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1 Introduction

The ability to efficiently learn from little-to-no data
is critical to applying NLP to tasks where data
collection is costly or otherwise difficult. This
is a challenging setting both academically and
practically—particularly because training neutral
models typically require large amount of labeled
data. More recently, advances in pretraining on un-
labelled data have brought up the potential of better
zero-shot or few-shot learning (Devlin et al., 2019;
Brown et al., 2020). In particular, over the past
year, a great deal of research has been conducted
to better learn from limited data using large-scale
language models.

In this tutorial, we aim at bringing interested
NLP researchers up to speed about the recent and
ongoing techniques for zero- and few-shot learning
with pretrained language models. Additionally, our
goal is to reveal new research opportunities to the
audience, which will hopefully bring us closer to
address existing challenges in this domain.

The detailed content of the tutorial is described
in Section 2. The tutorial will start by motivat-
ing the challenge of learning from limited data,
and providing an overview of historical few-shot
NLP techniques. The tutorial will then start mainly
focusing on recent few-shot learning methods us-
ing language models. It will cover methods from
manual engineering, better inference algorithms
to better tuning methods. We will then discuss
the impact of different pretraining objectives, and
meta-training strategies. Lastly, we will survey the
current landscape of evaluation benchmarks, and
their limitations. We will conclude the tutorial by
suggesting open questions, and providing coding
examples and web-based demonstrations instruct-
ing attendees how to easily use these methods using
public resources.

2 Tutorial Content and Outline

This tutorial covers methods for zero- and
few-shot learning with pretrained language mod-
els (LMs). The tutorial will be 3 hours
long. Tutorial materials will be made avail-
able at: https://github.com/allenai/
acl2022-zerofewshot-tutorial.

Introduction - (10 minutes) We will start by
motivating why zero- and few-shot learning are
important. In many situations, labelled data may
be costly or otherwise difficult to procure. Lan-
guage model finetuning, the predominant training
paradigm in use today, exhibits poor performance
in low-data regimes (Dodge et al., 2020). Further-
more, as LMs continue to grow in size, so do the
associated costs of training and storing separate
weights for each downstream task. Recent work
on zero- and few-shot learning with pretrained lan-
guage models can provide a potential solution.

Earlier work - (15 minutes) In the second sec-
tion, we will review well-established methods for
zero- and few-shot learning that do not necessar-
ily use LMs, including data augmentation, semi-
supervised learning, consistency training and co-
training (Miyato et al., 2017; Clark et al., 2018; Xie
et al., 2020; Chen et al., 2020).

Language models as few-shot learners - (20 min-
utes) In the third section, we will focus on few-
shot approaches using LMs without any tuning.
The fundamental observation in this section is that,
by reformulating tasks as complete-the-sentence
problems and potentially including training exam-
ples in-context, large pretrained language models
can be used to solve NLP tasks without having
to resort to finetuning. We will survey a few key
papers, notably GPT-3 (Brown et al., 2020), and
follow up work demonstrating the limitations of in-
context learning (Perez et al., 2021). We will also
discuss alternative approaches for calibrating and
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scoring LM outputs (Zhao et al., 2021; Holtzman
et al., 2021; Min et al., 2021).

Prompt-based finetuning - (25 minutes) In the
next section, we will discuss prompt-based fine-
tuning, which relaxes the restriction that the LM
weights cannot be updated. We will introduce the
technique of pattern exploiting training (Schick
and Schütze, 2021a,b; Le Scao and Rush, 2021,
PET) which utilizes manually written cloze style
prompts in conjunction with language model fine-
tuning to attain higher accuracy and improved sta-
bility over the finetuning approach proposed by
Devlin et al. (2019). We will then discuss a variety
of related works that seek to streamline PET (Tam
et al., 2021; Logan IV et al., 2021). In particular
we will cover methods that try to automate the task
of prompt-construction, either in the vocabulary
space (Shin et al., 2020; Gao et al., 2021b), or the
embedding space (Li and Liang, 2021; Lester et al.,
2021; Zhong et al., 2021; Qin and Eisner, 2021).
We will contrast these methods with non-tuning
methods covered in the previous section, in terms
of their performance, memory and computation re-
quirement, amount of required engineering, and
more.

Pretraining - (20 minutes) The following sec-
tion will focus on the factor underlying the suc-
cess of these methods—language model pretrain-
ing. First, we will provide a review of popular
language model pretraining objectives and architec-
tures. Topics will include: causal (Radford et al.,
2019) vs. masked (Devlin et al., 2019) pretraining,
encoder-only (Devlin et al., 2019; Liu et al., 2019)
vs. decoder-only (Radford et al., 2019) vs. encoder-
decoder architectures (Lewis et al., 2020; Raffel
et al., 2020), and the impact of training data (Agha-
janyan et al., 2021; Saxton et al., 2019; Gao et al.,
2021a).

Meta-training - (25 minutes) Next we will dis-
cuss meta-training approaches that train the LM
to adapt to zero- and few-shot use cases. A vari-
ety of work has demonstrated that transfer learning
is extremely effective when trained on a diverse
set of tasks and prompts (Wei et al., 2021; Sanh
et al., 2021). Furthermore, recent papers propose
to learn from instructions where the model is given
instructions that humans would often read when
performing a new task, e.g., in a crowdsourcing
task (Efrat and Levy, 2020; Mishra et al., 2021).

Evaluation benchmarks - (25 minutes) We will
then discuss few-shot evaluation benchmarks such
as FLEX (Bragg et al., 2021), FewNLU (Zheng
et al., 2021), The BIG-Bench (BIG-bench collab-
oration, 2021) and CrossFit (Ye et al., 2021). We
will discuss the problems in existing evaluations
and how new few-shot evaluation benchmarks were
carefully designed to measure a variety of scopes
in generalization. We will also cover benchmarks
specifically for instruction learning (Efrat and Levy,
2020; Mishra et al., 2021).

Open questions and future work - (20 minutes)
The future work section will discuss open ques-
tions and future research directions like the need
for multilingual evaluation data, challenges in eval-
uation, reducing engineering efforts and variance
and more.

Coding example - (20 minutes) Finally, we
will demonstrate code examples for representative
few-shot methods using the most widely-used li-
braries/APIs at the time of the event, such as the
Transformers library. This will help audience to
easily use publicly available resources for real-
world few-shot applications.

3 Type of the Tutorial

This tutorial will cover cutting-edge research in
zero- and few-shot learning with pretrained lan-
guage models. This topic has not been previously
covered in *CL tutorials.

4 Breadth

The tutorial covers a diverse set of topics related to
zero- and few-shot learning including pretraining,
prompting, finetuning, evaluation, open research
questions, etc. The tutorial also briefly discusses
pre-language models work but not in depth. Note
that most of the work we will cover is not authored
by the presenters.

5 Diversity Considerations

The methods and techniques we are going to
present are language-agnostic and can be easily
applied to non-English data and tasks. Zero- and
few-shot learning can be relevant for low-resource
languages and tasks (assuming there exist unla-
beled resources to build a pretrained model). The
tutorial covers work from diverse groups, both geo-
graphically (America, Europe, Asia) and gender.
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For instructors, three are senior and two are ju-
nior NLP researchers, one is female, and they rep-
resent two universities and one industry research
lab.

6 Prerequisites

We assume attendees are familiar with:

• Machine Learning: Basic knowledge of com-
mon recent neural network architectures, par-
ticularly Transformers.

• Computational linguistics: Familiarity with
the concept of pretrained language models, as
well as standard NLP tasks such as text clas-
sification, natural language generation, and
question answering.

7 Reading List

Reading the following papers is nice to have but
not required for attendance.

• Language Models are Few-Shot Learn-
ers (Brown et al., 2020)

• It’s Not Just Size That Matters: Small Lan-
guage Models Are Also Few-Shot Learn-
ers (Schick and Schütze, 2021b)

• Finetuned Language Models are Zero-Shot
Learners (Wei et al., 2021)

• FLEX: Unifying Evaluation for Few-Shot
NLP (Bragg et al., 2021)

8 Instructors

In alphabetical order,

Iz Beltagy Iz Beltagy is a Research Scientist at
AI2 focusing on language modeling, transfer learn-
ing, summarization, explainability and efficiency.
His research has been recognized with a best paper
honorary mention at ACL 2020 and an outstand-
ing paper award at AKBC 2021. He was a co-
instructor of the tutorial on “Beyond Paragraphs:
NLP for Long Sequences” (NAACL-HLT 2021).
He worked as a Teaching Assistant at the Univer-
sity of Texas at Austin teaching computer science.
Email: beltagy@allenai.org
Homepage: beltagy.net

Arman Cohan Arman Cohan is a Research Sci-
entist at AI2 and an Affiliate Assistant Professor at
University of Washington, focusing on representa-
tion learning and transfer learning methods, as well
as NLP applications in specialized domains and sci-
entific text. His research has been recognized with
a best paper award at EMNLP 2017, an honorable
mention at COLING 2018, and Harold N. Glass-
man Distinguished Doctoral Dissertation award in
2019. He was a co-instructor of the tutorial on
“Beyond Paragraphs: NLP for Long Sequences”
(NAACL-HLT 2021).
Email: armanc@allenai.org
Homepage: armancohan.com

Robert L. Logan IV Robert L. Logan IV is a
Ph.D. student at the University of California, Irvine,
advised by Sameer Singh and Padhraic Smyth. His
research focuses on problems at the intersection
of information extraction and language modeling,
and encompasses recently published work on lan-
guage model prompting that is relevant to this
proposal. He has presented invited talks at the
SoCal NLP Symposium (2019), the CHASE-CI
Workshop (2019), and the UCI Center for Machine
Learning Seminar (2021).
Email: rlogan@uci.edu
Homepage: rloganiv.github.io

Sewon Min Sewon Min is a Ph.D. student in the
Paul G. Allen School of Computer Science & En-
gineering at the University of Washington, advised
by Hannaneh Hajishirzi and Luke Zettlemoyer. Her
research focuses on natural language understand-
ing, question answering, and knowledge represen-
tation. She was a co-instructor of the tutorial on
“Beyond Paragraphs: NLP for Long Sequences”
(NAACL-HLT 2021), and was a co-organizer of the
3rd Workshop on Machine Reading for Question
Answering (EMNLP 2021), Competition on Effi-
cient Open-domain Question Answering (NeurIPS
2020), and Workshop on Structured and Unstruc-
tured KBs (AKBC 2020, 2021).
Email: sewon@cs.washington.edu
Homepage: shmsw25.github.io

Sameer Singh Sameer Singh is an Associate Pro-
fessor of Computer Science at the University of
California, Irvine and an Allen AI Fellow at the
Allen Institute for AI. He is working on large-scale
and interpretable machine learning models for NLP.
His work has received paper awards at ACL 2020,
AKBC 2020, EMNLP 2019, ACL 2018, and KDD
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2016. Sameer has presented a number of tutori-
als, many relevant to this proposal, such as Deep
Adversarial Learning Tutorial at NAACL 2019,
Mining Knowledge Graphs from Text Tutorial at
WSDM 2018 and AAAI 2017, tutorial on Inter-
pretability and Explanations in NeurIPS 2020 and
EMNLP 2020, and tutorial on Robustness in NLP
at EMNLP 2021. Sameer has also received teach-
ing awards at UCI.
Email: sameer@uci.edu
Homepage: http://sameersingh.org/

9 Ethical Statement

This tutorial covers work that extensively uses large
(up to hundreds of billions of parameters) language
models, which are associated with substantial finan-
cial and environmental costs (Strubell et al., 2019),
as well as other harms (Bender et al., 2021).
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