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1 Information

Keywords Knowledge-augmented Methods, Com-
monsense Reasoning, Natural Language Under-
standing, Natural Language Generation.

Tutorial description Knowledge in NLP has been
a rising trend especially after the advent of large-
scale pre-trained models. Knowledge is critical to
equip statistics-based models with common sense,
logic and other external information. In this tuto-
rial, we will introduce recent state-of-the-art works
in applying knowledge in language understanding,
language generation and commonsense reasoning.

Suggested duration Half day (3 hours)

Type of Tutorial Cutting-edge

Targeted Audience Target audience are re-
searchers and practitioners in natural language pro-
cessing, knowledge graph and common sense rea-
soning. The audience will learn about the state-of-
the-art research in integrating knowledge into NLP
to improve the cognition capability of models.
Outline

• Introduction to NLP and Knowledge (15 min)
• Knowledge in Natural Language Understand-

ing (55 min)
• Knowledge in Natural Language Generation

(55 min)
• Commonsense Knowledge and Reasoning for

NLP (55 min)

Similar tutorials There have been several tutori-
als/workshops on knowledge in NLP:

• Tutorial at AAAI 2021: Commonsense
Knowledge Acquisition and Representation

• Tutorial at EMNLP 2021: Knowledge-
Enriched Natural Language Generation

• KR2ML workshop at NeurIPS 2019 and
2020: Knowledge Representation & Reason-
ing Meets Machine Learning

• Tutorial at ACL 2020: Commonsense Reason-
ing for Natural Language Processing

Diversity considerations The use of knowledge is
not limited to any specific language. The technolo-

gies we introduce are generally applicable to all
languages, as long as there is corresponding corpus
and knowledge sources, e.g., dictionaries, knowl-
edge graph, etc. We have a diverse instructor team
across multiple institutions (i.e., MS, USC, UND).
The team has a diverse and broad expertise in nat-
ural language processing and generation, machine
learning, and various application domains.

2 Brief Tutorial Outline

In recent years, the field of natural language pro-
cessing has considerably benefited from larger-
scale models, better training strategies, and greater
availability of data, exemplified by BERT∗ (Devlin
et al., 2019), RoBERTa∗ (Liu et al., 2019b), and
GPT models (Radford et al., 2018, 2019; Brown
et al., 2020). It has been shown that these pre-
trained language models can effectively character-
ize linguistic patterns in text and generate high-
quality context-aware representations (Liu et al.,
2019a). However, these models are trained in a
way where the only input is the source text. As a re-
sult, these models struggle to grasp external world
knowledge about concepts, relations, and common
sense (Poerner et al., 2019; Talmor et al., 2020).

In this tutorial, we use Knowledge to refer to this
external information which is absent from model
input yet useful for the model to produce target
output. Knowledge is important for language repre-
sentation and should be included into the training
and inference of language models. Knowledge is
also an indispensable component to enable higher
levels of intelligence which is unattainable from
statistical learning on input text patterns.

2.1 Knowledge-augmented Natural Language
Understanding

In natural language understanding (NLU), the task
is to make predictions about the property of words,
phrases, sentences or paragraphs based on the input
text, e.g., sentiment analysis, named entity recog-
nition and language inference. We will introduce
how to use knowledge to augment NLU models
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along the dimension of knowledge source: i) struc-
tured knowledge such as knowledge graph, and ii)
unstructured knowledge such as text corpus.

We first discuss efforts to integrate structured
knowledge into language understanding, which
can be categorized into explicit methods via con-
cept/entity embeddings (Zhang et al., 2019; Peters
et al., 2019; Liu et al., 2020; Yu et al., 2020a; Zeng
et al., 2020) and implicit methods via entity mask-
ing prediction (Sun et al., 2019; Shen et al., 2020;
Xiong et al., 2020; Wang et al., 2019). For example,
ERNIE∗ (Zhang et al., 2019) explicitly pre-trains
the entity embeddings on a knowledge graph using
TransE (Bordes et al., 2013), while EAE (Févry
et al., 2020) learns the representation as model pa-
rameters. KEPLER (Wang et al., 2019) implicitly
calculates entity embeddings using a pre-trained
language model based on the description text. Re-
cently, some works propose to co-train the knowl-
edge graph module and the language model (Ding
et al., 2019; Lv et al., 2020; Yu et al., 2022b). For
example, JAKET∗ (Yu et al., 2022b) proposes to
use the knowledge module to produce embeddings
for entities in text while using the language mod-
ule to generate context-aware initial embeddings
for entities and relations in the knowledge graph.
Yu et al. (2022c) and Xu et al. (2021)∗ propose
to use dictionary descriptions as additional knowl-
edge source for natural language understanding and
commonsense reasoning tasks.

We then introduce how to integrate unstructured
knowledge into NLU models. This usually requires
a text retrieval module to obtain related text from
knowledge corpus. There have been multiple ap-
proaches to adopt unstructured knowledge, espe-
cially for open-domain QA task. For example, Lee
et al. (2019) first trains a retriever by inverse cloze
task (ICT) and then jointly trains the retriever and
reader for open-domain QA. DPR∗ (Karpukhin
et al., 2020) conducts supervised training for the
retriever and achieves better performance on open-
domain QA. REALM (Guu et al., 2020) predicts
masked salient spans consisting of entities to jointly
pre-train the reader and retriever. KG-FiD (Yu et al.,
2022a) proposed to filter noisy passages by leverag-
ing the structural relationship among the retrieved
passages with a knowledge graph during retrieval.

We will introduce the above methods and focus
on three key aspects of employing knowledge in
NLU tasks: i) how to ground the input into knowl-
edge domain (e.g., entity linking), ii) how to repre-
sent knowledge (e.g., graph neural network), and
iii) how to integrate knowledge information into
the NLU models (e.g., attention).

2.2 Knowledge-augmented Natural Language
Generation

The goal of natural language generation (NLG) is
to produce understandable text in human language
from linguistic or non-linguistic data in a variety of
forms such as textual data, image data, and struc-
tured knowledge graph (Yu et al., 2020b). Different
from natural language understanding (NLU) meth-
ods, NLG methods are typically under the encoder-
decoder generation framework (Sutskever et al.,
2014; Bahdanau et al., 2015), which poses unique
challenges for leveraging knowledge into decoding
the next tokens during generation.

We will first present the existing methods for
integrating knowledge into NLG models. These
models are categorized into three major paradigms
which incorporate knowledge through (1) model
architectures that facilitate the use of knowl-
edge, such as knowledge-related attention mech-
anism, knowledge-related copy/pointer mecha-
nisms (Zhou et al., 2018; Zhang et al., 2020a;
Liu et al., 2021a; Guan et al., 2020a; Dong
et al., 2021); (2) learning frameworks that inject
knowledge information into the generation mod-
els through training, such as posterior regular-
ization, constraint-driven learning, semantic loss,
knowledge-informed weak supervision (Hu et al.,
2016, 2018; Tan et al., 2020; Dinan et al., 2019); (3)
inference methods which imposes on the inference
process different knowledge constraints to guide de-
coding, such as lexical constraints, task-specific ob-
jectives, global inter-dependency (Dathathri et al.,
2020; Qin et al., 2020).

In addition to presenting the unified model ar-
chitectures/frameworks, we will introduce sev-
eral specific methods based on different knowl-
edge sources. The knowledge sources can be di-
vided into structured knowledge such as knowl-
edge graph, or unstructured such as text corpus.
Many methods have been proposed to learn the
relationship between structured knowledge and in-
put/output sequences. They can be categorized into
four methodologies: injecting pre-computed knowl-
edge embeddings into language generation (Zhou
et al., 2018); transferring knowledge into language
model with triplet information (Guan et al., 2020a);
performing reasoning over knowledge graph via
path finding strategies (Liu et al., 2019c; Ji et al.,
2020a; Yu et al., 2022d); and improve the graph
embeddings with graph neural networks (Zhang
et al., 2020a; Ji et al., 2020b). For example, Zhou
et al. (2018) enriched the context representations
of the input sequence with neighbouring concepts
on ConceptNet using graph attention. Recently,
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some work attempted to integrate external com-
monsense knowledge into generative pretrained
language models (Guan et al., 2020a; Bhagavatula
et al., 2020). For example, Guan et al. (2020a) con-
ducted post-training on synthetic data constructed
from commonsense KG by translating triplets into
natural language texts.

To handle different kinds of relationships be-
tween unstructured text and input/output sequences,
existing methods can be categorized into two
methodologies: guiding generation with retrieved
information (Ghazvininejad et al., 2018; Lewis
et al., 2020; Wang et al., 2021); modeling back-
ground knowledge into text generation (Qin et al.,
2019; Meng et al., 2020; Zeng et al., 2021). For
example, Lewis et al. (2020) introduced a general
retrieval-augmented generation (RAG) framework
by leveraging a pre-trained neural retriever and gen-
erator. It can be easily fine-tuned on downstream
tasks, and it has demonstrated state-of-the-art per-
formance on various knowledge-intensive natural
language generation tasks.

2.3 Commonsense Knowledge and Reasoning
for Natural Language Processing

Humans reason and make decisions in everyday
settings by using common sense, which consists of
basic knowledge (e.g., regarding the physical world
or human social behavior) that is rarely taught
explicitly yet shared by almost everyone. Com-
monsense knowledge and the ability of using com-
mon sense to reason is thus of vital significance
for developing human-like NLP models as well as
general-purpose AI systems. We will cover topics
as follows: (1) resources and datasets for devel-
oping and benchmarking commonsense reasoning
methods. (2) knowledge-aware commonsense
reasoning methods for both understanding and
generation tasks. (3) analysis on the acquired com-
monsense knowledge of pre-trained LMs and the
behavior of knowledge-augmented commonsense
reasoning methods.

There is a recent surge of novel knowledge re-
sources and the benchmark datasets for research-
ing commonsense in the NLP domain. One of
the most widely used commonsense knowledge re-
source is ConceptNet (Speer et al., 2017), which
is a binary, relational knowledge graph. Although
ConceptNet enjoys simplicity and popularity, its
incompleteness and concept-centric structures limit
the development of more general topics on com-
monsense reasoning for NLP. We present the re-
cent works on developing commonsense knowl-
edge resources, such as ASER (Zhang et al.,

2021), AscentKB (Nguyen et al., 2021), COMET-
ATOMIC2020 (Hwang et al., 2021), and Generic-
sKB (Bhakthavatsalam et al., 2020), which provide
us with event-centric, large-scale, neural-symbolic,
semi-structured ways to access and model common-
sense knowledge. We then introduce the popular
datasets for evaluating the commonsense reason-
ing methods that span three main categories: 1)
multiple-choice QA (e.g., CommonsenseQA (Tal-
mor et al., 2019), SocialIQA (Sap et al., 2019),
PhysicalIQA (Bisk et al., 2020), RiddleSense (Lin
et al., 2021b)), 2) open-ended QA (e.g., Pro-
toQA (Boratko et al., 2020) OpenCSR (Lin et al.,
2021a)), 3) constrained NLG (e.g., Common-
Gen (Lin et al., 2020b), conversation generation).

To equip language models (LMs) with common-
sense reasoning ability, researchers have devel-
oped many knowledge-augmented reasoning mod-
els that fit different task formulations. For the
multiple-choice QA setting, we introduce a set
of knowledge-augmented neuro-symbolic meth-
ods: KagNet* (Lin et al., 2019), HyKAS (Ma
et al., 2019), MHGRN* (Feng et al., 2020), Hy-
bridGN (Yan et al., 2020) and QA-GNN* (Ya-
sunaga et al., 2021). These methods make use
of structured knowledge graphs and/or neural com-
monsense KBs for injecting external knowledge
structures to neural LMs. As for the open-ended
setting, we present the DrKIT (Dhingra et al., 2020)
and DrFact* (Lin et al., 2021a) reasoning frame-
works, which are both designed for differentiable
reasoning over a virtual knowledge graph (i.e., an
un/semi-structured text corpus).

For generation-based commonsense tasks, we
present knowledge-augmented text generation mod-
els that are designed for generative common-
sense: 1) EKI-BART (Fan et al., 2020), KG-
BART* (Liu et al., 2021b), and RE-T5* (Wang
et al., 2021) for the CommonGen task, 2) com-
monsense knowledge-enhanced story generation
models (Guan et al., 2019, 2020b), and 3)
commonsense-based models for conversation gen-
eration, such as ConceptFlow* (Zhang et al.,
2020b) and CARE (Zhong et al., 2021).

Apart from the benchmarking and modeling,
we also introduce the analysis works that aim
to provide a deeper understanding the common-
sense knowledge of pre-trained LMs: LAMA Prob-
ing* (Petroni et al., 2019), NumerSense (Lin et al.,
2020a), and RICA* (Zhou et al., 2020). In addi-
tion, we also introduce the line of works that focus
on interpreting the reasoning mechanism of the
knowledge-augmented reasoning methods (Raman
et al., 2021; Chan et al., 2021; Rajani et al., 2019).
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2.4 Short Reading List
• Knowledge-augmented NLU: (Zhang et al.,

2019; Peters et al., 2019; Liu et al., 2020; Ding
et al., 2019; Lv et al., 2020; Yu et al., 2022b);

• Knowledge-augmented NLG: (Zhou et al.,
2018; Zhang et al., 2020a; Ji et al., 2020b;
Lewis et al., 2020; Wang et al., 2021);

• Commonsense Knowledge and Reasoning for
NLP: (Lin et al., 2019; Ma et al., 2019; Fan
et al., 2020; Liu et al., 2021b; Wang et al.,
2021; Guan et al., 2019, 2020b).

• Relevant Survey: (Yu et al., 2020b; Yang et al.,
2021; Zhang et al., 2022; Wei et al., 2021)

3 Presenters

Chenguang Zhu is a Principal Research Manager
in Microsoft Cognitive Services Research Group,
where he leads the Knowledge & Language Team.
His research in NLP covers knowledge graph, text
summarization and task-oriented dialogue. Dr.
Zhu has led teams to achieve first places in multiple
NLP competitions, including CommonsenseQA,
CommonGen, FEVER, CoQA, ARC and SQuAD
v1.0. He holds a Ph.D. degree in Computer Science
from Stanford University. Dr. Zhu has given talks
at Stanford University, Carnegie Mellon University
and University of Notre Dame. He has previously
been TA for Coursera online class “Automata”,
giving teaching sessions to 100K international
students. Additional information is available at
https://www.microsoft.com/en-us/
research/people/chezhu/.

Yichong Xu is a Senior Researcher in Knowl-
edge & Language Team in Microsoft Cognitive
Services Research Group. His research in NLP
focuses on using external knowledge to help nat-
ural language processing, including question an-
swering, commonsense reasoning, and text sum-
marization. Dr. Xu received his Ph.D. in Machine
Learning from Carnegie Mellon University. During
his time at CMU, he has been TA for large classes
(> 200 students) on machine learning and convex
optimization. Dr. Xu has given talks at CMU AI
Seminar, as well as in many international confer-
ences including ACL, NAACL, NeurIPS, ICML,
etc. Additional information is available at https:
//xycking.wixsite.com/yichongxu.

Xiang Ren is an assistant professor at the USC
Computer Science Department, a Research Team
Leader at USC ISI, and the PI of the Intelligence
and Knowledge Discovery (INK) Lab at USC. Pri-
orly, he received his Ph.D. in Computer Science
from the University of Illinois Urbana-Champaign.

Dr. Ren works on knowledge acquisition and rea-
soning in natural language processing, with fo-
cuses on developing human-centered and label-
efficient computational methods for building trust-
worthy NLP systems. Ren publishes over 100 re-
search papers and delivered over 10 tutorials at
the top conferences in natural language process,
data mining, and artificial intelligence. He re-
ceived NSF CAREER Award, The Web Conference
Best Paper runner-up, ACM SIGKDD Doctoral
Dissertation Award, and several research awards
from Google, Amazon, JP Morgan, Sony, and
Snapchat. He was named Forbes’ Asia 30 Under
30 in 2019. Additional information is available at
https://shanzhenren.github.io/.

Bill Yuchen Lin is a Ph.D. candidate at USC.
His research goal is to teach machines to think,
talk, and act with commonsense knowledge and
commonsense reasoning ability as humans do. To-
wards this ultimate goal, he has been develop-
ing knowledge-augmented reasoning methods (e.g.,
KagNet, MHGRN, DrFact) and constructing bench-
mark datasets (e.g., CommonGen, RiddleSense, X-
CSR) that require commonsense knowledge and
complex reasoning for both NLU and NLG. He
initiated an online compendium of commonsense
reasoning research, which serves as a portal site for
the community. More information is available at
https://yuchenlin.xyz/.

Meng Jiang is an assistant professor at the De-
partment of Computer Science and Engineering in
the University of Notre Dame. He obtained his
bachelor degree and PhD from Tsinghua Univer-
sity. His research interests include data mining,
machine learning, and natural language processing.
He has published more than 100 peer-reviewed pa-
pers of these topics. He is the recipient of Notre
Dame International Faculty Research Award. The
honors and awards he received include best paper
finalist in KDD 2014, best paper award in KDD-
DLG workshop 2020, and ACM SIGSOFT Distin-
guished Paper Award in ICSE 2021. He received
NSF CRII award in 2019 and CAREER award
in 2022. Additional information is available at
http://www.meng-jiang.com/.

Wenhao Yu is a Ph.D. student in the Depart-
ment of Computer Science and Engineering at the
University of Notre Dame. His research lies in con-
trollable knowledge-driven natural language pro-
cessing, particularly in natural language generation.
His research has been published in top-ranked NLP
and data mining conferences such as ACL, EMNLP,
KDD and WWW. Additional information is avail-
able at https://wyu97.github.io/.
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