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Abstract
With the increasing availability of large-scale parallel corpora derived from web crawling and
bilingual text mining, data filtering is becoming an increasingly important step in neural ma-
chine translation (NMT) pipelines. This paper applies several available tools to the task of data
filtration, and compares their performance in filtering out different types of noisy data. We
also study the effect of filtration with each tool on model performance in the downstream task
of NMT by creating a dataset containing a combination of clean and noisy data, filtering the
data with each tool, and training NMT engines using the resulting filtered corpora. We evalu-
ate the performance of each engine with a combination of MQM-based human evaluation and
automated metrics. Our results show that cross-entropy filtering substantially outperforms the
other tested methods for the types of noise we studied, and also leads to better NMT models.
Our best results are obtained by training for a short time on all available data then filtering the
corpus with cross-entropy filtering and training until convergence.

1 Introduction

Large-scale, publicly available bilingual corpora are an excellent resource for training neural
machine translation (NMT) models. Performance in the NMT task improves as the size of the
training data increases (Koehn and Knowles, 2017), and with datasets like CC Matrix (Schwenk
et al., 2019), tens or even hundreds of millions of sentence pairs are freely available for many
language pairs. However, these corpora are known to be noisy (Kreutzer et al., 2022), and NMT
models are quite sensitive to noisy training data (Khayrallah and Koehn, 2018a). Thus, tools to
filter noisy data are becoming an important step in NMT training pipelines.

In this paper, we compare the performance of several available tools in the task of data
filtering, breaking down the results by different types of noise. We then train MT engines with
different filtered versions of the same corpus to compare the effects of data filtering on the
downstream task of translation.

2 Related Research

Cleaning noisy data with the purpose of using them for MT training has been a major topic
in research. Since neural MT performance has shown to be highly dependent on the size of
the training data (Koehn and Knowles, 2017) as well as their quality (Khayrallah and Koehn,
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2018b), several large-scale initiatives for crawling and cleaning data from the web appeared,
such as Paracrawl (Bañón et al., 2020) and CCMatrix (Schwenk et al., 2019).

For this reason, most works in this area focus on filtering this type of data, i.e. noisy data
collected from the web. One of the earlier works proposed an unsupervised method, in particular
using an outlier detection algorithm to filter a parallel corpus (Taghipour et al., 2011), which
led to an increased performance of the SMT system trained on these cleaned data. Another
unsupervised method consisted of a graph-based random walk algorithm and extracted phrase-
pair scores to weigh the phrase translation probabilities to bias towards more trustworthy ones
(Cui et al., 2013). The method is based on the observation that better sentence pairs often lead
to better phrase extraction and vice versa.

Several subsequent works treated the data filtering task as a classification problem. An
example of this is the method proposed in Xu and Koehn (2017), which is based on generat-
ing synthetic noisy data (inadequate and non-fluent translations) and using these data to train
a classifier to identify good sentence pairs in a noisy corpus. Another classification approach
was proposed within the 2020 task on parallel data filtering (Koehn et al., 2020). In this ap-
proach, the authors used an end-to-end classifier that learns to distinguish clean parallel data
from misaligned sentence pairs. The system first uses a Transformer model to obtain sentence
representations, followed either by a classifier (Siamese network) or additional layers that are
fine-tuned (Açarçiçek et al., 2020).

Another popular approach is based on utilizing cross-entropy. In the 2018 edition of the
shared task on data filtering, the winning system used neural MT models in both directions
trained on clean data to score sentence pairs with dual cross-entropy (Junczys-Dowmunt, 2018).
The divergent cross-entropies are penalized and the penalty is weighed by the average cross-
entropy of the two NMT models. Another winning system in the 2020 shared task enhanced
this approach by combining a dual cross-entropy from two NMT models with a number of
other features: a bilingual GPT-2 model trained on source-target language pairs as well as a
monolingual GPT-2 model for each of the languages, and statistical word translation model
scores (Lu et al., 2020).

Recently, there has been a new direction in parallel data filtering research consisting of
using multilingual language models, which create sentence representations in a multilingual
vector space. Then, two parallel sentences are identified by taking the nearest neighbor of each
source sentence in the target side according to cosine similarity, and filtering those below a fixed
threshold (Schwenk, 2018). Another work improves on these results suggesting an alternative
scoring method that uses the margin between the similarity of a given candidate and that of its
k nearest neighbors (Artetxe and Schwenk, 2019).

As demonstrated in a recent work (Herold et al., 2021), the performance of a given parallel
data cleaning method can vary significantly depending on the data conditions and the task def-
initions. In one attempt to clean mostly well-aligned bilingual data (Carpuat et al., 2017), the
authors investigate the problem of filtering out semantically divergent sentences from a parallel
corpus. Some sentence pairs considered “parallel” present source and target sentence that do
not convey exactly the same meaning, which is quite a common phenomenon in curated parallel
corpora originating from translation memories. In our experiment, we use several multilingual
language models, a method based on cross-entropy and a pre-trained model for MT evaluation
with the goal of identifying the methods that can be most successfully applied to our use case
of filtering corpora to train MT systems.

3 Materials and Methods

For this study, we selected two language pairs: German>English (abbreviated below as
‘DE>EN’) and Japanese>English (abbreviated below as ‘JA>EN’). These language pairs were
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chosen with consideration to their linguistic properties (diverse source languages with different
scripts, differing levels of linguistic distance from English, and quite different linguistic char-
acteristics), the demand for these language pairs in translation, and the availability of data and
tools for the experiment.

3.1 Part I
In Part I of the study we created datasets for each language to be used in the experiments. We
randomly sampled 5,000,000 sentence pairs for each language pair from the CC Matrix data
set. Then, we synthesized 1,000,000 segments representing ten different types of noise and
injected them into the CC Matrix data. We scored these 6 million sentences with each tool
and retained the top 50% of sentences for each tool to be used as the training set for an NMT
engine. We then trained engines with each data set and compared their performance after ten
training epochs on a common test set sampled from the same distribution as the training data.
We used the same arbitrary threshold for each tool and each language to minimize experimental
complexity. The 50% threshold was chosen to account for the noise we introduced as well as the
fact that we expect CC Matrix to contain significant amounts of native noise. Using the mean
scores from the validation and test sets as the cutoff values was also considered, but the number
of included segments was quite similar to using a fixed threshold, so we chose the simpler of
the two options.

3.1.1 Collection and Synthesis of Noisy Data
With reference to Khayrallah and Koehn (2018a), we introduced 100,000 segments for each of
the following types of noise:

1. Word order permutations in target: we introduced errors in an iterative way (i.e., start-
ing from one error in the first 20,000 segments and adding one additional error every
20,000 segments until obtaining 100,000 segments);

2. Spelling permutations in target: in the same way as above, we added a number of
spelling permutations which increased every 20,000 segments until we arrived at 100,000
segments;

3. Untranslated segments: to simulate untranslated segments, we copied the source segment
and used it as the target;

4. Third language in source: we chose segments for each language pair that contained a
different source language than German and Japanese. We tried to choose one language that
was relatively close to the original and one that was linguistically distant from the original.
For DE>EN we chose 50,000 segments with Dutch as source and 50,000 segments with
Russian as source. In the case of JA>EN, we selected 50,000 segments with Chinese as
source and 50,000 segments with German as source. In each case, the English target was
a correct translation of the source;

5. Third language in target: in this case, we followed the same approach as the previous
type of noise, but replacing the target instead of the source. In the case of DE>EN, we
chose 50,000 segments with Dutch as a target language and 50,000 segments with Rus-
sian as target. For JA>EN, we chose 50,000 segments with Chinese as target and 50,000
segments with German as target.

6. Missing content in source: we deleted between 5%-50% of the words in source. The
number of words deleted grew by 5% increments every 10,000 segments until we reached
100,000 segments. To create this type of noise, we used only sentences with more than 20
words in the source. We used Fugashi (McCann, 2020) to perform word segmentation in
Japanese;
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7. Missing content in target: we followed the same approach as in the previous type of
noise, but this time we applied it to target segment;

8. Mismatching numbers: we searched for matching numbers in the source and target and
increased the first number by a random integer between 1 and 1000. We changed numbers
in 50,000 source segments and in 50,000 target segments, but we make no distinction in
our analysis based on which number was modified;

9. Complete misalignment: we took a properly aligned corpus and intentionally moved
several of the target segments from the head of the corpus to the end. In this way, we
ended up with a misaligned corpus and sampled 100,000 random segments from it;

10. Unbalanced [sic] tags: This type of noise is possibly unique to our use case as a commer-
cial translation provider with human translated data. But we find that unbalanced [sic] tags
(i.e. which appear in only one of the source or target but not both) can introduce a systemic
bias to the corpus and can cause hallucinations in an MT system if they are not removed
prior to training. To create this type of segment, we searched for pairs of sentences that
contained [sic] tags in the target but not in the source, but given that the CC Matrix corpus
did not contain enough of these segments, we created them by inserting a [sic] tag after a
random word in a total of 100,000 segments ;

3.1.2 Data Filtering
For the next step of the process, we concatenated the clean data with the noisy data and used
the following tools to score each sentence pair in the combined dataset: XLM-R (Conneau
et al., 2019), MUSE (Conneau et al., 2017) and LASER (Schwenk and Douze, 2017) - create
sentence representations in an aligned multilingual vector space; COMET (Rei et al., 2020) -
pre-trained model for MT evaluation; Marian-scorer (Junczys-Dowmunt et al., 2018) - part of
the MarianNMT toolkit, computes cross-entropy.

For XLM-R, MUSE and LASER we used the open-source models available and computed
cosine similarity between the resulting embeddings. For COMET, we used the wmt-20-qe-da
model for Quality Estimation and Direct Assessment. And finally, for Marian-scorer, we used
our company’s existing Marian models (which were not trained using CC Matrix data) for the
various language directions.

Having calculated scores for each sentence with each tool, we proceeded to filter the data
to create datasets for each tool, retaining the top 50% of segments as scored by that tool (i.e., 3
million segments).

3.1.3 Engine Training
After filtering, we trained the following systems:

• One system for each of the training-sets generated by each scoring method;

• One system using the unfiltered dataset containing 5,000,000 clean segments and
1,000,000 noisy segments.

The engines were trained for 35,000 training steps each, and each training was repeated
three times with different random seeds to control for the effects of random weight initialization.
All other training parameters were held fixed across all runs, and used the base transformer
configuration with tied embeddings and a shared sub-word vocabulary of 32,000.

3.1.4 Evaluation
For the engines in Part I, performance in the machine translation task was evaluated using
the automated metrics BLEU, TER, and chrF2 obtained using the Sacrebleu package (Post,
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2018). Statistical significance for automated metrics was calculated using the paired bootstrap
comparison. We used common validation and test sets which were partitioned prior to noise
injection and scoring. We report the scores from an ensemble translation with all three models
for each tool.

3.2 Part II

3.2.1 Engine Training
In Part II of the study we continued training from some of the baseline models created in Part
I using different conditions. For each language pair, we continued training the best performing
individual model and one model trained on the unfiltered data set. To test if there are benefits
to beginning training with all available data and continuing with a cleaner dataset after a small
number of training epochs, we also continued training the best performing model trained on the
full dataset using the dataset filtered by the best performing tool. We were also curious to see if
a model trained on such data could be used to score and filter its own training data, so we used
the best performing model trained on the unfiltered dataset to score and filter its training set,
retaining the top 75% of sentences, and continued training using this newly filtered dataset. The
engines were allowed to train for 170,000 training steps or until early stopping criteria were met
(defined as no improvement in validation perplexity for 5 consecutive checkpoints, or 15,000
training steps).

3.2.2 Evaluation
Once these were trained, sample translations for an in-domain test set and an out-of-domain
test set (WMT 2020) were obtained from each model. The translations were scored using the
automated metrics BLEU, TER, and chrF2 (with statistical significance determined in the same
way as in Part I), and a subset of the test set translations were sent for human annotation. We
used an MQM-based annotation method, which, as demonstrated by Freitag et al. (2021a),
is more accurate than the previously widely used direct assessment method, and is now the
standard in the WMT shared tasks (Freitag et al., 2021b). We used the error types and severity
levels, as well as the weights calculation described by Freitag et al. (2021a).

Sentences were selected for human review using different criteria: the most different
translations (using Levenshtein distance), the five worst COMET scores from each engine,
longest sentences, shortest sentences, and translations containing different numbers of brackets
or whose numbers did not match. Out of the total of 200 source sentences per language, 100
were drawn from the in-domain test set, and the remaining 100 came from the out-of-domain
test set.

4 Results

Below we present the results of the two parts of our study. The results of Part I show that
cross-entropy filtering is significantly better for removing the types of noise we studied. The
automated metrics from engine training reinforce this conclusion. The results from Part II are
less clear cut, with filtering having a comparatively stronger beneficial effect for the JA>EN
direction than the DE>EN direction.

4.1 Part I

4.1.1 Data Filtering Results
With few exceptions, marian-scorer was the clear winner in filtering out noisy data, allowing an
order of magnitude fewer noisy segments than the next runner-up in multiple categories. The
number of corrupt sentence pairs of each type included in the datasets for each tool are shown
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in Tables 1 and 2 below. A detailed breakdown of the performance of each tool on different
types of noise is provided in Appendix A.

Examining the data in these tables, a few noteworthy observations present themselves:

• While third-language data is a common form of noise in parallel bilingual datasets, all of
the tools we tested except marian-scorer are language-agnostic, and thus cannot be used
for filtering this kind of noise;

• COMET was the only tool to fail to filter out all completely misaligned segments, but this
tool excelled at filtering segments with word order or spelling permutations;

• COMET was much more sensitive to missing target content than to missing source con-
tent, while marian-scorer showed the opposite trend. In fact, the amount of missing text
apparently made little difference in the scores from these tools (Figure 1). Other tools
demonstrated more or less similar performance on these two types of noisy data;

• LASER and COMET did not do well in filtering out segments with mismatching numbers,
while other tools generally did well.

4.1.2 First-Step Training Results
After filtration, the resulting datasets were used to train NMT engines. Each training was re-
peated three times with different random seeds to control for differences resulting from weight
initialization. Translation of the common test set was obtained using an ensemble of the three
models for each tool. After ten epochs, the models trained on data filtered by Marian performed
the best for both languages, significantly outperforming the model trained with unfiltered data.
Automated metrics for these translations are reported in Tables 3 and 4.

4.2 Part II
Given its superior performance in the initial training step, we selected Marian-scorer as the tool
to use in the second part of the experiment. For each language pair, we trained three test models
and one control model. The three test models included one trained to convergence using the
dataset filtered by marian-scorer (referred to below as “Marian”), one which was trained on the
unfiltered dataset for ten epochs then trained until convergence with the dataset filtered with
Marian (“Marian from no filter”), and one which was trained on the unfiltered dataset for ten
epochs then used to score and filter its own training data before training until convergence on

Table 1: Number of corrupt sentence pairs of each type included in each DE>EN data set.

Type of Corruption MUSE Marian-
scorer

XLM-R LASER COMET

Word order permutations 39,369 370 15,876 7,072 873
Spelling permutations 9,435 296 5,073 8,008 1,270
Untranslated segments 100,000 646 100,000 99,972 86,588
Third language src 45,483 375 33,628 29,362 37,190
Third language tgt 29,930 10 55,091 52,279 58,280
Missing content src 8,102 6,131 13,126 12,574 33,549
Missing content tgt 9,908 11,056 10,155 5,165 9,569
Mismatching numbers 12,462 11,618 4,797 22,675 47,611
Complete misalignment 0 0 0 0 1,903
Unbalanced sic tags 43,009 9,716 48,468 20,117 31,116
TOTAL 297,968 40,218 286,412 257,224 307,994
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Table 2: Number of corrupt sentence pairs of each type included in each JA>EN data set.

Type of Corruption MUSE Marian-
scorer

XLM-R LASER COMET

Word order permutations 52,222 1,169 28,235 11,151 367
Spelling permutations 20,546 503 4,939 9,758 5,840
Untranslated segments 100,000 269 100,000 42,570 23,031
Third language src 79,446 810 38,550 34,708 24,898
Third language tgt 53,331 30 56,078 36,367 18,462
Missing content src 24,948 26,923 26,042 28,153 37,178
Missing content tgt 24,212 13,165 12,574 5,537 4,837
Mismatching numbers 32,241 20,410 12,241 27,737 25,532
Complete misalignment 0 0 0 0 21,914
Unbalanced sic tags 49,389 29,791 47,419 21,050 13,826
TOTAL 436,335 93,070 326,078 217,031 170,629

Table 3: Automated comparison of Ensemble translations for DE>EN.

System BLEU (µ95%CI) chrF2 (µ95%CI) TER (µ95%CI)

No filter (Baseline) 47.6 (47.6 ± 1.3) 70.0 (70.0 ± 0.9) 36.4 (36.4 ± 1.2)
COMET 46.7 (46.7 ± 1.3) 69.1 (69.1 ± 0.9) 37.3 (37.3 ± 1.2)
LASER 48.1 (48.1 ± 1.4) 70.4 (70.4 ± 0.9)* 36.0 (36.0 ± 1.2)
Marian 48.2 (48.2 ± 1.3)* 70.4 (70.4 ± 0.9)* 36.0 (36.1 ± 1.2)
MUSE 46.1 (46.0 ± 1.4)* 68.7 (68.7 ± 0.9)* 37.8 (37.8 ± 1.2)*
XLMR 47.6 (47.6 ± 1.4) 69.7 (69.7 ± 0.9) 36.5 (36.5 ± 1.2)

* Indicates the result is a statistically significant (p <0.05) improvement over the unfiltered baseline

Table 4: Automated comparison of Ensemble translations for JA>EN.

System BLEU (µ95%CI) chrF2 (µ95%CI) TER (µ95%CI)

No filter (Baseline) 25.1 (25.1 ± 1.9) 52.8 (52.8 ± 1.1) 63.4 (63.4 ± 2.4)
COMET 30.3 (30.3 ± 1.9)* 56.1 (56.1 ± 1.3)* 55.1 (55.1 ± 1.7)*
LASER 34.1 (34.0 ± 2.0)* 59.0 (58.9 ± 1.3)* 52.2 (52.2 ± 1.7)*
Marian 35.2 (35.1 ± 1.9)* 59.3 (59.3 ± 1.3)* 51.8 (51.8 ± 1.8)*
MUSE 31.5 (31.5 ± 2.1)* 56.7 (56.7 ± 1.3)* 54.9 (54.9 ± 1.7)*
XLMR 32.7 (32.7 ± 2.0)* 57.5 (57.5 ± 1.3)* 53.7 (53.7 ± 1.8)*

* Indicates the result is a statistically significant (p <0.05) improvement over the unfiltered baseline
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Table 5: Automated comparison of DE>EN models on in-/out-of-domain test data.

System BLEU chrF2 TER

No filter (Baseline) 51.4/34.4 72.2/62.9 33.4/52.2

Marian 50.7/33.3 71.9/61.5 34.0/53.9
Marian from no filter 51.0/33.8 72.1/61.8 34.0/53.5
Train then filter 50.8/34.6 72.1/62.6 33.9/52.3

* Indicates the result is a statistically significant (p <0.05) improvement over the unfiltered baseline

Table 6: Automated comparison of JA>EN models on in-/out-of-domain test data.

System BLEU chrF2 TER

No filter (Baseline) 39.6/19.1 62.8/50.6 47.4/70.3

Marian 39.0/19.4 62.3/50.4 47.9/70.7
Marian from no filter 39.2/19.2 62.5/50.6 47.6/70.8
Train then filter 40.5*/19.6* 63.5*/49.9 46.2*/70.1

* Indicates the result is a statistically significant (p <0.05) improvement over the unfiltered baseline

the newly filtered data (“Train then filter”). The control model was trained on the unfiltered
dataset (“No filter”).

After training, we obtained translations of an in-domain test set and out-of-domain test
set (WMT 2020) for each model and evaluated the translations with automated metrics and
performed human evaluation.

4.2.1 Automated Metrics
For JA>EN, the “Train then filter” approach achieved results on the in-domain test set that
were significantly better than any other model. It also achieved the best BLEU score on the
out-of-domain test set. For the DE>EN language direction, the “No filter” baseline achieved
the best scores for both test sets. Overall, scores were higher for the DE>EN models than for
the JA>EN models. In Tables 5 and 6 below we report automated metrics for each system
divided by language pair and domain.

4.2.2 Human Evaluation
Human evaluation results are mostly in line with the automatic metrics. Overall, judging by
these results, we did not observe any statistically significant improvement over the “No filter”
baseline thanks to data filtering (we used the Student t-test for statistical significance). In Table
7, we show the average scores for each model for both languages pairs. A score of 0 indicates
a perfect translation, while 25 indicates the lowest possible quality. For the DE>EN language
pair, the best result was achieved with the baseline method for out-of-domain data (which is is
in line with most of the automatic metrics), while the “Train and then filter” method had the
best score for the in-domain data set (although the difference was minimal). For the JA>EN
language pair, we observed the best scores with the “Train and then filter” method, which, again,
is in line with most of the automatic metrics.

5 Discussion

In this paper we explored the relative performance of different methods of filtering noise from
natural language training data, and the effect of filtering on the downstream task of machine
translation. We found that cross-entropy filtering using models trained for the translation task
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Table 7: Average human MQM evaluation scores on in-/out-of-domain test data.

System DE>EN JA>EN

No filter (Baseline) 0.73/1.32 1.77/8.14

Marian 0.72/1.67 1.97/7.40
Marian from no filter 0.83/1.51 2.10/7.89
Train then filter 0.71/1.58 1.67/7.00

performed better than multilingual alternatives such as LASER or COMET at identifying the
types of noise we introduced across almost all noise types in both the DE>EN and JA>EN
language directions. Language agnostic models have another disadvantage, which is that they
cannot be used to identify wrong language data, a common source of noise in bilingual corpora.

However, the clear superiority of cross-entropy filtering did not unambiguously extend
to the downstream translation task, where a model trained on the unfiltered dataset performed
the best in DE>EN translation, and no model achieved a statistically significant improvement
over the baseline in the human evaluation. This suggests that in the regime of a few million
sentences, the advantages of having more data volume or more diverse data can outweigh the
costs incurred by significant noise present in the dataset.

Our results suggest that in situations where the quality of training data is uncertain, fair
results can be obtained by training for a short time on all the available data, filtering the training
data with LASER or cross-entropy scores, and then continuing to train on a cleaner subset of the
data. Given that LASER is language-agnostic, an additional filtering step based on language-
identification may be required when using this tool.

In this study we generally followed the noise taxonomy found in Khayrallah and Koehn
(2018a), but other ways of categorizing noise also exist. We are also interested to investigate
how these tools perform with noisy data categorized in linguistic terms, such as problems of
fluency vs. adequacy. Does data filtration with these tools introduce systemic bias of some
sort, such as by preferentially removing sentences with numerous acronyms, shorter sentences,
or sentences with lots of punctuation marks? Would the same results be obtained with lower
resource languages? We hope to pursue these questions in future research.

A Appendix A

In Figure 1 below, we provide a detailed breakdown of the number of sentences with different
types of corruption included in the datasets for each engine, grouped by the degree of corruption.
For word and spelling permutations, we included 20,000 sentences with 1 permutation, 20,000
sentences with 2 permutations, and so on up to 5 permutations. For missing source and missing
target content, we removed 5% of the words in the first 10,000 sentences, 10% of the words in
the second 10,000 sentences, and so on up to 50% of the words. For sentence pairs with a third-
language source or target, for half the sentences we used a more similar language (Chinese for
Japanese, Dutch for German), and for the other half we used a more distant language (German
for Japanese, and Russian for German).
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Figure 1: Comparison of filtering performance of different tools on different types of noise
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