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Abstract

Probing has become an important tool for an-
alyzing representations in Natural Language
Processing (NLP). For graphical NLP tasks
such as dependency parsing, linear probes are
currently limited to extracting undirected or
unlabeled parse trees which do not capture the
full task. This work introduces DEPPROBE,
a linear probe which can extract labeled and
directed dependency parse trees from embed-
dings while using fewer parameters and com-
pute than prior methods. Leveraging its full
task coverage and lightweight parametrization,
we investigate its predictive power for select-
ing the best transfer language for training a full
biaffine attention parser. Across 13 languages,
our proposed method identifies the best source
treebank 94% of the time, outperforming com-
petitive baselines and prior work. Finally, we
analyze the informativeness of task-specific
subspaces in contextual embeddings as well
as which benefits a full parser’s non-linear
parametrization provides.

1 Introduction

Pre-trained, contextualized embeddings have been
found to encapsulate information relevant to var-
ious syntactic and semantic tasks out-of-the-box
(Tenney et al., 2019; Hewitt and Manning, 2019).
Quantifying this latent information has become the
task of probes — models which take frozen em-
beddings as input and are parametrized as lightly
as possible (e.g. linear transformations). Recent
proposals for edge probing (Tenney et al., 2019)
and structural probing (Hewitt and Manning, 2019)
have enabled analyses beyond classification tasks,
including graphical tasks such as dependency pars-
ing. They are able to extract dependency graphs
from embeddings, however these are either undi-
rected (Hewitt and Manning, 2019; Hall Maudslay
et al., 2020) or unlabeled (Kulmizev et al., 2020),
thereby capturing only a subset of the full task.
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Figure 1: DEPPROBE extracts tree structure using
transformation B, labels using L and infers directional-
ity using root, based on contextualized embeddings.

In this work, we investigate whether this gap can
be filled and ask: Can we construct a lightweight
probe which can produce fully directed and labeled
dependency trees? Using these trees, we further
aim to study the less examined problem of trans-
ferability estimation for graphical tasks, extend-
ing recent work targeting classification and regres-
sion tasks (Nguyen et al., 2020; You et al., 2021).
Specifically: How well do our probe’s predictions
correlate with the transfer performance of a full
parser across a diverse set of languages?

To answer these questions, we contribute DEP-
PROBE (Figure 1), the first linear probe to extract
directed and labeled dependency trees while using
fewer parameters than prior work and three orders
of magnitude fewer trainable parameters than a full
parser (Section 3). As this allows us to measure
labeled attachment scores (LAS), we investigate
the degree to which our probe is predictive of cross-
lingual transfer performance of a full parser across
13 typologically diverse languages, finding that our
approach chooses the best transfer language 94%
of the time, outperforming competitive baselines
and prior work (Section 4). Finally, we perform
an in-depth analysis of which latent information
is most relevant for dependency parsing as well as
which edges and relations benefit most from the
expressivity of the full parser (Section 5).1

1Code available at https://personads.me/x/acl-2022-code.
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2 Related Work

Given the ubiquitous use of contextualized embed-
dings (Devlin et al., 2019; Conneau et al., 2020;
Xue et al., 2021), practitioners have turned to vari-
ous methods for analyzing their linguistic features
(Rogers et al., 2020). Hewitt and Manning (2019)
examine these intrinsic properties in greater detail
for English dependency parsing using a structural
probe, finding that undirected dependency graphs
are recoverable from BERT by learning a linear
transformation on its embeddings (Section 3.1).

Extending the structural probe of Hewitt and
Manning (2019) to 12 languages, Chi et al.
(2020) extract undirected dependency graphs from
mBERT (Devlin et al., 2019), further showing that
head-to-child difference vectors in the learned sub-
space cluster into relations from the Universal De-
pendencies taxonomy (de Marneffe et al., 2014).

Building on both the structural and tree depth
probes (Hewitt and Manning, 2019), Kulmizev et al.
(2020) extract directed dependency graphs from
mBERT for 13 languages (Section 3.2). Further
variations to structural probing include regulariza-
tion of the linear transformation (Limisiewicz and
Mareček, 2021) as well as alternative objective
functions (Hall Maudslay et al., 2020).

None of the proposed linear probing approaches
so far are able to produce full dependency parse
trees (i.e. directed and labeled), however the closer
a probe approximates the full task, the better it
quantifies relevant information (Hall Maudslay
et al., 2020). It would for example be desirable
to estimate LAS for parsing a target treebank with
a model trained on a different source without hav-
ing to train a resource-intensive parser (e.g. Dozat
and Manning, 2017) on each source candidate. Al-
though performance prediction methods for such
scenarios exist, they typically do not cover graph
prediction (Nguyen et al., 2020; You et al., 2021).

In order to bridge the gap between full parsers
and unlabeled probes, in addition to the gap be-
tween full fine-tuning and lightweight performance
prediction, this work proposes a linear probe which
can extract labeled and directed dependency parse
trees while using less compute than prior methods
(Section 3). We use our probe’s LAS to evaluate its
predictive power for full parser performance and
leverage its linear nature to investigate how depen-
dencies are represented in subspaces of contextual
embeddings (Section 5).

3 Probing for Dependencies

In order to construct a directed and labeled de-
pendency parse tree for a sentence s consisting
of the words {w0, . . . , wN}, we require informa-
tion on the presence or absence of edges between
words, the directionality of these edges (−−−→wi, wj),
and the relationships {r0, . . . , rN} which they
represent. Using the contextualized embeddings
{h0, . . . ,hN} with hi ∈ Re, prior probing work
has focused on the first step of identifying edges
(Section 3.1) and later directionality (Section 3.2).
In this work, we propose a probe which completes
the final relational step (Section 3.3) and simulta-
neously provides a more efficient method for iden-
tifying directionality (Section 3.4).

3.1 Undirected Probing

The structural probe introduced by Hewitt and Man-
ning (2019) recovers the first piece of information
(i.e. the undirected graph) remarkably well. Here,
the probe is a linear transformation B ∈ Re×b with
b < e which maps contextual embeddings into a
subspace in which the distance measure

dB(hi,hj) =
√
(Bhi −Bhj)T (Bhi −Bhj)

(1)
between hi and hj is optimized towards the dis-

tance between two words in the dependency graph
dP (wi, wj), i.e. the number of edges between the
words. For each sentence, the loss is defined as the
mean absolute difference across all word pairs:

LB(s) =
1

N2

N∑
i=0

N∑
j=0

∣∣dP (wi, wj)− dB(hi,hj)∣∣ .
(2)

In order to extract an undirected dependency
graph, one computes the distances for a sentence’s
word pairs using dB and extracts the minimum
spanning tree (Jarník, 1930; Prim, 1957; MST).

3.2 Directed Probing

Apart from the structural probeB, Hewitt and Man-
ning (2019) also probe for tree depth. Using an-
other matrix C ∈ Re×c, a subspace is learned in
which the squared L2 norm of a transformed em-
bedding ‖Chi‖22 corresponds to a word’s depth in
the tree, i.e. the number of edges from the root.

Kulmizev et al. (2020) combine the structural
and tree depth probe to extract directed graphs.
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This directed probe (DIRPROBE) constructs a score
matrix M ∈ RN×N for which each entry corre-
sponds to a word pair’s negative structural distance
−dB(hi,hj). The shallowest node in the depth
subspace C is set as root. Entries in M which cor-
respond to an edge between wi and wj for which
the word depths follow ‖Chi‖22 > ‖Chj‖22 are set
to −∞. A word’s depth in subspace C therefore
corresponds to edge directionality. The directed
graph is built from M using Chu-Liu-Edmonds
decoding (Chu and Liu, 1965; Edmonds, 1967).

DIRPROBE extracts directed dependency parse
trees, however it would require additional complex-
ity to label each edge with a relation (e.g. using an
additional probe). In the following, we propose a
probe which can extract both directionality and rela-
tions while using fewer parameters and no dynamic
programming-based graph-decoding algorithm.

3.3 Relational Probing

The incoming edge of each word wi is governed by
a single relation. As such the task of dependency
relation classification with l relations can be simpli-
fied to a labeling task using a linear transformation
L ∈ Re×l for which the probability of a word’s
relation ri being of class lk is given by:

p(ri = lk|wi) = softmax(Lhi)k (3)

and optimization uses standard cross-entropy
loss given the gold label r∗i for each word wi:

LL(s) = −
1

N

N∑
i=0

ln p(r∗i |wi) . (4)

Should dependency relations be encoded in con-
textualized embeddings, each dimension of the sub-
space L will correspond to the prevalence of infor-
mation relevant to each relation, quantifiable using
relation classification accuracy (RelAcc).

3.4 Constructing Dependency Parse Trees

Combining structural probing (Section 3.1) and
dependency relation probing (Section 3.3), we pro-
pose a new probe for extracting fully directed and
labeled dependency trees (DEPPROBE). It com-
bines undirected graphs and relational information
in a computationally efficient manner, adding la-
bels while requiring less parameters than prior unla-
beled or multi-layer-perceptron-based approaches.

As outlined in Algorithm 1 and illustrated in
Figure 1, DEPPROBE uses the distance matrix DB

Algorithm 1: DEPPROBE Inference

1 input Distance matrix DB ∈ RN×N ,
p(lk|wi) of relation label lk given wi

2 wr ← argmax
wi

p(root|wi)

3 Tw ← {wr}, Te ← {}
4 while |Tw| < N do
5 wi, wj ← argmin

wi,wj

DB(wi ∈ Tw, wj)

6 rj ← argmax
lk

p(lk|wj) with lk 6= root

7 Tw ← Tw ∪ {wj}
8 Te ← Te ∪ {(−−−→wi, wj , rj)}
9 end

10 return Te

derived from the structural probe B in conjunc-
tion with the relation probabilities of the relational
probe L (line 1). The graph is first rooted using the
word wr for which p(root|wr) is highest (line 2).
Iterating over the remaining words until all wj are
covered in Tw, an edge is drawn to each word wj
from its head wi based on the minimum distance in
DB . The relation rj for an edge (−−−→wi, wj , rj) is de-
termined by taking the relation label lk which max-
imizes p(rj = lk|wj) with lk 6= root (line 6). The
edge is then added to the set of labeled tree edges
Te. With edge directionality being inferred as sim-
ply pointing away from the root, this procedure pro-
duces a dependency graph that is both directed and
labeled without the need for additional complexity,
running in O(n2) while dynamic programming-
based decoding such as DIRPROBE have runtimes
of up to O(n3) (Stanojević and Cohen, 2021).

Constructing dependency trees from untuned em-
beddings requires the matrices B and L, totaling
e · b+ e · l trainable parameters. Optimization can
be performed using gradient descent on the sum of
losses LB + LL. With l = 37 relations in UD, this
constitutes a substantially reduced training effort
compared to prior probing approaches (with sub-
space dimensionalities b and c typically set to 128)
and multiple magnitudes fewer fine-tuned parame-
ters than for a full biaffine attention parser.

4 Experiments

4.1 Setup
Parsers In our experiments, we use the deep bi-
affine attention parser (BAP) by Dozat and Man-
ning (2017) as implemented in van der Goot et al.
(2021) as an upper bound for MLM-based pars-
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ing performance. As it is closest to our work, we
further reimplement DIRPROBE (Kulmizev et al.,
2020) with b = 128 and c = 128. Note that this
approach produces directed, but unlabeled depen-
dency graphs. Finally, we compare both methods
to our directed and labeled probing approach, DEP-
PROBE with b = 128 and l = 37.

All methods use mBERT (Devlin et al., 2019)
as their encoder (e = 768). For BAP, training the
model includes fine-tuning the encoder’s parame-
ters, while for both probes they remain fixed and
only the linear transformations are adjusted. This
results in 183M tuned parameters for BAP, 197k
for DIRPROBE and 127k for DEPPROBE. Hyper-
parameters are set to the values reported by the
authors,2 while for DEPPROBE we perform an ini-
tial tuning step in Section 4.2.

Target Treebanks As targets, we use the set of
13 treebanks proposed by Kulmizev et al. (2019),
using versions from Universal Dependencies v2.8
(Zeman et al., 2021). They are diverse with respect
to language family, morphological complexity and
script (Appendix A). This set further includes EN-
EWT (Silveira et al., 2014) which has been used
in prior probing work for hyperparameter tuning,
allowing us to tune DEPPROBE on the same data.

Metrics We report labeled attachment scores
(LAS) wherever possible (BAP, DEPPROBE) and
unlabeled attachment scores (UAS) for all methods.
For DEPPROBE’s hyperparameters, we evaluate
undirected, unlabeled attachment scores (UUAS)
as well as relation classification accuracy (RelAcc).
One notable difference to prior work is that we
include punctuation both during training and evalu-
ation — contrary to prior probing work which ex-
cludes all punctuation (Hewitt and Manning, 2019;
Kulmizev et al., 2020; Hall Maudslay et al., 2020)
— since we are interested in the full parsing task.

Training Each method is trained on each target
treebank’s training split and is evaluated on the
test split. For cross-lingual transfer, models trained
on one language are evaluated on the test splits
of all other languages without any further tuning.
For DEPPROBE tuning (Section 4.2) we use the
development split of EN-EWT.

BAP uses the training schedule implemented in
van der Goot et al. (2021) while DIRPROBE and

2For better comparability, we use the best single layer
reported by Kulmizev et al. (2020) instead of the weighted
sum over all layers.
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Figure 2: Layer-wise Performance on EWT (Dev) for
DEPPROBE as measured by UUAS for the structural
probe B and RelAcc for the relational probe L.

DEPPROBE use AdamW (Loshchilov and Hutter,
2019) with a learning rate of 10−3 which is reduced
by a factor of 10 each time the loss plateaus (see
also Hewitt and Manning, 2019).

Both probing methods are implemented using
PyTorch (Paszke et al., 2019) and use mBERT
as implemented in the Transformers library (Wolf
et al., 2020). Each model is trained with three ran-
dom initializations of which we report the mean.

4.2 DEPPROBE Tuning

As prior work has repeatedly found that MLM lay-
ers encode different linguistic information, the lay-
ers which are most relevant for a probe’s task are
typically first identified (Tenney et al., 2019; Hewitt
and Manning, 2019). Following this paradigm, we
train DEPPROBE on embeddings from each layer
of mBERT. Layer 0 is equivalent to the first, non-
contextualized embeddings while layer 12 is the
output of the last attention heads. The probe is
trained on EN-EWT and evaluated on its develop-
ment split using UUAS for the structural transfor-
mation B (akin to Hewitt and Manning, 2019) as
well as RelAcc for the relational transformation L.

Figure 2 shows that structure is most prevalent
around layer 6 at 78 UUAS, corroborating the 6–8
range identified by prior work (Tenney et al., 2019;
Hewitt and Manning, 2019; Chi et al., 2020). De-
pendency relations are easiest to retrieve at around
layer 7 with an accuracy of 86%. The standard de-
viation across initializations is around 0.1 in both
cases. Based on these tuning results, we use layer
6 for structural probing and layer 7 for relational
probing in the following experiments.
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AR EN EU FI HE HI IT JA KO RU SV TR ZH
AR
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FI

HE
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RU

SV

TR

ZH

83 32 19 32 41 15 39 8 13 44 38 20 11

39 89 37 51 54 33 78 19 30 66 75 31 39

20 39 84 48 30 33 32 17 34 43 43 37 30

29 44 40 89 38 32 47 16 35 61 61 38 32

43 54 33 46 90 21 69 12 28 59 58 31 24

15 39 42 43 24 92 31 35 34 43 44 36 28

52 69 34 55 59 25 93 14 32 67 74 34 27

6 16 21 17 7 40 12 93 32 17 15 29 17

9 21 23 27 17 18 20 15 86 26 24 31 13

50 52 35 54 55 27 65 13 32 94 59 33 31

37 71 40 55 48 31 70 17 32 63 89 35 33

11 29 33 41 22 23 24 15 33 36 33 70 19

19 45 31 41 29 30 35 19 34 46 45 32 86

(a) BAP (LAS)

AR EN EU FI HE HI IT JA KO RU SV TR ZH
AR

EN

EU

FI

HE

HI

IT

JA

KO

RU

SV

TR

ZH

56 15 10 20 25 10 20 5 7 27 23 13 8

29 67 21 35 33 21 49 13 23 46 52 26 20

15 18 53 32 17 18 19 9 24 25 24 28 15

15 27 27 59 22 18 27 9 25 40 40 30 18

29 26 18 29 61 14 29 8 18 34 33 21 12

11 19 27 25 15 68 18 18 24 25 25 27 13

36 44 21 35 37 17 73 9 23 47 49 26 16

7 13 15 14 7 27 8 63 26 13 12 25 15

7 13 14 19 12 15 14 9 54 17 18 25 8

32 34 20 37 30 14 40 8 24 69 42 28 19

25 38 21 38 27 18 38 9 22 41 64 26 18

11 16 20 25 14 15 13 10 24 21 21 47 10

12 23 17 26 15 16 19 14 24 25 27 23 52

(b) DEPPROBE (LAS)

MODEL BAP DEP DIR

LAS=L 88 60 —
±6.4 ±7.8

LAS¬L 35 22 —
±15.7 ±9.9

UAS=L 91 67 70
±5.0 ±6.7 ±7.8

UAS¬L 52 38 36
±14.5 ±8.8 ±10.4

(c) Mean in-language (=L) and transfer
(¬L) UAS/LAS (± stddev).
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88 43 35 45 55 27 49 23 32 53 47 33 23

57 92 58 68 71 48 84 35 43 78 81 51 61

38 59 87 62 50 50 54 34 50 60 62 54 49

50 58 56 91 62 45 71 32 48 75 76 53 50

63 69 53 64 93 36 81 29 48 76 72 50 41

25 58 57 60 42 95 53 50 53 58 64 55 51

64 78 50 68 72 37 95 31 49 77 82 50 43

15 38 38 35 22 56 31 94 48 33 38 52 41

34 39 49 46 39 43 48 32 90 46 48 49 24

64 71 56 69 76 42 82 30 49 95 71 52 52

48 79 58 68 62 49 78 35 46 71 92 52 50

33 49 53 57 44 37 49 37 50 55 53 76 36

37 66 56 60 52 54 58 38 52 65 62 54 89

(d) BAP (UAS)
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ZH

63 28 27 35 44 21 35 18 23 39 36 29 22

46 73 41 50 51 34 59 28 38 58 60 44 39

32 34 61 45 36 36 38 27 39 42 42 44 31

36 41 44 66 44 35 44 27 38 55 55 45 36

47 38 36 45 67 28 45 22 33 49 47 39 27

30 34 42 41 34 75 37 33 43 40 43 45 31

49 54 39 48 53 31 78 28 37 57 58 42 34

24 30 35 31 25 42 30 68 43 31 30 45 36

27 26 35 35 28 33 30 27 61 32 33 42 24

46 51 39 52 52 33 57 26 38 74 56 45 40

39 47 39 50 45 33 50 26 36 51 70 41 34

28 29 37 39 32 33 31 27 40 36 36 56 27

32 38 36 43 33 34 37 31 40 42 42 42 59

(e) DEPPROBE (UAS)

AR EN EU FI HE HI IT JA KO RU SV TR ZH
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ZH

63 25 22 28 44 19 36 18 23 33 30 24 18

46 76 38 53 54 37 63 30 36 61 64 41 38

31 28 65 41 35 34 35 28 36 36 37 39 26

36 42 45 72 46 37 48 29 37 59 58 44 33

46 34 28 38 69 25 45 21 27 46 43 28 22

27 31 40 39 33 79 34 35 39 39 38 42 29

49 54 40 52 59 31 79 27 35 60 62 39 31

20 28 30 30 25 40 29 71 41 29 29 43 34

25 25 30 29 29 27 31 26 65 28 30 39 20

48 52 43 57 58 36 60 30 39 78 59 45 40

39 43 31 50 45 29 50 25 30 50 73 33 29

24 25 31 34 30 27 30 25 37 31 30 57 22

28 34 29 37 32 31 34 34 31 38 38 31 60

(f) DIRPROBE (UAS)

Figure 3: In-language and Cross-lingual Transfer Performance for 13 target treebanks (train→ test) in UAS
for BAP (fully tuned parser), DEPPROBE, DIRPROBE and LAS for BAP, DEPPROBE (DIRPROBE is unlabeled).

4.3 Parsing Performance

Figure 3 lists UAS for all methods and LAS for
BAP and DEPPROBE both on target-language test
data (=L) and zero-shot transfer targets (¬L). Table
3c further shows the mean results for each setting.

Unsurprisingly, the full parametrization of BAP
performs best, with in-language scores of 88 LAS
and 91 UAS. For zero-shot transfer, these scores
drop to 35 LAS and 52 UAS, with some language
pairs seeing differences of up to 85 points: e.g. JA
→ JA (93 LAS) versus AR→ JA (8 LAS) in Figure
3a. This again confirms the importance of selecting
appropriate source data for any given target.

Both probes, with their limited parametrization,
fall short of the full parser’s performance, but still
reach up to 73 LAS and 79 UAS. DIRPROBE has
a mean in-language UAS which is 3 points higher
than for DEPPROBE, attributable to the more com-
plex decoder. Due to DIRPROBE’s output struc-
tures being unlabeled, we cannot compare LAS.

DEPPROBE reaches a competitive 67 UAS de-
spite its much simpler decoding procedure and ap-
pears to be more stable for zero-shot transfer as it
outperforms DIRPROBE by around 2 UAS while

maintaining a lower standard deviation. Most im-
portantly, it produces directed and labeled parses
such that we can fully compare it to BAP. Consid-
ering that DEPPROBE has more than three orders
of magnitude fewer tunable parameters, a mean in-
language LAS of 60 is considerable and highlights
the large degree of latent dependency information
in untuned, contextual embeddings. For zero-shot
transfer, the performance gap to BAP narrows to
13 LAS and 14 UAS.

4.4 Transfer Prediction

Given that DEPPROBE provides a highly parameter-
efficient method for producing directed, labeled
parse trees, we next investigate whether its perfor-
mance patterns are indicative of the full parser’s
performance and could aid in selecting an appro-
priate source treebank for a given target without
having to train the 183 million parameters of BAP.

Setup Comparing UAS and LAS of BAP with
respective scores of DEPPROBE and DIRPROBE,
we compute the Pearson correlation coefficient ρ
and the weighted Kendall’s τw (Vigna, 2015). The
latter can be interpreted as corresponding to a cor-
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MODEL
LAS UAS
ρ τw ρ τw

L2V .86 .72 .80 .70

DIRPROBE — — .91 .81
DEPPROBE .97 .88 .94 .85

Table 1: Transfer Correlation with BAP. Pearson ρ
and weighted Kendall’s τw for BAP’s LAS and UAS
with respect to DIRPROBE’s UAS, DEPPROBE’s UAS
and LAS as well as lang2vec cosine similarity (L2V).

relation in [−1, 1], and that given a probe ranking
one source treebank over another, the probability
of this higher rank corresponding to higher per-
formance in the full parser is τw+1

2 . All reported
correlations are significant at p < 0.001. Simi-
larly, differences between correlation coefficients
are also significant at p < 0.001 as measured using
a standard Z-test. In addition to the probes, we also
compare against a method commonly employed
by practitioners by using the cosine similarity of
typological features from the URIEL database as
represented in lang2vec (Littell et al., 2017; L2V)
between our 13 targets (details in Appendix A).

Results Table 1 shows that the L2V baseline cor-
relates with final parser performance, but that ac-
tual dependency parses yield significantly higher
correlation and predictive power. For UAS, we find
that despite having similar attachment scores, DEP-
PROBE performance correlates higher with BAP
than that of DIRPROBE, both with respect to pre-
dicting the ability to parse any particular language
as well as ranking the best source to transfer from.
Using the labeled parse trees of DEPPROBE results
in almost perfect correlation with BAP’s LAS at
ρ = .97 as well as a τw of .88, highlighting the
importance of modeling the full task and including
dependency relation information. Using Kendall’s
τw with respect to LAS, we can estimate that select-
ing the highest performing source treebank from
DEPPROBE to train the full parser will be the best
choice 94% of the time for any treebank pair.

5 Analysis

5.1 Tree Depth versus Relations

Why does DEPPROBE predict transfer performance
more accurately than DIRPROBE despite its simpler
architecture? As each probe consists only of two
matrices optimized to extract tree structural, depth

MODEL
LAS UAS
ρ τw ρ τw

SSA-STRUCT .68 .42 .60 .43
SSA-DEPTH .62 .34 .53 .35
SSA-REL .73 .55 .65 .53

Table 2: SSA Correlation with BAP. Pearson ρ
and weighted Kendall’s τw for BAP’s LAS and UAS
with respect to subspace angles between structural
(STRUCT), depth (DEPTH) and relation probes (REL).

or relational information, we can directly compare
the similarity of all task-relevant parameters across
languages against the full BAP’s cross-lingual per-
formance.

In order to measure the similarity of probe ma-
trices from different languages, we use mean sub-
space angles (Knyazev and Argentati, 2002; SSA),
similarly to prior probing work (Chi et al., 2020).
Intuitively, SSA quantifies the energy required to
transform one matrix to another by converting the
singular values of the transformation into angles
between 0◦and 90◦. SSAs are computed for the
structural probe (SSA-STRUCT) which is equivalent
in both methods, DIRPROBE’s depth probe (SSA-

DEPTH) and DEPPROBE’s relational probe (SSA-

REL). We use Pearson ρ and the weighted Kendall’s
τw to measure the correlation between cross-lingual
probe SSAs and BAP performance. This allows
us to investigate which type of information is most
important for final parsing performance.

From Table 2, we can observe that SSAs be-
tween probes of different languages correlate less
with transfer performance than UAS or LAS (Ta-
ble 1), underlining the importance of extracting
full parses. Among the different types of depen-
dency information, we observe that SSAs between
the relational probes used by DEPPROBE correlate
highest with final performance at .73 for LAS and
.65 for UAS. Structural probing correlates signifi-
cantly both with BAP’s LAS and UAS at .68 and
.60 respectively, but to a lesser degree. Probes for
tree depth have the lowest correlation at .62 for
LAS and .53 for UAS. Despite tree depth being a
distinctive syntactic feature for language pairs such
as the agglutinative Turkish and the more function
word-based English, depth is either not as relevant
for BAP or may be represented less consistently
in embeddings across languages, leading to lower
correlation between SSAs and final performance.
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5.2 Full Parser versus Probe

In the following analysis we investigate perfor-
mance differences between the full BAP and DEP-
PROBE across all 13 targets in order to identify
finer-grained limitations of the linear approach and
also which kinds of dependencies benefit from full
parameter tuning and non-linear decoding.

Edge Length Figure 5 shows offsets between
gold and predicted head positions. The majority of
heads are predicted correctly with a ratio of 92.1%
for BAP and 69.7% for DEPPROBE. Both methods
are less accurate in predicting long-distance edges
with length 150–250, resulting in offsets of ca. 100
(aggregated into < and > in Figure 5). Most likely,
this is due to these edges’ overall sparsity in the
data (only 6.7% of edges cover a distance of more
than 10 tokens) as well as their higher overall sub-
jective difficulty. Nonetheless, BAP is able to cap-
ture such dependencies more accurately as shown
by its lower error rates for long edges compared to
those of DEPPROBE.

In addition to very distant head nodes, BAP also
seems to recover more of the nuanced edges in the
[−5, 5] interval. This range is particularly impact-
ful for downstream performance as the edges in our
target treebanks have a median length of 2 (mean
length 3.62 with σ = 5.70). The structural probing
loss (Equation 2) and the simple linear parametriza-
tion of the probe are able to capture a large number
of these edges as evidenced by overall low error
rates, but lack the necessary expressivity in order
to accurately capture all cases.

Relations Looking at RelAcc for each category
in the UD taxonomy (de Marneffe et al., 2014)
in Figure 4 allows us to identify where higher
parametrization and more complex decoding are
required for high parsing performance. While we
again observe that performance on all relations is
higher for BAP than for DEPPROBE, a large sub-
set of the relations is characterized by comparable
or equivalent performance. These include simple
punctuation (punct), but also the majority of func-
tion word relations such as aux, case, clf, det
and mark as well as coordination (e.g. cc, conj).
We attribute the high performance of DEPPROBE

on these relations to the fact that the words used
to express them typically stem from closed classes
and consequently similar embeddings: e.g., deter-
miners “the/a/an” (EN), case markers “di/da” (IT).

Interestingly, some relations expressed through

open class words are also captured by the lin-
ear probe. These include the modifiers advmod,
amod and discourse as well as some nomi-
nal relations such as expl, nmod, nsubj and
nummod. As prior work has identified PoS in-
formation in untuned embeddings (Tenney et al.,
2019), the modifiers are likely benefiting from
the same embedding features. The fact that DEP-
PROBE nonetheless identifies syntax-specific re-
lations such as nsubj, and to a lesser degree
obj and obl, indicates the presence of context-
dependent syntactic information in addition to PoS.

The larger the set of possible words for a re-
lation, the more difficult it is to capture with the
probe. The functional cop (copula) relation pro-
vides an informative example: In English (and re-
lated languages), it is almost exclusively assigned
to the verb “be” resulting in 85% RelAcc, while in
non-European languages such as Japanese it can
be ascribed to a larger set which often overlaps
with other relations (e.g. aux) resulting in 65%
RelAcc. BAP adapts to each language by tuning
all parameters while DEPPROBE, using fixed em-
beddings, reaches competitive scores on European
languages, but performs worse in non-European
settings (details in Appendix B).

Besides capturing larger variation in surface
forms, BAP also appears to benefit from higher
expressivity when labeling clausal relations such as
ccomp, csubj. These relations are often charac-
terized not only by surface form variation, but also
by PoS variation of head/child words and overlap
with other relation types (e.g. clausal subjects stem
from verbs or adjectives), making them difficult
to distinguish in untuned embeddings. Simultane-
ously, they often span longer edges compared to
determiners or other function words.

Another relation of particular importance is
root as it determines the direction of all edges
predicted by DEPPROBE. An analysis of the
14% RelAcc difference to BAP reveals that both
methods most frequently confuse root with rela-
tions that fit the word’s PoS, e.g. NOUN roots with
nsubj or nmod. For the majority PoS VERB (70%
of all root), we further observe that DEPPROBE

predicts twice as many xcomp and parataxis
confusions compared to BAP, likely attributable to
their root-similar function in subclauses. Since
their distinction hinges on context, the full parser,
which also tunes the contextual encoder, is better
equipped to differentiate between them.
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rect) across all 13 targets.

The last category in which BAP outperforms
DEPPROBE includes rare, treebank-specific rela-
tions such as reparandum (reference from a cor-
rected word to an erroneous one). Again, the larger
number of tunable parameters in addition to the
non-linear decoding procedure of the full parser
enable it to capture more edge cases while DEP-
PROBE’s linear approach can only approximate a
local optimum for any relations which are repre-
sented non-linearly.

Efficiency When using a probe for performance
prediction, it is important to consider its computa-
tional efficiency over the full parser’s fine-tuning
procedure. In terms of tunable parameters, DEP-
PROBE has 36% fewer parameters than DIRPROBE

and three orders of magnitude fewer parameters
than BAP. In practice, this translates to training
times in the order of minutes instead of hours.

Despite its simple O(n2) decoding procedure
compared to dynamic programming-based graph-
decoding algorithms (O(n3)), DEPPROBE is able
to extract full dependency trees which correlate
highly with downstream performance while main-
taining high efficiency (Section 4.4).

6 Conclusion

With DEPPROBE, we have introduced a novel prob-
ing procedure to extract fully labeled and directed
dependency trees from untuned, contextualized em-
beddings. Compared to prior approaches which
extract structures lacking labels, edge direction-
ality or both, our method retains a simple linear
parametrization which is in fact more lightweight
and does not require complex decoders (Section 3).

To the best of our knowledge, this is the first
linear probe which can be used to estimate LAS
from untuned embeddings. Using this property, we
evaluated the predictive power of DEPPROBE on
cross-lingual parsing with respect to the transfer
performance of a fully fine-tuned biaffine attention
parser. Across the considered 169 language pairs,
DEPPROBE is surprisingly effective: Its LAS cor-
relates significantly (p < 0.001) and most highly
compared with unlabeled probes or competitive lan-
guage feature baselines, choosing the best source
treebank in 94% of all cases (Section 4).

Leveraging the linearity of the probe to analyze
structural and relational subspaces in mBERT em-
beddings, we find that dependency relation infor-
mation is particularly important for parsing perfor-
mance and cross-lingual transferability, compared
to both tree depth and structure. DEPPROBE, which
models structure and relations, is able to recover
many functional and syntactic relations with com-
petitive accuracy to the full BAP (Section 5).

Finally, the substantially higher efficiency of
DEPPROBE with respect to time and compute make
it suitable for accurate parsing performance pre-
diction. As contemporary performance prediction
methods lack formulations for graphical tasks and
handcrafted features such as lang2vec are not avail-
able in all transfer settings (e.g. document domains,
MLM encoder choice), we see linear approaches
such as DEPPROBE as a valuable alternative.
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Ika Alfina, Lene Antonsen, Katya Aplonova, An-
gelina Aquino, Carolina Aragon, Maria Jesus
Aranzabe, Bilge Nas Arıcan, �Hórunn Arnardót-
tir, Gashaw Arutie, Jessica Naraiswari Arwidarasti,
Masayuki Asahara, Deniz Baran Aslan, Luma
Ateyah, Furkan Atmaca, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Keerthana Balasubramani, Miguel Ballesteros, Esha
Banerjee, Sebastian Bank, Verginica Barbu Mititelu,
Starkaður Barkarson, Victoria Basmov, Colin Batch-
elor, John Bauer, Seyyit Talha Bedir, Kepa Ben-
goetxea, Gözde Berk, Yevgeni Berzak, Irshad Ah-
mad Bhat, Riyaz Ahmad Bhat, Erica Biagetti,
Eckhard Bick, Agnė Bielinskienė, Kristín Bjar-
nadóttir, Rogier Blokland, Victoria Bobicev, Loïc
Boizou, Emanuel Borges Völker, Carl Börstell,
Cristina Bosco, Gosse Bouma, Sam Bowman, Adri-
ane Boyd, Anouck Braggaar, Kristina Brokaitė,
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Appendix

A Experimental Setup

TARGET LANG FAMILY SIZE

AR-PADT Arabic Afro-Asiatic 7.6k
EN-EWT English Indo-European 16.6k
EU-BDT Basque Basque 9.0k
FI-TDT Finnish Uralic 15.1k
HE-HTB Hebrew Afro-Asiatic 6.2k
HI-HDTB Hindi Indo-European 16.6k
IT-ISDT Italian Indo-European 14.1k
JA-GSD Japanese Japanese 8.1k
KO-GSD Korean Korean 6.3k
RU-SynTagRus Russian Indo-European 61.9k
SV-Talbanken Swedish Indo-European 6.0k
TR-IMST Turkish Turkic 5.6k
ZH-GSD Chinese Sino-Tibetan 5.0k

Table 3: Target Treebanks based on Kulmizev et al.
(2019) with language family (FAMILY) and total num-
ber of sentences (SIZE).

Target Treebanks Table 3 lists the 13 target tree-
banks based on the set by Kulmizev et al. (2019):
AR-PADT (Hajič et al., 2009), EN-EWT (Silveira
et al., 2014), EU-BDT (Aranzabe et al., 2015),
FI-TDT (Pyysalo et al., 2015), HE-HTB (Mc-
Donald et al., 2013), HI-HDTB (Palmer et al.,
2009), IT-ISDT (Bosco et al., 2014), JA-GSD
(Asahara et al., 2018), KO-GSD (Chun et al.,
2018), RU-SynTagRus (Droganova et al., 2018),
SV-Talbanken (McDonald et al., 2013), TR-IMST
(Sulubacak et al., 2016), ZH-GSD (Shen et al.,
2016). In our experiments, we use these treebanks
as provided in Universal Dependencies version
2.8 (Zeman et al., 2021). Each method (BAP,
DEPPROBE, DIRPROBE) is trained on each tar-
get’s respective training split and evaluated on each
test split both in the in-language and cross-lingual
setting without further fine-tuning. For the layer-
hyperparameter of DEPPROBE, we use the devel-
opment split of EN-EWT as in prior probing work
(Hewitt and Manning, 2019).

Implementation BAP (Dozat and Manning,
2017) uses the implementation in the MaChAmp
toolkit v0.2 (van der Goot et al., 2021) with the
default training schedule and hyperparameters.
DIRPROBE (Kulmizev et al., 2020) is reimple-
mented based on the authors’ algorithm description
and uses their reported hyperparameters. Both it
and DEPPROBE (this work) are implemented in Py-
Torch v1.9.0 (Paszke et al., 2019) and use mBERT

(bert-base-multilingual-cased) from
the Transformers library v4.8.2 (Wolf et al., 2020).
Following prior probing work, each token which is
split by mBERT into multiple subwords is mean-
pooled (Hewitt and Manning, 2019). For lang2vec
(Littell et al., 2017), we use its syntax_knn,
phonology_knn and inventory_knn fea-
tures from v1.1.2. For our analyses (Section 5),
we use numpy v1.21.0 (Harris et al., 2020), SciPy
v1.7.0 (Virtanen et al., 2020) and Matplotlib v3.4.3
(Hunter, 2007).

Training Details Each model is trained on an
NVIDIA A100 GPU with 40GBs of VRAM and
an AMD Epyc 7662 CPU. Mean training time for
BAP is ca. 2 h (± 30 min). DIRPROBE requires
around 20 min (± 5 min). DEPPROBE can be
trained the fastest in around 15 min (± 5 min) with
the embedding forward operation consuming most
of the time. The models use batches of size 64
and both probes have an early stopping patience
of 3 (max. 30 epochs) on each target’s dev data.
All models are initialized thrice using the random
seeds 41, 42 and 43.

Reproducibility In order to ensure reproducibil-
ity for future work, we release the code for our
methods and reimplementations in addition to
token-level predictions (e.g. for significance test-
ing) at https://personads.me/x/acl-2022-code.

B Additional Results

Subspace Angles (SSA) are used in Section 5.1
in order to identify which types of dependency in-
formation are most relevant to final parsing perfor-
mance. Figure 6 lists all cross-lingual SSAs for the
structural (Figure 6a), depth (Figure 6b) and rela-
tional probes (Figure 6c). SSA values are converted
from radians to degrees∈ [0, 90] for improved read-
ability. Correlation in Table 2 is calculated based
on negative SSA (Chi et al., 2020).

Relation Accuracy (RelAcc) is used in Section
5.2 to analyze dependency relations which benefit
from the full parametrization of BAP compared to
the linear DEPPROBE. Figures 7–19 show RelAcc
per language in addition to the aggregated scores in
Figure 4. As noted in Section 5.2, some relations
such as cop differ substantially across languages
with respect to their realization (e.g. surface form
variation). Furthermore, the set of relations repre-
sented in each target treebank may differ, especially
for specializied categories.
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(c) SSA-REL

Figure 6: SSA of Probe Transformations in degrees across 13 target treebanks for the structural (SSA-STRUCT),
depth (SSA-DEPTH) and relational probes (SSA-REL).
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Figure 7: RelAcc of BAP and DEPPROBE on AR-PADT (Test) grouped according to UD taxonomy.
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Figure 8: RelAcc of BAP and DEPPROBE on EN-EWT (Test) grouped according to UD taxonomy.
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Figure 9: RelAcc of BAP and DEPPROBE on EU-BDT (Test) grouped according to UD taxonomy.
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Figure 10: RelAcc of BAP and DEPPROBE on FI-TDT (Test) grouped according to UD taxonomy.
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Figure 11: RelAcc of BAP and DEPPROBE on HE-HTB (Test) grouped according to UD taxonomy.
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Figure 12: RelAcc of BAP and DEPPROBE on HI-HDTB (Test) grouped according to UD taxonomy.
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Figure 13: RelAcc of BAP and DEPPROBE on IT-ISDT (Test) grouped according to UD taxonomy.
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Figure 14: RelAcc of BAP and DEPPROBE on JA-GSD (Test) grouped according to UD taxonomy.
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Figure 15: RelAcc of BAP and DEPPROBE on KO-GSD (Test) grouped according to UD taxonomy.
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Figure 16: RelAcc of BAP and DEPPROBE on RU-SynTagRus (Test) grouped according to UD taxonomy.
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Figure 17: RelAcc of BAP and DEPPROBE on SV-Talbanken (Test) grouped according to UD taxonomy.
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Figure 18: RelAcc of BAP and DEPPROBE on TR-IMST (Test) grouped according to UD taxonomy.
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Figure 19: RelAcc of BAP and DEPPROBE on ZH-GSD (Test) grouped according to UD taxonomy.
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