieve classification accuracies as shown in
Table 4.

4.2 CEFR classification

As illustrated in Table 1, our data is fairly unbal-
anced, with most texts belonging to the A1 category.
A majority vote classifier would result in an accu-
racy of 55%. To improve over this, as a baseline,
we apply a multinomial Logistic Regression classi-
fier and an MLP classifier having a hidden layer of
256-dimensions.

We then attempt to improve over this baseline by
applying debiasing conditional on the country of
origin of the author. BERT-encoded document-
level representations of native-EN and L2-EN4

(200 each) are fed to the INLP algorithm for bias
removal. As stated earlier in section 4.1, to carry
out this procedure, the data are first combined and
shuffled, and then split into train, test and dev
(70/15/15), followed by 12 iterations of INLP. By
applying the INLP procedure on the training split,
as one of the three outputs, we get the nullspace
projection, which is devoid of any learnerese-signal.
So, we simply project this nullspace onto the whole
of respective L2-EN BERT embeddings to get de-
biased L2-EN embeddings.

We combine all data (i.e. BERT embed-
dings) from China, Japan and Korea for EFCAM-
DAT_NATIVE_EN, and for Russian, Polish and

4Where L2 corresponds to Japan/Korea/China.
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A1 A2 B1 B2 C1 C2 total
China 94,494 48,564 17,613 3,946 504 51 165,162
Japan 8,567 6,396 4,390 1,601 395 25 21,374
Korea 1,966 1,697 1,277 379 103 11 5,433
EN - - - - - - 200
total 105,027 56,657 23,280 5,916 1,002 87

Table 1: Number of texts in native speaker groups and skill levels in EFCAMDAT_NATIVE_EN dataset.

A1 A2 B1 B2 C1 C2 total
Russia 7 35 45 48 8 0 143
Polish 1 22 27 41 5 0 96
Spanish 3 23 31 27 1 0 85
total 11 80 103 116 14 0 324

Table 2: Number of texts in native speaker groups and skill levels in MERLIN_DE dataset.

before debiasing after debiasing
LR MLP LR MLP

China 100 100 48.33 95.00
Japan 100 100 46.47 93.34
Korea 100 100 40.00 96.67

Table 3: EFCAMDAT_NATIVE_EN dataset: Accuracy
for country of origin classification.

before debiasing after debiasing
LR MLP LR MLP

Russia 83.72 93.02 51.16 53.48
Polish 89.66 93.10 65.52 82.76
Spanish 84.61 92.31 57.69 73.07

Table 4: MERLIN_DE dataset: Accuracy for country of
origin classification.

Spanish for MERLIN_DE, and proceed to classify
the CEFR levels. The results are illustrated in Ta-
ble 5, where in the after debiasing column, the
debiased embeddings, conditional on the author’s
country of origin, are used in classification. The
numbers are the result of 5-fold cross-validation.

As shown in Table 5, the debiasing strategy im-
proves performance by 1 point for the Linear Re-
gression classifier, whereas the Multi-Layer Percep-
tron classifier remains unaffected for the EFCAM-
DAT_NATIVE_EN dataset. The performance of

before debiasing after debiasing

EN-CEFR
LR 82 83

MLP 96 96

DE-CEFR
LR 58 43

MLP 73 63

Table 5: Weighted F1-scores for CEFR classification.

both classifiers drops for the MERLIN_DE dataset.
We refer to Appendix A.1 for hyper-parameter set-
tings. In the next section, we discuss these results,
discuss promising directions for future work and
summarise our main findings.

5 Discussion

For the EFCAMDAT_NATIVE_EN dataset, we ob-
serve a marginal performance gain when using a
linear classifier (LR), but not when using a non-
linear classifier (MLP). This can be explained from
the results in Table 3, wherein the accuracy for
MLP drops only marginally after debiasing. This
means the non-linear classifer is still able to tell
whether a sample comes from native or non-native
speaker. The effects of debiasing on linearly sep-
arable vs. non-linearly separable problems is also
discussed in Ravfogel et al. (2020), who state that
their method is designed for "removal of linear in-
formation regarding a protected attribute". This
may explain why our setup with an MLP classifier
shows no difference. Furthermore, the MLP classi-
fier having better performance in the baseline setup
already may suggest that the specific surface real-
isations of learnerese may be less prone to linear
separation. Alternatively, Ravfogel et al. (2020)
focus on guarding the classifier against gender and
race. These dimensions might be expected to cor-
relate to individual words or short phrases. The
effects of learnerese may surface more on syntactic
(phrase- or sentence-) level, which may just need
more training data than we have available to us. As
for hyperparameter settings; we have experimented
with various different numbers of iterations (rang-
ing from 8 to 300) for finding the directions for
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debiasing, but beyond a certain point (12 for EF-
CAMDAT_NATIVE_EN and 7 for MERLIN_DE)
the INLP classifier started to overfit and the quality
of embeddings start to decrease.

Furthermore, in the EFCAMDAT data, there ap-
pears to be a strong correlation between sentence
length and CEFR level, with the average text length
in words for levels A1 to C2 being, respectively,
45, 74, 97, 128, 161 and 164. This may be a strong
indicator to the classifier, and one we have not
compensated for. We decided against simply sam-
pling individual sentences from the different CEFR
levels, as we argue that (the ability to implement)
overall text coherence is an important part of mas-
tering a language. Any such text structure or co-
herence features would in most cases be lost when
considering individual sentences. We consider ex-
perimenting with more sophisticated techniques to
compensate for the differences in text length an
important part of future work.

As illustrated in Table 1, we only have 200 native
English texts to find directions for debiasing. This
works surprisingly well (Table 3), but we get a com-
paratively small performance gain of 1 point for
CEFR classification. Perhaps the ICNALE essays
are easily distinguishable from the EFCAMDAT
ones on other grounds (lay-out, topic, length) than
just native vs. non-native. The EFCAMDAT cor-
pus contains data from English-speaking countries,
but since these originate from language learners,
it is a heterogeneous L1 group. Using this would
thus result in finding, for example, Chinese-specific
vs. many-different-L1-specific traits, as opposed to
finding Chinese-specific vs. native English-specific
traits. In order to find out if the additional data
(42,442 texts from authors from the USA and Great
Britain from EFCAMDAT, compared to 200 from
ICNALE) would compensate for the heterogeneity
in L1 background however, we experimented with
this setup too and got comparable results to the
ones reported on in Table 5.

Compared to earlier work, the overall perfor-
mance of our system scores well. Tack et al. (2017)
also work on English and report an accuracy of
53% on their data set5. In other related work how-
ever, performance seems to depend highly on the
specific data set (and language), with reported accu-
racy figures between 64.5% (Hancke and Meurers,
2013) and 79% (Vajjala and Lõo, 2014).

5Moreover, they aggregate the C1 and C2 levels, resulting
in 5-way classification, compared to 6-way in our setup.

From Table 5, both the CEFR classifiers perform
poorly on MERLIN_DE corpus. This comes as no
surprise since we had only a few hundred samples
for training and the data-class ratio was too skewed
to begin with. Even though in Table 4, the accura-
cies of country-classifiers drop significantly after
debiasing, it does not translate to a performance
gain during CEFR-classifation and instead has the
opposite effect. This means that the directions that
are being removed by INLP are rather significant
and perhaps to achieve gains on the downstream
CEFR-classification task, INLP requires lot more
training samples to find more reliable learnerese
directions.
Unfortunately, we suspect that the majority of
freely available datasets for CEFR-classification
are too small (in the order of 10² or 10³) to see any
improvements from debiasing with INLP.
In future work, besides experimenting with other
debiasing approaches, we plan to address this bot-
tleneck by curating data for language-families (in-
stead of considering languages in isolation for de-
biasing) and investigating if a combined debiasing
approach on aggregated data from the same lan-
guage family works better.

6 Conclusion

In this paper, we experiment with compensating
for L1 influence in CEFR classification by apply-
ing a debiasing approach, the idea being to debias
the embeddings for learnerese features in any spe-
cific L1-related direction. By doing so, we ob-
tain a small performance improvement with a lin-
ear classifier. CEFR classification performance
seems to be highly dependent on the particular cor-
pora/data used, with earlier work reporting accu-
racy figures between 53% and 79%. On the EF-
CAMDAT dataset, results look promising - best
weighted F1-score of 83 via Logistic Regression
and even higher (96) with MLP classifier without
any debiasing. Our code is available on GitHub6.
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A Appendix

A.1 Hyper-parameter settings
LinearSVC (iterative debiasing):

• penalty=’l2’
• C=0.01
• fit_intercept=True
• class_weight=None
• dual=False

Logistic Regression (country of origin):

• penalty = ’l2’
• warm_start = True
• solver="saga"
• random_state=23
• max_iter=7

Logistic Regression (CEFR):

• penalty = ’l2’
• warm_start = True
• solver="saga"
• random_state=23
• max_iter=7
• multi_class=’multinomial’
• fit_intercept=True

MLP (CEFR):

• hidden_layer_sizes = 256
• activation = relu
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Abstract

Reduced form pronunciations are widely used
by native English speakers, especially in ca-
sual conversations. Second language (L2)
learners have difficulty in processing reduced
form pronunciations in listening comprehen-
sion and face challenges in production too.
Meanwhile, training applications dedicated to
reduced forms are still few. To solve this is-
sue, we report on our first effort of using deep
learning to evaluate L2 learners’ reduced form
pronunciations. Compared with a baseline so-
lution that uses an ASR to determine regular
or reduced-formed pronunciations, a classifier
that learns representative features via a con-
volution neural network (CNN) on low-level
acoustic features, yields higher detection per-
formance. F-1 metric has been increased from
0.690 to 0.757 on the reduction task. Fur-
thermore, adding word entities to compute at-
tention weights to better adjust the features
learned by the CNN model helps increasing F-
1 to 0.763.

1 Introduction

The term “reduced forms” refers to the phe-
nomenon of phonological simplification and vari-
ation commonly observed in connected speech of
native speakers (Brown and Kondo-Brown, 2006;
Khaghaninezhad and Jafarzadeh, 2014; Cangemi
et al., 2018). In phonetic reduction, “segments may
be shorter, less clearly articulated, or absent com-
pared to canonical or dictionary forms” (Cangemi
et al., 2018). Reduced-formed pronunciations ap-
pear in daily English communication among native
speakers (Johnson, 2004).

On one hand, the existence of reduced form chal-
lenges second language (L2) learners in their lis-
tening comprehension (Norris, 1995). On the other
hand, L2 learners often face great challenges on
producing reduced forms so that they can sound

0The work was conducted while Lei, Jiahong, and Yang
were working in LAIX Silicon Valley AI Lab

more close to native speakers. English as a second
language (ESL) teachers have realized the impor-
tance of specially training L2 learners on under-
standing reduced form pronunciations to improve
their listening comprehension skills. (Yeh et al.,
2017) is such an effort of designing an app to train
students accordingly. Compared to the emphasis
on reduced forms when training the listening com-
prehension skills, the effort on training the specific
skills on the production of reduced forms is still
limited. Most computer aided language learning
(CALL) tools focus on training regular form pro-
nunciations and do not provide adequate supports
to L2 learners’ demands on the production of re-
duced forms.

Hence, in this paper, we will report on our initial
effort of using a deep learning based classification
method to detect L2 learners’ reduced form produc-
tions. Note that the detection is the first required
step for creating a training tool that can generate
feedback and provide interventions to cultivate L2
learners’ specific skills.

2 Previous research

Reduced forms have been actively investigated in
phonetics. For example, (Ernestus and Warner,
2011) introduced reduced-formed pronunciation
variant phenomenal in phonetics. It pointed out
that such variations are quite common in different
languages in their casual conversation conditions.
(Jurafsky et al., 1998) investigated English function
words’ reduced forms in the Switchboard corpus
and found that a high percentage of reduced forms
appears in the telephone conversations. Also, the
authors investigated possible reasons causing re-
duced forms, such as words’ frequencies.

(Wong et al., 2017) examined the role of the
perception of reduced forms (e.g., contraction, eli-
sion, assimilation) of English words in connected
speech comprehension and the phonological skills
underpinning reduced forms perception. This study
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delivers a clear message to ESL teachers that the
ability of perceiving reduced pronunciation variants
is important for L2 listening comprehension skills.
There are some emerging technical works on help-
ing L2 learners’ perception of reduced forms. For
example, (Yeh et al., 2017) reports on an Android
App to use authentic native connected speeches as
material to teach.

Reduced forms sometimes are produced as vari-
ants to formal forms. Based on this fact, meth-
ods that can distinguish pronunciation variants in
ASR can be used to detect the existence of reduced
forms. (Strik and Cucchiarini, 1999) systematically
surveyed the methods for recognizing pronuncia-
tion variants. In a widely used approach, extended
recognition network (ERN) (Qian et al., 2016; Har-
rison et al., 2009), extra decoding paths are added
to represent pronunciation variants on top of the
regular paths built on formal forms’ pronunciations.
However, reduced forms can sometimes occur with-
out pronunciation variants. Hence, solutions work-
ing on broader cases are worth investigating.

3 Data

In this paper, we focused on the two types of re-
duced forms, i.e., reduction and liaison. The first
refers to changing pronunciation from its formal
form on individual words while the second term
refers to co-articulation among adjacent words.

In 2019, Company-X released a new product for
training various specific pronunciation skills, in-
cluding reduction and liaison, in its main English
learning mobile App. This product has already
been used by a large number of Chinese English
learners. From the audio samples collected in this
product, we built up our own research data set.
We sampled speech files from a large group of
English learners from different locations in China.
When sampling L2 learners’ spoken responses, we
used pronunciation scores automatically rated by
Company-X AI-based pronunciation scoring sys-
tem to include learners from diverse levels.

On 8, 570 practice audio samples for the reduc-
tion skill, seven human raters annotated whether
learners produce correct reductions or not on the
required words. During rating, the annotators con-
sidered three aspects, including energy, rhythm (du-
ration and its connection to context words), and pro-
nunciation variations. These raters are high-level
non-native English speakers and doing linguistics
and phonetics annotation as their full-time jobs.

For each audio sample, if at least four raters agree
on one label, this label will be used to be the sam-
ple’s final decision. Otherwise, the sample will
be treated to be too challenging for human anno-
tators and will be excluded from the experiments.
The entire rating was done in two stages by us-
ing two groups of double raters. For each stage, a
kappa set was used to measure two raters’ rating
consistence. In the first stage, the rating agreement
was κ = 0.63. Then, raters obtained more train-
ing on understanding the rating guideline before
going to the second stage of rating. The agree-
ment measurement on the second stage has been
increased to κ = 0.79. Figure 1 shows the anno-
tation interface in Praat software. We can see that
for selected words, e.g., “you", “have", “to", and
“me", human raters used annotation tiers to label
their decisions. “1" denotes reduction while “0"
denotes formal form.

Figure 1: Annotation interface for reductions in Praat

On 4, 027 practice audio samples for the liai-
son skill, three human annotators marked whether
some word pairs are spoken as liaisons or not. Fig-
ure 2 shows the annotation interface in Praat. For
the word pairs “big living" and “will a", annota-
tors mark 1 indicating two words are spoken in a
connected way or use 0 indicating two words are
spoken in their formal forms. For each audio sam-
ple, the majority voting results among the three
annotators were used as final labels. Among the
three raters, their between-rater agreement values
are 0.74, 0.81, and 0.82 respectively. This shows
that judging liaison is relatively easy compared to
judging reductions. Table 1 summaries the label
counts of the two data sets.

Figure 2: Annotation interface for liaison detection in
Praat
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Reduced form type #Yes #No #Total
reduction 3, 610 7, 953 11, 563

liaison 1, 334 2, 693 4, 027

Table 1: Statistics of the two reduced form data sets

0 1sil:sil 2aa:aa
aa:ax

3r:r 4sil:sil

Figure 3: Decoding network for the word “are" with
formal form /ar/ and reduced form /r/

4 Models

4.1 ASR based method

For words (including single words or multi-word
with reduced forms, e.g. “got you" to “gotcha")
with pronunciation variations, a typical solution
is using an ASR system with two distinct pronun-
ciation entries in its dictionary to determine real
pronunciation on the fly. For example, “are” can be
pronounced as its formal form /ar/ or its reduced
form /r/. Here, we first use a forced alignment
step to locate words being considered. Then, a
recognition network with paths mapping to two
pronunciation forms is used to decode the audio
portion to find the more possible path. Figure 3
shows one concrete example of a decoding network
for the word “are".

The automatic speech recognition (ASR) system
was built with the Kaldi open-source toolkit. This
model is a 9-layer time delayed neural network
(TDNN) using Mel frequency cepstrum coefficient
(MFCC) acoustic features from the current frame
plus the previous and following 5 context frames.
The ASR model was trained on our in-house read-
aloud corpus containing about 2, 500 hours of na-
tive and non-native speech files. The ASR system
achieved a word error rate (WER) of 9% on learn-
ers’ speech.

4.2 CNN based method

ASR based method was based on an assumption
that pronunciation variations always occur in the
reduced forms. However, some reduced forms may
only show in low energy levels and shorter dura-
tion. To address this limitation, we investigated
building a classifier to predict a audio segment’s
pronunciation form directly,

Pronunciation in a reduced form is a compli-
cated process. To obtain effective representations,

we conducted an automatic feature learning by uti-
lizing a convolution neural network (CNN) model
(Abdel-Hamid et al., 2014). For the reduction de-
tection task, we used MFCC feature sequence over
each audio segment being considered. For the li-
aison detection task, we used the MFCC feature
sequence starting from the last phoneme of the
starting word to the first phoneme of the ending
word in each adjacent word pair being considered.
Also, these two phonemes were connected to form
a token to be the “word entity" associated with this
word pair. In each reduced form detection task,
all of the audio portions were padded to the same
length. For example, for the reduction detection
task, all portions were padded to 0.5 second long.

The librosa (McFee et al., 2015) V0.7 audio
signal processing Python package was used to ex-
tract MFCC (n = 40) features. For example, in
the reduction detection task, each input feature
(on a word) takes a shape of 16 × 40. Then,
we sent these tensors to two CNN blocks, each
block contains a 1D CNN (filters numbers are 128
and 256 respectively) and a batch normalization
(BN) (Ioffe and Szegedy, 2015) layer. From the
second CNN block’s output, global max pooling
and Dropout (Srivastava et al., 2014) layers were
used to convert learned features to be vectors with
a dimension of 256. At last, the learned features
went through a fully connected (FC) layer using a
sigmoid activation function to obtain reduced form
prediction binary output.

All of the audio clips used in this study were
collected from learners when they practiced on a
set of pre-defined words. We noticed that learn-
ers’ reduction production varied among these word
entities. Therefore the word entity’s prior informa-
tion is expected to be useful for modeling learners’
production behaviors. To incorporate word entity
cues in the reduced form prediction, we utilized
word entities one-hot representations to compute
feature attention weights so that for each specific
word entity, a different feature weighting plan can
be learned in our CNN model. The learned fea-
ture from CNNs is denoted as F = {ft} where
0 <= t <= 255. Vi is the one-shot encoding
vector for the word wi among all |V | pre-defined
words for testing L2 speakers’ reduction production
capabilities. We use a linear mapping W, which is
learned during model training, and a softmax acti-
vation to compute attention weights αt. Then, an
adjusted feature vector S is obtained by applying
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the attention weights on {fi} element-wise.

Ai = {at} =W × Vi (1)

αt =
exp(at)∑255

k=0 exp(ak)
(2)

S = {αtft} (3)

Figure 4 depicts our CNN models in details. Note
that the left panel shows the model only consider-
ing audio information while the right panel shows
how word entities were used to compute attention
weights to adjust the learned features dynamically.
The model was implemented by using Keras pack-
age (Chollet et al., 2015) on TensorFlow (Abadi
et al., 2015).

Conv1D (n=128)

MFCC feature
(16x40)

Batch normalization (BN)

Conv1D (n=256)

BN

Max Pooling

Dropout (p=0.5)

FC (MFCC only)

word entity Vi
 (one-hot encoding)

FC (attention
computation) W

FC (w/ attention)

learned feature F
(dim=256)

attention weights
(dim=256)

reduced
form or not

reduced
form or not

adjusted feature S

Figure 4: Using 1D CNN to learn features from MFCC
for predicting whether a reduced form pronunciation
occurs or not. The learned feature can be directly
used (as in the left side) or adjusted by using attention
weights based on word entities (as shown in the right
side)

5 Experiments

Using the entire data set, we run our ASR based
method to obtain reduced form predictions. When
evaluating our classification based methods, we run
cross-validation experiments. To compensate non-
deterministic effects of using neural networks, we
repeated our CV experiments 5 times and reported
average performance among.

Regarding evaluating methods, we used standard
metrics when evaluating binary classification, i.e.,

Method Accuracy F-1 (mean)
ASR 70.38% 0.690
CNN 76.19% 0.757
CNN + ATTN 77.01% 0.763

Table 2: Reduction detection results measured in both
accuracy and F-1 score on different methods

Method Accuracy F-1 (mean)
ASR 70.85% 0.692
CNN 71.49% 0.719
CNN + ATTN 72.11% 0.720

Table 3: liaison detection performance measured in
both accuracy and F-1 score on different methods

accuracy and F-1 score weighted by label percent-
age. The higher measurement metrics, the better
the methods.

Table 2 reports on the experiment for the reduc-
tion detection task. CNN model shows improve-
ments over the baseline ASR model, suggesting
that CNN can automatically learn more indicative
features from audio signals. When using attentions
based on word entities to adjust the learned features,
we can find further performance improvements (F-1
from 0.757 to 0.763).

Table 3 reports on the experiment result for the
liaison detection task. Similar to what we found
on the reduction task, the two methods using a
CNN model to learn features automatically show
improved performance than the method based on
ASR decoding. Also, using attention weights com-
puted based on phoneme-pairs is helpful.

6 Discussion

Reduced forms are commonly used by native speak-
ers in their casual conversations. Because L2 learn-
ers mostly face formal forms in their language
learning, perception and production of reduced
forms in fact greatly challenges learners’ listening
comprehension and speaking capabilities. With a
goal of building a training application on producing
reduced-formed pronunciations, we conducted a re-
search on automatically detecting reduced forms
with a high accuracy. Following on the work of
recognition of pronunciation variants, we firstly
utilized an ASR decoding method to distinguish
formal vs. reduced forms. To cope with reduced
forms without obvious pronunciation variations,
we then explored using a CNN model to learn dis-
tinguishable features from learner speech directly.
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Our experiment results show that CNN method
has improved performance over the ASR decoding
method. Using word entities in the CNN model
to compute attention weights to adjust the learned
features is proven to be useful. Overall, on the two
reduced form types, i.e., reduction and liaison, our
CNN model has F-1 measurement about 0.763 and
0.720 respectively.

We envision that there are several research direc-
tions in future. Firs, so far, we only used CNNs to
encode MFCC feature sequence, it is worthwhile
trying some new encoding method, like Trans-
former. Second, human annotation on reduction
still have a room to improve. We are hoping to
continue increasing rating agreement to provide a
even more solid research base. At last, a training
module has been added into LAIX Liulishuo App.
Based on real user data, it is worthwhile tracking
whether provided training helps on learners’ mas-
tery of reduced forms.
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Abstract

In this study, we developed the first baseline
readability model for the Cebuano language.
Cebuano is the second most-used native lan-
guage in the Philippines with about 27.5 mil-
lion speakers. As the baseline, we extracted
traditional or surface-based features, syllable
patterns based from Cebuano’s documented or-
thography, and neural embeddings from the
multilingual BERT model. Results show that
the use of the first two handcrafted linguistic
features obtained the best performance trained
on an optimized Random Forest model with
approximately 87% across all metrics. The fea-
ture sets and algorithm used also is similar to
previous results in readability assessment for
the Filipino language—showing potential of
crosslingual application. To encourage more
work for readability assessment in Philippine
languages such as Cebuano, we open-sourced
both code and data1.

1 Introduction

The proper identification of the difficulty levels of
reading materials is a vital aspect of the language
learning process. It enables teachers and educa-
tors alike to assign appropriate materials to young
learners in which they can fully comprehend, pre-
venting boredom and disinterest (Guevarra, 2011).
However, assessing readability presents challenges,
particularly when you have a large corpus of text
to sift through. Manually extracting and calcu-
lating a wide range of linguistic features can be
time-consuming and expensive and can lead to sub-
jectivity of labels due to human errors (Deutsch
et al., 2020). To tackle this problem, more and
more research in the field have focused on exper-
imenting with automated methods for extracting
possible linguistic predictors to train models for
readability assessment.

1The resources can be found using this
link: https://github.com/imperialite/
cebuano-readability.

While automating readability assessment is a
challenge itself, one of the original problem in
the field starts with data. In the Philippines,
the Mother-Tongue Based Multilingual Education
(MTB-MLE) scheme was introduced by the De-
partment of Education (DepEd) in 2013. With this
initiative, there were little to no available tool for
automatically assessing readability of reading re-
sources, instructional materials, and grammatical
materials in mother tongue languages aside from
Filipino such as Cebuano, Hiligaynon, and Bikol
(Medilo Jr, 2016). To answer this challenge, in this
paper, we investigate various linguistic features
ranging from traditional or surface-based predic-
tors, orthography-based features from syllable pat-
terns, and neural representations to develop a base-
line readability assessment model for the Cebuano
language. We use an array of traditional machine
learning algorithms to train the assessment mod-
els with hyperparameter optimization. Our results
show that using non-neural features are enough to
produce a competitive model for identifying the
readability levels of children’s books in Cebuano.

2 Previous Work

Readability assessment has been the subject of re-
search of linguistic experts and book publishers
as a method of measuring comprehensibility of a
given text or document. Villamin and de Guzman
(1979) pioneered a readability assessment for the
Filipino language in 1979. Hand-crafted indices
and surface information from texts, such as hand
counts of words, phrases, and sentences, are used
in these formula-based techniques. An equivalent
technique of traditional formula was applied on to
Waray language (Oyzon et al., 2015) to comple-
ment the DepEd’s MTB-MLE program in certain
regions of the Philippines such as in Samar and
Leyte. While traditional featured formulas relied
on linear models, recent studies on readability re-
search assessment have shifted their focus on ex-
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panding the traditional method to more fine-grained
features. Guevarra (2011) and Macahilig (2014)
introduced the use of a logistic regression model
trained with unique word counts, total word and
sentence counts, and mean log of word frequency.
A few years later, lexical, syllable patterns, mor-
phology, and syntactic features were eventually
explored for readability of Filipino text by works
of Imperial and Ong (Imperial and Ong, 2021a,
2020, 2021b).

3 The Cebuano Language

Cebuano (CEB) is an Austronesian language mostly
spoken in the southern parts of the Philippines such
as in major regions of Visayas and Mindanao. It
is the language with the second highest speaker
count2 in the country with 27.5 million, just after
Tagalog, where the national language is derived
from, with 82 million speakers. Both Cebuano and
Tagalog languages observe linguistic similarities
such as in derivation, prefixing, disyllabic roots,
and reduplication (Blake, 1904). On the other hand,
differences are seen in syntax such as use of parti-
cles (ay, y), phonetic changes, and morphological
changes on verbs. Figure 1 illustrates a portion of
the Philippine language family tree emphasizing on
where Cebuano originated. Cebuano is part of the
Central Philippine subtree along with Tagalog and
Bikol which can be attributed to their similarities
and differences as mentioned. The full image can
be viewed at Oco et al. (2013).

Figure 1: Right portion of the Philippine language fam-
ily tree highlighting origin of Cebuano.

3.1 Cebuano Readability Corpus
We compiled the first Cebuano text corpus
composed of 277 expert-annotated literary pieces

2https://www.ethnologue.com/language/
ceb

uniform to the first three grade levels (L1, L2,
and L3) of the Philippine primary education. For
comparison to international grading systems, the
standard age range for each level is 6-7, 7-8,
and 8-9 respectively. We collected the materials
from three online, open-sourced book repositories
online: Let’s Read, Bloom Library, and DepEd
Commons. All materials are licensed under
Creative Commons BY 4.0 allows redistribution in
any medium or format provided proper attribution.
Table 1 shows the distribution of the collected
corpus.

Corpus L1 L2 L3 Total

Let’s Read 6 21 50 82
Bloom 50 50 25 125
DepEd 22 1 4 27

Total 76 72 79 227

Table 1: Distribution of compiled text passages in Ce-
buano.

Let’s Read. Let’s Read3 is an initiative by the The
Asia Foundation to open-source culturally friendly
children’s books in diverse themes, characters,
and settings. The resource materials from this
repository are mostly sourced from BookLabs
and translated by local volunteers across multiple
languages including Cebuano. Let’s Read covers
a wide variety of genre such as gender equality,
environment, understanding and empathy, and
science and technology. We collected 82 Cebuano
children’s books from this website for our corpus.

Bloom. The Bloom Library4 is also an free
repository of diverse children’s books resources
funded and maintained by the Summer Institute of
Linguistics (SIL International). Similar to Let’s
Read, local volunteers can also upload high-quality
and validated translations of book resources or
original pieces to the platform. We collected 125
Cebuano children’s books from this website for
our corpus.

DepEd Commons. The Commons Library5 is
an initiative by the Department of Education in
the Philippines to grant free access to literature
in various Philippine languages for students and

3https://www.letsreadasia.org/
4https://bloomlibrary.org/
5https://commons.deped.gov.ph/
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teachers during the COVID-19 pandemic. We
collected 27 Cebuano children’s books from this
website for our corpus.

4 Linguistic Features

In this study, we extracted three linguistic feature
groups from our Cebuano text corpus: traditional
or surface-based features, orthography-based
features, and neural embeddings. To the best of
our knowledge, no study has ever been conducted
to assess and explore the readability assessment of
Cebuano text using these features.

4.1 Traditional Features (TRAD)

Traditional or surface-based features are predic-
tors that were used by experts for their old read-
ability formulas for Filipino such as sentence and
word counts in Guevarra (2011). Despite the claims
that these features insufficiently measures deeper
text properties for readability assessment (Redish,
2000), since this is the pioneering study for Ce-
buano, we still considered these features for our
baseline model development. In this study, we
adapted the seven features of traditional features
from existing works in Filipino (Imperial and Ong,
2020, 2021a,b) such as number of unique words,
number of words, average word length, average
number of syllables, total number of sentences, av-
erage sentence length and number of polysyllable
words.

4.2 Syllable Pattern (SYLL)

Orthography-based features measure character-
level complexity of texts through combinations
of various syllable patterns (Imperial and Ong,
2021b). Same as in Filipino, we adapted syllable
patterns as features for the baseline model develop-
ment but used only seven recognizable consonant-
vowel combinations linguistically documented in
the Cebuano language (Blake, 1904). We used con-
sonant clusters and syllable pattern combinations
of v, cv, cc, vc, cvc, ccv, ccvc normalized by the
number of words.

4.3 Substitute Features using Neural
Embeddings (NEURAL)

The use of Transformer-based language model em-
beddings have shown to be an effective substitute
for handcrafted features in low-resource languages
(Imperial, 2021). Probing tasks have shown that

these representations contain information such as
semantic and syntactic knowledge (Rogers et al.,
2020) which can be useful in readability assess-
ment. For this study, we extracted embedding rep-
resentations with dimension size of 768 from the
multilingual BERT model (Devlin et al., 2019) as
features for each instance from the Cebuano cor-
pus. According to the training recipe of multilin-
gual BERT, Cebuano data in the form of Wikipedia
dumps was included in its development which
makes the model a viable option for this study.

Feature Acc Prec Rec F1

TRAD 0.789 0.754 0.749 0.750
SYLL 0.544 0.546 0.559 0.551

TRAD + SYLL 0.719 0.721 0.722 0.718
NEURAL 0.754 0.759 0.766 0.757

Combination 0.737 0.714 0.729 0.714

Table 2: Performance of finetuned Logistic Regression
model.

Feature Acc Prec Rec F1

TRAD 0.718 0.728 0.685 0.676
SYLL 0.649 0.648 0.648 0.646

TRAD + SYLL 0.789 0.787 0.791 0.784
NEURAL 0.807 0.813 0.812 0.811

Combination 0.789 0.788 0.789 0.793

Table 3: Performance of finetuned Support Vector Ma-
chines model.

Feature Acc Prec Rec F1

TRAD 0.842 0.843 0.842 0.842
SYLL 0.579 0.579 0.586 0.580

TRAD + SYLL 0.873 0.852 0.858 0.852
NEURAL 0.772 0.776 0.761 0.763

Combination 0.825 0.801 0.804 0.799

Table 4: Performance of finetuned Random Forest
model.

5 Experiment Setup

The task at hand is a multiclass classification prob-
lem with three classes being the aforementioned
grade levels. We specifically chose traditional
learning algorithms such as Logistic Regression,
Support Vector Machines, and Random Forest for
building the baseline models for post-training in-
terpretation techniques described in the succeeding
sections. To reduce bias, a k-fold cross validation
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where k = 5 was implemented. For the intrinsic
evaluation, we used standard metrics such as ac-
curacy, precision, recall and macro F1-score. In
addition, we also used grid search to optimize the
following model-specific hyperparamters: solver
and regularization penalties for Logistic Regres-
sion, kernel type, maximum iterations, and regu-
larization penalties for Support Vector Machines,
and number of estimators, maximum features, and
maximum depth for Random Forest.

6 Results

To assess the effectiveness of the proposed frame-
work in the experimentation, we examined model
performances on three different ablation studies:
(a) linguistic features only, (b) neural embeddings
only, and (c) combination of the two via concate-
nation. The results of each fine-tuned model uti-
lizing the given evaluation metric are showed in
Tables 2, 3, and 4.

Across the board, the best performing model and
feature combination for Cebuano achieved approxi-
mately 87.3% for all metrics using the combination
of TRAD and SYLL features with Random For-
est. This top performing model makes used of 100
tree estimators, automatically adjusted maximum
features, and a max depth of 20. Interestingly, the
feature combination and the algorithm of choice is
also the same for Filipino readability assessment as
seen in the work ofImperial and Ong (2021b). This
may suggest that, despite language differences and
similarities, the use of surface-based features such
as counts and syllable patterns are accepted for both
Filipino and Cebuano languages in the readability
assessment task. Referring again to Figure 1 for
emphasis, both languages are part of the Central
Philippine subtree which opens the possibility of a
cross-lingual application of linguistic features for
future research.

This effectiveness of surface-based features is
also seen for the optimized Logistic Regression
model where using TRAD features obtained the
best performance. In the case of the optimized
Support Vector Machine model, the use of neural
embeddings alone obtained better scores than the
combination of traditional and syllable pattern fea-
tures. This result affirms the observation in Impe-
rial (2021) where the extracted neural embeddings
can serve as substitute features and can relatively
be at par with handcrafted features.

7 Discussion

7.1 Model Interpretation
To understand more about which specific linguis-
tic feature is contributive during model training,
we used two versions of model interpretation algo-
rithms specifically used for Random Forest models:
permutation on full model and mean decrease
in impurity (MDI) as shown in Figures 3 and 2
respectively. Feature permutation recursively adds
a predictor to a null model and evaluates the growth
in accuracy while mean decrease impurity adds up
all weighted impurity score reductions or homo-
geneity averaged for all tree estimators (Breiman,
2001). From both the feature importance results,
the most important feature is the v_density or sin-
gular vowel density. This may indicate that the
denser the vowels in a word, the more complex the
text becomes. Likewise, both cv_density and con-
sonant clusters emerged as second top predictors
for both analysis which may suggest that in Ce-
buano, words with combined consonants with no
intervening vowels are more apparent in complex
sentences than from easier ones.
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Figure 2: Feature importance by mean decrease impu-
rity.
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Figure 3: Feature importance by permutation on full
model.
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7.2 Feature Correlation
We also looked at model-independent feature analy-
sis techniques through Spearman correlation with
respect to readability levels. Table 5 shows the top
ten highly correlated features. In support to the
findings described in Sections 6 and 7.1, all corre-
lated linguistic features belong to the TRAD and
SYLL feature sets with number of unique words at
the top. This may suggest that the density of unique
words may increase relative to the readability level
in a positive direction. In addition, cv, cvc, and ccv
densities are the only syllable pattern features that
placed top in both model-dependent and indepen-
dent feature interpretation techniques. This may
hint further potential as readability predictors for
other text domains. To note, the cv-pattern in Ce-
buano is one of the most common consonant-vowel
combinations (Zorc et al., 1976; Yap and Bunye,
2019).

Feature Set Predictor ρ
TRAD unique_words 0.337
SYLL cv_density 0.327

TRAD word_count 0.298
average_sentence_len 0.295

SYLL cvc_density 0.293
TRAD sentence_count 0.292

SYLL consonant_cluster 0.293
ccv_density 0.217

TRAD polysyll_count 0.192
SYLL vc_density 0.190

Table 5: Feature ranking using Spearman correlation.

8 Outlook

We developed the first ever baseline machine learn-
ing model for readability assessment in Cebuano.
Among the three linguistic feature groups extracted
to build the model, the combination of traditional
or surface-based features (TRAD) with syllable pat-
tern based features (SYLL) produced the highest
performance using an optimized Random Forest
model. One of the main challenges in the field
is the limited amount of resource for tools and
data especially for low-resource languages (Vajjala,
2021). To answer this call and encourage growth
of research in this direction, we open-sourced the
compiled dataset of annotated Cebuano reading
materials and the code for model development.
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Abstract

We report on our work-in-progress to generate
a synthetic error dataset for Swedish by repli-
cating errors observed in the authentic error-
annotated dataset. We analyze a small subset of
authentic errors, capture regular patterns based
on parts of speech, and design a set of rules to
corrupt new data. We explore the approach and
identify its capabilities, advantages and limita-
tions as a way to enrich the existing collection
of error-annotated data. This work focuses on
word order errors, specifically those involving
the placement of finite verbs in a sentence.

1 Introduction

The lack of sufficient data to train algorithms ca-
pable of detecting, labeling and correcting gram-
matical errors calls for the need to generate syn-
thetic (i.e. machine-made, not human-produced)
error datasets to enrich the existing resources. As
mentioned by Stahlberg and Kumar (2021), the
need for synthetic datasets (aka corrupt or artifi-
cial datasets) exists not only for low-resource lan-
guages, but also for high-resource languages like
English. This is due to the fact that data for error
detection and correction is far more sparse than re-
quired for most tasks in NLP, as grammatical errors
are found in different frequencies and distributed
unevenly across written language. Moreover, the
appearance of grammatical errors in student es-
says depend notably on the speaker’s particularities,
such as their proficiency level, native language(s)
and age. The need is especially acute for languages
that are on the low-resource end in this respect, as
is the case for Swedish.

In this paper, we present a pilot study to gener-
ate artificial error data for Swedish by mimicking
error patterns present in authentic error datasets,
namely, in the SweLL learner corpus (Volodina
et al., 2019) and its one-error-per-sentence DaLAJ
derivative (Volodina et al., 2021). We create a cor-
ruption pipeline to insert artificial errors into the

sentences from COCTAILL, a corpus of textbooks
used for teaching Swedish (Volodina et al., 2014).
We expect the artificially produced error data to be
a valuable resource for such tasks as Grammatical
Error Detection / Labeling (GED) and Grammati-
cal Error Correction (GEC) for Swedish, which at
the moment are dormant fields.

In this pilot, we focus on word order errors in-
volving placement of finite verbs (tagged S-FinV).
The final dataset comprises 31,788 corrupted sen-
tences each containing one error of the syntactical
error type "S-FinV", paired with their correct coun-
terparts. The code and the generated data can be
found on GitHub1.

2 Related work

Recently much attention has been given to practi-
cal and theoretical aspects of artificial error data
generation as a way to enhance performance of
grammatical error correction systems, both with
respect to methods of generation, source (aka seed)
corpora used for corruption and the ways pseudo-
data is used in system architectures (e.g. Flachs
et al., 2021). Takahashi et al. (2020) give probably
the most nuanced introduction to the problem.

Approaches to generation of synthetic error
datasets can be roughly divided into rule-based and
model-based ones, which further exhibit variation
with regards to presence or absense of error la-
bels. Advantages of model-based approaches (e.g.
Stahlberg and Kumar, 2021) is that they capture the
variety of error types present in the authentic data
and the artificial data is fast to generate. However,
training a model for replicating errors requires ac-
cess to large amounts of such data, which often is a
problem to start with. It has also been observed that
models may show biases towards the data they have
been trained on, with a consequence that they are

1https://github.com/juditcasademont/Generation-of-
synthetic-error-data-LTR-project
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Figure 1: Overview of the pseudo-data generation process.

not general enough for unseen contexts or domains
(e.g. Bryant et al., 2017).

Advantages of rule-based approaches (e.g.
Grundkiewicz et al., 2019) are directly opposite,
namely, that they can be created with zero or mini-
mal access to gold data and can better generalize
since they are kept on an abstract level. Some
known rules include simple random operations, e.g.
deletion of a word, randomly swapping neighbour-
ing words, exchange of one inflected form with
another or use of so-called confusion pairs, i.e.
incorrect segment/token > corrected variant (e.g.
Choe et al., 2019; Grundkiewicz et al., 2019).

A more linguistic approach to error rules, e.g.
through abstracting to part of speech (POS) patterns
or patterns including morpho-syntactic information,
requires more time for designing corruption rules,
but has one obvious advantage: using such rules
allows control over the generated data and, impor-
tantly, it is possible to add error labels to corrupted
sentences, which makes the pseudo-data applicable
both to error correction and to error classification
tasks. It also has an advantage of inserting realistic
errors typical of learners, and has been shown to
increase performance of GEC systems, compared
to random error types (Takahashi et al., 2020) .
Given the scarcity of the Swedish authentic data,
we experiment with rule-based approaches using
linguistic analysis to extract typical error patterns
and to generate synthetic errors based on those.

3 Data and resources

The overview of the pseudo-data generation is
shown in Figure 1. On the left, the top level shows
steps for working with learner data, starting from
the SweLL data, including preparation of one-error-
per-sentence DaLAJ dataset, analysis of a 100
cleaned DaLAJ samples for identification of er-
ror patterns, and production of corruption rules.
The bottom level on the left shows a parallel work
involving selection of a seed corpus with correct
language and preselection of sentences for corrup-
tion. On the right, the graph shows the process
for corruption of the seed data and its subsequent

cleaning and evaluation.
To perform the task at hand, thus, two main

sources of textual data are needed: a corpus of
tagged errors and a corpus of clean (i.e., error-free)
texts. Additionally, a part of speech (POS) tagger
to extract grammatical information is required.

3.1 Error-labeled learner data

In this project, we use SweLL-gold (Volodina et al.,
2019), a collection consisting of 502 learner texts,
manually corrected and tagged according to 6 top
error categories which, in turn, have their own
sub-categories (Rudebeck and Sundberg, 2021).
The top error types are: Orthographic, Lexical,
Morphological, Punctuation, Syntactical and Other
(the category Other contains comments and unitel-
ligible strings). All texts are original and each sen-
tence on average contains more than one error of
more than one kind. The focus of this project is on
Syntactical errors involving the position of Finite
Verbs in a sentence, tagged in the SweLL corpus
as “S-FinV". There are 701 instances of this tag in
the corpus.

To better represent error types, we convert
SweLL-gold to DaLAJ format (Volodina et al.,
2021) where SweLL-gold data is represented as a
set of sentence pairs (original-corrected) in a scram-
bled order. The most attractive feature of DaLAJ is
that each sentence contains one error of one type
only. This means that an original SweLL sentence
has as many instances in the DaLAJ dataset as there
are individual correction tags in its original form.
This format supports easier detection and analysis
of error patterns, for both humans and computers.

3.2 Seed data

The source of the error-free data, i.e. seed data to
be corrupted with automatically generated errors, is
the COCTAILL corpus (Volodina et al., 2014) con-
taining 25,960 scrambled sentences from twelve
course books of Swedish as a second language, la-
beled for levels of proficiency. They represent the
following CEFR levels: Beginner (A1), Elemen-
tary (A2), Intermediate (B1), Upper Intermediate
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(B2) and Advanced (C1). The Proficiency level
(C2) is not represented. We assume that the lexi-
cal, grammatical and syntactical patterns in COC-
TAILL texts would be relatively close to the ones
used in learner essays, thus fitting perfectly for our
purposes. Out of the 25,960 sentences present in
the COCTAILL corpus texts, 20,307 were deemed
useful, as a filtering process was carried out to
discard sentences not containing verbs as well as
sentences shorter than two tokens.

3.3 POS tagging pipeline

Språkbanken Text’s Sparv pipeline2 (Borin et al.,
2016) was used to extract grammatical information
in the form of morphosyntactic tags. This pipeline
was used in two distinct phases of the project: in the
analysis of the error patterns and in the generation
of corrupted data. The Sparv pipeline is a tool for
text analysis that can be run from the command
line or called programmatically through an API.

4 Methods

4.1 Error patterns

Swedish is a so-called "verb-second" language,
which means that finite verbs, with a few excep-
tions, take the second position in a sentence (where
positions are counted in phrases). Errors with place-
ment of finite verbs are considered among the most
typical ones for L2 learners of Swedish. Linguistic
analysis of approx. 100 DaLAJ sentence pairs con-
taining S-FinV errors has shown that three POS in
specific positions in the sentence, have a tendency
to be the cause of S-FinV errors, namely: pronouns
(PN), nouns (NN) and adverbs (AB) (in the order
of frequency). Additionally, there is a need to make
a special case for proper names (PM).

Pronouns in the studied dataset are the most
fruitful part of speech tag in the production of verb
order errors, making two thirds of all S-FinV er-
rors. The error production patterns involving pro-
nouns can be grouped into two distinct groups:
PN-VB →VB-PN and VB-PN →PN-VB (where
the first part is correct →the second is erroneous).

To exemplify, in PN-VB →VB-PN*3 errors, the
error tends to happen right after a conjunction (KN),
an interrogative or relative adverb (HA), or at the
beginning of a sentence, like in the example below:

2spraakbanken.gu.se/sparv
3We use asterisk (*) to mark the incorrect pattern/example

sentence

Jag heter Karin.4 5 →Heter jag Karin.*
Eng: My name is Karin.

The VB-PN →PN-VB* pattern, is decidedly the
most frequent one in the "pronoun"-subtype, and
appears in subordinate clauses, which requires the
reversal of pronoun and verb positions. This phe-
nomenon usually appears after interrogative or rel-
ative pronouns (HP) and adverbs (AB).

Errors involving the positions of verbs in relation
to adverbs are also well-represented in our dataset,
even though not as frequent as pronoun-related
errors. Their typical error production patterns are:
VB-AB →AB-VB* and AB-VB →VB-AB*.

In VB-AB →AB-VB* errors, the learner writes
the adverb before the verb when its correct position
is after the verb. It usually occurs in a sentence’s
main clause, probably because the writer wrongly
applies the rule for subordinate clauses.

In contrast, errors of type AB-VB→VB-AB*
appear in subordinate clauses where the verb and
the adverb must switch positions in the sentence:

(...) om lillebror inte ska vara rädd för (...) →
(...) om lillebror ska inte vara rädd för (...)*
Eng: (...) if little brother must not be afraid of (...)

Error patterns involving nouns in close relation
to verbs are slightly more varied than those having
to do with pronouns and adverbs. The reason is
that nouns can be modified by other parts of speech,
such as determiners, possessives and adjectives.
They can in addition be modified by adjective-like
subordinate clauses.

Within this category, the primary error pattern
is VB-NN →NN-VB* (or rather noun phrases),
in which the verb needs to be placed before an
unmodified noun. These errors are likely to occur
when the initial position in a clause is taken by
another word class, most frequently by an adverb:

Ibland kommer mormor. →
Ibland mormor kommer.*
Eng: Grandma comes sometimes.

Other subtypes involve pre-modifiers, e.g. deter-
miners (DT), possessives (PS), adjectives (JJ):

(1) VB-DT-NN →DT-NN-VB;
(2) VB-PS-NN →PS-NN-VB, and
(3) VB-JJ-NN →JJ-NN-VB.

4In the examples, the first sentence is correct and the sec-
ond one contains one error. The verbs are in bold, whereas the
parts of speech that are being treated are underlined.

5All examples, unless stated otherwise, belong to the
SweLL and DaLAJ datasets.
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Figure 2: Corrupted data, selected columns.

The final pattern is based on proper names, ex-
hibiting similar behaviour to noun-based error pat-
terns. Due to pseudonymization, pseudonyms are
used instead of the originally used proper names
(as in the example below).

Han visste inte om Brad Pitt vann priset. →
Han visste inte om vann Brad Pitt priset.*
Eng: He didn’t know if Brad Pitt won the prize.

The typical patterns are: (1) PM-VB →VB-PM
and (2) PM-PM-VB →VB-PM-PM.

4.2 Corruption method

Using the identified error patterns, we reverse them
to a set of rules for each error subtype (pronouns,
adverbs, nouns and proper names) for shifting the
position of words in COCTAILL sentences. We
first extract POS tags from the correct sentences
and store them. In the process, sentences shorter
than two tokens and those not containing verbs are
discarded. All of them share an initial filter to avoid
changing the position of words before a colon, in
case a verb is present, like in the example below.
Capitalization is toggled if the initial capitalized
word is involved in the corruption.
Stryka subjektet: Jag är mycket trött. →
Stryka subjektet: Är jag mycket trött.*
Eng: Cross out the subject: I am very tired.

We strictly keep to the rule of having one error
per sentence. However, sentences may appear more
than once in the synthetic dataset, as they can be
corrupted several times, for example, if sentences
contain more than one verb or fit into several error
sub-patterns. In the end, a final scramble is per-
formed to the order of the sentences before they are
stored in a .csv file, with suggestions for data splits
(80%-10%-10%) and confusion pairs (Figure 2).

5 Results

A total of 31,788 sentences were corrupted from the
20,307 usable sentences available. The distribution
of error sub-types is shown in Table 1:

Similarly to the frequency distribution in student
essays, pronoun-dependent verb order errors are

Error subtype Produced errors
Pronoun-Verb 13,049
Adverb-Verb 9,922
Noun-Verb 8,041

Proper Name-Verb 776

Table 1: Error count of the final corrupted data.

the most frequent ones in the corrupted data, with
41.05% of synthetic errors being of this type. The
second most productive rules are the ones involv-
ing adverbs, with 31,21% of errors, followed by
nouns at 25,3%. Finally, as expected, the corrup-
tion pipeline produced a considerably lesser quan-
tity of errors involving proper names at 2,44%. The
distribution in the corrupted data, thus, reflects the
observed tendency in the authentic data.

To assess the quality of the corruption method,
we carried out a small-scale evaluation. Two peo-
ple have independently checked 100 randomly se-
lected corrupted sentences in terms of how similar
they are to hypothetical learner-made errors (i.e. to
make sure they are high quality). Following Bryant
et al. (2017), we used a three level scale of assess-
ment: Good, Acceptable and Bad. For Acceptable
and Bad, a reason could be indicated for further
analysis.

The evaluation shows that 76% (67%) of sen-
tences are Good, 14% (25%) are Acceptable and
10% (8%) are Bad. The numbers in brackets come
from the second annotator. Some observed prob-
lems had to do with more complex phrase shifts
that were missed. In others, the problem comes
from the source data, incl. unfinished sentences
with an uncertain sentence type (affirmative vs in-
terrogative), which then sounds correct even if the
verb and noun change places. It should be noted
that the main purpose of this evaluation was to see
whether humans think that the synthetic data will
be useful for training algorithms, and the result
where on average 90% sentences are either Good
or Acceptable is very encouraging. It has been
earlier claimed that even unrealistic errors are use-
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Data type Model type Lexical Morphological Orthographic Punctuation Syntactical
Original learner

data BERT Bi-LSTM 0.54894179 0.60539215 0.57565789 0.46072507 0.64680232

Original learner data
+ 500 FakeDaLAJ BERT Bi-LSTM 0.60634328 0.63834422 0.61026936 0.56034482 0.69732297

Original learner data
+ 1500 FakeDaLAJ BERT Bi-LSTM 0.51798561 0.58823529 0.50641940 0.37499999 0.71934945

Table 2: F0.5 score results from some selected models on error classification task.

ful for pre-training GEC models (e.g. Flachs et al.,
2021; Grundkiewicz et al., 2019). Given our re-
sults, therefore, we consider the produced dataset
appropriate for the task.

We have run the first experiments exploring ef-
fects of pseudo-data on the model performance
for the task of error detection and classification,
where classification is limited to the top error cat-
egories (Orthographic, Lexical, Morphological,
Punctuation, Syntactical). Detailed description of
that experiment is the topic of another publication,
however, we can shortly name here that we have ob-
served a tangible improvement of the classification
results when 500 FakeDaLAJ sentences of S-FinV
nature were added to the training data. When more
sentences were added, the models seemed to learn
to classify syntactical errors disadvantaging other
error types. A sample of the results obtained, mea-
sured with the F0.5 score, are shown in Table 2.

6 Conclusions and future work

This paper introduces a process for generation of
synthetic error datasets with corresponding error la-
bels based on linguistic analysis of real-life learner
errors in the context of limited error-annotated
learner data. This process could be replicated
for other error tags, or extended and adapted to
other low-resource languages. Manually studying
and designing corruption rules is time-consuming
and can be inaccurate due to human error and lan-
guage biases. Therefore, an alternative to optimize
time and avoid human mistakes could be to rely
on guided models as suggested by Stahlberg and
Kumar (2021) or Sennrich et al. (2016). However,
we have to adhere to rule-based approaches due to
the lack of sufficient amount of gold data. Yet, we
foresee considerable benefits of generating realistic
errors.

The resulting fakeDaLAJ (S-FinV) dataset is re-
leased for public use.6 Currently, we are testing
this dataset in a task for error detection and classifi-

6https://github.com/juditcasademont/Generation-of-
synthetic-error-data-LTR-project

cation. In the near future, we will also release a set
of cleaned 100 DaLAJ sentences per each error tag
in the SweLL-gold data, so that the community of
interested researchers and developers can use them
for generation of synthetic datasets for other error
types.
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Abstract 

In this paper, we introduce a dependency 
treebank of spoken second language (L2) 
English that is annotated with part of 
speech (Penn POS) tags and syntactic 
dependencies (Universal Dependencies). 
We then evaluate the degree to which the 
use of this treebank as training data affects 
POS and UD annotation accuracy for L1 
web texts, L2 written texts, and L2 spoken 
texts as compared to models trained on L1 
texts only.   

1 Introduction 

In the field of applied linguistics, natural language 
processing tools such as part of speech (POS) 
taggers and syntactic parsers have been and 
continue to be used to investigate characteristics of 
second language (L2) use at scale (e.g., Biber et al., 
2014; Kyle & Crossley, 2017; Lu, 2010; Paquot, 
2018). Although taggers and parsers are 
increasingly accurate (achieving F1 scores of 
around .98 for POS taggers and .95 for dependency 
annotation) when evaluated on in-domain texts 
(i.e., texts with similar linguistic characteristics as 
the training data), accuracy can drop precipitously 
for out of domain texts (e.g., McClosky et al., 
2006). A pressing issue, then, is the availability of 
appropriate annotated corpora to test and train 
tagging and parsing models on the types of data 
applied linguists often use (Kyle, 2021; Meurers & 
Dickinson, 2017). Although a treebank of written 
second language (L2) English is available (Berzak 
et al., 2016), to our knowledge no treebanks of 
spoken L2 speech are publicly and freely available. 
In this paper, we report on the development of an 
annotated corpus of spoken L2 English and 
evaluate the accuracy of a POS tagger and 
dependency parser when trained on L1 texts and a 
combination of L1 and L2 texts. 

2 Applied linguistics research and NLP 

The use of NLP tools such as taggers and parsers to 
examine characteristics of language use has a long 
history in the field of applied linguistics. Early 
studies (e.g., Biber, 1988) focused on the analysis 
of lexical and lexicogrammatical variation across 
registers (e.g., different spoken and written 
language use domains). As the subfield of learner 
corpus research has grown, taggers and parsers 
have also been used to investigate how second 
language learners’ linguistic patterns change over 
time (e.g., Crossley & McNamara, 2014; Kyle et 
al., 2021) and/or differ across proficiency levels 
(e.g., Biber et al., 2014; Grant & Ginther, 2000; 
Kyle et al., 2018; Paquot, 2018). 

2.1 Application of taggers and parsers in L2 
research 

POS taggers and syntactic parsers have been used 
in L2 research for a variety of purposes, ranging 
from relatively simple homograph disambiguation 
(e.g., Jarvis & Hashimoto, 2021) to the analysis of 
complex linguistic phenomena such as verb 
argument constructions (e.g., Kyle and Crossley, 
2017). An abbreviated overview of this research is 
outlined below. 
Grammatical error correction: A number of 
studies have used (and developed) tagging and 
parsing systems for identifying and correcting 
grammatical errors in L2 texts (e.g., Choshen & 
Abend, 2010; Nagata & Sakaguchi, 2016; 
Sakaguchi et al., 2017.) 
Homograph disambiguation: One use of POS 
taggers in L2 research is homograph 
disambiguation. Homograph disambiguation can 
be particularly important in the measurement of 
lexical diversity, where the variety of words used 
by L2 learners can be an indicator of proficiency 
(e.g., Jarvis & Hashimoto, 2021; McCarthy & 
Jarvis, 2010). 

A Dependency Treebank of Spoken Second Language English 
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Lexical bigrams: The characteristics of lexical 
combinations that are used in L2 productions can 
be an important predictor of development and/or 
proficiency level. Research has shown that more 
proficient L2 writers and speakers tend to use more 
frequent and more strongly associated lexical 
bigrams than less proficient L2 users (e.g., Granger 
& Bestgen, 2014; Garner et al., 2019; Kyle et al. 
2018). For more precise insights into linguistic 
development, some studies have constrained the 
lexical combinations that are used (e.g., adjective + 
noun or noun + noun combinations). 

Even more recently, researchers have begun to 
use dependency parses to analyze lexical items in 
particular grammatical relationships (e.g., verb + 
object; Kyle & Eguchi, 2021; Paquot, 2018, 2019; 
Rubin, 2021). 
Lexicogrammatical features: A number of 
studies have investigated the relationship between 
L2 proficiency and the use of lexicogrammatical 
features that are common in academic writing such 
as various types of noun phrase elaboration (e.g., 
Biber et al., 2014; Grant & Ginther, 2000; Picoral 
et al., 2021). A related line of research has explored 
the relationship between characteristics of verb 
argument construction use and L2 writing 
proficiency (e.g., Kyle & Crossley, 2017; Kyle et 
al., 2021). 
Syntactic complexity: A particularly common use 
of NLP tools in second language research is the 
calculation of classic syntactic complexity indices 
such as mean length of clause and dependent 
clauses per clause (e.g., Lu, 2010, 2011) or more 
fine-grained indices such as the number of 
dependents per nominal (e.g., Kyle & Crossley, 
2018; Díez-Bedmar & Pérez-Paredes, 2020). NLP 
tools have allowed research to examine 
relationships between syntactic complexity and 
language proficiency and/or development at a scale 
that would be infeasible for most researchers if 
manual analyses were used. 

2.2 Evaluations of system performance on 
L2 data 

The literature indicates that L2 researchers are fully 
aware of potential issues with tagger and parser 
performance (e.g., Meurers & Dickinson, 2017). 
However, most accuracy analyses have been small 
in scale and have not resulted in publicly available 
treebanks that can be used to improve future 
models (c.f., Berzak et al., 2016). Lu (2010), for 
example, which introduced the second language 

syntactic complexity analyzer (L2SCA), evaluated 
the accuracy of the tool using a 30-essay subset of 
texts used in a validation study. Polio and Yoon 
(2018) independently evaluated the accuracy of 
L2SCA using a different sample of texts. Kyle et al. 
(2021) evaluated the accuracy of verb argument 
construction identification using a sample of 100 
sentences from a corpus of L2 essays. Similar 
procedures have been used in a number of other 
studies (e.g., Díez-Bedmar & Pérez-Paredes, 2020; 
Paquot, 2019; Rubin, 2021). While small-scale 
accuracy analyses are important for establishing 
the effectiveness of particular linguistic analysis 
tools for a particular data set, these datasets are 
rarely made publicly available and do not 
necessarily follow the annotation guidelines or 
formatting conventions of well-known treebanks. 
One exception to this pattern is the Treebank of 
Learner English (Berzak et al., 2016) which 
includes written L2 English sentences annotated 
for Penn POS tags and Universal Dependencies. 
While this is an important resource, no treebanks of 
spoken L2 English are currently available. 

2.3 Contributions of this study 

In this study, we introduce a freely and publicly 
available treebank of Spoken L2 English that 
includes gold standard annotations for Penn POS 
tags and Universal Dependencies. We then 
evaluate the performance of tagger and parser 
models on both L1 and L2 data when the training 
set includes only L1 data and when the training set 
includes both L1 and L2 data. 

3 Method 

3.1 Dependency Treebank of Spoken L2 
English (SL2E) 

The Dependency Treebank of Spoken L2 English 
(SL2E) consists of a random sample of sentences 
from the National Institute of Information and  
Communications Technology Japanese Learner 
English (NICT JLE) corpus (Izumi et al., 2004). 
NICT JLE includes transcripts of oral proficiency 
interviews (OPI). Prior to sampling, all interviewer 
language was removed, leaving only utterances 
produced by second language speakers. The corpus 
includes a range of L2 English proficiency levels 
(mid-beginner to lower advanced). In total, the 
annotated portion of the corpus includes 7,412 
sentences (70,016 tokens) annotated for Penn POS 
tags (Santorini et al., 1990), of which 2,320 
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sentences (21,312 tokens) are also annotated for 
Universal Dependencies (Nivre et al, 2020). 

POS Annotation: The annotation was 
conducted in multiple stages. Undergraduate 
Linguistics majors who had taken upper-level 
courses related to linguistic structure were 
recruited to work on the project. POS annotation 
training sessions were conducted with annotators, 
followed by the annotation of sample sentences. 
Feedback was provided based on performance on 
the sample sentences. After training, sentences 
were annotated independently by at least two 
annotators using the browser-based application 
WebAnno (Eckart de Castilho et al., 2016). Any 
disagreements between annotators were checked 
by a third annotator. In rare cases where the third 
annotator disagreed with both of the first 
annotators, adjudication between annotators was 
conducted. During the annotation period, 
annotators had access to the original Penn POS 
tagging guidelines, the Berzak et al. (2016) tagging 
guidelines, and gold standard corpora (which were 
accessed using AntConc; Anthony, 2019). We also 
had weekly meetings to discuss difficult cases, a 
Discord server to report and discuss difficult cases 
asynchronously, and an extended tagging 
guidelines manual that was created based on these 
discussions. Initial annotation agreement for POS 
tags (prior to third ratings and adjudication) was 
95.1%. 

Dependency Annotation: After sentences were 
annotated for POS tags, annotators were trained for 
dependency annotation using procedure outlined 
above. Annotators had access to the Universal 
dependencies guidelines (Version 2; Nivre, 2020), 
gold standard corpora (accessed via Tündra; 
Martens,  2013), weekly meetings, a Discord 
server, and updated guidelines. After POS and 
dependency annotation was complete, POS tags 
and dependency annotations were checked again 
for consistency, resulting in some minor 
corrections. Initial annotation agreement (prior to 
third ratings and adjudication) was 86.5% (labeled 
attachment agreement). 

3.2 Other corpora used 

In this study, we decided to use data that was 
publicly and freely available. Accordingly, we used 
selected annotated corpora from the UD project, 
each of which are outlined briefly below. 

Treebank of Learner English (TLE): TLE 
(Berzak et al., 2016) consists of data from the CLC 

FCE Dataset (Yannakoudakis et al., 2011), which 
includes writing samples from the Cambridge 
ESOL First Certificate in English (FCE) exam. The 
FCE includes written responses across 5 registers 
(letter, report, article, composition, and short story) 
that prototypically range from 200-400 words. The 
TLE sample includes sentences from upper-
intermediate learners of English across 10 first 
language (L1) backgrounds. TLE includes 97,681 
tokens annotated for POS tags and universal 
dependencies. 

English Web Treebank (EWT): The Universal 
Dependency (UD) version (Silveira, et al., 2014) of 
the EWT (Bies, et al., 2012) consists of annotated 
data divided roughly evenly across five web genres 
(weblogs, newsgroups, emails, reviews, and 
Yahoo! answers). The UD version includes 
254,825 tokens annotated for Penn POS tags and 
Universal dependencies.  

Georgetown University Multilayer Treebank 
(GUM): GUM (Zeldes, 2017) consists of 
annotated data from various online sources, 
including interviews, news stories, and forum 
discussions (among many others). In this study, we 
use the versions of GUM included in the UD 2.9, 
which also includes sentences from Reddit 
(Behzad & Zeldes, 2020). In total, the version of 
GUM used in this study includes 135,886 tokens 
annotated for POS tags and universal 
dependencies. 

Parallel Universal Dependencies Treebank 
(PUD): PUD (Zeman et al., 2017) includes 
sentences from the news section of Wikipedia and 
comprises 21,312 tokens annotated for POS tags 
and universal dependencies. In this project, PUD 
was used as training data only. 

Data Splits Used 
Data Train Dev Test 
EWT 204,579 25,149 25,097 
GUM 103,400 16,270 16,216 
PUD 21,176 n/a n/a 
UDEP 1,705 n/a n/a 
TLE 78,541 9,549 9,591 
SL2E POS 55,873 6,815 7,328 
SL2E UD 16,879 2,167 2,266 

Training Data Summary 
Data L1 L1+L2 L1+L2e 
POS 432,826 567,240 435,624 
UD 432,826 528,246 434,951 

Table 1:  Number of tokens in each split 
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UD-English Pronouns (UDEP): UDEP 
(Monarch, 2021) includes sentences designed to 
mitigate biases (e.g., gender biases) that exist in 
extant treebanks by including sentences with 
pronouns that are rare in other treebanks (e.g., 
hers). UDEP includes 1,705 tokens. In this project, 
UDEP is used as training data only. 

3.3 Splits used 

In this study, we used 80/10/10 splits for the 
Spoken L2 Treebank, and the extant splits in all 
treebanks available in UD release 2.9. Because 
more data was annotated for POS tags than for 
dependency relations, we created training/dev/test 
sets separately for POS annotation and dependency 
annotation. For each, we tested three versions of 
training data. The first (L1) included only L1 data 
(EWT, GUM, PUD, and UDEP). The second 
(L1+L2) included the L1 data plus the L2 data 
(TLE + SL2E). Given the relatively small datasets 
(and the positive relationship between the amount 
of training data and model accuracy), we also 
included a third version of the training data 
(L1+L2e) in which the number of tokens in the 
L1+L2 training data was made roughly equal to 
that of the L1 training data by excluding a random 
sample of L1 sentences. See Table 1 for the splits 
used in POS annotation and dependency 
annotation. 

3.4 NLP pipeline 
For this study, we used Spacy version 3.2 
(Honnibal et al., 2020) to train transformer-based 
POS and dependency annotation models (L1, 
L1+L2, and L1+L2e models for each task). Spacy 
is freely available, easy to use, and has achieved 
state-of-the-art performance for both POS and 
dependency annotation (Honnibal et al., 2020). The 
models used pre-trained weights from RoBERTa-
base (Liu, 2019). The POS and dependency layers 
listen to the transformer embedding, and they were 
optimized using Adam optimizer. The same 
hyperparameter settings were used for training all 
models. Training scripts, models generated during 
training, and evaluation scripts are available at 
(https://github.com/LCR-ADS-Lab/l2-nlp-
training-spacy). POS annotation accuracy was 
measured using sentences with gold standard splits 
and tokenization. Dependency annotation accuracy 
was measured using gold standard splits and 
tokenization, and model-based POS tags (using the 
best-performing POS model). 

4 Results 

4.1 POS annotation results 

Despite the relatively small amount of training data 
used, all three models resulted in relatively high 
tagging accuracy for the L1 corpora (EWT and 
GUM), ranging from F1 scores of 0.958 to 0.977 
on the test set (see Table 2). Somewhat surprisingly, 
the highest F1 scores for the L1 corpora were 
achieved when L2 data was added during the 
training (even when the number of tokens in the 
training data was held constant in L1+L2e), and 
these gains were modest (see Table 2). The lowest 
tagging accuracy was observed when the L1-
trained model was applied to the L2 spoken test set 
(F1 = 0.936). However, when L2 data was included 
in the training set, the F1 scores for the L2 spoken 
test set (F1 = 0.970) were similar to those for L1 
corpora.  

4.2 Dependency annotation results 

Labeled attachment scores (LAS) for test set data 
ranged from F1 scores of 0.876 (Spoken L2 data, 
L1 model) to F1 scores of 0.938 (Spoken L2 data, 
L1+L2e model). Accuracy for all models increased 
with the inclusion of L2 data in the training set 
(even when the total amount of training data was 
held constant). However, the most dramatic 
increases were for both written and spoken L2 data.  

5 Discussion and conclusion 

5.1 Summary of findings 

The results of this study suggest that substantial 
improvements in POS tagging and dependency 
parsing performance on L2 texts can be made 

POS Models 
Data L1 L1+L2 L1+L2e 
EWT 0.958 0.965 0.964 
GUM 0.973 0.975 0.977 
SL2E 0.936 0.970 0.966 
TLE 0.953 0.969 0.966 

Dependency Models 
Data L1 L1+L2 L1+L2e 
EWT 0.884 0.895 0.895 
GUM 0.884 0.897 0.895 
SL2E 0.876 0.935 0.938 
TLE 0.886 0.920 0.918 

Table 2:  F1 scores for lexical tags 
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through the use of training sets that include L2 data, 
even when the total amount of training data is held 
constant. Following previous research (e.g., Berzak 
et al., 2016), these improvements were observed 
for written L2 data. However, the improvements 
were particularly marked for the spoken L2 data 
introduced in this study. It should also be clearly 
noted that the highest dependency annotation 
accuracy was observed with L2 spoken data 
(followed by L2 written data).  

5.2 Limitations and future directions 

While this study demonstrated accuracy gains in 
L2 tagging and parsing through the use of L2 
training data, there are still a few limitations that 
should be addressed in future studies. First, 
although this study added to the amount of 
annotated data available for training, the total 
amount of publicly available gold standard data 
annotated for universal dependencies remains 
rather small. Future research should focus on 
providing more gold standard data across a variety 
of English domains (including L2 domains). 
Second, in this study we did not fully account for 
strength and weaknesses of each model with regard 
to particular lexical items or annotations. While 
overall F1 scores are a helpful gauge, many L2 
researchers are interested in particular grammatical 
features (e.g., main verb + direct object pairs), and 
more precise accuracy figures should be 
considered in future research. 

5.3 Conclusion 

This study introduced a new gold standard treebank 
of spoken L2 English annotated with Penn part of 
speech tags and universal dependencies. 
Furthermore, this study has demonstrated that the 
addition of a relatively small amount of in-domain 
data can substantively improve tagging and parsing 
accuracy in L2 texts. The SL2E Treebank is 
publicly available for non-commercial purposes 
(https://github.com/LCR-ADS-Lab/SL2E-
Dependency-Treebank). 
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Abstract

Peer assessment is an effective and efficient
pedagogical strategy for delivering feedback
to learners. Asking students to provide quality
feedback, which contains suggestions and men-
tions problems, can promote metacognition by
reviewers and better assist reviewees in revising
their work. Thus, various supervised machine
learning algorithms have been proposed to de-
tect quality feedback. However, all these power-
ful algorithms have the same Achilles’ heel: the
reliance on sufficient historical data. In other
words, collecting adequate peer feedback for
training a supervised algorithm can take several
semesters before the model can be deployed to
a new class. In this paper, we present a new
paradigm, called incremental zero-shot learn-
ing (IZSL), to tackle the problem of lacking
sufficient historical data. Our results show that
the method can achieve acceptable “cold-start”
performance without needing any domain data,
and it outperforms BERT when trained on the
same data collected incrementally.

1 Introduction

Peer assessment is a process whereby students as-
sess other students’ assignments by writing review
comments against a set of assessment criteria pro-
vided by the instructor. This pedagogical strategy
has been extensively applied across various aca-
demic fields and has demonstrated its effectiveness
over the past decades (Double et al., 2020). Further-
more, peer assessment serves as a crucial tool for
delivering necessary feedback in massive open on-
line courses (MOOCs), as this assessment strategy
allows MOOCs to scale up the feedback process
while minimizing ongoing support costs.

Nevertheless, the benefits of peer assessment can
only be achieved with quality peer feedback (Ash-
ton and Davies, 2015; Van Zundert et al., 2010).
Course staff can manually review the credibility
of each submitted feedback, but this is very inef-
ficient. Hence, there has been a surge of interest

in automating the assessment of feedback quality
by machine-learning algorithms. These algorithms
typically assess quality by determining whether
the feedback comprises certain features (e.g., con-
tains “suggestion” and “problem” statements) (Nel-
son and Schunn, 2009). If those characteristics
are not present in the submitted reviews, the peer-
assessment system could suggest that the reviewer
revise the feedback to add the missing features.

Although these machine-learning algorithms for
assessing feedback quality are very effective, they
all have the same Achilles’ heel: dependence on
enough domain-specific peer-feedback data. That
is, for each new discipline, it takes several school
terms to collect sufficient data before the model can
be applied. Thus, a desideratum of peer-assessment
platforms is an effective quality-assessment model
that does not require domain-specific historical data
in “cold-start” condition (i.e., no domain data is
available for training). Additionally, this model
should be capable of using incrementally collected
data to progressively improve its performance.

In this paper, we present an approach, named In-
cremental Zero-shot Learning (IZSL), for address-
ing lack of historical data in automated feedback-
quality evaluation. The core idea of the method
is to treat the problem of detecting quality feed-
back as a natural language inference (NLI) task
and utilize the pre-trained BART-based NLI model
(Yin et al., 2019) to assess feedback quality. Our
results show that IZSL can achieve acceptable per-
formance in the “cold-start” condition on different
datasets, and IZSL can substantially outperform
BERT (Devlin et al., 2018) after training on the
same incrementally collected data.

The rest of the paper is organized as follows: Sec-
tion 2 presents related work. Section 3 describes
datasets. Section 4 elaborates on our IZSL method
for assessing feedback quality. Section 5 presents
experimental results. Section 6 concludes the paper
and provides some discussion about future work.
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Peer-Feedback Comments Sugg. Prob.
No model tests have been added. Basic controller tests generated by scaffold and devise are available. 0 1
The design is written great. It will be better to explain more about the pattern used. 1 0
A little short. Make the conclusion more powerful and mention how you would address it as a teacher. 1 1

Table 1: Sample data. The first two samples are from CS-Peer-Feedback. The last sample is from Ed-Peer-Feedback.
“Sugg.” and “Prob.” indicate whether the comment provides suggestions and mentions problems, respectively.

2 Related Work

2.1 Automated Peer-Feedback Assessment

Automated peer-feedback assessment is defined
as a task of automatically analyzing peer-feedback
comments written by students and highlighting low-
quality comments that need to be revised. The goal
of the task is to improve the overall quality of peer
feedback and consequently improve students’ learn-
ing. As the first step towards building an effective
automated peer-feedback assessment system, Cho
(2008) pioneered various machine-learning meth-
ods to classify peer-feedback units.

Subsequent work typically focused on designing
more sophisticated features or using deep-learning
algorithms to improve the performance. For exam-
ple, Xiong and Litman (2011) designed features to
represent feedback by combining generic linguistic
features and specialized features. Ramachandran
et al. (2017) utilized word-order graphs to repre-
sent review texts to assess the quality of feedback.
Xiao et al. (2020b) leveraged various deep-learning
approaches to detect whether the peer-feedback
comments contain problem statements.

After that, researchers have noticed and tried to
address the problem of lacking training data for
new curricula. For instance, Xiao et al. (2020a) at-
tempted to reduce the need for domain-specific data
by applying transfer-learning and active-learning
techniques. Jia et al. (2021) proposed to leverage
multi-task learning to alleviate the problem. De-
spite the fact that these techniques can considerably
reduce the need for historical data, none of them
can help when we do not have any domain data.

2.2 Zero-shot Learning

Traditionally, zero-shot learning most often refers
to the task of training a classifier on one set of labels
and then evaluating it on a different set of labels
that the classifier has never seen before (Wang et al.,
2019). With the emergence of the pre-training
and fine-tuning paradigm, “zero-shot learning” has
been generalized to refer to the situation where a

pre-trained language model is used to predict for a
downsteam task that it was not even fine-tuned on.

Yin et al. (2019) proposed to use a pre-trained
NLI model as an out-of-the-box zero-shot text clas-
sifier and achieved promising results. A major ad-
vantage of this method over other zero-shot learn-
ing methods (e.g., Schick and Schütze, 2020) is that
NLI-based zero-shot learning does not need access
to task-specific hand-crafted prompt sentences.

3 Dataset

We captured data from Expertiza. In this system,
learners can submit their work and write feedback
comments on peers’ submissions based on a set of
rubric prompts. For example, each reviewer might
be asked to provide a comment for the criterion,
“Does the design incorporate all of the functional-
ity required?” In this paper, the terms “feedback
comments,” “review comments,” and “peer feed-
back” are used interchangeably to mean the textual
responses to criterion in the rubric.

We obtained two datasets from the aforemen-
tioned peer-review platform for this study. The
first dataset, CS-Peer-Feedback, is derived from a
graduate-level object-oriented development course.
This dataset consists of 12,053 data points and is
mildly imbalanced. The second dataset, Ed-Peer-
Feedback, comes from a graduate-level education
course. The dataset contains 172 data points and is
also mildly skewed. Some sample peer-feedback
comments are displayed in Table 1.

All feedback comments have been manually an-
notated by a fluent English speaker who is familiar
with the course context. To measure the reliability
of the labels, we randomly sampled 100 comments
from each dataset and asked a second annotator to
annotate them. We measured the inter-annotator
agreement on each set of 100 randomly selected
samples using Cohen’s κ coefficient. The average
κ scores for the CS-Peer-Feedback dataset and the
Ed-Peer-Feedback data were 0.88 and 0.85, respec-
tively. These scores suggest that the annotations
are reliable (Cohen’s κ > 0.81 (McHugh, 2012)).
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Figure 1: The key idea of IZSL is to convert the problem of evaluating peer-feedback comments into an NLI
problem. The left part shows the traditional text classification setting for assessing feedback comments. The right
part shows the NLI setting that treats the peer feedback as the premise and uses the label to formulate the hypothesis.

4 Methodology

4.1 Problem Formulation

We formulate the task of evaluating peer-feedback
comments as follows: suppose that during the t-
th semester of a class, we could collect a dataset
Dt = (Xt, Y t) consisting of N t data samples,
where Xt = {xt1, xt2, . . . , xtNt} denotes a set of N t

feedback comments collected in the t-th semester,
and Y t denotes corresponding labels indicating
whether the feedback provides suggestions and/or
mentions problems. In practice, these annotations
can be obtained by, e.g., asking reviewees to de-
termine if the received feedback contains the fea-
tures. Additionally, it is worth noting that the la-
bels Y t can only be used for training after they
are collected, i.e., after the t-th semester. In the
“cold-start” condition (i.e., without any histori-
cal data, in the 0-th semester), the task of IZSL
is to craft a classifier FIZSL that can effectively
make predictions for feedback comments X0 with-
out using any domain data to train the model. In
the incremental learning phase (i.e., t > 0), we
would have historical data D<t, where D<t means
(D0, D1, ..., Dt−1) (the data we collected in the
first (t − 1) semesters). The task of IZSL in this
phase is to update the classifier FIZSL using all
historical data D<t and to predict more accurately
the labels for peer-feedback comments Xt.

4.2 Incremental Zero-shot Learning

We now describe our IZSL approach for classify-
ing feedback comments. As shown in Figure 1, the
overall idea of IZSL is to convert a text classifi-
cation problem into a natural language inference
(NLI) problem. NLI is the task of determining
whether, given a premise, a hypothesis is true (en-

tailment) or false (contradiction). We typically treat
the text to be classified (i.e., feedback comments) as
the premise, and construct the hypothesis from the
class name of the label, “This text is about {label},”
where “{label}” can be “suggestions” or “prob-
lems”. If the NLI model tells us that the premise
is likely to entail the hypothesis, we can conclude
that the label is associated with the input feedback
comment and vice versa.

We use BART (Lewis et al., 2019) to craft the
NLI model and initialize all parameters with the
“bart-large-mnli” checkpoint1 (Yin et al., 2019),
which is pretrained on the multi-genre NLI (MNLI)
dataset. In the “cold-start” condition, using the
pretrained weights makes us have an out-of-the-box
NLI model for assessing feedback quality for any
curriculum without needing historical data. This is
not possible for traditional text classification mod-
els, since they need domain data to tune the output
fully-connected layer. Then, in the incremental
learning phase, we use incrementally collected
data to further fine-tune the NLI model.

4.3 Baseline Classification Method
Although traditional text classification models can-
not be applied in the “cold-start” condition, a
BERT-based classifier is implemented to compare
the performance of IZSL in the incremental learn-
ing phase. We build the classifier by stacking a
dense layer on top of BERT. The parameters of
BERT are initialized using a pretained checkpoint,2

and the weights of the dense layer are randomly
initialized using the uniform distribution. Then, we
fine-tune the model utilizing the same incremental
acquisition data as when fine-tuning IZSL.

1https://huggingface.co/facebook/bart-large-mnli
2https://huggingface.co/bert-base-uncased
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Suggestions Problems
Data Model F1 P R AUC F1 P R AUC
0 IZSL 61.2±2.4 70.1±2.8 59.6±1.7 73.5±3.2 60.9±2.4 63.1±2.5 61.2±2.2 70.3±2.3

50 BERT 63.0±16.0 64.8±8.7 68.7±22.2 82.6±10.6 63.4±5.7 69.9±3.2 66.2±2.5 79.9±3.6
IZSL 91.5±1.3 90.0±2.3 94.5±2.7 97.5±1.1 84.8±2.0 85.4±1.5 85.0±2.2 93.4±1.0

100 BERT 65.4±14.1 63.6±15.7 69.6±14.1 85.7±2.3 69.5±9.9 73.7±9.0 71.2±8.4 81.0±10.1
IZSL 92.3±1.5 92.5±2.5 92.2±2.7 97.1±1.3 87.0±2.8 87.7±2.6 87.0±2.8 94.1±1.4

250 BERT 77.9±7.4 76.2±7.0 82.2±7.6 90.9±4.8 83.1±7.1 83.1±7.0 83.6±7.0 90.0±6.1
IZSL 93.5±1.5 92.8±2.9 94.4±0.9 97.9±0.6 87.9±0.8 87.8±0.9 88.4±1.0 94.4±0.7

500 BERT 81.1±7.2 79.2±8.2 84.6±4.4 93.0±4.1 87.3±1.2 87.4±1.2 87.3±1.4 93.5±0.9
IZSL 93.5±0.8 92.8±1.3 94.2±1.2 98.2±1.0 89.1±1.0 89.1±1.1 89.1±1.0 94.9±0.8

750 BERT 90.7±0.5 90.4±1.5 91.0±1.2 97.6±0.4 87.2±5.9 86.6±7.8 88.2±3.2 94.3±1.4
IZSL 93.7±1.9 92.7±3.2 94.9±0.6 98.2±0.5 90.2±0.4 90.2±0.6 90.3±0.4 95.6±0.2

1000 BERT 91.7±1.0 90.5±1.1 93.2±2.0 98.1±0.9 88.8±1.0 88.8±0.9 88.9±1.1 94.6±0.6
IZSL 93.8±0.9 92.7±1.4 94.9±0.9 98.2±0.4 90.4±1.3 90.2±1.2 90.7±1.6 95.9±1.3

Table 2: Performance evaluation of BERT (baseline) and IZSL on CS-Peer-Feedback. The first column is the
number of training samples used. The best results in each setting are marked in bold. Confidence interval = 95% .

Suggestions Problems
Data Model F1 P R AUC F1 P R AUC
0 IZSL 60.5±2.0 67.1±3.2 59.6±1.6 68.8±0.7 57.2±2.3 57.5±2.2 59.6±3.0 64.4±2.3

50 BERT 52.1±14.7 51.3±18.0 56.7±10.9 69.6±9.0 56.3±11.7 59.8±20.4 56.9±7.6 67.4±7.6
IZSL 78.1±3.3 76.9±2.7 82.0±6.8 87.8±1.4 81.7±2.7 84.2±3.4 80.4±4.7 94.2±1.0

100 BERT 68.7±14.8 77.6±11.7 68.5±15.6 80.3±9.2 62.0±14.6 66.3±21.8 64.3±10.5 75.8±15.0
IZSL 82.2±1.8 80.7±1.8 86.1±4.2 90.8±1.3 84.3±3.8 87.5±3.6 82.5±5.0 93.4±2.2

Table 3: Performance evaluation of BERT (baseline) and IZSL on Ed-Peer-Feedback with 95% confidence interval.

5 Evaluation

5.1 Experimental Setup

Training and Optimization Details. We train our
models on eight NVIDIA RTX6000 GPUs (24GB
each) with a total batch size of 8, a learning rate
of 2e-5/3e-5/5e-5, epochs of 2/3, and the Adam
optimizer (Kingma and Ba, 2014).
Handling the Imbalanced Datasets. To alleviate
the problem of class imbalance, we employ a cost-
sensitive approach. Specifically, we weight the
cross-entropy loss function based on the frequency
of each class in the training set.

5.2 Results and Discussion

The evaluation results are shown in Tables 2 and
3. The first row (i.e., for “Data” = 0) of each ta-
ble shows the performance of IZSL when we do
not have any historical data. Then, the following
rows of each table compare the results of IZSL and
BERT when trained with incrementally collected
data. In the “cold-start” phase, the F1 scores
for the labels “Suggestions” and “Problems” on
the CS-Peer-Feedback dataset are 61.2 and 60.9,
respectively. On the Ed-Peer-Feedback dataset,
the F1 scores for these two labels are 60.5 and
57.2, respectively. The results suggest that IZSL
can achieve acceptable “cold-start” performance on

data from different disciplines, considering that it
does not use any domain data. However, it is worth
noting that the performance of the IZSL model
varies on datasets from different domains. It is still
unclear how we can estimate the “cold-start” per-
formance of IZSL on a particular dataset. We leave
this research question to future studies. In the in-
cremental learning phase, we surprisingly find
that the F1 scores of IZSL quickly jump to over
91.5 and 84.8 on the CS-Peer-Feedback dataset
after training with only dozens of training sam-
ples, and we make a similar finding on the Ed-
Peer-Feedback dataset. Our hypothesis for IZSL to
perform better than BERT in “low-data” settings
is that NLI-based classification models have better
generalization ability than traditional classification
methods. However, this hypothesis needs to be
further tested by extensive experiments. By exam-
ining the following rows of the tables, the results
clearly show that IZSL can consistently outperform
BERT on all metrics across all settings, and the con-
fidence intervals suggest that the performance of
IZSL is more stable. To summarize, IZSL can
achieve acceptable “cold-start” performance and
consistently outperform the BERT model in the in-
cremental learning phase, especially when we only
have dozens of incrementally collected data points.
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6 Conclusion and Future Work

The quality of peer feedback plays a vital role in
peer assessment. However, lacking historical data
for new curricula is a persistent problem. Our work
proposes a novel method for assessing feedback
quality by converting it into an NLI problem. The
approach can potentially be generalized to other
pedagogical tasks. Future plans include investigat-
ing how to improve “cold-start” performance.
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Abstract

Spoken ‘grammatical error correction’ (SGEC)
is an important process to provide feedback for
second language learning. Due to a lack of
end-to-end training data, SGEC is often imple-
mented as a cascaded, modular system, consist-
ing of speech recognition, disfluency removal,
and grammatical error correction (GEC). This
cascaded structure enables efficient use of train-
ing data for each module. It is, however, diffi-
cult to compare and evaluate the performance
of individual modules as preceeding modules
may introduce errors. For example the GEC
module input depends on the output of non-
native speech recognition and disfluency de-
tection, both challenging tasks for learner data.
This paper focuses on the assessment and de-
velopment of SGEC systems. We first discuss
metrics for evaluating SGEC, both individual
modules and the overall system. The system-
level metrics enable tuning for optimal system
performance. A known issue in cascaded sys-
tems is error propagation between modules.
To mitigate this problem semi-supervised ap-
proaches and self-distillation are investigated.
Lastly, when SGEC system gets deployed it is
important to give accurate feedback to users.
Thus, we apply filtering to remove edits with
low-confidence, aiming to improve overall feed-
back precision. The performance metrics are
examined on a Linguaskill multi-level data set,
which includes the original non-native speech,
manual transcriptions and reference grammati-
cal error corrections, to enable system analysis
and development.

1 Introduction

Grammatical construction is one of the key ele-
ments in second language acquisition, and text-
based grammatical error correction (GEC) has been
widely studied over the past decade (Dale and Kil-
garriff, 2011; Ng et al., 2014; Bryant et al., 2017).
With speaking skills playing a big part in language
learning, it has become increasingly important to

analyse spoken grammars. Previous works have
investigated grammatical error detection (GED)
on spoken language transcriptions (Caines et al.,
2020), and tighter integration of disfluency removal
and grammar correction on spontaneous learner
speech (Lu et al., 2020). This paper focuses on the
spoken grammatical error correction (SGEC) task.
There are several challenges facing SGEC: running
automatic speech recognition (ASR) on learner En-
glish is harder than native speech due to potential
pronunciation and grammatical errors; spoken lan-
guage often comes with disfluent speech events
such as repetitions and false starts, which are dis-
ruptive to downstream tasks; there is very little end-
to-end speech to correction data that can be used
for training. In this paper, SGEC adopts a cascaded
structure: an ASR module produces transcriptions;
a disfluency detection (DD) (Zayats et al., 2016)
module recovers a fluent text flow; and a conven-
tional machine translation style GEC (Yuan and
Briscoe, 2016) module produces error corrections.

Several metrics have been developed to assess
text-based GEC. GLEU (Napoles et al., 2015) score
adopts BLEU (Papineni et al., 2002) based n-gram
precision over the reference. It rewards word-
level corrections, as well as correctly preserved
source text. MaxMatch M2 (Dahlmeier and Ng,
2012) captures phrase-level edits, and calculates
F0.5 scores accordingly. It assesses performance
in terms of edits, which suits well with feedback
oriented applications. For Spoken GEC assess-
ment, however, it is not straight forward to apply
those standard metrics. A common problem fac-
ing cascaded style spoken language applications is
that it is difficult to compare across models when
upstream modules (e.g. ASR) are different. For
example, input text to GEC module varies when
upstream ASR and DD models are changed. If stan-
dard GLEU and M2 F0.5 are to be applied, these
metrics mean differently every time ASR transcrip-
tions change, and thus results are incomparable
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across systems. Not only for cascaded systems,
evaluation metrics is not clearly defined for end-
to-end trained spoken systems. It is difficult to
migrate text-based metrics to spoken tasks, since
end-to-end models do not provide any intermediate
variables for assessment.

This paper first discusses metrics to assess cas-
caded SGEC systems. When evaluating individual
modules, standard metrics can be used. However,
these metrics are not suitable for system-level as-
sessment, since they sometimes take into account
module inputs. When downstream module inputs
change with its upstream modules, results can be-
come incomparable across systems. To make sys-
tems comparable, we use edit distance based met-
rics instead and focus on the output quality. A com-
mon issue in cascaded systems is error propagation,
since individual modules are trained separately. To
mitigate this issue, semi-supervised fine-tuning is
conducted. It aims to tune DD and GEC modules
for optimal system performance with non-native
ASR transcriptions. Self-distillation is also inves-
tigated, which learns from a rich distribution of
semi-supervised references. Both fine-tuning ex-
periments are conducted on learner English without
readily available annotations. For system devel-
opment purposes, we focus on optimising output
quality; and for assisting language learning, we
shift the emphasis to give high quality feedback.
We first remove ambiguous corrections, and further
filter out low-confidence edits to improve feedback
precision as well as the overall quality.

2 Evaluation metrics

Cascaded spoken grammatical error correction
(SGEC) consists of three modules, namely speech
recognition (ASR), disfluency detection (DD) and
grammatical error correction (GEC). It converts
disfluent, grammatically incorrect audio sequences
into fluent, grammatically correct text. Variables
are notated as such: x for input audio, w for speech
transcriptions, t for disfluency tags, wf for tran-
scriptions with disfluencies removed, and y for
grammatically correct outputs. N.B.: bold letters
are used to represent sequences, with subscripts
omitted, e.g. x short for x1:T .

x1:T
ASR−−→ w1:N

DD−−→ t1:N , wf
1:M

GEC−−→ y1:L (1)

When evaluating individual modules, standard
metrics can be used. Word error rate (WER) is
used for ASR to compute word-level edit distance.

DD is modeled as a sequence tagging task, and F1

score is used to indicate the mean of precision and
recall (use hat, e.g. â, to indicate hypothesises):

SASR = WER(ŵ,w) (2)

SDD = F1(t̂, t) (3)

For GEC module, a standard evaluation is to
compare reference and hypothesised edits, and use
F0.5 score to reflect a weighted precision and recall:

E = M2(wf ,y) (4)

Ê = M2(wf , ŷ) (5)

SGEC = F0.5(Ê, E) (6)

where reference and hypothesised edits E, Ê are
extracted using MaxMatch (M2) (Dahlmeier and
Ng, 2012) alignment between inputs and outputs.
Each edit is defined by a triplet [st, ed, cor]
(st: start location of the error, ed: end location,
cor: correction).

For cascaded systems, it is also important to look
at system-level evaluation, which assesses a com-
bination of modules. When evaluating ASR and
DD combined, the standard DD metric F1 score no
longer apply. The reference tags t have a one-to-
one correspondence with input word tokens w, and
we need a different set of reference t for different
ASR transcriptions. It is therefore not feasible to
compare across systems that have different ASR
transcriptions if F1 is used. Thus, we use WER
instead, to directly analyse the output quality from
disfluency removal:

SASR+DD = WER(ŵf ,wf ) (7)

When evaluating ASR, DD and GEC modules
combined i.e. the SGEC system, standard GEC
metric M2 F0.5 cannot be used, since it does not
allow comparison across systems. It requires input
sequences wf to be given for edit extraction, and
changes in upstream ASR and DD modules will
lead to a different set of reference edits E. There-
fore the focus is laid on the quality of outputs. We
adopt sentence error rate (SER) to analyse sentence-
level matches between references and hypotheses.
To achieve greater granularity, we also adopt trans-
lation edit rate (TER) (Snover et al., 2006) to assess
word-level distance from references.

SASR+DD+GEC = SER/TER(ŷ,y) (8)
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Individual module evaluation SASR, SDD and
SGEC helps develop each module separately.
System-level metrics SASR+DD and SASR+DD+GEC
both emphasise output quality, which enables com-
parison across systems even when upstream mod-
ules change. They also help guide further tuning
and development of the SGEC system as a whole.

3 Module error mitigation

Each module in the cascaded SGEC system is
trained individually. DD is trained on a native spo-
ken corpus, and GEC is trained on written text that
is processed to be like speech transcripts (details
in 5). Individual training allows efficient use of
data on one hand, yet on the other hand, it suffers
from error propagation due to mismatches between
training and evaluation. For example, DD and GEC
modules have not seen any ASR transcriptions dur-
ing training, and thus any ASR error at evaluation
time would potentially disrupt their performance.
Ideally, fine-tuning on a non-native spoken corpus
would most effectively mitigate error propagation,
but similar to many other speech to text tasks, there
is no readily available data for training. There-
fore in this section, we adopt semi-supervised ap-
proaches to fine-tune the SGEC system on a spoken
learner corpus without manual annotations. Here
we use the ASR training corpus, which is compara-
tively abundant and less costly to obtain, compared
to end-to-end SGEC annotation. It consists of au-
dio sequences x and manual transcriptions w.

3.1 Semi-supervised fine-tuning

Figure 1: Semi-supervised fine-tuning pipeline. Orange de-
notes reference generation, blue denotes hypotheses. The
greyed (ASR) block is frozen during fine-tuning; DD and
GEC modules are separately tuned.

Fine-tuning aims to train the system to be more
robust against error propagation. The ASR train-
ing set provides non-native audio sequences and
their corresponding manual transcriptions, yet lack-
ing references for grammatical error corrections.
We generate pseudo references by feeding manual
transcriptions through the baseline system, and hy-
potheses by feeding through audio sequences. The
pseudo references are not impacted by ASR errors,

and therefore minimising distance between refer-
ences and hypotheses should help mitigate ASR
error propagation. Figure 1 shows the fine-tuning
pipeline. When fine-tuning the DD module, refer-
ences and hypotheses are generated as such:

t,wf = DD(w) (9)

t̂, ŵf = DD(ASR(x)) (10)

Reference tags and fluent text are produced by
feeding manual transcriptions through DD mod-
ule, and hypotheses are generated by feeding audio
sequences through ASR and DD modules. For se-
quence tagging tasks, reference tags change with
input word tokens, and thus reference tags t of
manual transcriptions cannot be directly applied
to ASR transcriptions during fine-tuning. Recall-
ing that WER is used to assess output wf when
evaluating ASR and DD combined, we can apply
the same idea and directly compare fluent text wf

and ŵf after disfluency removal. Reference tags t′

can be derived by aligning wf and ŵf : all inser-
tions in ŵf are treated as disfluencies, substitutions
and matches are tagged as fluent words, whereas
deletions are ignored (Table 1):

wf a cat si- sit on the mat
ŵf a cat sat on um the mat
Aln M M D S M I M M
t′ O O - O O E O O

Table 1: An example of converting wf and ŵf to t′

M:match, D:deletion, S:substitution, I:insertion
E:disfluent, O:fluent, ’-’: no label for deleted words

Following this tagging scheme, applying binary
cross entropy loss between t̂ and t′ is equivalent
to optimising for lower WER (SASR+DD). For GEC
module fine-tuning, both ASR and DD modules are
frozen. To obtain references y, manual transcrip-
tions are fed through DD and GEC modules; and
for hypotheses ŷ, audio sequences are fed through
ASR, DD and GEC modules:

y = GEC(DD(w)) (11)

ŷ = GEC(DD(ASR(x))) (12)

To optimise for a lower SER (SASR+DD+GEC), a stan-
dard cross entropy loss can be used with teacher
forcing training:

L = logP (y|ŵf ) =
∑

l logP (yl|ŵf , y1:l−1)
(13)

Minimising cross entropy loss is equivalent to max-
imising sentence-level probabilities, and therefore
should directly help improve SER.
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3.2 Self-distillation
Semi-supervised fine-tuning relies on pseudo ref-
erences generated from manual transcriptions, the
quality of which largely depends on the perfor-
mance of the baseline SGEC system. DD and GEC
are trained on native spoken and non-native writ-
ten corpora respectively, both of which have not
encountered any in-domain non-native spoken data.
Therefore, it is likely that the pseudo references
generated on the non-native spoken corpus are er-
roneous. To alleviate the potential degradation
caused by this, we further apply self-distillation.
Self-distillation is originated from knowledge dis-
tillation (Hinton et al., 2015), which often trains
a student model to learn from predictions made
by a teacher model. The teacher is usually su-
perior to the student, e.g. larger in size than the
student, or an ensemble teacher for a single model
student. Self-distillation (Zhang et al., 2019) is
originally proposed in the computer vision commu-
nity. It extends the idea of knowledge distillation by
proposing to use the same model for both teacher
and student. It has been shown to be effective for
improving both image (Zhang et al., 2019) and
text-based tasks (Xu et al., 2020).

Here we adopt the same self-distillation idea,
but use a semi-supervised corpus for training. The
teacher model is always frozen, and the student
model will be trained. The training objective is to
minimise the Kullback–Leibler (KL) divergence of
the per word posterior distribution between teacher
and student:

LKL =
∑

l KL[Pt(yl|ŵf , y1:l−1), Ps(yl|ŵf , y1:l−1)]
(14)

where Pt, Ps are teacher and student distributions.
Another common practice is to interpolate the KL
divergence with cross-entropy loss in Eqn. 13:

Ldist = αLKL + (1− α)L (15)

Despite the empirical success of self-distillation,
the intuition behind adopting self-distillation on
semi-supervised data here is to guide the student
model with richer probability distributions, rather
than relying solely on one-best predictions.

4 Feedback and confidence filtering

Section 2, 3 mainly focus on evaluating and opti-
mising output quality. Another important aspect
for language learning applications is feedback to
learners, since feedback quality directly impacts

learner’s progression in language learning. This
section first describes how feedback is extracted
and assessed for SGEC systems, then introduces
confidence-based filtering that aims to improve
feedback precision.

For GEC tasks, feedback usually suggests where
the error is and how to correct it. In written
GEC, feedback edits are extracted using Eqn. 5
by comparing input and output sequences. Its qual-
ity is analysed using F0.5 (Eqn. 6) by comparing
hypotheses against reference edits. This is not
applicable to spoken GEC, since reference edits
change with upstream ASR transcriptions, are con-
sequently F0.5 scores are not comparable across
systems. Here we modify the definition of refer-
ence and hypothesised edits as such:

E = M2(wf ,y) (16)

Ê = M2(ŵf , ŷ) (17)

F0.5 can be calculated as before. Reference edits E
are generated using manual fluent transcripts wf

as source sequences. With reference E defined in-
dependent from ASR or DD module, feedback F0.5

can be compared across systems. Hypothesised ed-
its Ê use hypothesised fluent transcriptions ŵf as
source sequences. Therefore Ê account for errors
from all three modules, and reflects the true feed-
back given to users when the system is deployed.
Note that such mismatched source sequences in E
and Ê put extra penalty on F0.5. To given an exam-
ple: when system output ŷ matches with reference
y i.e. the system output is perfectly correct, differ-
ences in wf and ŵf will still result in differences
in Ê from E, leading to degraded F0.5 score.

SGEC is a very challenging task due to potential
errors coming from transcriptions, disfluencies as
well as the correction process. To avoid giving er-
roneous feedback to language learners, we do not
want to give feedback on edits that our models have
little confidence in, assuming lower confidence in-
dicates lower accuracy. To conduct confidence fil-
tering, we need to define a confidence measure. In
the cascaded SGEC pipeline (Eqn. 1), each module
produces a token-level confidence score associated
with its prediction. We first define sentence-level
confidence for each module as the lowest token
probability over the entire sentence. Sentence-level
filtering can be conducted by rejecting sentences
with low confidence. We also explore the option
of using edit-level confidence, i.e. confidences are
calculated over each edit instead of sentence. Note
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that for ASR module, we always use the lowest
over sentence, to mitigate a known issue of ASR
error propagation. The overall confidence is cal-
culated using a weighted sum of all thee modules:

logP = α logPASR + β logPDD + γ logPGEC
(18)

where PASR, PDD and PGEC are sentence/edit-level
confidence of each module.

5 Experimental results

5.1 Corpora and models

Corpus Spoken Use #Sent #Word %Dsf

ASRtrn ✓ ASR Train 62K 2.5M* -
SWBD ✓ DD Train 154K 940K 11.1
CLC ✗ GEC Train 1.9M 25.2M 0.0
BEA ✗ GEC Train 1M 11.5M 0.0

FCEtst ✗ Eval 2,681 37K 0.0
LIN ✓ Eval 3,361 38K 5.0

Table 2: Corpora statistics. Spoken: whether it is derived
from speech; Audio: whether it provides audio sequences;
%Dsf: percentage disfluencies contained in the corpus. (*:
approximated value, no manual transcriptions available)

ASRtrn is used for ASR training, as well as
module error mitigation in Section 3. It consists of
334 hours of an online English speaking test data,
which mainly covers 28 L1s and the 5 CEFR (Coun-
cil of Europe, 2001) grades ranging from A1 to
C2. Different from usual ASR training corpus,
it only provides crowd source transcriptions, the
quality of which is far worse than manual tran-
scriptions. A remedy for this is to use multi-stage
teacher-student training: bootstrap the system with
crowd source data, and use an ensemble teacher
to generate higher quality transcriptions to guide a
single student model (Wang et al., 2018). For ex-
periments described in Section 3, by manual tran-
scriptions we always refer to this higher quality
transcriptions generated using the teacher ensem-
ble. Switchboard (SWBD) (Meteer et al., 1995)
consists of 260 hours of telephone conversations of
native American English speakers. The Treebank-
3 annotation (Taylor et al., 2003) provides man-
ual transcripts and disfluency annotations on the
Switchboard corpus. Cambridge Learner Cor-
pus (CLC) (Nicholls, 2003) is a collection of writ-
ten exams of candidates from 86 L1s at different
proficiency levels. The corpus is annotated with
grammatical errors. BEA (Bryant et al., 2019) is
a collection of text-based grammatical error cor-

rection corpora, including Write & Improve, LOC-
NESS, Lang-8 and NUCLE (FCE train split ex-
cluded, since it overlaps with CLC). FCEtst (Yan-
nakoudakis et al., 2011) is a hold out subset of
the CLC for test. Punctuation and capitalisation
are removed from all corpora derived from writ-
ten text, to make them look more like speech tran-
scriptions. Linguaskill (LIN) is derived from an
English speaking test. It consists of 833 learners
from over 15 L1s, evenly distributed across CEFR
grades. Manual transcriptions are segmented at
phrase level, with incomplete or ambiguous phrases
rejected. The remaining set is annotated with dis-
fluencies and grammatical errors. Relevant corpora
statistics are summarised in Table 2.

Cascaded SGEC consists of three modules: ASR,
DD and GEC. ASR uses a hybrid deep learning-
HMM graphemic system. It is a teacher-student
trained TDNN-F model (Povey et al., 2018; Wang
et al., 2018) with trigram lattice generation. Suc-
ceeding word RNNLM (Chen et al., 2017) is used
for rescoring. It has a WER of 19.97% on LIN.
Confidence scores are returned by the ASR en-
gines, followed by piece-wise linear mapping (Ev-
ermann et al., 2005). DD is a binary classifica-
tion model which consists of a BERT layer (Devlin
et al., 2019) in the version provided by the Hugging-
Face Transformer Library (Wolf et al., 2019) (bert-
base-uncased), a first dense layer of 768 nodes, a
second dense layer of 128 nodes, and finally the
output layer of size 2. The model is trained on
SWBD and uses an Adam optimiser (Kingma and
Ba, 2014) with batch size 64, learning rate 1e-06
and dropout 0.1. GEC adopts a transformer-based
sequence to sequence model. It is initialised from
Gramformer1, which is a T5 model (Raffel et al.,
2020) trained on WikiEdits processed with syn-
thetic error generation techniques (Lichtarge et al.,
2019). It is further fine-tuned on CLC and BEA.
Training uses Adam optimiser with a batch size
of 256, and learning rate of 5e-4 with warm up.
Maximum sentence length is set at 64, and the final
model parameters are calculated using checkpoint
averaging (Izmailov et al., 2018), which takes the
average over the 5 best checkpoints. N.B.: all re-
sults are reported without standard deviations, since
we initialise both DD and GEC modules with large
pre-trained models and deviations due to random
dropout are relatively small.

1https://github.com/
PrithivirajDamodaran/Gramformer
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5.2 Metrics and tuning

In-domain eval LIN-MAN eval
Modules Metric Data Score Input Score

ASR WER ↓ - - x 19.97
DD F1 ↑ SWBD 89.66 w 79.52

GEC M2 ↑ FCEtst 56.60 wf 53.57

Table 3: Individual module evaluation at their respective oper-
ating point. ASR uses LM scale=11, DD uses threshold=0.5.

Table 3 lists performance of each individual mod-
ule in the SGEC system, comparing out-of-domain
evaluation on manual transcriptions of LIN against
in-domain test sets. ASR training is conducted in a
semi-supervised fashion, therefore we only report
WER on LIN-MAN. We always use manual tran-
scriptions for individual module evaluation. For
DD, going from native to non-native spoken En-
glish, a 10 percent loss is seen in F1 score. For
GEC, going from written to fluent spoken style
data loses 3 points on M2 F0.5. Compared to do-
main mismatch, much larger degradation is induced
by ASR errors. Table 4 evaluates combination of
multiple modules for LIN, focusing on the over-
all output quality. It shows significant impact of
ASR transcriptions, with the overall SER and TER
increasing by 33.50 and 19.62 points respectively.

Modules Metric MAN ASR

ASR+DD WER ↓ 1.96 21.20
ASR+DD+GEC SER ↓ 43.26 76.76

TER ↓ 8.27 27.89

Table 4: Evaluating combination of modules on LIN corpus.
MAN and ASR columns show performance on manual and
ASR transcriptions at their respective operating points.

Figure 2: System tuning using SER/TER/M2. Plot shows a
sweep over DD thresholds at the chosen LM scale = 11.

Having defined system level metrics, we can
jointly tune the modules in cascaded SGEC for
better overall output quality. Here we focus on
two variables: ASR language model (LM) scale
factor, and DD disfluency removal threshold. A

two-dimensional grid search is conducted over a
range of LM factors (6-13) and DD threshold (0.0-
1.0). Fig. 2 shows a sweep over disfluency removal
thresholds at the chosen LM scale factor. It can
be seen that all edit distance based metrics are
relatively insensitive to the sweep, whereas feed-
back F0.5 shows a stronger preference (more feed-
back analysis in Section 5.4). The best WER for
the intermediate output wf is at 0.7, and the best
SER/TER for the overall output y sits at 0.4. Al-
though differences are insignificant, this shows that
an intermediate optima can be different from the
overall optima, and confirms the necessity of over-
all performance metrics. The operating point is
chosen according to SER/TER, at a LM scale of 11
and a disfluency threshold of 0.4.

5.3 Module error mitigation
As shown in Table 4, ASR errors result in large
degradation, partly because DD and GEC modules
have not encounter any non-native spoken data dur-
ing training. Fine-tuning on a non-native spoken
corpus is the most efficient way to mitigate ASR er-
ror propagation, yet limited by data availability, we
conduct semi-supervised fine-tuning instead. As
explained in Section 3.1, we use the SGEC pipeline
to generate pseudo reference. Its performance on
LIN-MAN (in Table 4) gives an approximation of
how much we fall behind supervised fine-tuning.
Table 5 lists the impact of tuning DD and GEC
modules respectively.

ASR+DD ASR+DD+GEC
Models WER↓ SER↓ TER↓

Base 21.20 76.76 27.89
TuneDD 21.06 76.79 27.83

TuneGEC - 76.35 27.47

Table 5: Impact of fine-tuning DD and GEC modules. Note:
combination of the two doesn’t yield better performance, thus
using TuneGEC for future development.

Tuning DD module gives 0.14 decrease on WER
of DD output wf , yet fails to improve SER/TER
of GEC output y. When generating reference tags
t′ as described in table 1, we minimise the edit
distance between ŵf and wf , which directly opti-
mises for lower WER. However, optimising for the
intermediate output does not always help improve
the overall output, and thus changes in WER of
DD don’t seem to have significant impact on down-
stream GEC. Tuning GEC module improves both
SER and TER. The fine-tuning process maximises
sentence-level probabilities, which helps to achieve
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lower SER/TER.
Semi-supervised fine-tuning of GEC module im-

proves SER/TER, yet it is still not as effective
as supervised fine-tuning. Aiming to further im-
prove the output y, we adopt semi-supervised self-
distillation, which trains the model to learn a prob-
ability distribution at each time step, rather than
predicting the correct word. The rationale is that
probability distribution potentially offers richer in-
formation than a single prediction, especially when
the reference y is synthetically generated.

Model Init KL coeff. SER↓ TER↓
Teacher - - 76.35 27.47

Student Base 0.5 76.58 27.49
1.0 76.44 27.46

Teacher 0.5 76.41 27.46
1.0 76.35 27.51

Table 6: Self-distillation results. Base and teacher models are
Base and TuneGEC from Table 5. Init: initialisation point of
the student model. KL coeff.: coefficient of loss interpolation
(α in Eqn. 15). Softmax temperature is set at 0.8 for all.

Table 6 contrasts the impact of student initial-
isation and coefficient of KL loss. The standard
approach is to initialise from the teacher, which
tends to lead the student to land on a local optima
close to the teacher. An alternative is to initialise
from Base, which allows the student to explore a
larger space, potentially landing on a local mini-
mum further away from the teacher. Larger KL
coefficient forces the student to mimic the teacher
predicted distribution rather than one-best predic-
tion. However, both SER and TER are quite insen-
sitive to self-distillation, although feedback F0.5

shows some improvement (in Section 5.4).

5.4 Feedback and confidence filtering
Previous experiments focus on system analysis and
development, this section shift the focus to anal-
yse feedback quality. For optimal feedback, we
adopt a slightly different operating point from be-
fore according to Fig. 2 (LM scale 11, DD thresh-
old 0.5). Table 7 tabulates the results of system
tuning evaluated using system TER and feedback
F0.5. Compared to system TER, feedback F0.5

proves to be much more sensitive to system tuning.
Semi-supervised fine-tuning and self-distillation
improves feedback by 1.66 and 0.65 points respec-
tively. We use the optimal F0.5 (22.57) as our base-
line for confidence filtering.

Feedback from SGEC, also called edits, suggests
the error location, type and correction. To give

Models Base +Tune +Distill

TER↓ 27.89 27.47 27.46
Fdbk F0.5↑ 20.26 21.92 22.57

Table 7: Impact of semi-supervised fine-tuning and self-
distillation on TER & feedback M2 F0.5. +Distill: self-
distillation model initialises from Base, and uses KL coeff.=1.

high quality feedback to learners, it is important to
pass on a clear and accurate message in terms of
corrections as well as error types. Feedback edits
are automatically typed using a rule-based frame-
work ERRANT (Bryant et al., 2017). Some exam-
ples of error types: M:PREP (missing preposition),
U:DET (unnecessary determiner). It sometimes
predict error type as OTHER when edits do not fall
into any other category. A large part of OTHER are
paraphrases, which can be ambiguous to learners.
Therefore we exclude edits typed as OTHER.

Table 8 shows that excluding OTHER removes
approximately 10-15% edits from reference and
hypothesis. Note that removing OTHER edits in
reference reduces the total number of edits, and
makes it much easier for models to achieve higher
F0.5 since most rejected edits are ambiguous and
difficult to predict. Both precision and recall get
boosted, thus improving the baseline F0.5. OTHERs
are excluded from scoring for confidence filtering
experiments below.

F0.5↑ %Edits Exc.
Eval Inc. Exc. REF HYP

FCEtst 56.60 59.73 13.87 9.65
LIN 22.57 24.30 14.21 12.54

Table 8: Feedback F0.5 inc./exc. OTHER, and %edits being
removed from reference and hypothesis by excluding OTHER.

To improve feedback precision, sentence-level
and edit-level confidence filtering are applied to
reject ill-conditioned edits. When conducting fil-
tering, we expect both true positives (TP: correctly
predicted edits) and false positives (FP: incorrectly
predicted edits) to reduce. Under the hypothesis
that there are more FPs than TPs in the low confi-
dence region, we expect precision to improve, and
consequently help F0.5.

Fig. 3 shows change in feedback F0.5 score as we
filter out an increasing number of edits by setting
higher confidence thresholds. Both sentence-level
and edit-level filtering peak midway, and drop back
as we continue to filter out more edits. Filtering
operating at sentence-level tends to work better
than edit-level. This can be explained by the na-
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Figure 3: Comparing sentence-level and edit-level confidence
filtering. Moving from left to right, confidence threshold
increases, and more edits get filtered out.

ture of grammatical corrections being intertwined
within one sentence, i.e. removing one edit from a
sentence could potentially result in inconsistencies
with other corrections made to sentence. Table 9
shows the operating points of confidence filtering.
Removing 33.8% of the edits using sentence fil-
tering gives significant gains in both precision and
F0.5; whereas edit filtering gives mild improve-
ment when 3.7% of edits are filtered out. When de-
ploying SGEC systems, we can always change the
confidence threshold to strike a balance between
percentage removal and precision improvement.

Filter P R F0.5 %Rm

None 27.75 16.24 24.30 0
Sent 33.96 13.15 25.80 33.8
Edit 28.53 16.05 24.69 3.7

Table 9: Operating points of confidence filtering. P: precision,
R: recall, %Rm percentage edits being removed

As explained in Eqn. 18, system confidence com-
bines probabilities from all three modules. Fig. 4
analyses the impact of individual modules by con-
trasting filtering using sentence-level confidence
of each module. As an increasing number of edits
get filtered out, precision-recall curves move from
bottom right to top left corner (precision increases,
and recall decreases). Larger area under the curve
indicates higher F0.5 scores throughout the sweep.
Filtering with Pa outperforms both Pd and Pg, sug-
gesting that ASR confidence is quite indicative of
feedback quality. Another implication from this
observation is that quality of ASR transcriptions
largely impacts downstream performances.

We also take a closer look at the impact of
sentence-level filtering on different edit types. Ta-
ble 10 shows the change in precision, recall and
F0.5 scores before and after filtering. Confidence
filtering improves feedback F0.5 on most edit types,
among which most significant ones are R:PREP,

Figure 4: Precision and recall curves: filtering using sentence-
level confidences of individual modules. Pcomb: combined
confidence, Pa: ASR, Pd: DD, Pg: GEC. From right to left, fil-
tering out an increasing number of edits. The final α, β, γ co-
efficients are selected using the optimal M2F0.5 score, which
gives α = 0.3, β = 0.4, γ = 0.3.

U:DET, M:PREP2. The two degraded edit types
are R:VERB:TENSE, R:VERB:FORM, both of
which often have more than one feasible correc-
tions. Confidence-based filtering tends to remove
edits with diverse solutions, due to the high entropy,
thus low confidence in the hypotheses. Such rejec-
tion pattern leads to significant drop in recall, and
consequently reduces F0.5 of edits with diverse cor-
rections. On the other hand, for edits like R:PREP,
U:DET, M:PREP, there usually exists a single, def-
inite fix. Baseline F0.5 scores on those edits are in
general quite high, and confidence filtering helps to
further improve the performance. Such observation
suggests that confidence filtering helps to reduce
feedback on ambiguous edits, and in the meantime,
boosts precision on more deterministic corrections.

NoFilter Sent
Edit Type P R F0.5 P R F0.5

M:DET 30.18 27.39 29.57 35.86 22.61 32.10
R:PREP 37.86 18.47 31.29 46.88 15.68 33.53
R:NOUN:NUM 37.88 20.66 32.47 44.68 17.36 33.98
R:VERB:TENSE 35.63 13.60 26.91 35.00 9.21 22.44
U:DET 23.20 16.20 21.36 29.49 12.85 23.42
R:VERB 27.27 11.69 21.53 33.33 10.39 23.12
R:NOUN 11.77 4.29 8.72 18.52 3.57 10.08
M:PREP 23.29 13.39 20.29 35.56 12.60 26.06
R:VERB:FORM 31.17 20.00 28.04 38.10 13.33 27.78
R:VERB:SVA 31.92 27.78 30.99 37.31 23.15 33.25

Table 10: Comparing P,R, F0.5 before and after sentence-
level confidence filtering, breakdown by edit types.

2There are three prefixes - R: replacement, U: unnec-
essary, M: missing. The error types are defined using part-
of-speech (POS) tags. E.g. R:PREP means replacement of
preposition. More details on edit types see Bryant et al. 2017.
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6 Conclusions

This paper focuses on assessing and developing
cascaded SGEC systems. We discuss standard
metrics for individual module assessment, as well
as edit distance based metrics for system output
evaluation. To mitigate module error propaga-
tion in cascaded systems, we experimented with
semi-supervised fine-tuning and self-distillation ap-
proaches, aiming to improve system output quality.
Lastly, confidence-based filtering is investigated,
and it proves to be effective in improving feedback
precision as well as the overall quality.

For future work, we plan to experiment with the
state-of-the-art end-to-end ASR systems, which po-
tentially gives lower WER and further improves the
SGEC performances. Another research direction is
to investigate tighter integration of modular SGEC
systems, which allows a richer information flow
cross module connections.
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Abstract
In field of teaching, true/false questioning is
an important educational method for assess-
ing students’ general understanding of learn-
ing materials. Manually creating such ques-
tions requires extensive human effort and ex-
pert knowledge. Question Generation (QG)
technique offers the possibility to automatically
generate a large number of questions. However,
there is limited work on automatic true/false
question generation due to the lack of train-
ing data and difficulty finding question-worthy
content. In this paper, we propose an unsu-
pervised True/False Question Generation ap-
proach (TF-QG) that automatically generates
true/false questions from a given passage for
reading comprehension test. TF-QG consists
of a template-based framework that aims to
test the specific knowledge in the passage by
leveraging various NLP techniques, and a gen-
erative framework to generate more flexible
and complicated questions by using a novel
masking-and-infilling strategy. Human eval-
uation shows that our approach can generate
high-quality and valuable true/false questions.
In addition, simulated testing on the generated
questions challenges the state-of-the-art infer-
ence models from NLI, QA, and fact verifica-
tion tasks.

1 Introduction

For educational purposes, questioning not only as-
sesses the acquisition of knowledge, but also re-
inforces the engagement and critical thinking of
learners during effective teaching, which in turn
enables learners to clearly guide their learning ef-
forts and enhance their skills (Prince, 2004). With
the ever-growing educational content on the inter-
net and the increasing popularity of online tutoring
applications during the COVID-19 pandemic, an
automatic question creation process becomes a key
technique to reduce the efforts in manually con-
structing questions and facilitate adaptive learning.

∗ Equal contribution

Text-based question generation for education
aims to produce legible and pedagogically-salient
questions from a given textual content to provide
meaningful learning experiences, where the answer
to the question can be found or derived from the
content. Earlier QG models generate simple ques-
tions based on manually constructed rules (Rus
et al., 2012; Lindberg et al., 2013; Lee, 2016). How-
ever, such questions often lack linguistic diversity
and contain much ungrammatical or nonsensical
content (Kurdi et al., 2020). Recently, with the de-
velopment of deep learning and question answering
(QA) techniques, the studies of QG have shifted to-
wards neural question generation (NQG) which uti-
lizes deep neural networks to generate more fluent
and diverse questions (Pan et al., 2019). Depend-
ing on the QA datasets used for training, various
types of questions can be generated such as span-
based questions (Du et al., 2017; Gao et al., 2019),
multiple-choice questions (Chung et al., 2020), and
multi-hop questions (Pan et al., 2020; Su et al.,
2020). However, due to the limitation of the cur-
rent QA corpus, most of the generated questions
focus on finding the information presented in the
passage. Moreover, the majority of NQG models
are used for improving QA or dialogue systems
instead of for educational purposes (Duan et al.,
2017; Sachan and Xing, 2018; Pan et al., 2021).

Among various types of educational-purposed
questions, true/false (T/F) questions can yield valid
assessments directly, simply, and efficiently (Ebel,
1970), which is useful to evaluate if the learners
hold any misconceptions about the given material.
In this paper, we take the approach of defining
the T/F question as a declarative sentence (state-
ment)1, rather than an interrogative sentence like
that in BoolQ (Clark et al., 2019). So far, auto-
matically generating such type of questions is rel-
atively less explored. Lee (2016) developed a sys-
tem where the original sentences in passage are

1See more examples in Section 3.4.
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Figure 1: Overall architecture of TF-QG.

used as true questions and the false questions are
generated by replacing the keywords with their
antonyms or adding a negative keyword. Killawala
et al. (2018)’s method was also based on simple
syntactic templates. However, the quality of the
generated questions is not good enough for assess-
ment due to 1) the lack of training data and diffi-
culty of finding good testing points from a given
passage, and 2) the high occurrence of grammatical
and semantic errors (Zhang and Bansal, 2019).

In this paper, we propose an unsupervised
True/False Question Generation approach (TF-QG)
for assessing the reading comprehension ability of
English learners. TF-QG leverages both a tradi-
tional template-based method and a recently devel-
oped generative language model to generate high-
quality T/F questions from a given passage. In
the template-based framework, various NLP tech-
niques are used for creating heuristic templates
to test certain knowledge such as lexical, syntac-
tic, and coreference understanding. In the gen-
erative framework, we propose a novel masking-
and-infilling strategy to generate more flexible and
complicated questions such as inferential questions
that require deeper understandings of the passage.
Specifically, to yield questions with valid testing
points, we design several templates and mask selec-
tion protocols to select question-worthy contents
from the passage. Then, the pretrained language
model with text infilling objective is used to gener-
ate new statements based on both the prior knowl-
edge and the context of the passage. Finally, we
design a novel scoring mechanism to score and rank
the generated questions based on their conciseness
and relevance to the passage.

Extensive human evaluation shows that TF-QG
is able to generate high-quality T/F questions con-
taining both factoid and inferential content. In ad-
dition, simulated experiments on the generated T/F
questions challenge the state-of-the-art NLI, QA,

and fact verification systems, which indicates that
these questions are difficult to some extent.
To summarize, our main contributions are:
• We propose an unsupervised system for T/F ques-

tion generation with the educational purpose of
testing students’ reading comprehension ability.
The question-worthy contents are selected by our
designed templates and mask selection protocols
targeting various testing points. Such templates
and protocols can be customized by educators
based on test points, making it easier to incorpo-
rate into TF-QG without modifying or retraining
the model.

• We propose a masking-and-infilling question gen-
eration strategy that enables the system to gener-
ate more linguistically diverse and semantically
complicated T/F questions.

• TF-QG provides a domain-independent solution
for constructing a large-scale T/F reading com-
prehension dataset. Both human evaluation and
simulated tests on reasoning tasks show the rea-
sonableness and difficulty of the generated T/F
questions.

2 TF-QG Model

Given a passage as reading material, TF-QG aims
to generate T/F questions to test learners’ under-
standing of the passage. The overall architecture
is shown in Figure 1. The passage is first pre-
processed to obtain the basic syntactic and semantic
information (Section 2.1). Then, two unsupervised
frameworks including the template-based frame-
work (Section 2.2) and the generative framework
(Section 2.3) are applied to generate T/F questions
targeting the question-worthy contents in the pas-
sage. The question-worthy contents are selected
according to our designed templates/protocols in
the two frameworks which will be described in the
respective sections.
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2.1 Passage Pre-processing

We first conduct coreference resolution to resolve
pronouns to their corresponding antecedents and
gather antecedents representing the same concept
into a coreference set. Then we implement seman-
tic role labeling (SRL) and put the semantic roles
of the same subject (Arg0) into respective SRL sets.
The constituency parsing tree for each sentence is
obtained by a syntactic parser. Finally, we extract
numeral sets from the passage, each set contains
instances of “number + quantifier” (e.g., “200 me-
ters”) with the same quantifier. Our implementa-
tions are based on the AllenNLP library (Gardner
et al., 2017).2

2.2 Template-based Framework

To assess learners, intuitively, the generated T/F
questions should be sufficiently similar to some
fragments about the passage, but different from
the passage at a pedagogically meaningful point.
Although there be various definitions of what one
might consider valuable test points, this paper fo-
cuses on the areas that we thought were most likely
to be relevant to language learning and understand-
ing. To this end, we design the following heuristic
templates to generate T/F questions by selecting
and modifying the question-worthy content in the
given passage.
• Coreference substitution template (Coref) If a

pronoun is more than one sentence away from its
antecedent, we replace the pronoun with its an-
tecedent to generate a true question. Besides, the
pronoun is replaced with an irrelevant antecedent
in the coreference set to generate a false question.

• Coordination modification template (Coord)
From the constituency parsing tree, we find noun
coordination structures in the form of “NP1 CC
NP2” or “NP1, NP2, ..., CC NPk”.3 Then we
randomly select a NPi (i ∈ 1, ..., k) node and use
the templates “... only NPi ...” and “... no NPi ...”
to generate false questions.

• SRL modification template (SRL) If there are
same semantic role types in an SRL set, we ex-
change the two semantic roles into each other’s
sentences to generate two false questions.

• Synonym/Antonym substitution template
(Synonym/Antonym) When we find an adjective
or an adverb in a short sentence (<15 words), the
word is replaced with its synonym or antonym

2https://allennlp.org
3NP: noun phrase; CC: coordinating conjunction.

from WordNet4 to generate a true question or a
false question, respectively.

• Negation modification template (Negation) If
a sentence contains a verbal negation or a word
from the negative cue list extracted from Bio-
scope (Vincze et al., 2008), we remove the neg-
ative word and take the rest of the sentence as a
false question.

• Number modification template (Num) If there
is more than one element in a numeral set, we ran-
domly exchange two of them into each other’s
original sentences, to generate two false ques-
tions.

• Definition modification template (Def) If an ap-
positive clause fits the pattern “... NP1 <comma>
NP2 ...”, we generate a corresponding true ques-
tion as “NP1 <copula> NP2.”.

• Simplification rule To make the question more
concise and focus on the key information, we re-
move 1) the constituency structures “SBAR” and
“IN+S”, 2) the contents between two commas
(parenthesis), and 3) the constituency structures
“PP” and “ADVP” at the beginning of the ques-
tion.
Each of the above heuristic templates is activated

independently and repeatedly if its conditions are
met. These templates aim to test the learners’ un-
derstanding of the passage from different aspects:
Coref, Num, and Def templates focus on the un-
derstanding of context meaning, number, and defi-
nition, respectively; Synonym/Antonym templates
test learners’ lexical understanding while Coord,
SRL, and Negation template tests syntactic or se-
mantic understanding.

Note that the above templates are customizable,
i.e. educators could easily add new heuristic tem-
plates to TF-QG for specific teaching or testing
purposes with. In addition, an advantage of the
template-based framework is that it can generate
T/F questions while determining whether their an-
swers are true or false. On the other hand, the
limitation of this template-based framework is that
it requires educators to 1) know which types of
language capabilities of the learners they would
like to test and specify the test points (this is re-
lated to the educational process and difficult to be
replaced by models), and 2) know the formulation
of the fundamental NLP tasks, to smoothly convert
the language test points to the templates with extra
effort only once.

4https://wordnet.princeton.edu
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three-toe-sloths.

Example 1 (True) Example 2 (False)

Figure 2: Generative framework of TF-QG. The processes and data-flow are shown on the left; two examples with
step-by-step transformations are shown on the right.

2.3 Generative Framework

Generative framework aims to generate more flex-
ible and complicated T/F questions. As shown
on the left of Figure 2, the highlighted masking-
and-infilling and scoring-and-ranking are the main
components of our model. Two examples with
step-by-step transformations are shown on the right.
Example 1 is a true question generated from an ex-
pository passage, whereas Example 2 is a false
question generated from a narrative passage. In the
following, we describe each process in detail.

2.3.1 Sentence Masking
To pick question-worthy content from the passage
and facilitate the generation of T/F questions, we
design the following mask selection protocols.
• Semantic role masking. Mask the arguments

of a predicate in the sentence based on the SRL
results.

• Subordinate clause masking. Mask the part in
a subordinate clause that follows a subordinating
conjunction such as “that”, “when”, “since”, etc.

• Prepositional phrase masking. Mask the part in
a prepositional phrase that follows a preposition.
We only consider the phrase with more than two
words.

• Adversative clause masking. Mask the ad-
versative clause in the sentence. The adver-
sative relation is identified by the keywords
such as “although”, “but”, etc. We also con-

vert the keywords into coordinating conjunctions
(“so”/“and”) in order to generate false statements.

• Declarative clause masking. Mask the simple
declarative clause after a preposition or subordi-
nating conjunction (i.e. “IN+S”).

• Number masking. Mask numbers. “one” is
excluded since it is often used for other purposes.
These protocols identify the key information in

the passage. Such information is replaced with
a special <mask> token that represents a miss-
ing span in the sentence. More examples of the
T/F questions generated from the above-mentioned
mask selection protocols are provided in the case
study in Section 3.4.
Coreference Resolution To improve clarity, the
first-appeared pronouns in the sentence are re-
placed with their corresponding antecedents.

2.3.2 Text Infilling

To generate T/F questions from the masked sen-
tences, we perform a text infilling task aiming to
predict the missing span of text which are consis-
tent with the preceding and subsequent text. We
utilize a pretrained language model BART (Lewis
et al., 2020) to perform text infilling, which is
a Transformer-based denoising autoencoder pre-
trained on large text corpus with text infilling as
a training objective. Hence, it has good capabili-
ties of reconstructing a corrupted text by fitting the
most suitable text to the missing span.
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Criteria Rating Score Description

Fluency (grammatical
correctness)

bad 1 Not readable due to grammatical errors.
fair 2 Contain few grammatical errors but not affect the readability too much.

good 3 Free from grammatical errors.

Semantic (clarity and
logical correctness)

bad 1 Have obvious logical/common-sense problem or indecipherable.
fair 2 Have some semantic ambiguities.

good 3 Semantically clear.

Relevance (to the
passage)

bad 1 Totally irrelevant.
fair 2 Part of the question is irrelevant.

good 3 Relevant.

Answerability
bad 1 Not answerable.
fair 2 Not sure about the correct answer.

good 3 Can be answered by the right answer.

Difficulty factoid 1 Can be inferred from a single sentence in the passage.
inferential 2 Requires deeper understanding of the passage or longer context.

Table 1: Human evaluation metrics with description.

To make the generated text more relevant to the
passage, we provide two sentences before and after
the masked sentence as context to BART model.
The model predicts the missing span based on both
the context of the passage and the prior knowledge
learned during language modeling. We also per-
form beam search with beam width 5 to obtain the
top-5 outputs with the highest probabilities.
Simplification To make the question more concise,
we perform the same simplification process as in
the template-based framework by removing the
auxiliary components of the sentence.

2.3.3 Scoring and Ranking
We propose a scoring mechanism to automatically
evaluate and rank the generated questions based on
their conciseness and relevance.

S =
1

1 + e−0.3(lt−lg)
+

Rl +Rc +Rs

|g|

The first term is the conciseness score where lt
and lg are the lengths of the original and generated
sentence, respectively. The second term is the rel-
evance score where Rl is lexical relevance score
measuring the number of overlapping words be-
tween the generated texts and the passage; Rc and
Rs are conceptual and semantic relevance scores
measuring the number of generated words that
are conceptually and semantically relevant to the
masked words. We use ConceptNet (Speer et al.,
2017) to obtain the concept-relevant terms of the
masked words, and FrameNet (Ruppenhofer et al.,
2006) to obtain the semantic frames of both gen-
erated words and masked words. |g| is a normal-

ization term that counts the number of generated
words.

Finally, we choose the question with the highest
score from the beam search results. Then we rank
all the questions generated from the passage and
select the top-scoring questions as the final T/F
questions.

3 Experimentation

3.1 Settings and Evaluation Metrics

Since there is no standard dataset available for auto-
matic evaluation, we conduct human evaluation on
the generated T/F questions. We randomly select
20 well-edited English passages from the quiz ma-
terials at a level of elementary education as our test
set, which contains both expository writings (e.g.,
descriptive articles) and narrative writings (e.g.,
stories and diaries) on topics of general interest.
For each passage, we collect all questions gener-
ated by the template-based framework and up to 20
questions generated by the generative framework.
Finally, from the selected 20 passages, we obtain
401 questions in total, an average of 20 questions
per passage.

Due to the educational nature of our purpose,
we recruit three annotators with educational back-
grounds to rate the produced questions. The anno-
tators were first asked to read the passage, and then
give judgments for fluency, semantic, relevance,
answerability, and difficulty, as shown in Table 1.
From the ratings given by the three annotators, we
take the majority vote as the final ratings. In case of
a tie, we choose the average rating (i.e. “fair”). In
addition, for the results from the generative frame-
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Figure 3: Human evaluation results of the T/F questions generated by TF-QG. Top row and bottom row show the
results from template-based framework and generative framework, respectively.

Criteria Template-based Generative

Fluency 0.772 0.870
Semantic 0.723 0.710
Relevance 0.861 0.630
Answerability 0.812 0.620
Difficulty 0.881 0.813
Answer / 0.725

Table 2: Annotator agreement. Scores denotes Ran-
dolph’s kappa (Randolph, 2005) that measures the agree-
ment from multiple annotators.

work, we also ask the annotators to label the answer
(T/F) of the questions. Table 2 shows the inter-rater
agreement, which indicates that all the annotations
have substantial (0.6 < κ ≤ 0.8) or almost perfect
(κ > 0.8) agreement.

3.2 Experimental Results

The human evaluation results are presented in Fig-
ure 3. It is observed that the majority (>80%) of the
questions generated by TF-QG have good fluency,
semantic, relevance, and answerability. Hence, the
questions are promising to be directly used for the
educational purpose of assessing language learners’
reading comprehension ability. However, we also
observe that the generated questions have lower
scores on the difficulty rating. All of the ques-
tions generated by the template-based framework
are factoid, and only 18% of the questions from
the generative framework are inferential. Finding
such answers does not require too complicated rea-
soning efforts. Hence, we argue that the current
method is still a long way from generating more

complex questions, and this paper has played a role
in exploring this direction.

For the template-based framework, templates of-
fer the ability to produce questions lightly coupled
with the exact wording of the original text. The
results show that our TF-QG model can generate
much more relevant questions with good answer-
ability than the generative framework (relevance
rating) since all generated questions are closely re-
lated to the passage, which makes the templates
easy to leverage human linguistic expertise to pro-
duce questions tailored to specific educational con-
tent. In addition, the template-based framework
also has the advantage that the answers are given
explicitly since templates are designed for differ-
ent types (true/false) of answers. However, the
rigid transformations by templates may cause more
grammatical (fluency rating) and logical (semantic
rating) problems.

For the generative framework, the fluency and
semantic of the questions are improved due to the
benefits of language modeling. The two proper-
ties are crucial since if the generated questions do
not satisfy such requirements, learners may easily
be misled and frustrated, which reduces questions’
pedagogical value. Besides, the syntactic and con-
tent of the questions are more flexible, enabling
our model to generate more complicated questions.
The human evaluation shows that our generative
framework is able to produce inferential questions
(18%) to test student’s comprehensive understand-
ing of the passage. However, due to the flexibility
of generated content, the question may be irrele-
vant to the passage and hence their answerability
may be affected.
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Tasks Dev full 1sent 3sent 5sent

NLI 86.1 55.9 66.2 61.6 59.0
BoolQ 80.4 48.5 57.2 55.4 53.9
BoolQd 77.0 47.7 54.6 53.1 51.0
FEVER 95.3 50.3 52.8 51.0 52.6

Table 3: True/false reading comprehension accuracy
(%). BoolQd: the questions are converted to declarative
sentences. Dev: the performance on the development
set of the fine-tuning tasks.

3.3 True/False Reading Comprehension

To further evaluate the difficulty of the questions
generated by our model, we create a simulated
task of true/false reading comprehension, which
aims to test the capability of NLP models to an-
swer T/F questions. To this end, we first con-
struct a test set (TFQA) using the questions gen-
erated from the generative framework of TF-QG.
Then, we ask the annotators to label the answers
(True/False) of the questions. After removing the
questions with bad answerability, the TFQA test
set contains 210 false questions and 178 true ques-
tions. Finally, we test the performance of the
state-of-the-art natural language inference (NLI),
QA, and fact verification models on TFQA in a
zero-shot transfer learning way. Specifically, we
fine-tune a pretrained BERT (Devlin et al., 2019)
model on various related tasks/datasets, including
the NLI task with SNLI (Bowman et al., 2015)
and MultiNLI (Williams et al., 2018), the bool QA
task with BoolQ (Clark et al., 2019), and the fact
verification task with FEVER (Thorne et al., 2018).

For BoolQ, we use two strategies to make the
task similar to ours: 1) convert our questions to
interrogative sentences during inference; 2) con-
vert BoolQ questions to declarative sentences dur-
ing fine-tuning. Besides using the full passage
(“full”) as input, we also test the performance us-
ing the question-related sentence (“1sent”) and
the sentence with contexts including one sentence
(“3sent”) and two sentences (“5sent”) before and
after the sentence.

Experimental results are shown in Table 3. Al-
though the model can achieve near state-of-the-art
performances on the fine-tuning tasks (“Dev”), the
best accuracy on the TFQA test set is only 66.2%.
This demonstrates that the questions generated by
our model are challenging. To obtain better per-
formance, more sophisticated models and training

data are required under supervised settings. Al-
though the point is outside the scope of this pa-
per, our approach does offer the NLP community a
possibility to construct a T/F question answering
dataset.

3.4 Case Study

We present a case study on a passage about “Yel-
lowstone National Park”. The questions generated
by our TF-QG model are shown in Table 4. We
show only one question for each template/protocol
due to the space limitation.

Generally, the questions generated from the tem-
plates meet our goal of testing certain knowledge
such as coreference, lexical, and definition under-
standing. However, since the template does not
refer to the contextual information when substi-
tuting synonyms, Question 1 is not fluent due to
the wrong wording. Question 3 shows the advan-
tages of the template-based framework on the test-
ing target that aims to distinguish concepts. In
the original passage, Old Faithful is described as
a “geyser”, while in the question, it is stated as
another approximate concept “hot spring”. Ques-
tion 4 also fulfills the test goal of concept under-
standing, which distinguishes concepts between
“Celsius” and “Fahrenheit”, although the generated
question merely swaps the numbers. Regarding
other test points, Question 2 provides a simple ver-
bal negative case. Question 5 tests both pronoun
understanding and vocabulary comprehension.

The questions generated by the generative frame-
work are more flexible and challenging. Many
questions require inferring from longer context and
they are useful to test learners’ comprehensive un-
derstanding of the passage, such as Question 6-9.
In particular, the generative model supplements
Question 9 with the information that “boiling water
comes from geyser”, which can only be obtained
from the above description. Such questions can
well examine the learner’s understanding of con-
textual consistency and cohesion. However, some
questions are hard to answer due to bad coreference
resolution or irrelevant content generated as shown
in Question 10.

In general, we observe that the generated T/F
questions can be effectively targeted to test many
teaching inspection points. Currently, although
these generated questions are relatively simple,
they are sufficient for usage in some scenarios, such
as reading comprehension tests for primary school
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Yellowstone National Park is in the United States of America. It became the first National Park in 1872. 1There are geysers and hot 
springs at Yellowstone. There are also many animals like elk, bison, sheep, grizzly bears, black bears, moose, coyotes, and more at 
Yellowstone. More than 3 million people visit Yellowstone each year. 2During the winter, visitors can ski, go snowmobiling or join tours 
there. 6Visitors can see steam and water from the geysers. During other seasons, visitors can go horse-riding, boating, fishing or take 
nature trails and tours. 3,7Most visitors want to see Old Faithful, a very predictable geyser at Yellowstone. Visitors can check a schedule 
to see the precise time that Old Faithful is going to erupt. There are many other geysers and bubbling springs in the area. 8Great 
Fountain Geyser erupts every 11 hours up to a height of 67 metres. Excelsior Geyser produces 4,000 gallons of boiling water each 
minute! 4,9Boiling water is 100 degrees Celsius, or 212 degrees Fahrenheit – that’s very hot! People also like to see the Grand Prismatic 
Spring. It is the largest hot spring in the park. 5It has many beautiful colors, which are caused by bacteria in the water. 10These are forms 
of life that have only one cell. Different bacteria live in different water temperatures. Visiting Yellowstone National Park can be a week–
long vacation or more. It is beautiful, and there are activities for everyone. 

No. Framework Template/Protocol True/False Question

1 Template Synonym There are geysers and spicy springs at Yellowstone. (F)
2 Template Coord+Negation During the winter, visitors cannot ski. (F)
3 Template Def+Coord Old Faithful is a very predictable hot spring at Yellowstone. (F)
4 Template Num Boiling water is 212 degrees Celsius. (F)
5 Template Coref+Antonym The Grand Prismatic Spring has many ugly colors, which are caused by bacteria

in the water. (F)

6 Generative Preposition Visitors can see steam and water from Yellowstone’s geysers and hot springs. (F)
7 Generative Semantic Role Arg1 Most visitors want to see Old Faithful when it is erupting. (T)
8 Generative Semantic Role Arg0 Yellowstone National Park is home to the world’s largest geyser,Yellowstone

Geyser,which erupts every 11 hours up to a height of 67 metres.(F)
9 Generative Number The temperature of the geyser water is about 100 degrees Celsius, or 212 degrees

Fahrenheit - that’s very hot! (T)
10 Generative Subordinate These are forms of life that live on the surface of water. (?)

Table 4: Questions generated from a passage describing “Yellowstone National Park”. The text where each question
is generated from is highlighted in the passage with the corresponding number. The masked text in the generative
framework is indicated using underline. “(?)” means unanswerable.
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Figure 4: Number of questions generated from different
templates (top) and mask selection protocols (bottom).
“SR Arg0” and “SR Arg1” denote the semantic role
masking protocol with the subject and object of the
predicate being masked, respectively.

students or second language learners, or language
education-oriented speech dialogue test systems.

3.5 Statistics of Templates and Protocols

We also study the frequency of different templates
and mask selection protocols triggered by our TF-

QG model. Figure 4 shows the number of questions
generated from different templates/mask selection
protocols based on the 20 testing passages. We can
see that coreference, coordination, and antonym
are the most frequently triggered templates for
the template-based framework. For the genera-
tive framework, semantic role masking and prepo-
sitional phrase masking are the most frequently
triggered mask selection protocols. The different
numbers of the template- or protocol-triggered sam-
ples describe the distribution of the corresponding
test points in the selected passages. Although we
carefully selected different types of passages (in-
cluding expository articles, stories, and diaries),
more passages from different domains and genres
still need to be explored to further verify the ro-
bustness of our proposed model on T/F question
generation.

Besides, it is observed that the generative
framework can the generate more questions than
template-based framework in total. In fact, the
masking-and-infilling approach allows the gener-
ative framework to produce an infinite number of
questions, but the question quality still has to be
considered. We currently pick questions by the
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generative confidence of the model. In future work,
a more pedagogical question selection approach
should be taken into account, such as which proto-
cols should be selected in terms of practical quiz
objectives, and which protocols are more suitable
for generating inferential or challenging questions
for different genres.

4 Conclusion

In this paper, we propose an automatic true/false
question generation approach, which provides a
feasible scheme for large-scale generation of ed-
ucational content. Two unsupervised frameworks
including template-based framework and genera-
tive framework are proposed to select question-
worthy contents from the passage and generate
high-quality questions. The novel masking-and-
infilling strategy enables our model to generate
more flexible and complicated true/false questions.

In future work, we will focus on how to design
templates and mask selection protocols to match
with pedagogically valuable test points proposed
by domain experts. In addition, we will perform
controlled lab or online studies to measure students’
learning gains after studying the content generated
by TF-QG. Furthermore, we expect to deploy the
proposed approach on real educational platforms,
including an interactive language learning and as-
sessment system (for students), and a question gen-
eration assistance system (for teachers), to measure
how much the approach could reduce the workload
of educators in practical application scenarios.
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Abstract
“Talk moves” are specific discursive strategies
used by teachers and students to facilitate con-
versations in which students share their think-
ing, and actively consider the ideas of oth-
ers, and engage in rich discussions. Experts
in instructional practices often rely on cues
to identify and document these strategies, for
example by annotating classroom transcripts.
Prior efforts to develop automated systems to
classify teacher talk moves using transformers
achieved a performance of 76.32% F1. In this
paper, we investigate the feasibility of using en-
riched contextual cues to improve model perfor-
mance. We applied state-of-the-art deep learn-
ing approaches for Natural Language Process-
ing (NLP), including Robustly optimized bidi-
rectional encoder representations from trans-
formers (Roberta) with a special input repre-
sentation that supports previous and subsequent
utterances as context for talk moves classifica-
tion. We worked with the publically available
TalkMoves dataset, which contains utterances
sourced from real-world classroom sessions
(human- transcribed and annotated). Through
a series of experimentations, we found that
a combination of previous and subsequent ut-
terances improved the transformers’ ability to
differentiate talk moves (by 2.6% F1). These
results constitute a new state of the art over
previously published results and provide ac-
tionable insights to those in the broader NLP
community who are working to develop similar
transformer-based classification models.

1 Introduction

There is a strong theoretical and empirical basis
for encouraging students’ active participation in
inquiry-based and socially constructed classroom
environments (Vygotsky, 1978; Webb et al., 2008).
Numerous efforts exist to support teachers to be-
come more purposeful and effective in their efforts
to facilitate such environments (Herbel-Eisenmann,
2017; Chen et al., 2020). Most approaches to pro-
viding teachers with detailed feedback about their

discourse strategies require highly trained human
observers (Correnti et al., 2015; Wolf et al., 2005).
However, recent research has shown that the de-
velopment and training of deep learning models
to automate and scale certain discourse analyses
from instructional episodes is feasible (Song et al.,
2021), effective (Demszky et al., 2021), and reli-
able (Donnelly et al., 2017; Jensen et al., 2020;
Suresh et al., 2019).

Accountable talk theory offers well-defined,
research-based practices for teachers to engage
in high-quality instruction, including the use of
specific talk moves that promote students’ equi-
table participation in a rigorous learning environ-
ment (O’Connor et al., 2015; Resnick et al., 2018).
By using talk moves, teachers place the “intel-
lectual heavy lifting” and balance of talk toward
students and help ensure that the discussions will
be purposeful, coherent, and productive (Michaels
et al., 2010). Talk moves support classroom dis-
course to move beyond the traditional Initiate,
Response, Evaluate linguistic sequence (Mehan,
1979); namely, by replacing the act of evaluating
with practices that support a collective understand-
ing that builds on and extends mathematical ideas
(Michaels and O’Connor, 2015).In this way, talk
moves enable dialogue shifts from teacher directed
recitation to true discussions in which knowledge
is informally shared and constructed rather than
transmitted.

This paper draws inspiration from speech recog-
nition systems for spoken dialog systems to in-
vestigate the feasibility of applying a novel input
representation that utilizes tokens from previous
and subsequent utterances to classify teacher talk
moves (Schukat-Talamazzini et al., 1994). We ex-
plore three different context setups: previous-only
utterances, subsequent-only utterances, and both
previous and subsequent utterances (equal numbers
of each) with different window sizes. In addition
to the longer dialog window experiments, we re-
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port findings from fine-tuning transformers such
as BigBird (Zaheer et al., 2020) and Longformer
(Beltagy et al., 2020) which are architected to sup-
port longer sequences. Similarly, we report find-
ings from fine-tuning MathBERT, a transformer
architecture that was trained to establish semantic
correspondence between mathematical formulas
and their corresponding context (Peng et al., 2021).
For training and evaluation, we use the TalkMoves
dataset comprising 567 lesson transcripts derived
from video recordings of K-12 mathematics class-
rooms (Suresh et al., 2022). The main contributions
of this work are summarized as follows:

• We provide evidence for improved perfor-
mance when fine-tuning transfomers with
longer dialog windows.

• We observed that transformer architectures de-
signed to handle longer contexts such as Long-
former do not provide any additional benefit
in differentiating instructional strategies.

• We observed that math-based models pre-
trained on mathematical formula understand-
ing do not provide any improvement over the
generic models.

2 Related Work

This section briefly describes the accountable talk
theory framework, followed by a literature review
on deep learning models for Natural Language Pro-
cessing (NLP) focused on adding additional con-
texts and learning long-term dependencies.

2.1 Accountable talk theory framework

Accountable talk theory identifies and defines an
explicit set of discourse moves intended to elicit a
response within a classroom lesson (O’Connor and
Michaels, 2019). These well-defined discursive
techniques have been incorporated into various in-
structional practices and frameworks e.g., (Boston,
2012; Candela et al., 2020; Michaels et al., 2010).
Their specificity makes talk moves well-suited for
supervised multi-label sentence-pair classification.
A number of research teams have made consider-
able progress in developing automated “intelligent
agents” that are trained to emulate the role of the
teacher. These agents prompt students to use desig-
nated aspects of accountable talk, such as revoicing
and asking students to agree/disagree with another
student. They typically act as facilitators or tutors

during small group, text-based, online settings, tak-
ing part in and helping to focus the discussion at
opportune moments e.g. (Adamson et al., 2013;
Hmelo-Silver et al., 2013; Tegos et al., 2015). (Ja-
cobs et al., 2022) and team developed an online
application that provides personalized feedback to
teachers on their classroom discourse practices, in-
cluding the prevalence of talk moves. The system is
fully automated and requires no human processing
beyond the initial uploading of classroom record-
ings. Such education-focused NLP applications
are in high demand to provide reliable feedback to
teachers based on the accountable talk theory.

2.2 Transformers for additional context and
long-term dependencies

The introduction of transformers has revolutionized
the field of natural language processing. Unlike Re-
current Neural Networks (RNNs) and Long Short
Term Memory networks (LSTMs), where training
is performed sequentially, the design of transformer
architecture enables parallel processing and allows
for the creation of rich latent embeddings (Vaswani
et al., 2017). Latent contextual representation of
utterances through the self-attention mechanism
makes transformers a powerful tool for various
downstream applications such as question answer-
ing and text summarization (Devlin et al., 2018).

Research efforts to learn long-term dependen-
cies with transformers were first introduced in
Transformer-XL (Dai et al., 2019). Transformer-
XL is a novel architecture that focuses on learning
dependencies beyond the fixed length of vanilla
transformers without disrupting the temporal co-
herence. This is achieved by saving the hidden
state sequence of the previous segment to be used
as context for the current segments, also known as
the segment-level recurrence mechanism. In ad-
dition, to better encode the relationship between
words, Transformer-XL uses relative positional em-
beddings. Results show that Transformer-XL can
learn dependencies across the text with a window
size of 900 words. Following Transformer- XL,
(Yang et al., 2019) proposed XL-Net, which is a
generalized autoregressive pretraining method that
leverages the capabilities of Transformer-XL to
solve the pre-train-finetune discrepancy commonly
identified in early architectures such as BERT. XL-
Net introduced two new developments. As an ex-
tension to the standard Causal Language Modeling
(CLM), XL-Net uses permutation language mod-
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eling, which considers all possible permutations
of the words within a sentence during the training
phase. Also, XL-Net uses a secondary attention
stream that focuses on the positional information
of the predicted token. This additional attention
stream led XL-Net to outperform many contempo-
rary transformer architectures in downstream tasks,
such as text classification. Similarly, to address the
problem of processing long sequences with trans-
formers, (Beltagy et al., 2020) introduced Long-
former, which extends vanilla transformers with a
modified self-attention mechanism to process long
documents. The classic self-attention mechanism
in BERT is computationally expensive, which ex-
plains the restriction of the maximum sequence
length of 512 tokens. Instead, Longformer com-
bines dilated sliding windows with global attention
to achieve similar performance. As a result of re-
ducing the computational complexity, Longformer
can process long input sequences beyond the previ-
ously defined segment length of 512 tokens. Like
Longfomers, Big-Bird (Zaheer et al., 2020) uses a
sparse attention mechanism that includes a random
attention component.

Over the past few years, we have seen an in-
creasing trend in other approaches to supporting
transformers to learn long-term dependencies, such
as modifying pre-training methods and the classic
attention mechanism. For example, to learn de-
pendencies across documents, (Xie et al., 2020)
adopted a simple approach to truncate the docu-
ment used for classification. Similarly, (Joshi et al.,
2019)) used a chunking approach where documents
were broken down into multiple chunks, and the ac-
tivations were then combined to perform the tasks.
Another recent example is the BERT-Seq model for
classifying Collaborative Problem Solving (Pugh
et al., 2021). The BERT-Seq model uses a spe-
cial input representation that combines embeddings
from adjacent utterances as contextual cues for the
model. Building on the prior work, we explored
new ways to enrich transformers with additional
contextual cues.

3 Current Work and Novelty

Currently, generating information about teachers’
discourse strategies requires highly trained instruc-
tional experts to hand-code transcripts from class-
room sessions (Correnti et al., 2015; Wolf et al.,
2005), an approach that is expensive and not read-
ily scalable. Encouragingly, a small number of

researchers have recently trained computer mod-
els to automate and scale discourse analyses from
instructional episodes, detecting educationally im-
portant discursive features such as instructional
talk, authentic teacher questions, elaborated eval-
uation, and uptake (Dale et al., 2022; Demszky
et al., 2021; Jensen et al., 2020). In prior work,
(Suresh et al., 2021b,a) fine-tuned Roberta (Liu
et al., 2019) to classify talk moves for each teacher
utterance from a given classroom transcript. The
input to Roberta was student-teacher sentence pairs,
where the student sentence appeared immediately
prior to the teacher’s utterance. This paper builds
upon the previous work to add contextual cues to
transformers in various ways and evaluate their
performance using the TalkMoves dataset. We ex-
periment with modifying the input representation
by combining multiple previous and subsequent
utterances as context to classify teacher talk moves.
This work serves as an example of how we can
find new ways to use advances in natural language
processing with classic ideas from speech recogni-
tion systems for spoken dialog system to capture
the rich conversations between teachers and stu-
dents in order to improve performance in applied
domains such as education.

4 Method

This section discusses the different approaches we
took to enrich contextual cues in the TalkMoves
model in an effort to enhance performance.

4.1 Data

The TalkMoves dataset used in this study comprises
567 transcripts, including 174,186 teacher and
59,874 student utterances (Suresh et al., 2022). All
the transcripts were human-generated from class-
room audio and video recordings from K-12 math-
ematics classrooms. They were annotated for six
teacher talk moves by two experts who established
high inter-rater reliability (Suresh et al., 2021b,
2022). The talk moves in the dataset follow an un-
even distribution, with certain moves being much
more frequent than others (Figure 1). “Keeping
everyone together” and “pressing for accuracy” are
the most frequently used, whereas “getting students
to relate” and “pressing for reasoning” are the least
common. For training and testing split, we used the
same split specified by (Suresh et al., 2022) in the
TalkMoves dataset. Each teacher utterance in the
TalkMoves dataset is annotated with one of six dif-
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ferent teacher talk moves and "None". These talk
moves are broadly classified into three categories
based on their instructional purpose (Resnick et al.,
2018): (1) accountability to the learning commu-
nity, (2) accountability to content knowledge, and
(3) accountability to rigorous thinking. See Table
1 for a brief description of each talk move, along
with examples.

4.2 Research Motivation
In this study, we began working with transform-
ers to classify talk moves. Prior attempts using
non-transformers architecture achieved lower per-
formance (65% F1 compared to 76.32% F1 with
transformers) (Suresh et al., 2019, 2021b). The
fine-tuned Roberta model proposed in (Suresh et al.,
2022) employed a input representation of student-
teacher sentence pairs to combine any given teacher
utterance with the immediately prior student utter-
ance (Suresh et al., 2021b). In order to understand
the gaps in this model’s performance, (Suresh et al.,
2022) conducted an error analysis using a confu-
sion matrix to consider examples where the Talk-
Moves models were underperforming and often
generated misclassifications. An initial analysis of
those examples revealed several instances where
the actual real-world context for the misclassified
teacher utterance extended beyond the current rep-
resentation of the previous student utterance. For
example, consider the following dialogue “Student:
Yes; Teacher: What do you think?”. With limited
context, it seems unclear if the teacher was relating
to what a student said earlier or trying to prompt
them to think. This challenge of limited context
from prior work motivated us to find new ways to
add contextual information to the existing models
in order to improve performance.

4.3 Context-addition experiments
Constraints on the number of sequences in vanilla
transformers, such as BERT and Roberta, prevents
the direct application of transformers where there
is a reliance on long-term dependencies. For exam-
ple, consider a classroom session where a teacher
encourages student X to think based on what stu-
dent Y said earlier in the session. Without the
expanded dialogue context, it can be challenging
for transformers (and even humans) to classify the
utterances. If we could expand the representation
of available information such that it included the
entire classroom session, the transformers may be
more likely to learn to establish the long-term de-

pendencies across the focal utterances or tokens.
Given the importance of local context (Kovaleva
et al., 2019), our input representation was modified
from student-teacher sentence pairs to a fixed-size
window surrounding each teacher utterance. This
adjusted representation is atypical compared to the
recommended input for fine-tuning, where a unique
token separates two sequences (i.e., [SEP] in Bert
and </s> in Roberta) (Devlin et al., 2018; Liu et al.,
2019). There is a general notion that fine-tuning
multiple utterances with multiple separator tokens,
while theoretically possible, is not likely to work
well. This notion was motivated by vanilla trans-
formers, which were originally pre-trained on indi-
vidual sentences or sentence pairs. We challenge
this assumption by including additional past and fu-
ture utterances in our adjusted input representation
(Figure 2).

To establish a baseline performance level and
generate information regarding the impact of con-
text in classifying talk moves, we began with a
simple input representation that includes only the
target teacher utterance without any additional con-
text. The output layer was a softmax over seven
classes i.e., the six talk moves and “none” (no talk
move). We also reproduced results from prior work
on Roberta-base (Suresh et al., 2022). Following
that, we experimented with three context setups:
previous-only utterances, subsequent-only utter-
ances, and both previous and subsequent utterances
(equal numbers of each). In each setup, we evalu-
ated several different window sizes. For example,
the previous-only condition with a window size of
three would have the immediately previous three
utterances (with student(s) and/or the teacher as the
speakers) serving as context cues for classifying
the target utterance. If there was no prior utterance
(such as at the start of a classroom session), we
prepended empty strings. Similarly, given the pre-
vious and subsequent utterances condition with a
window size of two, the target utterance would have
two previous utterances prepended to the left and
two subsequent utterances appended to the right.
Separator tokens differentiated all of the utterances.
As an additional preprocessing step, all utterances
were truncated to 30 tokens long. The choice of
truncation length was decided based on the distri-
bution of sequence length (number of tokens) for
all utterances in the dataset (see Figure 3). A token
size of 30 accounted for more than 95% of the utter-
ances in the dataset (two standard deviations from
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Figure 1: Distribution of teacher talk moves in the TalkMoves dataset

Figure 2: Modifying the input representation to support additional previous and subsequent utterances

the mean of the sequence length of seven tokens).
We then fine-tuned transformers on the TalkMoves
training set with different parameters using Ama-
zon EC2 instances. We followed the recommended
parameters from (Suresh et al., 2019, 2022) includ-
ing learning rate (2e-5, 3e-5, 4e-5, 5e-5), number
of epochs (3-6), batch size (4,8,16,32), warmup
steps (0,100,1000) and maximum sequence length
(512 for Roberta-like models) and (512,1024 for
Longformer and BigBird). The performance on the
testing set after fine-tuning is reported based on F1
measures and MCC (Suresh et al., 2021a). These
measures work well for skewed datasets like Talk-
Moves (Chicco and Jurman, 2020; Suresh et al.,
2021b). The code was implemented in Python 3.8

Figure 3: Number of utterances (frequency) vs sequence
length (number of tokens) in TalkMoves dataset
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Table 1: Teacher talk moves from TalkMoves dataset (Suresh et al., 2022)

Category Talk move Description Example
Teacher Talk Moves

Learning
Community

Keeping everyone to-
gether

Prompting students to be ac-
tive listeners and orienting
students to each other

“What did Eliza just say her
equation was?”

Learning
Community

Getting students to re-
late to another’s ideas

Prompting students to react to
what a classmate said

“Do you agree with Juan that
the answer is 7/10?”

Learning
Community

Restating Repeating all or part of what
a student said word for word

“Add two here.”

Content
Knowledge

Pressing for accuracy Prompting students to make a
mathematical contribution or
use mathematical language

“Can you give an example of
an ordered pair?”

Rigorous
Thinking

Revoicing Repeating what a student said
but adding on or changing the
wording

“Julia told us she would add
two here.”

Rigorous
Thinking

Pressing for reasoning Prompting students to explain,
provide evidence, share their
thinking behind a decision, or
connect ideas or representa-
tions

“Why could I argue that the
slope should be increasing?”

with Pytorch and HuggingFace library (Wolf et al.,
2019). In addition to the context-addition exper-
iments with Roberta-base, we fine-tuned similar
transformers architectures. XLNet, Longformer
and BigBird are transformer architectures which
support longer sequences. Since the TalkMoves
dataset is composed of utterances from K-12 math-
ematics classrooms, we fine-tuned MathBERT, a
pretrained architecture with focus on mathematical
formula understanding.

5 Results

In this section, we present the results from our
experiments that involved providing additional con-
text to transformers to support the process of learn-
ing long-term dependencies. The experiments were
repeated with ten random seeds, and the average
score is reported (Table 2, 3). For brevity, we re-
port performance only on Roberta-base (the best
performing model from (Suresh et al., 2021b) as
indicated in the first column of (Table 2) and trans-
formers such as Longformer and Bigbird (Table
3). All the models are Base models (Large models
are beyond the scope of this work). In the second
column, we describe the context that was provided
to the target teacher utterance for classification.
For example, Previous 1 should be interpreted as
a single previous utterance prepended to the target

teacher’s utterance. Similarly, Subsequent 1 should
be interpreted as a single subsequent utterance ap-
pended to the target utterance. The third and final
column describes the performance of the testing
set.

For imbalanced datasets like TalkMoves, the
Matthew Correlation Coefficient (MCC) and F1
measure are good indicators of model performance.
An MCC score of +1 indicates a perfect correlation
while 0 indicates a random correlation and -1 indi-
cates a negative correlation. Similarly, the F1 score
ranges from 0-100% where 100% indicates perfect
performance. We begin with the No-Context con-
dition which achieved a performance of 71.93%
F1. On prepending the immediately prior or sub-
sequent student utterance, the model achieved a
performance of 76.32% F1 (Suresh et al., 2022).
Next we turn to results from various context con-
ditions with different window sizes followed by
results from Longformer, BigBird, and other mod-
els. The maximum sequence length in most of
these models was 512 with the exception of Long-
former and Bigbird which had a sequence length
upto 1024. The results presented in this work are
comprehensive but not exhaustive since training
and testing for all possible models and parameters
is infeasible.

The results table clearly illustrates the impor-
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tance of context in enhancing performance. Start-
ing with Roberta-Base, the performance on the
previous-only condition gradually increased with
an increase in window-size and saturated for larger
window-sizes. Similarly, we observed an improve-
ment in performance for the subsequent-only con-
dition. However, we did not see any significant
improvement for larger window-sizes in this con-
dition, possibly due to the negative impact in per-
formance on "Revoicing" and "Restating" which
rely on immediately prior student sentences. More-
over, the combination of previous and subsequent
utterances resulted in the best performing model.
The performance gradually increased proportion-
ally with a window size up to 7 before saturat-
ing. Likewise, the performance on Longformer,
XLNet and BigBird were comparable with simi-
lar input representation. The most surprising re-
sult was the performance on MathBert which was
signficantly lower than other models. In summary,
Roberta-Base with equal previous-subsequent con-
dition (size =7) outperformed rest of the models
and constitutes the state-of-the-art results.

The primary motivation of the error analysis us-
ing a confusion matrix was to improve the perfor-
mance on the under-performing talk move cate-
gories and identify patterns among the misclassfied
utterances to be leveraged as features for the mod-
els. When comparing the confusion matrix from
prior work (Suresh et al., 2022) (see Table 4), the
current study shows a significant improvement in
performance across all the teacher talk moves la-
bels except "Restating" (see Table 5). With "Re-
stating", we hypothesize that the decrease in per-
formance was a result of supplementing additional
context. Further analysis has to be performed in
order to validate this claim.

6 Discussion

Based on the results from our experiments to im-
prove the performance of a talk moves classifier
using transformers, it is evident that longer dialog
windows play an important role in differentiating
talk moves. We successfully validated that the local
discursive context is an important feature in classi-
fying teacher talk moves. We generated a 4% F1
increase in performance when including a single
additional utterance (either previous or subsequent)
as compared to the no-context condition. Also,
we observed that previous utterances are more im-
pactful than future utterances for classifying talk

moves. This finding is not surprising given that sev-
eral talk moves, such as the teacher “restating” and
“revoicing” what a student has already said, depend
entirely on previous utterances as context. We also
observed that context windows with a combination
of previous and future utterances outperform either
condition alone. Finally, we found that a window
size of seven previous and subsequent utterances
achieves the best performance. Beyond the iden-
tified size of seven, the performance decreases. It
is possible that much earlier or much later utter-
ances provide confusing or conflicting contextual
information, which hinders model performance. It
is equally likely that longer dialog windows could
lead to overfitting.

Prior efforts to address the imbalanced nature of
TalkMoves dataset through weighted loss resulted
in reduced performance (Suresh et al., 2019). As
an alternative, we attempted to generate synthetic
samples of tokenized utterances through SMOTE
(Synthetic Minority Oversampling Data) (Chawla
et al., 2002). With SMOTE, it was challenging to
retain the syntactic information of the generated
examples. It was also difficult to generate the sup-
porting contextual student and teacher utterances.
Preliminary efforts did not yield any improvement
in performance.

To further improve the performance, we have
identified two future directions that appear worth-
while to consider: (1) experimenting with punctu-
ation and other linguistic markers in the existing
TalkMoves dataset and (2) collecting more training
data. In the TalkMoves dataset, all the punctua-
tion and other non-alphanumeric characters from
the teacher and student utterances were removed.
These text processing steps are typical for most
text-based NLP applications to produce text that
closely aligns with the output of Automated Speech
Recognition (ASR) systems. However, we hypoth-
esize that punctuation could play a significant role
in differentiating one talk move from another. For
example, “Agreed?” with a question mark can be
considered an instance of “Keeping everyone to-
gether” whereas “Agreed” as a statement would be
an instance of “None.” It remains to be determined
the extent to which including punctuation mark-
ers might impact the performance of the models.
Similarly, we can try incorporating speaker turns
to indicate a student or teacher turn in previous and
subsequent utterances as additional features to the
model.
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Table 2: Robert-Base performance with different window sizes

Model Context MCC F1 (%)
Roberta-Base No Context 0.7003 71.93
Roberta-Base Immediate Student (Suresh et al., 2022) 0.7513 76.32
Roberta-Base Previous 1 0.7460 76.01
Roberta-Base Previous 5 0.7579 76.79
Roberta-Base Previous 10 0.7615 77.08
Roberta-Base Previous 15 0.7688 77.63
Roberta-Base Previous 17 0.7657 77.35
Roberta-Base Subsequent 1 0.7232 74.16
Roberta-Base Previous 1 - Subsequent 1 0.7687 78.18
Roberta-Base Previous 2 - Subsequent 2 0.7742 78.49
Roberta-Base Previous 3 - Subsequent 3 0.7764 78.66
Roberta-Base Previous 5 - Subsequent 5 0.7739 78.36
Roberta-Base Previous 7 - Subsequent 7 0.7805 78.92
Roberta-Base Previous 8 - Subsequent 8 0.7802 78.86

Table 3: Performance on classification of teacher talk moves on other models

Model Context MCC F1 (%)
Roberta-Base Previous 7 - Subsequent 7 0.7805 78.92
MathBERT Previous 7 - Subsequent 7 0.6890 70.18
XLNet Previous 7 - Subsequent 7 0.7709 78.06
Longformer Previous 7 - Subsequent 7 0.7752 78.47
BigBird Previous 7 - Subsequent 7 0.7694 77.89
BigBird Previous 10 - Subsequent 10 0.7603 77.11

Another option that warrants considera-
tion is supplementing data for the purpose
of model pretraining. TalkMoves dataset
(github.com/SumnerLab/TalkMoves) is a relatively
small dataset for pretraining transformers when
compared to Roberta which was pretrained on
millions of data points. At the same time, we recog-
nize the challenge in the collecting and annotating
thousands of classroom transcripts. Moreover,
there are important privacy concerns and other
ethical considerations, given that these data involve
minors, use proper names (which can be critical
information for talk moves classification), and can
be challenging to access in large quantities. We
could potentially explore active learning to achieve
greater accuracy with limited samples (Settles,
2009). Active learning is often sought as an option
in machine learning applications where unlabeled
instances are abundantly available (Schröder et al.,
2021).

7 Conclusion

Documenting consequential elements of classroom
instruction and providing teachers with feedback
on their practices are critical endeavors in the edu-
cation field. Taking into consideration the strong
need to provide reliable feedback to teachers on
productive classroom discourse, we need robust
models to automatically classify teacher talk moves
with high reliability. In this paper, we report on
a number of experiments that involved providing
longer dialog windows to the transformers in an
effort to improve model performance. Based on
these experiments, we generated a state-of-the-art
2.6% F1 improvement in performance (78.92% F1)
over the previous models, primarily by adding a
set number of previous and subsequent utterances
to the input representation. Clearly, there are both
challenges and opportunities for the development
of innovative uses of AI techniques, particularly
as they can be incorporated into tools that support
teacher and student learning. The findings from
this research open new avenues for exploration that
can benefit both the education and NLP communi-
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Table 4: Confusion matrix from Roberta-Base with Immediate student utterance as context

Roberta-Base (Immediate Student) Actual Precision Recall F1
0 - None

Predicted

42786 1779 67 54 232 1091 74 0.93 0.93 0.934
1 - Keeping Everyone together 1599 6549 106 139 99 518 30 0.73 0.72 0.73
2 - Getting students to relate 171 177 715 0 2 120 33 0.71 0.59 0.64
3 - Restating 112 18 3 932 21 12 0 0.79 0.85 0.82
4 - Revoicing 562 72 2 47 1063 44 0 0.72 0.59 0.62
5 - Pressing for accuracy 762 367 105 9 51 8289 669 0.82 0.86 0.84
6 - Pressing for reasoning 56 6 315 1 1 86 753 0.79 0.82 0.80

Table 5: Confusion matrix from Roberta-Base with Previous-7 and Subsequent-7 utterances as context. Compared
to Table 4, we see an improvement in F1 score for almost all of the talk moves except Restating.

Roberta-Base (Previous 7 - Subsequent 7) Actual Precision Recall F1
0 - None

Predicted

14594 522 42 40 122 312 16 0.94 0.93 0.94
1 - Keeping Everyone together 512 2321 53 26 26 130 4 0.77 0.76 0.76
2 - Getting students to relate 31 23 206 0 0 37 9 0.64 0.67 0.65
3 - Restating 25 8 1 263 7 2 0 0.73 0.86 0.79
4 - Revoicing 179 24 0 25 326 7 1 0.66 0.58 0.62
5 - Pressing for accuracy 207 112 21 5 12 2678 41 0.84 0.87 0.85
6 - Pressing for reasoning 8 2 1 0 0 27 242 0.77 0.86 0.82

ties who might adopt our methods in applications
where the local context may prove critical to im-
proving performance.
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Abstract

The growing demand for learning English as
a second language has led to an increasing
interest in automatic approaches for assess-
ing spoken language proficiency. One of the
most significant challenges in this field is the
lack of publicly available annotated spoken
data. Another common issue is the lack of
consistency and coherence in human assess-
ment. To tackle both problems, in this paper
we address the task of automatically predicting
the scores of spoken test responses of English-
as-a-second-language learners by training neu-
ral models on written data and using the pres-
ence of grammatical errors as a feature, as they
can be considered consistent indicators of profi-
ciency through their distribution and frequency.
Specifically, we train a feature extractor on EF-
CAMDAT, a large written corpus containing er-
ror annotations and proficiency levels assigned
by human experts, in order to extract informa-
tion related to grammatical errors and, in turn,
we use the resulting model for inference on the
CLC-FCE corpus, on the ICNALE corpus, and
on the spoken section of the TLT-school corpus,
a collection of proficiency tests taken by Ital-
ian students. The work investigates the impact
of the feature extractor on spoken proficiency
assessment as well as the written-to-spoken ap-
proach. We find that our error-based approach
can be beneficial for assessing spoken profi-
ciency. The results obtained on the considered
datasets are discussed and evaluated with ap-
propriate metrics.

1 Introduction

Automatic scoring of language proficiency is be-
coming a point of growing interest and importance
in the field of second language (L2) assessment be-
cause the number of English-as-a-second-language
(ESL) learners has been steadily increasing world-
wide (Howson, 2013).

A common issue in this field is the lack of pub-
licly available data specifically designed and an-

notated for automatic assessment, especially as re-
gards spoken data. Another typical problem is the
lack of consistency and coherence in human assess-
ment, as it frequently relies on proficiency indica-
tors that often have biases and are not clearly gener-
alizable, therefore not easily transferable into auto-
matic scoring systems (Zhang, 2013). Although L2
proficiency cannot be assessed on the mere basis
of the presence of errors in learners’ written and
spoken productions, this aspect is highly consistent
and plays a major role in language assessment by
human experts (James, 2013). Nevertheless, to the
best of our knowledge, the impact of errors on au-
tomatic spoken language assessment has not been
thoroughly investigated yet, whereas other types of
feature-based assessment have been more widely
studied and explored (Crossley et al., 2015).

In this paper, we address the task of automati-
cally predicting the scores of spoken responses of
ESL learners leveraging written data and exploiting
the presence of grammatical errors, thus tackling
both the aforementioned problems: the issue re-
lated to the scarce availability of spoken data and
the problem of inconsistency in human assessment.

In order to do so, we design a ranking of gram-
matical error gravity based on the frequency of each
human-annotated error in the EF-Cambridge Open
Language Database (EFCAMDAT), modelling it
across 15 proficiency levels aligned with the CEFR
(Common European Framework of Reference) lev-
els ranging from A1 to C1 (Council of Europe,
2001); as our purpose is scoring spoken language
proficiency, we discard spelling, punctuation and
orthographic errors and we group errors into 5 cat-
egories.

Subsequently, we train a feature extraction
model feeding the learners’ texts of the EFCAM-
DAT as inputs and setting the 5 classes of errors as
targets for our predictions and we use this model as
an error feature extractor (EFEX) for inference on
the Cambridge Learner Corpus - First Certificate
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in English (CLC-FCE) and on the International
Corpus Network of Asian Learners of English (IC-
NALE), thus generating 5 labels corresponding to
the aforementioned 5 classes of errors; then, we
train a scoring model on the CLC-FCE injecting
the 5 error labels generated by EFEX and we test it
on the spoken annotated section of ICNALE.

Likewise, we use EFEX for inference on the TLT-
school corpus. Subsequently, we train a scoring
model on the written section of the corpus injecting
the 5 error labels generated by EFEX and we test it
on the spoken section. Figure 1 shows the proposed
pipeline. Finally, we fine-tune our model on a small
spoken subset.

The structure of the paper is as follows: in the
next paragraphs, we briefly illustrate the theoreti-
cal framework and literature related to automatic
scoring and assessment; in Section 2, we describe
the data used in our experiments and our ranking of
grammatical error gravity; in Section 3, we show
the model architectures; in Section 4, we show the
results of our experiments on the models; finally,
in Section 5, we illustrate the conclusions of the
study and reflect upon next steps.

Figure 1: Diagram of the proposed training pipeline
based on textual input (i.e the written train set). The
scoring model is then used to predict proficiency scores
on manual and ASR transcriptions (i.e. the spoken test
set).

1.1 Theoretical framework

The origins of the field of L2 assessment date back
to the influential work of Lado (1961), who be-
lieved that the problems of learning a new language
could be predicted comparing the learners’ native
language and their target language, consistently
with his structuralist perspective of language and
contrastive linguistics. Language was taught - and
thus assessed - as a set of distinct elements, starting
from a contrastive analysis of sounds, grammar and
vocabulary. As a result, errors play an important
role in this construct. In response to and in con-
tinuation of contrastive analysis, at the end of the

1960s the work of Corder (1967) set the foundation
for error analysis and considered the concept of
error from a developmental perspective.

In the 1970s, the subsequent fundamental step
in language testing and assessment was inspired
by the forward-looking work on communicative
competence by Hymes (1972), later refined and
framed in the so-called communicative approach
by Canale and Swain (1980). According to this ap-
proach, language is used to communicate meaning,
which encompasses: grammatical knowledge, soci-
olinguistic competence, and strategic competence.

Around the 1990s, an approach theoretically
rooted in the communicative approach, started to
be developed and was later fixed in the Common
European Framework of Reference (CEFR) (Coun-
cil of Europe, 2001). Although it might seem that
this approach privileges communication at the ex-
pense of formal correctness, errors still play a major
role in assessing language proficiency (Pfingsthorn,
2013). Furthermore, Thewissen (2013) has shown
that learner errors can be connected to CEFR profi-
ciency levels and they can be considered as criterial
features for each level, together with other linguis-
tic features, as illustrated in Hawkins and Buttery
(2010).

1.2 Reference to prior work

Deep learning techniques have brought significant
improvements in the field of automatic scoring,
for assessing both writing and speaking, such that
end-to-end neural based approaches outperformed
ETS’s SpeechRater (Chen et al., 2018), one of the
best known oral proficiency test engines (Xi et al.,
2008). Specifically, transformer-based models have
led to a remarkable improvement in tasks of pre-
dicting linguistic proficiency (Raina et al., 2020;
Wang et al., 2021).

While grammatical error detection for speech
assessment has been the focus of relatively few
studies (Knill et al., 2019; Caines et al., 2020),
grammatical errors have received more attention
in the field of automatic essay scoring and are one
of the features employed in Yannakoudakis et al.
(2011) along with lexical, part-of-speech (POS)
and syntactic features for automatically assessing
ESL examination scripts, and they were found to
be significant for enhancing the overall correlation
between true scores and predicted ones. Gamon
et al. (2013) uses Leacock and Chodorow (2003)’s
findings on the influence of grammatical errors on
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TOEFL (Test of English as a Foreign Language)
scores for automatic essay scoring and feedback.
Similarly, errors are a feature investigated in the
work of Vajjala (2018), in which spelling and gram-
mar errors are extracted by LanguageTool1. In
this case, the error rate feature considered individ-
ually was found to have little impact on the clas-
sification performance. Similar experiments were
conducted again by Vajjala and Rama (2018) with
German, Czech and Italian, including errors as a
feature. This work was reproduced by Caines and
Buttery (2020), who applied such experiments also
to English and Spanish corpora. Another research
conducted on the CLC-FCE found that grammati-
cal error detection highly influences essay scores
(Cummins and Rei, 2018).

Recently, the work described by Ballier et al.
(2019) has investigated the possibility of predicting
CEFR proficiency levels based on manually anno-
tated errors in the French and Spanish section of the
EFCAMDAT corpus, but their study did not employ
deep learning techniques. However, they identified
that certain types of errors, such as punctuation,
spelling and verb tense errors, are characteristic of
specific CEFR proficiency levels. For our study, we
reversed the process and we started from a ranking
of error gravity across the CEFR proficiency levels.

Finally, some recent studies on automatic as-
sessment of L2 proficiency have employed state-
of-the-art models, combining associated auxiliary
tasks (Craighead et al., 2020), none of which re-
lated to errors.

2 Datasets and setup

2.1 EFCAMDAT
Firstly, we use the EFCAMDAT corpus (Geertzen
et al., 2014) that comprises L2 learners’ scripts
annotated with their respective score on a scale
from 0 to 100, their proficiency level from 1 to 16
(mapped to CEFR levels from A1 to C2) and par-
tially error-tagged by human experts. As our work
investigates the efficacy of errors as features, we
only use the error-tagged section of the EFCAM-
DAT Cleaned Subcorpus (Shatz, 2020), consisting
of 498,208 scripts ranging from proficiency level
1 to 15 (i.e. from A1 to C1), which we divided
into training and test set. The error tagset of the
corpus consists of 24 types of errors, of which we
discarded 7 related to spelling, punctuation and or-
thographic errors, as they would be of no use for

1https://languagetool.org/

Code Meaning Code Meaning
XC change from x to y NSW no such word
AG agreement PH phraseology
AR article PL plural
D delete PO possessive
PS part of speech PR prepositions
EX expression of idiom SI singular
IS insert VT verb tense
MW missing word WC word choice
WO word order

Table 1: EFCAMDAT error tagset without codes related
to spelling, punctuation and orthographic errors.

assessing speech (see Table 1). As a preliminary
analysis, we computed the KL-Divergence between
the distribution of the 17 error labels counts across
CEFR proficiency levels in EFCAMDAT. The la-
bels were converted into a smoothed distribution,
by applying add-one smoothing. The symmetric
KL-Divergence was then calculated. Therefore, for
error type ti for proficiency level Lk:

P(ti|Lk) =
cnt(ti, Lk) + 1

∑N
j=1(cnt(ti, Lk) + 1)

where cnt(ti, Lk) is the number of occurrences
for a given label in a given grade.

The symmetric KL Divergence was subsequently
calculated across proficiency levels:

KL(Lk|Ll) =

(
N∑

i=1

P(ti|Lk)log
(

P(ti|Lk)

P(ti|Ll)

))

+

(
N∑

i=1

P(ti|Ll)log
(

P(ti|Ll)

P(ti|Lk)

))

Table 2 reports the symmetric KL-Divergence
between distributions of counts from all the 17 error
labels across CEFR proficiency levels. It appears
that we can consider errors as criterial features of
linguistic proficiency, as there are differences in
the distributions of grammatical errors across profi-
ciency levels, to which we can correlate differences
in their frequency.
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A1 A2 B1 B2 C1
A1 0.0 0.055 0.065 0.085 0.066
A2 0.055 0.0 0.013 0.029 0.028
B1 0.065 0.013 0.0 0.005 0.009
B2 0.085 0.029 0.005 0.0 0.010
C1 0.066 0.028 0.009 0.010 0.0

Table 2: Symmetric KL Divergence between distribu-
tions of counts from all 17 error labels in EFCAMDAT.

2.2 Ranking of error gravity
In light of this, we analyzed the frequency of each
type of error across the 15 proficiency levels of the
corpus. We calculated it dividing the sum of all the
occurrences of a given type of error in a given pro-
ficiency level by the number of texts assigned to a
given proficiency level. We then decided to design
a ranking of error gravity for each type of error in
relation to each proficiency level, by introducing a
negative bias in the error count when this amounts
to 0:

bt =





−1 0.1 ≤ Ft,L < 0.2
−2 0.2 ≤ Ft,L < 0.3
· · ·
−9 0.9 ≤ Ft,L < 1.0

where Ft,L is the normalized frequency of error
type t at proficiency level L; e.g. if FAR,1 is 0.2, all
the occurrences of error AR at level 1 reporting 0
errors are replaced by -2. The rationale behind this
idea is to "award" learners who have not made a fre-
quent error in their proficiency level. Subsequently,
in order to avoid having a too sparse representation,
we grouped the 17 types of errors into 5 classes
of errors: verb tense (VT), lexis and use of words
(LUW), prepositions, articles, possessives and part
of speech (PAP), agreement (AG) and generic er-
rors (GE), as shown in Table 3. We divided each
of the 5 error counts by the word count, in order to
weigh also the text length. Finally, the error count
in each level is normalized on a scale from 0 to 1.

Before applying our ranking of error gravity and
introducing the negative bias, we also calculated
the averaged error rates (i.e. the number of errors
divided by the number of words times 100) of each
of the 5 classes and of their sum for each profi-
ciency level (see Table 4). In the VT class, the
increase of the error rate at A2 can be explained
by the fact that A1 learners generally use a smaller
variety of tenses. As a result, they tend to make
fewer verb tense errors.

Errors Class
VT VT
NSW + PH + EX + MW + WC + WO LUW
AR + PO + PR + PS PAP
AG + PL + SI AG
D + IS + XC GE

Table 3: The 5 error classes we used for our study.

Furthermore, we performed ANOVA on each of
the 5 classes and we always obtained significant
p-values (<0.05), thus finding that there are sig-
nificant differences between proficiency levels in
terms of errors.

mean (%)
A1 A2 B1 B2 C1

LUW 3.67 3.10 2.69 1.96 1.58
PAP 1.63 1.42 1.20 0.99 0.70
AG 0.99 0.49 0.47 0.36 0.31
GE 2.00 1.67 1.29 0.95 0.80
VT 0.31 0.43 0.41 0.36 0.19
total 8.62 7.13 6.08 4.63 3.59

Table 4: Averaged error rate of each error class and their
sum across proficiency levels.

2.3 ICNALE
In order to test our approach, we consider IC-
NALE (Ishikawa), a publicly available dataset 2

comprising written and spoken responses of ESL
learners ranging from A2 to B2 and partially of
native speakers. The CEFR levels were assigned
prior to collecting the data, as the ICNALE team
required all the learners to take an L2 vocabulary
size test and to present their scores in English pro-
ficiency tests such as TOEFL, TOEIC, IELTS, etc.
On the basis of these two scores, the learners were
classified into proficiency levels. Only a small sec-
tion of dialogues and essays has been scored by
human experts so far and has been included in the
ICNALE Global Rating Archives (Ishikawa, 2020):
it currently includes the assessments and scores (on
a scale from 0 to 100) of 140 dialogues and 140 es-
says by 40 human raters. Since not all the dialogues
and essays were previously assigned a proficiency
level, for our experiments we selected only the ones
classified into CEFR levels and scored by human
experts, and we also considered the scored texts

2http://language.sakura.ne.jp/icnale/download.html
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and speeches of native speakers, therefore reducing
the written section to 121 essays and the spoken
section to 116 dialogues, of which we considered
only the learners’ utterances. Out of the 40 raters
involved in the project, we only selected the native
speakers with more than 5 years of experience in
ESL teaching and assessment, i.e. 4 raters for the
written section and 3 raters for the spoken section.
We set the average of these scores as targets. De-
tails about average and standard deviation of the
raters’ scores can be found in Ishikawa (2020).

2.4 CLC-FCE

Due to the limited amount of annotated data in
the ICNALE corpus, we train our models on the
CLC-FCE corpus, a publicly available dataset 3,
containing the scripts of an English language exam
aimed at around B2 level of the CEFR, which is
also the highest level of the ICNALE corpus. Its
1244 exam scripts include responses to two differ-
ent prompts asking the test-takers to write a short
answer (e.g. a letter, an article, a report, a short
story) and range from 200 to 400 words on average.
Each answer has been error-tagged and annotated
by human experts with a mark. Note that we elimi-
nated the answers that did not report a score. More
information about the dataset can be found in Yan-
nakoudakis et al. (2011).

2.5 TLT-school

In Trentino, an autonomous region in northern Italy,
the linguistic competence of Italian students have
been assessed over years through proficiency tests
in both English and German (Gretter et al., 2020),
involving about 3000 students ranging from 9 to 16
years old, belonging to four different school grade
levels (5th, 8th, 10th, 11th) and three proficiency
levels (A1, A2, B1). Since our experiments are
conducted only on the B1 section of the English
written and spoken parts of the corpus, we will
not describe the section concerning the texts and
utterances of the German section, as their analysis
goes beyond the scope of this paper.

The written section consists of 895 answers to 2
question prompts. Test-takers are asked two ques-
tions: the first one requires them to write a blog
entry in which they have to describe what happened
during the day and to talk about their plans for the
rest of the week, while the second one asks them to
write an email to a friend who broke an object bor-

3https://ilexir.co.uk/datasets/index.html

rowed from them. The spoken section is composed
of 442 responses to 7 small talk questions about
everyday life situations. It is worth mentioning that
some answers are characterized by a number of is-
sues (e.g. presence of words belonging to multiple
languages or presence of off-topic answers). We
decided not to eliminate these answers from the
data used in the experiments, but we removed the
empty responses.

As regards the speech transcriptions, we elimi-
nated the annotations related to spontaneous speech
phenomena such as hesitations and fragments of
words etc. Detailed information about the manual
transcriptions and other aspects of the corpus can
be found in Gretter et al. (2020).

As for the automatic speech recognition (ASR)
output text, its word error rate is 35.9% on the
whole spoken test data, whereas it amounts to
41.13% for the B1 subset we used in our experi-
ments; acoustic and language models are described
in Gretter et al. (2019).

The total score ranges from 0 to 8 in the written
section and from 0 to 12 in the spoken section and
consists of the sum of the subscores assigned by hu-
man experts for each specific proficiency indicator
assigned by the human raters (i.e. fulfillment, for-
mal correctness and lexical complexity, cohesion,
and narrative and descriptive competences for writ-
ing; and relevance, formal correctness, lexical com-
plexity, pronunciation, fluency, and communicative
competence for speaking). For each indicator hu-
man raters could choose 0, 1 or 2 points. Since
every utterance was scored by only one expert, it
was not possible to evaluate any kind of agreement
among experts. Note that the CEFR levels were as-
signed before the tests and should be considered as
expected proficiency levels, whereas the test scores
are effectively representing each learner’s perfor-
mance in the exam. Table 6 shows the number of
answers and word counts of the TLT-school spoken
test set across test scores.

3 Model architectures

We build our models using a BERT architec-
ture (Devlin et al., 2018) in the version provided by
the HuggingFace Transformer Library (Wolf et al.,
2019) (bert-base-uncased). In both the feature ex-
tractor and the scoring models BERT layers are
frozen.
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ICNALE CLC TLT
Wr Sp Wr Sp

Train - - 2122 594 345
Dev - - 160 - -
Test 121 116 194 301 97

Avg. len 225 186 192 103 28
Max. len 302 455 462 279 221
Min. len 179 23 72 1 1
Score 0-100 0-100 1-40 0-8 0-12

Table 5: Statistics (number of answers and word counts)
for the three test sets: ICNALE (Written and Spoken),
CLC-FCE, TLT-school (Written and Spoken).

Score Samples Min. len Max. len Avg. len
0-3 27 1 100 11.18
3-6 23 9 85 22.00
6-9 14 11 51 27.07
9-12 33 20 196 55.57

Table 6: Statistics (number of answers and word counts)
for the TLT-school spoken test set across test scores.

3.1 Feature extractor
Specifically, EFEX takes a sequence of token em-
beddings i.e. of the answers provided by the learn-
ers [x1, ..., xn], as inputs and predicts the ‘biased’
estimate (see formula in section 2.1) of error rate
of each class of error, i.e. VT, LUW, PAP, AG and
GE. Each rate is calculated by a final dense layer
and the model uses mean squared error (MSE) as
the loss function. For the GE and LUW outputs
we add one and two extra dense layers respectively.
We used Adam optimizer (Kingma and Ba, 2014)
with learning rate of 8e-6, batch size set at 16, vali-
dation split at 0.1, and we trained our models for 60
epochs. Figure 2 shows the architecture of EFEX.

Figure 2: EFEX model architecture.

3.2 Scoring models
Before testing the impact of the labels generated
by EFEX, we run several experiments on the se-
lected datasets using our simple baseline scoring
models, which take only a sequence of token em-
beddings, i.e. of the answers provided by the test-
takers [x1, ..., xn], as inputs and predict the total
score of each answer normalized on a scale from -1
to 1. The EFEX-enriched models take the answers
as inputs combined with a 5-dimensional vector,
i.e. the number of classes of errors generated by
EFEX, and have the same outputs as the baselines,
as shown in Figure 3.

In both the baseline models and the EFEX-
enriched models, the scores are calculated by a final
dense layer and the model employs MSE as the loss
function. The structure and hyper-parameters of
the models are shown in Table 7. For the evaluation
we consider two metrics: MSE and Pearson’s cor-
relation coefficient (PCC) between the true scores
and the predicted ones.

Figure 3: Scoring model architecture.

4 Experiments and results

4.1 CLC-FCE to ICNALE
We run a series of experiments starting from train-
ing EFEX on the EFCAMDAT dataset, setting VT,
PAP, AG, GE and LUW as our prediction targets,
feeding only the input text. We tested EFEX on the
EFCAMDAT test set and we obtained significant
results when comparing the true labels with the
predicted ones in terms of PCC (see Table 8).

Secondly, we run the scorer on ICNALE (see
Table 9); since we do not have enough ICNALE
data for a proper training, we train our models on
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TLT CLC/ICNALE
Max. seq. len. 256 512
Learning rate 9e-6 2e-6
Epochs 60 (120) 60 (150)
Batch size 32 16
1st Dense layer 768 - relu 768 - relu
Dropout 0.2 0.2
2nd Dense layer 128 - relu 64 - relu
Dropout 0.2 0.2
Output layer 1 1

Table 7: Model architectures and hyperparameters.
The number of epochs in brackets refers to the EFEX-
enriched model.

PCC

LUW 0.796

PAP 0.862

AG 0.868

GE 0.831

VT 0.876

Table 8: EFEX performance in terms of PCC on EF-
CAMDAT.

the CLC-FCE. Considering that we test our models
trained on the CLC-FCE directly on out-of-domain
data without fine-tuning, we achieve overall inter-
esting results. In this case, the performance of the
EFEX-enriched model is slightly lower than the
baseline when tested on the scores of the ICNALE
written set, but still better in terms of PCC when
used for predicting the scores of the spoken set.

ICNALE Written Spoken
Model MSE PCC MSE PCC
CLC baseline 0.201 0.719 0.121 0.614
+ EFEX labels 0.254 0.709 0.134 0.625

Table 9: Results on the ICNALE test dataset (MSE and
PCC).

4.2 TLT-school - Written to spoken

Finally, we run our experiments on the TLT-school,
training our baseline on the written training set and
testing it on the spoken test set. We follow the same
steps with our EFEX-enriched model and we gain

TLT - Spoken
Man. transcr. ASR
MSE PCC MSE PCC

Baseline 0.555 0.734 0.793 0.605

+ fine-tuning 0.488 0.741 0.715 0.609

+ EFEX labels 0.468 0.759 0.688 0.638
+ fine-tuning 0.400 0.764 0.606 0.642

Table 10: Results on the TLT test dataset (MSE and
PCC): baseline; baseline + fine-tuning; baseline + EFEX
labels; baseline + EFEX labels + fine-tuning.

a higher performance when predicting the spoken
scores both using the manual transcriptions and the
ASR output text, as shown in Table 10. Addition-
ally, we fine-tune our model on the spoken training
set for 2 epochs reducing the learning rate to 2e-6
and we obtain our best performance, reaching a
PCC of 0.764 on the manual transcriptions.

Also the results on the ASR output appear to be
enhanced by fine-tuning, as we obtain a PCC of
0.642. Fine-tuning the baseline without additional
features reaches a PCC of 0.741 on the manual tran-
scriptions and of 0.609 on the ASR. We find that
the EFEX-enriched model achieves higher results
across both metrics.

Furthermore, we continue our analysis compar-
ing the performance of the baseline and the EFEX-
enriched model across test scores. Figure 4 shows
the MSE variation across 4 ranges of scores, i.e.
0-3, 3-6, 6-9, 9-12. It can be observed that the MSE
is always lower for the EFEX-enriched model ex-
cept in the range of scores between 0 and 3 on both
the manual transcriptions and ASR output text, for
which the EFEX-enriched model shows a minute
increase of the MSE. Such difference is probably
due to the fact that, in this specific range of scores,
learners’ answers, in addition to having lower qual-
ity, are also shorter on average (about 11 words),
as shown in Table 6. As the score increases, the
word average rises to 56 for scores between 9 and
12. Fewer words also means fewer and less variety
of errors. Therefore, EFEX might be introducing
some information that is not needed for answers
with lower scores.

Specifically, the error distribution for the lowest
range might be less informative, as can be inferred
from the Frobenius norm values of the EFEX vec-
tors for each score range shown in Table 11.
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Figure 4: MSE variation across scores on manual tran-
scriptions and ASR output text.

Norm
Score range Man. transcr. ASR
0-3 1.786 1.780
3-6 2.386 2.540
6-9 2.022 2.090
9-12 4.011 3.986

Table 11: Frobenius norm values of EFEX vectors
across score ranges.

5 Conclusions and future work

In this work we presented a promising approach
to automatic proficiency assessment of spoken re-
sponses based on the presence of errors across profi-
ciency levels, extracted with an error feature extrac-
tor that we developed using a BERT-based archi-
tecture. Furthermore, we proposed to use models
previously trained on written data in order to tackle
the problem related to limited availability of spo-
ken data. First, we tried our error-based approach
on some publicly available datasets, training our
models on the CLC-FCE and testing them on the
ICNALE. In this case, our EFEX-enriched model
managed to modestly improve the prediction of the
dialogues scores in terms of PCC. Specifically for
this experiment, one also has to consider the dif-
ference in domain and scoring metrics between the
two corpora, albeit they are approximately around
the same proficiency levels.

Subsequently, we discovered that the use of
EFEX labels shows a more interesting improve-
ment in scoring the spoken section of TLT-school
after training our models on written data, suggest-
ing that these additional features can mitigate the
impact of ASR errors and some typical phenomena
of the spoken modality. An example drawn from

the data could be the following: "in fact when a
person does a lot of movement and moves a lot
and goes out in the in the nature then his his body
is in more healthy". The repetitions ’in the’ and
’his’ as well as what appears to be a wrongly in-
serted preposition ’in’ would be considered actual
errors if they occurred in written productions, but
not necessarily so in spoken texts.

Our assumption is that BERT models, as they are
trained on large written corpora, already possess
written grammatical knowledge and are sensitive to
grammatical violations to a certain extent. There-
fore, when evaluating written proficiency, they do
not need to be warned with explicit indications
with regard to errors, but error-related features can
be beneficial to understand and decode the typi-
cal phenomena of oral language and learn spoken
and conversational grammar. Considering that in
spoken responses the scoring module could take
advantage of a distinction of errors made by the
speaker or introduced by ASR (Knill et al., 2019),
we assume that there is still room for improvement
in the approaches that detect errors as additional
features.

Further work should be undertaken starting from
the first step of our pipeline, i.e. the error feature
extractor, since, despite the good results shown
in Table 8, we can still improve it and analyse its
effectiveness in various ways, e.g. by rearranging
the error classes and remapping the ranking of error
gravity.

Considering that we removed spontaneous
speech phenomena such as hesitations and frag-
ments of words from the data for our experiments,
we envisage a combination of the approach pre-
sented in this paper and the use of error-related
features derived from audio recordings, such as
phonological errors as well as repetitions and other
types of disfluency.

Moreover, we plan to investigate the impact of
models trained on written data and tested on spo-
ken data also for other CEFR levels. Finally, we
acknowledge that the presence of errors cannot
be the only feature to be taken into account when
assessing L2 proficiency at higher levels, but, if
properly weighted and balanced with other profi-
ciency indicators, it might improve consistency and
objectivity in assessment.
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Abstract

A supportive environment is vital for overall
cognitive development in children. Challenges
with direct observation and limitations of ac-
cess to data driven approaches often hinder
teachers or practitioners in early childhood re-
search to modify or enhance classroom struc-
tures. Deploying sensor based tools in natu-
ralistic preschool classrooms will thereby help
teachers/practitioners to make informed deci-
sions and better support student learning needs.
In this study, two elements of eco-behavioral
assessment: conversational speech and real-
time location are fused together. While vari-
ous challenges remain in developing Automatic
Speech Recognition systems for spontaneous
preschool children speech, efforts are made to
develop a hybrid ASR engine reporting an ef-
fective Word-Error-Rate of 40%. The ASR
engine further supports recognition of spoken
words, WH-words, and verbs in various activ-
ity learning zones in a naturalistic preschool
classroom scenario. Activity areas represent
various locations within the physical ecology
of an early childhood setting, each of which is
suited for knowledge and skill enhancement in
young children. Capturing children’s commu-
nication engagement in such areas could help
teachers/practitioners fine-tune their daily ac-
tivities, without the need for direct observation.
This investigation provides evidence of the use
of speech technology in educational settings to
better support such early childhood interven-
tion.

1 Introduction

The preschool classroom is a viable space for cap-
turing young children’s interactions with teachers
and peers. The quality and number of interactions
children experience is a key factor in child language
development (Hart and Risley, 1995). However, for
supporting teachers working with young children

with or without developmental delays, the use of
direct observations or manual video recording and
coding is not a scalable endeavor (Tapp et al., 1995).
Sensor-based monitoring tools in classrooms can
assist teachers in creating and maintaining a rich
learning environment for all children. Feedback
from these tools could allow teachers to better iden-
tify children who could benefit from further sup-
port. Rich and frequently available data can not
only help in creating better classroom structure, but
also create opportunities to maximize children’s
communication and interaction (Diamond et al.,
2013).

Eco-behavioral observational assessment has of-
ten been used to measure moment-to-moment ef-
fects with multiple environmental events on spe-
cific behaviors and interactions that occur in an
early childhood inclusive classroom (Greenwood
et al., 1994; Watson et al., 2011). These assess-
ment samples are centered around teacher and child
behavior, and overall classroom learning context
(e.g., the interactions between them) by adding
situational or contextual factors. Specifically for
inclusive classrooms, a child’s daily interaction can
influence their development and by using an eco-
behavioral assessment, conclusions can be drawn
between environmental contexts and the interac-
tions that occur within them (Brown et al., 1999).
These findings can inform practitioners how to ar-
range their inclusive environments to best support
language development of all children. The variety
of spontaneous language in an inclusive preschool
classroom comes from a variety of speakers and
includes both adults and children. Although the
Language Environment Analysis (LENA) frame-
work is used extensively by the early childhood
research community for a digital measurement sys-
tem that is automatic (Soderstrom and Wittebolle,
2013; Dykstra et al., 2013; Burgess et al., 2013;
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Irvin et al., 2017; Greenwood et al., 2018), LENA
does not possess an Automatic Speech Recognition
(ASR) engine to convert the child speech-to-text,
nor does it capture location in the classroom. Apart
from conversational speech, children’s coordinated
movement and location within classrooms also act
as an acquisition context driver for critically im-
portant skills including language, cognition, and
social communication (Eliot, 2000; Council et al.,
2000; Piek et al., 2008). Therefore, automatic loca-
tion tracking within the classroom can provide the
ability to monitor interventions while maximizing
learning opportunities (Irvin et al., 2018).

Our multi-disciplinary educational research
project focuses on quantifying “learning" based
on social engagement for use in classroom settings
by teachers - and thus we are building a tool that
captures the granularity of eco-behavioral observa-
tional assessment. It is based on spontaneous in-
teractions between multiple teachers and preschool
children (3 to 5 years) with and without develop-
mental delays within naturalistic noisy preschool
classroom environments. In this study, we present
a translational framework to automatically track
conversational speech of preschool children in var-
ious activity areas supported by speech technology
based on ASR which is fine-tuned specifically for
preschool children taking into account their devel-
oping nature and developmental delays.

2 Speech and language development in
young children

Right from their first babbles, children start devel-
oping various speech sounds (Shriberg, 1993) until
mid-elementary school. Typically-developing chil-
dren are expected to progressively acquire various
speech sounds throughout early childhood (birth
to 8 years). These development occurs primar-
ily in three stages: (i) ‘Early’ stage from 1 to 3
years, (ii) ‘Middle’ stage from 3 to 61

2 , and (iii)
‘Late’ stage from 5 to 71

2 . In the ‘Early’ stage,
speech sounds like M (nasal; "mama"), B (stop;
"baby"), Y (semivowel; "you"), N (nasal; "no"),
W (semivowel; "we"), D (stop; "Daddy"), P (stop;
"Pop"), HH (aspirate; "hi") are expected to be de-
veloped. While sounds like T (stop; “two”), NG
(nasal; “running”), K (stop; “cup”), G (stop; “go”),
F (fricative; “fish”), V (fricative, “van”), CH (af-
fricate, “chew”), and JH (affricate, “jump”) are ex-
pected to be acquired in the ‘Middle’ stage. Finally,
in the ‘late’ stage, children develop slightly harder

sounds like SH (fricative; “sheep”), S (fricative;
“see”), TH (fricative; “think,that", R (liquid; “red”),
Z (fricative; “zoo”), L (liquid; “like”) and ZH (frica-
tive; “measure”). Children may omit, substitute or
have inconsistency in production of speech sounds
while they are learning. Apart from speech, lan-
guage planning is also evolving, so word selection
and grammar may have issues. Not all children ac-
quire these skills at a similar pace, especially those
with developmental delays.

3 Challenges of developing Automatic
Speech Recognition systems for young
children

Various developmental factors like articula-
tion/pronunciation, motor skills, vocabulary, etc.,
makes the task of developing ASR systems for chil-
dren challenging than that for adults (Gerosa et al.,
2007). Also, children in early childhood (birth
to 8 years) have significantly different speech and
language skills as compared to their older peers.
Prior research from the Speech Technology com-
munity on Children ASR (Stemmer et al., 2003;
Shivakumar et al., 2014; Tong et al., 2017; Wu
et al., 2019; Shivakumar and Georgiou, 2020; Ye-
ung et al., 2021; Rumberg et al., 2021; Gretter
et al., 2021) is captivating. But these focused
on: (i) older children, including kindergarten (6-15
yrs), (ii) data collected using head-mounted micro-
phones or close-proximity handheld smartphones
in clean/controlled settings under adult supervision,
and (iii) with just one speaker using prompts or
read stimuli, and limited spontaneous (not scripted)
speech. Limited focus and data is available for pro-
cessing of adult-child interactions in naturalistic
preschool settings (3-5 yrs) while they are involved
in various activities throughout the day. There is
lack of publicly available young child speech cor-
pora (primarily due to privacy/regulations). How-
ever, a recent study (Yeung and Alwan, 2018)
described various challenges in developing ASR
systems for single-word utterances read aloud by
kindergarten (5-6 yrs) children achieving a Word
Error Rate (WER) of 25%. Therefore, all these
factors make the task of developing ASR systems
for spontaneous preschool children speech in natu-
ralistic educational settings extremely challenging.
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Figure 1: Speech and location data collection in preschool.

4 Data and Collection

4.1 Participants & Procedure

A total of 33 children aged 3 to 5 years with and
without developmental delays, and 8 adults teach-
ers participated in this study. The data was col-
lected in preschool classrooms (refer Fig.1(b)) in
a large urban community in a Southern state in
US, and in multiple sessions over several days in
different classrooms with different groups of par-
ticipants. Data from each participant was linked
to an anonymous id for privacy. All participants
consented to the use of de-identified data for anal-
ysis. This study was approved by the Institutional
Review Board of both KU and UTD for analysis.

4.2 Conversational Speech

Conversational speech was collected using a light
weight compact digital audio recorder (LENA1) at-
tached to participants (refer Fig.1(a)). The LENA
Language ENvironmental Analysis system consists
of an audio recorder and audio processing software

1https://www.lena.org/

(Ford et al., 2008). The recorder uses an omnidirec-
tional microphone and the final audio is obtained
by a computer or laptop running the software to
which the recorder is plugged in. The final audio
has a sampling frequency of 16 kHz, with a record-
ing unit having a capacity of 16 hours. Although
LENA provides adult word counts, conversational
turns, and child and peer vocalizations; it does not
provide the speech-to-text output. The LENA unit
data can be considered as individual audio stream
and was tagged into three speaker (Fig.1(c)) cat-
egories: Primary child (speech initiated by child
wearing that LENA unit), Secondary child (speech
originated by any other children within close prox-
imity of primary child), and Adult (speech origi-
nated by any adult in close proximity). It is noted
that for each LENA audio stream, there is only 1
Primary child and multiple Secondary Children and
Adults (e.g., each LENA stream is associated with
anonymous child id).
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4.3 Real-time Location

Ubisense 2, a Real-Time Location Tracking Sys-
tem (RTLS) based on Ultra-Wideband (UWB), is
deployed in this study. Ubisense is capable of pro-
viding 3D location for every second simultaneously
for up to 100 individuals both indoors and outdoors.
The RTLS data can also provide information on
movement patterns and direction apart from loca-
tion. This system is established by the combina-
tion of receiver sensors and wearable light-weight
transponder tags (refer Fig.1(a,b)), both of which
broadcast live location co-ordinates to a laptop or
computer in network running the Ubisense Loca-
tion Engine software. With proper calibration, the
accuracy of Ubisense is ±15 cm under ideal mea-
surement conditions, and ±30 cm in challenging
measurement conditions. Ubisense has been previ-
ously deployed in various clinical research studies
for individuals at risk for dementia (Kearns et al.,
2008; Vuong et al., 2014). Sensors are placed in
four corners of the space to ensure maximum cover-
age and connected to a laptop computer via cords.
Then the dimensions of the classroom are estab-
lished based on the Ubisense measurements, fol-
lowed by calibrating the real-time location system
sensors to their 3-D (x, y, z) locations. Measures to
minimize electronic interference caused by other
devices (i.e., Wi-Fi routers) was considered. Real-
time location was not recorded when the children
went outside of the classroom dimension set by
Ubisense sensors (like playground).

4.4 Mapping activity area with real-time
location information and speech

Activity areas represent information about the loca-
tion (permanent or temporary) of the child within
the physical ecology of an early childhood setting.
For this study, various individual literacy areas in
the classroom were outlined in consultation with
the preschool teachers. These areas are outlined
in Table 1. This is followed by setting up bound-
aries around the individual literacy areas in the
classroom using the Geometry feature of Ubisense.
This subsequently helped to identify when children
wearing a transponder tag were in these areas (refer
Fig.1(b)). Ubisense scanning rate was set to 1 Hz.
Human-transcriptions of conversational speech, the
actual start time of the Ubisense location tracking
system, and the actual recording start time of every
individual LENA unit (worn by different children)

2https://ubisense.com/

were used for the mapping between the activity
areas and spoken text.

Table 1: Activity Area Codes and their significance.

Area Code Significance
Art Area for painting, drawing,

coloring, writing, or sculpting
Snack Area for snack/food breaks
Block Areas with large building or

construction materials, on floor
Cozy/Book Areas with books for reading

alone or in groups
Computer Areas for computer activity
Dramatic Areas for dress up clothes,

play kitchen utensils, dollhouse, etc.
or that support activities with

other children that contain
make-believe roles or themes

like fireperson, doctor, etc.
Manipulative Areas for small motor movements

of the hand, fingers, wrists,
and hand-eye coordination

Story Areas for reading, listening
and telling stories

5 Developing Preschool Children
Automatic Speech Recognition System

5.1 Acoustic and Language Modelling
Acoustic model training and decoding experiments
were performed using Kaldi (Povey et al., 2011), N-
gram language models were trained using SRILM
toolkit (Stolcke, 2002) and the RNN-based using
PyTorch. Care was taken to avoid overlap of the
same group of children between train/test. Ground-
truth was based on human transcriptions and only
the segments spoken by both primary and sec-
ondary children were considered for ASR assess-
ment. The GMM-HMM systems were trained to
provide frame-to-phone alignments for the DNN
based systems. For the GMM-HMM systems, Mel-
frequency cepstral coefficients (MFCCs) (Young,
1996) were extracted for every 25 ms window and
10 ms overlap. 13 MFCCs along with their Δ and
ΔΔ features were used as front-end features. The
input features to the DNN-HMM models included a
40-D high resolution MFCCs of current and neigh-
bouring frames and a 100-D i-vector(Hansen and
Hasan, 2015) of the current frame. The i-vectors
were calculated by generating speed-perturbed
training data with 3 (0.9,1.0,1.1) speed factors. In
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Table 2: Child ASR Performance.

# Features Acoustic Model Acoustic Model Language Model Language WER (%) of
♣ Training Data♠ Training Data♠ Model Preschool Test

1 MΔ PS GMM-Tri3 LibriSpeech 3-gram 90.28
2 MΔ + I3 PS TDNN-F(11) LibriSpeech 3-gram 63.66
3 MΔ + I3 PS TDNN-F(11) PS 3-gram 49.02
4 E + I3 PS TDNN-F(17) PS 3-gram 47.02
5 ES + I3 PS CNN(6) + TDNN-F(9) PS 3-gram 43.03
6 ES + I3 PS CNN(6) + TDNN-F(9) + Attn(1) PS 3-gram 42.00
7 ES + I3 PS CNN(6) + TDNN-F(9) + Attn(1) PS LSTM 40.67
8 ES + I3 PS + CMU + OGI CNN(6) + TDNN-F(9) + Attn(1) PS + CMU + OGI 3-gram 43.57

♣ MΔ → MFCC & Δ & ΔΔ, E/ES → Filter-Bank Energy (/with SpecAugment), I3 → 3* Speed pert. i-vector
♠ PS → Preschool, CMU → CMU Kids Corpora, OS → OGI Kids Corpora

addition, these high-resolution MFCCs were also
replaced with 40-dimensional Mel-frequency Fil-
ter Banks Energies (MFBE) (Paliwal, 1999) by
Inverse Discrete Cosine Transform. Factorized
time-delay neural networks (TDNN-F)(Povey et al.,
2018a), originally proposed as a data-efficient al-
ternative to TDNN for enhancing ASR perfor-
mance of low-resource languages with less than
100 hours of data, were primarily used as hidden
layers for the hybrid DNN-HMM acoustic models.
Apart from TDNN-F layers, CNN layers were de-
ployed. A time-restricted self-attention (Vaswani
et al., 2017; Povey et al., 2018b) mechanism (with
multiple heads) was also deployed. Another data
augmentation approach called SpecAugment(Park
et al., 2019) was applied directly to MFBEs. For
the RNN-based LMs, we used 2-layer LSTMs of
650 embedding size and 650 hidden dimension.
Dropout was considered to overcome overfitting.
Lattice rescoring(Li et al., 2021) was used to de-
code the RNN-based LM. CMU Pronouncing Dic-
tionary3 was used. Various non-linguistic mark-
ers included: laugh, cough, scream, gasp, breath,
babble, cry, loud music, crowd and play noise,
and other noise. Data-augmentation using publicly
available corpora like OGI Kids corpus (Shobaki
et al., 2000) (≈ 60 hours; Kindergarten to Grade
10) and CMU Kids corpus (Eskenazi et al., 1997)
(≈ 9 hours; Grade 3 to 5) was also considered.

5.2 ASR Model Performance & Discussions

Child ASR performance results are summarized in
Table 2. A triphone GMM-HMM Acoustic model
trained on Preschool speech generate a very high
WER of 90.28% (#1) for pre-trained 3-gram Lib-
riSpeech LM. As shown in #2, using an 11-layer
TDNN-F based Acoustic model, 40 MFCC fea-
tures and speed-perturbed i-vector (of factor 3), a

3http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/

much lower WER of 63.66% was achieved using
the same language model. Now in #3, we notice
a significant drop of WER to 49.02% by training
the language model using our Preschool data. Us-
ing a language model trained on in-domain shows
much benefit in our study than using pre-trained
LibriSpeech language model, as compared to pre-
vious studies (Wu et al., 2019; Yeung et al., 2021)
for older children speech where Librispeech just
worked fine. This signifies that young children
do not follow the same language patterns in spo-
ken English or that of adults. In #4, #5, and #6,
shows various acoustic model enhancements based
on TDNN-F, CNN, and Attention layers with #6
reporting a WER of 42.00%. Finally, in #7 by re-
placing the 3-gram language model with an RNN-
based one, with LSTM layers (see Section 5.1) we
reach a WER of 40.67%. As shown in #8, data
augmentation does not enhance the performance of
the ASR model.

6 Activity-area based Child Speech
Recognition and Discussions

All experiment results for this section are summa-
rized in Table 3. The results here are shown for
3 preschool children who were typically develop-
ing (without delays) and were present in the same
classroom. From a child ASR perspective, these
3 children belong to the test split of the Preschool
data and were tagged as primary children (speak-
ers wearing the LENA units). The ASR model
used here is the best model as reported in Section
5.2. The results are primarily subdivided into three
categories: (i) all words spoken, (ii) WH-words
(who, what, where, etc.), and (iii) Verbs; followed
by the child IDs: Primary Child #1, #2 and #3.
Average WER (irrespective of activity areas) for
Primary Child #1, #2 and #3 are 28.49%, 36.13%,
and 47.59% respectively. Number of words in sen-
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Table 3: Activity-area based child Speech Recognition results.

Table 3(A)
Primary Child #1 Primary Child #2 Primary Child #3

Activity Time WER Words Time WER Words Time WER Words
Area (min) (%) spoken (min) (%) spoken (min) (%) spoken

Art/Snack 18.6 17.39 307 32.3 53.11 270 21.8 56.03 112
Block <1 13.79 29 1.8 36.36 44 14.7 46.39 217

Computer 4.3 37.5 83 3.3 38.18 55 3.7 23.33 30
Cozy/Book 2.1 NA 0 4 47.61 20 1.9 NA 0

Dramatic Play 4.1 27.1 96 12.4 24.93 384 25.2 43.03 851
Manipulative <1 12.5 7 9.8 26.62 342 2.1 32.25 31

Story <1 25 13 1 58.33 12 <1 50 6

Table 3(B)
Primary Child #1 Primary Child #2 Primary Child #3

Activity Time WH-words Verbs Time WH-words Verbs Time WH-words Verbs
Area (min) (%) (%) (min) (%) (%) (min) (%) (%)

Art/Snack 18.6 83.33 83.33 32.3 66.67 72.72 21.8 50 50
Block <1 100 100 1.8 NA 100 14.7 50 71.48

Computer 4.3 100 57.14 3.3 100 60 3.7 NA 50
Cozy/Book 2.1 NA NA 4 NA 50 1.9 NA NA

Dramatic Play 4.1 100 66.67 12.4 83.33 84.61 25.2 66.67 68.22
Manipulative <1 NA 100 9.8 100 82.22 2.1 0 100

Story <1 100 50 1 NA 66.67 <1 NA NA

Time (min) = Total time spent by each child in that specific activity area
WER (%) = Word error rate of the ASR model for all words spoken in that specific activity area

Words spoken = Total number of words spoken by each child in that specific activity area
WH-words (%) = Total % of WH-words correctly predicted by the ASR model spoken in that specific activity area

Verbs (%) = Total % of Verbs correctly predicted by the ASR model spoken in that specific activity area
NA = Not applicable; primarily due to no words spoken

tences, WH-words and verbs are a few of the promi-
nent language learning milestones established by
the American Speech–Language–Hearing Associa-
tion 4, outlined by the American Academy of Pe-
diatrics (Gerber et al., 2010; Zubler et al., 2022),
and adopted as CDC’s (Centers for Disease Con-
trol and Prevention) Developmental Milestones5

program "Learn the Signs. Act Early." Table 3(A)
shows the time spent by each child in an activ-
ity area, followed by WER and all words count
spoken in that area. Table 3(B) shows the time
spent by each child in an activity area, followed
by % of total WH-words and verbs spoken those
were predicted correctly in that area by the ASR
engine. The "Time Spent" factor is important to
better normalize the results across multiple sub-
jects. Primary Child #1 spends the most quality
time in ‘Art/Snack’ area (WER: 17.39%), followed
by close to 5 mins in ‘Computer’(WER: 37.5%)
and ‘Dramatic Play’(WER: 27.1%) areas. The
amount of spoken words is relatively much higher
in ‘Art/Snack’ area. Child #1 spends less than
a minute in ‘Block’, ‘Manipulative’, and ‘Story’
areas, which is also reflected in the word spo-

4https://www.asha.org/public/speech/development/chart
5https://www.cdc.gov/ncbddd/actearly/milestones

ken count. Overall across all activity areas, Pri-
mary Child #1 spends much less time and spoke
less as compared to Child #2 and #3. Primary
Child #2 and #3 spent more time in the classroom
boundary, and therefore word counts spoken were
much higher. Primary Child #2 spends quality
time in ‘Art/Snack’ (WER: 53.11%), ‘Dramatic
play’ (24.93%), ‘Manipulative’ (26.62%), and
close to 4 mins in ‘Computer’(WER: 38.18%) and
‘Cozy/Book’(WER: 47.61) areas. Primary Child #3
spends quality time in ‘Art/Snack’ (WER: 56.03%),
‘Block’ (46.39%), ‘Dramatic Play’ (43.03%), and
close to 4 mins in ‘Computer’(WER: 23.33%) ar-
eas. Irrespective of the child, performance of the
ASR engine in detecting WH-words and verbs
across all activity areas is quite good, given the
naturalistic noisy dynamic learning environment.
While areas like ‘Cozy/Book’ are more personal
learning spaces. Areas like ‘Dramatic Play’, ‘Ma-
nipulative’, ‘Block’, ‘Art/Snack’ alternatively en-
courage group activity. ‘Computer’ and ‘Story’ ar-
eas are more focused on listening or seeing. Some
observations here can be: (i) Primary Child #1
did not engage much in areas of group activity -
signifying difficulty to engage in groups, (ii) Pri-
mary Child #1 and #3 produced higher WH-word
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counts (not shown in the Table) in ‘Computer’ and
‘Dramatic Play’ areas - signifying more curiosity.
Longitudinal data of the same group of children
over a significant time period should help in bet-
ter informed decisions. However, amendments to
classroom structure and plan will be at the discre-
tion of teachers. Performance of the ASR engine
can help to monitor/track such elements in a natu-
ralistic preschool classrooms.

7 Towards Data-Based Inclusion
Planning in Classrooms

Non-segregated or inclusive educational set-
tings possess a design best suited to prepare
young children with disabilities for kindergarten
(US Dept. Health, 2015; Barton and Smith, 2015).
Careful considerations regarding environmental
factors are imperative for meaningful interactions
between children in inclusive classrooms (Ganz,
2007). High-quality inclusive classrooms can also
foster and support friendship development between
children with and without disabilities (Buysse et al.,
2008). Through communication skills and so-
cial interactions, individuals can begin to form
meaningful social relationships and friendships,
which could promote positive psychological states
(e.g., happiness and self-efficacy; Umberson and
Karas Montez, 2010). Teachers and peers as com-
municators can play important roles for inclusive
classrooms to support communication skills of chil-
dren with disabilities and facilitating social inter-
actions between one another. The quantity and
quality of interactions significantly influence the
language environment and communication oppor-
tunities for young children with disabilities (W Ver-
non et al., 2018). Also, it may be more important
for a child with Autism Spectrum Disorder (ASD)
to spend quality time in activity areas that promote
language and social engagament because of the
social-communication and play limitations that ac-
company ASD. Using audio recorded by LENA
and real-time location using Ubisense supported by
advanced speech processing algorithms could pro-
vide teachers with information about “what" and
“where" child interactions are taking place so that
they may be better able to discern when to provide
additional support.

8 Conclusion

This study has provided evidence and lays the foun-
dation of deploying sensor-based monitoring tools

to acquire and interpret eco-behavioral data (speech
and location) in naturalistic early childhood set-
tings to better support teachers and child learning.
This work tends to address a major challenge faced
by early childhood educators in supporting children
(with and without developmental delays) due to a
lack of real-time data to inform daily practices and
that lead to longer-term school readiness outcomes.
Another component in this study has addressed the
development of ASR systems for preschool chil-
dren, which is a very low-resource scenario. Both
collection and transcription of such data is a ma-
jor challenge, especially due to both noisy data
and speech intelligibility of young children. Future
work will focus on analyzing more children with
and without developmental delays, and also col-
lection of such naturalistic data. Future work will
also consider speaker group classification (adult vs.
child) using speaker-group diarization as compared
to human transcriptions.
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Abstract
To tailor a learning system to the student’s
level and needs, we must consider the charac-
teristics of the learning content, such as its dif-
ficulty. While natural language processing al-
lows us to represent text efficiently, the mean-
ingful representation of mathematical formu-
las in an educational context is still understud-
ied. This paper adopts structural embeddings
as a possible way to bridge this gap. Our
experiments validate the approach using pub-
licly available datasets to show that incorporat-
ing syntactic information can improve perfor-
mance in predicting the exercise difficulty.

1 Introduction

Online learning platforms aim to provide person-
alised tutoring at scale using data-driven personali-
sation (Romero and Ventura, 2010). A key compo-
nent of a personalised system is a recommendation
algorithm that suggests the next learning activity.
To ensure that the recommendation is tailored to
the student’s level and learning needs, not only
should the student’s ability level model be consid-
ered, but also the learning content characteristics,
such as its difficulty. Learning content can contain
multiple media types (images, text, formulas), each
of which must be converted to a numeric format
compatible with machine learning models. While
natural language processing (NLP) and computer
vision allow us to efficiently represent texts and
images, the meaningful representation of formulas
in an educational context is still understudied. This
paper proposes a method for representing mathe-
matical expressions (considered as a form of text)
based on an structural embeddings and investigates
its effectiveness in predicting exercise difficulty.

2 Related work

Research directions in mathematics can be broadly
categorised into three branches: generation, assess-

ment and solving. In each task, we need to rep-
resent a mathematical exercise that may include
a text description, a formula, and a picture. The
majority of works in this area focuses on word prob-
lems that can be represented as bag-of-words (John
et al., 2015) (optionally with binary indicators of
whether the word is a mathematical term). Such
a representation allows the use of rich semantic
taggers that provide additional information about
lexical units, such as their degree of concreteness or
associated emotions (Slater et al., 2016). However,
semantic taggers are usually developed for general
language use rather than for a specialised domain
such as mathematics with its large variety of spe-
cial characters. Previous work accommodated this
by manually introducing additional mathematical
symbols to be parsed (Slater et al., 2016) or by con-
sidering entire mathematical expressions as tokens,
an approach called bag-of-expressions (Lan et al.,
2015). However, such an approach ignores the or-
der of mathematical symbols. A possible extension
is to use n-grams to represent chunks of symbols,
thus preserving partial information about their or-
der (Jurafsky and Martin, 2009). Its downside is
that it is limited by the chosen length of the n-gram
and thus cannot fully account for deeply nested
expressions. In short, these approaches to repre-
senting content tend to be simplistic and do not
allow syntactic or semantic information to be fully
exploited. Therefore, previous research suggests
that hierarchical representations should be used to
capture deep features and generate higher quality
content features (Li et al., 2013), an observation
that motivates our study.

In natural language processing, the next level
of representation after n-grams is a parse tree of
a sentence. It captures syntactic information by
representing words as nodes connected by syntac-
tic dependencies: for example, an adjective used
as a modifier of a noun. Similar to a natural lan-
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Figure 1: Left: a parse (constituency) tree for the sen-
tence “He is kind” (simplified). Right: a parse tree for
the mathematical expression 1 + 2*x. Leaf nodes
are in bold.

guage utterance, a mathematical formula can be
represented by such a parse tree (Li et al., 2012).
Algebraic trees have been successfully used to au-
tomatically solve algebra problems with template
approaches (Roy and Roth, 2017; Huang et al.,
2017). More recent approaches aim at generalis-
able solutions, for example, by using knowledge
graphs (Zhao et al., 2019). Hierarchic represen-
tations have rarely been used for the task of pre-
dicting exercise difficulty. The approach closest to
ours is using AST parse trees to analyse Python pro-
grams (Paaßen et al., 2021). However, mathemati-
cal formulas present their own unique challenges:
for example, different formats for writing formu-
las, which can vary across datasets, even when the
same typesetting system (e.g., LaTeX) is used. In
addition, formulas use domain-specific alphabet
and are much shorter than typical coding exercises.

This paper compares possible ways to encode
syntactic information in mathematical exercises
and adopts the structural embeddings approach to
represent mathematical formulas (Liu et al., 2017).
Each sentence is represented as a constituency
parse tree. In such a tree for a natural language
utterance, the non-terminal nodes correspond to
grammatical relations (for example, NP stands for
“noun phrase”), while the leaf nodes contain words.
Each word is then represented as a sequence of
nodes in a parse tree from its leaf to the root of
the sentence. For example, if we want to represent
the word “kind” in the sentence “He is kind”, we
construct the parse tree (Figure 1) and obtain the
corresponding syntactic sequence [S, VP, A].
A representation obtained this way captures hierar-
chical information while facilitating the use of stan-
dard neural network models, e.g., an LSTM (Long-
Short Term Memory) (Hochreiter and Schmidhu-

ber, 1997). We refer the reader to the original paper
for architectural details and intuition behind them.
Generally speaking, it encodes a variable-length
syntactic sequence into a fixed-length vector rep-
resentation — the syntactic-semantic embeddings
— and the final hidden state serves as input to a
decision-making model.

3 Data

The experiments are conducted on two datasets: a
recently released MATH (Hendrycks et al., 2021)1

and a synthethic DeepMind Mathematics(Saxton
et al., 2019)2, one of the largest publicly available
datasets for mathematics in educational data min-
ing.

The DeepMind dataset consists of question and
answer pairs, and each pair has a label correspond-
ing to the difficult level, easy or hard. An advantage
of this dataset is its clear and unified formatting: ex-
ercise often have a consistent phrasing that mostly
differs on a formula step, which allows us to have
a clearer comparison of how effective different for-
mula representations are. For our experiments, we
used a subset of 37 244 problems, covering a broad
range of topics: algebra, arithmetic, calculus, com-
parison, numbers, polynomials. 18 608 problems
are of high level and 18 636 are of low. Word
descriptions are in English and formulas are not
specifically separated but can be extracted using
regex-based approach due to limited variability of
the rest of the sequence.

The MATH dataset contains 12 498 problems
from mathematics competitions in the US. Prob-
lems are labelled with five levels of difficulty (1001,
2242, 2723, 2904 and 3628 problems, respectively)
and cover the following topics: Algebra, Count-
ing & Probability, Geometry, Intermediate Algebra,
Number Theory, Prealgebra, Precalculus. Word de-
scriptions are in English and formulas are written
in LaTeX and defined by $ operators.

4 Methodology

4.1 Data representation
As mentioned above, each exercise contains a tex-
tual description and a formula. For example, it can
be the following task: Calculate sqrt(121)
- sqrt(36). In our case, a parse tree can be
extracted with open-source libraries, such as AST

1https://github.com/hendrycks/math
2https://github.com/deepmind/

mathematics_dataset
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and SymPy3. A notable challenge at this step is
the wide variety of notation conventions that ren-
ders converting a formula without errors a non-
trivial problem. For example, differentiation can be
written using f\ˆ{\prime}(x) or $f’(x)$.
Quite often, multiplication symbols are omitted or
individual symbols are encoded; there might be sev-
eral pieces of formula expressions per exercise. As
a result, running a popular converter latex2sympy4

on the MATH dataset results in only 1673 correctly
parsed formulas out of 12500 (13% success rate).
While natural language processing tasks such as
tokenisation are well-explored and a plethora of
high-quality public solutions exist, there appears
to be no robust package. Thus we have developed
processing scripts for mathematics.

A formula is pre-processed so that all num-
bers are replaced with a special NUM token (al-
ternative per digit replacement did not seem to
alter the results). It is important to consider
differences in input types, as it prompts adjust-
ments to the tokenisation procedure: for exam-
ple, for AST parses and formulas, we need to
consider a broader range of special symbols as
separators (e.g., (=)*/+-.\’ˆ{}) to avoid con-
taminating the vocabulary with too complex to-
kens that are actually sub-pieces of large expres-
sions. log and power are transformed using
regular expressions to act as functions accepting
multiple arguments: (a-1)\ˆ\{3\} becomes
power(a-1, 3). Decorative commands like
mathbb are removed. Operators are also con-
verted into their programming language equivalent
(e.g., \\neq is replaced with !=) and a rule-based
processing script unifies the notation by for exam-
ple transforming different fraction encodings such
as LaTeX’s \\frac{}{} into ()/(). Some
tasks also include systems of formulas — while
it is possible to try and represent them with special
joining operators, in this study, we opted to use
the longest correctly parsed formula. As a result,
we obtain a more programmatic representation of a
formula that drastically improves parsing correct-
ness (7298 correct out of 12 498, 58%). We then
construct a parse tree of mathematical expression
and represent leaf nodes with their syntactic se-
quences (paths to the root). Parsing is done by
either 1) using AST parser and NodeVisitor; or

3https://www.sympy.org/en/
4https://github.com/augustt198/

latex2sympy

2) using topological sorting on networkx5 graph
— and subsequently finding the shortest path with
built-in library functions. As an example output, x
from an algebraic expression 1 + 2*x would be
represented as [*, +].

In resulting nested sequences, each formula term
is represented as a syntactic sequence of nodes to
the root of the syntax parse tree, and an entire for-
mula then comprises a sequence of terms: [[Add,
Integer], [Add, Integer]]. It is possi-
ble to simplify this representation by flattening
sequences and concatenating them into a single
string with an arbitrary separator as follows: Add
Integer . Add Integer. A flattened se-
quence is a simplified representation of syntax in-
formation for which we can use more traditional
methods, such as bag-of-words or vanilla LSTM.

In the end, we work with four types of exercise
content: textual description (Calculate), raw
formula text (sqrt(121) - sqrt(36)), and
formula syntactic sequences (nested or flattened).
They can be used independently as the only input to
the classification model or combined. More details
are provided in the following subsection.

4.2 Prediction models

We investigate the effectiveness of the proposed
content representation by using them to estimate
the difficulty of exercises. For the DeepMind
dataset, it is a binary classification problem since
the model must predict whether the exercise comes
from an easy or hard level. For MATH, it is a mul-
ticlass classification problem with five classes (a
range of levels from 1 to 5).

Our first model type is a vanilla LSTM that
uses only one input source at a time, e.g., only
the textual description. If we want to add syn-
tax information to this model, it must be a string
and can then be concatenated with the rest directly
with an arbitrary separator (a space in our case).
The second type is a multi-input modification that
processes two different input types in a more nu-
anced manner similar to an idea of Siamese archi-
tectures in automated question answering domain:
it passes them to individual submodels, and con-
catenates the output representations to feed into
a feed-forward layer with softmax output for the
final classification decision. This is motivated by
different alphabet and structure of the sources: we
hypothesise that it might be easier for the network

5https://networkx.org/
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Model 1: single input DeepMind MATH Model 2: multiple input DeepMind MATH

Description 0.66 0.71 Formula & Description 0.66 0.72
Description

+ Formula
0.69 0.73

AST parse

& Description
0.66 0.72

Formula 0.58 0.68
AST rootpaths (flat)

& Description
0.66 0.72

AST parse 0.56 0.67
Sympy rootpaths (flat)

& Description
0.66 0.72

AST rootpaths (flat) 0.58 0.66
Model 3: single input

with structural embeddings
DeepMind MATH

Sympy rootpaths (flat) 0.64 0.66 AST rootpaths 0.58 0.65
Description

+ AST rootpaths (flat)
0.72 0.72 Sympy rootpaths 0.6 0.65

Description

+ Sympy rootpaths (flat)
0.71 0.72

Model 4: multiple input

with structural embeddings
DeepMind MATH

Description

+ AST pars
0.7 0.72 AST rootpaths & Description 0.72 0.73

Sympy rootpaths & Descriptions 0.73 0.73

Table 1: 10-fold cross-validated ROC AUC. + corresponds to concatenating the input strings, & to adding a separate
input layer to the network. Best results are highlighted in bold. We can see that adding syntax sequences improves
the performance on DeepMind dataset.

to learn if mathematical expressions and the natural
language representation are disentangled. While
the described models operate on 2-dimensional
data, the third type of model works with nested
root path sequences as described above to obtain
syntactic formula embeddings and therefore uses
3-dimensional input. It includes time-distributed
wrappers to apply identical embedding and feature
engineering layers to each term. Again, we can
add another input that can work with conventional
flat sequences and concatenate the resulting embed-
dings to make a classification decision, leading to
the fourth and final model type.

5 Experiments

Neural networks were implemented in Tensorflow
with Keras (Chollet et al., 2015) and trained on
Google Colab Pro GPUs. We used early stopping,
monitoring validation loss with the patience of 3
epochs.

5.1 Results

We compare data representations to investigate
whether adding syntactic sequences improves clas-
sification performance. Performance was evaluated
using 10-fold stratified cross-validation ROC AUC
and is shown in Table 1. Regarding the baselines,
majority and random baselines produce ROC AUC

of 0.5 on a single run, and the best results of logis-
tic regression models trained on the length of input
sequences are 0.57 for MATH (on descriptions)
and 0.66 for DeepMind (on formula), respectively.

Regarding other possible neural approaches
to feature engineering, using word2vec algo-
rithm (Mikolov et al., 2013) to produce pre-
trained embeddings, contrary to our expectations,
did not improve our results. We have also ex-
perimented with the graph embedding method
node2vec (Grover and Leskovec, 2016), but the in-
dividual formulas prove to be too shallow for the ap-
proach to produce a meaningful representation. A
promising direction is to use graph neural networks.
Preliminary experiments with Graph Convolutional
Networks (Kipf and Welling, 2017) using Spektral6

on DeepMind dataset led to an improvement from
0.79 to 0.81 of a single-run accuracy score, but in
this study for the rest of this section we continue
to focus on structural embeddings extracted with
LSTMs. Considering individual inputs, the parse
tree representation alone, whether flat or nested,
could not outperform the other models because the
word description dominates it. Interestingly, the
AST root paths are on par with the raw formula, and
the SymPy root paths outperform it on the Deep-
Mind dataset. Using nested syntactic sequences

6https://graphneural.network/
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Exercise topic D F SRP-F D + F D + SRP-F

numbers is factor composed 0.64 0.53 0.54 0.63 0.68
algebra linear 1d composed 0.77 0.50 0.52 0.82 0.81
numbers is prime composed 0.59 0.54 0.56 0.65 0.63
numbers list prime factors composed 0.68 0.53 0.57 0.66 0.73
arithmetic add sub multiple 0.46 0.77 0.69 0.77 0.75
polynomials simplify power 0.51 0.86 0.78 0.86 0.84
polynomials collect 0.50 0.56 0.64 0.59 0.69
numbers round number composed 0.53 0.53 0.59 0.52 0.53
numbers place value composed 0.80 0.56 0.58 0.76 0.81
calculus differentiate 0.83 0.54 0.52 0.86 0.86
comparison pair composed 0.77 0.58 0.61 0.73 0.78
polynomials coefficient named 0.48 0.56 0.57 0.53 0.57
algebra linear 2d 0.49 0.59 0.56 0.62 0.63
comparison sort composed 0.75 0.54 0.55 0.71 0.70
polynomials expand 0.50 0.50 0.53 0.49 0.52
comparison closest composed 0.74 0.46 0.60 0.63 0.74
arithmetic simplify surd 0.47 0.94 0.84 0.94 0.87
algebra linear 2d composed 0.83 0.53 0.55 0.79 0.81
algebra linear 1d 0.52 0.71 0.71 0.73 0.78
arithmetic mixed 0.49 0.75 0.59 0.75 0.63
comparison kth biggest composed 0.73 0.54 0.56 0.66 0.71

Average 0.62 0.60 0.60 0.70 0.72

Table 2: Per-topic single-run accuracy results on DeepMind dataset (test subset). D = description, F = formula,
SRP-F = Sympy root paths, flat (were chosen for this comparison because of better individual results). Cases
when using only root paths outperforms using only formula are highlighted in italic; similarly when descrip-
tion is added. We can see that the largest improvement is on numbers list prime factors composed,
polynomials collect and comparison closest composed exercise topics.

instead of flat sequences leads to comparable or
slightly worse results. Nevertheless, adding syntac-
tic sequences to descriptions noticeably increases
performance on the DeepMind dataset, from 0.69
to 0.73 ROC AUC. Per topic accuracy scores for a
single run are given in Table 2. Thus, we argue that
structural embeddings have the potential to inform
predictive models, especially when formula is an
essential differentiating part of a task.

6 Conclusion & Future work

We proposed an adaptation of an NLP tech-
nique (Liu et al., 2017) from the field of machine
comprehension to the area of mathematical educa-
tional data mining. We enrich the content represen-
tation by parsing mathematical formulas into syn-
tax trees and embedding them with neural networks.
Our experiments validate the approach using pub-
licly available datasets and show that incorporating
syntactic information can improve performance in

predicting the difficulty of an exercise. These re-
sults suggest that the method may be of interest for
personalised learning solutions. We hypothesise
that the advantage of structural embeddings will be
more evident for more advanced tasks. Therefore,
as a next step, we plan to apply our approach to
more complex state exams. Data have been col-
lected and OCR-processed for initial experiments,
and we intend to make the dataset publicly avail-
able. Our future research will also focus on pre-
dicting the similarity of mathematical formulas by
comparing their syntax trees.
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Abstract

With the growth of online learning through
MOOCs and other educational applications, it
has become increasingly difficult for course
providers to offer personalized feedback to
students. Therefore asking students to pro-
vide feedback to each other has become one
way to support learning. This peer-to-peer
feedback has become increasingly important
whether in MOOCs to provide feedback to
thousands of students or in large-scale classes
at universities. One of the challenges when al-
lowing peer-to-peer feedback is that the feed-
back should be perceived as helpful, and an
import factor determining helpfulness is how
specific the feedback is. However, in classes
including thousands of students, instructors
do not have the resources to check the speci-
ficity of every piece of feedback between stu-
dents. Therefore, we present an automatic
classification model to measure sentence speci-
ficity in written feedback. The model was
trained and tested on student feedback texts
written in German where sentences have been
labelled as general or specific. We find that
we can automatically classify the sentences
with an accuracy of 76.7% using a conven-
tional feature-based approach, whereas trans-
fer learning with BERT for German gives a
classification accuracy of 81.1%. However,
the feature-based approach comes with lower
computational costs and preserves human in-
terpretability of the coefficients. In addition
we show that specificity of sentences in feed-
back texts has a weak positive correlation with
perceptions of helpfulness. This indicates that
specificity is one of the ingredients of good
feedback, and invites further investigation.

1 Introduction

With thousands of students in MOOCs and hun-
dreds of students in university classes, instructors
increasingly apply the approach of peer-to-peer
feedback (or, ‘peer feedback’), where students pro-
vide feedback to their peers (van Popta et al., 2017;

Lipnevich and Smith, 2018). Peer-feedback en-
ables instructors to provide individual feedback
on every piece of coursework by leveraging the
potential of students to provide feedback to each
other (Piech et al., 2013). Nevertheless, since stu-
dents are often not experts in providing feedback,
the instructors need to ensure that the feedback is
helpful (Strijbos et al., 2010). Research has shown
that one factor determining feedback helpfulness is
whether the feedback points are generic or specific
(Lipnevich and Smith, 2018; Shute, 2008; Hattie
and Timperley, 2007). Generic feedback such as
“improve your submission” are less helpful than
detailed, targeted advice such as “add a timeline”
or “change the caption in Figure 1”.

However, the challenge is that instructors who
do not have time for providing feedback themselves
also do not have time for checking the specificity
level of peer feedback (Mulryan-Kyne, 2010). One
approach is to develop a model which automati-
cally analyses feedback specificity using natural
language processing. Recent work has been carried
out into automatic classification of sentence speci-
ficity in newspaper articles; for instance by Li and
Nenkova (2015), Louis and Nenkova (2011) and
Ko et al. (2019).

Our work builds on this previous research and
at the same time provides distinct contributions.
Firstly, we apply the approach in the novel domain
of education and peer-feedback, which is inherently
different in its purpose and nature compared to
the news domain which features in previous work.
News articles are written for a general audience
with the purpose to inform, whereas peer-feedback
texts are written to reveal the strengths and weak-
nesses of written work and provide suggested im-
provements. Furthermore, in the peer-feedback
scenario, each student has put effort into their as-
signments: thus they have a certain expectation as
to the quality of feedback they ought to receive.

Secondly, we have developed a unique dataset
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of peer-feedback containing more than 1000 sen-
tences labelled for specificity. Thirdly, the data
we work with are in the German language: to the
best of our knowledge, all previous related work
has been on English. Fourthly, we find that there
is a correlation, albeit weak, between sentence
specificity and the perceived helpfulness of peer-
feedback.

We train and evaluate four classifiers based on
a feature set which is determined by methods de-
scribed in previous work and our own observations
of specificity in peer-feedback texts. We also ex-
plore the relationship between sentence specificity
and perceived helpfulness of peer-feedback, find-
ing a weak positive correlation, which suggests that
specific sentences are helpful but also that further
work is needed to uncover the other ingredients of
good feedback.

We contribute our collected corpus of sentences
from peer-feedback texts in German for further
analysis and hope to provide researchers and prac-
titioners with a detailed analysis and discussion
of sentence specificity. The code and annotated
corpus can be accessed via github1.

2 Theoretical Background

2.1 Characteristics of Sentence Specificity

In general, definitions of sentence specificity are
often related to the “quality of belonging or relat-
ing uniquely to a particular subject” (Lugini and
Litman, 2017) as well as the amount of detail con-
tained within a sentence. The example sentences
(s) from newspapers and product reviews below
include S1 and S2, which are more specific than S3
and S4.

S1 “90% of women wear Mascara making it the
most commonly worn cosmetic, and women
will spend an average of $4,000 on it in their
lifetimes” (Ko et al., 2019, p. 1).

S2 “While American PC sales have averaged
roughly 25% annual growth since 1984
and West European sales a whopping 40%,
Japanese sales were flat for most of that time”
(Louis and Nenkova, 2011, p. 1818).

S3 “This cosmetic is very popular and many peo-
ple use it regularly” (Ko et al., 2019, p. 1).

1https://github.com/RomanRietsche/
feedbackspecificity

S4 “Now, the personal-computer revolution is fi-
nally reaching Japan” (Louis and Nenkova,
2011, p. 1818).

General sentences are broad statements about a
topic, while specific sentences contain details and
can be used to support or explain the general sen-
tences further (Louis and Nenkova, 2012). General
sentences create expectations in the reader’s mind
of further evidence or examples from the author.
Specific sentences can stand by themselves, since
they provide detailed information (Li and Nenkova,
2015). This difference in the level of detail con-
tained in general and specific sentences is often a
matter of degree, rather than an entirely straight-
forward distinction. Therefore the linguistic re-
alisation of sentence specificity and its automatic
detection is a rather complex matter.

In the domain of online education platforms fea-
turing peer-feedback systems, sentence specificity
refers to the level of detail in the feedback text
(Shute, 2008). The analysis of online forum dia-
logues has shown that argument quality is highly
correlated with specificity of claims in the context
of argument mining (Swanson et al., 2015). Spe-
cific feedback guides students directly to changes
in their assignment by helping them to identify
those parts of the text that the reviewer considers
more or less conducive to successful performance
(Goodman and Wood, 2004). A large body of ev-
idence suggests that increasing the specificity of
feedback has a positive relationship with immedi-
ate or short-term performance (Kluger and DeNisi,
1996; Ilgen et al., 1979).

2.2 Related Work on Sentence Specificity

Previous work on sentence level specificity pre-
diction has mostly been focused on English texts
and on domains starkly different from academic
feedback texts such as news articles (Louis and
Nenkova, 2011) or tweets (Ko et al., 2019). Sen-
tence specificity prediction as a task is proposed by
Louis and Nenkova (2011), who re-purposed dis-
course relation annotations from Wall Street Jour-
nal articles (Prasad et al., 2008) for sentence speci-
ficity training. Li and Nenkova (2015) incorporated
more news sentences as unlabeled data and devel-
oped Speciteller, a tool for predicting the specificity
score of sentences. They improved classification
accuracy by using a semi-supervised co-training
method on over 30K sentences from the Associated
Press, The New York Times, and the Wall Street
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German (Original) English
S1 Auf Seite 4 beim Modul 2 solltest du besser

‘würde’ statt ‘könnte’ geschrieben.
On page 4 in module 2, you should write
‘would’ instead of ‘could’.

S2 Den ersten Schritt des Service Blueprints
würde ich “Registrierung auf der Hotel
Match Plattform” nennen → klar machen,
dass es sich um eine Website/ ein online tool
handelt.

I would call the first step of the service
blueprint “Registration on the Hotel Match
platform” → make it clear that this is a web-
site/online tool.

G1 Deine Lösung gefällt mir insgesamt sehr gut. Overall, I like your solution a lot.
G2 Der Service Blueprint ist extrem gut gemacht

und strukturiert dargestellt.
The visualization of the service blueprint is
extremely good and structured.

Table 1: Examples of specific (S) and general (G) feedback sentences from our dataset, originally in German with
English translation.

Journal.
Li et al. (2016) developed the annotation scheme

used in Louis and Nenkova (2011) and Li and
Nenkova (2015) by considering contextual infor-
mation, and by using a scale from 0 to 6 rather
than binary specificity annotations. Lugini and
Litman (2017) produced a system to predict sen-
tence specificity for classroom discussions, though
the dataset they use is not publicly available. All
the above systems are classifiers trained with cat-
egorical data (2 or 3 classes). Ko et al. (2019)
presented an unsupervised domain adaptation sys-
tem for sentence specificity prediction, designed to
output real-valued estimates from binary training
labels to generalize predictions to domains where
no labeled data are available.

3 Data

Our dataset consists of peer-feedback texts written
by students on a Masters Course on Business Inno-
vation at a German-speaking University, collected
over the past five years. Students followed a peer-
feedback process which is similar to the scientific
paper review process in academia (Ziman, 1974).
Students submitted their assignment to a learning
management system. Each assignment was after-
wards anonymously distributed to three reviewers
who each wrote their feedback before then being
sent back to the assignment author. There were no
rules on how to write the feedback, students only
received three guiding questions: what was good,
what was not so good and what possible improve-
ments could be made? Each feedback text is on
average 250 words long.

Table 1 provides examples from our dataset
taken from both ends of the specificity spectrum.

Specific feedback gives the recipient a more direct
indication of strengths, weaknesses, and suggested
changes (e.g. [S1] and [S2]). General sentences
such as [G1] and [G2], on the other hand, often re-
fer to entire sections or the whole work and require
further clarification-questions or interpretation by
the feedback recipient. Note that peer-feedback
has unique characteristics which differ from other
domains. It is possible for sentences to contain
generalized statements which would normally be
classified as such, yet in the context of peer review
feedback they are in fact specific suggestions. For
instance the sentence, “young people are much less
obsessed with their car’s internal specs than older
people”, contains a rather generalized statement.
Yet in the context of a reviewer critiquing the re-
viewee’s business personas, it may appear to be
more specific: “I do not think the persona of Anna
would be interested in your service, because young
people are much less obsessed with their car’s inter-
nal specs than older people.”. This more complex
sentence becomes a more specific criticism than
simply stating, “I don’t think that the persona of
Anna is realistic”.

For the annotation process we randomly sampled
1000 feedback texts from our corpus and adopted
two strategies for annotation. First, relying on
many annotators who rated only a limited amount
of sentences, whereby each sentence is annotated
by 5 annotators and second, relying on two students
who in several workshops receive training on how
to annotate specificity and an expert in NLP as ar-
bitrator for the two annotations. In both strategies
the annotators rated the specificity on a scale of 1
(very general) to 5 (very specific) developed by Li
et al. (2016) and Ko et al. (2019).
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We chose the two strategies because, both have
their advantages and disadvantages. For example,
the first approach reduces systemic bias of one
individual annotator on the whole dataset, since
annotators only labelled a limited number of sen-
tences. A downside of this strategy is that, there
is no opportunity for annotators to learn over time
and therefore reaching agreement on the level of
specificity for one sentence is more difficult. The
second strategy has the benefit of learning effects
but the possible downside of systemic biases by
two annotators labelling many sentences.

For the first strategy, we used Survey Circle2.
The dataset was formed from a random sample of
1000 sentences from the 1000 feedback texts. We
made the annotation job available to Survey Cir-
cle users based in Germany, Austria, Switzerland,
specifying that they should be German speakers.
The users on Survey Circle are typically students
from a variety of disciplines. Overall, 1000 sen-
tences where annotated by 200 users who each an-
notated 25 sentences. Each sentence was reviewed
five times by five different annotators. For quality
control, we removed ratings by users who chose
the same label for every one of their sentences,
and who did not complete at least 15 annotations.
Since our focus was on high quality data we only
chose sentences with an inter-annotator agreement
(IAA) higher than 60% to further proceed with in
our classification algorithm, leaving us with 331
sentences with an average IAA of 0.804. To create
a final dataset, we took the mean of 5 annotations,
which resulted in the final specificity score. The
fact that we had to filter out so many sentences at
this stage, due to low IAA, prompted us to try a
different approach to annotation.

In the second strategy, we randomly selected
75 of the 1000 feedback texts and removed all
sentences having a character length lower than 40
(since usually those sentences solely included bul-
let points, enumerations, or wrong sentence seg-
mentations). This pre-processing resulted in a fi-
nal dataset of 800 sentences. Two native German
speakers annotated the sentences independently
from each other in the same manner as done pre-
viously on Survey Circle, but this time using the
decision tree shown in Figure 1. A team workshop
and several calibration training sessions were per-
formed to reach a common understanding of the
annotation. 800 feedback texts were annotated by

2https://www.surveycircle.com

Figure 1: Specificity Annotator Prompt.
Q1: "Is this feedback sentence only applicable to
this individual work (eg. it references specific para-
graphs, objects or people from the source text) or could
it be written generically about many different works?"
Q2: "Can this feedback sentence stand on its own, or
does it require concretising questions or interpretation
by the feedback recipient, in order to be implemented
or understood?"

the two annotators – in case of disagreement an
expert arbitrator was consulted in order to discuss
the specific cases in detail and to reach an agree-
ment between the two. The annotations resulted in
an IAA of 0.746. To create a single version of the
gold standard, the arbitrator took the final decision
in cases where the two annotators still disagreed.
Finally, we merged both datasets to give a total of
1131 sentences.

For our machine learning experiments we addi-
tionally obtained a binary label for each sentence,
therefore we aggregated the ratings 4 and 5 to be
specific (meaning a label of 1) whereas ratings 1
and 2 were deemed to be general (i.e. a label of
0). We chose to remove from the dataset the 170
sentences that received a rating of 3 "unrateable".
This gave us an almost balanced dataset containing
48% general sentences and 52% specific sentences.

4 Classification Experiments

Using the data described in the previous section
we undertake experiments to automatically classify
sentences as specific or general. Being able to
do so accurately will allow us to identify when a
reviewer’s text contains no specific feedback, and
potentially encourage them to be more specific in
downstream applications. We compare ‘classic’
feature-based classifiers with a BERT-based model
(Devlin et al., 2019) fine-tuned on our dataset.
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4.1 Feature-based classification

We use the features described below for binary
classification of sentence specificity based on those
used in previous work and based on an intuition
of what it means for a sentence to be specific or
general in the context of peer feedback. We sam-
ple from the set of commonly used classifiers and
train support vector machine (RBF kernel), logis-
tic regression, and random forest models using the
following features.
Sentence length: General sentences are expected
to be shorter than specific ones (Louis and Nenkova,
2011). There are three features to capture this ob-
servation: the number of words in the sentence, the
number of nouns, and the number of noun chunks
as identified by spaCy3. Noun chunks are ‘base
noun phrases’ – phrases with a noun as their head.
Word length: We compute the average length of
words in each sentence, in characters, expecting
long words to be indicative of more complex vo-
cabulary and therefore more specific feedback (Ko
et al., 2019).
Qualitative words: General sentences feature the
frequent usage of qualitative words such as adjec-
tives and adverbs (Louis and Nenkova, 2011). To
capture this word-class based information we take
counts of adjectives and adverbs in the texts.
Word specificity: We use three sets of features to
capture specificity of words in the sentence. The
first of these is based on GermaNet (Henrich and
Hinrichs, 2010; Hamp and Feldweg, 1997), the
German language adaptation of WordNet (Miller,
1995). We compute a specificity measure using
the hypernym relations in GermaNet. For each
noun and verb in our example sentences, we record
the length of the path from the word to the root
of the GermaNet hierarchy through the hypernym
relations (Louis and Nenkova, 2011). The longer
this path, the more specific we expect the word to
be. The average, minimum and maximum values
of these distances are taken for nouns and verbs
found in GermaNet.
IDF: Another set of features is based on the inverse
document frequency (IDF) of a word w (Sparck
Jones, 1972), defined as logN

n , where N is the num-
ber of documents in a corpus, and n is the number
of documents that contain the word w. We used 3
million German sentences taken from newspaper
texts in 20154 from the Leipzig Corpus Collection

3https://spacy.io
4https://www.kaggle.com/rtatman/

(Goldhahn et al., 2012) to compute the idf (exclud-
ing punctuation and stop words). The features for a
sentence are the average, minimum and maximum
IDF scores for words in the sentence (Louis and
Nenkova, 2011) – the intuition being that words
in general sentences are more common whereas
specific sentences contain words seen less often.
Sentiment: We noticed that general sentences
were regularly found in positive feedback – often
praising a section or even the entire work (recall
examples [G1] and [G2] in Table 1). Therefore,
we record the number of positive, negative, neu-
tral and polar (not neutral) words per sentence us-
ing two lexicons – SentiWS, a publicly available
German-language resource for sentiment analysis
(Remus et al., 2010) and TextblobDE5. We add an-
other set of features where each of these counts
is normalized by the sentence length (Louis and
Nenkova, 2011). In addition we obtain a count of
polar words (non-neutral words) and a normalized
sentiment score per sentence.
Discourse connectives: A count of the most com-
mon discourse connectives – “because", “further-
more", “either or", “on the other hand", etc – as
these were often indicative of a point argued in
greater detail which usually entailed a more spe-
cific sentence. Furthermore, we noticed that certain
phrases were characteristic of general sentences
(“in general", “overall", “all in all", etc) and count
the occurrence of such words and phrases.
Non-alphanumeric characters: Another feature
is the normalized count of non-alphanumeric or spe-
cial characters (such as }%"§-'→) (Li and Nenkova,
2015). Due to the digital and conversational nature
of the peer feedback we collected, symbols such as
→ were frequently used as substitutes for discourse
connectives. Quotation marks, percentage or sec-
tion signs were also often indicative of references
to specific sections of the business plan.
URLs: Specific suggestions were sometimes ac-
companied with reference material in the form of
internet links which is why we also count the num-
ber of URLs per sentence.
Named entities: These are generally regarded to
be suggestive of specific sentences (Louis and
Nenkova, 2011). In addition to counting all named
entities using spaCy, we additionally count all men-
tions of personas, as they often appeared in con-
texts of the reviewer critiquing the recipient’s pro-

3-million-german-sentences
5https://textblob-de.readthedocs.io
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Model Accuracy Precision Recall F-measure
support vector 75.0 76.1 75.0 75.1
random forests 76.7 76.8 76.7 76.8
logistic regression 74.7 75.6 74.7 74.8
BERT_BASE cased 81.1 81.5 81.1 81.0

Table 2: Performance of sentence specificity classifiers on German sentences – accuracy, precision, recall, F-
measure; mean of 10-fold cross-validation.

posed business personas.
Numbers: This is the count of numeric tokens or
number words, since they are often associated with
references to specific pages or other specifics of the
student assignments.
Currency: In the context of business plans, curren-
cies and currency symbols were often found in sen-
tences criticising specific monetization or revenue
schemes and therefore we count their occurrence
in each text.
Morpho-syntactic labels: We use the spaCy de-
pendency parser for German to extract a number
of morpho-syntactic features from each sentence.
We obtain counts of dependency relations, part-of-
speech tags, and a concatenation of these for each
token in a sentence. For instance, the sentence
Ich mag deine Arbeit (‘I like your work’) would
produce the following concatenated labels combin-
ing part-of-speech tags and dependency relations:
PRON_sb, VERB_ROOT, DET_nk, NOUN_oa
(subject, root, noun kernel element, accusative ob-
ject in the TIGER treebank scheme (Rehbein and
van Genabith, 2007)).
Word counts: We count the frequency of all non
stop-words, as well as the sum of stop words both
raw and normalized by sentence length.
Word vectors: We compute the average
of the word vectors obtained from spaCy’s
de_core_news_lg model for German for each
sentence, with L2 normalisation (Horn and John-
son, 2013). We also compute the vector average
without the vectors of stop words.

4.2 BERT-based classification

It has become a common and successful practice in
empirical NLP work in recent years to make use of
large transformer language models for text classifi-
cation in transfer learning scenarios (Rogers et al.,
2020). Accordingly, we use the Hugging Face
Transformers library to fine-tune the BERT_BASE

cased model for German which was pre-trained and

made available by deepset6 (Wolf et al., 2020). We
fine-tune to the training set in each of ten folds in
our dataset in a cross-validation set-up.

4.3 Evaluation

Following Li and Nenkova (2015) we report four
performance metrics for our experiments, where
the specific label is viewed as the ‘positive’ one:
accuracy, the proportion of correctly predicted sen-
tence specificity labels; precision, the proportion of
positive predictions which are correct; recall, the
proportion of positive labels in the test set which
are correctly identified; and the F-measure, the
harmonic mean of precision and recall.

5 Results

In Table 2 we show performance metrics for the
classification of sentence specificity in our German
peer-feedback dataset. We report mean scores from
ten-fold cross-validation, and we compare three
feature-based classifiers with a fine-tuned BERT-
based model.

To summarise, we find that the BERT-based fine-
tuned classifier performs best. Not unexpectedly,
the superior performance of BERT comes at a com-
putational cost, as the fine-tuning of the transformer
takes significantly longer than fitting the other mod-
els (>5mins as opposed to a few seconds), and re-
quires GPU. Furthermore, BERT offers little in the
way of interpretability. In this regard, algorithms
such as logistic regression and random forests are
advantageous due to their human understandable
coefficients. We would therefore opt for a feature-
based classifier if putting a sentence specificity de-
tection system into production: the efficiency gains
and advantage with respect to explainability in our
view outweigh the performance boost provided by
a BERT-based model.

We analysed which of our features were the best
predictors of sentence specificity. To that end we

6https://deepset.ai
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Feature Ratio
numbers 1.98
noun chunks 1.59
non-alphanumeric characters 1.53
SentiWS negative words 1.42
named entities 1.42
discourse connectives 1.08
adjectives 1.05
discourse chunks 1.02
currency 1.00
SentiWS positive words 0.99
adverbs 0.91
TextblobDE negative words 0.90
minimum GermaNet hypernym path 0.86
TextblobDE sentiment score 0.84
TextblobDE polar words 0.80

Table 3: Top 15 features from the logistic regression
model ranked by coefficient representing odds ratios.

rank the features from the logistic regression clas-
sifier by coefficient. The coefficients represent log
odds that an observation is in the target class (‘spe-
cific’), and thus we take the exponent of the coeffi-
cients to obtain odds ratios. Table 3 shows the top
15 features ranked by coefficient, where the latter
indicate that for every one unit increase in the value
of the feature the odds that the sentence is specific
are n times greater than the odds that the sentence
is not specific, with all other features held constant.

We find that features relating to numbers and cur-
rency, non-alphanumeric characters, and named
entities are the most likely to occur in specific feed-
back. This reflects the fact that the subject domain
is business but also that such features are associated
with specific references to locations in the text, and
the non-alphanumeric characters featuring in spe-
cific feedback formatting such as bullet points, sec-
tion markers and parentheses, or punctuation used
as connectives (e.g. right arrows and dashes). We
find that other highly weighted features are repre-
sentative of specific feedback texts in general, such
as a high number of noun chunks, named entities,
words with clear polarity, adjectives and discourse
connectives. Finally, we note that a longer mini-
mum hypernym path in GermaNet for words in a
sentence is associated with more specific feedback,
as we hypothesised (section 4.1).

6 Feedback Specificity and Helpfulness

We examined the interplay between feedback speci-
ficity and helpfulness to evaluate the hypothesis
that more specific feedback is more helpful (Strij-
bos et al., 2010). We sampled 500 feedback texts
from the business masters course previously re-
ferred to, presented them to Survey Circle annota-
tors (students and PhDs), and asked them to score
the strength of their agreement with the follow-
ing four statements on a scale of 1 to 10 for each
text: "The feedback from the reviewer was help-
ful","The reviewer was able to provide constructive
suggestions on their stated critical aspects", "The
reviewer was able to identify critical aspects in the
assignment", or "The feedback from the reviewer
was of high helpfulness". The mean of these Likert
scores was taken from 5 annotators per text and
across all 4 statements to give an overall feedback
helpfulness score for each text between 1 and 10.

To derive a specificity score for a feedback text,
we made per-sentence specificity predictions us-
ing the BERT-based model trained on the anno-
tated peer-feedback set of 1000 sentences described
above. The score per text was then the average sen-
tence specificity prediction, a value between 0 and
1. The correlation between text specificity scores
and helpfulness ratings showed a correlation of
0.21 with a statistically significant p-value <.001.
This finding helps to corroborate the hypothesized
relationship between specificity and feedback help-
fulness, while reminding us that the relationship
is not straightforwardly linear. A strongly helpful
feedback text should not contain entirely general
sentences or entirely specific ones, but some com-
bination of the two. In Figure 2 we show a scatter
plot of the feedback specificity per text (per cent
of sentences in a text classified as specific by the
model) against the feedback helpfulness score per
text calculated in the way described above, and
both the weak correlation and variation in the rela-
tionship are apparent.

7 Discussion

We show that sentence specificity can be classified
successfully in German peer-feedback texts. This
can be a useful first step for various education tech-
nology applications. For instance we can provide
students with automated advice on how to improve
their written peer-feedback. It can potentially help
with feedback to students on their written assign-
ments as well, in cases where students have not
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Figure 2: Correlation between text specificity (% spe-
cific sentences per text) and feedback helpfulness score
(average human ratings of 4 criteria) for 500 peer feed-
back texts.

made sufficiently specific statements. For this rea-
son, explainability and low computational cost are
important factors in weighing up the performance
of our feature-based and BERT-based specificity
classification models.

One limitation of the current sentence level ap-
proach is that it fails to deal with dependent sen-
tences where a feedback point is argued for over
multiple sentences. To accurately rate the speci-
ficity in such cases, it can be crucial to take into
account the context in which a sentence appears.
Consider, for instance, the following example:

[1] Regarding your business processes
on page 10 - does it really need a chatbot
that asks for targets here? [2] One input
line would be enough for that. [3] Chat-
bots only make sense when customers
actually interact with them.

Sentence [3], taken on its own, contains a rather
general statement and the logistic regression model
assigns a probability of around 0.06 that it is spe-
cific (less than 0.5, thus ‘general’). When taking
its context into account, it becomes clear that the
entire section is referencing a specific element of
the business plan and calling into question a spe-
cific piece of the business process with a concrete
argument. Consider a reformulation of the three
previous sentences like so:

[4] I consider the chatbot that asks for
destinations (page 10) to be superfluous,

as chatbots only make sense when cus-
tomers interact with them — one input
line would be enough for that.

Now the model assigns a probability of around 0.73
that the sentence is specific, thereby classifying it
as ‘specific’. Naturally, sentence [4] is more likely
to have features associated with specificity since
it is longer than sentence [3], but the change in
regression scores does illustrate how specificity of
feedback can develop in context. Since we model
specificity only at the sentence level in this work,
the application of our model to feedback texts is
determined by the author’s punctuation choices and
the sentence tokenization that results.

To address this issue in future work, we can at-
tempt to segment texts into ‘argumentation chunks’
rather than sentences. Such an approach requires
a combination of information density extraction,
argumentation mining and specificity prediction.
This observation is congruent with previous work
which concluded that context information should
be considered in the annotation procedure to miti-
gate the effect of anaphoric and topical references
that may otherwise be inadequately dealt with
(Louis and Nenkova, 2012; Li et al., 2016). In
addition, it is apparent that any downstream appli-
cation should be tuned so that recommendations on
feedback specificity at a per-sentence level take the
whole text into account, so that the student is en-
couraged to write a well structured mix of general
and specific feedback.

Finally, we note that specificity could be just one
of multiple components that determine the helpful-
ness of feedback. In truth, feedback helpfulness is
difficult to measure objectively since in large part it
is driven by how helpful a student perceives it to be.
O’Donovan et al. (2019) state that, “what a student
considers good assessment and feedback is shaped
by the assumptions they hold as to the nature and
certainty of knowledge (Baxter Magolda, 1992),
their prior learning experiences (O’Donovan, 2017)
as well as the timing of their consideration (Carless
and Boud, 2018)”. Just getting technical factors
right will not ensure student satisfaction with feed-
back (p. 8)”. In the long run, the sole focus on the
feedback itself and its language is too narrow as it
is only part of the complexity of providing good
feedback (Evans, 2013). To make a holistic im-
provement to feedback procedures at large as well
as enhance student engagement and satisfaction,
peer assessment process design, pre-feedback con-
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ditions, and predictability need to be considered as
well (O’Donovan et al., 2019). It is likely that per-
ceptions of feedback helpfulness are influenced by
a number of contributing factors, some of which are
in the text – e.g. lexical content, pragmatic implica-
tion and argumentation – while others are external
and concern the wider educational context of the
assignment. For instance, the feedback should be
relevant to the task, on topic, and consistent with
the curriculum. We expect that specific sentences
should also be used with more generic ‘big pic-
ture’ and bridging sentences, and that feedback
providers could be prompted to provide a mixture
of both. There is also the pedagogical question of
timing: when more specific feedback is beneficial
for the student and when it is not. These issues
represent opportunities for future investigation.

8 Conclusion

We have presented experiments in automatic clas-
sification of the specificity of German sentences
in peer feedback written by students in an online
assignment reviewing system. We derived features
based on previous work and the qualitative analysis
of our dataset, and performed multiple experiments
using machine learning models compared to a trans-
fer learning approach with BERT (Devlin et al.,
2019). We found that our classifiers were able
to successfully predict sentence specificity with
an accuracy of at least 70% for all models. The
BERT model mostly outperforms the feature-based
classifiers, but it has the highest computational
cost and does not have human interpretable coeffi-
cients. SVM performs best on the peer-feedback
texts for feature-based models, is computationally
more efficient and provides per-feature coefficients
which enable downstream explainability for any
user-facing system.

In addition, in the analysis of our logistic re-
gression model we report which features are most
likely to indicate feedback specificity, and find that
numbers, noun chunks and non-alphanumeric char-
acters are at the top of the list. We found a weak
correlation between crowdsourced assessments of
feedback helpfulness and feedback specificity, un-
derlining that texts containing relatively high pro-
portions of specific sentences are more likely to
represent good quality feedback.
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Abstract
The dominating paradigm for content scoring
is to learn an instance-based model, i.e. to use
lexical features derived from the learner an-
swers themselves. An alternative approach
that receives much less attention is however to
learn a similarity-based model. We introduce
an architecture that efficiently learns a similar-
ity model and find that results on the standard
ASAP dataset are on par with a BERT-based
classification approach.

1 Introduction

Most work on automatic content scoring follows
an instance-based approach, where the input is a
single student answer and the output is its score
(Horbach and Zesch, 2019). In contrast, similarity-
based approaches compare a student answer with a -
or a set of - reference answers. The two approaches
have rarely been compared directly, see Sakaguchi
et al. (2015) as the rare exception, who found
that instance-based methods outperform similarity-
based ones. However, what many situations for
which similarity-based methods are proposed have
in common is that very little or no training data is
available for an individual prompt.

In the following discussion of previous work,
we restrict ourselves to those similarity-based
approaches. An early example of using refer-
ence answers and a similarity function is c-rater
(Leacock and Chodorow, 2003). Other exam-
ples of pre-neural similarity-based approaches use
Wordnet-based and dependency graph alignment
measures (Mohler and Mihalcea, 2009; Mohler
et al., 2011). Similar approaches have been used
for reading comprehension questions (Bailey and
Meurers, 2008; Meurers et al., 2011) or scoring
history exams (Rodrigues and Oliveira, 2014). The
SemEval2013 Student Response Analysis Task
(Dzikovska et al., 2013) links content scoring with
recognizing textual entailment. Due to the task
setup (large number of individual questions with

relatively few individual training data per prompt),
some participants of the task used similarity-based
methods for scoring (Heilman and Madnani, 2013),
including methods for recognizing (partial) textual
entailment (Levy et al., 2013a,b).

In recent years, neural similarity-based scoring
models have been developed. Gomaa and Fahmy
(2019) use pretrained skip-thought vectors and
learn a logistic classifier over the component-wise
product and absolute difference vectors. Schnei-
der et al. (2022) report promising results on a not-
publicly-available dataset by learning embeddings
for question-answer-pairs and utilize cosine simi-
larity as distance metric.

While the work by Sakaguchi et al. (2015) seems
to indicate that similarity-based approaches cannot
compete with instance-based ones, such a compar-
ison has so far to our knowledge not been made
using powerful neural architectures.

We thus propose a method, where a pretrained
Sentence-BERT (S-BERT) model is fine-tuned on
answer pairs and then used in a knn-fashion to
assign a score to a new learner answer based on the
similarity to the already labeled ones.

We present this approach in the next section.
Our code is publicly available here: https://github.com/

mariebexte/s-bert-similarity-based-content-scoring.

2 Similarity-based Approach

In our similarity-based approach, we learn and ap-
ply a similarity function between reference answers
and learner answers (see Figure 1). In the simplest
case, we use the all-MiniLM-L6-v2 pre-trained
sentence-BERT model (Reimers and Gurevych,
2019) as is to encode answers (S-BERT-orig). Al-
ternatively, we finetune the model using answer
pairs from our dataset as input (S-BERT-finetune).
For doing this, we use a CosineSimilarityLoss and
a BinaryClassificationEvaluator. We consider an-
swer pairs with the same human score as positive
instances (i.e. highly similar) while we consider
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Figure 1: Visual description of our similarity-based approach when using the AVG-strategy to determine predictions.

pairs with different scores as dissimilar. To reflect
this (dis-)similarity, we assign positive instances a
similarity score of 1 and negative instances a score
of 0. We thus refrain from encoding the distance
between the number of points with different levels
of similarity (ASAP prompts are scored on a range
from 0 to 2 or 0 to 3 points), i.e. both pairing an
answer that received 0 points with one that received
1 or one that received 2 points gives the same sim-
ilarity label of 0. This is beneficial when models
trained on one prompt are used to score answers
to another prompt that has a different number of
outcomes.

In the prediction step, we apply the S-BERT
model to encode each answer as a single dense vec-
tor. We compute the cosine similarity between an
answer and each available reference answer. Adopt-
ing a knn-inspired approach, we then take either the
label of the closest reference answer (MAX) or the
label of the group of answers with the same score
that has the highest average similarity (AVG). In
both cases, the number of necessary comparisons
is determined by the number of reference answers.
Therefore, scoring more answers will always just
require comparing them to this fixed amount of
reference answers, whose embeddings can be pre-
computed.

Note that in our experiments the same data was
used to both fine-tune the similarity metric and
for comparison in the prediction step. However,

if runtime at test time is an issue, one could of
course use fewer instances for the comparison than
those used for fine-tuning. In our experiments, we
observed that using a subset of just 60 of the over
1000 reference answers during inference lead to
only a minor drop of QWK .01 in performance.

Do also note that, while we learn similarities
between reference answers during training and use
the same reference answers when later scoring an-
swers, this does not reflect an inappropriate data
leak between training and testing, as we are still
scoring previously unseen answers.

3 Experimental Setup

We use the following setup to compare our ap-
proach against instance-based state-of-the-art sys-
tems. All results are averaged over five runs.

Instance-based Baselines To establish a base-
line for instance-based classification, we train one
supervised classifier per prompt. We use a Logistic
Regression (LR) classifier in standard configuration
(class_weight=‘balanced’, max_iter=1000) with
token uni- to trigram features provided through
Scikit-learn as an instance of an explainable shal-
low learning classifier. As an instance for a neural
classifier, we use a BERT model based on the Hug-
gingface implementation.1 We train for 6 epochs
with batch size 16, CrossEntropyLoss, and Adam

1https://huggingface.co/bert-base-uncased
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optimizer.

Dataset We use the ASAP-SAS dataset from the
Kaggle short answer competition2 containing 10
prompts with around 2,000 answers per prompt.
The average answer length of the prompts ranges
from 26.5 to 66.2 tokens per answer. Broad prompt
topics fall into three categories: Sciences (prompts
1, 2 and 10), English Language Arts (ELA; prompts
3, 4, 7, 8 and 9) and Biology (prompts 5 and 6). We
use this topic information later to check whether
training on a different prompt from the same topic
is beneficial. The dataset contains scoring rubrics
but no specific set of reference answers for the in-
dividual scores. Whenever we talk about reference
answers, we mean answers drawn from the pool of
training data.

Data Split and Evaluation Method We ran-
domly chose 10% of the answers for each prompt
as testing data and report results as quadratically
weighted kappa (QWK). As the amount of human-
scored data needed to train a classifier is a crucial
factor determining the costs of automatic scoring
approaches, we compare two setups. Limited data
contains 60 learner answers sampled from the full
training data set in a way that all scores are equally
represented. Mimicking a strategy where clear ref-
erence answers are provided to human annotators,
we only select answers where both human anno-
tators agreed on the score. Full data in contrast
consists of the whole training set.

For our similarity-based approach we in the lim-
ited data setting use 48 of the 60 answers for train-
ing and the remaining 12 for validation. Within
both of these sets, we build all possible pairs of an-
swers, meaning that we end up with 2,256 training
and 132 validation examples. As described in the
previous section and visualized in Figure 1, these
pairs are assigned a similarity score of 1 or 0, de-
pending on whether they received the same or a
different number of points.

For the full data setting, we randomly select 100
answers for validation and leave the rest for train-
ing. We pair every training (validation) answer
with 10 other answers per score to create training
pairs. Depending on the number of different pos-
sible scores of a prompt, this gives around 3,000
validation and between 40,000 and 60,000 training
examples.

2https://www.kaggle.com/c/asap-sas
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Figure 2: QWK averaged over all prompts (after Fisher-
Z transformation), either using just 60 instances (limited
data) or 90% of the ASAP data (full data).

4 Results

Figure 2 shows the comparison between the
instance-based baseline and the similarity-based
approach on both limited and full data. Note that
the different amounts of training data also mean
that there are different amounts of reference an-
swers.

Comparing S-BERT-orig and S-BERT-finetune
reveals that finetuning is highly beneficial. MAX

performs much better than AVG with the pretrained
model, perhaps due to just one similar enough an-
swer sufficing for the MAX strategy to arrive at the
correct classification outcome. For the finetuned
models the performance difference between the
two is much smaller, with AVG even giving slightly
better results than MAX.

In the limited data setting, BERT is not able
to learn a sufficiently good model from the few
training instances. LR performs best in this setting,
beating our S-BERT-finetune by QWK .06. In the
full train setting, S-BERT-finetune is on par with
BERT when using AVG to determine predictions,
with both models outperforming LR.

Variance between Prompts Table 1 breaks re-
sults down to individual prompts. We see that
performance is largely prompt-dependent and that
there is no one-best model across all prompts.
While LR gives the overall best performance when
using limited data, there are prompts where S-
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Topic Prompt Limited Train Full Train

LR BERT S-BERT-finetune LR BERT S-BERT-finetune
MAX AVG MAX AVG

Science
1 .58 .26 .50 .54 .82 .89 .84 .88
2 .52 .18 .34 .12 .67 .77 .79 .78

10 .45 .53 .37 .47 .66 .70 .67 .74

ELA

3 .42 .44 .36 .38 .70 .67 .67 .72
4 .54 .44 .49 .54 .70 .73 .67 .69
7 .19 .15 .41 .29 .51 .72 .72 .74
8 .49 .40 .35 .36 .43 .66 .58 .58
9 .61 .53 .48 .53 .64 .71 .68 .69

Biology 5 .47 .35 .49 .48 .73 .77 .77 .77
6 .66 .36 .52 .61 .66 .79 .72 .72

Table 1: QWK per prompt, either using 3-4% (60 instances, limited train) or 90% of the ASAP data (full train).

BERT-finetune performs better than LR, indicat-
ing that there are some prompts for which using a
similarity-based approach is more suitable than for
others. For prompts 2, 5 and 7, BERT gives rather
low QWK on limited data, which is outperformed
by S-BERT-finetune. While BERT gives much bet-
ter performance on these prompts in the full data
setting, it is again outperformed by or on par with
S-BERT-finetune.

Cross-prompt Evaluation One of the assumed
benefits of similarity-based scoring approaches is
that they generalize better between prompts and
are thus often used for prompt-independent scoring
(Meurers et al., 2011; Mohler et al., 2011; Mohler
and Mihalcea, 2009; Dzikovska et al., 2013). We
hypothesize that using a model from the same topic
(Science, Biology, ELA) will work better than us-
ing a model from a different topic. Table 2 reports
results for models trained on a different prompt
than the test data. In doing this, we use the larger
number of training pairs from the full data setting
to train a model and evaluate it with the smaller
number of reference answers from the limited data
setting.

We average across all prompts from the same
topic, i.e. the cell train/science - test/science con-
tains averaged results, where a model has been
trained on one science prompt and tested on an-
other science prompt. Results show that only for
Biology prompts training on the same prompt is
clearly beneficial as compared to training on other
prompts. However, it still is much worse than fine-
tuning directly on a single prompt. For example,
the average QWK on the two Biology prompts is
over 0.70 for the fine-tuned results, while it is only
half of that in the cross-prompt setting. For the
other topic areas (Science, ELA) the cross-prompt

Train Test

Science Bio ELA
MAX AVG MAX AVG MAX AVG

Science .30 .29 .18 .09 .23 .16
Bio .31 .18 .35 .40 .27 .17
ELA .28 .16 .26 .19 .22 .16

S-BERT-orig .34 .23 .24 .13 .30 .13

Table 2: Average QWK (after Fisher-Z transformation)
for training S-BERT on a prompt from one topic group
and testing on another prompt from the same/a different
group.

results are even worse.
Another cross-prompt setting would be to use

the pretrained S-BERT-orig model as a zero-shot
classifier (cf. the last line in Table 2). Results are
in a similar ballpark as for the within-topic setting,
which means that fine-tuning on one prompt and
transferring to a similar one does not work better
than not fine-tuning at all. Thus, it is necessary
to learn a prompt-specific similarity function to
arrive at reasonable performance levels. Contrary
to our hypothesis, a similarity function learned on
a different prompt from the same dataset and topic
did not work better than using one that was trained
on an entirely different dataset and topic.

5 Conclusion

In contrast to earlier work where instance-based
methods outperformed similarity-based ones, the
study in this paper finds that both paradigms are
on par when a neural similarity model has been
sufficiently fine-tuned. This seems to indicate that
as soon as a similarity metric is complex enough,
it incorporates the same capabilities as normally a
classifier would. For the practitioner it might make
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little difference whether to use labeled instances to
train an instance-based classifier or to fine-tune a
similarity metric if both are applied in a prompt-
specific way. Therefore, the next step in our line of
research has to go into the direction of fully com-
paring the two paradigms, especially with respect
to varying the amount of training data as well as
exploring other datasets to allow for a better esti-
mation which paradigm is preferable under which
conditions.

One step that we already took in this direction
was to use the architecture described here for our
participation in the NAEP-AS challenge3, where
our generic scoring model won a grand prize. In
contrast to the successful application there, our
cross-prompt experiments reported here showed re-
sults varying tremendously between prompts, hint-
ing that sensible training data selection plays a
crucial role. We will explore this further in future
work. To foster more work in this area, we make
our experimental code publicly available.
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Abstract

In this paper, we explore the role of topic
information in student essays from an argu-
ment mining perspective. We cluster a recently
released corpus through topic modeling into
prompts and train argument identification mod-
els on various data settings. Results show that,
given the same amount of training data, prompt-
specific training performs better than cross-
prompt training. However, the advantage can
be overcome by introducing large amounts of
cross-prompt training data.

1 Introduction

Argumentative essays are among the most com-
mon essay types students are assigned to write in
higher education contexts (Wingate, 2012). In such
an essay, students have to state and justify their
opinion on a certain topic elicited by a specific
writing prompt. In order to score argumentative es-
says and give formative feedback automatically, the
automatic identification and classification of com-
ponents in the argumentative structure is important
(Scheuer et al., 2010). While their holistic scoring
can be seen as one variant of automatic essay scor-
ing, identifying the argumentative structure within
an essay is a Natural Language Processing (NLP)
task known as argument mining.

Argument mining is the automatic identification
and extraction of the structure of inference and rea-
soning expressed as arguments presented in natural
language (Lawrence and Reed, 2020). The recent
Kaggle competition “Feedback Prize - Evaluating
Student Writing”1 can be seen as an argument min-
ing task in an educational scenario, which called
on participants to identify argumentative elements
in English essays written by U.S. students. Figure
1 shows an example from the dataset for an essay
where students have been asked to express their

1https://www.kaggle.com/c/
feedback-prize-2021

attitude towards driverless cars. Individual argu-
mentative elements such as Position, Evidence or
Concluding Statement are highlighted in the text.

The argument mining task is not restricted to
a certain domain or topic. For example, previ-
ous work considered legal (Mochales and Ieven,
2009), political (Walker et al., 2012) or educational
(Stab and Gurevych, 2017) data. However, it is
an open question to what extent argument mining
algorithms pick up on topical words indicative not
for, e.g., a conclusion in general, but for a conclu-
sion within a specific topic. The Feedback Prize
data mentioned above with its large amount of an-
notated student essays on various topics offers an
ideal opportunity for first steps towards closing this
gap.

In the data, we notice that very similar sentences
can receive different argumentative labels depend-
ing on the topic and the context of an essay. For
example, the sentence “exercise is really good for
your health” was annotated as a claim in an essay
on the topic “Limiting Car Usage” while the sen-
tence “(. . . ) running is good for your body” was
marked as evidence for the topic “No Sports at
Grade C”. Such examples highlight the relevance
of topic and context information for the argument
mining task and give rise to research questions like:

• In how far is the task of argument mining
prompt-dependent, i.e., how does prompt-
specific vs. cross-prompt training affect clas-
sification performance?

• What kind of information is learned by an
automatic argument classifier? Are algorithms
more susceptible to prompt-specific words, or
do they learn the general structure of an essay?

To address these questions, we present in this
paper experimental studies to investigate the in-
fluence of the prompt in an educational argument
identifying task using the example of the newly
released Kaggle Feedback Prize dataset.
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4EC4E3EFD09A.txt

Lead Position Claim Counterclaim Rebuttal Evidence Concluding Statement

Driverless cars have been a big topic lately. In some ways driverless cars sound cool but they also seem a little scary. I think
that diverless cars shouldn’t be allowed on public roads because they are not safe.

Some think being able to have your car drive itself sounds nice. You could just sit in your car and listen to music while you
wait to arive to your desination. Driverless cars would allow you to sit in your seat, hands on the wheel, but not acually
driving. This idea does sound nice but as all other technology such as computers and phones, technology is not always reliable.

A driverless car could cause a marjor or even fatal crash. While most driverless cars require you to have hands on the wheel
this does not mean you will be paying attention if somthing is about to happen. All it would take is for somthing in the car to
mess up and people could be very seriously hurt.

I think that people driverless cars are not safe and they should not be allowed on public roads.

Figure 1: An example essay with different argumentative elements from the Kaggle competition “Feedback Prize -
Evaluating Student Writing”.

We find that argument mining benefits from
within-prompt training data, but the same perfor-
mance can be reached by using larger amounts
of cross-prompt data. The argumentative ele-
ments lead and conclusion can be best identified
because of their relatively fixed position within
the essay. In an analysis of our models trained
and tested with either topic or structure words
masked, we find a tendency that within-prompt
training benefits more from topic information while
cross-prompt training rather picks up on struc-
ture words. We have made our experimental
code, together with the automatic clustering results,
publicly available at https://github.com/
yuningDING/BEA-NAACL-2022-38.

2 Related Work

In the following, we discuss related work perform-
ing argument mining in the educational domain and
work addressing the relevance of topic information.

Early work treated sentence boundaries as the
natural separator of components in an essay. In
such a scenario, the identification of argumentative
elements boils down to a sentence classification
task. For example, Burstein et al. (2003) classi-
fied sentences as introductory material, position,
main/supporting idea, conclusion, title and irrel-
evant automatically, using features derived from
Rhetorical Structure Theory trees and the occur-
rence of discourse markers. Ong et al. (2014) de-
veloped a rule-based algorithm to label each sen-
tence in a student essay into one out of four types
(current study, hypothesis, claim, citation).

We experimented with sentence classification ap-
proaches on the Kaggle dataset mentioned above,

but found them unsuitable as they do not reflect the
gold standard units well. As shown in Figure 2, one
sentence can contain multiple argumentative ele-
ments, while one argumentative element can span
sentences like the lead, counterclaim and evidence
annotations in Figure 1. Our sentence classifica-
tion experiments using a support vector machine
reached an F1-Score of only 0.2. We thus did not
further proceed with sentence classification on this
dataset.

However, driverless cars should be looked at as useful
and a positive alternative to everyday cars as they are
aware and self-sufficient for their owner’s benefit.

Figure 2: An example sentence with multiple argumenta-
tive elements from essay 03EA9F90F814 in the Kaggle
dataset.

Based on a modification of the Toulmin argu-
ment model (Toulmin, 1958), Stab and Gurevych
(2014b) proposed a model of argument components
in scientific articles and persuasive essays at the
clause-level using four label types - major claim,
claim, premise and non-argumentative. Their an-
notation guidelines yielded substantial agreement
in an annotation study on 90 persuasive essays in
English (Stab and Gurevych, 2014a). Following
this schema, the International Corpus of Learner
English (Granger et al., 2009) was annotated by
Persing and Ng (2015). They trained classification
models to identify argument components and used
them as features to predict argumentative scores in
essays (Persing and Ng, 2016).

In recent research, the granularity of argumenta-
tive components was further increased to the token
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level. In this case, the identification of argumenta-
tive elements corresponds to assigning an argument
label to each word. In this paradigm, sequence la-
beling techniques like Conditional Random Fields
or pretrained BERT models started contributing to
argument mining (Trautmann et al., 2020). The
Kaggle competition “Feedback Prize - Evaluating
Student Writing” can also be seen as a token label-
ing task as suggested by the organizers2.

Most studies on argument mining mentioned
above do not take the topic of the essay into consid-
eration, assuming that arguments can be classified
independently of a topic. However, as shown in
studies like Daxenberger et al. (2017), argument
mining models did not generalize well on cross-
domain data. Subsequently, the importance of topic
information has drawn more and more attention in
the general argument mining task recently: Stab
et al. (2018) found that a topic-general model could
achieve comparable performance to a topic-specific
model by adding limited amounts of topic-specific
data. Fromm et al. (2019) proved that topic infor-
mation connected with large pretrained language
models like BERT provides a significant perfor-
mance boost in argument mining.

However, the effect of topic information has not
been fully examined in educational argument min-
ing. The data released by the Kaggle competition
gives us a chance to investigate this research gap,
because it not only contains large amounts of stu-
dent essays with gold standard annotation of differ-
ent argumentative elements, but also covers essays
from a variety of different writing prompts which,
while not being annotated in the dataset, can be
automatically inferred.

3 Data

As mentioned before, we use the dataset provided
as part of the Kaggle competition “Feedback Prize
- Evaluating Student Writing”. The dataset consists
of 15,594 argumentative students essays written
by U.S. students from grades 6 to 12. Essays con-
tain annotations for the following argumentative
labels:3

• Lead: an introduction that begins with a statis-
tic, a quotation, a description, or some other

2https://www.kaggle.com/competitions/
feedback-prize-2021/discussion/296010

3Explanations for the labels are directly taken from
the competition webpage: https://www.kaggle.com/
competitions/feedback-prize-2021/data

device to grab the reader’s attention and point
toward the thesis.

• Position: an opinion or conclusion on the
main question.

• Claim: a claim that supports the position.

• Counterclaim: a claim that refutes another
claim or gives an opposing reason to the posi-
tion.

• Rebuttal: a claim that refutes a counterclaim.

• Evidence: ideas or examples that support
claims, counterclaims, or rebuttals.

• Concluding Statement: a concluding state-
ment that restates the claims.

Argumentative units have been annotated with an
overall inter-rater reliability of .73. The lowest
reliability was reported for counterclaims and re-
buttals (which were often labeled as claims). The
highest reliability was found for concluding state-
ments. All disagreements were adjudicated by an
expert rater.4

Figure 3 shows the frequency and average num-
ber of tokens per span for each label in the dataset.
We notice that the argumentative components are
very unevenly distributed. Claim and evidence oc-
cur substantially more frequently than the other
labels, with counterclaims and rebuttals being par-
ticularly rare.

In terms of the length of the underlying span for
a label, instances of the types evidence, concluding
statement and lead correspond to the longest spans.
The average length of all essays is 429 words, while
the average length of evidence is 77 words, which
means that, given the frequency of the label, evi-
dence is the majority class on the token level. In
contrast, position and claim have the shortest aver-
age length.

3.1 Clustering the Data into Underlying
Prompts

The dataset is not annotated with prompt informa-
tion. To obtain the individual prompts, we first use
a topic modeling approach (Angelov, 2020), which
resulted in a total of 11 clusters of essays. Man-
ual inspection of a random sample of 25 essays
per cluster finds two clusters to be a mixture of
either 2 or 4 different prompts. We used a k-means
clustering approach on tf-idf vectors per essay to

4https://www.kaggle.com/c/
feedback-prize-2021/discussion/297688
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Figure 3: Frequency and token count of labels in the Kaggle Feedback Prize dataset.

further split those clusters into 2 and 4 sub-clusters
respectively. The resulting 15 clusters each contain
between 689 and 1826 individual essays.

To check the quality of the clusters, we manu-
ally annotated 100 instances per cluster and found
cluster purity (Manning et al., 2010) to be between
0.78 and 1. Table 1 shows the detected topics and
cluster evaluation numbers.

We consider this clustering to be good enough to
be used for a topic-based modeling approach with-
out time-intensive manual adjudication of clusters.
However, it should be noted that especially for the

“Extracurricular Activities” cluster with an outlier
purity of .78 only, artifacts introduced by impure
clustering might occur.

prompt #essays purity

Exploring Venus 930 1.00
Face on Mars 817 1.00
Electoral College 1826 1.00
Phones and Driving 705 .90
Driverless Car 1390 .99
Getting Advice 1414 .99
Phones in School 841 .96
Seagoing Cowboys 689 .97
Summer Projects 860 .98
Facial Action Coding 1055 .99
Community Center 712 1.00
Limiting Car Usage 991 .96
Extracurricular Activities 1146 .78
Online Classes 1457 1.00
No Sports at Grade C 761 1.00

Table 1: Topics detected in the dataset, number of essays
per topic and purity of the detected cluster.

4 Experimental Study 1 - The Influence of
Prompt Information

In this study, we train argument mining models
with different combinations of prompt-specific and
cross-prompt data and compare their performance
on the same test datasets, in order to investigate
our first research question: in how far is argument
mining prompt-dependent? Furthermore, we ana-
lyze the performance difference among argument
labels.

4.1 Experimental Setup

As our base model, we adopt a neural architec-
ture developed for the structurally similar sequence
labelling task of Named Entity Recognition (Gr-
ishman and Sundheim, 1996). As almost one third
of all essays contains more than 512 tokens, we
exchange the pretrained BERT token classification
model (Devlin et al., 2018) for a pretrained Long-
former model (Beltagy et al., 2020) where the atten-
tion mechanism scales linearly instead of quadrat-
ically with input length. The experiment pipeline
is shown in Figure 4. We pre-process the anno-
tated training data into tokens with Inside-Outside-
Beginning (IOB) tags and use them as the input to
the pretrained Longformer model for token classi-
fication (longformer-large-4096). After 10 epochs
of training with a maximal length of 1536 tokens,
the IOB-Tags of tokens are transformed into pre-
dictions for different argumentative elements in the
post-processing.

We compare several configurations for the train-
ing data: In the all prompts condition, we train on
the complete dataset with all 15 prompts. In the
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Figure 4: Training pipeline of baseline model.

same prompt condition, we only train on essays
from the same prompt as the test data. To create a
more controlled setting not influenced by the frac-
tion of essays from the same prompt, we exclude
them explicitly in the other prompts condition, us-
ing 12 of the 14 other prompts for training and 2 for
validation. Some prompts in the dataset are closer
to each other, as can be seen by the fact that they
were confused by our topic clustering approach. To
see whether using a related prompt is beneficial,
we evaluate each of the three prompts “Driverless
Car”, “Phones and Driving” and “Limiting Car
Usage” under a model trained for either one of the
other two prompts.

We split each prompt into 80% training data,
10% evaluation data and 10% test data. To make re-
sults across settings comparable, we make sure that
we always test on the test data portion only (even
for the setting other prompts where the whole
dataset in a prompt would be available for test-
ing). In order to get comparable models trained
on similar amounts of data, we produce another
version of the all prompts and other prompts
conditions, where we sample down to the same av-
erage amount of training data as used in the same
prompt condition, called all prompts – small and
other prompts – small.

Following the evaluation scheme proposed by
Kaggle, we evaluate based on the overlap between
predicted spans and gold standard spans. A pre-
diction is considered a true positive (TP) if the
overlap between the prediction and the gold stan-
dard is greater than 50% in both directions. Any
unmatched ground truths are false negatives (FN),
and any unmatched predictions are false positives
(FP). The final score is arrived at by calculating
TP/FP/FN for each class, then taking the macro
F1 score across all classes. Predictions of non-

argument text are excluded from the evaluation.

4.2 Experiment 1a - Comparison between
Different Training Setups

In our first experiment, we compare the overall
performances of the different training setups av-
eraged across all prompts. We cannot use the re-
lated prompt condition here, as we cannot use all
prompts in this condition (simply because not every
prompt has a similar other prompt).

Avg. Amount
Training Data Training Data F1

same prompt 833 .53
other prompts – small 833 .49
all prompts – small 833 .52
other prompts 9983 .52
all prompts 12481 .55

Table 2: Results for Experiment 1a, F1 score averaged
over all prompts.

According to the results shown in Table 2, using
data from the same prompt condition for training
brings benefits compared to a setup with the same
size of training data drawn from other prompts
(other prompts – small). Other prompts and all
prompts, in comparison, show the performance
on more than 10 times the amount of training data.
We observe that using more cross-prompt data (i.e.
other prompts) provides no advantage compared
to fewer data from within the same prompt. How-
ever, if some amount of within-prompt data is avail-
able, as in all prompts, the model benefits from
more data. Note that all prompts contains all train-
ing items from the same prompt condition plus
material from other prompts. This implies that a
prompt-specific model can be slightly improved by
adding extra generic data.

4.3 Experiment 1b - Training on Related
Prompts

We have seen in Experiment 1a that, given a fixed
amount of training data, within-prompt training
data from the same prompt is beneficial. However,
this can be impractical in a real-life setting, as it
might be expensive to obtain new training material
for every new essay prompt. Therefore, we investi-
gate in the following experiment whether training
on a topic-wise related prompt already helps.

We select three prompts centered around cars
and driving: “Driverless Cars”, “Phones and Driv-
ing” and “Limited Car Usage”. The fact that these
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three prompts were often confused during topic
clustering shows their relatedness on the lexical
level.

Results in Table 3 show that models trained on
topic-related data do not have quite the same per-
formance as those trained on data from the same
topic or trained on all prompts. The other prompts
– small, all prompts – small and same prompt
models are the same as in Experiment 1a (but of
course only averages over 3 prompts are reported).

Avg. Amount
Training Data Training Data F1

same prompt 823 .48
other prompts – small 833 .46
all prompts – small 833 .49
related prompt 823 .46

Table 3: Results for Experiment 1b, F1 score averaged
over prompts Driverless Car, Phones and Driving and
Limiting Car Usage.

4.4 Experiment 2 - Performance Analysis for
Individual Argument Labels

As we have seen in Section 3, the dataset is very
skewed in terms of the distribution of individual
labels. Therefore, we expect the performance of
labels with a low frequency a) to be worse than that
of more frequent labels and b) to benefit more from
larger amounts of training data than the frequent
labels.

Results shown in Figure 5 only partially con-
firm these expectations. We see that performance
varies a lot for individual label types, but does not
directly reflect the label distribution. While the
most infrequent rebuttal label also shows the worst
classification performance, the labels with the best
performance are lead and concluding statement.
Contrary to what we expected, the much more fre-
quent claim and evidence can be found less pre-
cisely, with especially the label claim exhibiting
the second-lowest performance of all labels.

We speculate that several factors contribute to
this behavior. The two argumentation labels with
the highest performance are those who potentially
benefit most from positional information that a clas-
sifier might learn. In the gold standard, 49% of all
texts indeed start with a lead annotation. If a lead
is present in an essay, in 82% of all instances it
occurs right in the beginning. Similarly, 70% of all
essays end with a concluding statement and among
all concluding statements, 81% are right at the end

of a text. Claims, although very frequent, do not
appear at a specific position in the text and are of-
ten not clearly marked by discourse markers. We
checked the occurrence of a list of about 200 com-
mon discourse connectives and discourse markers
such as because, although or additionally (Sileo
et al., 2019) and found that counterclaims and re-
buttals were most strongly marked by such words -
a possible reason why their performance, although
these labels are infrequent, is not far below that of
claims.

We checked common confusions between labels
in our classification results. Table 4 shows that the
majority of all confusions occurs between a label
and no assigned span, indicating that the assign-
ment of correct argumentation unit boundaries is
a problem, which leads to numerous spans with
no counterpart with a sufficient overlap. When
comparing the number of unmatched gold standard
labels (3521) with that of unmatched predicted la-
bels (5781), we see our algorithm tends to assign a
label rather than not assign anything. Among the
actual confusions between two labels, we observe
some confusions also reported for humans, such as
counterclaims often being mislabelled as claims.

5 Experimental Study 2 - What do we
actually Learn?

Aiming to answer our second research question
of whether the algorithms are more susceptible to
prompt-specific or general information, we now
transform the original data into topic-only and
structure-only versions.

5.1 Experimental Setup

Experimental Study 1 indicated that the identifi-
cation of argumentative elements benefits from
prompt-specific information. However, it remains
unclear whether we actually learn to detect topic
words constituting, e.g., a typical claim for a cer-
tain Topic X or structural elements of a claim in
Topic X, which could also be found in other topics.
To disentangle the two effects from each other, we
perform an additional set of analyses, as detailed
in the following.

We filter the vocabulary according to how often
it appears within a specific prompt and in the over-
all dataset. Similar to a tf-idf approach (Ramos
et al., 2003), we consider vocabulary prompt-
specific if it appears often within the essays of one
prompt, but infrequently within the essays of other
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Figure 5: Results for Experiment 2, F1 scores of each label in different settings

Lead Position Claim Counter- Rebuttal Evidence Conclu. None
claim Statem.

Lead 715 35 2 0 0 17 0 135
Position 38 765 12 6 2 11 2 578

Claim 8 75 1659 4 17 153 4 2912
Conterclaim 2 6 33 264 2 19 1 268

Rebuttal 0 4 19 4 149 23 2 234
Evidence 22 17 242 39 66 2934 29 1449

Conclu. Statem. 0 39 21 4 4 42 1098 205
None 147 245 1145 157 144 1388 302 N.A.

Table 4: Confusion matrix between gold standard (columns) and results in the same prompt setting (rows)

prompts. For example, the word Mars appears 7851
times in the “Face on Mars” prompt, but only 448
times in all other prompts. We rank word types in
each prompt by their tf-idf value and consider the
top 1000 types as the topic words of each prompt.

We then produce 4 versions of the data. In
the structure-only versions, topic words in each
prompt are replaced by the mask word “dummy”
(structure-only-dummy) or their part-of-speech
(POS) tags (structure-only-pos). The usage of
POS tags is intended to keep the syntactic struc-
ture intact. In the complementary topic-only ver-
sions, every occurrence of any non-topical words
as well as every function word is replaced by the
dummy word (topic-only-dummy) or its POS tag
(topic-only-pos). Table 5 shows an example for
the resulting sentences.

We now perform scoring experiments compa-
rable to those from Experimental Study 1 on the
modified data. Similar to a feature ablation test,
we want to examine how masking some part of the

information present in an essay affects the classifi-
cation outcome.

5.2 Experiment 3a - Modified Test Data

In this experiment, we use the method described
above to modify only the test data (the same 10%
test data used in Experiment 1). We compare the
prediction of models from Experimental Study 1
trained in the settings same prompt and other
prompts – small on the modified data in order
to test what kind of information the models have
learned. We hypothesize that the same prompt
model learns both prompt-related and generic struc-
tural information, while other prompts – small - in
the absence of prompt-specific information - learns
only general structure as predictor for argumenta-
tive elements.

The results shown as orange bars in Figure 6 re-
veal that, unsurprisingly, the general performance
of models is much lower than the performance
on the original test data. Nevertheless, we see
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Version Sentence

Original The Face on Mars is a natural landform
Structure-Only-Dummy The dummy on dummy is a dummy dummy
Structure-Only-Pos The [NNP] on [NNP] is a [JJ] [NN]
Topic-Only-Dummy dummy Face dummy Mars dummy dummy natural landform
Topic-Only-Pos [DT] Face [IN] Mars [VBZ] [DT] natural landform

Table 5: Four versions of one sentence generated according to our four individual conditions.
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Figure 6: Performance of using the model trained on original data to evaluate modified testing data (test modified),
training a model on modified data and testing it on the original testing data (train modified), or both training and
testing on modified data.

that the models trained on the same prompt per-
form better on topic-only data than structure-only
data. In the other prompts – small setting, in
contrast, structure-only training data works better
than topic-only data, indicating that those models
indeed mainly learn structural information.

5.3 Experiment 3b - Modified Training Data

Similar to the same prompt and other prompts
– small settings in Experimental Study 1, we train
two models for each prompt on each of the four
modified versions of the data. By applying these
models to the original test data, we get the results
shown as green bars in Figure 6.

Among all models, we expect models trained
on topic-only data from other prompts – small to
have the worst performance, since the predictors
learned in these models are theoretically only con-
tent words related to other topics. However, the
models trained on topic-only data have comparable
performance to other models in the other prompts
– small setting, a fact that needs further investiga-
tion and that might be due to either impure clusters
or content word filtering (such that the training data
still contains some usable lexical information), or

to the fact that positional information is a strong
predictor present in all our modified data variants.

In the same prompt setting, models trained on
topic-only-pos data also have the best performance.
But once the POS-tags are changed into “dummy”
(i.e. topic-only-dummy), the models cannot beat
those trained on structure-only data.

5.4 Experiment 3c - Modified Training and
Test Data

Finally, we use the models trained in Experiment
3b on modified data and test on modified test data
as well. Results are shown in Figure 6 as blue
bars. Unsurprisingly, these models with train and
test data modified in the same way yield better per-
formance compared to those where only the train
or the test data was modified and, similar to the
results above, models trained on data from same-
prompt perform better than those trained on data
from other prompts – small in general. They still
perform far below the level of the original experi-
ments, indicating that in both conditions, models
benefit from both structural and topical information.
However, the loss is larger in the other conditions
than for same.
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Similar to the results in Experiment 3b, the mod-
els trained on topic-only-pos in the same-prompt
setting have the best performance, because not only
topic related information is kept in the training data,
but also limited structural information is included
by the POS-tags.

6 Conclusion

This work set out to investigate the importance of
topic information in educational argument mining
tasks. For this purpose, we first clustered a recently
published dataset of student essays into underlying
prompts. Secondly, we presented a study on the
effect of prompt-specific and cross-prompt training
material in the identification of argumentative ele-
ments. Results showed that within-prompt training
data is beneficial when a fixed limited amount of
training data is used. This advantage can be over-
come by larger amounts of additional cross-prompt
data. In the analysis of argumentative elements, we
found that lead and conclusion can be best iden-
tified in all settings, presumably because of their
relatively fixed position. Lastly, we separated topi-
cal from structural information in the essays. From
experiments with this modified data, we found that
argument mining benefits both from topic words
and structure words, i.e. the information is not
redundant, but that, unsurprisingly, topical infor-
mation has a tendency to be more important in
within-prompt classification while structure is more
relevant across prompts.

These findings provide the following insights
for future research: first, learning curve studies
could investigate an optimal trade-off between
topic-specific and generic training data. Second,
the argumentative elements identified in student
essays could be meaningful for the generation of
formative feedback directed towards students, such
as highlighting different argumentative elements.
Another research direction is the evaluation of argu-
ment quality through analyzing discourse relations
between these argument components in order to
generate feedback towards coherence and cohesion
aspects of student essays.
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Abstract

This paper introduces a novel tool to support
and engage English language learners with
feedback on the quality of their argument struc-
tures. We present an approach which automati-
cally detects claim-premise structures and pro-
vides visual feedback to the learner to prompt
them to repair any broken argumentation struc-
tures. To investigate, if our persuasive feedback
on language learners’ essay writing tasks en-
gages and supports them in learning better En-
glish language, we designed the ALEN app (Ar-
gumentation for Learning English). We lever-
age an argumentation mining model trained on
texts written by students and embed it in a writ-
ing support tool which provides students with
feedback in their essay writing process. We
evaluated our tool in two field-studies with a
total of 28 students from a German high school
to investigate the effects of adaptive argumen-
tation feedback on their learning of English.
The quantitative results suggest that using the
ALEN app leads to a high self-efficacy, ease-of-
use, intention to use and perceived usefulness
for students in their English language learning
process. Moreover, the qualitative answers in-
dicate the potential benefits of combining gram-
mar feedback with discourse level argumenta-
tion mining.

1 Introduction

Novel advances from Natural Language Processing
(NLP) and Machine Learning (ML) are increas-
ingly utilized and embedded in learner-centered
writing support tools (e.g., Lauscher et al. (2019);
Wang et al. (2020); Wambsganss et al. (2020a)).
For example, researchers have successfully embed-
ded novel argumentation mining models to identify
persuasive components and their relations in or-
der to provide students adaptive writing feedback
(Lawrence and Reed, 2019; Wambsganss et al.,
2020a). As Jonassen and Kim (2010) highlighted
argumentation learning consists of at least two
different dimensions: a) to train argumentation

skills (learning to argue) and b) to use argumenta-
tion as a dialectical method to achieve other learn-
ing outcomes (arguing to learn), such as critical
thinking, problem-solving or factual knowledge
(Kuhn, 1992; Jonassen and Kim, 2010; Asterhan
and Schwarz, 2016). While the former dimension
of argumentation is steadily investigated in the
context of NLP-based feedback with argumenta-
tion mining on students’ learning processes (e.g.,
Lawrence and Reed (2019); Pardo et al. (2018)),
the latter described learning context bears still
promising potential for NLP-based argumentation
feedback opportunities to foster other learning out-
comes of students (Roz, 2004).

In this vein, Putra et al. (2021) has suggested
that providing English language learners with feed-
back on their essays from a discourse perspective
can enhance text coherence and comprehension.
Nevertheless, little work exists which demonstrates
the embedding of argumentation mining in writing
support tools to investigate the effects of "arguing
to learn", e.g., to engage and foster secondary lan-
guage learning (Lawrence and Reed, 2019). In fact,
different methods from NLP and ML have been
used to provide students feedback on their gram-
matical errors or syntactical sentence structures
to foster language learning (e.g., White and Ro-
zovskaya (2020); Katinskaia and Yangarber (2021);
Kerz et al. (2021)), but insights on the effects and
concepts of discourse level feedback based on argu-
mentation modelling on students learning process
are few and far between.

Hence, in this paper, we demonstrate the ALEN
app. The learning application provides English lan-
guage learners with discourse level feedback in per-
suasive writing exercises. The underlying model is
trained on a corpus of 1000 student-written texts
to detect claims and premises as well as their rela-
tions (Wambsganss et al., 2020b). To investigate,
if persuasive feedback on language learners’ essay
writing tasks engages and supports them in learning
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Figure 1: Screenshot of the ALEN interface based on the design of Wambsganss et al. (2020a). A English language
learner is conducting a essay exercises and receives visual feedback to repair any broken argumentation structures.

better English language, we evaluated our tool in
two field-studies with 28 students from a German
high school. Our objective is to conduct a proof-of-
concept study to explore the impact of prompting
English language learners to repair any broken ar-
gumentation structure. Hence, we asked students
to conduct an Cambridge English Assessment task
for the language level B2 and use the ALEN app
to write and evaluate their text’s argumentation
level and persuasiveness. Based on the literature
stream of "arguing-to-learn" (e.g., (Jonassen and
Kim, 2010)), our hypothesis is that adaptive argu-
mentation feedback might engage students to eval-
uate their text, reflect about their discourse level
writing and thus learn better English. The results
from our small-scale evaluation provide first sug-
gestions that adaptive argumentation feedback in
English language learners essay writing task leads
to a high self-efficacy, ease-of-use, intention to use
and usefulness for students in their language learn-
ing process. Future work is needed to investigate
the effects of adaptive argumentation support in
large-scale field studies to measure the long-term
learning success on students language learning out-
comes.

2 Related Work

For the most part, NLP and ML have been used in
education technology for language learners in ways
which relate to word-level feedback and text scor-
ing. Popular mobile applications such as Duolingo
tend to focus on vocabulary and phrase learning,

a writing assistant such as Grammarly gives feed-
back on spelling and grammar, as does the essay
practice website Write & Improve whilst also pro-
viding essay scores pinned to the CEFR proficiency
scale (Settles et al., 2020; Nadejde and Tetreault,
2019; Yannakoudakis et al., 2018). At the same
time, there is now a growing interest in providing
automated feedback at the discourse level, and ef-
forts have been made to accumulate and analyse
the training materials needed for feedback on argu-
ment quality – namely with the GAQCorpus (Ng
et al., 2020; Lauscher et al., 2020).

Thus far only a few practical tools have been
developed to provide learners with argumentation
feedback. For instance, MARGOT is available as a
web application and processes a text that is input in
the corresponding editor field (Lippi and Torroni,
2016). The text is analyzed, claims are displayed in
bold font, whereas premises are displayed in italic
style. Or in TARGER a user can analyze the per-
suasive structure of an input text. Chernodub et al.
(2019) trained multiple models on three different
corpora along with three different pre-trained word
embeddings. Thus, the user not only puts in a text
to analyze, but different argumentation models may
be selected. The results are then presented below
the input, with claims being highlighted in red and
premises being marked in green.

Neither MARGOT nor TARGER are easy-to-use
in normal pedagogical scenarios, since the student
has to select from several different models (the nu-
ances of the choices may not be clear) and then
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Figure 2: Overview of our methodology for building the ALEN app.

copy her text into the input field. This excludes
students who are unsure about choosing from dif-
ferent models. Moreover, the models are not all
trained on text extracted from the educational do-
main and therefore, might not be applicable to ev-
ery pedagogical scenarios. Besides, argumentation
mining was successfully embedded in AL (short for
Argumentation Learning), a learner-centered tool
which improved students persuasive writing skills
with adaptive feedback (Wambsganss et al., 2020a).
Moreover, Wambsganss et al. (2021) presented Ar-
gueTutor, a dialogue-based argumentation learning
tool, which tutors students with adaptive scaffolds
and theory-explanation through a persuasive writ-
ing task. However, to the best of our knowledge
literature on the embedding and demonstration of
argumentation mining approach to foster language
learning through engaging students in persuasive
writing exercises are rather rare.

3 Design of ALEN

To build ALEN, we followed a three step methodol-
ogy (see Figure 2). First, we analyzed the current
state of argumentation learning and argumentation
mining achievements in literature. Therefore, we
reviewed multiple papers from the fields of Educa-
tional Technology, such as Pinkwart et al. (2009);
Osborne et al. (2016); Scheuer et al. (2010); Wamb-
sganss et al. (2020a); Wambsganss and Niklaus
(2022); Weber et al. (2021) and NLP, such as
Stab and Gurevych (2014, 2017); Wachsmuth et al.
(2017); Lawrence and Reed (2019); Lippi and
Torroni (2015); Landolt et al. (2021). Our goal
was to gain a broad overview of current systems
and approaches to support language learning with
discourse-level feedback. With these insights, we
guided our next research steps in building and de-
signing ALEN.

Second, we investigated different corpora and
trained models for argument detection and classi-
fication across multiple domains. We started by
searching the literature for a corpus that fulfilled

the following criteria: 1) the corpus contains anno-
tated persuasive student essays, 2) it has a sufficient
corpus size to be able to use the trained model in
a real-world scenario, and 3) the annotations are
based on a rigorous annotation guideline for guid-
ing the annotators towards a moderate agreement.
The business model peer review corpus published
in Wambsganss et al. (2020b) fulfilled all these re-
quirements. The corpus consists of 1000 business
model peer feedback essays written by students
extracted from a large-scale lecture scenario. We
used the algorithm of Wambsganss et al. (2020b),
to train a multi-class classifier on the sentence level
to detect the argument components and their rela-
tions. For argument component classification, a
Support Vector Machine (SVM) achieved the best
results, with an accuracy of 65.4% on the test set.
Regarding the persuasive relation classification, a
binary classification task, an SVM again achieved
the best results on the corpus, obtaining an accu-
racy of 72.1% on the test set. More information on
the model and the replicated features we used can
be found in (Wambsganss et al., 2020b,a).

Third, we designed and built an adaptive writing
support system that provides students with indi-
vidual feedback on their argumentation skill level
during an English essay writing task based on our
model. For the design of the tool, we followed
the design principles of Wambsganss et al. (2020a).
ALEN provides the user with a simple text input
field with a word count in which they can write
or copy a text (see Figure 1). Next to the text
input, the user can ask for feedback on the argu-
mentation structure of their text in a personal learn-
ing dashboard. The dashboard provides different
granularity levels of feedback, which enables the
user to control the amount of feedback information
displayed (Scheiter and Gerjets, 2007). A visual
graph-based representation of a text’s argumenta-
tion structure and three summarizing scores pro-
vide a first assessment of the text’s quality. To offer
the user with a visual representation of argument
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structures in their essay, the identified claims are
highlighted in green and the premises are high-
lighted in yellow in the written text. A visual
graph-based representation of text-based augmen-
tations has been found to be an effective element to
guide learners argumentation (i.e., representational
guidance theory (Suthers, 2003)). A more detailed
perspective of the argument’s discourse can be ob-
tained by clicking on the highlighted text fields or
the nodes in the graph. This displays whether a
claim is well-supported or if it is missing a premise.
Moreover, best practices and explanations about
argumentation and argumentation theory are pro-
vided by clicking on the "Explanation" or "Help"
button .

Three summarizing scores, calculated following
Wambsganss et al. (2020a) – readability, coherence
and persuasiveness – provide the student with an
assessment of their text to provide automatic profi-
ciency feedback. The methodology for computing
the scores, as well as actual tips, action steps, and
explanations on how the learner can improve her
score level, can be found by clicking on the scores
or on details.

4 Evaluating ALEN

Our objective was to empirically investigate the
effect of our adaptive argumentation feedback on
students’ English language learning and their per-
ception of usefulness in a real-world educational
writing scenario. Therefore, we created a field ex-
periment design in which language students were
instructed to complete a persuasive writing exercise
while receiving adaptive argumentation feedback
from ALEN.1 The study was conduct in cooper-
ation with the English department of a German
speaking high-school. We conduct two different
studies based on a similar field-experimental de-
sign in two different English classes in the 12th
grade. In both studies, we asked students to con-
duct a persuasive English language writing tasks.
The only difference between study 1 and study 2
were the post-survey measurements (see following
paragraph). The experiments were both conducted
in the computer room of the high-school on desktop
devices. In total, 28 students participated in both
studies. The participants were on average 17.17
years old (SD = 0.5384); 11 were male, 11 were

1The study design was approved by the institutional ethics
board, the head of the high school we worked with and the
legal representative of the participants.

female, and 6 non-binary. The experiment design
was two-fold (see Figure 3): 1) a persuasive writing
task and 2) a post-survey.

1) Persuasive writing task: The students were
given a link to a survey in the tool unipark2. We
used unipark, since it is a standard tool for scientific
experiments which allowed us to embed ALEN in
scientific construct testing. Before receiving the ac-
tual writing tasks, the students were asked to watch
an introduction video about the usage of ALEN to
ensure that every participant is familiar with the in-
terface and the functionalities of our app. Next, the
students received one of three randomly assigned
writing tasks retrieved from Cambridge English
Assessment for the language level B23. For exam-
ple: "Every country in the world has problems with
pollution and damage to the environment. Do you
think these problems can be solved? Evaluate the
question within a 200-word text about the pros and
cons." We asked the participants to use the ALEN
app to write and evaluate their text’s argumentation
level and persuasiveness. During the task, students
could click the analyze button where they received
adaptive argumentation evaluation on their text.

2) Post-survey: In the post-survey of study
1 (ten participants), we measured the perceived
ease-of-use, the intention to use, and the perceived
usefulness for the participants following the tech-
nology acceptance model of Venkatesh and Bala
(2008). Example items for the three constructs
were: "The use of the argumentation tool enables
me to write better persuasive texts", "Imagining the
tool would be available in my next course, would I
use it?", or "I would find the tool to be flexible to
interact with."

For study 2 (18 participants) our goal was to con-
trol for the self-efficacy of students for the task of
English language learning based on seven items fol-
lowing Bandura (1991) to control for self-regulated
learning. Exemplary items included, "Compared
to other students in this class, I expect to do well.",
or "I am confident that I will be able to solve the
problems and tasks set for me in this course.". All
constructs were measured on a Likert scale from 1
to 7 (1: totally disagree; 7: totally agree, with 4 be-
ing a neutral statement). Finally, we captured some
demographic information and asked three quali-
tative questions: "What did you particularly like
about the use of the argumentation tool?", "What

2https://www.unipark.com/
3https://www.cambridgeenglish.org/

exams-and-tests/first/
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Figure 3: Overview of our evaluation of ALEN in two field-studies.

else could be improved?" and "Do you have any
other ideas?".

Results
Study 1: The perceived ease-of-use of students
using ALEN in experiment one for the English lan-
guage task had a mean value of 5.77 (SD= 0.96,
normalized 0.82). The perceived usefulness for
ALEN was rated with a mean value of 5.60 (SD=
0.69, normalized 0.8) and the intention to use the
tool as a English learning tool continuously was
rated with 5.7 (SD= 0.79, normalized 0.81). All of
the results are positive when compared to the mid-
point scale of 4, indicating a positive technology
acceptance of ALEN (Venkatesh and Bala, 2008).

Study 2: For the second study we received 18
valid answer from 4 males, 6 non-binary, an 8
females. Participants of the study 2 rated their
self-efficacy for English language learning tasks
with a mean value of 5.02 (SD= 1.24, normalized
0.71). This might indicate that ALEN could in-
crease engagement and motivation when practising
and learning persuasive English essay writing (Ban-
dura, 1991). Finally, we analyzed the qualitative
answers of both experiments and clustered simi-
lar responses into categories. In conclusion, the
adaptive feedback based on in-text highlighting
and the graph overview in combination with dis-
course level feedback was noted favorably multiple
times. At the same time, students complained that
the persuasive elements were sometimes wrongly
highlighted. Moreover, many students asked for ad-
ditional grammar feedback, since sometimes they
were not sure if an argument was not persuasive or
only the grammar structure was erroneous.

5 Discussion and Conclusion

We have presented ALEN, a novel writing support
tool that provides students with persuasive feed-
back during an English language learning task.

We embedded the SVM model of (Wambsganss
et al., 2020b) to identify claim-premise structures in
learners’ texts and evaluated the proof-of-concept
in two field-studies with 28 students. Based on
the literature stream of "arguing-to-learn" (e.g.,
(Jonassen and Kim, 2010)), our hypothesis was
that adaptive argumentation feedback might en-
gage students to evaluate their text, reflect about
their discourse level writing and thus learn better
English. Our results suggest that the ALEN app
leads to a high self-efficacy in the task of English
essay writing and a high technology acceptance
(intention to use, perceived usefulness and ease-
of-use) for K12 language learners. Our study ex-
tends the current literature stream of NLP-based
learning tools for argumentation (e.g., Wambsganss
et al. (2020a); Afrin et al. (2021)) by adding a new
perspective to leverage NLP-based argumentation
feedback as a dialectical for other learning out-
comes (i.e., Jonassen and Kim (2010)).

For future work, we suggest to combine dis-
course level argumentation feedback with grammar
feedback for language learners to provide them
with more nuanced guidance in their language
learning process. Moreover, further studies are
needed which investigated the human-computer in-
teraction of discourse-level writing support tools
for language learners. Finally, future research is
needed to investigate the effects of adaptive argu-
mentation support in large-scale field studies to
measure the long-term learning success on students
language learning outcomes.

Acknowledgements

The first author was supported by the Swiss Na-
tional Science Foundation (grant 200207). The
second and third authors are supported by Cam-
bridge University Press & Assessment, University
of Cambridge.

138



References
Tazin Afrin, Omid Kashefi, Christopher Olshefski, Di-

ane Litman, Rebecca Hwa, and Amanda Godley.
2021. Effective Interfaces for Student-Driven Re-
vision Sessions for Argumentative Writing. In Pro-
ceedings of the 2021 CHI Conference on Human Fac-
tors in Computing Systems, pages 1–13, New York,
NY, USA. Acm.

Christa S.C. Asterhan and Baruch B. Schwarz. 2016. Ar-
gumentation for Learning: Well-Trodden Paths and
Unexplored Territories. Educational Psychologist,
51(2):164–187.

Albert Bandura. 1991. Social cognitive theory of self-
regulation. Organizational Behavior and Human
Decision Processes, 50(2):248–287.

Artem Chernodub, Oleksiy Oliynyk, Philipp Hei-
denreich, Alexander Bondarenko, Matthias Hagen,
Chris Biemann, and Alexander Panchenko. 2019.
TARGER: Neural Argument Mining at Your Finger-
tips. pages 195–200.

David H. Jonassen and Bosung Kim. 2010. Arguing to
learn and learning to argue: Design justifications and
guidelines. Educational Technology Research and
Development, 58(4):439–457.

Anisia Katinskaia and Roman Yangarber. 2021. Assess-
ing grammatical correctness in language learning. In
Proceedings of the 16th Workshop on Innovative Use
of NLP for Building Educational Applications, pages
135–146, Online. Association for Computational Lin-
guistics.

Elma Kerz, Daniel Wiechmann, Yu Qiao, Emma Tseng,
and Marcus Ströbel. 2021. Automated classifica-
tion of written proficiency levels on the CEFR-scale
through complexity contours and RNNs. In Pro-
ceedings of the 16th Workshop on Innovative Use of
NLP for Building Educational Applications, pages
199–209, Online. Association for Computational Lin-
guistics.

Deanna Kuhn. 1992. Thinking as Argument. Harvard
Educational Review, 62(2):155–179.

Severin Landolt, Thiemo Wambsganß, and Matthias
Söllner. 2021. A taxonomy for deep learning in
natural language processing. In Proceedings of the
Annual Hawaii International Conference on System
Sciences, pages 1–10, Hawaii, USA.

Anne Lauscher, Goran Glavaš, and Simone Paolo
Ponzetto. 2019. An Argument-Annotated Corpus
of Scientific Publications. pages 40–46.

Anne Lauscher, Lily Ng, Courtney Napoles, and Joel
Tetreault. 2020. Rhetoric, logic, and dialectic: Ad-
vancing theory-based argument quality assessment
in natural language processing. In Proceedings of
the 28th International Conference on Computational
Linguistics, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

John Lawrence and Chris Reed. 2019. Argument min-
ing: A survey. Computational Linguistics, 45(4):765–
818.

Marco Lippi and Paolo Torroni. 2015. Argument min-
ing: A machine learning perspective. In Interna-
tional Workshop on Theory and Applications of For-
mal Argumentation, pages 163–176. Springer.

Marco Lippi and Paolo Torroni. 2016. MARGOT: A
web server for argumentation mining. Expert Sys-
tems with Applications, 65:292–303.

Maria Nadejde and Joel Tetreault. 2019. Personalizing
grammatical error correction: Adaptation to profi-
ciency level and L1. In Proceedings of the 5th Work-
shop on Noisy User-generated Text (W-NUT 2019),
Hong Kong, China. Association for Computational
Linguistics.

Lily Ng, Anne Lauscher, Joel Tetreault, and Courtney
Napoles. 2020. Creating a domain-diverse corpus for
theory-based argument quality assessment. In Pro-
ceedings of the 7th Workshop on Argument Mining,
Online. Association for Computational Linguistics.

Jonathan F. Osborne, J. Bryan Henderson, Anna
MacPherson, Evan Szu, Andrew Wild, and Shi Ying
Yao. 2016. The development and validation of a
learning progression for argumentation in science.
Journal of Research in Science Teaching, 53(6):821–
846.

Abelardo Pardo, Kathryn Bartimote, Simon Bucking-
ham Shum, Shane Dawson, Jing Gao, Dragan Gaše-
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Abstract

The paper presents a new state-of-the-art
sentence-wise readability assessment model
for German L2 readers. We build a linguisti-
cally broadly informed machine learning model
and compare its performance against four com-
monly used readability formulas. To under-
stand when the linguistic insights used to in-
form our model make a difference for read-
ability assessment and when simple readabil-
ity formulas suffice, we compare their perfor-
mance based on two common automatic read-
ability assessment tasks: predictive regression
and sentence pair ranking. We find that leverag-
ing linguistic insights yields top performances
across tasks, but that for the identification of
simplified sentences also readability formulas
– which are easier to compute and more acces-
sible – can be sufficiently precise. Linguisti-
cally informed modeling, however, is the only
viable option for high quality outcomes in fine-
grained prediction tasks.

We then explore the sentence-wise readabil-
ity profile of leveled texts written for language
learners at a beginning, intermediate, and ad-
vanced level of German. Our findings high-
light that a texts’ readability is driven by the
maximum rather than the overall readability of
sentences. This has direct implications for the
adaptation of learning materials and showcases
the importance of studying readability also be-
low the document level.

1 Introduction

Comprehensible input is key to foster language
learning (Swain, 1985), especially when it chal-
lenges learners by falling slightly above their in-
dividual level of language competence (Vygotsky,
1978; Krashen, 1985). Also in content-matter ed-
ucation, input comprehensibility has been linked
to learning success (e.g., O’Reilly and McNamara,
2007). Thus, automatic readability assessment
(ARA) is a crucial tool to support education. ARA

seeks to align language input with readers’ compre-
hension skills (Vajjala, 2021; Collins-Thompson,
2014). It can not only identify suitable reading ma-
terials, but can also ensure learner-input alignment
in applications such as tutoring systems or educa-
tional conversational agents or as a validation tool
for publishers of educational materials. Yet, most
work on ARA focuses on English native speakers,
leaving much potential for other languages and ap-
proaches specifically tailored to the needs of second
or foreign language (L2) learners who experience
language barriers differently than native speakers
(Greenfield, 2004; Collins-Thompson, 2014).

Although most work on ARA has focused on es-
timating the readability of entire documents, there
are many application scenarios in which sentence-
level readability assessment is more suitable. Be-
yond the identification of text simplification targets
(Vajjala and Meurers, 2014), they are also more
suitable for very short text types including social
media language (e.g., tweets and chats), question-
naire or test items used in assessment and empirical
education research, or shorter text units in tradi-
tional learning materials (e.g., captions or tasks in
schoolbooks). Furthermore, there has been little re-
search on the link between sentence and document
readability (but see Vajjala and Meurers, 2014)
which is immediately relevant for the targeted de-
sign and adaptation of educational materials.

There is a startling gap between the methods pro-
posed in ARA research and those used in practice.
While for the last two decades, research on ARA
has favored machine learning approaches over tra-
ditional readability formulas (Vajjala, 2021) due to
their generally better performance (e.g., François
and Miltsakaki, 2012), simple formulas continue
to be used extensively in practice due to their ease
of use and low computation demands (Benjamin,
2012). This discrepancy raises the practical ques-
tion when simple approximations of readability
through formulas suffice, and when the use of more
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elaborate systems is necessary.
This paper addresses these issues with four ma-

jor contributions: First, we present a new state-of-
the-art (SOTA) sentence-level readability model
for L2 German readers which is based on broad
linguistic complexity assessment. Its performance
on a 7-point Likert scale is comparable to human
raters when it comes to estimating the readability
of sentences for German L2 readers. Second, we
make this model accessible online to enhance the
impact of our work outside academic discourse.
Users can extract features from their texts using
the publicly available web platform CTAP (Chen
and Meurers, 2016; Weiss et al., 2021) and use
the results as input for a pre-written R script that
applies the model to users’ input files in the for-
mat that is returned by CTAP.1 Third, we compare
our SOTA machine learning-based approach with
commonly used readability formulas for the two
common ARA tasks predictive regression and rank-
ing to answer the question when using linguistic
insights indeed makes a difference and for which
tasks simple readability formulas suffice. Finally,
we leverage our SOTA model to explore sentence
profiles of leveled L2 articles to provide new in-
sights into the role of sentence readability for doc-
ument difficulty that can help inform input adapta-
tion strategies for educational materials.

The remainder of this paper is structured as fol-
lows: after a brief literature review (Section 2), we
introduce the data (Section 3) and linguistic fea-
tures (Section 4) used for our studies. We then
report on the model training and evaluation for pre-
dictive regression and sentence ranking (Section 5).
Finally, we explore the readability profile of Ger-
man L2 articles on a document level (Section 6)
and discuss our overall findings (Section 7). We
conclude with finals remarks on the impact of our
findings and an outlook on future work (Section 8).

2 Related work

Early approaches to ARA date back to the last
century when traditional readability formulas
(e.g., Flesch, 1948; Dale and Chall, 1948) were
developed, see DuBay (2004, 2006) for a compre-
hensive overview. Readability formulas estimate
text readability solely based on surface level prox-
ies of text characteristics (e.g., sentence and word

1Both, the complexity-based model and the R script can be
accessed at https://osf.io/jg6kc/?view_only=
2d62778d592642a4a210eb4c7cc61f87

length or word frequency). They have been heav-
ily criticized for their lack of linguistic insight and
robustness, and have been shown to yield inferior
results to statistical approaches to ARA on authen-
tic data (François and Miltsakaki, 2012; Collins-
Thompson, 2014; Benjamin, 2012; Vajjala, 2021).
Yet, they are still the most widely distributed form
of ARA in practice due to their low computational
demands, ease of use, and availability for a vari-
ety of languages (Benjamin, 2012). Common use
cases include work on health literacy (Kiwanuka
et al., 2017; Grootens-Wiegers et al., 2015; Es-
fahani et al., 2016) and as evaluation metrics in
computational linguistic work on machine transla-
tion (Agrawal and Carpuat, 2019; Marchisio et al.,
2019; Stymne et al., 2013) or conversational agents
(Langevin et al., 2021; Gnewuch et al., 2018; San-
thanam et al., 2020).

Since the early 2000s (cf. Vajjala, 2021), sta-
tistical approaches became dominant in research
on ARA. This includes feature-based approaches
leveraging rich linguistic information for their pre-
dictions as well as neural approaches without prior
feature engineering. While either method has been
shown to yield SOTA performances (e.g., Vaj-
jala and Lučić, 2018; Weiss et al., 2021; Martinc
et al., 2021; Bengoetxea et al., 2020) on the On-
eStopEnglish corpus by Vajjala and Lučić (2018),
neural approaches have been argued to be more eas-
ily applicable for cross-linguistic readability assess-
ment (Martinc et al., 2021; Madrazo Azpiazu and
Pera, 2019), but see Weiss et al. (2021); De Clercq
and Hoste (2016). Feature-based approaches, in-
stead, are more appropriate when little data is avail-
able or when users need an explanation for the
obtained readability score, as is commonly the case
in education contexts and for publishers of leveled
reading materials who might want to revise their
texts after obtaining a readability score (Collins-
Thompson, 2014). Established features measure
aspects of syntax and lexicon (Collins-Thompson,
2014), morphology (Gonzalez-Dios et al., 2014;
Hancke et al., 2012; Weiss et al., 2021), and dis-
course features. They intersect with common fea-
tures from automatic writing quality assessment
(Crossley, 2020) and Second Language Acquisi-
tion research (Vajjala and Meurers, 2012).

Only limited progress has been made on ARA
for German, after early work on readability formu-
las (e.g., Amstad, 1978; Björnsson, 1983; Bam-
berger and Vanecek, 1984). The now unavailable
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DeLite system has been used to predict readability
for German municipal texts (Vor der Brück and
Hartrumpf, 2007; Vor der Brück et al., 2008a,b).
Hancke et al. (2012) and Weiss and Meurers (2018)
focused on the binary distinction of texts for adult
versus young native speaking readers. However,
binary ARA is of limited use in practice. Weiss
et al. (2021) present to our knowledge the first and
only multi-level classification approach for Ger-
man documents after introducing the first multi-
level readability corpus for German, which is part
of a larger multi-lingual readability corpus for lan-
guage learners. For sentence-wise readability as-
sessment, Naderi et al. (2019a) compiled a German
corpus of rated sentences and sentence simplifica-
tion pairs. Naderi et al. (2019b) used this corpus to
train a feature-based regression model yielding a
root mean squared error (RMSE) of 0.847 which is
to our knowledge the current SOTA on this data.

Little research has investigated the relationship
between sentence and document readability, even
though there has been some work testing the relia-
bility of readability assessment for very short texts
(Collins-Thompson and Callan, 2004) and sen-
tences (Dell’Orletta et al., 2011; Vajjala and Meur-
ers, 2014; Pilán et al., 2014). Vajjala and Meur-
ers (2014) inspect readability differences between
sentences from Wikipedia and Simple Wikipedia
to investigate the poor performance of document-
level ARA models for the identification of sen-
tences from simple and regular texts. They find
that sentences from Wikipedia are not systemati-
cally more complex than sentences from Simple
Wikipedia. This raises several questions for fur-
ther inquiry. The lack of observable differences
might be caused by an insufficient sensitivity of the
document-level model for sentence-level readabil-
ity differences. Also, Simple Wikipedia has criti-
cized as not systematically simpler than Wikipedia
(e.g., Štajner et al., 2012; Xu et al., 2015; Yaneva
et al., 2016). More research is needed to confirm or
refute their finding that harder texts are not simply
characterized by containing generally less readable
sentences which would have direct implications for
work on targeted document adaptation seeking to
identify language barriers in educational materials.

3 Data

3.1 TextComplexityDE

The TextComplexityDE corpus (Naderi et al.,
2019a) consists of 1,119 sentences. 1,019 sen-

Mean Std. Min. Max.

MOS-R 3.02 1.18 1.00 6.33
Words / sent. 20.08 10.62 4.00 63.00
Syll. / word 2.07 0.35 0.96 4.00

Table 1: Summary statistics for the TextComplexi-
tyDE sentences including number of words per sentence
(sent.), number of syllables (syll.) per word, and the
Mean Opinion Score for readability (MOS-R)

tences were extracted from 23 Wikipedia articles
related to history, society, or science and 100 sen-
tences from two articles in Leichte Sprache (engl.
“simple language”). All were rated by 267 Ger-
man L2 learners along three separate dimensions
defined by Naderi et al. (2019a): readability, un-
derstandability, and lexical difficulty. For each di-
mension, sentences were rated by up to ten learners
on a 7-point Likert scale. These ratings were ag-
gregated into a single Mean Opinion Score (MOS).
For this article, we focus on sentences’ readability
score (MOS-R).

Table 1 contains summary statistics for the num-
ber of words per sentence sentence, the number of
syllables per word, and MOS-R. It shows that MOS-
R not quite uses the full range of the scale and that
sentences are on average quite long (around 20
words) whereas words are relatively short (around
two syllables). Sentence length has a strong Spear-
man rank correlation with MOS-R score (rs =
0.70; p < 0.01). Word length only exhibits a weak
correlation with MOS-R (rs = 0.26; p < 0.01).
The current SOTA performance for a ARA model
lies at RMSE = 0.847 (Naderi et al., 2019b).

Sentence simplification pairs The corpus con-
tains 250 sentence pairs of sentences with MOS-R
> 4 sampled from all 23 Wikipedia articles and
their simplifications. The texts were manually sim-
plified by 75 native speakers and contain additional
meta information on whether the simplification is
only slightly or considerably simpler than the orig-
inal. One sentence could not be successfully sim-
plified and was excluded by us, resulting in 249
sentence pairs with valid simplifications.

3.2 Spotlight-DE

The Spotlight-DE corpus (Weiss et al., 2021) con-
sists of 1.447 leveled articles by the Spotlight pub-
lisher. Articles’ topics are connected to German
politics, culture, and every-day life. The texts tar-
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get L2 learners at a beginning (N = 763), medium
(N = 509), or advanced (N = 175) level. The
publisher aligns these three levels with the lev-
els A2, B1/B2, and C1 of the Common European
Framework of Reference (Council of Europe).

The reading levels in this corpus are assigned at
the document level rather than at the sentence level.
To obtain sentence-wise estimates, we split each
article into individual sentences. Table 2 character-
izes the resulting sentence-wise corpus. Compared

Mean Std. Min. Max.

Easy (n = 16, 694)
Words / sent. 11.00 5.09 1.00 73.00
Syll. / word 1.71 0.35 0.50 5.00

Medium (n = 27, 522)
Words / sent. 12.50 6.26 1.00 60.00
Syll. / word 1.73 0.35 0.33 6.00

Advanced (n = 11, 952)
Words / sent. 13.30 6.99 1.00 63.00
Syll. / word 1.78 0.37 0.50 5.50

Table 2: Summary statistics for the Spotlight-DE sen-
tences across document reading levels (easy, medium,
advanced) including number of number words per sen-
tence (sent.), number of syllables (syll.) per word

to the TextComplexityDE corpus, sentences are
much shorter. Also, there are no systematic differ-
ences in either sentence or work length across read-
ing levels and no meaningful Spearman rank corre-
lation between sentence length and article reading
level (rs = 0.12; p < 0.001) or word length and
article reading level (rs = 0.06; p < 0.001). Thus,
unlike many other learner corpora, the SpotlightDE
corpus does not rely on surface level simplifications
to differentiate between proficiency levels.

4 Feature extraction and selection

We extracted 543 features of linguistic complexity
from the linguistic domains of syntax, lexicon, and
morphology as well as psycho-linguistic features of
text cohesion, language use, and human language
processing and surface level text features inspired
by traditional readability formulas. All features
have a long standing tradition in ARA research
(Collins-Thompson, 2014) or in related work on
automatic text scoring (Crossley, 2020) and Second
Language Acquisition complexity research (Wolfe-
Quintero et al., 1998; Housen et al., 2012).

For feature extraction, we used the CTAP system
(Chen and Meurers, 2016, http://ctapweb.com)

which has been extended to facilitate the analy-
sis of German by Weiss et al. (2021). We chose
this system, because it is to our knowledge the
most extensive available analysis system for Ger-
man. The underlying feature extraction engine for
German has proven highly successful and robust
in a variety of education-related tasks including
readability assessment (Weiss and Meurers, 2018;
Weiss et al., 2021; Kühberger et al., 2019) and
work linked to writing quality assessment (Weiss
and Meurers, 2019a,b; Weiss et al., 2019; Bertram
et al., 2021; Riemenschneider et al., 2021). Also,
using a publicly available web-based system in-
creases the re-usability of any model using these
features in practice.

4.1 Feature description

The German pipeline used in CTAP is described in
detail in Weiss et al. (2021) and Weiss and Meurers
(2021). The latter also contains a comprehensive
definition of all complexity measures. We will limit
ourselves here to summarize the types of features
used to represent the individual linguistic domains.

Syntax The system measures 75 syntactic fea-
tures which can be further distinguished into
measures of clausal elaboration (e.g., dependent
clauses per clause or sentence coordination ratio)
and measures of phrasal elaboration (e.g., prenom-
inal modifiers per noun phrase or mean length of
prepositional phrases), as well as measures of syn-
tactic variance (e.g., edit distances between con-
stituency parses or coverage of nominal modifier
types). This set also includes measures of spe-
cific grammatical patterns that have been associ-
ated with comprehension difficulties for non-native
speakers of German (e.g., the percentage of non-
subject prefields which Ballestracci (2010) iden-
tified as language barriers for Italian learners of
German) and raw counts of syntactic patterns, such
as the number of dependent clauses.

Lexicon There are 146 features of lexical com-
plexity which can be further divided into mea-
sures of lexical richness (e.g., MTLD by McCarthy
(2005) as well as different mathematical transfor-
mations of the type-token ratio), measures of lexi-
cal variation (e.g., verb variation), and lexical den-
sity (e.g., noun type-token ratio and other parts-of-
speech specific type-token ratios). This group also
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contains also features measuring the overall occur-
rence of different parts-of-speech such as nouns,
verbs, or puncuation marks.

Morphology CTAP measures 64 measures of
morphological complexity for German. We ex-
tract features of nominal and verbal inflection (e.g.,
genitive case per noun), derivation (e.g., derived
nouns per noun), and compounding (e.g., aver-
age compound depth). We also measure the vari-
ability of morphological exponents using different
parametrizations of the Morphological Complexity
Index (MCI; Brezina and Pallotti, 2019).

Cohesion We extract 46 measures of text cohe-
sion and discourse for German. The features used
here include explicit measures of cohesion (e.g.,
causal connectives per sentence) as well as implicit
measures of cohesion linked to the use of pronouns
and repetitions of subjects, objects, or nouns.

Language use The system offers 172 lexical lan-
guage use features based on external German data
bases. CTAP calculates average word frequencies
and their standard deviations with and without log
transformations and binned in log frequency bands
for four frequency data bases that represent differ-
ent types of language use: frequencies based on
the Subtlex-DE data base consisting of movie and
TV captions and Google Books 2000 (both Brys-
baert et al., 2011), dlexDB frequencies (Heister
et al., 2011) based on German newspaper articles,
and frequencies and age of active use measures ex-
tracted from the Karlsruhe Children’s Text corpus
(Lavalley et al., 2015) consisting of essays written
by German children in first to eighth grade.

Human sentence processing There are 21 mea-
sures of human processing that can be calculated
for German. Weiss and Meurers (2018) and Weiss
et al. (2021) have used features based on the Depen-
dency Locality Theory (DLT; Gibson, 2000) for
German readability classification using different
weight configurations by Shain et al. (2016).

Surface length We extract 18 surface length fea-
tures for German that solely rely on the identifi-
cation of sentences, words, letters, and syllables.
These features include the raw number of these con-
structs as well as means and standard deviations
for sentence and word length based on these units,
e.g., mean sentence length in syllables.

4.2 Feature selection

After extracting these features from the TextCom-
plexityDE corpus, we removed all features with
near-zero variance, i.e., all features for which at
least 80% of the data exhibit the same value. This
is the case for 31.3% of features (N = 170) due to
near-exclusively zero values (i.e., not occurring in
most data). This leaves 373 features for the anal-
ysis coming from all feature domains which were
used for model training in Study 1 (Section 5).

This considerable reduction in the number of
features is to be expected for data that is as short
as the sentences in the TextComplexityDE corpus
(e.g, Weiss and Meurers (2021) also report a reduc-
tion of 50% of complexity features for short texts).
For example, only 7 of the 46 cohesion measures
are sufficiently variable on this data, because most
cohesion measures are calculated across sentence
boundaries. Similarly, only 19 of 64 measures of
morphological complexity are sufficiently variable,
because there is not enough language material to
produce a variety of inflectional properties. Con-
versely, nearly all language use and lexical features
as well as most features of phrasal elaboration re-
main included in the reduced feature set.

5 Sentence-wise readability assessment

5.1 Set-up

We trained and compared several machine learn-
ing algorithms2 using 10-folds cross-validation (10
CV) and the z-transformations of the 373 features
selected in Section 4.2. We selected these algo-
rithms based on their use in previous research
or their robustness against large feature sets with
multi-colinearity. The Bayesian Ridge Regres-
sion outperformed the other models and will be
discussed in more detail in the following. To
evaluate this complexity-based model’s (hence-
forth: CBM) overall performance, we calculated
its RMSE and Spearman rank correlation (rs) dur-
ing 10 CV (Section 5.2) and compared it against
the current SOTA performance on the data (RMSE
= 0.847, Naderi et al., 2019b). We also used the
model to rank the pairs of regular and simplified
sentences in TextComplexityDE (Section 5.3). We
report the ranking accuracy in terms of the percent-
age of correctly ranked pairs for all i) pairs irrespec-

2Multiple linear regression with backward feature selec-
tion, linear support vector machine regression, random forests,
Bayesian ridge regression (model averaged), Bayesian gener-
alized linear model, quantile regression with LASSO penalty
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tive of their degree of simplification (N = 249),
ii) weakly simplified pairs (N = 114), and iii)
strongly simplified pairs (N = 135).

In both evaluation steps, we compared the
CBM’s performance against five alternative mod-
els. We trained a Bayesian Ridge Regression model
using only surface length measures as predictors
as a baseline (henceforth: length-based model or
LBM). We additionally use the following widely
used readability formulas for both tasks:3

• the Amstad Readability Index (ARI; Amstad,
1978) which adapts the Flesch Reading Ease
(Flesch, 1948) to German native speakers;

• the Erste Wiener Sachtextformel (WSF; Bam-
berger and Vanecek, 1984) designed for ex-
pository texts for German native speakers;

• The LIX readability index (Björnsson, 1983)
which has been designed to align texts with
adult native speakers’ reading skills across a
variety of languages including German; and

• the Miyazaki EFL Readability Index
(MER; Greenfield, 1999, 2004) which was
designed for English L2 readers.4

We calculated all formulas using a publicly avail-
able python-based readability calculator which we
adjusted to use stanza (Qi et al., 2020) instead of
NLTK (Bird and Loper, 2004) for segmentation.5

5.2 Results for regression with 10 CV
Table 3 shows the RMSE and Spearman rank corre-
lation of the estimates with MOS-R in the TextCom-
plexityDE data. Both, LBM and CBM outperform

CBM LBM WSF LIX ARI MER

RMSE .685 .739 n.a. n.a. n.a. n.a.
rs .806 .785 .681 .679 -.532 -.666

Table 3: RMSE and Spearman rank correlation between
MOS-R and the predictions by CBM, LBM, and the
readability formulas.

the current SOTA on the TextComplexityDE data
(RMSE = 0.847; Naderi et al., 2019b). Our
linguistically more informed CBM clearly outper-
forms the LBM in terms of both, RMSE and cor-
relation. Due to the differences in the predicted

3All formula equations are defined in Appendix A.
4We added this formula to include an estimate tailored to

L2 readers despite the lack of German L2 readability formulas.
5https://github.com/zweiss/RC_

Readability_Calculator

CBM LBM WSF LIX ARI MER

Acc. 96.0 93.0 93.6 93.6 95.6 96.8
− 95.6 92.1 91.1 91.1 95.6 96.5
+ 96.5 94.1 96.5 96.5 95.6 97.0

Table 4: Overall ranking accuracy (Acc.), ranking ac-
curacy for weakly simplified pairs (−), and ranking
accuracy for strongly simplified pairs (+)

scales, we cannot compute the RMSE for the four
readability formulas, but the correlation shows that
both, the CBM and LBM outperform the formulas.

The correlation of ARI with MOS-R is much
lower than for the other formulas. This is unex-
pected, because all formulas use only sentence
and word length features. However, ARI assigns a
much larger weight to word length than the other
formulas which in turn correlates only weakly with
MOS-R in TextComplexity-DE (see Section 3.1).

CBM’s prediction error lies at RMSE = 0.685
points on the Likert scale. This is comparable to the
variance between raters in the TextComplexityDE
data. Averaged across all rated sentences the across-
rater standard deviation for MOS-R is at 1.03 ±
0.51; IQR = [0.71; 1.41]. This shows that the
error of our CBM lies even below the acceptable
range of disagreement exhibited by human raters.

5.3 Results for ranking of sentence pairs

Table 4 shows the results of the sentence ranking
experiment. The ranking accuracy for all ARA
models lies above 90%. With an overall accuracy
of 96%, CBM again outperforms LBM and the
readability formulas WSF and LIX. However, ARI
and MER perform comparably to CBM despite
their weak performance on the previous regression
experiment. It seems that word length (which is
weighted higher for these two formulas than for the
rest) is more informative than sentence length for
distinguishing simplified and regular sentences.

To also estimate if the models reflect the degrees
of simplification in the data (weak vs. strong), we
compare the difference in the predicted readabil-
ity score between each sentence and its simplified
counterpart. The difference should be systemat-
ically larger for strongly than for weakly simpli-
fied sentences. We test this assumption using sig-
nificance testing6 (α < 0.05) and by estimating

6We used a two-sided t-test or Wilcoxon Rank Sum and
Signed Rank Tests depending on the normality of predictions
determined with a Shapiro-Wilk Normality Test (α < .05).
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the effect size with Cohen’s d.7 We see a signifi-
cant, small effect for CBM (p = 0.02; d = 0.31),
LBM (p = 0.04; d = 0.25), MER (p < 0.01; d =
−0.36), ARI (p < 0.01; d = −0.30), LIX (p =
0.02; d = 0.35), and WSF (p = 0.01; d = 0.35),
see Appendix B for a visualization of the findings.

6 Exploring text profiles in leveled articles

6.1 Set-up

We used CBM to explore the text profiles of easy,
medium, and advanced articles in the Spotlight-DE
corpus, because it was the most precise model in
Study 1. With CTAP, we extracted the 373 features
from the sentence-split Spotlight-DE data that are
used by the model and calculated their z-scores. We
inspected the distribution of sentence readability
scores across article levels from several perspec-
tives. We first compared the overall differences in
sentence complexity per article level and the dif-
ferences in maximum sentence complexity using
significance testing, effect size estimation (parallel
to Study 1) and data visualization. We then evalu-
ated the proportions of sentences within a 0.5 point
sentence readability interval across article levels.
Finally, we visualized the sentence readability of
the first ten sentences in a sample of Spotlight-DE
articles in three heatmaps, one for each article lev-
els annotated in the Spotlight-DE corpus. This way,
we obtain a non-aggregated estimate of the text pro-
files. To keep the heatmaps comparable, we used
all 175 advanced articles as well as a random sam-
ple of 175 easy and 175 medium articles containing
at least ten sentences.

6.2 Results

Figure 1 combines different perspectives on the
sentence-wise article profiles split by article level.
We see that the prediction ranges from 1 to 5, a rea-
sonable coverage of the empirically observed MOS-
R scale (1 − 6.33) in the TextComplexityDE data
given the corpus characteristics discussed in Sec-
tion 3. Figure 1a summarizes the overall sentence
readability grouped by article levels with notches
indicating the 95% confidence interval. There
are small significant differences between easy and
medium (p < 0.001; d = −0.259) and easy and ad-
vanced (p < 0.001; d = −0.435) articles, but only
negligible albeit significant differences medium

7We tested for unequal variance using an F test (α < .05).
In case of unequal variance, we used a Welch approximation
for unequal variances to calculate Cohen’s d.

and advanced (p < 0.001; d = −0.178) articles.
The boxplot shows considerable overlap for the
50% range of the data even between easy and ad-
vanced sentences. In Figure 1b, which considers
only articles’ maximum sentence readability scores,
this overlap is considerably reduced. Here, we ob-
serve large significant differences between easy and
advanced (p < 0.001; d = −2.05) and medium
and advanced (p < 0.001; d = −1.24) articles,
and moderate significant differences medium and
advanced (p < 0.001; d = −0.689) articles. This
indicates that the maximum sentence readability is
more indicative for overall readability level of a text
than considering the readability of all its sentences.

Figure 1c confirms this by comparing the per-
centage of sentences falling within a 0.5 point read-
ability range across article levels. Sentences from
articles at all levels are predominantly medium dif-
ficult (MOS-R= 3) and between 55.6% (advanced)
to 64% (easy) of sentences fall in the range from
2.5 ≤ MOS-R ≤ 3.5. Article levels differ mostly in
the tails of the distribution. The difference is most
pronounced for higher difficulty levels (MOS-R
≥ 4): 30% of sentences from advanced articles fall
into this range, but only 23.1% of sentences from
medium and 14.1% of sentences from easy articles.
Even so, it is worth noting that the percentage of
sentences with MOS-R ≤ 3 is systematically high-
est for easy articles and higher for medium than
advanced articles. Inversely, the percentage of sen-
tences with MOS-R > 3 is highest for advanced
articles and higher for medium than easy articles.

Figure 1d visualizes the sentence readability
scores of the first ten sentences of 175 articles
per article level. The heatmap depicts the first ten
sentences of each sampled article rather than sum-
marizing across sentences and articles at the same
article level to demonstrate the relative homogene-
ity of sentence reading scores for articles at the
same article level and the systematic increase in
the proportion of more demanding sentences across
individual articles with higher article levels.

7 Discussion

Study 1 investigated the performance of linguis-
tically informed readability models and readabil-
ity formulas for sentence-wise readability assess-
ment for two common ARA tasks: precise predic-
tive regression (Section 5.2) and ranking to iden-
tify simplified sentences in sentence simplification
pairs (Section 5.3). The results showcase the ver-
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(d) Predicted sentence readability for the first ten sentences of 175 randomly sampled easy, medium, and advanced articles. Each
sentence is represented by a cell. Its readability is encoded with the cell color. The cell’s position on the x-axis encodes the article
it belongs to and its position on the y-axis its position in that article, e.g., the third sentence in each article is located at y = 3.

Figure 1: Sentence readability profiles predicted by our complexity-based model on the Spotlight-DE corpus grouped
by article levels (easy, medium, advanced) to showcase differences in sentence readability across documents at
different difficulty levels.

satile performance of linguistically informed read-
ability models: only our complexity-based model
achieved top performance for both tasks. For the
more difficult and authentic task of precise predic-
tive regression, we showed that our linguistically
informed complexity-based model clearly outper-
forms simplistic formulas and set a new SOTA per-
formance (RMSE=0.685) on the data set. The bet-
ter performance cannot be exclusively attributed to
the statistically stronger method, because on both
tasks, the complexity-based model clearly outper-
formed the length-based model. This shows that
broad linguistic modeling adds valuable insights
beyond the powerful statistical training method.

For ranking, all ARA models achieved an accu-
racy well above 90% and two readability formulas
performed at par with our complexity-based model.
This shows that even simple ARA approaches can
successfully distinguish relative differences in read-
ability between content-wise equivalent sentences
that are being introduced by text simplification.

Despite being a rather artificial task, this has some
limited applications, e.g., when evaluating machine
translation and text simplification systems.

In Study 2, we used our complexity-based model
to inspect the sentence-wise readability profiles of
leveled texts for L2 readers. Our findings clearly
show that while there is a tendency for easier
texts to contain more sentence with lower difficulty
scores, also medium and advanced texts contain
mostly accessible sentences. It is really the pres-
ence of difficult sentences within documents that
dictates an articles’ overall readability. This has
clear implications for the design and simplification
of educational materials: to efficiently adjust the
overall readability level of a text, we need to iden-
tify specific sentences that form language barriers
rather than simplifying the entire text.

8 Conclusion

We have presented a new SOTA sentence-wise
ARA model for German L2 readers which is pub-
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licly available and accessible for users with min-
imal background in R. Leveraging broad linguis-
tic insights, it predicts readability with a margin
of error even below the acceptable disagreement
range for humans raters. We showed that to flag
simplified sentences also traditional readability for-
mulas suffice, but that broad linguistic modeling is
needed to obtain the precise predictive readability
estimates that are often required in practice (e.g.,
to adapting learning and teaching materials).

We further explored leveled articles for German
L2 readers to illustrate the practical benefits of
sentence-level ARA and gain insights into text pro-
files of leveled documents. Our findings highlight
that the readability of texts is driven by the max-
imum rather than the overall readability of sen-
tences. This has direct implications for the adap-
tation of teaching materials, which should focus
on identifying specific sentences posing language
barriers rather than the simplification of all or any
sentence in a text. To our knowledge, this is the
first time detailed analysis of sentence profiles of
leveled reading materials for German. Future work
should further explore the implications of this for
text simplification, for example using eye-tracking
studies. Our work lays the foundation for further
research on ARA for German and opens up nu-
merous opportunities for educational applications,
such as ARA for captions and task descriptions in
school books or the analysis of social media and
chat conversations with L2 learners.
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A Definition of readability formulas

Equation 1 shows the general form of all four read-
ability formulas consisting of an intercept (β0), a
weighted sentence length estimate (β1 × SL), and
a weighted word length estimate (β2 × WL).

y = β0 + β1 × SL + β2 × WL (1)

Table 5 shows the respective weights (β0, β1, β2)
and measurement units for sentence length (SL)
and word length (WL). Equation 2 specifies the

y β0 β1 β2 SL WL

LIX 0.0 1.0 1.0 words syll.
ARI 180.0 −1.0 −58.6 words syll.
MER 164.9 −1.9 −18.8 words char.
WSF 0.0 0.2 1.0 words Eq. 2

Table 5: Weights and measurement units across read-
ability formulas (syll. = syllables, char. = characters)

definition of the composite score for word length
used in the Erste Wiener Sachtextformel.

WLWSF = 0.19 × 3SW + 0.13 × 6CW

−0.03 × 1SW − 0.88,
(2)

with 3SW being the percentage of three or more
syllable words, 6CW being the percentage of six
or more character words, and 1SW being the per-
centage of monosyllabic words. All weights in
Table 5 and Equation 1 have been rounded to one
decimal point for simplicity.
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B Prediction differences between
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Figure 2: Predicted readability difference between regu-
lar and simplified sentences by degree of simplification
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Abstract

We present a parametrizable approach to ex-
ercise generation from authentic texts that ad-
dresses the need for digital materials designed
to practice the language means on the curricu-
lum in a real-life school setting. The tool builds
on a language-aware search engine that helps
identify attractive texts rich in the language
means to be practiced. Making use of state-of-
the-art NLP, the relevant learning targets are
identified and transformed into exercise items
embedded in the original context.

While the language-aware search engine en-
sures that these contexts match the learner‘s
interests based on the search term used, and the
linguistic parametrization of the system then
reranks the results to prioritize texts that richly
represent the learning targets, for the exercise
generation to proceed on this basis, an interac-
tive configuration panel allows users to adjust
exercise complexity through a range of param-
eters specifying both properties of the source
sentences and of the exercises.

An evaluation of exercises generated from web
documents for a representative sample of lan-
guage means selected from the English curricu-
lum of 7th grade in German secondary school
showed that the combination of language-aware
search and exercise generation successfully fa-
cilitates the process of generating exercises
from authentic texts that support practice of
the pedagogical targets.

1 Introduction

With digital learning contexts becoming increas-
ingly common in Foreign Language Teaching and
Learning, automatic exercise generation arguably
will become a crucial tool for making individual-
ized practice materials available that are adapted
to the learner’s individual needs and competencies
(Liu et al., 2005). An ideal system for this purpose
will generate exercises of parametrizable complex-
ity for a given input text.

Form-focused exercises lend themselves espe-
cially well to automatic generation as their answer
space is limited enough to support automatic evalu-
ation (Sysoyev, 1999; Zanetti et al., 2021; Schwartz
et al., 2004). Approaches in this domain can be
subdivided into two categories: systems that gen-
erate simple exercise sentences using a rule-based
approach, and tools that extract sentences which
contain the targeted constructions from existing
texts (Perez-Beltrachini et al., 2012). Working with
authentic texts has been argued to have positive
effects on learner motivation (Peacock, 1997), es-
pecially if as much context as possible is preserved
(Romney, 2016). Since motivation is highest when
the topic and contents of the text is of interest to
the learner, allowing them to provide their own
texts as input to exercise generation is advanta-
geous (Zhuomin, 2010). Yet, authentic texts often
do not include sufficient examples for the language
means to be practiced (Chinkina et al., 2016). It
is therefore important to assist learners in finding
suitable documents that are of interest and richly
represent the language means on the syllabus that
are to be practiced, which has been referred to as
input enrichment (Chinkina and Meurers, 2016).

More recently, an important need for automati-
cally generated exercises is arising in the context
of adaptive language tutoring systems (Pandarova
et al., 2019). Adaptivity comprises elements both
at the micro level and at the macro level (Rus et al.,
2014). With respect to micro-adaptivity, scaffold-
ing feedback is used to guide the learner towards
the correct answer. Macro-adaptivity refers to the
system capability to provide sequences of exercises
at the right level for a given learner. Such systems
thus need to either manipulate exercise difficulty
in real-time (Beinborn, 2016) or to maintain large
pools of exercises of varying complexity levels
(Pandarova et al., 2019). Real-time manipulation is
most feasible for aspects of the exercise, such as the
number of distractors or hints, but not for linguistic
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features of the seed sentence or the choice of the tar-
get item. This approach to macro-adaptivity in the
language learning context has mainly been limited
to C-tests (Beinborn, 2016; Lee et al., 2019).

Most educational institutions use some Learning
Management System (LMS, Zabolotniaia et al.,
2020). To be able to integrate generated exercises
into regular classes, they should be compatible with
the LMS system used. Exercises would thus be
most beneficial to instructors when provided as
globally usable web components or in a format
that complies with standards such as xAPI1 and
cmi52. In addition, it would be important to provide
interfaces that make it possible to edit exercises that
were generated to be able to correct or modify them
to suit the instructor’s needs and preferences.

Summing up the requirements mentioned above
and in the wider literature, an exercise generation
tool should provide input enrichment mechanisms
for user-selected texts, be parametrizable and ed-
itable by the educators themselves, integrate feed-
back into the exercises, provide the exercises in a
portable format, and support use of the exercises
within the original context. To our knowledge, no
tool has been developed so far which complies with
all these features. Indeed, no fully automated exer-
cise generation system for grammar exercises we
know of even offers some of the features mentioned,
such as an integrated input enrichment approach.

In this paper, we thus present an exercise genera-
tion extension of the language-aware search engine
FLAIR3 to address this gap. We start with section 2
introducing the research context on automatic gen-
eration of grammar exercises. Section 3 describes
the implementation of the exercise generation ex-
tension of FLAIR and outlines its functionality and
use. Section 4 evaluates the tool before section 5
summarizes and concludes with an outlook.

2 Related work

Our approach integrates automatic exercise genera-
tion into an educational document retrieval system.
Therefore, we will first elaborate on previous work
on educational information retrieval systems before
discussing existing tools for form-based grammar
exercise generation with respect to the outlined
criteria we impose on such a system.

Similar to tutoring systems, educational docu-
1http://github.com/adlnet/xAPI-Spec
2http://aicc.github.io/CMI-5_Spec_Current
3The authors kindly made the source code available to us.

ment rankings systems often leverage information
from a learner model to identify texts that match a
learner’s individual proficiency level. Two exam-
ples for such an approach are REAP and TextFinder
(Bennöhr, 2005). The learner model is maintained
within the system based on the learner’s interaction
with the tool. While REAP can work with texts
from anywhere on the web, TextFinder operates on
its own database of online news articles.

A less automated approach relies more on user
interaction. Examples include the standalone tool
READ-X (Miltsakaki and Troutt, 2008) and the
web extension LAWSE (Ott and Meurers, 2011).
Both tools calculate readability scores for web doc-
uments. While LAWSE merely displays them for
the analyzed documents, READ-X matches the
scores against a readability level which users need
to specify, and filters the documents accordingly.

For narrowly defined use cases, tools may filter
documents without either a learner model or user
input. SourceFinder constitutes an example for
such a system. It applies a binary filter to its corpus
of online journals and identifies texts suitable in
academic contexts (Sheehan et al., 2007).

Systems with the highest degree of flexibility
allow users to filter documents according to con-
tained grammatical constructions. This approach is
for example realised in the authoring assistance tool
Sakumon (Hoshino and Nakagawa, 2008) and the
language-aware search engines FLAIR4 (Chink-
ina et al., 2016) and KANSAS5 (Dittrich et al.,
2019). Sakumon maintains information on the ar-
ticle’s reading level as well as on contained gram-
matical constructions in its database. FLAIR and
KANSAS, the latter being based on FLAIR and
specializing on low literacy in German, analyze
web texts on demand. In addition to the filtering
functionality, these two systems also allow users
to rank all retrieved documents according to the
occurrence of linguistic constructions. This kind of
re-ranking of search results allows to identify doc-
uments containing certain linguistic constructions,
such as those targeted by grammar exercises. Such
a tool therefore lends itself well as basis into which
we can integrate an exercise generation component.

Table 1 provides an overview of existing work on
automatic generation of grammar exercises high-
lighting that while many of these systems incorpo-
rate some of the characteristics we consider rele-

4http://flair.schule
5http://kansas-suche.de
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DR CT CS AC PO
Mgbeg
GramEx (•)
KillerFiller (•) •
Task Generator • (•) (•)
MIRTO • • (•) (•)
GEG • (•)
FAST (•)
ArikIturri • •
WebExperimenter (•) (•)
Sakumon • (•) • (•)
VIEW • (•) • •
ClozeFox • (•) • •
LEA • • (•) •
Lärka (•) (•)
COLLIE • (•)
Language Muse • (•)

Table 1: Exercise generation system functionalities
Document ranking (DR), custom text input (CT), configurable
settings (CS), authentic context (AC) and portable output (PO)
marked by • if offered, by (•) if partially offered.

vant to automatically generated, form-based gram-
mar exercises, none of them combines all features.
Especially the selection of suitable documents is
hardly targeted at all. Only Sakumon, which is also
listed among the document ranking systems, offers
full-fledged document filtering. Since it was de-
veloped as an assistant system, exercise generation
has, however, not yet been fully automated.

Support for preserving the authentic context
varies considerably from one system to the other.
Rule-based systems do not rely on authentic texts
at all. Examples include the Mgbeg exercise gen-
erator (Almeida et al., 2017) and GramEx (Perez-
Beltrachini et al., 2012). Among the tools using
authentic texts, a couple use only decontextualized,
single sentences. This encompasses for example
Lärka6 (Volodina et al., 2014), ArikIturri (Aldabe
et al., 2006) and FAST (Chen et al., 2006). A range
of systems integrate the exercises into the base
text, yet visual context such as markup elements
and images are removed. This is, for instance, the
case in the Tutor Assistant’s Task Generator (Toole
and Heift, 2001), MIRTO (Antoniadis et al., 2004),
the Grammar Exercise Generator (GEG) (Melero
and Font, 2001), the Language Exercise App (LEA)
(Perez and Cuadros, 2017) and COLLIE7 (Bodnar
and Lyster, 2021). Visual context is only preserved

6https://spraakbanken.gu.se/larkalabb/
7https://www.collietool.ca/

in those exercise generation tools implemented as
web plugins. Prominent examples include VIEW8

(Meurers et al., 2010; Reynolds et al., 2014) and
ClozeFox9 (Colpaert and Sevinc, 2010).

Most of the exercise generation tools provide
the generated exercises within the system and do
not offer any export functionalities. Noticeable
exceptions include KillerFiller, ArikIturri and the
LEA. The web plugins VIEW and ClozeFox are also
portable by nature.

The degree to which users can influence the ex-
ercises to be generated is generally rather low. Al-
though in most systems, users can upload their
own texts, they often have only rudimentary influ-
ence on the properties of the generated exercises.
The most highly configurable applications include
MIRTO, Sakumon, Language Muse (Madnani et al.,
2016) and the LEA. Since Sakumon is an assistant
system, instructors can and must select the target
items and distractors manually from among the
tool’s suggestions. The LEA also allows to specify
target constructions, bracket contents and distrac-
tors. MIRTO in addition lets users specify inter-
active supportive elements such as links to lookup
pages. Language Muse generates a range of differ-
ent activities for each text from which the user can
choose the one which best suits their needs. These
can be edited to allow further customization.

Our approach aims to combine the strengths of
these systems into a single application.

3 System description

We integrate the exercise generation functional-
ity into the language-aware search engine FLAIR.
While the exercise generation is fully integrated
into this application, we also considered the inter-
face supporting integration of the generated exer-
cises in the LMS serving as deployment platforms.

3.1 Implementation
FLAIR serves as base system to search the web
for documents on user-specified topics. Just like
ordinary web search engines, it supports restricting
the search space to specific sites using operators.
As illustrated in Figure 1, the system provides ad-
ditional functionalities to filter and re-rank those
documents based on the linguistic criteria selected
by the user (left part).

8http://purl.org/view
9https://wiki.mozilla.org/Education/

Projects/JetpackForLearning/Profiles/
ClozeFox
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Figure 1: Exercise configuration in FLAIR

FiB SC DD MtW M JS
Simple present • • • • •
Past tenses • • • • • •
Conditionals • • • •
Relatives • • • • •
Comparatives • • • • • •
Passive • • •

Table 2: Exercise types per topic
Fill-in-the-Blanks (FiB), Single Choice (SC), Drag and Drop
(DD), Mark-the-Words (MtW), Memory (M), and Jumbled
Sentences (JS) marked by • if offered.

Exercise generation comes into play after the
documents have been retrieved and ranked. It of-
fers the configuration panel displayed on the right
of Figure 1. Supported language means for the
exercises are based on the pedagogical goals of
German 7th grade high schools (Ministerium für
Kultus, 2016) and include Comparatives, Present
and Past tenses, Passive, Conditionals and Rela-
tive pronouns. The available exercise types depend
on the language means. Table 2 shows that while
Fill-in-the-Blanks exercises are supported for all
language means, other exercise types we generate,
such as Single Choice, Mark the Words, Drag and
Drop, Memory, and Jumbled Sentences exercises,
are not universally applicable. Users are shown
only those exercise settings that are applicable to
the selected text. These settings, on the one hand,

comprise a characterization of the exercises such
as the exercise type or the number and features of
distractors and, on the other hand, features to re-
strict the choice of seed sentences. For exercises on
Passive, the parametrizable characteristics of seed
sentences encompass the tense (past, present and
future), the aspect (simple, perfect and progressive)
and the voice (active and passive). Exercises tar-
geting Tenses support parameters for the targeted
tenses and the aspect, as well as for negated and in-
terrogative contexts. For Simple present, additional
parameters allow to exclude regular or irregular
forms. Seed sentences for Comparatives can be se-
lected to contain synthetic or analytic comparative
or superlative forms of adjectives or adverbs, or
both. Parameters for Conditionals include the con-
ditional type. For exercises on Relative pronouns,
sentences can be restricted to those containing spe-
cific relative pronouns. The parameters for seed
sentences lead to a more fine-grained subdivision
of each language means into target constructions.
Some of the parameters serve to manipulate ex-
ercise complexity by including or excluding addi-
tional language means, such as questions or nega-
tion, from the exercises. Other parameters which
are specific to the language means, such as active
and passive voice, allow to put the focus of the
exercise either on the acquisition of a specific form
or on the distinction between multiple forms.

Figure 2 illustrates that even for the same lan-
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(a) Example 1: Parameters and generated exercise for default
settings

(b) Example 2: Parameters and generated exercise for custom
configuration

Figure 2: Comparison of generated exercises for different parametrizations

guage means and exercise type, in this case Com-
paratives and Single Choice respectively, the result-
ing exercises differ although they are based on the
same document.10 In Figure 2a where the default
configuration is used, all comparative and superla-
tive adjectives and adverbs are transformed into
targets and the distractors also contain ill-formed
forms. In Figure 2b, adverbs are excluded and the

10The exercises were generated from Reuters article
https://www.reuters.com/world/europe/
poverty-education-levels-draw-battle-
lines-french-election-2022-04-12/ and
uploaded into a Moodle instance.

distractors contain only well-formed forms.

In order to generate an exercise from a document
and an exercise specification, the algorithm auto-
matically separates all of the markup elements in
the web page from the plain text. It relies on the
linguistic annotations used by the base system for
document ranking and post-processes them in order
to generate an abstract exercise definition. For most
of the possible exercise configurations, the base sys-
tem’s distinction between linguistic constructions
is not fine-grained enough to identify target items
that comply with all activated settings options to
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select seed sentences. Target items thus correspond
to elements which are assigned multiple annota-
tions by FLAIR. As the scopes of the annotations
relevant to the different parameters of an exercise
target are not always congruent, the resulting scope
of the exercise target is determined individually for
each combination of settings parameters through a
set of manually defined rules.

Apart from the target construction, the abstract
exercise definition contains elements such as task
descriptions, distractors and pre-compiled feed-
back. This feedback is obtained from the already
established feedback generation algorithm of the
FeedBook (Rudzewitz et al., 2018). The required
exercise components differ slightly from one exer-
cise type to another. While for Mark the Words and
Drag and Drop exercises, no additional content is
generated, Fill-in-the-Blanks exercises need hints
which are displayed in parentheses, such as the
lemma of the exercise item, and Single Choice ex-
ercises require distractors. For Memory tasks, the
targeted language means determines what content
has to be generated for the second card. Jumbled
Sentences do not need supplementary content, yet
they need further processing in order to determine
the parts into which sentences containing a target
construction are split. The particular characteris-
tics of additional elements and processing depend
on the settings defined by the user who may, for
instance, select any or multiple of lemma, distrac-
tor lemma, tense or other options depending on
the language means for hints in parentheses. Dis-
tractors are equally configurable, allowing users
to include well-formed but context inappropriate
options such as incorrect tenses or POS, as well as
ill-formed options. While the generation of well-
formed elements applies NLP technology including
lemmatization and Natural Language Generation
(NLG), ill-formed elements are generated based
on manually defined transformation rules. Markup
elements are also added to the exercise definition
so that the authentic context of the document can
be reconstructed.

This abstract representation is then used to gen-
erate the exercises in a portable format. Since most
of the relevant standards are rather complex (Grif-
fiths, 2020), we use the H5P11 format which inte-
grates multiple standards and offers a library of pre-
defined, open source exercise types (López et al.,
2021; Magro, 2021).

11https://h5p.org/

3.2 Usage

Figure 3: Exercise generation workflow

As outlined in Figure 3, the end user, typically
a language instructor, will interact with FLAIR on
the one hand in order to generate an exercise, and
with the LMS on the other hand in order to provide
the exercise to learners. The prototypical workflow
starts in FLAIR where the instructor performs a
web search which returns linguistically analyzed
documents. Weighting linguistic constructions to
re-rank the results is optional. After choosing a
document from the results, the instructor config-
ures one or multiple exercises. When exercise gen-
eration is triggered, a H5P exercise is generated,
including the original mark-up, exercise compo-
nents and pre-compiled feedback. The instructor
then uploads the file to the LMS where he or she
may edit the generated exercise and make it avail-
able to students as illustrated in Figure 4.12 While
working on the exercise, students will receive in-
stant, dynamic feedback based on the pre-compiled
feedback until they complete the task.

4 Evaluation

The quality of the exercise generation extension
depends on its ability to identify documents which
contain linguistic constructions that can success-
fully be transformed into exercise items. We con-
ducted a three-step, pilot evaluation in order to
determine the tool’s performance in this respect.
Due to time restrictions, the gold standard annota-
tions and evaluations results were produced only
by one of the authors.

12The exercise was generated from Reuters article https:
//www.reuters.com/lifestyle/sports/nadal-
says-family-instilled-fighting-spirit-
him-2022-03-13 and uploaded into a Moodle instance.
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Figure 4: Excerpt of a generated H5P exercise in the LMS

4.1 Methodology

4.1.1 Suitable document selection

Suitable documents need to contain the targeted
grammatical constructions relevant to the selected
language means. The tool’s performance in identi-
fying them depends mostly on the reliability of the
base system. We evaluated all supported language
means, i.e., Simple present, Past tenses, Compara-
tives, Conditionals, Relative pronouns and Passive
sentences. For each language means, we deter-
mined a binary score of whether the highest-ranked
search result for the search term education con-
tained constructions which could be transformed
into exercise items. We used an additional flag
to indicate whether this was possible with the de-
fault settings or only with the help of FLAIR’s
document ranking. When document ranking was
applied, maximum weights were set for all con-
structions associated with the currently assessed
language means.

Relevant construction identification Relevant
constructions targeted by the language means can
only be used for exercise generation if they are
correctly annotated. Since the exercise generation
extension uses a more fine-grained distinction be-
tween linguistic constructions than the base system,
the performance of construction identification de-
pends both on the base system’s ability to correctly
identify rather coarse-grained linguistic construc-
tions and on the exercise generation tool’s ability

to correctly identify exercise targets from multi-
ple, overlapping constructions. To this purpose,
we sampled up to 10 occurrences for each type of
exercise target from 100 arbitrarily selected web
pages. Identical occurrences of target constructions
were not considered and only web pages which
contained at least one construction were taken into
account. We report the precision for the identified
constructions since the quality of most of our exer-
cise types depends on the correctness of the used
constructions, whereas recall is less important as
long as sufficient exercise opportunities are found.

Target generation The target generation ratio is
defined as the ratio of the number of actual exer-
cise items in the generated exercises to the num-
ber of potential target constructions before post-
processing. Although the identified constructions
form the basis for exercise generation, some of
them may be rejected during post-processing so
that they cannot be transformed into exercise items.
A perfect ratio of 1 indicates that all potential target
constructions could be turned into an exercise tar-
get. Rejecting all constructions decreases the ratio
to 0. In this evaluation which exclusively targets
the performance of the exercise generation tool, we
built on the search results obtained in the first eval-
uation step. The generation ratio was calculated for
all supported language means-type combinations.

160



4.2 Results

4.2.1 Suitable document selection
The degree of difficulty in identifying suitable doc-
uments varied from one language means to another.
For comparatives and simple present, documents
containing the targeted constructions were plentiful
so that exercises could be generated on FLAIR’s
default settings. In order to find documents con-
taining conditional, passive or relative clause con-
structions, however, FLAIR’s construction weight-
ing needed to be applied. Setting high weights
for conditional clauses, passive voice or relative
pronouns respectively yielded high-ranked docu-
ments containing potential exercise items. Past
tense exercises were also possible on documents
identified with the standard settings, yet with little
variety in the targeted tenses. When setting high
weights for past tenses, the highest-ranked docu-
ment contained past progressive constructions in
addition to the previously included simple past and
present perfect findings. Increasing the number of
search results to 50 allowed to also target past per-
fect and present perfect progressive when setting
construction weights. Only for past perfect progres-
sive, none of the documents returned for the given
search term contained any occurrences.
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Figure 5: Precision of construction identification13

Relevant construction identification As illus-
trated by the plot in Figure 5 showing precision and
standard error of pedagogical construction identifi-
cation, the precision differs considerably between
the language means as well as for the different in-
stances of the language means. The full list of

linguistic constructions subtypes relevant for each
of these pedagogical language means is included
in the Appendix. Comparative constructions all
obtained fairly high precision values. Errors are
mostly attributed to incorrectly assigned POS tags
and thus already introduced in FLAIR’s initial an-
notation. With respect to conditionals, the per-
formance for the two types differed considerably.
While real conditionals were detected at high pre-
cision, most findings of unreal conditionals are in
fact real conditionals. Performance with active and
passive constructions was slightly lower on average.
Tenses in simple aspect were rarely mislabelled for
both active and passive voice. Constructions with
progressive aspect, on the other hand, were often
mislabelled, especially when combined with per-
fect aspect. Incorrect labels concern either aspect
or voice. Precision values are only slightly bet-
ter for active than for passive constructions. The
performance for tenses was generally rather poor.
Interrogative and negation annotations were not
always correct, especially when the sentence con-
stituted a question where the clause containing the
construction was not in interrogative form. Past
tenses in addition produced issues similar to those
encountered with passive constructions that are not
related to the active-passive distinction. The most
prominent cause for incorrect labelling which was
responsible for the overall poor performance in this
category, with only 103 out of 232 occurrences la-
belled correctly, consists in the distinction between
regular and irregular verbs. This generally resulted
from the presence of an irregular auxiliary verb in
the construction scope which incorrectly triggered
the irregular label. Since simple present construc-
tions do not distinguish between regular and irregu-
lar forms, performance for those was slightly better
with 48 out of 80 occurrences labelled correctly.
Relative pronouns performed very well for the
most common pronouns who, which and that with
28 out of 30 occurrences labelled correctly. Only
occurrences categorized as relative pronouns other
than these three pronouns were incorrect, so the
average precision is comparable to that of Passives.

Target generation Figure 6 depicts the target
generation ratios for all language means. It shows
that the results for the target generation ratio are
generally reasonably high, although they vary from
one language means to another. For past tense
and relative pronoun exercises of all types, all
predicted target constructions could be turned into
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Figure 6: Target generation ratios
For each language means, the ratios are given for the following
exercise types (left to right): Drag and Drop (DD), Fill-in-the-
Blanks (FiB), Jumbled Sentences (JS), Memory (M), Mark-
the-Words (MtW), and Single Choice (SC).

exercise targets. Comparative and simple present
also exhibited good performance; only for Memory
tasks did their resulting item number fall short of
the prediction as some construction values were
identical. Ratios for passive attained also maxi-
mum values except for Drag and Drop exercises
where the NLP analysis in some cases failed to
detect the relevant sentence parts targeted by this
exercise. For conditional clause exercises, half of
the constructions could be transformed into exer-
cise targets. The other half deviated too much from
standard tense and aspect constellations of condi-
tional clauses so that they could not be analyzed by
the NLP pipeline.

5 Conclusion

We presented a tool for automatic generation of En-
glish form-based grammar exercises from authentic
web texts. It uses a language-aware search engine
to address the challenge of identifying documents
rich in the pedagogically targeted language means.
While the integration of feedback aims at micro-
adaptivity of the exercises, the tool also supports
macro-adaptivity by allowing generation of parallel
exercises at different levels of complexity. High
parametrization of the exercise generation gives
instructors control over the characterisitics of the
generated exercises.

An evaluation of the current implementation
yielded promising results. The tool robustly gener-
ates functional exercises that comply with the user
configurations. While the evaluation considered
the performance aspects in isolation, in the future
we plan to perform an end-to-end evaluation in an
authentic education context.

Limitations of our tool arise from building on

an existing system for input enrichment before per-
forming more detailed linguistic analyses to sup-
port exercise generation. As a result, some of the
language material provided by the input enrichment
system is rejected during the exercise generation
phase. We are thus considering to enrich the initial
linguistic analysis performed in the input enrich-
ment component to the more fine-grained level that
will make it possible to use it for both the document
ranking component and the exercise generation.

Future work also will be important to determine
the effect of the parameter settings on the exercise
complexity as experienced by the learner and to
determine which parameter constellations are ap-
propriate for generating developmentally proximal
exercises for a given target population. This will
open the path for adaptive sequencing algorithms
to offer exercises optimally adapted to the learner’s
current proficiency level and cognitive capabilities.
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Appendix A: Detailed target identification results

Up to ten occurrences were randomly sampled for all target constructions. From these samples, the
numbers of correctly and incorrectly labelled instances were determined and precision was calculated.

Grammatical construction # correct # incorrect Precision

Conditional: real 9 1 0.9
Conditional: unreal 2 8 0.2
Passive: present simple 9 1 0.9
Passive: past simple 10 0 1.0
Passive: future simple 0 2 0.0
Passive: present perf. 10 0 1.0
Passive: past perf. 10 0 1.0
Passive: future perf. 1 7 0.125
Passive: present prog. 0 0
Passive: past prog. 0 0
Passive: future prog. 0 2 0.0
Passive: present perf. prog. 0 4 0.0
Passive: past perf. prog. 1 2 0.3333
Passive: future perf. prog. 0 0
Active: present simple 6 4 0.6
Active: past simple 10 0 1.0
Active: future simple 10 0 1.0
Active: present perf. 10 0 1.0
Active: past perf. 10 0 1.0
Active: future perf. 6 4 0.6
Active: present prog. 10 0 1.0
Active: past prog. 10 0 1.0
Active: future prog. 10 0 1.0
Active: present perf. prog. 7 3 0.7
Active: past perf. prog. 5 5 0.5
Active: future perf. prog. 1 1 0.5
Past simple: stmt., affirm., reg. 9 1 0.9
Past simple: stmt., affirm., irreg. 10 0 1.0
Past simple: stmt., neg., reg. 1 9 0.1
Past simple: stmt., neg., irreg. 6 4 0.6
Past simple: quest., affirm., reg. 4 6 0.4
Past simple: quest., affirm., irreg. 4 6 0.4
Past simple: quest., neg., reg. 1 0 1.0
Past simple: quest., neg., irreg. 4 6 0.4
Present perf.: stmt., affirm., reg. 9 1 0.9
Present perf.: stmt., affirm., irreg. 10 0 1.0
Present perf.: stmt., neg., reg. 9 1 0.9
Present perf.: stmt., neg., irreg. 6 4 0.6
Present perf.: quest., affirm., reg. 4 6 0.4
Present perf.: quest., affirm., irreg. 3 7 0.3
Present perf.: quest., neg., reg. 3 1 0.75
Present perf.: quest., neg., irreg. 4 3 0.5714
Past perf.: stmt., affirm., reg. 0 0
Past perf.: stmt., affirm., irreg. 4 6 0.4
Past perf.: stmt., neg., reg. 0 0
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Grammatical construction # correct # incorrect Precision

Past perf.: stmt., neg., irreg. 5 5 0.5
Past perf.: quest., affirm., reg. 0 0
Past perf.: quest., affirm., irreg. 0 9 0.0
Past perf.: quest., neg., reg. 0 0
Past perf.: quest., neg., irreg. 0 1 0.0
Past prog.: stmt., affirm., reg. 0 3 0.0
Past prog.: stmt., affirm., irreg. 3 7 0.3
Past prog.: stmt., neg., reg. 0 0
Past prog.: stmt., neg., irreg. 1 9 0.1
Past prog.: quest., affirm., reg. 0 0
Past prog.: quest., affirm., irreg. 0 10 0.0
Past prog.: quest., neg., reg. 0 0
Past prog.: quest., neg., irreg. 0 1 0.0
Present perf. prog.: stmt., affirm., reg. 0 7 0.0
Present perf. prog.: stmt., affirm., irreg. 3 7 0.3
Present perf. prog.: stmt., neg., reg. 0 1 0.0
Present perf. prog.: stmt., neg., irreg. 0 1 0.0
Present perf. prog.: quest., affirm., reg. 0 1 0.0
Present perf. prog.: quest., affirm., irreg. 0 4 0.0
Present perf. prog.: quest., neg., reg. 0 0
Present perf. prog.: quest., neg., irreg. 0 0
Past perf. prog.: stmt., neg., reg. 0 0
Past perf. prog.: stmt., neg., irreg. 0 2 0.0
Past perf. prog.: quest., affirm., reg. 0 0
Past perf. prog.: quest., affirm., irreg. 0 0
Past perf. prog.: quest., neg., reg. 0 0
Past perf. prog.: quest., neg., irreg. 0 0
Present simple: stmt., affirm., 3rd pers. 7 3 0.7
Present simple: stmt., affirm., not 3rd pers. 8 2 0.8
Present simple: stmt., neg., 3rd pers. 9 1 0.9
Present simple: stmt., neg., not 3rd pers. 8 2 0.8
Present simple: quest., affirm., 3rd pers. 3 7 0.3
Present simple: quest., affirm., not 3rd pers. 4 6 0.4
Present simple: quest., neg., 3rd pers. 5 5 0.5
Present simple: quest., neg., not 3rd pers. 4 6 0.4
Relative pronouns: who 10 0 1.0
Relative pronouns: which 9 1 0.9
Relative pronouns: that 9 1 0.9
Relative pronouns: other relative pronoun 0 10 0.0
Adjective: comparative, synthetic 10 0 1.0
Adjective: superlative, synthetic 8 2 0.8
Adjective: comparative, analytic 9 1 0.9
Adjective: superlative, analytic 10 0 1.0
Adverb: comparative, synthetic 9 1 0.9
Adverb: superlative, synthetic 5 0 1.0
Adverb: comparative, analytic 10 0 1.0
Adverb: superlative, analytic 9 1 0.9
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Abstract

We explore a novel approach to reading compli-
ance, leveraging large language models to se-
lect inline challenges that discourage skipping
during reading. This lightweight ‘testing’ is
accomplished through automatically identified
context clozes where the reader must supply a
missing word that would be hard to guess if ear-
lier material was skipped. Clozes are selected
by scoring each word by the contrast between
its likelihood with and without prior sentences
as context, preferring to leave gaps where this
contrast is high. We report results of an ini-
tial human-participant test that indicates this
method can find clozes that have this property.

1 Introduction

Ideally, college students would complete assigned
readings before class, allowing professors to lean
on that shared knowledge, extending and deepening
understanding rather than reteaching the textbook
context during the class. However, there have been
a number of studies showing that when student
work is not directly checked in some way, read-
ing compliance is low (Burchfield and Sappington,
2000; Clump et al., 2004; Connor-Greene, 2000).

An obvious approach to encouraging reading
compliance is for the professor or publisher to cre-
ate quizzes that confirm whether students have com-
pleted the associated reading. While such questions
can aid learning, thoughtfully drawing connections
between various parts of the text or encouraging
deeper thinking, they also require time to create,
complete and score and perhaps become less useful
over time as the answers begin to circulate online.

Perusall is a social learning platform designed
specifically to improve reading compliance (John-
son, 2019). The tool segments students into small
groups, who can then annotate and discuss the read-
ings online. The authors report impressive results,
increasing reading compliance to as much as 90%
in some cases. However, this method uses group

Figure 1: Gloze demonstration application, illustrating
multiple choice context clozes for reading compliance.

learning and written responses, which may not be
possible in all situations or desirable to all students.

We propose a new approach, demonstrated in a
prototype application named Gloze (from gloss +
cloze). A traditional cloze exercise requires a stu-
dent to fill in words removed randomly or at fixed
intervals from a passage. Such cloze exercises can
be used to assess language proficiency, and have
a long history in that literature (Alderson, 1979).
In Gloze, we hope to leverage the cloze concept
to increase reading compliance of long texts with-
out time spent creating or grading external assess-
ments. Shown in Figure 1, the method periodically
requires the reader to choose the correct next word,
using multiple choice with confusers to reduce the
disruption of typing during reading. A key require-
ment of this approach is selecting challenges such
that answering is easy if prior context has been read
but difficult if not.

As an example of how context impacts a cloze
exercise, consider the human-crafted sentence pair:
He caught the pass and scored another touchdown.
There was nothing he enjoyed more than a good
game of . (Federmeier and Kutas, 1999).
Note that the answer (football) is clear with the
context of the first sentence (assuming familiarity
with the sport), but that with only the partial sec-
ond sentence, the answer is ambiguous. We define
this particular cloze formulation as a context cloze,
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where presence of prior context has an outsize (per-
haps even opposite) impact relative to the imme-
diate context. LAMBADA (Paperno et al., 2016)
leverages a similar framing, though with human-
computer roles reversed, to evaluate language un-
derstanding in large language models (LLMs). A
test set is selected by having humans perform cloze
exercises with and without broader context, select-
ing clozes that are easy with context and hard with-
out.1

In this work, we focus on the issues of selecting
context clozes with one contrasting confuser and
validating that LLMs generally model the perfor-
mance of human participants in this domain. Note
that there are many more issues required for Gloze
to be useful that are not addressed here, some of
which are enumerated in the Future Work section.

All our examples and tests in this work use the
text of the 685-page, freely available, anonymous
college-level Introduction to Psychology ((Re-
moved), 2015). However, the method could in the-
ory be applied in any domain where confirmation
that a long document has been read is important
(e.g., legal agreements, safety manuals or human
resources training documents).

2 Context Cloze Selection

A correlation between LLMs and human word pre-
dictions has already been demonstrated. Goldstein
et al. (2020) conducted an experiment with human
participants, asking them to predict each next word
in a long narrative. They denoted the predictability
of a word as the percentage of respondents that cor-
rectly generated it. Comparing human predictabil-
ity scores to those from GPT-2 (Radford, 2020)
on the same task, they found a strong correlation
(r = 0.79 with a 100-word prior context). There-
fore, it seems reasonable to leverage LLMs to ap-
proximate human predictability based on various
contexts. In what follows, we use GPT-2 for our
predictions.2

To choose the best context clozes with the LLM,
we evaluate all words in the text, scoring each based
on how the predictability changes with and with-
out context. The reading application can use this
complete weighted ordering of words to select the
highest scoring cloze within some region of text.

1State of the art systems have achieved 89.7% on this
metric (Chowdhery et al., 2022).

2In particular, we use the 117M parameter OpenAI "gpt2"
model through HuggingFace (Wolf et al., 2020).

Note that this approach is not explicitly leverag-
ing part of speech, text markup for key terms or
measures of importance such as Term Frequency–
Inverse Document Frequency (though our method
may be implicitly finding similar "important" items,
it isn’t required).

After eliminating stop words, for each word in
the text (a target), we compute this score by se-
lecting the entire prior sentence and the partial
sentence consisting of the words of the target’s
sentence up to the target.3 If we define:
t0 = P (target|partial)
t1 = P (target|prior+partial)

then we prefer targets that maximize t1 − t0 (i.e.,
targets with high likelihood with context and low
likelihood without). Note that a high-scoring tar-
get does not necessarily need to be related to the
content of the chapter but simply one with the right
shift in predictability.

As we aim to present these targets as cloze exer-
cises during reading as multiple choice selections,
we also consider whether there is a candidate con-
fuser that actually has the opposite predictability
movement. As above, we define:
c0 = P (confuser|partial)
c1 = P (confuser|prior+partial)

To select a confuser to contrast with the target from
the same context, we examine the probabilities of
the top 25 words in both contexts, selecting the
confuser that maximizes c0 − c1 (i.e., the confuser
that has the largest decrease in probability when
context is included).

With these four next-word probabilities from
GPT-2, we can define a target’s score. For tar-
gets where t1 > t0 (target more likely with con-
text), c0 > t0 (confuser more likely than target
without context) and t1 > c1 (target more likely
than confuser with context), we define a score
s = (c0 − t0) + (t1 − c1) + (t1 − t0). For the
purposes of this work, all other words have s = 0.

However, we noted after initial examination of
high-scoring targets that the score did not accu-
rately capture the predictability of a student read-
ing a textbook for a class. In particular, the stu-
dent knows the subject area she is reading about,
which shapes the predictability even in a partial
context. To account for this observation, we added
the first paragraph from Wikipedia’s entry describ-
ing the field of Psychology as context in front of all
prompts (Wikipedia contributors, 2021). With this

3First sentences in each chapter were ignored.

168



Prior Partial Target

There are also individual differences in need for sleep. Some people do quite well
with fewer than 6 hours

If a sound occurs on your left side, the left ear will receive the sound slightly
sooner than the right ear, and the sound it receives will be more intense, allowing
you to quickly determine the location of the sound.

Although the distance be-
tween our two ears

When we are awake, our brain activity is characterized by the presence of very
fast beta waves. When we first begin to fall asleep

The BART is a computer task in which the participant pumps up a series of
simulated balloons by pressing on a computer key.

With each pump the bal-
loon appears bigger on the screen

When you touch a hot stove and immediately pull your hand back, or when you
fumble your cell phone and instinctively reach to catch it before it falls, reflexes
in your spinal cord order the appropriate responses before your brain even knows
what is happening.

If the central nervous

Table 1: High-scoring example sentences from the Psychology textbook.

Prior Partial Target
“Checkmate,” Rosaline
announced with glee.

She was getting to
be really good at chess

He wanted to make his
wife breakfast, but he
burned piece after piece.

I couldn’t believe
he was ruining
even the

toast

Barb loved the feel of the
waves on her feet, but she
hated to walk barefoot.

As a compromise,
she usually wore a
pair of

sandals

Table 2: CPRAG20 example sentences.

context, clozes like "The scientific ____" no longer
score well, as "method" is now likely given the
expanded prompt. As it also felt more disruptive to
have a gap early in a sentence, a small constant was
added (when s > 0) to favor clozes that occurred
after the first few words.4

This procedure produces a list of all words in
the textbook ranked by score (a few high-scoring
samples are shown in Table 1).

3 Human-Participant Comparison

The premise of the context cloze is that we can iden-
tify places in the text where the correct next word
is unlikely given only local context (the sentence so
far) but likely given the prior context (the past sen-
tence). While the probability-based scoring used
to rank context clozes guarantees this condition
is true for the LLM, and we know that in general
LLMs approximate human language models, how
can we know that this scoring method provides
a reasonable model of human responses to these
cloze exercises? In this section, we describe an
experiment we conducted to explore this question.5

4Scores were increased by 0.5 if the partial context had at
least 20 characters.

5This research was approved through Georgia Institute of
Technology IRB, Protocol Number H21222.

3.1 Test Sets
Federmeier and Kutas (1999) measured electrical
responses in the brain to understand the response to
expected vs. unexpected next words in hand-built
cloze exercises. They constructed 132 sentences
specifically designed to have a highly likely next
word response given an additional prior context sen-
tence. More recently, this same dataset has been
reused in work specifically aimed at understanding
how LLMs respond to structured prompts (Ettinger,
2020), and we follow their convention in annotat-
ing the set as "CPRAG" after "Common Sense and
Pragmatic Inference." In Table 2, several examples
are shown to illustrate the contrast between read-
ing both the prior context and partial sentence as
opposed to just seeing the partial sentence.

While the original research involved differentiat-
ing between different types of next words (specif-
ically, in/out of category), the measured human-
participant predictability scores for these hand-built
contexts can serve as a useful baseline for our own
human-participant testing. Since this prior work re-
quired participants to generate the word (not choose
it from a list), we use that method as well. In partic-
ular, we create two datasets with the same elements,
(prior, partial, target), one from CPRAG and one
from our context cloze method:

CPRAG20 We selected 20 examples to include
in our experiment where we have average human
predictability scores for both with and without con-
text (see Table 2 for examples). The purpose of
retesting this set is to validate our experimental
design by replicating a prior data point.

PSYCH50 We selected 50 high-scoring context
clozes from the introductory Psychology textbook
(see Table 1 for examples). After programmati-
cally scoring each word in the text, these examples
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Figure 2: CPRAG20 sentences, sorted by the human
predictability with context. Arrows indicate the gain in
predictability from adding the prior sentence of context.

were selected by starting with the highest scores,
skipping samples with repeated contexts, errors
in sentence/word boundaries, or content that was
judged might be offensive or disturbing given the
absence of the full context of the chapter.6

3.2 Procedure

For each of the two prompt sets (CPRAG20 and
PSYCH50), two sets (A and B) were created that
randomly distributed with- and without-context ver-
sions of each of the prompts. Participants were
randomly placed in either the A or B group of each
prompt set, and then within that set they randomly
responded to a subset of the prompts in a random
order. In this way, no participant saw more than one
form of the same prompt, everyone saw about the
same number of with- and without-context prompts
and any impacts from prompt order were mini-
mized.

For each of the 70 items in CPRAG20 and
PSYCH50, there were two conditions, with and
without context, resulting in a total of 140 possi-
ble prompts. We tested 100 participants (online
through Prolific and Qualtrics), each typing next
words for 35 of these, totaling 3500 responses or
about 25 answers per prompt across participants.

3.3 Results

For each target prompt attempted in the test, we
calculated the predictability of the expected answer
based on the percentage of respondents that typed

6Eighteen such examples were removed by researcher
judgement.

Figure 3: PSYCH50 sentences, sorted by the human
predictability with context. Arrows indicate the gain or
loss from adding a prior sentence context.

that word. We did not correct spelling, but did
remove punctuation, converted to lower case and
only used the first word typed if a participant wrote
the next several words.7

CPRAG20 Federmeier and Kutas (1999) found
that human average predictability over the entire
132 sentences with context was around 74%. As
selected a subset of 20 of these, we expected to get
roughly the same predictability over our set. In Fig-
ure 2, predictability for both conditions of the 20
sentences are shown. Sentences are sorted by their
"with context" scores, and are shown with an arrow
from the without- to the with-context results. We
found a 71.9% average predictability with context
on our CPRAG20 subset (up from 5.7% average
without), comparable to past work.

PSYCH50 As before, in Figure 3 we sort the 50
prompts by their "with context" predictability. Nine
of the prompts actually decrease in predictability
(shown with red leftward arrows) and some show
only modest increases. However, as desired, the
results do demonstrate that the method of scoring
using LLMs is selecting clozes that on average
show large increases in human predictability with
context, from an average of 19.3% up to 47.4%, a
mean absolute increase of 28.1% (with a standard
deviation of 28.0).

In both the human-constructed and computer-
selected cloze exercises, our testing method al-
lowed us to confirm that some clozes have very

73.7% of all responses included more than one word.
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low predictability (the without-context sentences
on the left of the graphs). That there is this much
variation (and separation) between possible cloze
prompts helps justify our focus on smart selection,
so as not to frustrate the reader with clozes that are
too easy or too hard.

4 Future Work

As noted earlier, the initial test presented here only
addresses one piece of what an actual system would
require to be successful. In future work, we want
to explore larger prior context windows as well as
examine fine-tuning as a replacement for the field-
description paragraph. It is also critical to char-
acterize the frequency of adequate context clozes
in textbooks relative to the frequency that would
be required to ensure a particular level of reading
attention. In addition, many aspects of confusers
need to be explored: how they impact the choice of
context clozes, how various selection strategies im-
pact compliance metrics and how to ensure LLM-
generated confusers, while not the right answer by
design, aren’t creating confusion or demonstrat-
ing bias by being presented in a particular con-
text. We removed some high-scoring clozes from
this human-participant test, for reasons that we be-
lieve would be alleviated when the system is run
in context (isolated content concerns) or through
additional improvements to text processing (tok-
enization and filtering)–however we would need to
demonstrate this is true at scale. Finally, we hope
to evaluate this approach in a few classes through
a mobile reading application that uses our scoring
method.

5 Conclusion

We described a method for selecting context clozes
to encourage reading compliance, and ran this al-
gorithm on an introductory college textbook. We
took some of the best scoring clozes and conducted
a human-participant test, which confirmed our hy-
pothesis that LLMs are a reasonable proxy for hu-
man predictability for context cloze scoring and
that these clozes on average demonstrate the de-
sired shift in predictability with and without con-
text.
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Abstract

When listening comprehension is tested as a
free-text production task, a challenge for scor-
ing the answers is the resulting wide range of
spelling variants. When judging whether a vari-
ant is acceptable or not, human raters perform
a complex holistic decision. In this paper, we
present a corpus study in which we analyze hu-
man acceptability decisions in a high stakes
test for German. We show that for human
experts, spelling variants are harder to score
consistently than other answer variants. Fur-
thermore, we examine how the decision can be
operationalized using features that could be ap-
plied by an automatic scoring system. We show
that simple measures like edit distance and pho-
netic similarity between a given answer and
the target answer can model the human accept-
ability decisions with the same inter-annotator
agreement as humans, and discuss implications
of the remaining inconsistencies.

1 Introduction

Imagine a listening comprehension task where a
student listens to two people scheduling a meeting
at the library. The student is then supposed to an-
swer the question ‘Where do they want to meet?’
and writes ‘ribary’ instead of ‘library’. Is this an-
swer acceptable or not?

The answer to this question is not an easy one.
Human experts perform a complex holistic deci-
sion in such a case, primarily based on whether
they assume that the learner understood the right
answer (see Section 2). The aim of this paper is
to get a deeper understanding on which factors in-
fluence the acceptability of a spelling variant and
ultimately how to model this decision automati-
cally. Thereby, we aim at a model that is trans-
parent and uses features which allow to explain
under which conditions the system accepts a vari-
ant and under which not. To this end, we conduct
a corpus study based on real learner answers and
human ratings in a high stakes test of German as a

foreign language and explore different operational-
izations of spelling variant acceptability. We show
that our classifier does not yet reach an adjudicated
gold standard, but the human decisions can be ap-
proximated up to the same level as human-human
agreement. Finally, we discuss possible reasons
and implications of the remaining inconsistencies.

The remainder of the paper is structured as fol-
lows: In Section 2, we give some background about
listening comprehension tasks and the role of or-
thography. In Section 3, we introduce the data set
and in Section 4, we analyze the distribution of
spelling variants and the human acceptability de-
cisions. Section 5 examines different features that
could be used to operationalize the holistic human
acceptability decisions.

2 Background

In many high stakes language tests, listening com-
prehension is tested with a free-text production task
(e.g. DALF1 for French, Goethe Certificate2 and
TestDaF3 for German, Cambridge Certificate4 for
English). This means that the test takers have to
listen to an audio prompt and formulate an answer
in their own words. This gives rise to variance in
the answers, e.g. synonyms or different syntactic or
orthographic variants (Horbach and Zesch, 2019),
which makes the automatic scoring of such answers
a challenging NLP task.

While variance at the level of wording or syntax
is a topic extensively covered both by short-answer-
scoring in general (Ziai et al., 2012) as well as com-
putational semantic similarity (Bär et al., 2012), the
implications of orthographic variance are an under-
studied topic in automatic scoring. In e.g. reading
comprehension tasks, where test takers can often
copy material from the prompt, spelling errors are

1https://www.france-education-international.fr/en/delf-dalf
2https://www.goethe.de/de/spr/kup/prf/prf.html
3https://www.testdaf.de/
4https://www.cambridgeenglish.org/exams-and-tests/
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usually ignored (Horbach et al., 2017). In listening
comprehension tasks, however, the assessment of
orthographic variants (e.g. ribary or librarie for
library), plays a much more central role, as we will
briefly outline.

Receptive skills like listening comprehension
can only be measured indirectly, i.e. by inferring
comprehension from the performance in a derived
task (Buck, 2001, p. 99), e.g. multiple-choice or
true/false questions or free-text production tasks.
All these tasks require skills that go beyond pure
listening comprehension (Rost and Candlin, 2014,
p. 183ff), e.g. reading comprehension for answer-
ing multiple-choice items and writing skills for
free-text answers. Test designers have to carefully
decide whether such a skill is considered to be rele-
vant for the construct to be tested or not. In the con-
text of academic listening, for example, note-taking
is an important skill and therefore considered to be
construct-relevant (Kecker, 2015). Orthography, in
contrast, is considered a construct-irrelevant skill
for the task and should thus be ignored for scor-
ing. This means that if the test-taker had the right
answer in mind without being able to express it in
an orthographically correct way, the answer should
be marked as correct (see e.g. Harding and Ryan
(2009), Harding et al. (2011)). The crucial diffi-
culty hereby is that the spelling of the word inter-
feres with the assessment whether the test-taker
had the right answer in mind. If the test-taker, for
example, just produces some vague encoding of
the relevant phonetic string, this likewise leads to a
spelling variant of the correct answer but it should
be marked as incorrect.

Hence, the acceptability of a spelling variant is
based on a complex holistic decision that an auto-
matic scoring system is not straightforwardly able
to make in the same way. Nevertheless, an opera-
tionalization has to be found which leads to ratings
that match the human ratings as closely as possible.
Furthermore, in a high stakes test it is crucial that
the decisions of the automatic scoring system are
transparent and understandable to human experts.

3 Data Set

In this paper, we experiment with data from the
digital TestDaF. It is a high stakes test designed for
students planning to apply for studying at a German
university. It assesses test-takers’ language abilities
at the TestDaF levels 3, 4 or 5, corresponding to
the CEFR levels B2 to C1.

FULL SPELL

# prompts 17 17
# answers 3,777 310
# answer types 1,572 248
avg. # answ./prompt 222 ± 78 18 ± 15
avg. # types/prompt 92 ± 32 15 ± 9
avg. length (words) 1.6 ± 0.7 1.8 ± 0.7
avg. length (chars) 13.2 ± 6.1 16.3 ± 5.0

accepted answers 53.3 % 54.8 %
accepted answ. types 25.6 % 48.4 %

Table 1: Description of the full data sample (FULL)
and the subsample consisting of spelling variants only
(SPELL).

The listening comprehension section consists
of seven different task types, including selected-
response item formats like multiple-choice ques-
tions, as well as three constructed response tasks
where test-takers are asked to write short answers,
between single words and a few sentences in length.
In this paper, we concentrate on the task that elicits
very short answers of a maximum of five words per
prompt. This task is particularly suitable to study
the role of spelling variants because other sources
of variation are limited compared to longer textual
answers.

In this task, test-takers listen to a pre-recorded
conversation between two or three native speakers
in a situation typical for everyday student life, e.g.
a conversation between a student and a professor.
Test-takers are presented a table, form or chart re-
lated to the content of the listening text with five
blanks that are to be filled while listening to the
input text. See Figure 1 for an example. While test-
takers can type in a maximum of five words per
blank, all blanks can be answered correctly with
one or two words.

For the analyses in this paper, we extracted all
answers from 17 different prompts where each
prompt corresponds to one blank in the task de-
scribed above. Table 1, column FULL, shows some
basic statistics of the extracted data.5 Each an-
swer had manually been rated by human experts
for whether it was acceptable or not.

4 Human Ratings of Spelling Variants

In the following, we will focus on spelling variants
in the data set.

5The data set cannot be made publicly available and not all
target answers can be revealed in this paper. Some prompts are
public, though, and the German examples used in this paper
are all real answers to those prompts.
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Figure 1: Example of a listening comprehension task in the digital TestDaF that elicits short free-text answers.
Target answers are given in blue. We see a timetable for a job fair with the days as columns and morning and
afternoon activities (Was?) and the corresponding locations (Wo?) as rows. The upper left gap, e.g., prompts the
test-taker to complete the entry Presentation about the topic “a career in ” with the target answer being public
service.

4.1 Distribution of Spelling Variants

Two annotators labeled all answer types with a cat-
egory that describes in which way the answer devi-
ates from the target answer. For a subset of about
500 answer types, we compute the agreement of
our two raters on the binary decision whether the
answer is a spelling variant or some other variant.
Other variants include for example grammatical
deviations (e.g. singular/plural), synonyms (Speich-
erstick ‘memory stick’ for USB-Stick), or answers
that are incomplete (Raum for Raum 5), unintelligi-
ble (OS) or referring to something different (Kaffee
‘coffee’ for Workshops). Inter-annotator agreement
is Cohen’s =.78, which shows that even for hu-
mans, distinguishing spelling variants from other
variants, especially grammatical variants, is not
trivial.

The two annotators then discussed those cases
where they disagreed and decided on a final gold
label. For the analyses in this paper, we extracted
all answers gold-labeled as spelling variants, in-
cluding real-word errors. Note that answers which
differ from the target answer only with regard to
capitalization, hyphenation or splitting a compound
in two parts are not part of this set because they are
always acceptable.

Table 1, column SPELL, shows some statistics of
the spelling variant sample. In total, about 16%

of the different answer variants are attributable
to spelling, showing that they account for a non-
negligible amount of variance in the data.

The distribution of spelling errors follows a Zipf
distribution, i.e. most of the spelling variants in
our data set occur only once while a few can be
found several times. In other words, different test-
takers make different kinds of errors, hence it is not
possible to foresee all cases beforehand and include
them in the rating guidelines or to hard-code them
in an automatic scoring system.

The left panel of Figure 2 shows the number of
different spelling variants per prompt. One can
see that some prompts seem to be more prone to
spelling errors than others, with some prompts trig-
gering more than 30 different variants and others
only triggering two. We found that there are more
spelling variants in prompts with longer target an-
swers than with shorter ones (Pearson correlation
r =.58). As one can see in the right panel of Fig-
ure 2, the acceptance rate of spelling errors accord-
ing to the human gold standard varies quite a lot.
While for some prompts, most of the variants are
accepted, for others, most are rejected. In total,
48% of the spelling variant types are accepted.
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Figure 2: Occurrence (left panel) and acceptance rate (right panel) of spelling variant types per prompt.

4.2 Manual Acceptability Decisions

Test-takers’ responses were rated by human ex-
perts in a dichotomous format as either accepted
or rejected. Inconsistencies were adjudicated by an
additional annotator. Some examples are shown in
Table 2. Human raters also need clear criteria to en-
sure that they mark according to the same standard
(Weir, 1993). To achieve this, they were provided
with rating guidelines, rater training sessions and
standardization meetings.

The rating guidelines consist of general parts, for
example that common abbreviations are accepted
in an answer, and item-specific parts that contain
samples of correct and incorrect answers as well as
what is in general expected of a correct response
for this item. For example, the guidelines for the
target answer USB-Stick include the following:

• USB Stik is an accepted spelling variant but
USB Tick and USP Stick are not

• Speicherstik (memory stick) is an accepted
synonym with an accepted spelling error (stik
instead of stick)

• USB Gerät (USB device) is not accepted be-
cause it is too general

• USB alone similarly does not contain enough
information

We compute the inter-annotator agreement of the
human experts for the acceptability decision on the
same subset as for the annotation if something is a
spelling variant. We observe that spelling variants
are substantially harder for humans to judge than
other answer variants, with a  value of .60 for
spelling variants as opposed to .83 for all other
items (see Table 3). Such scoring inconsistencies

Answer Accept

Text Entworf yes
Textentwürf yes

Testentworf no
textentw no
text entworft no
textintforf no
Text Einwurf no

Table 2: Examples of spelling variants and acceptability
decisions for the target word Textentwurf (‘text draft’).

 % agreement

all answers .80 .93
spelling variants .60 .83
other variants .83 .94

Table 3: Inter-annotator agreement (Cohen’s Kappa) for
rating answer variants as acceptable or not.

by human raters despite regular training, annotation
guidelines and thorough pre-testing are in line with
Buck (2001).

5 Operationalizing Acceptability
Decisions

In the following, we will analyze criteria for the ac-
ceptability ratings of spelling variants which could
be used by an automatic system. We base our anal-
yses on the set of different spelling variant types.
Thereby, we always use the adjudicated labels as
the gold standard.

5.1 Surface Distance to Target

The manual scoring guidelines do not prescribe
how many errors per word are allowed in order for
the answer to count as correct. However, in our
sample we can see that the Levenshtein distance
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Dist. SURFACE STANDARDIZED PHONEMES

# % acc # % acc # % acc

0 - - 1 1.00 20 .85
1 63 .70 147 .66 63 .59
2 72 .60 58 .29 66 .61
3 49 .47 22 .14 36 .31
4 32 .16 13 .15 33 .30
5 17 .24 2 .00 11 .27

� 6 15 .07 5 .00 19 .11

Table 4: Frequency and acceptance rate (% acc) of the
human raters for all spelling variants with a particular
Levenshtein distance (Dist.). The Levenshtein distance
is measured on the character level (SURFACE), standard-
ized character level (STANDARDIZED, i.e. ignoring capi-
talization, hyphens and whitespace) and on the phoneme
level (PHONEMES).

between a given answer and the target answer is cor-
related with the acceptability of the answer. This
is detailed in Table 4, column SURFACE. However,
despite a trend that words with higher Levenshtein
distances are less likely to be accepted, we do not
see a threshold above which all answers are rejected
or below which all are accepted.

Most frequently, we find a Levenshtein distance
of 2 between the given and the target answer. Re-
call that answers which differ from the target an-
swer only with regard to letter case, hyphenation or
splitting a compound in two parts are not included
in our spelling variant data set because these devia-
tions by themselves are always acceptable. How-
ever, an inspection of the included spelling variants
showed that many answers mix capitalization or
word-splitting errors with other error types like let-
ter substitutions, e.g. text entworft for Textentwurf.
The Levenshtein distance currently does not take
into account that e.g. a capitalization error itself
is not as problematic as a different letter substi-
tution. This may blur the actual influence of the
Levenshtein distance. Therefore, we standardize
the given answers and the target answers by lower-
casing, removing hyphens and whitespace and then
re-compute the Levenshtein distance.

We can see that a clear majority of standardized
answers only has a Levenshtein distance of 1 to
the target answer (see Table 4, column STANDARD-
IZED). Furthermore, there is a clearer trend that the
majority of answers with a distance of 1 is accepted
while most answers with a higher distance are re-
jected. Still, an automatic classifier that accepts
all answers with a Levenshtein distance  1 and
rejects all other answers would have an accuracy of

only 71%. This is clearly above the majority-class
baseline of 52% (achieved if all spelling variants
are classified as rejected) but far from a sufficiently
high accuracy for being used in practice.

5.2 Influence of Keyboard

There are spelling deviations which are intuitively
recognized as typos, e.g. Öffentlivchendienst for
öffentlichen Dienst. A typo implies that the test-
taker actually knew the word so that it should
be marked as correct. As a proxy for whether a
spelling variant is actually a typo, we can look
whether the substitution or insertion of an erro-
neous character pertains to a key adjacent to the
target key.

Hence, our operationalization of what counts
as a typo is as follows: if a standardized answer
contains exactly one substitution or one insertion
of a character which is adjacent to the target key
on a keyboard with QWERTZ, QWERTY, or AZ-
ERTY layout, we consider this answer as ‘probably
only containing a typo’. Using this method, we
identified 18 unique typos in the analyzed sam-
ple. In 13 of these answers, there are additional
deviations in terms of capitalization or the use of
whitespace. The human experts scored (only) 12
of the 18 answers as correct, which shows that a
spelling variant that is likely a typo is not automat-
ically accepted. The human experts reported that
since they cannot know on which type of keyboard
a test-taker wrote the answer, they do not explicitly
treat (potential) typos differently from other types
of errors.

5.3 Phonetic Similarity

In German orthography, most sounds can be repre-
sented in more than one way, using different charac-
ters or character combinations. For example, a long
[a:] can be spelled as <a> (Tal ‘valley’), <ah>
(Zahl ‘number’) or <aa> (Saal ‘hall’). This means
that there can be answers which differ from the
target answer in terms of spelling but which are
nevertheless pronounced in the same or a very sim-
ilar way. As with the similarity on the surface level,
we can determine the similarity on the pronuncia-
tion level by computing the Levenshtein distance
between a given answer and the target answer on
the phoneme level. We obtained the phoneme rep-
resentation of each answer from the web service
G2P of the Bavarian Archive of Speech Signals
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Answer Target Answer Accept

Wokshops wok shops Workshops workshops yes
Vortag previous day Vortrag presentation yes

öffentlichendings public thingy öffentlichen Dienst public service no
litersuchen liter search Literatursuche literature search no
Testentworf test draft Textentwurf text draft no
Text Einwurf text insertion Textentwurf text draft no
Eigenentestverwurf own test rejection eigenen Textentwurf own text draft no

Table 5: Examples of real-word spelling variants. Those parts of the word that correspond to another existing word
are printed in bold.

(BAS) (Reichel, 2012; Reichel and Kisler, 2014).6

As one can see from the column PHONEMES in
Table 4, most answers with the same pronunciation
as the target answer are accepted (85%), but not
all. On the other hand, most answers with quite a
different pronunciation are rejected, but again there
are exceptions. This shows that phonetic similarity
alone is not a decisive factor either.

5.4 Similarity to Other Words

In our data sample, we manually identified a total
of 34 spelling variants that resulted in other existing
words (real-word errors). Most of them occurred
only once, resulting in 27 unique variants. Hence,
11% of all spelling variant types are real-word er-
rors. Not all prompts trigger real-word errors to
the same degree. For 8 out of the 17 prompts, no
real-word error could be found while one of the
prompts triggered eight different real-word error
types.

Most of the real-word errors are rejected by the
human raters – but not all of them: 3 out of the 27
real-word error types were accepted. What is note-
worthy is that all of the accepted real-word errors
have a Levenshtein distance (on the character level)
to the target word of 1. In contrast, the rejected
real-word errors have a mean Levenshtein distance
of 3.6. Hence, a factor influencing the acceptability
of the real-word error seems to be the surface simi-
larity. However, among the rejected answers, there
are also four real-word errors with a Levenshtein
distance of 1 to the target answer, which shows
that there are more complex mechanisms at work.
Human experts reported that one factor influenc-
ing their decision is whether the meaning of the
real-word error would be somewhat plausible yet

6https://clarin.phonetik.uni-muenchen.de/BASWebServices/
interface/Grapheme2Phoneme

still incorrect in the context of the given task, and
therefore would be confusing in a real-life setting.
In contrast, if an answer is far-fetched or consists
of a word that is very infrequent, human raters
would assume that the error was indeed only an
orthographic error and the learner actually meant
to write the correct word.

To illustrate this, Table 5 shows some exam-
ple answers and their acceptability. Most target
answers are compound words and the real-word
spelling errors mostly only pertain to one part of
the word. As a consequence, the error results in
a grammatically well-formed answer but often in
a non-lexicalized word. In some cases, the mean-
ing of the new compound is far off the meaning
of the target answer, e.g. Workshop and Wokshop
(in English, the corresponding words are workshop
and wok shop, i.e. the compound that is a result of
the spelling error would have to be written as two
words, which is not the case in German). In other
cases, the meanings are somewhat close and could
lead to a misunderstanding in real communication,
e.g. Textentwurf (‘text draft’) and Testentworf (‘test
draft’). It remains to be seen with a larger sample
of accepted real-word errors how well this can be
operationalized by an automatic scoring system.

5.5 Combination of Features

While all of the criteria presented above play a role
for the acceptability decision, we could see that
none of these factors alone suffices to differenti-
ate between accepted and rejected answers. In the
next step, we examine whether a combination of
the features can be used to approximate the human
acceptability decisions. We aim for a model that
yields interpretable results so that one can iden-
tify under which conditions a spelling variant is
accepted or rejected.
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std_levenshtein >= 2

realw = 1

phon_levenshtein >= 4

reject
128 / 248

reject
78 / 100

accept
98 / 148

reject
9 / 12

accept
95 / 136

reject
7 / 12

accept
90 / 124

yes no

Figure 3: Simple decision tree (pruned) for the acceptability decision.

In order to do so, we train different decision
trees on the whole set of spelling error types and
the adjudicated gold labels using the R package
rpart (Therneau and Atkinson, 2019). We then
apply the trees to a test set of 127 spelling variant
types from 5 new prompts, i.e. a new set of learner
and target answers. We use classification accuracy
as evaluation metric.

In addition, we apply the trees to the training
data set itself in order to get an estimate how con-
sistently the data can be modeled, i.e. whether the
features suffice to tell accepted and rejected an-
swers apart or whether there are answers with the
same combination of features but different human
judgments. The results are shown in Table 6.

Baselines If all instances are classified as re-
jected, this majority-class baseline reaches an ac-
curacy of 52% on the training set. In the test set,
the classes are evenly distributed, i.e. the baseline
is 50%. Using character edit-distance alone as
classification criterion, as discussed in Section 5.1,
the accuracy rises to 71% on the training set and
73% on the test set.

Simple Trees First, we build a decision tree with
default configuration using the features and their
operationalizations that were described in the pre-
vious sections:

• edit distance on the character level between
standardized given answer and standardized
target answer, i.e. ignoring letter case, hy-

phens and whitespace (std levenshtein, nu-
meric)

• edit distance on the phoneme level (phon -

levenshtein, numeric)

• whether the word is a real-word error (realw,
binary)

• whether the word probably only contains a
typo (probably typo, binary)

This tree is grown with default parameters,
which in particular means that it is automatically
pruned, i.e. not grown to full depth. For a pre-
dictive model, this is necessary in order to prevent
overfitting on the training data. The resulting tree
is shown in Figure 3. In prose, the tree accepts a
spelling variant if the edit distance on the character
level is < 2, it is not a real-word error and the edit
distance on the phoneme level is < 4. The nodes
show how many data points fall into the respec-
tive class and how many of them are categorized
correctly when applied to the training data. In to-
tal, the tree reaches an accuracy of 74.2% on the
training set and 70.9% on the independent test set.
For the test set, this is worse than using character
edit-distance alone.

In order to find out whether the features do actu-
ally suffice in order to model the data that the tree
was trained on, we next grow the tree to full depth.
The resulting tree has a depth of 8 (compared to
the depth of 3 in Figure 3) but still only reaches an
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accuracy of 76.2% on the training data. This means
that there are answers with the same feature set but
different acceptability decisions (see discussion in
Section 5.6). As one would expect due to overfit-
ting, the full-depth tree performs worse on the test
set than the pruned tree.

Advanced Trees One potential limitation of the
current feature set is that our version of edit dis-
tance is not sensitive to word length. Therefore, we
normalize the character edit distance by the num-
ber of characters in the target word and also allow
for transpositions of characters to count as one edit
(norm std damerau lev). The other three features
remain the same. The default pruned tree based
on this adapted feature set has a depth of 5 and
an accuracy of 75.4% on the training set, which is
very similar to the result of the simple tree. See
Figure 4 for an illustration of the advanced tree.

However, on the test set, the tree produces much
better results than the simple tree with an accuracy
of 84.3%. That the result for this tree on the test
set is even better than that on the training set indi-
cates that the tree’s rules for accepting an answer
are indeed transferable to new data sets. In fact,
some of the rules even fit the test data better than
the training data. For example, 45.6% of the train-
ing data and 46.5% of the test data fall into the
rightmost leaf node in Figure 4. The answers that
fall into this node are predicted to be accepted. In
the training data, this decision is correct in 73% of
the cases, whereas in the test data, the decision is
correct even for 85%.

If we grow the advanced tree to full depth (=
depth of 14), the overall accuracy on the training
set rises notably, but only to 85.1%. Hence, it
still does not reach the adjudicated gold standard
but the result is comparable to the human-human
agreement of 83%. As we will discuss shortly, the
fact that we do not reach 100% accuracy even with
this full-grown tree shows that more or different
features are needed to tell accepted and rejected
answers apart. Since this tree overfits the data, its
performance on the test set is much worse than
that of the pruned tree, hence it is not suitable for
predicting new data points.

5.6 Discussion

We observe that our features do not suffice to per-
fectly model the acceptability decisions of human
raters according to an adjudicated gold standard.
There are conflicting cases which cannot be re-

ACCURACY
Method Training Test

majority baseline .52 .50
char. edit distance .71 .73

simple pruned tree .74 .71
simple full tree .76 .69
advanced pruned tree .75 .84
advanced full tree .85 .72

human agreement .83 -

Table 6: Overview of classification results.

Answer Human Accept

Öffenlichtendienst yes
offentlischen Dienst yes
kreatives schrıeben yes
höffentliche Dienst no
oofentlichen DIENST no
offentlichene Dienst no
krätives schreiben no

Table 7: Examples of answers (target answers =
öffentlichen Dienst, kreatives Schreiben) that all fall
within the same node of the advanced full tree but are
rated differently by human raters.

solved on the basis of the features we currently
examine. Some examples are given in Table 7.

Differences between the accepted and not-
accepted cases are subtle and human experts often
argue in terms of whether an answer looked “too
far off” without being able to specify a general
rule supporting their decision. Additional features
might be able to distinguish between those cases.
However, it may also mean that the human ratings
are not fully consistent, which is in line with our
observed inter-annotator agreement. In fact, the
accuracy of the overfitted tree (85%) is very similar
to the human-human agreement on the same data
(83%), which we discussed in Section 4.2, hence,
we may not expect a system to ever go significantly
beyond this value. Therefore, basing the accept-
ability decision on objectively measurable features
instead of individual holistic decisions of human
raters could be a way to arrive at more consistent
and more explainable results especially in a high
stakes test.

6 Conclusion and Future Work

We presented an analysis of the rating of spelling
variants in a listening comprehension task from
the TestDaF test. We found that spelling variants
are more challenging to score for human experts
than other types of variants. Furthermore, we ex-
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norm_std_damerau_lev >= 0.093

phon_levenshtein >= 3

phon_levenshtein >= 1

norm_std_damerau_lev < 0.11

norm_std_damerau_lev >= 0.13

realw = 1

reject
128 / 248

reject
91 / 128

reject
60 / 69

reject
31 / 59

reject
29 / 52

reject
12 / 18

reject
17 / 34

reject
7 / 11

accept
13 / 23

accept
5 / 7

accept
83 / 120

reject
7 / 7

accept
83 / 113

yes no

Figure 4: Advanced decision tree (pruned) for the acceptability decision.

plored how the acceptability decision can be opera-
tionalized with automatically extractable features
such as edit distance and phonetic similarity as
a first step towards an automatic scoring system
for spelling variants. Their combination in a deci-
sion tree reaches a performance similar to human-
human agreement, but not exceeding it. This can
mean either that human decisions are not fully con-
sistent or that further features are needed to differ-
entiate between cases that currently end up in the
same leaf node of the tree.

Options for such additional features include spe-
cific error categories as opposed to generic distance-
based measures, such as the spelling error cate-
gories defined in the Litkey Corpus (Laarmann-
Quante et al., 2019). These error categories can
be divided into ‘systematic’ ones (like omitting an
<e> that corresponds to an (almost) non-audible
[@]) and ‘non-systematic’ ones (such as omitting a
full vowel). First explorations indicate that ‘system-
atic’ errors more likely lead to acceptable spelling
variants than ‘non-systematic’ ones. As another
option to obtain more consistent annotations, we
plan to explore annotation studies where human
raters have access to the automatically extracted
features and/or the scoring suggestion learnt by the
classifier as a basis for their scoring decision.
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Abstract

Mapuzugun is the language of the Mapuche
people. Due to political and historical reasons,
its number of speakers has decreased and the
language has been excluded from the educa-
tional system in Chile and Argentina. For this
reason, it is very important to support the revi-
talization of the Mapuzugun in all spaces and
media of society. In this work we present a
tool towards supporting educational activities
of Mapuzugun, tailored to the characteristics of
the language. The tool consists of three parts:
design and development of an orthography de-
tector and converter; a morphological analyzer;
and an informal translator. We also present a
case study with Mapuzugun students showing
promising results.

Short abstract in Mapuzugun: Tüfachi
küzaw pegelfi kiñe zugun küzawpeyüm kellu-
aetew pu mapuzugun chillkatufe kimal kizu
tañi zugun.

1 Introduction

Recent years have seen unprecedented progress for
Natural Language Processing (NLP) on almost ev-
ery NLP subtask. Along with research progress,
several tools have been developed and are currently
aiding millions of users every day. However, most
of this progress is limited on a handful of lan-
guages (Joshi et al., 2020). For example, learn-
ers of English can nowadays avail themselves to
tools like Grammarly; English speakers can use
Duolingo to start learning 38 languages, including
Hawaiian, Navajo, as well as High Valyrian and
Klingon.1 The only option a Mapuzugun speaker
would have in practice, though, would be to use
language technologies in a language other than her
own (likely Spanish).

Despite Duolingo’s commendable inclusion of
Hawaiian and Navajo for English speakers, and of

1As of March 2022.

Guaraní for Spanish speakers,2 learning resources
for Indigenous languages are hard to come by, let
alone ones that incorporate language technologies
in the educational setting in order to aid learners. In
particular, it is undeniable that the development of
NLP tools that reach the users lags further behind
that NLP research itself (Blasi et al., 2021).

In this work, we develop a tool for educational
use in an Indigenous language of south America,
Mapuzugun. This tool was created by a speaker and
instructor of the language and as such is tailored
specifically to the instructional needs and linguistic
characteristics of Mapuzugun.

Importantly, this work shows how linguistic re-
search (grammars), minimal community resources
(dictionaries), and NLP research (e.g. FST-based
morphological analyzers) can be transformed into
tools useful to Indigenous communities, in particu-
lar for efforts towards preservation and revitaliza-
tion of endangered languages. Our tool is publicly
available through an online interface (in Mapuzu-
gun and Spanish) at crahumadao.pythonanywhere.
com.3

2 The Mapuzugun Language

Mapuzugun (iso 639-3: arn) is an indigenous lan-
guage of the Americas spoken natively in Chile and
Argentina, with an estimated 100 to 200 thousand
speakers in Chile and 27 to 60 thousand speakers in
Argentina (Zúñiga, 2006, 41–3). It is an isolate lan-
guage and is classified as threatened by Ethnologue,
hence the critical importance of all documentary
efforts. Although the morphology of nouns is rel-
atively simple, Mapudungun verb morphology is
highly agglutinative and complex. Some analyses
provide as many as 36 verb suffix slots (Smeets,
1989). A typical complex verb form may consist of
five or six morphemes. See example in Table 1.

2Which are due to immense efforts by the Indigenous
communities themselves.

3Username: epu and Password: meli
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Word Kim mapuzuguyekümelleaiñ
Segmentation Kim mapu-zugu-yekü-me-lle-a-iñ
English Transl. We are indeed going to learn the Ma-

puche language.

Table 1: Segmentation of a Mapuzugun verb phrase.

Mapudungun has several interesting grammat-
ical properties. It is a polysynthetic language in
the sense of Baker (1996); see (Loncon Antileo,
2011) for explicit argumentation. As with other
polysynthetic languages, Mapudungun has Noun
Incorporation; however, it is unique insofar as the
Noun appears to the right of the Verb, instead of to
the left, as in most polysynthetic languages (Baker
et al., 2005). One further distinction of Mapudun-
gun is that, whereas other polysynthetic languages
are characterized by a lack of infinitives, Mapudun-
gun has infinitival verb forms; that is, while sub-
ordinate clauses in Mapudungun closely resemble
possessed nominals and may occur with an analytic
marker resembling possessor agreement, there is
no agreement inflection on the verb itself. One
further remarkable property of Mapudungun is its
inverse voice system of agreement, whereby the
highest agreement is with the argument highest in
an animacy hierarchy regardless of thematic role
(Arnold, 1996).

Beyond morphology and other interesting typo-
logical properties, an additional challenge in the
computational processing of Mapuzugun is the lack
of a single standardized orthography. In particu-
lar, the community uses three different alphabets,
namely the “Unificado", “Ragileo", and “Azüm-
chefe" alphabets.4

3 System Overview

The system is comprised of the following compo-
nents, with the pipeline shown in Figure 1:

1. the orthography detector, which detects which
of the three alphabets is used in the input;

2. the orthography transliterator, which can con-
vert between orthographies if conversion is
needed;

3. the morphological analyzer, which produces
the possible segmentations of a word or
phrase;

4. the mapping of the analyzed morphemes to
user-friendly notation/phrases; and

5. the final presentation of the output.

4See Figure 5 in Appendix A.

The user can use these tools through an interface
available both in Mapuzugun and in Spanish. A
screenshot of the landing page of the interface is
shown in Figure 2.

4 Orthography Detection and
Transliteration

The differences between the three orthographies
are showcased in Figure 3. where “Jampvzken” is
written in Ragileo, “Llampüdken” in Unificado and
“Llampüzken” in Azümchefe, all three referring
to the same Mapudungun phonetics of the English
word “butterfly”. This example shows the relation-
ship between the ‘J’ in Ragileo with the ‘Ll’ in
Azümchefe and Unificado.

We identified and constructed the conversion ta-
bles between these orthographies. In total, for the
Unified-Ragileo relationship, there are 10 differ-
ences that are shown in the Table 4, in the follow-
ing case Unified-Azümchefe there are 8 differences
(Table 5) and for the Ragileo-Azümchefe relation-
ship there are 8 differences, outlined in Table 6.

Utilizing these conversion tables makes it
straightforward to detect the orthography of any
given input, by following a process of round-trip
translation. For example, if we assume the input
is in Ragileo, then if we convert to Azümchefe (or
Unificado) and back to Ragileo and the final output
is the same as the original input, then the input is
declared to be Ragileo. If any of the intermediate
translations fail it would have been exactly because
our initial assumption of the input being in Ragileo
was false. If no changes happen in the translation
process, then all orthographies represent the input
in a similar manner.

Orthography Converter Given the differences
between the orthographies, special care must be
taken in graphemes that have another grapheme as
a substring. An example of this is the Unificado
grapheme Ng, which also contains the grapheme
G, which in turn is used in the same writing sys-
tem for another phoneme. Or, cases in which three
graphemes contain the same letter, such as the let-
ter "L" in L, Lh, and LL. The only orthography that
does not have this internal problem is Ragileo, be-
cause it uses unique letters for each Mapuzugun
phoneme. This makes conversion from Ragileo
to other orthographies straighforward, always tak-
ing care of the order of the transformations whose
output can generate morpheme ambiguities during
conversion.
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Input
Orthography Morphological Morpheme

Analysis
Detector Analysis Translation

Figure 1: Pipeline of the full system.

Figure 2: Screenshot of the user interface.

Figure 3: Conversions between orthographies for the
Mapuzugun word for ‘butterfly’. Top: Ragileo; bottom
left: Azümchefe; bottom right: Unificado.

The order that must be taken into account be-
cause if a morpheme is contained by another, it
must first be disambiguated and then continue with
other changes. In the case of Ng and g, to go from
Unificado to Ragileo or Azümchefe, as long as
there is a g and there is no N preceding it, it can be
changed to Q, therefore before making the transfor-
mations the Ng must be checked, saving the result
G) in an auxiliary variable to be able to convert later
all Gs of the Unificado to Q. Once this last step is
done, the auxiliary variable is removed and the G

resulting from the change is put back.

5 Morphological Analyzer

The morphological analyzer is responsible for pro-
ducing the possible segmentations: separating
words into a composition of morphemes.

5.1 Design

The analyzer is implemented through series of
regular expressions, based on established gram-
mars of Mapuzugun (Smeets, 1989; Cañumil, 2011;
Chiguailaf, 1972). As another source, the compila-
tion that was made in azümchefe.cl of the gram-
mar of the language (Chiguailaf, 1972) was taken.

We worked with hand-crafted sets of regular ex-
pressions that contain the morphemes of the lan-
guage. These sets separate, by function: in verb
root, noun/adverb/adjective, suffixes, and endings.
In addition, the position plays an important role,
because each of the morphemes has a particular
slot (Smeets, 1989).

From these regular expressions, the chain of a
word is traversed and possible derivations tree is
generated. Only branches evaluated to be valid are
passed on to the next “informal translator” step.
The morphemes and their order must meet certain
restrictions that have to do with the correct formu-
lation of words in Mapuzugun, both in order, as
mentioned before, but also in the compatibility of
two morphemes being in the same word.

This module assumes input in the Ragileo or-
thography, therefore any word from another orthog-
raphy must necessarily pass through the orthogra-
phy converter. This decision has to do with Rag-
ileo’s advantage of 1-to-1 phoneme-to-grapheme
mappings, making it easier to model morphemes.

5.2 Informal Analysis Translator

Once the segmentation is done, we implemented a
module crucial for deploying the tool in educational
revitalization settings: the “informal analysis trans-
lator”. It assigns to each individual morphemes
(or to combinations of them according to commu-
nicative role) a definition in plain Spanish. The
rationale was to simplify the definition as much as
possible leaving out technical linguistic features
and jargon. For the case of substantives, verbs
and adjectives, the definition was taken from the
Mapuzugun-Spanish dictionary (Pérez, 2015).

As an example, we show the case of the word
txekayawkelai. One of the possible segmentations
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Figure 4: Segmentation of the word "pemurpayafuyu" as presented by the tool.

is txeka-yaw-ke-la-i, with each component of the
word being:

txekan- : vi & vtr caminar, marchar, pasear
|| vtr medir con pasos
to walk, to take a walk

-yaw- : andar to go
-ke- : habitualmente usually
-la- : negación a modo "normal"

indicativo
negation

-i : el / ella he/she
Given this,5 the goal is that the learner deduces
"el/ella no anda caminando habitualmente" “he/she
does not usually go for walks".

The challenges of this informal analyzer are
many. Among them: how to give enough meaning-
ful translations so that they can match the initial
experience of learners, but as well, do not confuse
them; how to deal with compositional morphemes
(i.e. morphemes that have a different meaning
when co-occurring than when occurring separately,
for example transitions from second to first person);
and how to include context to help the translation.
We resolved these issues by relying on the expertise
of an instructor of Mapuzugun.6

6 Usability Studies with Learners

The system (software) was tested on several groups
of initial learners of Mapuzugun.

5"vi" and "vtr" correspond respectively to intransitive and
transitive verb.

6One of the authors is a speaker and instructor of Mapuzu-
gun.

Study Design The first phase of the study de-
sign was to get access to study participants. As
in the case of most endangered languages, it was
difficult to identify test groups for various reasons.
First, most current Mapuzugun courses are infor-
mal, given different types of social organizations
with a great variety of methodologies, contents, lev-
els. Second, students of Mapuzugun differ widely
according to interests, degree of systematization
and materials used. Third, there is a strong distrust
by the interested community of learners in institu-
tions, like academia, that historically have “used"
aboriginal speakers as mere sources of information.

In a first preliminary round, more than 200 peo-
ple (known to have been in courses or being stu-
dents of Mapuzugun in the last 5 years) were con-
tacted. From them, 30 people engaged to answer
the questionnaire and from them, only 9 answers
were obtained (3 of advanced knowledge of Ma-
puzugun).

With their feedback, the tool was refined. A
second round was done by a public call in social
networks related to Mapuzugun, and 32 people
registered for the study, which were then classified
in 5 groups:

• Group 0. Beginners (6 people);
• Group 1. Basic studies; able to greet but do not

understand conversations (8 people);
• Group 2. Studies: able to understand conversa-

tions (7 people);
• Group 3. Studies; able to perform conversations

(8 people); and
• Group 4. Speakers from early infancy (3 people).

The experiment consisted of giving a small set
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Word Group 0 Group 1 Group 2 Group 3 Group 4 General

elukelafimu 2 / 2 2 / 1.6 2 / 1.86 2.75 / 2.86 2 / - 2.33 / 2.14
pemurpayafuyu 1 / 3 1 / 2 1.83 / 2.17 2.33 / 2.83 2 / - 1.94 / 2.44
kujinerkeeiñmu 0 / 1.33 0.67 / 1.4 1.75 / 2 2.43 / 2.86 3 / - 1.81 / 2.05
Phrase 1 / 3 2 / 2.25 2.57 / 2.71 3 / 3 2.67 / - 2.42 / 2.72

Table 2: Summary of the study with learners. showing the mean performance of each group for each task word.
Scale goes from 0 (wrong translation) to 3 (perfect translation). The pairs A / B mean: without / with the tool.

Group 0 Group 1 Group 2 Group 3 Group 4 General

Difficulty of use 2.67 2.71 1.86 1.86 3 2.33
Diff. of word transl. 3.17 2.86 3.0 2.43 3 2.87
Diff. of phrase transl. 3.33 3.71 2.71 3.14 1.67 3.0
Visual evaluation 3.83 3.29 4.14 3.86 2.33 3.63
General evaluation 3.17 4.0 4.71 4.29 3.33 4.0

Table 3: Summary of Usability Test. Scale goes from 1 (low) to 5 (top).

of Mapuzugun words (and one phrase7) to each
participant. The task was to translate each word in
Spanish, first without and then with the tool.

We additionally collected information on usabil-
ity of the software tool: difficulty of use, difficulty
to translate words, difficulty to translate phrases,
evaluation of visual interface and finally, a general
evaluation. Last, we requested open-ended general
qualitative feedback.

Translation Results Table 2 summarizes qual-
ity of the produced translations, with and without
the tool, for each user group.8 For two words,
pemurpayafuyu and kujinerkeeiñmu, using the
tool improves the translation capabilities for all
user groups. The word elukelafimu is a word that
is typically accessible in basic levels of Mapuzu-
gun, and hence, the segmentation plus the transla-
tion could have confused users (they realized that
the word was more complex than they thought).
Another encouraging sign is that the translation of
the phrase also improved for the first three groups
when using the tool. Last, we found that experi-
enced learners (group 4), preferred not to use the
tool because they felt secure in their knowledge.

Usability Results Table 3 summarizes the scores
received by the users (in a Likert scale). User
groups 2 and 3 seem to be the ones showing less
difficulty to use the tool, and also those that can
take more advantage of it. Beginners got stuck with

7The words are shown in Table 2. The phrase was:
Pichikalu iñche , amukefun chillkatuwe ruka mew ,
fewla chillkatuwekelan.

8The translations were rated for accuracy by an instructor.

instructions (many were in Mapuzugun; they will
also be provided in Spanish in future iterations)
and ability to compose particles. We suspect that
experienced speakers (group 4) probably did not
invest effort because they did not need the tool.

All groups except experienced speakers rated
the phrase as more difficult to translate than single
words. The visual aspects of the interface and the
tool in general mostly received very positive scores.

As a summary, our small study shows that, at its
current stage of development, our tool is appropri-
ate and useful for intermediate learners.

Qualitative Feedback We summarize here the
qualitative feedback we received from user groups.

In general, all groups were particularly positive
about the tool’s presentation of the segmentation
of the words. All groups were also very positive
towards our informal translator that provides the
explanations of each word segment.

In general, comments in the beginners’ group
(group 0) mentioned the difficulty to produce the
translations, even though each part of the segmen-
tation could be understood, a note that highlights
the utility and importance of our proposed “infor-
mal translation". What was liked the most was the
possibility of "see" in a graphical form the com-
position of words. This group also struggled with
certain labeling words like VTR, VI, that are not
widely known.

Users in group 1 positively mentioned the pos-
sibility to see the different segmentation options.
Some people signaled that there should be exam-
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ples of the usage.9

Group 2 was the one that gave most comments.
Some mentioned that a scenario when a morpheme
occurs duplicated with different communicative
functions was confusing. They also indicated that
they would have wanted the ability to actually see
the the correct translation, not just the segmentation
and its explanation; unfortunately, the current state
of MT for Mapuzugun does not allow this, but it
provides a concrete avenue for future work.

They also liked the segmentation and its explana-
tion, and suggest that give the possibility to practice
conjugation. On the other hand, words without con-
text can be used in different forms and this could
confuse beginners.

Last, there were comments about the choice of
colors of the interface, as well as a suggestion for
turning the tool into a mobile app.

Group 3 suggested that beginners could get con-
fused by the amount of options that are shown for
certain words. Some of them mentioned that the
program helped them to understand certain par-
ticles. They also mentioned the need of context
for the words. Regarding negative issues, some
persons mentioned the need to have a translation
besides morphemes, although one person liked the
idea that you must make efforts to compose instead
of receiving the translation immediately. Group 4
did not made relevant comments.

It is worth noting, last, that many of the com-
ments reflected the excitement that such a tool was
even available for Mapuzugun.

7 Related Work

Computational Work on Mapuzugun Today
there are various initiatives of computational lin-
guistics on Mapuzugun. There is an orthographic
normalizer and a morphological analyzer (Chandía,
2012), but its accuracy is low, since it is rule-based.
Another aspect that could be improved is that, cur-
rently, there is no possibility of choosing the output
alphabet, restricting it to only one form of writing.
This is still inconvenient today, as there is still no
agreement on orthography standardization. This
implementation is based on a set of rules through
regular expressions, with a finite state transducer,
which have been released on the author’s website.

The purpose of another project, called AVENUE,
in which the Universidad de la Frontera, the In-

9Examples are provided as part of the documentation, but
they probably did not find them.

tercultural Bilingual Education Program and the
Language Technologies Institute of Carnegie Mel-
lon University (CMU) collaborated, was to gener-
ate simple and low-cost translations, in addition to
helping to preserve the Indo-American languages.
This project first developed an alphabet that was
used to transcribe (but not fully revise) a 170-hour
audio corpus along with Spanish translations (Duan
et al., 2020), and last deployed prototype transla-
tion systems and base spell checkers that are avail-
able for OpenOffice.

In the educational field, there is software to learn
Mapuzugun called MAPU from a project at the
Pontificia Universidad Católica de Valparaíso that
also includes voice recognition to control the ap-
plication, which works correctly, but is not robust
to pronunciation (Troncoso, 2012). This work also
refers to another Mapuzugun-to-Spanish voice-text
translation prototype, based on recordings, and to
a chatbot from the Pandora project.

Last, we refer the reader to Appendix B for an ad-
ditional discussion of further computational work
on other south American Indigenous languages.

8 Conclusion and Future Work

We have presented a system comprised of set of
NLP tools appropriate for educational purposes in
Mapuzugun, an Indigenous south American lan-
guage, and we have demonstrated its usefulness
through a small user study. Our study also pro-
vided a guide for future improvements. As more
data will hopefully become available in Mapuzu-
gun, we plan to incorporate more recent statisti-
cal machine learning components, both for the or-
thography converted and the morphological ana-
lyzer. We will also hopefully be able to deploy
full-fledged machine translation systems to provide
free-form translations of words or phrases to learn-
ers. Many users would benefit by the incorporation
of a text-to-speech component (as long as it is of
high quality), that would also allow the teaching of
Mapuzugun pronunciation.

Going further, the tool could be complemented
with a system that permits annotation of words
and/or phrases in order to collect data for future
tasks, as more users adopt it – especially if lan-
guage instructors use our tool in their courses. We
are also hoping to create an offline version of the
tool to make it accessible in areas with low con-
nectivity. We will also attempt to incorporate any
available corpora of Mapuzugun such as the those
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of Levin et al. (2000) and Duan et al. (2020) to use
as educational examples.

We release our code10 in the hopes that more In-
digenous communities are able to use it to develop
similar systems for their languages.

Ethical Considerations

Working with endangered/Indigenous languages
and language data, there is always substantial
risk of unwittingly perpetuation of colonial
harms (Bird, 2020). This is obviously an extremely
complex issue, but according to Bird (2020)
and other working in the space of NLP for
endangered/Indigenous languages, perhaps the
most critical aspect in working with Indigenous
language data is that researchers actively develop
meaningful relationships with members of these
respective language communities.

In our case, our work is lead by an instructor of
Mapuzugun and member of the Chilean Mapuche
community, who knows first-hand the oppression
the Mapuche people have sufferred and the harms
they have undergone by being forced to operate in
Spanish. This work is also partially funded by a
program dedicated to addressing the long-standing
colonial harms in Chile, by specifically helping
Indigenous students through their studies.

We do not anticipate any serious harms by the
development of our system, and we believe that
the positive reception by the Mapuche volunteers
who participated in our case study will be mirrored
by its reception by the wider Mapuche community.
It is also important, though, to acknowledge its
limitations and make it clear that our tool is meant
to be a companion tool for learning and can by no
means substitute instructors of the language.

No indigenous language data were collected or
are released through this project. We re-used exist-
ing, publicly available tools and corpora. The tool
is provided for free: it is currently behind a simple
username and password setting to ensure that its
traffic is not overwhelming, so that the tool remains
available to the Mapuzugun instructors and learners
that need it the most (and who already have access
to it).
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A Notes on Mapuzugun

In this section, to understand the context and the
need for this work, it will be explained how Ma-
pugugun went from being a language of a million
speakers in the 16th century to becoming, accord-
ing to UNESCO, an endangered language today.

History of Mapuzugun The Mapuche peo-
ple have their origin in the territory known as
Wallmapu (which can be considered as the Ma-
puche Country (Millalén et al., 2006)). This terri-
tory ranges from Coquimbo to Chiloé, also includ-
ing areas on the "other side" of the mountain range,
such as Neuquén, in a vast area demarcated by
the Río Negro. Throughout this territory different
denominations for this people can be found, share-
ing many cultural aspects (Millalén et al., 2006).
This is the area in which the scope of the language
known as Mapuzugun can be framed – also in ac-
cordance with what the Spaniards defined at the
end of the 16th century.

Mapuzugun, at its height, at the arrival of the
Spaniards, was spoken by around a million people
(Millalén et al., 2006). One of the first published
books on this language is entitled "Art and Gram-
mar of the General Language that runs through-
out the Kingdom of Chile, with a Vocabulary and
Confessionary" published in 1606 by Luis de Val-
divia (Alvarado Pavez, 2020). In addition, to-
ponyms with a clear Mapuzugun origin are still
preserved, such as Huente Lauquen in the north,
Puchuncaví, Curacaví, Pudahuel, Vitacura, with ex-
amples even in Puel Mapu (or what we know today
as Argentina), and Chiloé in the south.

During the interaction of Mapuche with
Spaniards during the Colony, the place of the Ma-
puzugun in all spheres of society can be appreci-
ated, from the family, to international political rela-
tions, as were the Koyagtun (or Parliaments) mainly
with the Spanish Empire, the Chilean and Argen-
tine States, but also with the French, Dutch, and
English. In all of these, the figure of the ‘lenguaraz’
stood out, who acted as a translator to try to faith-
fully reproduce the ideas that were held in Mapuzu-
gun to foreign representatives.

It was during the construction of the Chilean and
Argentine national states in the 19th century -which
initially did not include Mapuche territory- with
the so-called "Campaign of the Desert" and "Pacifi-
cation of Araucanía", when these states politically
subjected the Mapuche people. Along with this, as

part of the construction of the identities of Chile
and Argentina, space was taken away from Ma-
puzugun and the Mapuche culture through schools
and the church, which, through evangelization and
punishment, denied indigenous identity along with
their language.

Then at the beginning of the 20th century, after
that territorial dispossession, there was a strong
Mapuche migration to the most important cities of
Chile, in search of better living conditions. This
translated into cultural loss, often due to racism
and discrimination. However, some efforts were
made by the Mapuche themselves to maintain the
culture and language, as shown by publications
such as those by Coña (2019) and Manquilef (1911,
1914), which were written in both Mapuzugun and
Spanish.

During the dictatorship and since the 90’s, the
Mapuche people began to have a greater political
position. With this, the Mapuche language was
recovered hand in hand with a recovery of identity
in various areas, in addition to maintaining terri-
tories in which Mapuzugun is spoken as the first
language. Today, according to the 2017 census, the
majority of the Mapuche population would be in
Santiago, but most do not speak or understand their
language.

Today, there are various organizations that offer
courses or tools that contribute to the revitalization
of Mapuzugun. These instances have a milestone in
a march that is organized during February, within
the framework of the commemoration of the "In-
ternational Mother Language Day" (uatv.cl, 2020),
having, as a movement, important demands such as
the officialization of Mapuzugun (Naqill Gomez,
2016).

Various sources estimate the number of Ma-
puzugun speakers to be between 100,000 and
300,000 (Bertin, 2016).11 They constitute about 5
to 10% of the Mapuche population (1,745,147),
who make up 9.9% of the total population of Chile
(17,574,003).

According to UNESCO, a language is in dan-
ger when it is no longer used, when it is used in
fewer areas and when it is no longer transmitted.
From this it is stated that "about 90% of all lan-
guages “could be replaced by the dominant ones
by the end of the 21st century". All this, added
to insufficient documentation, generates that there
are extinct or endangered languages. , which are

11https://news.un.org/es/story/2019/04/1454571
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unrecoverable (Aronoff and Rees-Miller, 2020).
There are six degrees to define the state of danger

of these languages. Within this classification is
the Mapuzugun, referred to as Huilliche and, both
in Chile and Argentina, as Mapuche, as can be
seen in the Unesco Atlas (Moseley, 2012). They
are in grade 1 (“In a critical situation”, Huilliche),
2 (“Seriously in danger or threatened”, Mapuche,
Argentina) and 3 (“Clearly in danger or threatened”,
Mapuche, Chile).

But not only through UNESCO, research has
been carried out on the state of the Mapuzugun.
There are also various studies from the area of soci-
olinguistics to understand certain current language
processes and their incorporation into public poli-
cies (Naqill Gomez, 2016; Loncon, 2010; Catrileo,
2017; Wittig, 2009; Lagos, 2012; Olate Vinet et al.,
2013) [46].

Typological Notes Linguistically, Mapuzugun
is defined as an agglutinative and polysynthetic
language, which means that its expressions have
a main root to which defined and distinguishable
suffixes are added to form phrases. For example
the word Kim mapuzuguyekümelleaiñ, which is
explained in Table 2.1. Examples such as English,
Chinese or Spanish are not in this category, and
therefore the processing techniques used in those
languages differ from the techniques that could be
used for Mapuzugun.

Before colonization, Mapuzugun is described as
a purely oral language. Today, until recently it was
not formally taught or used by public and educa-
tional institutions in Chile. This has meant that it
does not have a standardization of its writing or
spelling. Today there are different ways of writing
it and also, territorial orthographic variations, be-
cause in different regions there are phonetic differ-
ences for certain sounds and that translates, in gen-
eral, into different writings. Today there are three
main graphemaries to write Mapuzugun: Ragileo,
created by Anselmo Raguileo in 1985; Unified, cre-
ated by María Catrileo in 1989; and Azümchefe,
created by Necul Painemal for CONADI (National
Corporation for Indigenous Development) in 2008.

Among these graphemaries certain visible dif-
ferences can be noted in Table 2.2. In the case of
Ragileo, this grapheme uses only one grapheme
per phoneme, and on certain occasions, the sounds
associated with these graphemes do not correspond
to those of Spanish, so it is a little more difficult
to learn than the others. The Unified has a script

more similar to Castilian. Although, although most
of the graphemes are the same, there are phonemes
that can be considered similar, but are not the same
between Castilian and Mapuzugun. Finally, the
Azümchefe is a kind of intermediate point, but it
also presents difficulties and differences between
graphemes and phonemes in Spanish. It is used by
public institutions such as CONADI.

This lack of standardization of Mapuzugun
brings complications to people who are studying
the language and who only master a grapheme.
This also affects the processing of Mapuzugun,
since there would be inconsistencies when taking
data from different sources or even from the same
source, especially in topics such as automatic trans-
lation or semantic analysis, where the same word
could have various forms and affect learning. some
model. This probably affects the current lack of
basic tools in this language.

In this direction, there are currently various
works related purely to Mapuzugun linguistics: de-
scriptions (Zúñiga, 2006; Smeets, 1989; Chiguailaf,
1972), but also specific academic articles on tech-
nical aspects of the language (Chiodi and Lon-
cón, 1999; Olate Vinet et al., 2013; Sadowsky
et al., 2013; Croese, 2014; Araya et al., 2019; Al-
varado, 2019; Sandoval et al., 2020) and dictionar-
ies (Catrileo, 2017).

A.1 Computational Work on Mapuzugun

Today there are various initiatives of computa-
tional linguistics on Mapuzugun. There is an or-
thographic normalizer and a morphological ana-
lyzer (Chandía, 2012), but it still has some errors
derived from the fact that it directly applies a se-
ries of rules without analyzing the input it receives.
These are aspects that could be improved. An-
other aspect that could be improved is that, cur-
rently, there is no possibility of choosing the out-
put grapheme, restricting it to only one form of
writing. This is inconvenient today that there is
still no agreement on the standardization of writ-
ing. This implementation was made from a set of
rules through regular expressions, with a finite state
transducer, which have been released on the au-
thor’s website. This author is also working on a pro-
totype morphological analyzer and spell checker,
based on Xerox finite state tools. There are also
corpus exploitation interfaces annotated with these
same tools, created in an interuniversity master’s
degree in Barcelona, (coordinated by the Univer-
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sity of Barcelona) and an automatic Mapuzugun
translator is being targeted. As he is in the process
of doctoral work, the results of these tools have not
yet been published, but they can be reviewed in his
thesis proposal.

On the other hand, there was a project called
AVENUE, in which the Universidad de la Frontera,
the Intercultural Bilingual Education Program and
the Institute of Language Technologies of Carnegie
Mellon University (CMU) collaborated. The pur-
pose of this project was to generate simple and
low-cost translators, in addition to helping to pre-
serve the Indo-American languages. This project
resulted in four products: 1. In the first place, a
graphemebook for the purposes of processing and
computer development of the Project. 2. A 170-
hour corpus that has been transcribed, but not fully
revised. 3. A translation prototype consisting of a
trained example-based translator. In addition, one
based on transfer rules was worked on in parallel
(both with Spanish as a pair). This prototype also
has a morphological analyzer. After the Avenue
project, CMU also worked on the automatic im-
provement of translations. 4. A spell checker that
is said to contain an estimated 6,000,000 words,
for OpenOffice. And that consists of two dictionar-
ies, one for roots and the other for suffixes, which
within OpenOffice’s MySpell, correct a text in the
typical way that the user is used to. This continues
to have the limitation of the grapheme, in addition
to not having the security that when writing a word
in another grapheme it will convert it to the one
used by the system.

In the educational field, there is software to learn
Mapuzugun called MAPU from a job at the Ponti-
ficia Universidad Católica de Valparaíso that also
includes voice recognition to control the applica-
tion, which works correctly, but is not robust to
pronunciation (Troncoso, 2012). In this work, it
also refers to another Mapuzugun-to-Spanish voice-
text translation prototype, based on recordings, and
to a chatbot from the Pandora project.

In addition, the CEDETI of the Pontificia Univer-
sidad Católica, which is dedicated to working on
technologies for integration, has language learning
software called Mapudungun mew (Rosasa et al.).

A.2 The three orthographies currently used

See Figure 5 for a comparison.

Unificado Ragileo

CH C
D Z
G Q
L B
Ll J
N H
Ng G
Tr X
T -
Ü V

Table 4: Differences and conversion between the Unifi-
cado and Ragileo orthographies.

Unificado Azümchefe

D Z
G Q
L Lh
N Nh
Ng G
Tr Tx
T T’
S Sh

Table 5: Differences and conversion between the Unifi-
cado and Azümchefe orthographies.

B Computational Work on South
American Indigenous Languages

Mager et al. (2018) review the challenges for in-
digenous languages in America in terms of lan-
guage technologies and NLP, which is also a re-
view of the experiences that have been had for
different languages throughout the continent. Be-
yond Mapuzugun, it also addresses languages such
as Quechua, Nahuatl, Wixarika, Shipibo Konibo,
Guaraní, among others. The challenges have to do
mainly with the insufficient or not well developed
corpora, translations, and morphological analyzers.
In addition, experiences are named in the different
common tasks for NLP.

Llitjós (2005) presents the most complete pro-
cess of what would be the result of the AVENUE
project, whose product was a Quechua - Spanish
translator. This could not be completed for the
Mapuzugun case, but there is a methodology with
which it could continue. One can also see the use
of Bayesian classifiers and K nearest neighbors
(k-nearest neighbors, KNN) for disambiguation in
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Figure 5: Comparison of the three alphabets used by the Mapuche.
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Ragileo Azümchefe

C Ch
B Lh
J Ll
H Nh
S Sh
X Tx
- T’
V Ü

Table 6: Differences and conversion between the Rag-
ileo and Azümchefe orthographies.

Quechua translation (Rudnick, 2011).
Also in Quechua, the improvement of morpheme

recognition from its comparison with Finnish, due
to the fact that they have similar structures, es-
pecially in the agglutination part (Ortega and Pil-
laipakkamnatt, 2018).

The closeness in typology also happens with
other languages that are in Peru and the rest of the
continent, such as Mexicanero, Nahuatl, Wixarika
and Yorem Nokki (Kann et al., 2018). Or the Mo-
hawk and Plains Cree (Arppe et al., 2016), from
further north.

At the University of Limerick a thesis was devel-
oped on a morphological analyzer for the Mohawk
case. This is done through finite states and their
training from the language data (Assini, 2013).

Espichán-Linares and Oncevay-Marcos (2017)
present a study of low-resource Peruvian languages.
This is done from the construction of a vector space
model for languages, from bigrams and trigrams,
and a matrix from "term frequency - inverse doc-
ument frequency" or (TF-IDF, for its acronym, in
English). It is classified by sentences and a per-
formance of over 96% is achieved in classification
with support vector machine. Although these are
good results, there is no way to know if it is exactly
the orthography used or if it is just the closest.

Alva and Oncevay (2017) propose a corrector
based on syllabification and characters for an ag-
glutinating Peruvian language. This is done with
graphs of syllables and characters from models ex-
tracted from the corpus. This method proposes
three closest corrections for a misspelled word
with distance metrics per character, also saving
the previous corrections. This method is complete
and takes into account the syllables and characters,
which would be important in the case of orthogra-

phies which have subtle differences, as if they were
spelling errors. Although the error can be improved
(76%), it could be a solution for the normalizer, if
it is extended to multiple languages (or in this case
orthographies).

196



Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022), pages 197 - 203
July 15, 2022 c©2022 Association for Computational Linguistics

An Evaluation of Binary Comparative Lexical Complexity Models

Kai North1, Marcos Zampieri1, Matthew Shardlow2

1Rochester Institute of Technology, Rochester, NY, USA
2Manchester Metropolitan University, Manchester, UK

kn1473@rit.edu

Abstract

Identifying complex words in texts is an
important first step in text simplification (TS)
systems. In this paper, we investigate the
performance of binary comparative Lexical
Complexity Prediction (LCP) models applied
to a popular benchmark dataset — the
CompLex 2.0 dataset used in SemEval-2021
Task 1. With the data from CompLex 2.0, we
create a new dataset contain 1,940 sentences
referred to as CompLex-BC. Using CompLex-
BC, we train multiple models to differentiate
which of two target words is more or less
complex in the same sentence. A linear SVM
model achieved the best performance in our
experiments with an F1-score of 0.86.

1 Introduction

Children, second language learners, or individuals
suffering from a reading disability, such as dyslexia
or aphasia, can find certain words hard to read,
interpret, or learn (Devlin and Tait, 1998; Carroll
et al., 1998; Kajiwara et al., 2013; Rello et al.,
2013; Malmasi et al., 2016). In readability and
text simplification (TS) literature, these words are
known as complex words.

Complex and non-complex words are
distinguishable. Statistical, morphological,
and psycholinguistic features are indicative of
lexical complexity (Shardlow et al., 2022; Desai
et al., 2021). Complex words are on average
longer, morphologically more unique, and less
frequent in general corpora, than non-complex
words (Paetzold and Specia, 2016; Yimam et al.,
2018; Shardlow et al., 2021).

With the growing popularity of distance learning
platforms, the demand for new technologies that
make texts more accessible for independent and
remote learning has seen an exponential increase
(Morris et al., 2020). Among these technologies,
are TS systems that automatically simplify texts
for various target populations. The first step in

TS is generally referred to as lexical complexity
prediction (LCP). LCP aims to identify which
words in a text are complex and therefore are in
need of simplification. It has been modeled as
a binary classification task (Paetzold and Specia,
2016), as a regression task (Yimam et al., 2018),
and more recently as a multi-class classification
task (Shardlow et al., 2020).

In this paper, we explore binary comparative
LCP where the goal is to determine when one
target word is more or less complex than another.
This new type of LCP is motivated by the need
for comparative prediction methods that allow for
the pairwise ranking of target words based on
newly available data assigned with continuous
complexity values (Shardlow et al., 2020). Binary
comparative LCP aims to aid TS by improving
the selection and ranking of substitute candidates
for a particular complex word. It achieves this by
allowing for more data to be generated from a finite
dataset. For instance, a dataset consisting of 10,000
complex words assigned with complexity values
can be converted into 100 million comparative
instances, since every complex word can be
compared to every other complex word. A binary
comparative LCP classifier trained on this dataset
can then make binary comparative judgements as
part of a sorting algorithm. This lets a lexical
simplification (LS) system effectively find the most
appropriate simplification for any given complex
word improving the efficiency of TS and other
down-stream applications.

We aim to determine whether binary
comparative LCP is possible when attempting
to differentiate the complexities of two different
target words in the same sentence (Table 3). We
have accomplished this by adapting a recent
baseline LCP dataset: CompLex 2.0 (Shardlow
et al., 2020), and by asking the following research
question: can LCP be modeled as a binary
comparative classification task?
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The main contributions of this paper are:

1. CompLex-BC, the first binary comparative
LCP dataset built from continuous data
obtained through 5-point likert-scale
annotation.

2. An evaluation of SVM, BERT, and BERT +
MLP models for binary comparative LCP.

2 Related Work

Traditionally, LCP comes in two forms, it is either:
a). a binary classification task, known as complex
word identification (CWI) (Paetzold and Specia,
2016; Zampieri et al., 2017; Yimam et al., 2018), or
b). a linear regression based task, simply referred
to as LCP (Shardlow et al., 2021). Both CWI and
LCP datasets contain target words labeled with a
complexity value. This complexity value is used by
a machine learning (ML) model to determine the
complexity of a target word. CWI assigns a binary
complexity value of either 1 (complex), or 0 (non-
complex). LCP alternatively assigns a complexity
value on a continuum, ranging from 0 to 1. This
continuum contains multiple labels with differing
complexity thresholds: very easy (0), easy (0.25),
neutral (0.5), difficult (0.75), to very difficult (1)
(Shardlow et al., 2020). An example is shown in
Table 1.

Folly is set in great dignity
BC 1 is 0 in 0 0
CC 0.57 is 0.18 in 0.15 0.42

Table 1: Example of a sentence annotated with both
binary complexity (BC) and continuous complexity
(CC) values from CWI and LCP systems respectively.
Target words are in bold.

Other approaches have attempted to model LCP
as a multi-class classification task. Pintard and
François (2020) assigned six readability levels,
belonging to the Common European Framework
of Reference for languages (CEFR), to target
words as a means of rating their complexity for
second language learners. Alfter (2021) trained a
variety of models, including a convolutional neural
network (CNN) and a recurrent convolutional
neural network (RCNN), to predict the correct
CEFR labels of target words taken from a multitude
of CERF vocabulary lists.

LCP research has also included the ranking
of complex words (Paetzold and Specia, 2017;

Maddela and Xu, 2018). Neural regressors have
been trained to identify which of two target words
is more or less complex by predicting a continuous
positive or negative value belonging to an inputted
word pair. A positive value indicates that the
first target word is more complex than the second,
whereas a negative value dictates that the second
target word is more complex than the first. The
magnitude of the returned value also represents
the degree of difference between the two target
words. Positive and negative values closer to +1 or
-1 respectively, show that the difference between
the target words’ complexities is more extreme
compared to those values closer to 0 (Table 2).

Word Pair CC Values Label
{set, great} {0.18, 0.15} +0.03

{set, dignity} {0.18, 0.42} -0.24

Table 2: Example of two word pairs annotated with
continuous comparative complexity labels. The first
word pair have a similar level of complexity, whereas
the second word pair have a greater disparity between
their complexities.

Binary comparative LCP provides a binary
complexity label that defines when the first target
word is more complex (1) or less complex (0) than
a second target word, be it either the same or a
different target word in the same or a variety of
contexts. Examples of two different target words in
the same context, in this case sentence, are shown
in Table 3.

Binary comparative LCP is now only recently
possible due to the release of the Complex
2.0 dataset that provides a more fine-grained
representation of target word complexity (Shardlow
et al., 2020). This is since CompLex 2.0 is the
first of its kind to contain continuous complexity
values obtained through the use of a 5-point rather
than a 6-point likert-scale annotation scheme that
does not account for neutral labeling (Maddela
and Xu, 2018), or through the use of binary
annotation. Binary comparative LCP is thus a
new form of complexity prediction that differs
from the complexity ranking previously attempted
by Paetzold and Specia (2017) and Maddela and
Xu (2018), as it uses new and more fine-grained
continuous complexity values to make binary
comparative predictions.
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Target Word 1 Target Word 2 Context L
wood hyssop ...he shall take it, and the cedar wood, and the scarlet, and the hyssop... 0
sequencing fly ...the sequencing projects of human, mouse, rat, fruit fly and... 1
fish invertebrates ...such as mammals, fish, and amphibians, but not in invertebrates... 0
Nehemiah district ...Nehemiah the son of Azbuk, the ruler of half the district of Beth... 1
example avoidance ...for example, a QTL for PROP avoidance has been suggested on... 0

Table 3: Example of the Complex-BC dataset. Target words are in bold. Only snapshots of context are shown. Label
(L) 0 refers to when target word 1’s complexity < target word 2’s complexity, and label 1 refers to when target word
1’s complexity > target word 2’s complexity.

No. Input Type Encoding Strategies
a Target Word only <CLS>set<SEP>dignity<SEP>
b Single Context <CLS>Folly is <B>set<E> in great <B>dignity<E><SEP>
c Two Contexts - TW <CLS>Folly is in great dignity<SEP>Folly is set in great<SEP>

Table 4: Examples of input types and encoding strategies used.

3 Data

CompLex 2.0 The CompLex 2.0 dataset contains
9,000 instances of individual words in context.
Each of its extracts were taken from the
Bible (Christodouloupoulos and Steedman, 2015),
biomedical articles (Koehn, 2005), and EuroParl
(Bada et al., 2012). Its annotators were crowd-
sourced from "the UK, USA, and Australia"
(Shardlow et al., 2020).

CompLex-BC We created a new dataset
containing binary comparative labels (Table 3).
Complex-BC consists of 1,940 sentences that
house two differing target words identified as
being complex within the CompLex 2.0 dataset
and that also belonged to the same sentence. Each
entry comprises of a target word, a second target
word, and a label. For example, given the sentence
"he shall take it, and the cedar wood, and the
scarlet, and the hyssop" from the CompLex 2.0
dataset, our new dataset adapts this sentence and
provides "wood" as target word 1, "hyssop" as
target word 2, and a new binary comparative label
of "0" that indicates that in this sentence, target
word 1: "wood", was rated as being less complex
than target word 2: "hyssop" by the annotators of
the CompLex 2.0 dataset (Table 3).

4 Models

We trained a SVM model given its high
performance at binary CWI (Zampieri et al.,
2016; Choubey and Pateria, 2016; Sanjay et al.,
2016; Kuru, 2016), a BERT model (Devlin et al.,
2019) per its competitive performance at LCP-
2021 (Shardlow et al., 2021; Yaseen et al., 2021;

Pan et al., 2021; Rao et al., 2021), and a BERT
+ multi-layer perceptron (MLP) model (Gu and
Budhkar, 2021) to take full advantage of BERT
inferred contextual features as well as the word-
level features fed into our SVM model. Two
naive baseline models were used to evaluate the
performances of our SVM, BERT, and BERT +
MLP models: a random classifier (RC) and a
majority classifier (MC).

We used an integrated Intel UHD Graphics 620
GPU to train each model. Our SVM and BERT
models were trained over 5 epochs. The train
and test split of our dataset was set to 70:30%
respectively. No target words were shared between
the train and test sets.

SVM Our SVM model used a Radial Basis
Function (RBF) kernel and was trained on a set
of well established statistical and psycholinguistic
features for LCP as these have been previously
found to achieve the best results (Shardlow et al.,
2022; Desai et al., 2021). These features were word
length, word frequency, syllable count, average age
of acquisition (AoA), and prevalence (familiarity).
Word frequency being calculated in accordance to
the target word’s frequency in the British National
Corpus (BNC) (Consortium, 2007), average AoA
being calculated by averaging the AoAs within an
updated version of the Living Word Vocabulary
Dataset (Dale and O’Rourke, 1981; Brysbaert and
Biemiller, 2017), and prevalence being calculated
in accordance to the percentage of people who
knew the target word as shown in the dataset
provided by Brysbaert et al. (2019). These features
were obtained in regards to the target word only
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and were not applied to any of the target word’s
neighbouring words.

BERT After experimenting with different
hyperparameters, our BERT model (bert-base-
uncased) was set to have a softmax activation
layer, a batch size of 200, and a learning rate of
1e-5. Several inputs were also experimented with
that took into consideration the target word along
with varying degrees of contextual information.
Encoding strategies adopted by the leading
systems of LCP–2021 (Rao et al., 2021; Shardlow
et al., 2021) and suggested by Hettiarachchi and
Ranasinghe (2021), were then applied to these
inputs and fed into our model.

We encoded each input into sub-word units,
otherwise known as WordPiece tokens (Devlin
et al., 2019). We then used the class identifier
special token: <CLS>, the separator special token:
<SEP>, and two custom special tokens: <B> and
<E>, to distinguish between two differing target
words. We referred to these as (a) the target
word only, (b) single context, and (c) two contexts
- TW encoding strategies respectively (Table 4).
Encoding strategies (a) and (b) included the target
word.

BERT + MLP As BERT assumes full sentences
to encode the correct contextual information, we
use a second BERT-based architecture for a fairer
evaluation with the SVM model. We built a
BERT + MLP model by feeding encoding strategies
(a), (b), and (c) into our BERT model and then
concatenate the outputted contextual features with
those features used by our SVM model per Gu and
Budhkar (2021). Our final BERT + MLP model
then utilizes both set of contextual and word-level
features for binary comparative LCP.

Weighted Average
Model P R F1 A
SVM 0.85 0.86 0.86 0.86
BERT + MLP 0.74 0.88 0.80 0.81
BERT 0.49 0.48 0.44 0.48
MC 0.30 0.55 0.39 0.55
RC 0.50 0.50 0.50 0.50

Table 5: Best performances ranked in order of highest
to least accuracy and split between test and baseline
models.

5 Results

Table 5 shows the best performances of our SVM,
BERT, and BERT + MLP models. Performances
were measured in terms of weighted average
precision (P), recall (R), and F1-score (F1). Our
models’ accuracies (A) were also reported.

Our SVM model achieved a F1-score of 0.86,
whereas our BERT model attained a noticeably
worst score of 0.44. Both models also produced
drastically different accuracies of 0.86 for our SVM
model and 0.48 for our BERT model with our
BERT model attaining an accuracy on par with
our naive MC and RC baseline classifiers. This
suggests that there was not enough information
for our BERT model to converge and therefore its
final output labels were likely chosen at random.
These performances were achieved by taking into
consideration only the target words (a) and not
any of their surrounding contexts (Table 4). Other
encoding strategies (b) and (c) failed to surpass
these performances for our BERT model.

Our BERT + MLP model achieved a greater
performance compared to that attained by our
standalone BERT model. It was found that by
concatenating the contextual features outputted by
our BERT model from single context input (b)
with those features used for our SVM model, our
BERT + MLP model achieved a precision, recall,
f1-score, and accuracy of 0.74, 0.88, 0.80 and 0.81
respectively. Additional encoding strategies (a) and
(c) attained lower performances, with an F1-score
of 0.56 being returned by the former and 0.64 being
achieved by the latter.

6 Analysis and Discussion

Comparing the complexities of two target words
in the same sentence allowed us to fully utilize
the CompLex 2.0 dataset that contained multiple
instances of target words in the same context.
It allowed us to generate binary comparative
predictions that can be used to aid substitute
selection and ranking (Sections 1 and 3).

Binary comparative LCP also allowed us to
identify which words within a sentence contributed
the most or the least to a context’s overall
complexity. Therefore, by comparing the
complexities of two target words in the same
sentence, we were able to identify which part of
a sentence is in need of priority simplification.
However, modeling binary comparative LCP in this
way is not without its challenges. This is reflected
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in our models’ performance.
Two factors are responsible for the superior

performance of our SVM model in comparison
to our standalone BERT model: 1). contextual
similarity between the two target words, and 2).
small dataset size.

One of the main advantages of transformer-based
models, such as BERT, is their ability to infer
bi-directional contextual relationships between a
target word and its surrounding words and then
use this contextual information to make accurate
predictions (Devlin et al., 2019). However, since
the two target words we are trying to compare are
in the same sentence, BERT’s inferred contextual
features in relation to target word 1 were extremely
similar to those inferred for target word 2, when
given encoding strategy (c) (Table 4). This
confused our BERT model, by making classes 0
(target word 1 is less complex) and 1 (target word
1 is more complex) hard to distinguish.

Our SVM model’s word-level features of word
length, word frequency, syllable count, average
age of acquisition, and prevalence (familiarity)
alternatively do not utilize contextual information.
Instead, they rely purely on the characteristics of
each target word and therefore resulted in feature
representations that were more dissimilar. This
had the effect of making classes 0 and 1 easier
to differentiate for our SVM model and thus
explaining its superior performance.

The superiority of word-level features is further
demonstrated by the performance of our BERT +
MLP model. Encoding strategy (b) returns from
our BERT model contextual information related to
the shared context (Table 4). Encoding strategy
(c), however, attempts to encode contextual
information belonging to each target word minus
the target word.

Our BERT + MLP model performed poorly
on encoding strategy (c) as it was presented
from BERT two inferred contextual feature
representations which were near identical.
Encoding strategy (c) alternatively supplied only
one inferred contextual feature representation from
BERT, which allowed our BERT + MLP model
to rely more heavily on its engineered word-level
features. Nevertheless, encoding strategy (b)
still failed to surpass our BERT + MLP model’s
performance beyond that of our SVM model. This
indicates that the utilization of BERT’s inferred
contextual feature representation from encoding

strategy (b), is still inferior to an SVM model using
word-level features.

Another explanation for our models’
performance is our dataset’s size. The CompLex-
BC dataset contains 1,940 instances with binary
labels. Transformer-based models require large
amounts of data to infer meaningful feature
representations (Devlin et al., 2019), whereas an
SVM model when trained on a set of relevant
features requires less data and is also well suited
for binary classification (Cortes and Vapnik, 1995).

7 Conclusion and Future Work

This paper sought to determine whether binary
comparative LCP was possible when attempting
to differentiate the complexities of two different
target words in the same sentence. Only our
SVM and BERT + MLP models were found to be
successful having achieved F1-scores of 0.86 and
0.81 respectively. This led to the conclusion that
our SVM and BERT + MLP models benefited from
more varied word-level feature representations of
target word only input than in comparison to less
varied contextual input. We also believe that more
data is required to conduct further experimentation
and achieve greater performances, especially with
transformer-based models. The CompLex-BC
dataset will be made freely available to the research
community after the publication of this manuscript.

We are currently working on exploring different
variables that may impact the modeling of binary
comparative LCP. This includes evaluating the
performance of models on target words in different
contexts as well as exploring a “neutral” class with
words with similar complexity scores.

Finally, we are interested in investigating the
feasibility of binary comparative LCP on languages
other than English. At this point, the 5-point
likert-scale annotation introduced by CompLex 2.0
is only available in English, however, we expect
multilingual versions of CompLex 2.0 to become
available soon enabling us to work on languages
other than English.
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Abstract

Providing effective automatic essay feedback
is necessary for offering writing instruction at
a massive scale. In particular, feedback for pro-
moting coherent flow of ideas in essays is criti-
cal. In this paper we propose a state-of-the-art
method for automated analysis of structure and
flow of writing, referred to as Rhetorical Struc-
ture Theory (RST) parsing. In so doing, we lay
a foundation for a generalizable approach to
automated writing feedback related to structure
and flow. We address challenges in automated
rhetorical analysis when applied to student writ-
ing and evaluate our novel RST parser model
on both a recent student writing dataset and a
standard benchmark RST parsing dataset.

1 Introduction

Automatic writing feedback technologies (e.g.,
MI Write (Palermo and Wilson, 2020), Criterion
(Burstein et al., 2003), Coh-Metrix (McNamara
et al., 2010), Writing Pal (Roscoe and McNamara,
2013), and Revision Assistant (West-Smith et al.,
2018)) show promises in helping students to de-
velop writing skills at scale. One challenging area
where these technologies meet is in providing feed-
back for improving coherence of student essays
(Cotos, 2011; Fiacco et al., 2019b). Efforts have
been made to address the challenge of providing
structural level feedback via automatically extract-
ing discourse structure from essays (Burstein et al.,
2003). Extracting hierarchical discourse structure
and organization from documents has been shown
to be valuable for numerous applications includ-
ing text categorization, authorship attribution, and
automatic essay feedback (Feng and Hirst, 2014b;
Jiang et al., 2019).

A popular approach to analysis of the struc-
ture of writing that leverages principles of the
dependency-based hierarchical nature of text and

is common across genres is the discourse analytic
framework known as Rhetorical Structure Theory
(RST, described in section 3.1) (Mann and Thomp-
son, 1988). RST holds the promise of providing
specific structural writing feedback for free-form
essays (Burstein et al., 2001). However, RST pars-
ing has remained a challenging task due to the
dearth of annotated data and the challenges of deci-
sion making for discourse relations based on local
context (Mabona et al., 2019). This paper builds on
the same theoretical foundation using a Neural Net-
work Based RST parser as a means for automation.
Specifically, we propose a novel neural approach
to automated RST analysis that improves over the
best previously published approach from the field
of Language Technologies. In particular, of ex-
isting neural architectures for RST parsing, neural
transition based parsers have been making headway
(Yu et al., 2018; Mabona et al., 2019), however, at
their core, transition parsers make parsing deci-
sions locally. While they use recurrent models to
construct their stacks and buffers, in practice, recur-
rent models have been shown to primarily to use
very near context (Khandelwal et al., 2018). This
is a limitation for discourse parsing where knowl-
edge about the document as a whole may provide
essential context for judging relations.

We therefore propose and evaluate two improve-
ments to the neural transition parser paradigm that
provide better performance, both on standard RST
parsing and on student writing by utilizing the lim-
ited data more efficiently:

1. By adding a co-task of predicting the most
nuclear unit of the RST tree, we can increase
the model’s performance with the intuition
that it may incentivize the model to maintain
a broader document context that it can use for
predicting individual tree spans and nuclear-
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Figure 1: Example RST tree fragment with nuclearity
and relations. a) The traditional depiction of an RST
tree structure. b) The RST tree form corresponding to
the labeled attachment decisions of (a).

ity.

2. By selectively introducing parser states from
a previously trained parser into a new model
during training, we can guide the training of
the new model towards better performance on
less structured writing.

The first improvement builds on the general con-
cept of multitask learning in NLP (Bingel and Sø-
gaard, 2017; Peng et al., 2017) and the intuition
that a topic-like sentence, as a common key compo-
nent in many writing assessments and rubrics (Aull,
2015), may provide important contextual informa-
tion to aid local parser decision-making. The sec-
ond improvement suggests a potential for a reflec-
tive form of neural network learning related neural
component reuse that grows out of state-of-the-art
work in neural network interpretation.

In the following sections, we evaluate our pars-
ing model on both the standard English RST Dis-
course Treebank (RST-DT) (Carlson et al., 2003)
and a more recent RST dataset of student writ-
ing (Jiang et al., 2019).

2 Rhetorical Structure Theory

Rhetorical Structure Theory decomposes a doc-
ument into basic units of analysis called ele-
mentary discourse units (EDU) that can be com-
bined through rhetorical relations between units
into larger composite units (Mann and Thompson,
1988). Thus, the rhetorical relations combine to
build a hierarchical tree structure that represents the
overall structure of the document (Figure 1a). Each
relation has one (mononuclear) or more (multinu-

clear) nuclei where a nucleus is an essential span
which, if deleted, would leave the remaining text
incoherent. Mononuclear relations have satellites
that are related to the nucleus by means of a rhetor-
ical relation. They play a supporting role, and are
therefore not necessary for coherence of the docu-
ment. Each node of the tree represents a relation
tuple ⟨S,N,R⟩ where S is the span, N is the direc-
tion of nuclearity, and R is the relation label. This
is more readily seen in Figure 1b which depicts an
alternate representation of the RST tree structure.

RST has a long history (Mann and Thompson,
1988), and its original formulation continues to be
treated as authoritative. However, for some types of
writing, especially student writing, additional and
combined relations have been proposed in order to
bring the set of used relations in line with the writ-
ing practices that are applicable to the corpus (Jiang
et al., 2019).

3 Related Work

This paper makes its fundamental contribution to
work on automated feedback for student writing
by expanding analysis capabilities that lay a foun-
dation for a new form of support. Our technical
contribution is grounded within the field of neural
network modeling, contributing to work on neu-
ral approaches to Rhetorical structure analysis and
leveraging approaches originating in the area of
neural model interpretation.

An effective method for performing discourse
parsing has been to utilize techniques from syntac-
tic parsing and applying them at the document level.
While RST parsing research has more frequently
seen parsers influenced by another approach re-
ferred to as constituency parsing, it was shown that
using techniques pioneered for dependency parsing
could be as or more effective (Morey et al., 2018).
As methods for RST parsing moved from those
that rely on discourse markers and hand-coded
rules (Marcu, 2000; LeThanh et al., 2004) to those
that rely on deep learning (Li et al., 2014; Ji and
Eisenstein, 2014; Braud et al., 2017), many of the
improvements have been through techniques from
syntactic parsing (Soricut and Marcu, 2003; Luong
et al., 2013). In a similar way, our work builds
on past RST parsers using neural transition pars-
ing (Yu et al., 2018; Mabona et al., 2019). We ex-
tend this work by leveraging another area of neural
network research, namely neural network interpre-
tation, in order to yield a reflective form of learning
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that improves performance by leveraging lessons
learned in an earlier stage of the training, as in a
stage-based regression.

Neural pathways (Fiacco et al., 2019a) refer to a
method for pinpointing sets of a model’s neurons
that function together in groups. These groups of
neurons are referred to as pathways because they
cut across architectural layers and allow represen-
tation of the flow of activation through a network,
potentially from input all the way to output. For
our application, we follow the original authors and
use PCA (Hotelling, 1933) for this step as the re-
sulting factor loadings (DeCoster, 1998) can then
be used to determine which neurons belong to each
pathway, and that forms the basis for our pruning
approach. The remaining stages of this approach
are not used in the work reported here but offer
opportunities for promising follow up work.

In offering an abstraction over the details of a
neural model, this approach offers the possibility
of identifying portions of learned networks that can
be dissected from the network as a whole and then
reused as pre-packaged basic functionality within a
more complex model learned at a later stage. Thus,
we seek to harvest components pretrained on a sim-
pler dataset to aid in learning a more robust model
later on a more challenging dataset. While a deep
dive into the differences between the learned func-
tions of an RST parser trained on a relatively clean
standard dataset and one trained solely on a noisier
student writing dataset is beyond the scope of this
paper, we will demonstrate that this work provides
inspiration for development of what we will refer to
as a neural pruning method that protects important
simple generalizations while enabling accounting
for complex special cases as well, and to represent
an awareness of the difference between these in the
final decision making.

4 A Corpus of Student Writing

In this section, we first offer more understanding
about RST and then describe a corpus of student
writing that has been annotated with RST.

4.1 Applying Rhetorical Structure Theory to
Student Writing

Since we are using a neural approach, annotated
data is necessary for training. The English RST Dis-
course Treebank is a common benchmark dataset
for RST parsing. It includes 385 articles from the
Wall Street Journal (Carlson et al., 2003), consti-

Figure 2: Example RST tree of a fragment of student
writing.

tuting approximately 180,000 words of texts and
covering a wide range of topics, such as finance
and arts. These articles were created by profes-
sional writers, and are thus typically well-written,
consistently structured, and copy-edited. (Palmer
et al., 2010).

We also consider an RST corpus of less-polished
student writing (Jiang et al., 2019). The corpus con-
sists of 274 essays collected from Turnitin Revision
Assistant (West-Smith et al., 2018), responding to
standards-aligned formative writing tasks (Valencia
and Wixson, 2001). These tasks cover a range of
genres, including literary analysis, historical anal-
ysis, argumentative, and informative writing. For
example, one writing task asks the student write
an essay to the head of the school board, to ar-
gue whether competitive sports are more helpful or
harmful to young people. These essays are drawn
from a diverse set of secondary classrooms across
the United States, representing a broad range of
writing skills and student backgrounds. We hold
out 25 documents as a development set, and 28
documents as a test set.

4.2 Comparison of Datasets
As we bridge between work on the original cor-
pus and the student writing corpus, we must con-
sider differences in properties. In addition to un-
conventional grammar and usage, many develop-
ing student essays lack clear cohesion or structure.
These issues may make the modeling task more
challenging than with the relatively clean RST-DT
dataset. Common organizational issues in the cor-
pus include (1) essays lacking transitional phrases
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(e.g., "However," or "In conclusion" ), or transition
words used inappropriately; (2) pronoun reference
ambiguity; (3) paragraphs where the topic sentence
is not clearly indicated, or where there are multi-
ple main ideas (and sometimes contradictory ideas)
in one paragraph; (4) sentences not presented in
a logical progression. These areas of focus for
developing writers are also highlighted in the liter-
ature (de Jong and Harper, 2005). Ambiguous and
weakly structured essays may indicate an oppor-
tunity for automated feedback, but they also pose
challenges for the parsing task.

The prevalence of the JOINT relation captures
some of the difference between RST-DT and the
Turnitin corpus. JOINT indicates a lack of rhetori-
cal relations between nuclei. It indicates that there
is no relation that could describe the connection
between sentences (Jiang et al., 2019). In news-
paper articles, this lack of connection is very rare.
However, in student essays the lack of coherent
rhetorical relations is common because of the wide
range of experience among developing writers.

4.3 Designing Feedback from RST Relations

Three veteran secondary English teachers provided
feedback and commentary on the structure and flow
of 18 essays from the Turnitin dataset. Their com-
ments reveal a handful of organizing principles and
focal points for structure-driven feedback that pro-
vide guidance on how an RST style analysis could
form the foundation for automated feedback.

In particular, almost all of the suggestions for
improvement highlight a lack of connection or a
break in flow between units of the essay. Some
of these comments addressed breaks between con-
secutive sentences within a paragraph, for example
“Strange jump in focus here... The rest of the in-
tro does not lead to this statement naturally,” and
“Immediate departure from the initial question in
sentence 1.” Other comments, in contrast, deal
specifically with the logical flow between whole
paragraphs: “Transitions between paragraphs are
relatively non-existent and make for pretty large
jumps from one topic to another” and “To keep the
organizational structure clear, this needs a more
explicit connection to the introduction and thesis,
including attention to the two distinct texts.”

These comments, anchored to sentences or para-
graphs in the student texts, roughly correspond to
the locations of JOINT relations in the gold RST
annotations. For example, Figure 2 is part of a gold

RST annotation of student-generated essays. This
essay has five paragraphs. The subtree (sentence
14-18) is a part of the third paragraph arguing that
parents should guide children in evaluating "inap-
propriate" books, instead of pushing libraries to ban
them. While sentence 18 is related to the overall ar-
gument in this paragraph, the connection between
sentence 18 and other sentences is not clear. Po-
tential automated feedback could be: “There may
be ideas in this sentence that don’t clearly relate
to the paragraph’s focus. Connect these ideas to
the paragraph’s main point by adding transition
words, or consider whether this sentence should be
revised or removed.” This example shows that iden-
tifying the missing link (referring to the relation
of JOINT) holds the promise of triggering mean-
ingful revision actions. As our previous studies
suggested that teachers viewed the structure of a
developing essay as an archipelago of internally
cohesive text islands[cite book chapter], we seek to
validate RST’s suitability to represent this segmen-
tation. Using the locations of teacher comments as
gold-truth segment boundaries using WindowDiff
(Pevzner and Hearst, 2002) and Beeferman’s Pk
(Beeferman et al., 1999). Both WindowDiff and Pk
range from 0 to 1 where a lower value indicates a
lower probability that a given sentence is assigned
to an incorrect segment, in practice a value of 0.2
to 0.4 is considered reasonable in state-of-the-art
systems (Badjatiya et al., 2018). We observe a
mean WindowDiff of 0.31 and Pk of 0.34 between
these teacher-reviewed essays and the RST JOINT

annotations. This suggests a plausible upper bound
on an RST parser’s ability to identify these critical
boundaries.

5 Improving and Validating RST Parsing
for Student Writing

In this section, we begin with and then improve on
the best previously published approach in automat-
ing RST analysis for writing. Transition parsers
are common among state-of-the-art models for dis-
course parsing with RST in the past several years.
Their power lies in their ability to make strong lo-
cal decisions about the next action the parser must
take given an embedding that, because of recurrent
neural models, has the capacity to contain features
from the whole document. However, recurrent neu-
ral networks often do not in practice retain suffi-
cient context for long range dependencies (Bah-
danau et al., 2014; Khandelwal et al., 2018). We
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Figure 3: Diagram of neural transition parser model architecture for RST parsing augmented with our changes
(shaded purple and green). The parent parser state (purple) has the same basic architecture as the rest of the diagram
with the exception of having another parent parser state component. The dotted line from EDU Embedding to Most
Nuclear EDU Embedding (green) indicates choice made by the model for which EDU to use.

address this by providing an additional embedding
for the predicted most nuclear sentence of the doc-
ument to provide a reference point for the parsing
decisions. Furthermore, inspired by neural interpre-
tation techniques, we further augment the model
with a two stage parsing approach that allows the
second stage of the model to learn from mistakes
made by the first.

5.1 Neural Transition Parsing Model

The model presented in this work is based on a
recurrent neural network based RST parser (Yu
et al., 2018). For the benefit of the reader this
subsection provides an overview of the base model,
however, for a full mechanical description see their
paper. Our augmentations of the model follow in
the remaining subsections.

The model constructs a neural representation
that is used to decide whether to make a SHIFT

or REDUCE action analogous to those in a simple
LR-parser (Knuth, 1965). Furthermore, the model
maintains a neural analogue to a stack and buffer
to track progress through the parse, which is illus-
trated in the unshaded regions of Figure 3.

EDU Embedding: Each sentence in the document
is embedded using a BiLSTM over word embed-

dings for each word in the EDU. The final states of
the forward and backward LSTMs are used as the
EDU representation.

Dependency Parse Embedding: In addition to the
embedding generated by the BiLSTM, an embed-
ding of syntactic information was included (Braud
et al., 2017; Mabona et al., 2019). The information
was integrated via concatenating the produced arc
embedding from the dependency parse obtained
from a strong neural dependency parser (Dozat and
Manning, 2017) with the output from the BiLSTM
above.
Buffer: The buffer is an LSTM that inputs each
EDU embedding from the end of the document to
the beginning. Each state is stored in memory such
that it can be accessed sequentially as items are
removed from the buffer. Each state of the buffer
is therefore an aggregate representation of all of
the EDUs from the current EDU to the end of the
document.

Stack: The stack is a Stack LSTM (Swayamdipta
et al., 2016). The stack state is updated via the
result of an MLP given the two stacks states popped
off the stack during a REDUCE action procedure.
If an item is popped off the stack, the stack state
is updated to the output state of the LSTM of the
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previous cell.
Action and Relation Prediction: At each time-
step the parser either predicts a SHIFT action or
one of the many REDUCE actions. Each RE-
DUCE action has an associated relation label and
predicting the correct REDUCE action amounts to
choosing the correct relation for the current subtree.
The prediction is made by a multi-layer percep-
tron (MLP) that is provided a concatenation of the
EDU embedding, the current neural state of the
buffer, the current neural state of the stack, and
additional neural representations that will be de-
scribed in depth in the next sections. The input
layer to the MLP will be referred to as the parser
state at a given time. For each action, a determinis-
tic procedure is executed in line with the transition
parsing paradigm. In the case where there is only
one possible action, the model is forced to use that
action without choice.

5.2 Most Nuclear EDU Embedding
To provide the model a reference for making pars-
ing decisions for a given document, we include
in the parser state an EDU embedding of the pre-
dicted most nuclear EDU. Formally, we consider
the most nuclear EDU the leaf node of the RST tree
that is reached when, starting at the root node, one
follows the direction of nuclearity at each branch.
For multinuclear nodes, we arbitrarily take the left
branch. In Figure 1, the most nuclear EDU would
be “The coyote is building an elaborate trap.”

The most nuclear EDU SNUC is selected by the
model by choosing the EDU with the maximum
score computed by an MLP given the EDU em-
bedding and choosing the highest scoring sentence.
This can be formalized as:

SNUC = argmax
s∈S

W · s

Where S is a set of all of the sentence EDU com-
puted by the neural transition parser.

The most nuclear EDU embedding is constructed
via a BiLSTM in much the same manner as the
EDU embeddings in the neural transition parser.
This BiLSTM has its own set of learned parameters,
though it uses shared word embeddings as those
used for the EDU embeddings.

Because there is only one predicted most nuclear
EDU for a document, the effective training samples
for this embedding is equal to the number of doc-
uments in the training set rather than the number
of EDUs. Because of this, it is necessary to restrict

the size of the embedding to prevent overfitting.
Furthermore, the error from the RST parsing task
cannot backpropagate to W through the argmax so
we include a separate error signal for predicting the
correct most nuclear EDU. The most nuclear EDU
of a document can be trivially obtained from the
gold trees.

5.3 Parent Parser State

Recent work has shown there is evidence that neu-
ral models may be learning general heuristics and
memorizing exceptions to those heuristics that in-
crease performance on a given task (Fiacco et al.,
2019a). Assuming this is the case, we attempt to
exploit this behavior to offload some of the com-
plexity of learning the RST discourse parsing task
into multiple phases of training. A fully trained
parent model, which includes all of the features in
the previous sections, is executed concurrently to
the child model and a subset of the parser state of
the parent model is concatenated with the parser
state of the child model.

The parser state for the parent model is updated
along with the child model using the action chosen
by the child model, though with its own stack and
buffer representations. This ensures that even if the
parent and child models diverge in their predicted
actions, the parser states are consistent. Maintain-
ing this consistency is important for the neural tran-
sition parser as the representation of the stack can
contain a representation of a larger segment of the
document than just a single EDU.

Neuron Selection via Pathways: For datasets with
noisy data, we prune the parser state from the par-
ent model to only use the dimensions of the state
that correspond to the neurons that are part of the
neural pathways that explain the most variance of
the model. The intuition for this pruning is that the
groups of neurons that explain the largest amount
of variance in the model will regularize the model
via eliminating overfitted parameters.

These neurons are obtained by extracting the
parser state for each training instance and construct-
ing an activation matrix with the dimensions of the
parser state as columns and the training instances
as rows. A PCA is performed over the matrix, and
the subset of resulting factors that cumulatively ex-
plain more than a tunable threshold of the variance
are chosen as the subset of pathways of interest.
For each selected factor, the factor loadings of each
neuron are computed and the N neurons with the
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highest loadings are added to the set of neurons
to be transferred. The value of N can be tuned by
optimizing performance on a validation set.

5.4 Training
There are three phases to the training of the model:
parent model training, neuron selection, and child
model training. The procedure for training the par-
ent and child models are identical except for the
usage of the parent neurons as features for the child
model. The neuron selection phase is only applica-
ble for the noisier Turnitin data and is described in
the Parent Parser State section.

There are three objectives that are optimized us-
ing negative log likelihood loss during the model
training. The first training objective (Lm) is predict-
ing the most nuclear EDU at the document level.
The second objective (Ln), at the action level, is
to predict the nuclearity of each relation given the
parser state. This objective affects how the model
composes the embeddings when combining via a
REDUCE action. The final training objective, (La),
is to choose the correct action given the parser state.
We do not fine tune the embedding from the depen-
dency parser during training. The third phase of
training follows the same procedure as the first
phase with selected neurons from the parent parser
state included. The final loss for a document is
described as:

L = αmLm +αn ∑
A

Ln +αa ∑
A

La

where A is the set of all actions required for the
parse and each α is a scaling factor that can be
tuned for each loss.

For noisy datasets, an additional step is required
for the training procedure; the neurons that will be
used by the child model must be selected. This is
performed by computing the neural pathways of the
parent model using the parser state via PCA. The
pathways that explain the most variance are chosen
and the heaviest loaded neurons on those pathways
are selected. During training, no gradient is passed
back to the parent model so the neuron selection
process need not be continuous nor differentiable.
Training the child model thereby uses the parser
state of the parent model as though it were a fixed
input.

6 Experiments

We provide three quantitative evaluations of our
method: first, in order to compare our parser to

previous RST parsers, we train and evaluate our
parser on the English RST-DT corpus. Second, we
provide an ablation study of the added components
of our model along with the model we used as a
base. The ablation study uses the same test set as
the first experiment, so results are directly compa-
rable. Lastly, we train another version of our model
on the Turnitin dataset, which has a very different
set of properties when compared to the RST-DT
corpus. This last set of experiments is designed
to test the ability of the model to handle unpol-
ished, less structured text. The model is compared
to the strongest baseline from the RST-DT corpus
retrained on the Turnitin dataset.

6.1 Evaluation Metrics
The evaluations of this work follow the setup de-
scribed by a recent metric enhancement for RST
(Morey et al., 2017) and, for consistency, only com-
pare to models that were included in that repli-
cation study or use the same evaluation method.
The reason for this restriction is that it was found
that RST Parseval, the previous standard evaluation
metric, artificially raised scores and had been used
inconsistently (Morey et al., 2017). Our models
are therefore evaluated using micro-averaged F1
scores on labeled attachment decisions for the four
standard metrics: span attachments (S), span at-
tachments with nuclearity (N), span attachments
with relations (R), and span attachments with both
nuclearity and relation labels (F).

6.2 Implementation Details
The models were implemented using the DyNet
neural network toolkit (Neubig et al., 2017). Train-
ing was performed on a NVIDIA GTX 1080. Early
stopping was performed based on the F1 scores
of the model without an oracle on the develop-
ment set, with a patience of 3. The ADAM opti-
mizer (Kingma and Ba, 2014) is used for training
with a learning rate of 0.001. Dropout (Srivastava
et al., 2014) is used for regularization and a dropout
of 0.3 is applied to each hidden layer. All tunable
α hyperparameters were left at 1.

For the RST parsing models, word embeddings
for both the parent and child models were randomly
initialized with 128 dimensional vectors. Each
LSTM in the parent model had 256 dimensions
while in the child model, each LSTM had 512 di-
mensions. For neuron selection, the 16 neurons
with the highest factor loadings from the PCA were
chosen for each pathway that explained more than
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F1 Scores

Model Span Nuclearity Relation Full

JI & EISENSTEIN (2014)(JI AND EISENSTEIN, 2014)* 64.1 54.2 46.8 46.3
FENG & HIRST (2014)(FENG AND HIRST, 2014A)* 68.6 55.9 45.8 44.6
LI ET AL. (2016) (LI ET AL., 2016)* 64.5 54.0 38.1 36.6
BRAUD ET AL. (2016) (BRAUD ET AL., 2016)* 59.5 47.2 34.7 34.3
BRAUD ET AL. (2017)(BRAUD ET AL., 2017)* 62.7 54.5 45.5 45.1
MABON ET AL. (2019) (MABONA ET AL., 2019) 67.1 57.4 45.5 45.0
ZHANG ET AL. (2020)(ZHANG ET AL., 2020) 67.2 55.5 45.3 44.3

OUR MODEL 71.7 60.3 44.5 44.3
-DEPENDENCY PARSE EMBEDDINGS 71.2 58.4 43.6 43.6
-PARENT PARSER STATE 70.2 57.2 43.0 42.9
-MOST NUCLEAR EDU EMBEDDINGS 68.4 57.2 42.7 42.4
TRANSITION PARSER ONLY 67.2 53.7 39.9 39.8

Table 1: RST-DT test set micro-averaged F1 scores for labeled attachment decisions for our model with varying
components removed. Parsers from previous work are reported as they appear in their original publication, with the
exception of those marked with an * where the reported results come from the replication study with the improved
metric (Morey et al., 2017).

1% of the model variance. The number of dimen-
sions for the PCA was tuned to explain 90% of the
variance in neuron activations.

The dependency parser was pretrained on Uni-
versal Dependencies v1 (Nivre et al., 2016) derived
from the Penn Treebank 3 (Marcus et al., 1999)
using version 3.9.2 of the Stanford Universal De-
pendency Converter. Word embeddings and label
MLP dimensions were set to 64 while the recur-
rent layers and the arc MLP layers were set to 128.
Choice of optimizer, dropout, and early stopping
criteria were the same for the dependency parser
pretraining.

7 Evaluation

7.1 Parsing Results

Table 1 shows the performance across parsers on
the labeled attachments metrics for the RST-DT
test set. We include reported metrics for several
models beyond the best baseline in order to provide
a comprehensive view of recent work in the field,
including other neural based models. The best ver-
sion of our model gains a 4.5% increase in F1 score
for the span metric (S) and a 7.9% increase in F1
score for combined span and nuclearity metric (N)
in comparison with the Feng Hirst (Feng and Hirst,
2014a) model, the next best model for those met-
rics. The increase was gained with a competitive,
albeit 2.8% lower span and relation metric (R).

Furthermore, we achieve these results with only

the dependency parser as external data. Pretrained
embeddings of any kind were not required for either
the dependency parser nor the final RST parser and
were found to not contribute empirically. Using
pretrained GloVe embeddings (Pennington et al.,
2014) do not significantly improve the performance
over random initialization.

7.2 Ablation
We evaluated the model with key components re-
moved to evaluate the effects of each of those com-
ponents on the final performance of the model. The
components ablated were the dependency parser
embedding, the most nuclear EDU embedding, and
the parent parser state. These results are presented
in the lower section of Table 1.

From the results we see that the largest contribu-
tor to our model’s performance was the inclusion
of the most nuclear EDU co-task without which,
the parser does not outperform the previous state-
of-the-art on any metric. The parent model’s parser
state as a feature for action and relation prediction
had the next largest effect with the span and nucle-
arity metric (N) falling to the same level as when
the most nuclear EDU embedding was not used.
Lastly, the syntactic information carried in the de-
pendency parser embedding contributed the least,
but still had a significant effect on all metrics.

We also present the performance of the base
model, our implementation of the base neural tran-
sition parser (Yu et al., 2018) with the same settings
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F1 Scores

Model Span Nuclearity Relation Full

RST-DT
JI & EISENSTEIN (2014)(JI AND EISENSTEIN, 2014)* 64.1 54.2 46.8 46.3
OUR MODEL 71.7 60.3 44.5 44.3
OUR MODEL (W/ NEURON SELECTION) 70.6 59.7 44.4 44.3

Turnitin Corpus
JI & EISENSTEIN (2014)(JI AND EISENSTEIN, 2014)* 56.1 33.4 1.2 1.1
OUR MODEL 44.1 22.9 14.0 12.4
OUR MODEL (W/ NEURON SELECTION) 47.6 28.4 18.0 17.0

Table 2: Test set micro-averaged F1 scores for labeled attachment decisions for our model on the RST-DT corpus
and the Turnitin dataset. The models were evaluated on each dataset both with and without pruning the parent parser
state (W/ NEURON SELECTION).

as each of the other models from the ablation study.
While it has competitive performance to prior work
on the span only metric (S), all of the metrics are
considerably lower than the final model. All ab-
lation conditions were significantly different from
the final model with p < 0.05.

7.3 Model Robustness with Neuron Selection

As our goal is to facilitate automatic essay feed-
back with RST, we evaluated our model, as well as
the best performing model for predicting Relations,
on the Turnitin dataset to test the ability of each
model to handle the less consistently structured
student writing data. Table 2 shows a comparison
of the model performance on both the RST-DT
corpus and the Turnitin dataset. For each dataset,
we include versions of our model that use neuron
selection as described in the Parent Parser State
section and without. Each model was trained on
the RST-DT dataset and fine-tuned on the Turnitin
Corpus. All models saw significant degradation of
performance on the student writing data as com-
pared to the Wall Street Journal articles. Our model
variations both has significantly (p < 0.001) less
loss of performance for Relation prediction com-
pared to the previous best performing model. Our
model that used the neuron selection significantly
(p < 0.001) increased performance on the Turnitin
dataset compared to the model without.

Qualitatively, the JOINT relation was the most
problematic for each parser as it was being consid-
erably over-generated despite being only the 5th
most common relation type. For variably struc-
tured writing such as student essays, understanding
these conditions would likely go the furthest for

improving RST parsing performance.

8 Conclusion

We presented two principal augmentations to neu-
ral transition parsers for RST that resulted in a 7.9%
increase in span prediction and a 4.5% increase in
nuclearity prediction. These improvements were
made while remaining competitive on relation pre-
diction, though no improvement was observed for
that metric. Furthermore, we evaluated our model
on an alternate, noisier dataset. We found that on
this dataset our model had more accurate relation
predictions than past approaches from the inclusion
of a neuron selection step between the training of
parent and child models in a boosting-like neural
ensemble enhancement.

For future work, we want to empirically ver-
ify that the prediction of structural breaks (JOINT

relations) in student writing align with teacher-
identified organization feedback. This can enable
automated essay feedback on the absence of struc-
ture, providing support where it’s needed most.
Furthermore, conveying the necessary information
contained within RST trees to students and teach-
ers provides an additional rich area of inquiry. It
is worthwhile to further explore how prospective
users respond to the technological instruction sup-
port to facilitate students’ ability to locate places
for revision and teachers’ ability to integrate the
automated feedback into their instruction.
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Abstract

Automated question generation has made
great advances with the help of large NLP gen-
eration models. However, typically only one
question is generated for each intended answer.
We propose a new task, Multi-Question Gen-
eration, aimed at generating multiple seman-
tically similar but lexically diverse questions
assessing the same concept. We develop an
evaluation framework based on desirable quali-
ties of the resulting questions. Results compar-
ing multiple question generation approaches in
the two-question generation condition show a
trade-off between question answerability and
lexical diversity between the two questions.
We also report preliminary results from sam-
pling multiple questions from our model, to
explore generating more than two questions.
Our task can be used to further explore the ed-
ucational impact of showing multiple distinct
question wordings to students.

1 Introduction

Automatic question generation (QG) is a well-
established task in natural language processing.
Large generation models have had success produc-
ing answer-informed factual comprehension ques-
tions, where the intended answer is a span located
in a passage (Qi et al., 2020; Wang et al., 2018;
Rajpurkar et al., 2016).

Automatically generating factual questions from
a passage can benefit students in a reading com-
prehension environment (Kurdi et al., 2020). How-
ever, the majority of question generation work has
focused on generating a single question with an
intended answer. In a student practice environment,
however, it is valuable to have multiple wordings
for the same question. This allows students to prac-
tice a concept multiple times without encountering
identical language. This additionally allows a word-
ing of the question to be held out for assessment.

We propose a new question generation task,
multi-question generation, which takes as input

an intended answer and produces both (1) an initial
question and (2) n reworded questions which main-
tain the semantic meaning of the original question
while varying language used. Although multiple
questions can be generated about different concepts
pertaining to an intended answer, we specifically
aim to generate questions which assess knowledge
of the same concept, varying only the language
used in the question.

Another issue with current generation systems
is the large overlap in words between the reading
passage and generated question. Table 1 shows
an example of an undesired output from a current
question generation system. Note the large overlap
between the generated question and input passage,
allowing students to scan for the answer in the
paragraph. For our task, we additionally specify
that the text of resulting questions should differ
from the content passage.

We propose automatic metrics grounded in de-
sirable properties of the generated set of questions.
Because we intend the questions to have the same
intended answer, we measure both (1) whether a
question answering (QA) model is able to pro-
duce the correct answer for each question (Yuan
et al., 2017) and (2) the semantic similarity between
the generated questions, measured using SBERT
(Reimers and Gurevych, 2019). Also, because we
intend for the questions to have distinct wordings,
we propose using a known n-gram overlap metric,
Paraphrase In N-Gram Changes (PINC), between
pairs of questions (Chen and Dolan, 2011). Finally,
because each generated question is tied to a pas-
sage, we propose using PINC to compare overlap
between each question and the input passage.

We report results using a variety of question gen-
eration conditions, including a paraphrase model,
a QG model fine-tuned to generate two questions,
and the use of decoding constraints to improve
question wording diversity. Our publicly-released
code and generated questions can be used to ex-
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Original
Passage

The Sarah Jane Adventures, starring Elisabeth Sladen who reprised her
role as investigative journalist Sarah Jane Smith, was developed by
CBBC; a special aired on New Year’s Day 2007 and a full series began
on 24 September 2007. A second series followed in 2008, notable for
(as noted above) featuring the return of Brigadier Lethbridge-Stewart. A
third in 2009 featured a crossover appearance from the main show by
David Tennant as the Tenth Doctor. In 2010, a further such appearance
featured Matt Smith as the Eleventh Doctor alongside former companion
actress Katy Manning reprising her role as Jo Grant. A final, three-story
fifth series was transmitted in autumn 2011 uncompleted due to the death
of Elisabeth Sladen in early 2011.

Answer Elisabeth Sladen
Question who reprised her role as investigative journalist sarah jane smith?

Table 1: Example passage taken from SQuAD dataset with corresponding question generated from ProphetNet (Qi
et al., 2020). Bolded text shows overlap between the input passage and generated question, which is not desired.

plore the impact of integrating these questions into
educational applications1.

2 Related Work

2.1 Question Generation

Many question generation models are fine-tuned
from large language models, achieving consider-
able success in producing factual reading compre-
hension questions (Grover et al., 2021; Chan and
Fan, 2019; Sultan et al., 2020). Other work aims to
generate questions given passages from educational
textbooks (Wang et al., 2018; Stasaski et al., 2021).
However, these QG models are trained to only pro-
duce a single question from a context paragraph
and intended answer.

2.2 Educational Question Application

Anderson and Biddle (1975) find that asking fac-
tual questions during reading can aid in the ability
to recall a story. Furthermore, providing students
with multiple phrasings of the same question has
the potential to ensure students have fully mastered
a concept (Kurdi et al., 2020). Rephrasing a ques-
tion when students answer incorrectly has been
included in best practices for educational question
asking (Tofade et al., 2013) as well as a component
of Elaborative Feedback (Murphy, 2007). Addi-
tionally, past educational research has also found
that providing a human-written paraphrased word-
ing of the same question has been shown to im-
prove reading comprehension of students who are

1Code is available at https://github.com/
kstats/MultiQuestionGeneration.

less skilled compared to a baseline with only one
question wording (Cerdán et al., 2019).

Following this past educational work, we pro-
pose leveraging neural systems to generate multi-
ple diverse question wordings. Our new task allows
future work to study this at scale.

3 Multi-Question Generation

Given the potential educational benefits that come
from answering questions with different wordings,
we propose Multi-Question Generation, with the
goal of producing multiple semantically similar,
lexically diverse questions with the same intended
answer. An intended answer and a passage are
the input to the task while the multiple diversely-
worded questions are the output. Although an in-
tended answer can have multiple concepts with
which questions can be generated from, these mul-
tiple questions should assess the same concept. An
example of this can be seen in Table 2.

3.1 Evaluation

We propose an evaluation framework to assess the
quality of the generated questions. Because we
do not have a gold human-collected dataset of
rephrased questions, we propose heuristic evalu-
ation metrics. We evaluate the generated questions
using a combination of PINC, a QA model, and
SBERT cosine similarity.

Because the set of questions should have lim-
ited lexical overlap, we use PINC to measure the
n-gram overlap among pairs of questions (Chen
and Dolan, 2011). Specifically, for two generated
questions q1 and q2, the PINC score is calculated
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Original
Passage

Victoria (abbreviated as Vic) is a state in the south-east of Australia.
Victoria is Australia’s most densely populated state and its second-most
populous state overall. Most of its population is concentrated in the
area surrounding Port Phillip Bay, which includes the metropolitan area
of its capital and largest city, Melbourne, which is Australia’s second-
largest city. Geographically the smallest state on the Australian mainland,
Victoria is bordered by Bass Strait and Tasmania to the south,[note 1]
New South Wales to the north, the Tasman Sea to the east, and South
Australia to the west.

Answer second-largest
Question 1 where does melbourne rank in terms of the size of cities in australia?
Question 2 what is melbourne’s population status?

Table 2: Selected Two-Question Generation output from the 2QG No Question Trigram model, presented in Section
4.

as:

PINC(q1, q2) =

1

N

N∑

n=1

1− |n-gramq1 ∩ n-gramq2 |
|n-gramq2 |

where N is the maximum n-gram considered and
n-gramq1 and n-gramq2 are the list of n-grams in
the first and second questions, respectively.

However, since this metric is not symmetric and
there is no reason to treat one question as the stan-
dard over another, we compute the score in both
directions and average:

PINCsym(q1, q2) =

PINC(q1, q2) + PINC(q2, q1)

2

We use PINCsym to calculate distinction
among the set of generated questions Q for a given
example as: ∀qi,qj∈Q : i 6=jPINCsym(qi, qj).

We additionally propose using PINC to calcu-
late the distance from each question to the context
paragraph C: ∀qi∈QPINC(C, qi). Note that here
we use the asymmetric PINC since we want to ex-
plicitly reward the question for introducing new
n-grams not found in the context paragraph.

We calculate PINC up to trigrams, manually con-
firming this to balance allowing important phrases
to be restated when appropriate without allowing
for long copied phrases.

Next, we draw from past work which has used
Question Answering models to evaluate the accu-
racy of Question Generation systems (Yuan et al.,
2017). Following this, we use the performance of

a Question Answering model2 to ensure the gen-
erated questions are answerable. For measuring
QA accuracy, we use a macro-averaged F1, treat-
ing the predicted answer and ground truth as bags
of tokens, as done in the original SQuAD paper
(Rajpurkar et al., 2016).

Lastly, we aim to measure the semantic simi-
larity between generated questions to ensure that
the questions assess the same content. To do this,
we use a pre-trained SBERT model3 (Reimers and
Gurevych, 2019) to encode each question into an
embedding and take the cosine similarity between
each pair of embeddings.

4 Experimental Conditions

We begin with the task of generating two ques-
tions (results of generating more than two ques-
tions can be seen in Section 6). To approach this
task, we leverage a high-quality neural question
generation model, ProphetNet (Qi et al., 2020). In
order to generate multiple questions, we explore (1)
transforming ProphetNet’s single question output
into a paraphrased second question, (2) fine-tuning
ProphetNet to output two questions sequentially,
and (3) sampling multiple times from ProphetNet.

All models use beam search with a beam size of
10 unless otherwise stated. For sampled results, we
use nucleus sampling (Holtzman et al., 2020) with
p = 0.95. All results are reported on the SQuAD
1.1 development set (Rajpurkar et al., 2016).

2https://huggingface.co/bert-large-
uncased-whole-word-masking-finetuned-
squad

3https://huggingface.co/sentence-
transformers/all-mpnet-base-v2
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4.1 Question Paraphrasing

For our first approach (1QG+Para), we use the
ProphetNet model to generate a single question
given the context and answer. We then pass this
generated question into a paraphrasing model. Ide-
ally, paraphrasing the original input will preserve
the meaning of the question while modifying the
lexical content. We use a T5-based model (Raffel
et al., 2020) that is trained on the Quora Question
(Chen et al., 2018) pairs dataset4.

4.2 Two-Question Generation

The previous approach (1QG+Para) is not ideal be-
cause the paraphrase model does not have access to
the context or intended answer. Thus, we finetune
ProphetNet to output two question for any given
context and answer (2QG). We finetune ProphetNet
on a dataset of paraphrased questions created from
1QG+Para’s paraphrase model. We augment each
training example in the SQuAD training dataset
with an additional paraphrase and then finetune
ProphetNet to predict a sequence of two questions
separated by a separator token, “[X_SEP].”

We fine-tuned ProphetNet for 10 epochs using
a learning rate of 1e-5 using the Adam Optimizer
(Kingma and Ba, 2015) on the entire SQuAD train-
ing set. We initialized the model using the weights
from Transformers (Wolf et al., 2020) 5. We trained
on an NVIDIA Titan RTX for 2 days.

4.2.1 Constrained Generation
While 2QG is able to output two well-formed ques-
tions, its ability to vary lexical diversity may be
limited by the training data. To further encourage
the model to output different questions, we add con-
straints to the 2QG model’s generation process to
force this property. We explore two constraints: 1)
requiring the generated questions to not repeat any
trigrams across both questions (2QG No Question
Trigram) and 2) requiring the generated questions
to not repeat any trigrams from the input passage
(2QG No Context Trigram). We also explore a
version of ProphetNet which has both of these con-
straints (2QG No Question-Context Trigram).

4.3 Sampling

Finally, we explore potential questions which can
be uncovered by sampling from the QG model’s

4https://huggingface.co/
ramsrigouthamg/t5_paraphraser

5https://huggingface.co/docs/
transformers/model_doc/prophetnet

learned distribution. For the 1QG case, we sample
from ProphetNet twice to generate the two ques-
tions (1QG 2-Sample). For the 2QG model (2QG
Sample), we sample once as the model output al-
ready contains two well-formed questions. In Sec-
tion 6, we explore sampling from the 2QG model
more than once.

5 Two-Question Generation Results

Two-Question Generation Results can be found in
Table 3. Appendix A contains randomly-sampled
model output for one of the best-performing mod-
els, 2QG No Question Trigram.

We observe that restricting the repetition of tri-
grams in the question generation increases the
PINC score, which is expected as generating repeat-
ing trigrams is constrained. However, this comes
at the cost of having a lower QA score.

We also note higher QA scores for the first ques-
tion compared to the second, meaning answerabil-
ity might be less important when rephrasing the
initial question. The drop in performance from
QA1 to QA2 for 1QG+Para is anticipated as the
paraphrase model does not have access to the an-
swer or context passage. However, surprisingly,
we observe similar performance drops with 2QG
models (in particular 2QG No Question Trigram).
The gap in quality is increased when the PINC
score between the questions is higher, indicating a
tradeoff between PINC score and QA score. We
also observe that restricting the trigrams from the
context paragraph (2QG No Context Trigram) in-
creases the PINC score with respect to the context
paragraph as expected, but does so at a smaller cost
to the QA score.

Lastly, we note an inverse relationship between
inter-question PINC score and SBERT similarity.
This indicates that diversifying lexical content of
questions may come at the cost of maintaining se-
mantic similarity between the two questions.

6 Toward Multi-Question Generation

We next explore bridging the gap from Two-
Question Generation to Multi-Question Generation.
While the 2QG model was fine-tuned to produce
two questions sequentially, we explore the extent
to which sampling from this model can produce
sets of more questions. We take the 2QG model
and sample from it multiple times using nucleus
sampling (p=0.95). We consider sets of 2, 4, 6,
and 8 questions.
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Model Q1-Q2 C-Q1 C-Q2 QA1 QA2 SBERT
1QG 2-Sample 0.32 0.49 0.50 0.83 0.82 0.91
1QG+Para 0.33 0.49 0.58 0.83 0.63 0.98
2QG 0.11 0.57 0.59 0.82 0.80 0.98
2QG Sample 0.12 0.58 0.60 0.83 0.80 0.98
2QG No Context Trigram 0.12 0.75 0.75 0.79 0.77 0.98
2QG No Question Trigram 0.77 0.58 0.76 0.83 0.63 0.83
2QG No Question-Context Trigram 0.77 0.75 0.80 0.79 0.62 0.85

Table 3: Two-Question Generation results. Models explored are discussed in Section 4. The first three columns
report the PINC score between the first question (Q1), the second question (Q2), and the context (C). The next two
columns report the QA model’s F1 score for the first (QA1) and second (QA2) generated question. The last column
reports the SBERT cosine similarity between the generated questions. Higher values are better for all metrics.

Figure 1: Average PINC between-question scores for
increasing number of question samples.

We examine the average between-question PINC
scores for the generated question sets, to explore
whether sampling can uncover unique question
wordings. Results can be seen in Figure 1. We
find a sharp decline in PINC score for more than
two questions. Future work should explore other
ways of generating more than two questions.

7 Future Work and Conclusion

Although automated evaluation metrics can mea-
sure the desirable properties of our Two-Question
Generation model outputs at scale, they are also
limited. Future work could include human evalu-
ation metrics to measure the semantic quality and
lexical diversity more robustly.

Future work should also explore using desirable
question metrics in a reinforcement learning objec-
tive to produce higher quality questions, similar to
previous work in abstractive summarization (Laban
et al., 2020) and text simplification (Laban et al.,
2021).

Additionally, more advanced paraphrase sys-
tems, such as the syntax-aware system proposed
in Kumar et al. (2020), could be leveraged for our
task. This work can explore which syntactic exem-
plars can be leveraged to generate questions with
varying syntactic structure.

Additionally, future work should also include
teacher evaluation to collect education-specific
feedback on sets of questions and our desirable
question properties. This work can help better de-
fine what constitutes a good question and poten-
tially uncover different automated metrics.

Future work can leverage our task to evaluate
the educational impact of multiple diverse question
wordings. Multi-Question Generation can be inte-
grated into a reading comprehension environment
to test student reactions to a reworded question.
Generating multiple question wordings can fully
test the students’ reading comprehension and abil-
ity to apply information in new situations. Our
publicly-released pipeline has the potential to gen-
erate multiple wordings of the same questions to
enrich educational resources at scale.
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A Generated Output
Context Answer Q1 Q2 Q1-

Q2
C-
Q1

C-
Q2

The annual NFL Experience was held at the Moscone
Center in San Francisco. In addition, "Super Bowl City"
opened on January 30 at Justin Herman Plaza on The
Embarcadero, featuring games and activities that will
highlight the Bay Area’s technology, culinary creations,
and cultural diversity. More than 1 million people are
expected to attend the festivities in San Francisco during
Super Bowl Week. San Francisco mayor Ed Lee said of
the highly visible homeless presence in this area "they
are going to have to leave". San Francisco city super-
visor Jane Kim unsuccessfully lobbied for the NFL to
reimburse San Francisco for city services in the amount
of $5 million.

$5
mil-
lion

how much
did kim ask
the nfl to
reimburse san
francisco for
city services
during the
super bowl?

what did lee
ask for from
the nfl in terms
of financial as-
sistance for san
francisco dur-
ing the super-
bowl?

0.79 0.42 0.75

Newcastle has three cathedrals, the Anglican St.
Nicholas, with its elegant lantern tower of 1474, the Ro-
man Catholic St. Mary’s designed by Augustus Welby
Pugin and the Coptic Cathedral located in Fenham. All
three cathedrals began their lives as parish churches. St
Mary’s became a cathedral in 1850 and St Nicholas’ in
1882. Another prominent church in the city centre is
the Church of St Thomas the Martyr which is the only
parish church in the Church of England without a parish
and which is not a peculiar.

Coptic what is the
third cathedral
in newcastle?

what are
the three
cathedrals of
newcastle?

0.86 0.65 0.71

With Rivera having been a linebacker with the Chicago
Bears in Super Bowl XX, and Kubiak replacing Elway
at the end of the Broncos’ defeats in Super Bowls XXI
and XXIV, this will be the first Super Bowl in which
both head coaches played in the game themselves.

Super
Bowl
XX

what was the
first super bowl
in which both
head coaches
played?

in what way
did the first
superbowl ever
take place?

0.84 0.18 0.86

Cultural imperialism is when a country’s influence is felt
in social and cultural circles, i.e. its soft power, such
that it changes the moral, cultural and societal world-
view of another. This is more than just "foreign" music,
television or film becoming popular with young people,
but that popular culture changing their own expectations
of life and their desire for their own country to become
more like the foreign country depicted. For example, de-
pictions of opulent American lifestyles in the soap opera
Dallas during the Cold War changed the expectations
of Romanians; a more recent example is the influence
of smuggled South Korean drama series in North Korea.
The importance of soft power is not lost on authoritarian
regimes, fighting such influence with bans on foreign
popular culture, control of the internet and unauthorised
satellite dishes etc. Nor is such a usage of culture re-
cent, as part of Roman imperialism local elites would be
exposed to the benefits and luxuries of Roman culture
and lifestyle, with the aim that they would then become
willing participants.

Roman what culture is
an example of
cultural imperi-
alism?

what is cultural
imperialism
and what are
some examples
of this?

0.77 0.70 0.77

BSkyB’s standard definition broadcasts are in DVB-
compliant MPEG-2, with the Sky Movies and Sky Box
Office channels including optional Dolby Digital sound-
tracks for recent films, although these are only accessible
with a Sky+ box. Sky+ HD material is broadcast using
MPEG-4 and most of the HD material uses the DVB-S2
standard. Interactive services and 7-day EPG use the
proprietary OpenTV system, with set-top boxes includ-
ing modems for a return path. Sky News, amongst other
channels, provides a pseudo-video on demand interactive
service by broadcasting looping video streams.

Dolby
Digi-
tal

what kind of
soundtracks
are optional
on sky movies
and sky box
office?

what kinds of
soundtracks do
sky sky box of-
fices and sky
movies use?

0.69 0.46 0.70

Table 4: Randomly-sampled model output from the 2QG No Question Trigram model.
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Abstract

Responsive teaching is a highly effective strat-
egy that promotes student learning. In math
classrooms, teachers might funnel students to-
wards a normative answer or focus students to
reflect on their own thinking, deepening their
understanding of math concepts. When teach-
ers focus, they treat students’ contributions
as resources for collective sensemaking, and
thereby significantly improve students’ achieve-
ment and confidence in mathematics. We pro-
pose the task of computationally detecting fun-
neling and focusing questions in classroom dis-
course. We do so by creating and releasing an
annotated dataset of 2,348 teacher utterances
labeled for funneling and focusing questions, or
neither. We introduce supervised and unsuper-
vised approaches to differentiating these ques-
tions. Our best model, a supervised RoBERTa
model fine-tuned on our dataset, has a strong
linear correlation of .76 with human expert la-
bels and with positive educational outcomes,
including math instruction quality and student
achievement, showing the model’s potential
for use in automated teacher feedback tools.
Our unsupervised measures show significant
but weaker correlations with human labels and
outcomes, and they highlight interesting lin-
guistic patterns of funneling and focusing ques-
tions. The high performance of the supervised
measure indicates its promise for supporting
teachers in their instruction.1

1 Introduction

Students are more engaged and learn more when
teachers pose carefully chosen questions to draw
out student thinking, and then attend closely
to what students say (Blazar, 2015; Herbel-
Eisenmann and Breyfogle, 2005). One way that
teachers do this is by using focusing question pat-
terns; i.e., “attending to what the students are think-
ing, pressing them to communicate their thoughts

1Data and code are available at https://github.
com/sterlingalic/funneling-focusing

Figure 1: Example teacher utterance and possible stu-
dent replies, illustrating the difference in funneling (top
exchange) and focusing (bottom exchange). (Herbel-
Eisenmann and Breyfogle, 2005)

clearly, and expecting them to reflect on their
thoughts and those of their classmates” (National
Council of Teachers of Mathematics, 2014, here-
after NCTM). Focusing is often contrasted to the
less effective yet more common question pattern of
funneling, where teachers pose “a set of questions
to lead students to a desired procedure or conclu-
sion, while giving limited attention to student re-
sponses that veer from the desired path” (NCTM,
2014). The use of focusing questioning patterns has
been linked to better student learning outcomes and
confidence in mathematics (Hagenah et al., 2018;
Franke and Kazemi, 2001).

Supporting teachers to use more focusing ques-
tion patterns requires first helping them to identify
the extent to which they are focusing or funnel-
ing in their own classrooms. However, the current
methods of measuring funneling and focusing are
resource intensive, requiring manual classroom ob-
servation (e.g., Hagenah et al., 2018). Developing
computational methods for identifying funneling
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and focusing thus present an opportunity to pro-
vide automated feedback for questioning patterns
at scale. Recent tools that provide automated feed-
back to teachers on discourse moves have been
effective at improving their uptake of student con-
tributions and student outcomes (Demszky et al.,
2021b) and helped raise awareness about different
instructional talk moves (Jacobs et al., 2022b). One
promising application of an automated measure of
questioning patterns is to build a similar tool that
encourages teachers to engage with their students
by asking more focusing questions.

We propose several approaches for computation-
ally identifying funneling and focusing questions,
including supervised and unsupervised modeling.
In order to develop our approaches, we create a
dataset of 2,348 student-teacher exchanges sam-
pled from elementary math classroom transcripts,
each annotated by three domain experts for teach-
ers’ use of funneling and focusing questions, or
neither. Then, we fine-tune a supervised RoBERTa
model (Liu et al., 2019) on the annotated data. This
model has the highest correlation of .76 with hu-
man judgments, among our proposed models.

We also explore several unsupervised learn-
ing approaches, in order to encourage domain-
transferability, to account for the lack of labeled
data in most educational settings, and to analyze
the linguistic patterns that drive funneling vs fo-
cusing questions. Our first unsupervised model
hinges on the assumption that the range of possible
student responses are narrower for funneling ques-
tions than for focusing ones. In Figure 1, we see
that the teacher’s funneling questions about the rise
and run are quantitative in nature, so we can more
confidently predict that the student response will be
a number. Conversely, focusing utterances, which
encourages students to reflect on their own think-
ing, tend to have a wider range of valid responses.
The teacher’s focusing question in Figure 1 shows
that the students can think about the slope in many
different ways, so we can less confidently predict
what the student reply will be. Following this in-
tuition, we adapt Zhang and Danescu-Niculescu-
Mizil (2020)’s measure of forwards-range, an un-
supervised measure that quantifies the strength of
our expectation of a reply to a given utterance.

We also use other linguistic features informed by
educational theory as measures to identify funnel-
ing and focusing. Since focusing examples probe
student thinking and understanding, we use the

count of cognitive verbs present in an utterance as
one of the features. Question words and phrases
also provide insight into classifying closed-ended
and open-ended questions, so we include both the
count of unigram and bigram question words as fea-
tures. Table 2 shows the list of words we used for
each feature. We find that while some of these fea-
tures correlate significantly with human judgments
(e.g. forwards-range and the use of “why”), these
correlations are significantly weaker than those of
the RoBERTa model.

To further validate our measures and to under-
stand the link between funneling and focusing and
educational outcomes, we correlate our measures
with observation scores of instruction quality and
student engagement and with value-added scores.
Value-added scores are statistical estimates of a
teacher’s contribution to student test score growth,
which serve important indicator of student learn-
ing and achievement. We find that our RoBERTa
model correlates strongly with all of these out-
comes, which is a significant finding in the context
of educational measurement (Kraft, 2020), and it
indicates the promise of this measure to support
teachers and students.

2 Contributions

We make the following contributions in this paper.

1. We propose the task of identifying funnel-
ing and focusing questions in classroom dis-
course.

2. We create and release an annotated dataset of
2,348 teacher turns labeled for funneling or
focusing questions or neither.

3. We propose supervised and unsupervised ap-
proaches to identify funneling and focusing
questions. Our unsupervised approaches in-
clude counting lexical features (e.g. question
words and cognitive verbs) and estimating the
expected diversity of responses to a teacher
utterance. Our best-performing approach, a
RoBERTa model, has a correlation of .761
with human annotations.

4. We show that our estimates of funneling and
focusing have a significant positive correlation
with meaningful educational outcomes related
to instruction quality and student achieve-
ment.
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3 Related Work

Many researchers have measured the types of ques-
tion patterns that teachers use in classrooms by
hiring and training raters to manually code tran-
scripts of teacher-student discourse (Boaler and
Brodie, 2004; Kane et al., 2015; Gregory et al.,
2017). While this measurement approach has been
useful for identifying effective teaching practice in
well-funded large-scale research studies, it is too
costly to be scalable.

Computational methods for measuring question
patterns in classrooms offer both the potential to
undertake more research in this area, as well as
the potential to support teachers to improve their
classroom practice by automatically coding aspects
of their classroom discourse for them to review.

Prior work in computationally analyzing class-
room discourse has employed a variety of tech-
niques to automatically detect teacher discourse
variables. Recent advances in natural language
processing has led to a larger presence of work
applying neural methods with varying levels of
success in detecting classroom discourse variables,
such as semantic content, instructional talk, and
elaborated evaluation (Jensen et al., 2021; Song
et al., 2021). For unsupervised approaches, Dem-
szky et al. (2021a), which is also most similar to
our work in terms of approach and dataset, propose
an unsupervised measure of teachers’ uptake of
students’ contributions, and we use their sample in
our annotation for funneling and focusing. Other
computational work on questions in classroom dis-
course has focused on detecting questions in live
classroom audio (Donnelly et al., 2017; Blanchard
et al., 2016) and measuring the authenticity of ques-
tions in classroom discourse (Cook, 2018; Kelly
et al., 2018). Our task closely relates to the task
of detecting authentic questions but instead of us-
ing the CLASS framework used by prior work, we
draw on the math education literature to develop
our own coding instrument for funneling and fo-
cusing. In addition, while prior work in compu-
tationally analyzing questions uses feature-based
classification, we also apply state-of-the-art neural
machine learning models to solve this task.

Our proposed task of identifying funneling and
focusing questions is situated among related dia-
logue tasks where the goal is to predict a label for
a set of turns in dialogue. General approaches to
this task have employed supervised classifiers in
a variety of settings, such as to classify sarcasm

in social media dialogue and participant roles in
cyberbullying (Lukin and Walker, 2013; Jacobs
et al., 2022a). Similar to our approach of identify-
ing patterns that generalize beyond annotated data,
others in this domain have also found meaningful
patterns and features in labeled data that success-
fully generalized to unlabeled data (Oraby et al.,
2015a,b).

Our work is also closely related to the com-
putational study of conversations. We build on
Zhang and Danescu-Niculescu-Mizil (2020)’s
unsupervised measure of forwards-range, which
was originally developed to analyze strategies in
counseling conversations.

4 Dataset

We create a new open-source dataset labeled for
funneling and focusing questions with the help of
domain experts. We recruit former and current
math teachers and educators trained in classroom
observation to annotate 2,348 examples of teacher-
student exchanges. We use the same sample of
exchanges as Demszky et al. (2021a) — they are
sampled from transcripts of 45-60 minute long
4th and 5th grade elementary math classroom ob-
servations collected by the National Center for
Teacher Effectiveness (NCTE) between 2010-2013
(Kane et al., 2015).2 The transcripts represent
data from 317 teachers across 4 school districts
in New England that serve largely low-income, his-
torically marginalized students. Transcripts are
fully anonymized: student and teacher names are
replaced with terms like “Student”, “Teacher” or
“Mrs. H”.3

4.1 Annotation

Our annotation framework for funneling vs focus-
ing is designed by experts in math quality instruc-
tion, including our collaborators, math teachers
and raters for the Mathematical Quality Instruc-
tion (MQI) coding instrument, used to assess math
instruction (Teaching Project, 2011). We prepare
a dataset of utterance pairs (S, T ) for annotation,

2The only difference between our sample and that of Dem-
szky et al. (2021a) is that we include an additional 102 ex-
amples that were rated by all 13 raters, instead of only the
examples rated by 3 raters.

3Parents and teachers gave consent for the study (Harvard
IRB #17768), and for de-identified data to be retained and
used in future research. The transcripts were anonymized at
the time they were created.
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where S is a student utterance and T is a subse-
quent teacher utterance following the approach of
Demszky et al. (2021a). In the annotation interface,
raters can see the utterance pair (S, T ), the les-
son topic, which is manually labeled as part of the
original dataset, and two utterances immediately
preceding (S, T ) for context.

A teacher utterance needs to meet three criteria
in order to be categorized as funneling vs focusing:
it needs to (i) relate to math, (ii) follow up on the
previous student utterance, (iii) include a question.
For example, a question such as “Can you sit down
please?” cannot be classified as funneling or focus-
ing because it does not relate to math. Similarly,
if the teacher asks a question on a new topic, their
question cannot be rated for funneling vs focusing,
since it does not follow up on the previous student
utterance. Therefore, annotators are first asked if a
teacher utterance meets these three criteria. If so,
raters are asked to indicate whether the utterance
can be categorized as funneling or focusing. The
coding protocol is included among the supplemen-
tary materials.

We recruited expert raters (with experience in
teaching and classroom observation) whose demo-
graphics were representative of US K-12 teacher
population. We followed standard practices in ed-
ucation for rater training and calibration. We con-
ducted several pilot annotation rounds (5+ rounds
with a subset of raters, 2 rounds involving all 13
raters), quizzes for raters, thorough documentation
with examples, and meetings with all raters. After
training raters, we randomly assign each example
to three raters. Table 1 includes a sample of our
annotated data, with majority rater judgments.

Post-processing. We create two datasets to sep-
arately measure our methods’ ability to identify
funneling and focusing questions in naturally oc-
curring data — i.e. including data that does not
meet the criteria above — and its ability to separate
funneling questions from focusing ones. We create
a dataset called UNFILTERED, where we replace
raters’ judgments for a teacher utterance not meet-
ing the criteria above with 0, funneling with 1 and
focusing with 2. We also create a dataset called
FILTERED, where we replace raters’ judgments for
a teacher utterance not meeting the criteria above
with NaN, funneling with 0 and focusing with 1.
Then, we z-score each raters’ judgments, and com-
pute the average of z-scores across raters to obtain a
single label for each example in each dataset. This

Example Label

S: I disagree with Student A because if you skip count
by 100 ten times, that will get you to 1,000.
T: Let’s try it. You ready? Let’s
start right here with Student F.
S: A hundred.

focus

S: I first got 32 and then I got 48.
T: And how did you find that?
S: Because I did 16 times two is 32.

focus

S: We did 5 times 2 equals 10.
T: No. We did 5 times 1 equals 5, darling.
S: Oh, that’s to solve the whole –

funnel

S: 4 minus 2 equals 2.
T: Two and eight tenths. Does everybody understand?
S: Yes.

funnel

S: Are we gonna out in the hallway?
T: Yeah.
S: Please.

N/A

S: I’m not going to [keep it].
T: Why? When you’re ready to let me help you,
please let me know.
S: [Multiple conversations].

N/A

Table 1: Examples from our annotated data, showing
the majority label for each example.

process yields 2348 unique examples for UNFIL-
TERED and 1566 unique examples for FILTERED.

Rater agreement. We obtain an average inter-
rater leave-out Spearman correlation of ρ = .644
for UNFILTERED (Fleiss κ = .4154), and ρ = .318
for FILTERED (Fleiss κ = .318). Our interrater
agreement values are considered high comparable
to those obtained by Demszky et al. (2021a) for
uptake, and those obtained in widely-used class-
room observation protocols such as MQI and the
Classroom Assessment Scoring System (CLASS)
(Pianta et al., 2008). The lower agreement value
for FILTERED indicates that distinguishing funnel-
ing vs focusing questions is more subjective than
evaluating if a teacher utterance meets the criteria
for a follow-up question. This is expected, since
the criteria are relatively straightforward and do not
require domain expertise.

4.2 Educational Outcomes

In order to understand the relationship between
funneling and focusing and instruction quality and
learning outcomes, we leverage variables associ-
ated with the original transcript dataset described

4We prefer to use correlations because kappa has undesir-
able properties (see Delgado and Tibau, 2019) and correlations
are more interpretable and directly comparable to our models’
results (see later sections).

227



above, from which we sampled our data. We use
classroom observation scores from the MQI cod-
ing instrument (Hill et al., 2008) for the follow-
ing items: (1) students provide explanations (scale:
not present, low, mid, high), (2) overall student-
participation and meaning making and reasoning
(scale: not present, low, mid, high), (3) mathe-
matical quality of instruction (5 point scale: low,
low/mid, mid, mid/high, high). We chose these
items as they relate most closely to questioning
patterns and their effect on students discourse. We
also use value-added scores, statistical estimates of
a teacher’s contribution to student test score growth.
Value-added models make statistical adjustments
to account for differences in student learning that
might result from student background or school-
wide factors outside the teacher’s control. Numer-
ous studies in education and economics have shown
that value-added scores are an unbiased estimate of
teacher impact on student achievement (e.g. Chetty
et al., 2014). It has also been widely used in teacher
evaluation systems around the country.

5 Proposed Methods

We use a variety of supervised and unsupervised
methods to identify funneling and focusing ques-
tions.

RoBERTa. We fine-tune a RoBERTa-based re-
gression model (Liu et al., 2019) on our annotated
data. For our FILTERED and UNFILTERED subsets,
we trained and evaluated separate models on their
respective splits. We performed a small hyperpa-
rameter search over the number of epochs, which
led to our best model trained over 10 epochs and
with the default parameters from the Simple Trans-
formers library (Rajapakse, 2019).

Forwards-range. The natural split in the di-
versity of responses to funneling and focusing
utterances led us to adapt Zhang and Danescu-
Niculescu-Mizil (2020)’s forwards-range measure
for our task. The forwards-range is an unsupervised
measure that quantifies the strength of our expecta-
tion of a reply to a given utterance. This measure
was used in Zhang and Danescu-Niculescu-Mizil
(2020)’s paper originally to analyze counseling con-
versations, and here we apply this measure to our
dataset.

We use the implementation of the forwards-
range from ConvoKit, an open-source toolkit for
analyzing conversations (Chang et al., 2020). Con-

voKit transforms each utterance into a vector rep-
resentation using TF-IDF re-weighting. Then,
to calculate the forwards-range for a given word
or phrase, it calculates the weighted average
of the vectors for all utterances containing the
word/phrase, which Zhang and Danescu-Niculescu-
Mizil (2020) calls the central point. The forwards-
range of the word is then calculated as the average
cosine distance between the observations contain-
ing the word and the central point.

Before we calculate the forwards-range, we also
apply an original pre-processing pipeline to adapt
the forwards-range measure to best work in the con-
text of educational data. We apply the following
pre-processing pipeline to reduce the vocabulary
size and better capture teachers’ rhetorical moves.
We first delexicalize all nouns and numbers with
“[NOUN]” and “[NUMBER]” tokens. Then, we
keep either the last two sentences or the last twenty
tokens, whichever one yields the most tokens, fol-
lowing the observation that teachers’ questions tend
to be at the end of their utterance. We then clean
the text by removing punctuation and converting to
lowercase. Finally, using the Phrases module of the
open-source NLP library Gensim, we find the most
common pairs of words in our UNFILTERED split of
the NCTE dataset (Rehurek and Sojka, 2011). We
use a threshold of 1.0 to the default Phrases scoring
function and a minimum count of 500. The module
then joins the individual words in the bigrams by an
underscore character. For example, "okay and how
did you do that" becomes “okay and how_did you
do that”. We then apply the ConvoKit framework
to our dataset to generate forwards-range scores.

Length and lexical features. We also explore
the effectiveness of other features in measuring
funneling and focusing. We look at (1) length, (2)
the count of cognitive verbs, and (3) the count of
question words. We calculate length as the number
of tokens in a teacher utterance without any pre-
processing; this serves as a baseline lexical feature
with which to compare performance. In select-
ing other features, we saw that focusing utterances
tended to contain cognitive verbs, which makes
sense intuitively since focusing asks students to
reflect on their own and/or their classmates’ think-
ing. For the count of cognitive verbs, we source
our cognitive verbs from research in cognitive lin-
guistics (Roque et al., 2018). We also include ques-
tion words after exploratory data analysis, which
revealed question words to be predictors of the di-
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Features

Cognitive verbs understand, think, know, believe, figure out, find out, deduce, remember,
imagine, realize, discover

Question Words - Unigrams who, what, where, when, why, how, which
Question Phrases - Bigrams how many, how do, what is, what else, etc.

Table 2: The list of of our lexical features. We count the appearances of all cognitive verbs and each question
word/phrase in an utterance as features to predict funneling and focusing.

versity of responses (e.g., a high range of responses
to "why_did" versus a smaller range of responses
for "how_many"). For question words and phrases,
we take the most frequent unigram and bigram
question words and phrases present in the NCTE
dataset. Table 2 includes these features.

6 Experiments and Results

We evaluate the ability of our models to identify
funneling and focusing questions on both the UN-
FILTERED and the FILTERED datasets. We train
separate models on each dataset, the idea being
that the model trained on the UNFILTERED set can
help identify funneling and focusing questions in
"in the wild" – i.e. in any teacher utterance, while
the model trained on the FILTERED set can help
categorize a dataset of questions as funneling or
focusing.

The results are shown in Table 3. We find that the
RoBERTa models have a strong positive Spearman
correlation with human expert labels both on the
UNFILTERED (ρ = .761) and the FILTERED (ρ =
.443) sets. Given that the model’s score is in a
similar range as human agreement5, it is unclear if
our model has hit a ceiling, or if there is room for
improvement above these correlations.

Only few of the unsupervised measures show sig-
nificant correlations with human judgments. The
forwards-range has a significant negative correla-
tion for the UNFILTERED set (ρ = −.130), but it
changes to a significant positive correlation for the
FILTERED set (ρ = .159). The positive correla-
tion on the FILTERED set validates our assumption
that focusing questions receive a greater variety
of student responses. The negative correlation of
the UNFILTERED suggests that replies to follow-up
questions are less varied than other student utter-

5Human agreement and model scores are not directly com-
parable. The human agreement values are averaged leave-
out estimates across raters (skewed downward). The models’
scores represent correlations with an averaged human score,
which smooths over the interrater variance of 3 raters.

ances, which makes intuitive sense, since replies
to follow-up questions may reuse words (e.g. “I
think...", “Yes.") and they tend to stay within the
same topic as the teachers’ question.

The correlation pattern for length is the opposite
as that of the forwards-range, showing a positive
correlation with human judgments on the UNFIL-
TERED set and a negative correlation on the FIL-
TERED set. This suggests that overall, teacher ut-
terances containing follow-up questions tend to be
longer but that focusing questions tend to be shorter
than funneling ones.

As for the other linguistic features, we see a
significant positive correlation between the use of
“why”, “how do”, and “what else” on the FILTERED

set, confirming our hypotheses that indicators of
open-ended questions are also indicators of focus-
ing. In contrast, the use of “when” has a negative
correlation with focusing on the FILTERED set, in-
dicating that that teachers tend to use “when” when
they expect a normative answer. Interestingly, other
question words do not show a significant correla-
tion on the FILTERED set, indicating that question
words in themselves are not strong indicators of
funneling and focusing. Question words and cogni-
tive verbs tend to have a positive correlation with
humans on the UNFILTERED set, which is unsurpris-
ing, as these features are all indicators of questions.
Overall, the trend that we see throughout the unsu-
pervised measures is that there is not enough signal
for them to reliably identify funneling and focusing
questions.

To measure the practical utility of our models
in classroom settings, we also calculated the cor-
relations of our model outputs with educational
outcomes (see Section 4.2). Table 4 show the
results of this analysis. The observation scores
are annotated at the transcript level, so, similar to
(Demszky et al., 2021a), we first mean-aggregate
each model’s outputs to yield a model score per
transcript. We then use ordinary least squares re-
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Model
UNFILTERED

(N=2348)
FILTERED

(N=1566)
Forwards-range -0.130*** 0.159***
Length 0.153*** -0.149***

Question Words
Who 0.015 -0.026
What 0.276*** 0.002
When 0.026 -0.065*
Where 0.027 -0.020
How 0.189 -0.036
Why 0.188*** 0.128***

How Many 0.065** -0.040
How Do 0.104*** 0.080**
What’s 0.051* -0.035
What Else 0.116*** 0.111***

Cognitive Verbs 0.193*** -0.027
RoBERTa
UNFILTERED

0.761*** 0.329***

RoBERTa
FILTERED

0.374*** 0.443***

Interrater
correlation

0.619
[0.530, 0.694]

0.318
[0.220, 0.413]

Table 3: Spearman correlations of model outputs from
the supervised RoBERTa model, unsupervised forwards-
range model, and word phrase count features with the
averages of human labels for question category. Aster-
isks indicate that the correlation is significant (p-value:
*: <0.05, **<0.01, ***<0.001). The brackets for in-
terrater correlation indicate the range of values for 13
raters, where each value represents leave-out correlation
for a particular rater.

gression to compute the correlation of the models’
outputs and the outcome scores, controlling for
the number of student-teacher exchanges in each
transcript. We find that there is a positive linear cor-
relation of the RoBERTa model output scores with
all three educational outcome scores for the NCTE
dataset. We also find that there is a significant,
but weaker correlation between the forwards-range
measure and the educational outcomes.

We conduct a similar analysis with value-added
scores. Since value-added scores are linked to
teachers, we mean-aggregate each models’ outputs
at the teacher-level. Then, we compute the linear
correlation between each feature and the outcome.
The predictions from the RoBERTa model trained
on the FILTERED dataset have a significant corre-
lation with value-added scores, indicating that the

measure of funneling and focusing teacher ques-
tions captures meaningful variance in students’ aca-
demic outcomes.

7 Qualitative Analysis of Model Outputs

To better understand the performance of our mod-
els, we analyzed the predictions of our RoBERTa
model fine-tuned on the FILTERED set and the
forwards-range. Here, we choose to analyze per-
formance on the FILTERED set to better understand
the performance of our models in specifically dis-
tinguishing between funneling and focusing, rather
than including the UNFILTERED set for the re-
lated but easier task of identifying if the teacher
prompted the student. Some selected examples
that we examined are shown in Table 5. For ut-
terances without question phrases, the RoBERTa
model and forwards-range model perform better
than stand-alone question phrase features, as shown
in the last example in Table 5. Many funneling
teacher utterances do not actually include question
words, but rather prompt the student to finish the
teacher’s sentence. The complexity of these classes
of sentences, covering a wide range of topics with
unique vocabulary tokens, motivates the use of our
forwards-range and RoBERTa models, which are
able to correctly classify these examples.

The RoBERTa model was also able to classify
more complex examples that include several differ-
ent question phrases. For instance, the first exam-
ple in the table, includes the question phrase “how
many”, which correlates with funneling. But then
the teacher also asks the student about their think-
ing, asking “what do you mean” by that, which
makes the utterance an example of focusing. This
suggests that the RoBERTa model is able to ac-
count for contextual factors and weigh the impor-
tance of different question phrases. On the other
hand, the forwards-range predicted this example as
“funneling”, which shows one of its weaknesses as
a bag-of-words model that lacks context.

One area of improvement across all the mod-
els we found through manual inspection is a class
of focusing examples where the teacher calls on
students to reflect on other students’ contributions.
For example, if a teacher asks a student Student
B, “Is Student A correct?”, this is a closed-ended
question that could be interpreted as funneling, but
it is focusing since the student is reflecting on the
thinking of another student. The second entry in
Table 5 also illustrates this, as the teacher asks a
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Mathematical Quality
of Instruction (MQI5)

(N=1657)

Overall Student
Participation in

Meaning-Making
and Reasoning (N=1657)

Students Provide
Explanations

(N=1310)

Value-Added
Scores (N=304)

Forwards-range 0.111*** 0.209*** 0.134*** 0.031
Length 0.039 -0.085* -0.111*** -0.096

Question Words
Who 0.063*** 0.008 0.009 -0.361
How 0.098*** 0.001 0.003 -0.101†
What 0.029 -0.006 -0.009 -0.012
Where 0.020 -0.007 -0.013 -0.091
When 0.049* -0.016** -0.0185† -0.045
Why 0.095*** 0.050*** 0.0420*** -0.03

How Many 0.054** -0.008 -0.008 -0.117*
How Do 0.076*** 0.023*** 0.012 0.072
What’s 0.001 -0.018** -0.024** 0.027
What Else -0.031† 0.007 0.013 0.005

Cognitive Verbs 0.105*** 0.070* 0.081** 0.003

RoBERTa (unfiltered) 0.315*** 0.270*** 0.350*** 0.098†
RoBERTa (filtered) 0.067** 0.388*** 0.376*** 0.124*

Table 4: Standardized coefficients showing the correlation between each measure, including RoBERTa, forwards-
range, length and our lexical features, and the outcomes from the NCTE dataset. Each co-efficient comes from its
own linear model, with the number of student-teacher exchanges in each transcript as a control variable (p-value: †:
<0.1, *: <0.05, **<0.01, ***<0.001).

follow up to one student after receiving an answer
from a different student. The RoBERTa model pre-
dicts this as funneling, likely because the utterance
ends with a short, closed-ended question. However,
this is an example of focusing, as the teacher calls
on Student K to reflect on the previous student’s
thinking. The forwards-range predicts this example
as focusing, but we do not believe that, as a bag of
words model, the forwards-range actually captures
the nuance of this example. It instead might be
unsure of the expected reply and default predicts
focus since the majority of its scores are clustered
around relatively high forwards-range scores.

8 Conclusion and Future Work

We propose several approaches for computation-
ally measuring funneling and focusing, an impor-
tant aspect of classroom discourse, and evaluate
their strengths and weaknesses. Our supervised
approach using the fine-tuned RoBERTa model has
the strongest linear correlation of the models we
tested with human expert ratings for funneling and
focusing; it similarly had the strongest correlations

of the models with educational outcomes. This
shows the potential of the RoBERTa model to be
used in future feedback and professional develop-
ment tools for teachers.

Still, our unsupervised measures show signif-
icant correlations with the expert labels for fun-
neling and focusing, as well as with educational
outcomes. This provides a foundation for future
work combining different unsupervised approaches
to build a robust measure of funneling and focus-
ing. Other paths for future NLP work include using
probing and attention weights to better understand
the predictions of the RoBERTa model, improving
the supervised approaches via an extensive hyper-
parameter search and by exploring models beyond
RoBERTa, and importantly, improving and testing
the generalizability of this measure to other class-
rooms and domains.

In education, there is potential for future work
in exploring how this measure can best support in-
struction and learning outcomes for students across
different educational settings. One possible avenue
for this is examining discipline-specific ways of
identifying focusing or funneling to provide more
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Models
Example Exchange Human label

RoBERTa
Forwards-

Range
Student: To see how many twirls.
Teacher: How many – what do you mean?
Student: How many [inaudible] there are.

focusing funneling

Student: H-U-N-D-E-R-E-T-H?
Teacher: Sh. Don’t steal his knowledge. And Student K?
Student: Thousandths.

Focusing
funneling focusing

Student: I put about, about is that about?
Teacher: It is close.
Student: What’s the about sign?

funneling funneling

Student: Three twelfths also equals one quarter.
Teacher: Yes, it does, and we’ll talk about that in another lesson, okay?
Number 10. Cover Shape B with –
Student: Hexagons.

Funneling
funneling funneling

Table 5: Example model predictions from the forwards-range and our RoBERTa model fine-tuned on the FILTERED
set. Correct predictions are in green, and incorrect predictions are in red.

fine-grained feedback to teachers. Another is in-
vestigating the extent to which it is helpful that
teachers know quantitatively in feedback they re-
ceive how much they are focusing versus funneling,
or if there’s a qualitative element about focusing
and funneling that could similarly be helpful to
teachers if provided in feedback.
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Abstract

State-of-the-art chatbots for English are now
able to hold conversations on virtually any topic
(e.g. Adiwardana et al., 2020; Roller et al.,
2021). However, existing dialogue systems in
the language learning domain still use hand-
crafted rules and pattern matching, and are
much more limited in scope. In this paper,
we make an initial foray into adapting open-
domain dialogue generation for second lan-
guage learning. We propose and implement
decoding strategies that can adjust the difficulty
level of the chatbot according to the learner’s
needs, without requiring further training of the
chatbot. These strategies are then evaluated us-
ing judgements from human examiners trained
in language education. Our results show that
re-ranking candidate outputs is a particularly
effective strategy, and performance can be fur-
ther improved by adding sub-token penalties
and filtering.

1 Introduction

Studies in second language acquisition have shown
that interaction is an important aspect of language
learning (e.g. Loewen and Sato, 2018; Plonsky and
Oswald, 2014; Mackey, 2013; Long, 1996). How-
ever, interaction typically involves one-on-one ses-
sions with a teacher, which can be costly or may
simply be unavailable to some learners. In addition,
learners may experience language anxiety during
interaction, which can be detrimental to learning
(Horwitz, 2001).

Artificial dialogue systems provide an alternative
way to learn through interaction. Learners can chat
with the system in their target language at their own
convenience, without needing a teacher.

Existing systems typically rely on handcrafted
rules, and require learners to practise within a spec-
ified context (e.g. shopping at a supermarket) (cf.
Bibauw et al., 2019). They are therefore quite lim-
ited in scope and require much manual work to
anticipate possible responses.

In our work, we leverage existing chatbot tech-
nology that can generate responses in virtually any
topic (Roller et al., 2021). As a first step towards in-
tegrating this technology into language education,
we experiment with ways to adjust the difficulty
of chatbot messages to a specified level (e.g. one
that matches the learner’s proficiency level).

Our contributions are as follows:
1. We propose two types of decoding-based

strategies for adjusting the difficulty of gen-
erated text – vocabulary restriction and re-
ranking – as well as ways to augment them.

2. In total, we implemented 5 differ-
ent variants of these strategies, and
we release the code and demo at
https://github.com/WHGTyen/
ControllableComplexityChatbot/.

3. For our evaluation process, we generated self-
chats from the chatbot and determined their
difficulty level and quality. We release the
annotated data alongside the code and demo.

2 Related work

We provide an overview of four related topics: 1)
dialogue systems; 2) decoding strategies for adding
various desired attributes to text; 3) text simplifica-
tion methods for transforming existing text (instead
of generating text at a specified difficulty level);
and 4) methods for predicting linguistic complex-
ity.

2.1 Dialogue systems

Dialogue systems can be classified into goal-
oriented systems, which are designed for a spe-
cific task, or non-goal-oriented systems, designed
for general “chit-chat” (Chen et al., 2017). In this
paper, we focus on open-domain text systems for
chit-chat, which allow learners to practise chatting
in any topic they choose.

Early open-domain systems relied on pattern
matching and rules (e.g. Weizenbaum, 1966; Car-
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penter), but were somewhat limited in their con-
versational ability. More recent neural dialogue
systems can produce a wider range of responses
using generative models, retrieval-based models,
or some combination of both (e.g. Papangelis et al.,
2021; Adiwardana et al., 2020; Roller et al., 2021).
Generative models produce entirely new sentences
using beam search or similar decoding algorithms,
while retrieval-based models select appropriate re-
sponses from an existing corpus.

Dialogue systems are also present in the Com-
puter Assisted Language Learning (CALL) litera-
ture. Bibauw et al. (2019) present an investigation
of dialogue-based CALL, where, notably, only 22
out of 96 systems allow completely free dialogue.
Of those, most rely on handcrafted rules, and none
make use of neural methods. To our knowledge,
our work is the first attempt to use a neural genera-
tive chatbot for language learning purposes.

2.2 Decoding strategies

Neural models for text generation tasks typically
maximise the likelihood of the generated output
using beam search (e.g. Li et al., 2016; Rush et al.,
2015; Sutskever et al., 2014). However, the most
likely output may not be the most desirable one –
e.g. in this paper, we would like to produce outputs
of a particular difficulty level. One way to achieve
desirable results is to further fine-tune the language
model (e.g. Welleck et al., 2019; Roller et al., 2021),
but this requires having (or being able to easily
generate) data containing such desired traits.

Instead, it is possible to change the decoding
strategy to produce desired outputs without further
training of the language model. For example, to in-
crease semantic and linguistic diversity, researchers
have proposed changing the softmax temperature
(Ackley et al., 1985; Caccia et al., 2020), or to
use Stochastic Beam Search (Kool et al., 2019),
top-k sampling (Fan et al., 2018), Nucleus Sam-
pling (Holtzman et al., 2020), or conditional Pois-
son stochastic beam search (Meister et al., 2021).
Decoding strategies have been also employed to
control other linguistic attributes, such as output
length (Kikuchi et al., 2016), style (Ghazvinine-
jad et al., 2017), repetition, specificity, response-
relatedness and question-asking (See et al., 2019).
To our knowledge, our methods are the first to ad-
just the difficulty level during decoding.

2.3 Text simplification

Text simplification (TS) is the task of transforming
complex text into simpler, more readable text that
conveys the same meaning. Previous approaches
are typically only designed to simplify where pos-
sible (e.g. Nisioi et al., 2017; Zhang and Lapata,
2017). More recently, methods have been pro-
posed for controllable TS, where text can be sim-
plified to a desired level of difficulty, such as Scar-
ton and Specia (2018) and Nishihara et al. (2019),
though both methods require training of a sequence-
to-sequence model from scratch. Maddela et al.
(2021) use a hybrid approach where the degree of
simplification operations can be controlled, though
not explicitly to a specified difficulty level.

Existing TS methods apply transformative op-
erations to an existing piece of text. The main
drawback is that some complex words may be im-
possible to simplify as there is no simpler alter-
native that conveys the same meaning (Shardlow,
2014). Our paper takes a different approach en-
tirely, and instead adjusts difficulty of text when it
is generated.

There is also research on specific operations
within the TS pipeline. In particular, we dis-
cuss complex word identification (CWI) in sub-
section 2.4 below. Other operations such as sen-
tence splitting (Narayan et al., 2017; Aharoni and
Goldberg, 2018) and paraphrase generation (Gupta
et al., 2018; Fu et al., 2019) are also transformative
operations, where the outcome needs to convey the
same meaning as the original input. Our generation
methods do not have the same constraint.

2.4 Linguistic complexity

Lexical complexity Previous work on lexical
complexity typically involves predicting the com-
plexity of words within a context. There have been
multiple shared tasks related to lexical complex-
ity: the 2016 CWI shared task (Paetzold and Spe-
cia, 2016b) to identify complex words; the 2018
CWI shared task (Yimam et al., 2018) also to iden-
tify complex words, and to predict the probabil-
ity that a word is complex; and the 2021 Lexi-
cal Complexity Prediction shared task (Shardlow
et al., 2021) to predict the difficulty level of words,
as determined by Likert-scale annotations. Sub-
missions to the first two shared tasks were mostly
dominated by feature-based approaches (e.g. Good-
ing and Kochmar, 2018; Kajiwara and Komachi,
2018). The 2021 shared task was won by Pan et al.
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(2021) using an ensemble of pre-trained Trans-
formers (Vaswani et al., 2017), but submissions
with feature-based models also ranked highly (Mos-
quera, 2021; Rotaru, 2021).

Readability assessment Beyond the word level,
research on linguistic complexity is typically done
on long-form texts. Traditionally, researchers have
derived formulae such as the Flesch-Kincaid score
(Kincaid et al., 1975) and the Coleman-Liau index
(Coleman and Liau, 1975) to estimate readabil-
ity, but many such formulae do not account for
semantic content or linguistic structure, or are out-
performed by data-driven methods (Si and Callan,
2001). Later machine learning methods for read-
ability assessment may rely on feature extraction
(e.g. Meng et al., 2020; Deutsch et al., 2020; also
see Martinc et al. (2021) for an analysis of different
approaches).

3 Implementation

We propose 5 different decoding strategies to adjust
the chatbot difficulty to one of 6 CEFR levels1.

For our implementations, we used Facebook’s
Blender 2.7B (version 12, generator model) (Roller
et al., 2021) as the basis, though our methods can
be used or adapted to other language models that
use beam search or sampling-based generation.

For comparability, all strategies use top-k sam-
pling3 (Fan et al., 2018) using k = 40 with a beam
size of 20. We did not use the additional safety
mechanisms (as described by Roller et al. (2021))
to ensure fair comparison of results.

Some of our methods use regression, either dur-
ing generation or beforehand. For all regression
tasks described below, we use a continuous scale
from 0 to 5 to denote CEFR values, even though
they are typically differentiated by qualitative prop-
erties (Council of Europe, 2020). This is because:

a) We have limited training data, and a scalar

1Throughout this paper, we draw on the Common Euro-
pean Reference Framework (CEFR) (Council of Europe, 2020)
to denote proficiency levels. An international standard for de-
scribing language ability, the CEFR organises ability into 6
levels, beginning with A1, continuing to A2, B1, B2, C1, and
ending with C2, representing mastery of a second language.

2Version 2 had not been released at the time of our experi-
ments.

3We use top-k sampling here because it was found to be
equivalent to the default settings (in Roller et al., 2021) of
beam size 10, with beam blocking of 3-grams and a minimum
length of 20. Beam search, however, is deterministic, so top-k
sampling allows us to generate multiple self-chats using the
same settings.

value provides more information to a regres-
sion model than a classification label; and

b) Due to the subjectivity of difficulty levels,
there are often situations where examiners re-
fer to values between CEFR levels, such as a
“high B2/low C1”. Using a continuous scale
allows us to represent such in-between values.

3.1 Method 1: Vocabulary restriction with
EVP

As a baseline strategy, we implemented a simple
vocabulary filter based on a list of words manually
labelled by CEFR4. The English Vocabulary Pro-
file5 (EVP) (Capel, 2015) maps 6,750 words and
phrases to one or multiple CEFR levels according
to their particular sense and usage. If the lowest6

CEFR level of a word/phrase is higher than the tar-
get CEFR level, we prevent that word/phrase from
being generated by setting the probability to 078.
For example, the word absolutely is labelled as B1,
C1, or C2 depending on its usage. If the target
CEFR level is B1 or above, the word is allowed
and will retain its original probabilities; if the target
CEFR level is A2 or below, the word will always
have a probability of 0, and can never be generated.

As the EVP does not contain proper nouns, we
also added a list of the most common first and
last names (Social Security Administration; United
States Census Bureau), and U.S. state names9. All

4We chose to use a manually curated list to minimise er-
rors, and because such vocabulary lists are often available as
a language learning resource for widely-spoken languages.
Alternatively, it is possible to produce similar word lists either
in an unsupervised or semi-supervised manner (e.g. Jenny
Ortiz-Zambrano, 2020).

5https://www.englishprofile.org/
wordlists/evp

6We ignore the higher CEFR labels and collapse words
with multiple meanings or usages into a single entry, because
it is often impossible to determine the correct meaning during
generation, when the rest of the sentence is missing.

7After modifications, the sum of all “probabilities” would
no longer be 1, though we continue to refer to these as proba-
bilities for the sake of exposition.

8Blender uses Byte-Level BPE tokenisation (Roller et al.,
2021; Sennrich et al., 2016), so a word is not fully formed
until the subsequent sub-token (beginning with a whitespace or
punctuation denoting a word boundary) is chosen. To ensure
that the 0 probabilities are assigned to the correct word, we
also assign them to subsequent sub-tokens that begin with a
word boundary.

9Since Blender is pre-trained on data from Reddit, where
a large part of the user base comes from the U.S., we found
that many of the dialogues contained names of U.S. states. We
also noticed that when vocabulary is restricted and no proper
names are allowed, the generated text sometimes contained
approximations of locations in the U.S., such as “I live in wash
in n” for I live in Washington. For this reason, we decided
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added entries assume a CEFR level of A1, and so
are always allowed regardless of the target CEFR
level.

3.2 Method 2: Vocabulary restriction with
extended EVP

Unfortunately, manually curated word lists typi-
cally have limited coverage. For example, the EVP
only contains 6,750 words and phrases. For our
2nd method, we extended the list by training a re-
gressor to predict the CEFR level of words outside
of the EVP. We opted for a feature-based approach
that is based purely on the surface word form rather
than different word senses (as above), due to the
lack of 1) training data and 2) available context
while decoding10. Adapting the winning system
(Gooding and Kochmar, 2018) of the 2018 CWI
shared task, we selected a subset of features that
are non-context-dependent11. The list of features
used can be found in the appendix.

As in the original paper, we used the Random
Forest implementation from scikit-learn12 , but for
regression instead of binary classification. CEFR
levels in the training data were converted into inte-
gers from 0 to 5 (inclusive), and predicted values
were rounded to the nearest CEFR level.

To evaluate this word complexity prediction
model, we randomly selected one-fifth of the origi-
nal EVP data as the test set, taking care to ensure
that words from the same root cannot be found in
both the training and test set. Results are shown in
Table 1.

After evaluation, the model was re-trained on the
whole dataset, then used to predict the CEFR levels
of an additional 10,000 of the most common13 En-
glish words that are not in the EVP. The prediction
of CEFR levels is done beforehand to minimise
computational costs at runtime.

to include in our vocabulary a list of U.S. states, along with
popular first and last names from the U.S.

10As above, the CEFR level of a word is used to determine
the probability of a sub-token at a given time step during
decoding, where the rest of the sentence is still missing.

11Other features used in the original paper were context-
dependent, and so were unsuitable for our use case.

12https://scikit-learn.org/
13Word frequency is estimated from the Exquisite Corpus,

which combines frequencies from Wikipedia, subtitle
corpora, news corpora, Google Books, and other resources.
https://github.com/LuminosoInsight/
exquisite-corpus

Spearman’s ρ Pearson’s r MAE
0.694 0.712 0.826

Table 1: Spearman’s and Pearson’s correlation and mean
absolute error (MAE) of predicted CEFR levels of words
in the EVP. Both correlation statistics are significant
(p ≤ 0.001). MAE of 1 corresponds to a difference of 1
CEFR level.

3.3 Method 3: Re-ranking

One main drawback of vocabulary restriction is
that text difficulty is not necessarily determined
by vocabulary choice alone. We want to generate
outputs that are of the appropriate difficulty level
in terms of structure, content, as well as choice of
words.

For our 3rd method, we propose a re-ranking
method that considers multiple candidate messages,
before selecting the most appropriate one. As de-
scribed in section 3, our models use beam size = 20,
which generates 20 candidate messages for every
message sent to the user.

We first trained a regressor to predict the CEFR
level of sentences. When the chatbot is in use, the
regressor will predict the CEFR level of all candi-
date messages, allowing us to compute a score that
combines the original ranking and the predicted
CEFR. This score will then be used to re-rank the
candidates, and the top candidate message will be
sent to the user.

For the regressor, we used a RoBERTa model
pre-trained on a dynamic masked language mod-
elling (Liu et al., 2019), which is then distilled
(Sanh et al., 2019), as implemented in Hugging-
face Transformers (Wolf et al., 2020). We fine-
tuned this model to predict text difficulty on the
Cambridge Exams (CE) dataset (Xia et al., 2016),
which contains English texts from Cambridge Ex-
ams aimed at learners of different CEFR levels.
However, instead of training our model on entire
texts, we used spaCy (Montani et al., 2021) to de-
tect sentence boundaries, and trained the model to
predict the CEFR level from individual sentences,
as they are more similar in length to the messages
generated by Blender. Since the prediction of can-
didate messages must occur during live interactive
use, the distilled version of the model was chosen
to minimise computational overhead.

As with the previous word complexity prediction
model, we randomly selected one-fifth of the CE
sentences as a test set for the sentence complexity
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prediction model, taking care to ensure that sen-
tences from the same text cannot be found in both
the training set and the test set. After evaluation,
we re-trained the model using all available data, to
be used to generate text. Initial evaluation results
from the test set are shown in Table 2.

Spearman’s ρ Pearson’s r MAE
0.701 0.734 0.634

Table 2: Spearman’s and Pearson’s correlation and mean
absolute error (MAE) of predicted CEFR levels of sen-
tences from the Cambridge Exams dataset. Both corre-
lation statistics are significant (p ≤ 0.001). MAE of 1
corresponds to a difference of 1 CEFR level.

Our proposed re-ranking procedure accounts for:
(1) P (Ci) the original probability of each

Candidate Ci according to the chatbot lan-
guage model

(2) LCi the difficulty Level of each Candidate
(3) Lt the target difficulty Level

We compute the new rank R of each candidate
Ci by taking the average of its original rank (based
on P (Ci)) and its difficulty rank (based on distance
away from the target difficulty level).

R =
r(P (Ci)) + w · r(|Lt − LCi |)

2
(1)

r denotes a function that returns the rank of the can-
didate out of all candidates. That is: r(P (Ci)) is
the ranking of probabilities from the model (where
higher probability = higher rank), and r(|Lt−LCi |)
is the ranking of distance to target difficulty (where
smaller distance = higher rank). r essentially nor-
malises the probability values and difficulty lev-
els before the final rank is computed. w is an
adjustable weight that controls the importance of
distance to the target difficulty.

To select a value for w, we manually annotated
ideal rankings for 10 sets of 20 candidate outputs,
and found that the original rank and the difficulty
rank contribute equally to the final rankings. There-
fore, for methods 3, 4 and 5, we use w = 1.

3.4 Method 4: Re-ranking with sub-token
penalties

With method 3, we sometimes found that all 20
generated candidates would be of a similar diffi-
culty level, which may be some distance away form
the learner’s CEFR level. For example, we might
have 20 candidate responses at C1 level, while the
learner is a B1 speaker.

In order to increase the probability that a can-
didate message is at the target CEFR level, we
implemented an additional penalty system, which
penalises sub-tokens that are too difficult. Sub-
tokens that are too easy are not penalised, as many
are words serving grammatical functions or com-
mon words, which are also frequently used in diffi-
cult texts. Note that, as with vocabulary restriction,
penalties must be assigned to sub-tokens rather
than words, because words are not fully formed
until a following sub-token with a word boundary
is chosen.

The penalty for a given sub-token varies depend-
ing on how difficult it is. To determine the CEFR
level of a sub-token, we tokenised the texts in the
CE dataset to identify which sub-tokens appeared
at which CEFR level. The lowest CEFR level is
then chosen for each sub-token. For example, a
sub-token that appears in a B1 exam but not in A1
or A2 exams will be classified as a B1 sub-token.

The penalty values scale according to the dif-
ference between the target CEFR level and sub-
token’s CEFR level. For example, an A2 chatbot
will assign a smaller penalty (or a larger weight)
to a B1 sub-token (e.g. _absolutely, _opportun,
initely) than a B2 sub-token (e.g. _humanity, _adop,
iable)14. The penalty values are taken from a Gaus-
sian distribution, where µ is a CEFR level differ-
ence of 0, and σ is 2 CEFR levels15.

The new probability of a given sub-token is there-
fore calculated as follows:

p′ =

{
p · φ(Ls − Lt) if Ls > Lt

p otherwise
(2)

where p and p′ denote the original and new prob-
ability respectively, Ls is the CEFR level of the
sub-token, and Lt is the target CEFR level. φ rep-
resents the Gaussian distribution described above.

14where _ represents a whitespace character.
15We settled on this value for σ for relatively lenient penal-

ties, because:
a) The Cambridge Exams dataset only contains 331 texts

(averaging at 531 words each), so a low frequency token
of e.g. B1 level may only appear at B2 level or above.
Having more lenient penalties can account for such
potential discrepancies.

b) If the resulting candidate is too difficult, it is likely to
be filtered out in the re-ranking process.

However, this value can be adjusted based on the language
model or applicational needs.
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3.5 Method 5: Re-ranking with sub-token
penalties and filtering

With method 4, we noticed that occasional non-
sense words are generated. This was typically due
to how penalties are assigned to sub-tokens rather
than words: for example, on one occasion, back-
packing was generated as backpicking.

To combat this, we added a vocabulary filter16 to
look for words that are out-of-vocabulary, ignoring
capitalised words and punctuation. If a candidate
message contains such a word, it is removed from
the pool of candidates.

4 Evaluation

For each of our 5 methods, we generated 300 self-
chat dialogues using Blender, where the chatbot
talks to itself (Li et al., 2016). Each self-chat was
generated using the settings for a specific CEFR
level: for example, method 1 at B1 level would only
generate vocabulary at B1 level or below; method
3 at C1 level would re-rank outputs based on how
close it is to C1 difficulty.

Then, to determine whether these methods are
truly able to generate messages at the intended
level, we recruited English language examiners to
judge the true difficulty level of each self-chat.

We chose self-chats rather than human-model
chats (i.e. chats between a human and the language
model) for three reasons: firstly, because we did not
want the examiner’s judgement of the chatbot out-
put to be biased by the proficiency level of the user;
secondly, because it is cheaper and less time con-
suming to generate self-chats; and finally, because
second language users may struggle to communi-
cate with the chatbot. Additionally, previous work
comparing self-chats to human-model chats found
that they produced similar results (Li et al., 2019).

Each self-chat consists of 18 messages, all
prompted by an initial message, “Hello!”. An ex-
ample of a generated self-chat can be found in the
appendix. The 300 dialogues for each method are
split evenly into 6 sets of 50, each set targeting
a different CEFR level. An additional 100 dia-
logues were generated without any modifications
for comparison, resulting in an overall total of 1600
dialogues (see Table 3).

We recruited 10 English language examiners
from Cambridge University Press & Assessment.

16We use a list of words (containing only letters) from
https://github.com/dwyl/english-words.

1 2 3 4 5 B
A1 50 50 50 50 50 0
A2 50 50 50 50 50 0
B1 50 50 50 50 50 0
B2 50 50 50 50 50 0
C1 50 50 50 50 50 0
C2 50 50 50 50 50 0

N/A 0 0 0 0 0 100
Total 300 300 300 300 300 100

Table 3: Number of self-chats generated for each
method / CEFR combination. B refers to self-chats gen-
erated using the original Blender configurations with
no modifications, which cannot be targeted at a given
CEFR level.

All 10 examiners were provided with a set of genre-
specific descriptors adapted from the CEFR17. In
addition, to assess the general quality of the pro-
duced text, each message in the dialogue was la-
belled according to whether it was sensible and
whether it was specific (following Adiwardana
et al., 2020), as well as whether it was grammatical.
Examiners were given additional guidance on edge
cases to support their application of these labels.

Each dialogue was annotated by at least 3 dif-
ferent examiners. For the final results, disagree-
ments between examiners are resolved by taking
the average of all annotations. The inter-annotator
agreement for our CEFR annotations is 0.79, mea-
sured with weighted Fleiss’ κ (Fleiss, 1971), and
assuming equal distance between CEFR levels. For
the grammatical, sensible, and specific labels, we
used Gwet’s AC1 (Gwet, 2014)18. The agreement
scores are 0.62 for grammaticality labels, 0.23 for
sensibleness labels, and 0.67 for specific labels.

Agreement in sensibleness is noticeably lower
than the others: feedback from annotators sug-
gested that sensibleness of a particular message
is often unclear when the previous context already
contained messages that were not sensible. Ex-
perimental results from Adiwardana et al. (2020)
suggest that agreement scores may be higher if an-
notators are only asked to label single responses
within a pre-written, sensible context. However,
they also note that “final results are always aggre-
gated labels”, so the overall proportion of sensible

17Descriptors were adapted from 3 CEFR scales: Overall
Reading Comprehension, Overall Oral Interaction, and Con-
versation. The descriptors we used in our experiments can be
found in the appendix.

18rather than Krippendorff’s α, because our data is very
skewed (containing 87.0% grammatical, 75.7% sensible, and
91.6% specific responses), and AC1 accounts for marginal
probabilities.
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Method Spearman’s ρ Pearson’s r MAE %gramm. %sensible %specific
Original N/A N/A N/A 90.2% 81.9% 94.1%

Method 1 0.229 0.243 1.410 89.0% 76.5% 91.4%
Method 2 0.196 0.194 1.461 89.5% 77.3% 91.7%
Method 3 0.719† 0.707† 1.120 87.4% 77.0% 93.0%
Method 4 0.680† 0.681† 1.174 87.2% 76.1% 91.9%
Method 5 0.755† 0.731† 1.090 87.3% 76.4% 92.1%

Table 4: Table showing, for each method: Spearman’s and Pearson’s correlation between target CEFR and true
CEFR; mean absolute error (MAE) of target CEFR compared to true CEFR, where MAE of 1 corresponds to a
difference of 1 CEFR level; and percentage of grammatical, sensible, and specific responses. † indicates a significant
correlation (p ≤ 0.001). For all 5 methods, proportions of grammatical, sensible, and specific messages are found
to be statistically equivalent (Wellek, 2010) to the original (ϵ = 0.001, p ≤ 0.001).

labels is still indicative of chatbot quality, despite
relatively low agreement scores.

5 Results and discussion

Our results are in Table 4. To our knowledge, this
is the first attempt at adjusting text difficulty during
open-ended text generation – therefore, we were
unable to find comparable results to be included
here. Where possible, we include results for the
original (unmodified) generation method, which
cannot be targeted at any specific CEFR level.

For each of the methods, we compared the tar-
get CEFR to the CEFR determined by examiners
– henceforth referred to as the true CEFR. Spear-
man’s ρ and Pearson’s r show the correlation be-
tween the two, and MAE is the mean absolute error,
where an MAE of 1 refers to the difference of 1
CEFR level. %gramm., %sensible, and %specific
refers to the percentage of grammatical, sensible,
and specific responses out of all responses (exclud-
ing the original “Hello!” prompt).

From the correlation and MAE scores, we can
see that the re-ranking methods work best, with
method 5 – reranking with sub-token penalties and
filtering – achieving the strongest correlation and
lowest MAE between the target and true CEFR.
Both vocabulary-based methods performed poorly,
achieving almost no correlation and high MAE
scores. This is somewhat surprising, as one might
expect vocabulary to be a key factor in determining
text difficulty. We suspect that this is because many
of the easier words in the EVP also have more dif-
ficult word senses, but our method only considered
the lowest CEFR level. Additionally, we looked at a
set of 10 randomly sampled dialogues and counted
66 multi-word expressions (MWEs) in total, aver-
aging at 0.36 MWEs per message. MWEs might
often be more difficult than their constituent words

individually: for example, the idiom a cut above the
rest consists of words that are individually simple,
but the phrase itself is relatively complex. Unfortu-
nately, our vocabulary restriction methods are not
able to account for this.

5.1 CEFR distribution

Figure 1: The first 6 violin plots shows distribution of
CEFR levels for each method, along with the original
version, all scaled for comparison. The last violin plot
shows the target distribution for our 5 methods. It is
spread evenly across all CEFR levels, as we had gener-
ated the same number of self-chats for each level (see
Table 3).

Figure 1 contains violin plots showing the distri-
bution of CEFR level for each method, including
the original version with no modifications. The last
violin plot is the ideal distribution for our 5 vari-
ants, which is evenly spread throughout all 6 levels.
Out of the 5 variants, the 3 re-ranking variants have
the most even distribution.

One surprising finding from this study is that
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the CEFR level of dialogues that were generated
without modifications to difficulty were mostly in
the B1 to B2 range, rather than C1 and C2, which
would be closer to a “native-like” difficulty, i.e. in-
tended for users of native proficiency. Since the
restriction-based methods served to reduce the dif-
ficulty level rather than increase it, the result is that
none of the generated dialogues were labelled as C1
or C2, so the CEFR distribution clustered around
the B1 level. On the other hand, the reranking
based methods performed better because, when the
target CEFR is C1 or C2, the reranking procedure
would select texts that are more difficult than the
most likely output. However, we suspect that the
imbalance of CEFR levels in dialogues generated
by the original model affects all 5 variants, and may
adversely affect the MAE scores.

Another observation from our data is that none
of our dialogues were labelled as A1, which is the
lowest CEFR level. We suspect that this is because
dialogic communication is inherently difficult for
beginners, and there are simply too few topics and
words that are suitable for all A1 learners. For
example, the CEFR scale for written interaction
simply states that A1 learners “can ask for or pass
on personal details” (Council of Europe, 2020).
However, we leave it to future work to explore
other ways of generating dialogue data at A1 level.

5.2 Message quality

While our grammaticality, sensibleness, and speci-
ficity scores were found to be statistically equiv-
alent (ϵ = 0.001, p ≤ 0.001), it may not be sur-
prising to see a slight degradation of quality in
Blender’s messages when using our decoding meth-
ods. Our methods are designed to reject the most
likely output if its difficulty level is not appropriate,
and to select the next best output that falls within
our constraints.

The focus of this paper is on the decoding meth-
ods rather than the original language model, which
may be improved on or replaced by a different gen-
erative model. However, we acknowledge that the
quality of messages may detract from the learning
experience, particularly ones that are not grammat-
ical or not sensible.

According to the inter-annotator agreement
scores in section 4, there was relatively little agree-
ment on what was considered sensible. In future
work, it would be important to refine the criteria
to better evaluate the quality of messages. Addi-

tionally, it may be possible to implement style clas-
sifiers or contradiction detection tools to mitigate
this issue.

Sampling 100 messages from ones which were
considered ungrammatical by at least one examiner,
we identified three types of ‘ungrammaticality’:

• Around half (51) involved colloquialisms (e.g.
“LOL”, comma splicing, and other capitalisa-
tion or punctuation errors) that are ungram-
matical in written English, but are more ac-
cepted in online messaging.

• More than a quarter (29) contained awkward
phrasing depending on the context and/or was
marked as not sensible. This becomes a grey
area where it is difficult to determine whether
the intended meaning was not sensible, or if
the surface linguistic form was incorrect.

• Only a fifth (20) were clearly ungrammati-
cal (e.g. “on your free time”) or involved a
spelling mistake (e.g. “clausterphobia”).

Since Blender was pre-trained on large amounts
of data from Reddit (Roller et al., 2021), it is unsur-
prising to see internet colloquialisms in the gen-
erated messages. While this may not be desir-
able for formal written work, learners are likely
to come across similar forms of language in online
or computer-mediated interaction. Alternatively, it
may be possible to use grammatical error detection
tools or style classifiers to filter out these messages.
We leave to future work to investigate ways of fil-
tering undesirable messages.

6 Conclusion and future work

This paper presents an initial foray into using open-
domain chatbots for language practice. We propose
and compare 5 variants of decoding strategies to
adjust the difficulty level of generated text. We
then evaluate these methods on dialogue genera-
tion, and find that our re-ranking strategies signifi-
cantly outperform vocabulary-based methods. Our
best variant achieved a Spearman’s ρ of 0.755 and
Pearson’s r of 0.731.

Our current work only looks at self-chat diffi-
culty from a teacher/examiner’s perspective, which
may not transfer well to interactive difficulty. It
is also important to ensure that language learners
would benefit from this endeavour. For our fu-
ture work, we will directly engage with learners
to investigate the utility and impact of chatbots on
language learning.

However, there are also areas where the chatbot
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needs to be significantly improved upon. For exam-
ple, to cater for A1 learners, we need to be able to
generate messages at A1 difficulty. This paper only
looked at text complexity in terms of vocabulary,
but it may also be possible to adjust the complexity
by paraphrasing or altering the sentence structure.

We also need to ensure that generated messages
are grammatical, sensible, specific, and appropriate.
There is ongoing research on grammatical error
detection (cf. Wang et al., 2021), toxic language
detection (e.g. Dinan et al., 2019), and improving
dialogue consistency (e.g. Li et al., 2020), which
can be used to improve the chatbot.

Additionally, a language learning chatbot can
be further augmented with other technologies to
enhance the user experience, such as grammatical
error correction tools, dictionary lookup, or person-
alisation mechanisms. However, it is not always
clear what tools or mechanisms would best facil-
itate language learning: for example, immediate
grammar correction could distract and cause com-
munication breakdown (Lyster et al., 2013). We
leave this investigation to future research.

7 Ethical concerns

By building a chatbot for language learning, we
hope to make interactive, open-domain language
practice more accessible to all learners. However,
there are ethical risks that must be considered be-
fore providing learners with such a tool. In particu-
lar, we highlight three areas in which open-domain
chatbots may have harmful effects, especially for
younger learners.

1. Toxic language
Open-domain chatbots are typically based on
pre-trained large language models. These
models, especially ones trained on internet
data, are known to produce outputs that are
toxic (e.g. Gehman et al., 2020) or that con-
tain harmful biases (e.g. Nadeem et al., 2021;
Sheng et al., 2019). There is existing and on-
going research on ways to mitigate these out-
puts (e.g. Xu et al., 2020; Dinan et al., 2019;
Faal et al., 2022; Dinan et al., 2020), though
Gonen and Goldberg (2019) argue that de-
biasing methods are insufficient and do not
remove bias entirely. It remains an impor-
tant ethical concern, especially for younger
learners. For our experiments, we only recruit
adult participants, who are warned about such
messages beforehand.

2. Inaccurate information
Large language models are also known to
hallucinate knowledge during text generation
(Roller et al., 2021; Maynez et al., 2020).
While there is ongoing work to reduce this
(Zhao et al., 2020; Komeili et al., 2020, e.g.),
users should also be made aware that the in-
formation generated by a chatbot may not be
accurate.

3. Human likeness
Users should know that they are interacting
with a machine rather than a human. Weizen-
baum (1966) remarks, “In human conversa-
tion a speaker will make certain (perhaps gen-
erous) assumptions about his conversational
partner.” This is also known as the ELIZA ef-
fect (Hofstadter, 1995), which affects a user’s
perception of and emotional response to a
chatbot.

In our experiments, evaluation was done through
self-chats, and annotators did not interact with the
chatbot directly. All annotators involved are adults
and were asked to identify nonsensical or inaccu-
rate statements (sensibility), and to flag any inap-
propriate language. In total, 6 of the 1600 (0.4%)
self-chat dialogues we generated contained inap-
propriate language, or touched on inappropriate
topics. We will make use of these in future work to
address inappropriate chatbot turns.
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A Implementational details

A.1 Blender settings

We used the Blender 2.7B generative model
released through ParlAI19 (model file:
zoo:blender/blender_3B/model) as
the basis for our chatbot models. Table 5 lists the
hyperparameters used for all chatbot models in our
experiment.

During this project, we noticed that the generated
dialogues sometimes contained sequences such as
“+/u/dogetipbot”, since Blender was pre-trained on
large amounts of Reddit data (Roller et al., 2021).
As this is beyond the scope of our project, and to
prevent this from affecting our results, we decided
to filter out sequences containing “u/” and “r/” for
all dialogues, so that results are still comparable.
This filtering step occurs just before a message is
selected from the pool of candidates: if a candidate
contains either “u/” or “r/”, it is removed from the
pool, and the next best candidate is selected and
sent to the user.

19https://parl.ai/

Hyperparameter Value
Beam size 20

Top-k 40
Temperature 1.0
Beam delay 30

Beam length penalty 0.65
Beam block n-gram 3

Beam context block n-gram 3
Number of encoder layers 2
Number of decoder layers 2

Embedding size 2560
Number of attention heads 32

Hidden layer dropout 0.1
Attention dropout 0.1

Activation function GELU

Table 5: Hyperparameters and corresponding values
used for our chatbot models.

A.2 Word difficulty prediction model

For our word difficulty prediction model used for
method 2 (restriction with extended EVP), we used
the RandomForestRegressor from the scikit-
learn library20. We used the following features:

• Word length
• Number of syllables
• Number of WordNet synsets (Princeton Uni-

versity, 2010)
• Number of WordNet hypernyms
• Number of WordNet hyponyms
• Word frequency in subtitles from Movies and

Series for Children in the SubIMBD corpus
(Paetzold and Specia, 2016a)

• Word frequency in the SimpleWiki21 (Coster
and Kauchak, 2011)

• Word presence in Ogden’s Basic English list
(Ogden, 1930)

• Word frequency according to syntactic-
ngrams compiled by Goldberg and Orwant
(2013)

• Number of phonemes (from the MRC Psy-
cholinguistic Database, Wilson, 1988)

• Kucera-Francis frequency norms (MRC)
• Thorndike-Lorge frequency (MRC)
• Familiarity (MRC)
• Concreteness (MRC)
• Imageability (MRC)
• Age of acquisition (MRC)

20https://scikit-learn.org/
21https://simple.wikipedia.org/
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Hyperparameter Value
Number of estimators 5000

Splitting criterion MSE
Min. number of samples for splitting 2
Min. number of samples at leaf node 1

Min. impurity decrease None
Sample weighting None

Table 6: Hyperparameters and corresponding values
used for our word difficulty prediction model.

Hyperparameter Value
Learning rate 9.737×10−6

Batch size 32
Number of epochs 3

Random seed 18
Number of encoder layers 6

Embedding size 768
Number of attention heads 12

Hidden layer dropout 0.1
Attention dropout 0.1

Activation function GELU

Table 7: Hyperparameters and corresponding values
used for our sentence difficulty prediction model.

CEFR levels in the training data were converted
into integers from 0 to 5 (inclusive), and predicted
values were rounded to the nearest CEFR level
accordingly. Hyperparameters for this model are
listed in Table 6.

A.3 Sentence difficulty prediction model
For the sentence difficulty prediction model
in our reranking-based methods, we used the
distilroberta-base implementation from
Huggingface Transformers (Wolf et al., 2020), and
added a regression head to output a value repre-
senting difficulty. We tuned the learning rate, batch
size, number of epochs, and random seed for this
model using Optuna22. The final hyperparameters
for this model are listed in Table 7.

The training data is taken from the Cambridge
Exams dataset (Xia et al., 2016), where the text
is split up into sentences using SpaCy’s (Mon-
tani et al., 2021) en_core_web_sm model. As
above, CEFR levels in the training data were con-
verted into integers from 0 to 5 (inclusive), and
predicted values were rounded to the nearest CEFR
level accordingly.

22https://optuna.org/
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C2 Appropriate for a reader who can understand and interpret critically virtually all messages and dialogues
including abstract, structurally complex, or highly colloquial text. Appropriate for a reader who can
appreciate subtle distinctions of style and implicit as well as explicit meaning, including idiomatic
expressions and colloquialisms.

C1 Appropriate for a reader who can understand in detail complex dialogues, whether or not they relate to
their own area of speciality, provided he/she can reread difficult messages. Appropriate for a reader
who can understand a wide range of demanding messages, and recognise implicit meaning, including
emotional, allusive, and joking usage of language.

B2 Appropriate for a reader who can understand the main ideas of complex dialogues across a range of
concrete and abstract topics, and has a broad active reading vocabulary, but may experience some
difficulty with low-frequency idioms.

B1 Appropriate for a reader who can understand straightforward factual messages on subjects related to
his/her field and interest with a satisfactory level of comprehension. Appropriate for a reader who can
understand the main points of clear messages on familiar matters regularly encountered in work, school,
leisure, etc.

A2 Appropriate for a reader who can understand short, simple messages on familiar matters of a concrete
type which consist of high frequency everyday or job-related language (including simple everyday
polite forms of greetings and farewells; introductions; invitations and apologies; giving thanks), or
shared international vocabulary items. Appropriate for a reader who can understand sentences and
frequently used expressions related to areas of most immediate relevance (e.g. very basic personal and
family information, shopping, local geography, employment).

A1 Appropriate for a reader who can understand very short, simple messages a single phrase at a time,
picking up familiar names, words and basic phrases and rereading as required. Appropriate for a reader
who can understand familiar everyday expressions and very basic phrases aimed at the satisfaction of
simple needs of a concrete type.

Table 8: CEFR descriptors provided to examiners to annotate difficulty levels.

Speaker 1: Hello!
Speaker 2: Hello there. Do you listen to music? I’m all about rock. Songs that have a melody are my favorite.
Speaker 1: Yes, I love the melodies in rock music. I think that is the foundation of all music after all.
Speaker 2: I agree. Music can have many meanings and have spiritual and religious elements too. How about you?
Speaker 1: Yes, music can have a strong emotional impact too. It can enhance an experience or provoke a response.
Speaker 2: Definitely! Music also can be interpreted through different cultural lenses as well. Have you ever thought

about that?
Speaker 1: Yes, that is true, since music can come in a wide variety of genres and structures.
Speaker 2: Absolutely! Since it is so dynamic and changes from time to time, it has a tendency to change and evolve

with the culture as well!
Speaker 1: Yes, I think it is a good thing that music is dynamic though. Cultures have a way of shaping and defining

what music is.
Speaker 2: You’re absolutely right! Humans have been using music for communication and for artistic inspiration for

much of history so I wouldn’t want it any other way!
Speaker 1: Music can also influence the way we view our relationships, our ideas, and even our language as well.
Speaker 2: Yes exactly! Music, art, language, entertainment, and science all play major roles in human society!
Speaker 1: Sometimes I wonder if there is such thing as the soul, because it seems to come to people through their

interpretation of music.
Speaker 2: Yes there definitely is! The soul is definitely subjective and a big part of the human psyche so it makes sense

that people interpret music in different ways!
Speaker 1: I think we see it in art all the time. Artists often are influenced by their influences, such as their relationships.
Speaker 2: In the past, many considered the relationship between the musician and audience to be one of the most

important aspects of the medium!
Speaker 1: Yes! I agree with that, as artists are affected by their art in a very personal way.
Speaker 2: Yes and for a lot of artists the subject matter can be important to the storytelling and emotions of their music

as well.
Speaker 1: Indeed. And they often do not even realize how impactful their work is until after the fact.

Table 9: A cherry-picked example of a C1 self-chat dialogue generated using method 5 (reranking with sub-token
penalties and filtering).
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Abstract

Recent advances in natural language process-
ing (NLP) have greatly helped educational ap-
plications, for both teachers and students. In
higher education, there is great potential to use
NLP tools for advancing pedagogical research.
In this paper, we focus on how NLP can help
understand student experiences in engineering,
thus facilitating engineering educators to carry
out large scale analysis that is helpful for re-
designing the curriculum. Here, we introduce
a new task we call response construct tagging
(RCT), in which student responses to tailored
survey questions are automatically tagged for
six constructs measuring transformative experi-
ences and engineering identity of students. We
experiment with state-of-the-art classification
models for this task and investigate the effects
of different sources of additional information.
Our best model achieves an F1 score of 48. We
further investigate multi-task training on the
related task of sentiment classification, which
improves our model’s performance to 55 F1. Fi-
nally, we provide a detailed qualitative analysis
of model performance.

1 Introduction

Engineering Education Research (EER) investi-
gates effective pedagogical practices in engineer-
ing through qualitative and quantitative methods.
A major focus of this research is curriculum de-
sign, particularly, inculcating “engineering think-
ing” (Moore et al., 2014; Pugh, 2002) and identity
(Stevens et al., 2008) along with technical skills. In
order to develop and improve such curricula, one
effective method is to evaluate student experiences
in engineering courses in a subjective manner, as-
sessing several attributes such as their perception
towards engineering in daily life, and the impact of
the curriculum on their self-identity as an engineer
(Clifford and Montgomery, 2015).

A popular framework to carry out such assess-
ments is to administer surveys before and after

Construct Description

Transformative Experience

Expansion of
Perception

The student sees everyday ob-
jects through the lens of course
content

Motivated Use The student applies ideas from
course to everyday experiences

Affective Value The student values course con-
tent for enriching everyday life

Engineering Identity

Disciplinary
Knowledge

The student displays grasp of
technical concepts

Identification The student sees themselves as
an engineer

Navigation The student sees their path to-
wards becoming an engineer

Table 1: Descriptions of the constructs towards which
affective state is classified.

completing a course, where students provide re-
sponses to carefully designed questions that probe
for identity or affect (Sheppard et al., 2010). Sur-
veys typically include some open-ended questions,
such as “How relevant is design for your intended
career?” to which students provide text responses.
These are then manually analyzed to see, for ex-
ample, whether students experience affective gain
towards engineering after taking the course. In
this paper, we propose using natural language pro-
cessing (NLP) to enable educators to carry out this
analysis faster and at a larger scale by automati-
cally tagging student responses for their affective
state towards pre-defined constructs which are of
interest to educators.

We focus specifically on an industrial design
course introduced in the mechanical engineering
department of a large public university. Entry and
exit surveys measure whether students undergo
a transformative experience (Pugh, 2002) in the
course, and assess the impact of the course on their
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engineering identity (Stevens et al., 2008). These
aspects are characterized by six specific constructs,
listed in Table 1. We introduce a new task, re-
sponse construct tagging (RCT), in which the
goal is to identify student affect towards all six
constructs from an open-ended response. For ex-
ample, if a student response says “I’m not sure
what specific career I will pursue, but as long as
it’s engineering, I’m fine with it.”, then, they are
displaying a positive affect towards the Identifi-
cation construct since they see themselves as an
engineer. Table 2 contains more examples of re-
sponses and human-annotated affect labels towards
specific constructs.

Concretely, for each response, the RCT task is
to classify affect corresponding to each of the six
listed constructs. Our data consists of 232 stu-
dent responses, annotated by a trained human an-
notator.1 We investigate how NLP can be used to
solve RCT, focusing on three research questions:
1) What is the most suitable NLP model for RCT?
2) What information relevant to the survey needs to
be encoded? 3) Can other NLP tasks – specifically,
sentiment classification – help with RCT through
multi-task learning? We experiment with a classifi-
cation model based on RoBERTa (Liu et al., 2019),
a state-of-the-art language representation model,
which achieves a score of 48 F1, and outperforms
several baselines. We also find that multitask learn-
ing (Caruana, 1993) is highly effective, helping
the classifier achieve an improvement of 6 points,
from 48 F1 to 55 F1. Finally, we provide a detailed
qualitative analysis of our model, looking at perfor-
mance on individual survey questions, as well as
errors made by the model.

2 RCT: Background and Task
Description

2.1 Assessment in EER
Engineering Education Research (EER) is a field
of inquiry (Jesiek et al., 2009; Froyd and Lohmann,
2014) that investigates and improves pedagogical
practices in engineering disciplines, with the goals
of increasing learning and student retention, includ-
ing that of underrepresented groups (Prados, 1998).
Research methodology in EER includes quantita-
tive, qualitative and mixed-methods research (Bor-
rego et al., 2009). Quantitative methods use statis-
tics to study relationships between variables (such

1Data, code and models can be found here https://
nala-cub.github.io/resources/

as class sizes) and outcomes (such as GPA). Qual-
itative research complements the above through
analysis of data such as surveys and student inter-
views, which are frequently textual.

Several works discuss the value of qualitative
studies for assessing educational practices (Borrego
et al., 2009; Koro-Ljungberg and Douglas, 2008).
Particularly, Olds et al. (2005) discuss the role of
surveys, in which subjects self-report their expe-
riences through open-ended or selected responses.
Responses on surveys can be used to assess the
effectiveness of various aspects of the engineering
curriculum (Froyd et al., 2012), such as students’
engagement. Educators are also interested in as-
sessing whether the curriculum changes student
perceptions of engineering as applied to their daily
lives (Goodman, 2015), also known as undergo-
ing a transformative experience. Another aspect
of interest is the effect of the curriculum on the
engineering identity of a student, i.e., whether the
student sees themselves “becoming an engineer”
(Stevens et al., 2008) in addition to acquiring tech-
nical skills. Entry and exit surveys before and after
undertaking a course can indicate if the course re-
sulted in affective gain towards such aspects. By
analyzing student responses, educators can then
redesign engineering curricula to promote such
learning experiences, thereby increasing student
motivation and retention (Baillie and Fitzgerald,
2000).

2.2 Industrial Design Course Survey

In this work, we look at an industrial design course
at a large public university, which encourages
students to use their engineering skills to create
aesthetics-based design (Goodman et al., 2015). To
assess the effect of the class on students, the instruc-
tors administer a 68-item survey (Sheppard et al.,
2010) to students at the beginning and end of the
course. Here, we describe only the open-response
questions and the corresponding constructs they
measure Example responses for each question,
along with some of the constructs and correspond-
ing affect, can be found in Table 2.

Open-response questions. The survey contains
four open-ended questions, designed to elicit re-
sponses through which the specified constructs can
be measured: Q1) What motivates you when choos-
ing an aesthetic while designing something? This
question helps us understand how students perceive
the importance of design over pure functionality.
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Question Response Construct Affect

What motivates you when
choosing an aesthetic while
designing something?

How will someone interact/ feel with this product.
What emotion will it evoke.

Expansion of Perception Positive

I mostly focus on what will be the most functional
aesthetic.

Motivated Use Negative

How does making things on
your own make you feel at the
beginning of the process? Why
does it make you feel that way?

I love the beginning of making things. Brainstorm-
ing and concept generation are some the most fun
I have had in engineering.

Identification Positive

It makes me feel a little clueless, mostly because
I always assume that there is a better or "perfect"
way to carry out my design.

Disciplinary Knowledge Negative

Are aesthetics important to the
career you intend to pursue after
graduation? Explain. Feel free
to include what career you are
interested in.

Very important, I am pursuing a career in human-
centered design. My first job after college is as a
Footwear Concept Engineer at Nike!

Navigation Positive

I am not sure what career I will be working in, but I
know I enjoy design so aesthetics will be important
to my career.

Affective Value Positive

Are aesthetics important in your
non-professional life? Explain.

No, I’m a pretty plain Jane. My walls are bare and
I have no non-functional decorations.

Affective Value Negative

Personally, they aren’t. However, I believe they
would be if I had more disposable income.

Expansion of Perception Neutral

Table 2: Examples from the industrial design course survey, with human-annotated affect labels.

Q2) How does making things on your own make
you feel at the beginning of the process? Why does
it make you feel that way? The purpose of this ques-
tion is to gain insight into the ideation process. Q3)
Are aesthetics important to the career you intend to
pursue after graduation? Explain. Feel free to in-
clude what career you are interested in. Responses
to this question shed light on whether students see
themselves pursuing engineering careers. Q4) Are
aesthetics important in your non-professional life?
Explain. This question tells us whether students
think of applying aesthetic design in their daily
lives.

Constructs. We are interested in determining if
students undergo a transformative experience, and
whether the course has an impact on their engi-
neering identity. Transformative experience can
be characterized by three constructs: expansion of
perception, motivated use and affective value.

• Expansion of Perception: the realization that
how you view the world has changed due to the
content you learned from the course. Students
indicate this by observing learned concepts in
their day-to-day lives.

• Motivated Use: the ability and desire to apply

classroom learning to daily lives. Students in-
dicate this by using ideas from courses without
prompting in work or personal lives.

• Affective Value: the realization that learned con-
cepts have some value in the real world. Students
thus indicate a positive emotional state towards
the course.

Engineering identity can be characterized by three
constructs: disciplinary knowledge, identification,
and navigation.

• Disciplinary Knowledge: the student indicates
knowledge of concepts that engineers know. Ad-
ditionally, the student thinks they can do what en-
gineers do, and apply learning to the real world.

• Identification: the student indicates being iden-
tified as an engineer by themselves or others,
which fosters a sense of belonging within the
student towards engineering.

• Navigation: the student indicates their percep-
tion of how they are doing at becoming an en-
gineer. This includes completing engineering-
related coursework, and pursuing engineering
internships or jobs.
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Affect. Responses can indicate either
positive, negative, or neutral af-
fect towards a particular construct, as shown in
Table 2. Responses that do not discuss a construct,
or contain no affect information are annotated as
unavailable.

2.3 Formal Definition of RCT

To automatically identify student affect towards
constructs, we introduce the task of response con-
struct tagging (RCT). We define this as a classi-
fication task, where, given a student response r
together with a construct c, the goal is to predict
the student’s affect a towards c as expressed in r.

In this paper, c ∈ {Expansion of Perception, Mo-
tivated Use, Affective Value, Disciplinary Knowl-
edge, Identification, Navigation} and a ∈ {Positive,
Negative, Neutral, Unavailable}.

3 Datasets

3.1 Survey Data

Our data consists of 232 anonymized responses
across all four questions from 29 students, both
before and after completing the course. These re-
sponses were then annotated for affect by a trained
human annotator for all six constructs.

We create training, development and test splits
from 50%, 17%, and 33% of the data, containing,
respectively, 114, 40 and 78 responses. Since each
response is annotated for six constructs, we create
six training instances from each response, where a
training instance consists of the response and the
construct name as input, and the affect label as the
output. This finally gives us training, development
and test sets of sizes 708, 240, and 468 respectively.

The distribution of labels in the training set is
shown in Figure 1. We see that the labels are not
evenly distributed – 480 responses, or 68% of the
data, do not display any affective state, and are la-
beled as unavailable. Of the other labels, 174
responses, or 24%, are labeled as positive, 29
responses as neutral, and only 25 responses, or
3.5% of the data are labeled as negative. Fur-
ther, Figure 1 also shows how the distribution of
labels corresponds to the six constructs – we see
that for several constructs, particularly those cor-
responding to transformative experience, no affect
can be detected in the responses.

Table 3 shows the average statistics of responses
in our training set, corresponding to the four af-
fect labels. We see that responses annotated as

Feature Pos. Neg. Neu. NA

Num sentences 2.17 1.65 1.92 1.86
Num tokens 39.4 26.9 37.1 33.1
Pos. lexicon % overlap 5.82 4.90 6.25 6.22
Neg. lexicon % overlap 0.75 1.16 0.60 1.15

EECS

Pos. lexicon % overlap 9.67 4.82 3.36
Neg. lexicon % overlap 0.91 4.59 1.80

Table 3: Average statistics of training set responses.

positive are longer than others, containing
more sentences and more tokens on average. We
also compute the percentage of tokens that overlap
between our responses and the Bing Liu sentiment
lexicon (Hu and Liu, 2004), which contains word
lists corresponding to positive and negative senti-
ment. Responses annotated as positive have a
5.82% overlap with the positive lexicon, however,
neutral responses and those with no affect have
more of an overlap, 6.25% and 6.22% respectively.
With the responses that express negative affect,
only 1.16% of tokens overlap with the negative lexi-
con. We compare this with a prototypical sentiment
analysis dataset, also containing classroom survey
responses (Welch and Mihalcea, 2016) in the last
two rows of Table 3. Here, positive responses have
a 9.67% overlap with the positive lexicon, while
negative responses have a 4.59% overlap with the
negative lexicon on average. This indicates that the
affective states we are interested in are different
from sentiment.

3.2 EECS data

Transfer learning via multitask learning (Caruana,
1993) has been shown to be successful in NLP
(Collobert and Weston, 2008; Ruder, 2017). We
therefore make use of the Michigan EECS Targeted
Sentiment Analysis Dataset (Welch and Mihalcea,
2016) for training our model in an MTL setup. This
dataset consists of student feedback from the Com-
puter Engineering program posted on an online
forum. Since responses may refer to either the
course material or to the instructor, all responses
include gold annotations for the entities mentioned
in them. Responses are explicitly annotated for
positive and negative sentiment, with the absence
of annotations indicating neutral sentiment. The
dataset contains a total of 1144 responses, from
which we create training, development and test sets
of sizes 645, 121, and 378 respectively.

253



Unavailable Positive Neutral Negative
Affect labels

0

100

200

300

400

500

Fr
eq

ue
nc

y

Unavailable Positive Neutral Negative

Expansion of Perception

Motivated Use

Affective Value

Disciplinary Knowledge

Identification

Navigation

47 51 7 12

49 51 10 7

54 50 9 4

112 4 0 1

107 8 1 1

105 10 2 0

Figure 1: Distribution of affect labels in our training set.

4 Models

4.1 RoBERTa Classifier

Pretrained language representation models (Devlin
et al., 2019; Liu et al., 2019) define the state-of-
the-art on many language understanding tasks, in-
cluding text classification (Wang et al., 2018). We
thus finetune the RoBERTa model (Liu et al., 2019)
for sequence classification, using the HuggingFace
Transformers library (Wolf et al., 2020).

We train all models with a cross-entropy loss.
We use the default hyperparameters of RoBERTa-
base, with an embedding size of 512 and a hidden
layer size of 768. We use a dropout probability
of 0.1 on the attention layers and the hidden lay-
ers. We train for 50 epochs with early stopping
on the development set, using the Adam optimizer
(Kingma and Ba, 2014) and a learning rate of 1e-5.
Training time was 10 minutes on a single nVidia
V100 GPU.

4.2 Multitask Learning

Multitask learning (Caruana, 1993) enables models
to learn from a similar task, and has been success-
fully used in NLP, particularly for tasks with a
limited amount of data (Ruder, 2017; Benton et al.,
2017; Mrini et al., 2021). We therefore perform
multitask training on two tasks, namely RCT and
sentiment classification on student course feedback.
We use the Michingan EECS Targeted Sentiment
Analysis Dataset (Welch and Mihalcea, 2016), as
described in Section 3.2. This is done by jointly
training a single model across both tasks, with
a shared encoder and two separate classification
heads.

5 Experiments

5.1 Baselines
Random The random baseline randomly selects
one out of the four affect labels.

Majority The majority baseline predicts the label
of the majority class, which is Unavailable.

Bag-of-Words + SVM Our final baseline repre-
sents each input response and construct as a bag-
of-words. We vectorize the input using the Tf-idf
vectorizer from scikit-learn (Buitinck et al., 2013).
We then train an SVM classifier with a hinge loss,
L2 regularization penalty of 1e-4, and a learning
rate of 1e-5.

5.2 Additional input
We experiment with passing additional input avail-
able in our data – specifically, the question corre-
sponding to a response, and the description of a
construct as per the annotation guideline. As an ex-
ample, for the construct Navigation, the description
is “A response is tagged Positive for navigation if it
discussed how the student felt that they were doing
things that engineers do, such as accepting a posi-
tion as a full-time engineer after graduation. Re-
sponses are marked as having negative navigation
only if not feeling like an engineer was expressly
mentioned”. The complete list of descriptions can
be found in the appendix. The additional input sig-
nals are concatenated to the text response before
passing it to the model.

5.3 Metrics
For all models, we report accuracy, precision,
recall, and F1 score. We compute F1 for all
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Model Acc. Prec. Recall F1 Positive F1 Negative F1 Neutral F1 Unavailable F1

Random 23.7 24.4 21.8 18.2 23.5 11.7 2.7 34.8

Majority 68.1 17.0 25.0 20.2 0.0 0.0 0.0 81.1

BoW–SVM 67.5 48.7 36.2 35.7 45.5 5.8 10.5 81.0

RoBERTa 74.3 45.7 45.9 45.8 61.7 29.5 5.8 86.3

RoBERTa–Questions 77.9 49.8 47.4 48.4 64.9 33.3 6.9 88.7

RoBERTa–Question–Description 73.7 46.3 44.4 44.2 58.4 14.6 18.1 85.8

RoBERTa-Upsample 78.6 50.5 45.8 46.4 66.9 15.3 14.2 88.9

RoBERTa-Class-Weights 74.1 42.4 42.4 42.2 60.4 15.6 5.7 87.2

RoBERTa-MTL 79.2 65.8 54.2 55.1 62.0 49.2 20.0 89.4

Table 4: Model performance on the test set of RCT. Bold values indicate the model with the highest macro-averaged
F1 on a specific category.

four classes individually, and additionally calcu-
late macro-averaged F1 as an overall score for our
dataset.

5.4 Balancing Classes

To counteract the label imbalance in our dataset,
we experiment with two strategies: class weight-
ing, and upsampling. With class weighting, we
calculate weights for each output class, inversely
proportional to its frequency in the training data,
and use these weights while computing the cross-
entropy loss. With upsampling, we repeat instances
of the less frequent classes multiple times in the
training set, such that all output classes are evenly
represented.

5.5 Results

Table 4 shows the performance on our test set.
Looking at the baselines, we see that while the
Random and Majority baseline are comparable,
the BoW-SVM baseline outperforms them by 15
F1. However, looking at the performance of the
RoBERTa model, we can see that better input rep-
resentations from pretraining makes a dramatic
difference: RoBERTa outperforms our strongest
baseline by 10 F1. Looking at performance on indi-
vidual labels, we see that the model predicts with a
high accuracy the labels which are dominant in the
training set, i.e., unavailable and positive.
However, it is negatively impacted by class imbal-
ance – on the rarest label, neutral, it scores 5.8
F1, and on negative, it scores 29.5 F1.

Next, we incrementally encode additional input
signals with both models as described in Section
5.2. We observe that encoding the question is effec-

tive, and overall performance increases to 48.4 F1
with RoBERTa. Particularly, on the negative af-
fect label, performance increases by 4 F1. However,
we find that additionally including the description
of the construct doesn’t result in further overall
improvement over encoding the question.

We investigate two strategies for counteracting
class imbalance as described in Section 5.4, namely
upsampling and class weighting. We observe that
upsampling has a positive effect on the rarest label,
neutral, where RoBERTa performance goes up
from 6.9 F1 to 14.2 F1. However, on the other
labels, there is either a drop in performance or
no noticeable change. On the other hand, class
weighting does not result in improvement on any
of the rarer classes, or overall.

Finally, we observe that the multi-task learning
model achieves the highest performance on RCT,
with an F1 of 55.1. Comparing to the equivalent
single-task model RoBERTa-Questions, the MTL
model improves by 6.7 F1, from 48.4 F1 to 55.1
F1. We also see a steep improvement on the rarer
classes – on negative, performance improves by
15.9 F1, from 33.3 F1 to 49.2 F1, and on neutral,
performance improves by 14.2 F1, from 5.8 F1 to
20.0 F1. Our results thus indicate that jointly train-
ing on the related task of sentiment classification
helps the model learn the affect labels in our data
better.

6 Analysis

6.1 Question-Level Performance

Figure 2 breaks down the performance of our best
model, RoBERTa-MTL, across the four questions
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Figure 2: Performance of RoBERTa-MTL across questions for each construct and affect. Cell color intensity
indicates F1, and cell values indicate label count.

on the survey as described in Section 2.2. The
cell values show the count of each affect label cor-
responding to a construct on the test set, and the
color intensity shows the model’s F1 on a scale of
0–1. Overall, we see that the most frequent label
is unavailable, on which the model’s perfor-
mance is also high across all constructs. This is
particularly noticeable for the constructs of Dis-
ciplinary Knowledge, Identification, and Naviga-
tion, for which almost all annotations fall under
unavailable except for Q3.

Next, we look at the plots for individual ques-
tions. We observe that for Q1, for the Moti-
vated Use construct, the model does well on the
positive and negative affect labels, but does
not predict the other two classes correctly. For
the Affective Value construct, the model predicts
the neutral label correctly, but not positive
or negative. For Q2, which asks students
about their feelings towards starting a project, both
positive and negative affect labels are fre-
quent, and the model also performs well on these
classes. On Q3, for both the constructs of Expan-
sion of Perception and Motivated Use, F1 is high on
both the positive and negative affect labels,

but lower on the unavailable and neutral
labels. Finally, for Q4, the model does well on
the positive and negative labels for Expan-
sion of Perception. On Motivated Use, the model
achieves comparable performance on all labels, and
on the Affective Value construct, the model does
poorly at predicting neutral and negative la-
bels.

6.2 Qualitative Analysis

We also look at specific errors made by the model
on the test set, as shown by the confusion matrix
in Figure 3. We observe that the major source
of error is from confusing a true class of any la-
bel with the positive label. An example of a
true negative response to Q1 being predicted
as positive towards Motivated Use is: “I gen-
erally just design to my own tastes and hope that
its appealing to others”. Here, the student indi-
cates that they do not make use of learned con-
cepts while designing which indicates negative af-
fect towards Motivated Use. However, this could
be perceived as positive, since the student indi-
cates an interest in design, and potentially due to
the use of the word “appealing”, which typically
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Figure 3: Confusion matrix of RoBERTa–MTL predic-
tions.

co-occurs with positive text for sentiment classifi-
cation. We also observe that when the true class
is positive, the majority errors are due to pre-
dicting unavailable or negative. An exam-
ple of a true positive response, predicted as
negative is, in response to Q4: “It is important
sometimes, like when I’m trying to decorate my
house or choosing an outfit to go out in.”

7 Related Work

Prior research has investigated how NLP can be
used to analyze student feedback, with the goal
of improving teaching and learning. Similar to
our work is sentiment analysis for classifying stu-
dent’s affective states after completing a course
(Dolianiti et al., 2018; Kastrati et al., 2021). More
specifically, aspect-based sentiment analysis (Pon-
tiki et al., 2016) is used to determine sentiment to-
wards distinct entities such as instructors or course
material (Ramesh et al., 2015; Welch and Mihal-
cea, 2016), as well as attributes such as teachers’
helpfulness (Nikolić et al., 2020) or quality of ex-
amples used (Chathuranga et al., 2018). Several
methods have been investigated for this problem,
including sentiment lexicons (Welch and Mihal-
cea, 2016; Wen et al., 2014b), probabilistic models
(Ramesh et al., 2015), convolutional neural net-
works (Kastrati et al., 2020), and LSTM models
(Nguyen et al., 2018). However, our proposed
task differs from aspect-based sentiment analysis
since the constructs we are looking for are implicit,
and are never explicitly mentioned in a student re-
sponse.

Beyond sentiment classification, other applica-
tions have been studied for understanding student
feedback: Luo and Litman (2015) automatically
summarize student responses to open-ended reflec-
tion prompts, and Luo et al. (2016) summarize
student feedback on courses. Wen et al. (2014a)
analyze posts on MOOC forums to determine stu-
dent motivation and engagement. In engineering
education research, NLP has been used for de-
termining “disciplinary discourse” in student re-
sumés (Berdanier et al., 2018), and for measuring
metacognitive development of students in engineer-
ing classrooms (Bhaduri, 2018).

In our experiments, we use pretrained models
for classification through fine-tuning, which have
proven to be highly effective for NLP tasks (Wang
et al., 2018, 2019). Pretrained models have also
been used successfully in educational applications
(Alikaniotis and Raheja, 2019; Benedetto et al.,
2021; Katinskaia and Yangarber, 2021). We also
use multi-task learning (Caruana, 1993), which has
been investigated for tasks such as text classifica-
tion (Liu et al., 2017) and sequence labeling (Hu
et al.; Bingel and Søgaard, 2017). Multi-task learn-
ing has proven to be particularly effective in low-
resource settings (Benton et al., 2017; Schulz et al.,
2018; Mrini et al., 2021), which is applicable for
our task as well.

8 Conclusion

We introduce a new task, response construct tag-
ging, to automatically tag student survey responses
for the affective state of a student towards six pre-
defined constructs. We present a classification
model for this task based on the RoBERTa pre-
trained model, that outperforms multiple baselines.
On investigating the different information sources
this model can utilize, we find that the best perfor-
mance of 48.4 F1 can be attained by encoding a
response, construct, and the corresponding ques-
tion. We also demonstrate the benefits of train-
ing our model in a multitask learning setting on
the related task of sentiment classification, which
achieves a score of 55.1 F1, a 6.7 F1 improvement.
Our task, and corresponding model, enables educa-
tors to assess the effectiveness of their curriculum
in influencing students’ identity and perceptions of
engineering, and thereby to design curricula that
maximize positive influence.

Limitations and Future Work Our proposed
model can detect certain constructs and affects with
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high accuracy, such as the positive labels. However,
RCT is a challenging task – differences between
affect labels are nuanced, and a single response can
indicate different affective states towards different
constructs. Moreover, the sparsity of labels in our
dataset makes it difficult to learn the rarer combi-
nations of affect and constructs, such as negative
Identification. However, this is an inherent limi-
tation with the classroom assessment framework,
since students might be unwilling or unlikely to
express feelings such as “not identifying as an en-
gineer”. One way to mitigate this problem might
be to generate student responses artificially for con-
structs and affects that are not represented in the
dataset. In future work, we will investigate how this
can be done both manually, i.e., using human an-
notators, and automatically, such as conditionally
generating responses that display a desired affect.
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A Appendix

A.1 Construct Descriptions
Here, we provide a description of each construct,
including when a particular affect label is annotated
for the construct.

• Expansion of Perception: A response was
tagged as Expansion of Perception if the stu-
dent expressed seeing aesthetics in their daily
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life. Students who expressed that aesthetics
were generally unimportant were tagged as
negative expansion of perception.

• Motivated Use: A response was coded as re-
lating to motivated use if a student expressed
a desire (or lack thereof) to use aesthetics and
design in their work or daily lives. Addition-
ally, if a student expressed that they felt that
their learning could be applied, their response
was tagged for motivated use.

• Affective Value: In order for a response to be
tagged with a shift in affective value the stu-
dent needed to provide an emotional response
about a topic relating to those discussed in
AesDes, this meant that student responses
proving a positive feeling towards aesthetics
or design would be flagged as experiencing a
positive shift in affect.

• Disciplinary Knowledge: A response was
tagged for Disciplinary Knowledge if the stu-
dent discussed their perception of their learn-
ing. Very few students discussed Disciplinary
Knowledge in their open responses, and no
neutral Disciplinary Knowledge code was
found.

• Identification: A response was tagged for
identification if the student discussed either
seeing themselves as an engineer, such as say-
ing “I am an engineer” or if they mentioned
someone else calling them anengineer. No stu-
dents provided responses that were indicative
of negative Identification.

• Navigation: A response was tagged for navi-
gation if it discussed how the student felt that
they were doing things that engineers do, such
as accepting a position as a full-time engineer
after graduation. Responses were marked as
having negative navigation only if not feeling
like an engineer was expressly mentioned.

261



Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022), pages 262 - 271
July 15, 2022 c©2022 Association for Computational Linguistics

Towards Automatic Short Answer Assessment for Finnish as a Paraphrase
Retrieval Task

Li-Hsin Chang, Jenna Kanerva, and Filip Ginter
TurkuNLP Group

Department of Computing
Faculty of Technology

University of Turku, Finland
{lhchan, jmnybl, figint}@utu.fi

Abstract
Automatic grouping of textual answers has the
potential of allowing batch grading, but is chal-
lenging because the answers, especially longer
essays, have many claims. To explore the fea-
sibility of grouping together answers based on
their semantic meaning, this paper investigates
the grouping of short textual answers, proxies
of single claims. This is approached as a para-
phrase identification task, where neural and
non-neural sentence embeddings and a para-
phrase identification model are tested. These
methods are evaluated on a dataset consisting
of over 4000 short textual answers from various
disciplines. The results map out the suitable
question types for the paraphrase identification
model and those for the neural and non-neural
methods.

1 Introduction

Computer-assisted assessment brings about the
promise of alleviating the workload of teachers, al-
lowing them to concentrate manual efforts towards
more creative pedagogical tasks. Not all assess-
ment types, however, have widely adopted fully
automated or computer-assisted grading methods.
Essays, for example, are a common way to evaluate
student knowledge, but are resource-demanding to
grade. An angle to automatic essay evaluation is
to group together similar essays for batch grading,
but this is complicated by the complex structure
of essays. Short answers, on the other hand, of-
ten consist of only one or a few claims, and thus
represent a desirable starting point for textual an-
swer clustering. In addition to being a simplified
target for studying textual answer clustering, short
answers are also a common form of assessment;
Very short answer questions have been shown to
have desirable traits of reliable assessments, such
as the scores showing a fair and balanced distribu-
tion (Puthiaparampil and Rahman, 2020).

Automated short answer assessment is used in
this paper as an umbrella term to refer to compu-

tationally assisting the evaluation of short textual
answers, while there is no unified definition for
short textual answers (Roy et al., 2015). Whereas
some impose only length restrictions on the tex-
tual answers (e.g. one phrase to one paragraph),
others have additional criteria such as the answer
being a natural language response, or the focus of
the assessment being knowledge content instead of
grammar (Burrows et al., 2015; Roy et al., 2015).
In practice, the definition for short textual answers
depends on the actual application, and the answers
vary in terms of textual length, topic, assessment
criteria, educational level of students, etc. These
variations have fueled the long ongoing research
on automated assessment of short textual answers.
Roy et al. (2015) survey computer-assisted assess-
ment techniques developed in the years 2000–2015
targeting short answers ranging from a sentence
long to a maximum of 100 words. They suggest
a matchmaking framework to guide the choice of
appropriate techniques for practitioners and call
for computer-assisted assessment methods that do
not rely on model answers, as automated short an-
swer grading (ASAG) systems usually do. One
such alternative method is to group together se-
mantically similar short textual answers for batch
grading. This is a less explored research area but
has been shown to effectively reduce the number
of manual actions required for grading (Basu et al.,
2013).

The essence of both ASAG and short answer
grouping is how the texts are represented, and thus
their research methods are influenced by the ad-
vances in semantic textual similarity (STS) and
paraphrase research. Here, a typical ASAG sys-
tem would measure the similarity between teacher-
supplied model answer(s) and student answers,
whereas short answer grouping measures and
groups student answers among themselves. Apart
from traditional string-based and corpus statistics-
based methods, dense vector representation meth-
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ods based on deep learning are naturally highly
applicable to the task. A typical example of such
methods are Sentence-Transformers (Reimers and
Gurevych, 2019) that adapt the BERT model to sen-
tence representation by explicitly optimizing the
similarity of dense-vector representation for pairs
of sentences known to carry the same meaning.
Such models can be applied to answer grouping in
a straightforward manner by comparing the dense
representations of sentences across different an-
swers. In a different line of work, Kanerva et al.
(2021b) approach paraphrase detection as a form of
semantic search by training a question-answering
type of a model to detect a paraphrase of a query
from a given context document. This methodology
can be seen as highly relevant to examining answer
grouping: given an answer, or a part of an answer
constituting a single claim, such model can then
identify answers containing the same claim or its
paraphrase among other students’ answers. Such
an approach would, in theory, then allow the grad-
ing teacher to retrieve all such answers and carry
out a common grading action. While not elimi-
nating manual grading work, this approach could
potentially significantly reduce the need, if paired
with an appropriate interface and workflow.

In this paper, we pursue this direction, approach-
ing answer grouping from an information retrieval
(IR) perspective, i.e. given an answer, or a claim
from one answer, the task is to identify other an-
swers containing the same claim or its paraphrase,
not relying on the availability of model answers.
The objective here is to retrieve similar answers for
a given query to support e.g. batch grading. While
we do not want to limit our methods to short answer
assessment only, full long essays are likely too long
as retrieval candidates. Rather than retrieving on
essay level, the natural unit for the retrieval would
be to do it on the claim level, looking for similar
claims inside the essays. However, for the time
being we lack any manual annotation for individ-
ual claims posed in the essays, making the evalua-
tion of such claim-level retrieval methods difficult.
Therefore, we approach the problem by using short
answers only, where the answer typically includes
only one or a few claims. The overall score as-
signed for the answer can then be used as a proxy
of claim similarity, as all answers with high scores
can be assumed to contain similar claims, even if
using different wordings. We therefore formulate
the overall task setup as such: Given one claim

as a query (in the form of a short answer), how
well the experimented models are able to retrieve a
similar claim among all candidates answering the
same prompt (here “prompt” refers to the question
posed by the teacher to which the students are an-
swering) when judging the similarity based on the
scores assigned to the answers. We use a dataset of
over 4,000 teacher-graded short answers from ac-
tual university examinations of 24 distinct courses.
We test non-neural and neural sentence embedding
methods as well as the above-mentioned question
answering -based paraphrase retrieval model, and
map which types of questions are suitable for what
types of answer grouping methods.

2 Related work

The most researched direction for automated evalu-
ation of short textual answers is automatic short an-
swer grading (ASAG). This research field has seen
the application of rule-based, machine learning,
and deep learning methods (Burrows et al., 2015;
Roy et al., 2015; Bonthu et al., 2021). ASAG is typ-
ically modelled as a supervised learning task and
seen as either a classification or a regression task,
where a student answer is compared to a model
answer, and the output label or score is based on
their similarity. Consequently, model answers are
usually required for these systems. Camus and
Filighera (2020) test the performance of various
Transformer-based (Vaswani et al., 2017) language
models on the SemEval-2013 dataset (Dzikovska
et al., 2013), one of the most common ASAG
dataset. They find that a Robustly Optimized BERT
Pretraining Approach (RoBERTa)-large model (Liu
et al., 2019) fine-tuned on the Multi-Genre Natu-
ral Language Inference (MNLI) dataset (Williams
et al., 2018) performs best.

Short answer grouping is a less explored research
direction, where short textual answers are grouped
together based on their similarity. Basu et al. (2013)
use a feature-based similarity metric to group short
textual answers into hierarchical clusters. Their
features include i.a. difference in length, fraction
of words with matching base forms, and cosine-
similarity of TFIDF vectors. They show that such
clustering can effectively reduce the number of ac-
tions required for grading. Hämäläinen et al. (2018)
use the Hyperlink-Induced Topic Search (HITS) al-
gorithm (Kleinberg, 1999) to cluster open-ended
questionnaire answers from students. Applying this
method to both English and Finnish datasets, they
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obtain satisfactory results on the English dataset
but less ideal results on the Finnish dataset, poten-
tially due to the Finnish answers being longer in
length. Both the study of Basu et al. (2013) and
Hämäläinen et al. (2018) predate the era of deep
neural network-based methods of meaning repre-
sentation.

3 Data

Our experiments are based on a large scale dataset
of over 261K anonymized textual answers from
different university-level examinations. However,
for the purpose of this study, the dataset is heavily
filtered in order to obtain a subset including only
examples considered as short answers suitable for
the study. We aim to find prompts looking for
concise fact-based descriptions, which are likely
to contain only a single claim and therefore have
an increased likelihood that two answers with a
high score are likely to be paraphrases of each
other (although that naturally cannot be guaranteed
without manual annotation). Such suitable prompts
ask for example term definitions, listings of the
components of certain concepts, explanation of
the workings of a process or device, explanations
why e.g. a German noun is of a certain gender, or
basically anything targeting to a short semantic-
focused answer. In addition to the proper answer
content, we also need the prompts to fit to our
retrieval task setting, meaning that for each unique
prompt, we need to have several student answers
as retrieval candidates. One such example prompt
together with few graded student answers for it is
given in Table 1.

The original dataset is a collection1 of 261K stu-
dent answers gathered across various disciplines in
the University of Turku, Finland. Together with the
textual answers, the data include the course identi-
fier, question prompt, assigned score, and possible
score range for each answer. The textual answers
are written by mainly undergraduate students, and
the most common languages are Finnish and En-
glish. Figure 1 illustrates the data filtering process.
The filtering criteria for identifying a suitable short
answer subset for this study are as follows: the
prompt length must be under 10 tokens and the
answer length under 30 tokens as determined based
on the FinBERT model tokenizer2, and the lan-

1The nature of student examination answer data unfortu-
nately precludes its free distribution.

2https://huggingface.co/TurkuNLP/
bert-base-finnish-cased-v1

guage of the answer must be Finnish. All answers
with 0 as the highest possible score are excluded,
as these are often dummy prompts related to course
feedback, assignment submission, or attendance
rather than being actual exam questions. Addi-
tionally, due to the retrieval task setup used, each
prompt included in the subset must have at least
10 answers passing the above-mentioned filtering
in order to have enough retrieval candidates in the
experiments.

After the automatic filtering, some amount of
manual cleaning is also used to remove answers
and prompts unsuitable for the experiments. These
mostly include prompts from language courses tar-
geting to grammatical correctness rather than se-
mantics (therefore including very little variation),
prompts asking the students to name parts of a fig-
ure, or occasional dummy prompts that passed the
zero score filter.

Statistics of the final filtered subset are summa-
rized in Table 2, the final dataset including prompts
from 24 different courses and 12 different disci-
plines. In total, there are 4,082 student answers.
The disciplines of the courses are otherwise evenly
distributed, except for life sciences, which has 9
courses with 93 prompts and 2523 answers, ac-
counting for more than half of the obtained short
answers. On average, each prompt has about 24
different answers. The maximum number of an-
swers a prompt has is 75, while 22 prompts pass
the filter with the minimum of 10 answers. Since
the highest possible score varies across courses
and prompts, the assigned scores of each answer
are normalized to a range of 0–1 with respect to
the highest possible score. For pass-fail questions,
scores of passed answers are converted to 1 and the
failed ones 0. The normalized score distribution of
the short answers is shown in Table 3.

4 Experiments

The grouping of semantically similar answers is
approached from an IR point of view. For each an-
swer, the answer itself is considered the query and
all the other answers to the same prompt are con-
sidered the documents. This is repeated for every
answer of a prompt. Three methods are tested for
retrieval: TFIDF, Sentence-Transformers, and the
paraphrase span detection model (Kanerva et al.,
2021a). The grade is used as a proxy allowing for
method comparison: intuitively, a correct retrieval
i.e. an answer which paraphrases the answer used
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Prompt: digital legacy
Score Answer
1.0 A digital legacy is all the files and data about a person that remain on the internet or the digital

world after the death of the person.
1.0 The trace that we leave behind digitally when we die (e.g. files, digital photos and usernames).
1.0 All the digital material that remains of a person after death. Digital legacies include for

examples passwords, usernames and photos of the deceased person.
0.5 Traces left by the user of a computer or other technological device. What websites they have

visited and what software they have on their device.
0.5 Any data a person leaves behind on the Internet or other computer systems.
0.0 All the things that were born in the digital form.
0.0 Digital legacy means electronic waste, often exported to the third world.
0.0 The evolutionary trajectory of digital devices.

Table 1: An illustrative example of one example prompt together with few student answers for it translated into
English.

Figure 1: Illustrative diagram of the data filtering process.

Courses Prompts Answers
Full dataset
Total 1,745 — 261K
Filtered subset
Communication 1 1 10
Computer sciences 1 14 393
Economics 1 3 37
Educational sciences 2 6 62
German 1 14 172
Information 1 11 437
systems science
Life sciences 9 93 2523
Media research 1 1 10
Medicine 2 3 33
Philology 1 6 86
Philosophy 1 5 65
Psychology 3 14 254
Total 24 171 4,082

Table 2: Statistics of the filtered short answers dataset
used in this study.

as the query, should have the same grade. Conse-
quently, a method which is better at the retrieval
task should, on average, be more likely to retrieve
answers with the same score as the query than a
method which is worse at the retrieval task. As
we are mostly interested in relative method perfor-
mance, we measure and report the success of the

Normalized score Occurrence
0.0 754
0.25 53
0.5 298
0.75 137
1.0 2792

Table 3: Occurrences of the normalized score of 4082
short answers. 15 values between the range of 0-1 are
omitted in the table due to low (<10) occurrences.

retrieval by top-1 accuracy and R-precision. The
relevance of the retrieval is binary, meaning that re-
trieval with matching grade to the query is counted
as “correct”, and otherwise “incorrect”.

4.1 TFIDF
The term frequency–inverse document frequency
(TFIDF) represents a commonly used family of IR
metrics based on lexical overlap. TFIDF estimates
the importance of a word in a document by the num-
ber of times it appears in the document, and the
inverse of the number of documents the word ap-
pears in a document collection. It generates sparse
high-dimensional vectors without inherent similar-
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ity between words.
For our experiments, TFIDF representation is

generated for every short answer. The TFIDF rep-
resentation of an answer is calculated from the
entire collection of over 201K Finnish textual an-
swers. The features used are the ngrams (n=2–5)
of character within word boundaries. The short
answers are used as-is, without stop word removal
or lemmatization because these processing did not
improve the results in our preliminary experiments.

4.2 Sentence-Transformers

Sentence-Transformers are trained from language
models such as BERT or XLM-R (Conneau
et al., 2020) using Siamese or triplet networks
to induce sentence encoders whose representa-
tion can be compared using cosine similarity
(Reimers and Gurevych, 2019). The resulting
representations are dense, low-dimensional,
and context-sensitive. For our experiments,
two Sentence-Transformer models available
on HuggingFace (Wolf et al., 2019) are tested:
sbert-cased-finnish-paraphrase and
paraphrase-xlm-r-multilingual-v1
(thereafter SBERT-Finn and XLM-R←SBERT-
para). The SBERT-Finn model is based on the
FinBERT-base-cased model (Virtanen et al., 2019),
fine-tuned for an epoch on the Finnish Paraphrase
Corpus (Kanerva et al., 2021a), as well as 500K
of positive and 5M of negative automatically
collected paraphrase pair candidates3, with mean
pooling and a classification objective. The
XLM-R←SBERT-para is fine-tuned from the
XLM-RoBERTa-base model (Conneau et al.,
2020) to mimic the embeddings of the English
Sentence-BERT (Reimers and Gurevych, 2020).
The fine-tuning uses a teacher–student framework
and parallel data of over 50 languages. The
resulting model was reported to outperform
multiple competitive baselines on the multilingual
semantic textual similarity 2017 dataset (Cer et al.,
2017).

4.3 Span detection model

Treating paraphrase recognition as a span detection
task, Kanerva et al. (2021b) train FinBERT models
to paraphrase recognition taking inspiration from
the question answering task, where given a query, a
question answering model retrieves a span out of a
given document as the answer to the query. Instead

3https://turkunlp.org/paraphrase.html

of retrieving answers, the paraphrase span detec-
tion model takes in a query and identifies a span
from the given document that paraphrases the query.
The models are trained on the Finnish Paraphrase
Corpus, which includes not only the paraphrase
pairs but also their context documents where each
paraphrase statement originally occurred. They
train two flavors of models, one with only positive
examples always selecting a span from the given
document, and the other being able to produce a
null span, indicating that no paraphrase of the query
can be detected from the given document.

For our experiments, an answer of a prompt is
used as the query and all other answers from the
same prompt are concatenated as the context docu-
ment, as shown in Figure 2. The model produces
candidate spans that it detects as paraphrases of the
query, and the most likely prediction is selected
as the final retrieval. The full model that also pre-
dicts null spans is used as there may not always
be other answers that are semantically similar to
an answer. The model produces several (start-of-
span, end-of-span) candidates sorted based on an
assigned probability score for each. The model is
modified so that the probability is always calcu-
lated for a whole answer, instead of arbitrary spans.
The retrieved spans can be considered as all the
predictions ranked before the null span.

4.4 Evaluation metrics

Top 1 accuracy measures if the first retrieved doc-
ument (an answer to the same prompt as a query)
is correct, i.e. if it has the same grade/score as the
query. Top 1 accuracy allows for quick understand-
ing of how well the method roughly works, though
it does not take into account the expected value of
a random retrieval (e.g. if all the answers to the
prompt score the same, the accuracy is high no
matter what the model retrieves), nor how close
numerically the score of the retrieval is to that of
the query, if they are not equal. The course-wise
top 1 accuracy is reported, which is calculated as
the arithmetic average of the prompt-wise top 1 ac-
curacy. The prompt-wise top 1 accuracy is in turn
calculated from the arithmetic average of the top
1 accuracy of all the queries answering the same
prompt. For the span detection model, a null predic-
tion is ignored for the calculation of top 1 accuracy.
That is, the first non-null prediction is taken if the
first prediction is null.

Since the grades of all the answers are available,
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Figure 2: Illustration of the span detection setup. The blue text is in its original language while the black text has
been translated from Finnish.

the total number of relevant documents is known.
This allows for the calculation of R-precision, the
number of relevant documents in the first R re-
trievals, where R is the total number of relevant
documents for a query. R-precision is also equal
to recall with R as cutoff. As with the top 1 accu-
racy, null spans are ignored for the calculation of
R-precision in the case of the span detection model.

5 Results

The top 1 accuracy and R-precision of the methods
across the 24 courses are shown in Tables 4 and 5
respectively. Courses numbers 8 and 17 have val-
ues of 1.0 on both metrics for all methods because
both of them have 10 answers to a prompt where
all students answer correctly. Excluding these
two courses, the span detection model scores the
best or equally the best with another method on
11 and 12 courses respectively on top 1 accuracy
and R-precision, outperforming the other methods.
SBERT-Finn performs well in terms of R-precision
on the life sciences discipline, performing the best
on 8 out of 9 courses. The numerical differences of
the accuracy values among these four methods are
oftentimes minimal, and we investigate the ones
with bigger differences to establish whether cer-
tain kinds of prompts are particularly suitable for
a given method. We observe that the neural rep-
resentation is advantageous when the prompts are
challenging, which leads to the students inventing
plausible answers using the keywords. An example
of a query from a prompt where the TFIDF method

underperforms the neural method by a large margin
(0.4 vs. 0.7) is shown in Table 6. This prompt is
challenging not only because it requires the recol-
lection of certain principles, but also that there are
multiple key points the students have to make to
obtain a full score.

Compared to the other methods, the span detec-
tion model performs well on retrieving relevant
answers, but it also assigns relatively high probabil-
ities to null spans. When using the position of the
null span as cutoff instead of the number of rele-
vant documents, we observe that the span detection
model scores the best or equally the best on only
6 out of 24 courses, whereas TFIDF, SBERT-Finn
and XLM-R←SBERT-para achieve 10, 14, and 7
respectively4.

6 Discussion

In this paper, the span detection model is forced to
only predict the probabilities of whole documents
being paraphrases of the query. If this restriction
is removed, the span detection model is capable of
predicting arbitrary spans as the paraphrases of the
query. This becomes relevant when obtaining the
full score requires mentioning of multiple claims.
For example, if a prompt asks students to explain
abbreviations, a full scoring answer requires the
student to provide the full form of an abbreviation
and explain what it means. In our initial experi-

4This result is not shown, since the cutoff is only mean-
ingful for the span detection model, and its application to the
other methods is merely for comparison purposes
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Course Discipline TFIDF SBERT- XLM-R← Span No. No.
ID Finn SBERT-para detection prompts queries
1 communication 0.6 0.6 0.3 0.6 10 1
2 computer sciences 0.619 0.622 0.654 0.649 393 3
3 economics 0.30 0.39 0.39 0.31 37 2
4 educational sciences 0.3 0.3 0.1 0.4 21 1
5 educational sciences 0.49 0.56 0.44 0.56 41 2
6 German 0.84 0.81 0.76 0.82 172 2
7 information systems science 0.471 0.474 0.458 0.489 437 3
8 life sciences 1.0 1.0 1.0 1.0 10 1
9 life sciences 0.97 0.97 0.91 0.91 32 2

10 life sciences 0.49 0.46 0.36 0.54 33 2
11 life sciences 0.855 0.867 0.859 0.864 748 3
12 life sciences 0.852 0.841 0.853 0.864 365 3
13 life sciences 0.89 0.88 0.88 0.90 198 2
14 life sciences 0.83 0.76 0.75 0.75 114 2
15 life sciences 0.788 0.794 0.779 0.800 990 3
16 life sciences 0.74 0.70 0.68 0.65 33 2
17 media research 1.0 1.0 1.0 1.0 10 1
18 medicine 0.6 1.0 0.8 1.0 12 1
19 medicine 0.5 0.7 0.6 0.5 21 1
20 philology 0.73 0.65 0.68 0.76 86 2
21 philosophy 0.44 0.47 0.45 0.45 65 2
22 psychology 0.58 0.44 0.52 0.50 94 2
23 psychology 0.66 0.68 0.75 0.75 68 2
24 psychology 0.54 0.67 0.55 0.66 92 2

Number of best or equal best 8 11 5 13 — —

Table 4: Top 1 accuracy by course. No. prompts refers to the number of prompts, or exam questions, in a course. No.
queries refers to the total number of short answers in a course.

ments, we observe that the span detection model
can retrieve a span out of the full answer which is
semantically equivalent to a partial answer. The
evaluation of such retrievals, however, is not possi-
ble given our current data without manual annota-
tions because a full scoring answer has a different
score than a partial answer, nor is there a way to
attribute which sub-spans of the full answer con-
tribute how much to the final score. The exploration
of how the span detection model can be applied to
answers consisting of multiple claims may pave the
way to eventually automatically evaluating essays.
A potential way is to combine the answers of re-
lated prompts as queries and documents. We leave
this to future work.

A challenge for experimental design is the se-
lection of suitable metrics. Top 1 accuracy has the
advantage of being easily understandable and in-
terpretable, but its calculation ignores the expected
value of random retrievals. R-precision mitigates
the randomness to some extend, since it takes into
account the top R retrievals where R is the number
of relevant documents. When all the documents are
relevant, R-precision is always 1 and it is not imme-
diately obvious if the model performs meaningful
prediction, though this can arguable be regarded
as unsuitable data for retrieval, or, from a practical

point of view, the retrievals will always be relevant.
The design of R-precision is not completely com-
patible with the nature of the span detection model,
as the model predicts null, which has to be taken
into account if it ranks among the top R. The null
prediction can either be regarded as an irrelevant
prediction, or ignored altogether as we have done
so in this paper. The use of binary relevance means
a retrieved document is either relevant if it has the
same score as the query, or irrelevant if it does not.
This does not take advantage of some of the scores
being of higher granularity. For example, if the
query scores 1 and model A retrieves a document
scoring 0.7 and model B a document scoring 0.3,
the retrieval of model A is likely better than that of
model B. An ideal metric would thus take into ac-
count the numerical difference between the scores
of the query and the retrieval, as well as the infor-
mativeness of the set of documents available for
retrieval.

A class of metrics we have explored but did not
eventually use is normalized discounted cumulative
gain (NDCG). NDCG is a class of commonly used
IR metrics, where the discounted cumulative gain,
which sums the relevance of the query and retrieval
(which can be graded instead of binary) discounted
by the ranked position, is normalized by the ideal
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Course Discipline TFIDF SBERT- XLM-R← Span No. No.
ID Finn SBERT-para detection prompts queries
1 communication 0.5 0.4 0.5 0.5 10 1
2 computer sciences 0.589 0.608 0.600 0.615 393 3
3 economics 0.29 0.38 0.35 0.44 37 2
4 educational sciences 0.4 0.4 0.3 0.5 21 1
5 educational sciences 0.42 0.48 0.42 0.54 41 2
6 German 0.86 0.82 0.78 0.80 172 2
7 information systems science 0.387 0.403 0.393 0.400 437 3
8 life sciences 1.0 1.0 1.0 1.0 10 1
9 life sciences 0.93 0.96 0.91 0.84 32 2

10 life sciences 0.59 0.63 0.59 0.62 33 2
11 life sciences 0.790 0.802 0.792 0.799 748 3
12 life sciences 0.809 0.829 0.817 0.822 365 3
13 life sciences 0.89 0.89 0.88 0.88 198 2
14 life sciences 0.76 0.74 0.76 0.77 114 2
15 life sciences 0.737 0.741 0.738 0.734 990 3
16 life sciences 0.60 0.64 0.59 0.54 33 2
17 media research 1.0 1.0 1.0 1.0 10 1
18 medicine 0.6 0.6 0.5 0.7 12 1
19 medicine 0.6 0.6 0.6 0.6 21 1
20 philology 0.58 0.58 0.56 0.60 86 2
21 philosophy 0.43 0.43 0.42 0.44 65 2
22 psychology 0.42 0.45 0.40 0.42 94 2
23 psychology 0.65 0.68 0.70 0.71 68 2
24 psychology 0.54 0.56 0.54 0.59 92 2

Number of best or equal best 6 12 4 14 — —

Table 5: R-precision by course. No. prompts refers to the number of prompts, or exam questions, in a course. No.
queries refers to the total number of short answers in a course.

Query 0.5 The central principle of processing level theories is that the quality of information is thought
to be more important than its duration.

Model Score Top 1 retrieval
TFIDF 0.0 In processing level theory, stimuli are processed in parts, at different levels.

SBERT-Finn 0.5 The theory is that the more information you process, the better it is remembered. The quality of
processing is more important than the duration.

XLM-R← 0.5 The most important thing in information processing is quality, not duration.
SBERT-para

Span detection 0.5 The most important thing in information processing is quality, not duration.

Table 6: Example retrievals of the four methods to a query answering the prompt “Key principles of the theory of
processing levels”. Example of a full-scoring answer is “The quality of a process means more than its duration. The
processing of meanings improves memory retention.”

discounted cumulative gain (Wang et al., 2013). It
is not suitable for this task, however, as the task
differs from typical IR scenarios in that we have
a small number of answers where the retrieval of
all relevant answers are important, whereas in e.g.
web search the focus is on ranking the most relevant
document as high as possible.

The multilingual sentence embedding model
does not outperform the non-neural baseline. This
is somewhat surprising, as some of the short an-
swers contain code-switching, such as the exam-
ples in Figure 2. This shows that language-specific
sentence embeddings and models are still more
suitable for this task.

The task setup is only an approximation. The
same grade does not imply the query and document

being paraphrases, not for high grades nor for low
grades, unless the grading criteria is semantically
stringent, in the cases of e.g. translation studies.
However, the hope is that the noise can be mitigated
by using a large dataset and some signals can be
seen as to whether the models are able to retrieve
semantically documents. Our results show that they
indeed can.

7 Conclusion

In this work, we explored several methods for
grouping student answers to exam prompt. In ad-
dition to the standard setup whereby whole short
answers are represented as either sparse (TFIDF)
or dense (Transformer) vectors and compared to
one another, we also tested a more retrieval-style
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approach, whereby we formed documents by con-
catenating a number of answers to the same prompt
and testing to what extent the model is able to re-
trieve similar answers from such documents. This
approach models the case of matching individual
claims in longer answers.

Unsurprisingly, we find that the dense representa-
tions are more suitable to the task. Interestingly, we
find that a span detection model trained on Finnish
paraphrase data performs better than sentence-level
embedding comparison methods. It might therefore
be fruitful to pursue models which are not restricted
to apriori given sentence boundaries, and which are
capable of finding individual claims in collections
of potentially longer essay-style answers.

While the study is based on real exam answers
from a number of courses, the data lacks manual
annotation of the semantic equivalence of answers,
which is challenging to produce. Further, to be able
to use the grades as a proxy to retrieval evaluation,
we had to restrict ourselves to short, fact-checking
questions, only using a small portion of the over
200,000 answers we have at our disposal. A natural
further study would expand the use of the retrieval
model to longer answers and employ teachers to
evaluate the retrievals provided by the model and
establish the overall benefit of such approach.
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Abstract

Incremental disfluency detection provides
a framework for computing communicative
meaning from hesitations, repetitions and false
starts commonly found in speech. One applica-
tion of this area of research is in dialogue-based
computer-assisted language learning (CALL),
where detecting learners’ production issues
word-by-word can facilitate timely and ped-
agogically driven responses from an automated
system. Existing research on disfluency detec-
tion in learner speech focuses on disfluency
removal for subsequent downstream tasks, pro-
cessing whole utterances non-incrementally.
This paper instead explores the application of
laughter as a feature for incremental disfluency
detection and shows that when combined with
silence, these features reduce the impact of
learner errors on model precision as well as
lead to an overall improvement of model perfor-
mance. This work adds to the growing body of
research incorporating laughter as a feature for
dialogue processing tasks and provides further
support for the application of multimodality in
dialogue-based CALL systems.

1 Introduction

Speech disfluencies such as hesitations, repetitions
and false starts are an inherent artefact of spoken
language. Systematic in their structure, disfluencies
comprise of a reparandum phrase, optional inter-
regnum phrase and repair phrase (Levelt, 1983).

I’d like a
[

coffee︸ ︷︷ ︸
reparandum

+ {uh}︸︷︷︸
interregnum

tea︸︷︷︸
repair

]
please

Following the notation scheme described by
Shriberg (1994), the example above shows the com-
ponents of a disfluency. The speaker changes their
drink order by replacing “coffee” with the intended
word “tea”. The + represents the ‘interruption
point’, often marked prosodically with features
such as silence or reparandum word cutoff. The

following, optional interregnum phrase can con-
tain filled pauses such as “uh” like in the example,
edit terms such as “I mean” and finally discourse
markers such as “you know”.

Detecting such disfluencies is of particular inter-
est in the context of dialogue-based CALL, where
learners interact with an automated system in or-
der to practice conversation in the language that
they are learning. In the task-based scenario where
a learner is practicing ordering a drink at a café,
having a system that can identify and appropri-
ately respond to learners’ disfluencies in real-time
is highly desirable and not something that is avail-
able in existing approaches thanks to the lack of
incremental processing (Bibauw et al., 2019).

With the above in mind, this work builds on in-
cremental disfluency detection research and applies
it to a language learning setting. The nature of dis-
fluencies in learner speech are explored and learner
errors are identified as an area of difficulty in ex-
isting approaches. Subsequently, the non-lexical
features of laughter and silence are suggested as
possible solutions to this issue and their impact is
tested and compared to a baseline model. Findings
are reported and considerations for future work in
this area are discussed.

2 Related Work

Disfluency detection is a widely studied area of re-
search, with the most successful approaches lever-
aging BERT transformer models to achieve high
accuracy (e.g. Bach and Huang, 2019; Jamshid Lou
and Johnson, 2020; Rocholl et al., 2021). These
models operate non-incrementally using whole sen-
tences as inputs, often with a view to remove the
disfluencies from transcripts all together.

This is also the case for research on disfluency
detection in learner speech, which has been applied
to improve the downstream tasks of grammatical
error detection and correction using bi-directional
LSTMs (Lu et al., 2019) as well as end-to-end mod-
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els (Lu et al., 2020). Approached as a sequence
labelling task, disfluencies are flattened and mod-
els are trained to detect the reparandum phrase.
This approach is not suited to spoken dialogue sys-
tems, however, which benefit from word-by-word
processing and the retention of all parts of the dis-
fluency in order to generate meaningful and timely
responses (Schlangen and Skantze, 2009). In a
language learning context, such capabilities would
not only enable conversational systems to better
employ incremental feedback strategies such as
prompting but also provide insight into the nature
of individual learners’ disfluency behaviours.

Incremental disfluency detection addresses the
issues described above and forms a smaller subsec-
tion of research. Restricted by their left-to-right
operability, incremental systems detect disfluency
at the point of repair onset and subsequently ‘look-
back’ for the reparandum phrase. To date, there
has only been one research paper related to in-
cremental disfluency detection for learner speech,
where Moore et al. (2015) reported poor perfor-
mance when using an incremental dependency
parser trained on native data. Various approaches
have been tested using the Switchboard Corpus
(Godfrey et al., 1992), however. These are de-
scribed below.

Following a noisy channel approach, Hough and
Purver (2014) implemented a pipeline of Random
Forest classifiers detecting interregna, repair and
reparandum phrases separately using input features
derived from trigram language models for words
and POS tags. Simplifying the task to a one model,
multi-class sequence labelling problem using deep
neural networks, Hough and Schlangen (2015) suc-
cessfully applied a RNN using only word embed-
dings and POS tags as input features. This ap-
proach was extended further, using LSTMs for
the joint tasks of utterance segmentation (Hough
and Schlangen, 2017) as well as multi-task learn-
ing with utterance segmentation, POS tagging and
language modelling (Rohanian and Hough, 2020).
Current state-of-the-art performance is achieved by
Rohanian and Hough (2021), who incrementalised
a BERT-based disfluency detector by using utter-
ance predictions from a GPT-2 language model as
inputs to the model.

With the exception of word timings (Hough
and Schlangen, 2017; Rohanian and Hough, 2020,
2021) the incremental approaches outlined above
have yet to explore the impact of non-lexical fea-

tures on disfluency detection, despite having been
successfully integrated into non-incremental set-
tings (Zayats et al., 2016; Lu et al., 2020). Consid-
ering the fact that incremental detection begins at
repair onset, it seems likely that leveraging paralin-
guistic information associated with the interruption
point will be beneficial to detection. Approaches
to such integration are explored in this work.

3 Disfluencies in Learner Speech

On average, disfluencies occur at a higher rate in
learner speech compared to native speech (Hilton,
2008; De Jong et al., 2013). Learner speech dis-
fluency datasets also contain longer reparandum
phrases compared to native equivalents (Lu et al.,
2020). This is in part thanks to language learners
having a lower degree of ‘automatisation’ in the
language they are learning (Temple, 1992) and is
cited by Moore et al. (2015) as the reason why
disfluencies in learner speech are more difficult to
detect automatically.

Another artefact of learner speech disfluencies is
their co-occurrence with learner errors. The exam-
ples below highlight how errors interact with disflu-
encies in the NICT-JLE Corpus used for this study.
The disfluency phrases are labelled and words in
bold indicate learner errors.

(1) My computer [use + {er} is used] by [all
family + my family]

(2) She [[wanted shopping + wanted shop] + {er}
wanted to go shopping]

(3) [[I don’t + I’m not have watching movie] + I
don’t have no time to watch movie]

As the examples show, learner errors can occur
in the reparandum phrase, the repair phrase, or
both. The first example shows an instance where
the learner error occurs in the reparandum phrase
and is then subsequently repaired to its correct form.
The second example shows how this can occur in
a nested disfluency, where the inner disfluency in-
stance contains learner errors in both the reparan-
dum and repair phrases, with the outer disfluency
instance being without error. The third example
shows an instance where the initial reparandum
phrase is correct but the subsequent repair phrases
both contain errors.

The presence of learner errors is often cited as
a contributing factor to the difficulty of other NLP
tasks for learner language data such as parsing
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(Napoles et al., 2016) and POS tagging (Nagata
et al., 2018). With this in mind, it was hypothesised
that learner errors would have a similar negative
effect on disfluency detection and so their impact
was tested as part of this experimentation.

4 Silence and Laughter

Incorporating instances of silence is a successful
method of increasing model performance in non-
incremental disfluency detection research. Silence
has been encoded explicitly using its presence or
absence as an input feature (Liu et al., 2005; Fergu-
son et al., 2015), implicitly through the inclusion of
audio features such as filter banks (Lu et al., 2020)
and even as a prediction of prosodic cues from
text (Zayats and Ostendorf, 2019). Research into
the nature of silence in learner speech has shown
that non-native speakers are more likely to pause
mid-clause than native speakers during linguistic
processes such as repair (Tavakoli, 2011). With
this in mind, it seems likely that including silence
features will have a positive impact on the model
performance and so is tested here.

Language learners use laughter as a ‘trouble
management device’ during uncertainty (Looney
and He, 2021), when pre-empting a problematic ac-
tion (Petitjean and González-Martínez, 2015) and
after making an error (Gao and Wu, 2018). In an
analysis of UK university English proficiency in-
terviews of 23 Chinese students, Gao (2020) found
that laughter co-occurs with disfluencies in three
ways: (i), on its own between the reparandum and
repair phrase, (ii), alongside indicators of an in-
terruption point such as pauses and word cutoffs,
and (iii), simultaneously as laughed speech either
during the repair phrase or the whole disfluency.
Laughter has been shown to improve performance
of models for other dialogue processing tasks such
as dialogue act classification (Maraev et al., 2021)
but as of yet, has not been applied as a feature to
detect disfluencies in learner speech.

5 Experimentation Set Up

5.1 NICT-JLE Corpus

The National Institute of Information and Com-
munications Technology Japanese Learner English
(NICT-JLE) Corpus is a transcription-only corpus
of 1,281 English oral proficiency tests (approxi-
mately 300 hours of speech) of Japanese speaking
learners of English (Izumi et al., 2004). The test,

total words 1,165,785
disfluency instances per 100 words 7.54

edit terms per 100 words 11.55
learner errors per 100 words 11.10

Table 1: Dataset statistics for the NICT-JLE Corpus.

Figure 1: Diagram of the model structure used for ex-
perimentation.

known as the Standard Speaking Test (SST) is car-
ried out in an interview style between learner and
assessor, where the learner is asked to perform a
selection of various tasks. These include engaging
in open dialogue, a role-play scenario and a pic-
ture description task. Each transcribed interview
contains labels for edit terms and disfluencies, ‘non-
verbal sounds’ (including silence and laughter), as
well as meta-data such as the learners’ SST level,
gender and nationality. 167 of the interviews con-
tain additional labels for learners’ morphological,
grammatical and lexical errors.

For experimentation the corpus was lemmatized
using the NLTK WordNet Lemmatizer (Bird et al.,
2009) and POS-tagged by the Stanford POS-tagger
(Toutanova et al., 2003). Learner utterances (ex-
cluding those that contained Japanese) were ex-
tracted from the transcripts and split with 80% of
the data for training, 10% for heldout and 10% for
testing, ensuring that each dataset had an equal dis-
tribution of SST levels and that all transcripts in the
test set were taken from the subset that contained
tagged learner errors. Dataset statistics are sum-
marised in Table 11. Note that the figure for learner
error rates reflects the test set only.

5.2 Model
Following Hough and Schlangen (2017), the ap-
proach used for experimentation combines an
LSTM model with an HMM decoder. As visu-
alised in Figure 1, the model processes sequences
incrementally in a maximum window of nine words
to accommodate the repair start and the eight words
prior. Features are extracted from the trigram
wi−2...wi and used as inputs to the LSTM. The

1GitHub repository of adapted dataset: https://
github.com/lucyskidmore/nict-jle
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Model FrpS Frm Fe

baseline 0.757 0.723 0.982
+ silence 0.759 0.726 0.981

+ laughter 0.754 0.719 0.982
+ silence and laughter 0.766 0.732 0.982

Table 2: F-score results of the baseline compared to
silence and laughter models for repair start, reparandum
phrase and edit term detection.

LSTM network contains a hidden layer of 50 nodes
and an output layer of size ten, reflecting the size
of the tag set. Negative log likelihood is used as
the cost function, as well as stochastic gradient
descent over the parameters, including the word
embeddings. The learning rate is 0.005 and L2
regularisation is applied to the parameters with a
weight of 0.0001. The LSTM softmax output layer
is used as an input to the HMM where outputs
are updated incrementally with the best sequence
hypothesis from Viterbi decoding.

5.3 Input Features
The baseline model uses trigrams of POS tags
and fastText word embeddings (Bojanowski et al.,
2017) of size 50 as input features. Silence and
laughter features were derived directly from the
NICT-JLE transcripts. Each word was assigned
a vector, indicating the presence or absence of a
preceding short pause, long pause, laughter, or if
the word itself was laughed for the current word
and previous two words.

5.4 Disfluency Tags
Following Hough and Schlangen (2015), disflu-
encies are labelled at repair onset as rpS-n as
illustrated below, where n denotes the distance to
the reparandum start from the repair start.

I’d like a [coffee {uh} tea] please
f f f f e rpS-2 f

This approach allows for both incrementality and
the labelling of nested disfluencies. Edit terms are
combined with interregna and labelled as e and
‘fluent’ words are labelled as f. The maximum
length of a disfluency is cut off at rpS-8 which
results in a total tag set size of ten.

6 Results

Table 2 reports the F-score results of the baseline
model compared to the models with additional non-

Error Pos. Model PrpS RrpS FrpS

rpS
baseline 0.730 0.757 0.744

+ S&L 0.749 0.759 0.754

rpS-1
baseline 0.398 0.713 0.511

+ S&L 0.432 0.726 0.541

rpS, rpS-1
baseline 0.481 0.768 0.592

+ S&L 0.518 0.773 0.621

Table 3: Precision, recall and F-score results for repair
start detection of disfluency phrases with co-occurring
learner errors.

Model Inc.? Corpus Frm

+ S&L ✓ NICT-JLE 0.732
Moore et al. (2015) ✓ BULATS 0.478

Lu et al. (2019) - NICT-JLE 0.798

Table 4: Reparandum phrase F-score results of the final
model compared to existing approaches with varying
corpora and incrementality.

lexical features. F-scores are reported for repair
start as well as reparandum phrase (commonly used
to measure non-incremental performance) and edit
term detection. Despite individually having lit-
tle impact on baseline performance, when com-
bined, the features of silence and laughter lead to an
improvement in both repair start and reparandum
phrase detection. Edit term detection performance
remains high across all model variations.

Table 3 reports the precision, recall and F-score
results for repair start detection of disfluencies that
co-occur with learner errors. Reflecting the three
scenarios described in Section 3, disfluencies that
co-occur with an error at repair onset (rpS), an error
immediately preceding the repair phrase start (rpS-
1) and errors occurring both immediately before
and at repair onset (rpS-1 and rpS) are reported.
Firstly, comparing the baseline performance of all
three scenarios with the overall baseline perfor-
mance reported in Table 2 reveals the extent to
which learner errors impact model performance —
this is especially true for disfluency instances that
are preceded by a learner error. In turn, it is these
instances that show the most improvement in per-
formance when silence and laughter features are
included, with precision being particularly boosted.

Table 4 compares the performance of the adapted
model with two existing approaches to disfluency
detection in learner speech: an incremental model
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tested on the BULATS Corpus2 (Moore et al., 2015)
and a non-incremental model tested on the NICT-
JLE Corpus (Lu et al., 2019). Neither approach
reports repair start detection so only reparandum
phrase detection is compared here. Although not di-
rectly comparable due to the mismatches in corpora
and incrementality, the results from this paper sig-
nificantly outperform Moore et al. (2015), setting a
new benchmark for incremental disfluency detec-
tion for learner speech. As expected, performance
does not reach the level of current state-of-the-art
non-incremental approaches.

7 Discussion

The results from this experimentation give support
to the integration of paralinguistic features for in-
cremental disfluency detection in learner speech.
The impact of silence and laughter on the detec-
tion precision of disfluencies that co-occur with
learner errors highlights the value of such fea-
tures in settings where lexical data is ‘non-typical’.
This is of particular importance in incremental ap-
proaches where detection occurs at repair onset,
with a reduced reliance on the syntactic parallelism
between reparandum phrase and repair phrase often
exploited by non-incremental systems.

Despite the improvements described above, over-
all performance gains are small and remain lower
than non-incremental approaches. However, there
are further approaches to model improvement
worth exploring. Firstly, following the recent work
of Rohanian and Hough (2021), it would be of
interest to test the impact of an incrementalised
BERT-based detector on learner speech. Secondly,
using a POS-tagger specifically for learner speech
such as that developed by Nagata et al. (2018) may
help boost performance. It would also be beneficial
to investigate the impact of these adaptations on
other aspects of learner speech that inform disflu-
ency behaviour, including learners’ first language,
task type and proficiency level.

Another limitation of the study is that the NICT-
JLE Corpus is a transcription-only dataset with
limited features. Without audio files available, in-
stances of silence and laughter are derived directly
from transcripts. In the same way that ASR out-
put deteriorates disfluency detection performance
compared to transcribed data (Lu et al., 2019), it
is likely that automatic laughter and silence de-

2This corpus was provided to the researchers by Cam-
bridge Assessment English and is not publicly available.

tection derived from audio would have a similar
effect and may not be as impactful for model im-
provement. In addition, it would be interesting to
investigate the relationship between learner errors
and disfluencies by modelling these features jointly.
However, in the NICT-JLE Corpus, learner error
tags are only available for the test set and so cannot
be used as features in training. Furthermore, the
performance boost shown when combining laugh-
ter together with silence provides the motivation to
explore additional paralinguistic features in com-
bination, such as gestures and gaze, both of which
have been shown to be used in conversation to sig-
nal disfluency (Chen et al., 2002; Radford, 2009).
Finally, as the NICT-JLE Corpus is a collection
of assessor-learner conversations, it is not clear if
learners would still enact the same strategies of
laughter to indicate disfluencies when practising
with a dialogue-based CALL system.

8 Future Work

To the best of our knowledge, there is currently
no publicly available resource that addresses the
limitations of the NICT-JLE Corpus outlined above.
With this in mind, there is a strong case to be made
for the development of a multimodal corpus for use
in dialogue-based CALL applications, collected by
means of a ‘Wizard of Oz’ experiment with lan-
guage learners and human language tutors. Audio,
video and transcript files annotated with disfluen-
cies, edit terms, learner errors as well as paralin-
guistic information would provide ample opportu-
nity for research into both incremental disfluency
detection and also other dialogue processing tasks.

9 Conclusion

In conclusion, this work tested the impact of laugh-
ter and silence as features for incremental disflu-
ency detection of learner speech. When combined,
these features show an overall improvement in
model performance, increasing precision for disflu-
encies that co-occur with learner errors. To date,
this is the first work to use laughter as a feature for
disfluency detection in a language learning setting,
with the resulting model significantly outperform-
ing previous incremental approaches for learner
speech. These findings act as a starting point for
the further integration of paralinguistic features for
incremental disfluency detection and help make the
case for the development of a multimodal corpora
for dialogue-based CALL applications.
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