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Abstract

Representation of linguistic phenomena in com-
putational language models is typically as-
sessed against the predictions of existing lin-
guistic theories of these phenomena. Using the
notion of polarity as a case study, we show that
this is not always the most adequate set-up. We
probe polarity via so-called ‘negative polarity
items’ (in particular, English any) in two pre-
trained Transformer-based models (BERT and
GPT-2). We show that – at least for polarity –
metrics derived from language models are more
consistent with data from psycholinguistic ex-
periments than linguistic theory predictions.
Establishing this allows us to more adequately
evaluate the performance of language models
and also to use language models to discover
new insights into natural language grammar
beyond existing linguistic theories. This work
contributes to establishing closer ties between
psycholinguistic experiments and experiments
with language models.

1 Introduction

Recent Transformer-based language representation
models (LRMs) – such as BERT and GPT-2 (De-
vlin et al., 2019; Radford et al., 2019) – show im-
pressive results on practical text analysis tasks. But
do these models have access to complex linguistic
notions? The results in this domain are less clear –
as well as ways to best approach this question.

Instead of asking whether LRMs encode frag-
ments of current linguistic theory, we will directly
compare metrics derived from LRMs to correspond-
ing human judgments obtained in psycholinguistic
experiments. The motivation for this is twofold.
First, linguistic theories can be inaccurate – so,
evaluating a model with respect to predictions of
such theories is not informative about the model
performance. Second, robust abstract theoretical
notions rarely correspond to robust judgments in
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humans, and ‘theoretical’ and ‘perceived’ versions
of the same phenomenon can be significantly dif-
ferent (for instance, see Geurts 2003 on inference
judgments; discussed in Section 2). If this is some-
thing that LRMs inherit through training on human-
produced texts, this makes LRMs an attractive pos-
sible component in an experimental pipeline, serv-
ing as a source of empirical predictions about hu-
man linguistic behaviour (Baroni, 2021; Linzen
and Baroni, 2021).

As a case study, we focus on polarity: a com-
plex property of sentences at the intersection of
grammar and semantics. We tackle polarity via
the distribution of items that are sensitive to it –
namely, so-called negative polarity items (NPIs)
like English any. As a basic illustration of NPI
sensitivity to polarity, consider a pair of sentences
in (1) (* = ungrammaticality):

(1) a. Mary didn’t buy any books.
b. *Mary bought any books.

(1-a) is a negative sentence (has negative polarity),
and any is grammatical in it. (1-b) is an affirma-
tive sentence (has positive polarity) and any in this
sentence is grammatically degraded compared to
(1-a). Apart from this paradigmatic contrast, as we
discuss below, polarity contrasts are expressed in a
variety of ways and are tied to semantics.

As a proxy for a grammaticality measure, we
will use the probability of any in the masked to-
ken position (in BERT) (following Goldberg 2019;
Warstadt et al. 2019 a.o.) and perplexity increase
when adding any to a sentence (in GPT-2). The
differences in the metrics for the two different mod-
els stem from the differences in their architecture
and training objectives. For all experiments, we
use non-fine-tuned pre-trained LRMs. For this, we
introduce our ANY dataset, which combines natural
and synthetic data.

We find high levels of alignment between results
of psycholinguistic experiments on monotonicity



and NPIs, on the one hand – and our LRM-derived
results, on the other hand. Furthermore, show how
LRMs can be used to make new predictions about
NPIs in contexts with different numerals and con-
firm these predictions in a psycholinguistic experi-
ment.

This case study contributes to the complement
of the ‘interpretability of neural LRMs’ research
agenda: we can ask not only what linguistic tasks
tell us about LRMs, but also what these models can
help us find out about natural language (see Baroni
2021; Linzen and Baroni 2021 for a discussion
along these lines).

The paper is structured as follows. First, in sec-
tion 2, we set up the context for our study: we
describe the background in theoretical and experi-
mental linguistics in the domains relevant for our
discussion. Section 3 discusses previous work on
NPIs and polarity in computational linguistics. Sec-
tion 4 contains the description of our experimen-
tal method. First, we introduce our ANY dataset;
then, we describe the tests and metrics we use with
BERT and with GPT-2 given our dataset. Section
5 discusses our results. In section 6, we go be-
yond state-of-the-art knowledge in experimental
semantics and pragmatics and study the effect of
the numeral on NPI acceptability – first, we do a
BERT study and then confirm the results on hu-
man participants. Section 7 concludes: we propose
directions for future work aligning experimental
studies of language in humans and LRMs.

2 Background

NPIs are expressions with limited linguistic distri-
bution. While their use is grammatical in some
sentences, in other sentences their use results in
ungrammaticality. The distribution of NPIs like
any is governed by the notion of polarity that is
much more intricate than the simple presence or
absence of sentential negation, as in (1).

For instance, in examples (2)-(3), (2) are ‘neg-
ative enough’ to allow for (=‘license’) any, while
(3) are not – even though none of these sentences
contain overt sentential negation.

(2) a. None of the boxes contain anything.
b. Nobody talked to anybody.
c. At most five students did anything.
d. Few people had any thoughts

(3) a. *Some of the boxes contain anything.
b. *Somebody talked to anybody.
c. *At least 5 students did anything.

d. *Many people had any thoughts

The notion of polarity at play here relates to a se-
mantic notion of monotonicity.1

The notion of monotonicity builds on logical en-
tailment. Monotonicity of a linguistic environment
defines its entailment patterns. In (4), the domain
in square brackets is upward-entailing (UE), or
upward-monotone, – as evidenced by the valid in-
ference from sets (textbooks) to supersets (books):
sentence (4-b) entails sentence (4-a).

(4) a. Some boxes [ contain books ]↑
b. Some boxes [ contain textbooks ]↑

In contrast, (5) shows a downward-entailing (DE),
or downward-monotone, environment, which sup-
ports inferences from sets (books) to subsets (text-
books): (5-a) entails (5-b).

(5) a. No boxes [ contain books ]↓
b. No boxes [ contain textbooks ]↓

Not all environments are either UE or DE – some
are non-monotone, that is, supporting neither of
the inferences:

(6) a. Exactly 5 boxes [ contain books ]−
b. Exactly 5 boxes [ contain textbooks ]−

Expressions responsible for monotonicity of a lin-
guistic context are a heterogeneous class that in-
cludes sentential operators such as negation and
conditional if; quantifiers (some, no, few, at most
five etc.); quantificational adverbs (rarely, always
etc.) and more.

Monotonicity is a highly abstract logical prop-
erty interfacing with general reasoning. At the
same time, it is deeply embedded into natural lan-
guage grammar and it is relevant for understanding
of inner workings of different linguistic expres-
sions, such as NPIs.

As shown by examples (1)-(3), DE contexts give
rise to negative polarity, as seen from NPI accept-
ability; UE contexts are positive. There is conflict-
ing evidence concerning non-monotone contexts
(Crnič, 2014; Alexandropoulou et al., 2020).

The connection between monotonicity and NPI
licensing is undeniable also beyond examples (1)-
(3) (see Fauconnier 1975; Ladusaw 1979 and much

1This is a simplification. This is true of so-called ‘weak
NPIs’ – a subclass of NPIs to which any belongs. We will
keep referring to them simply as NPIs since we are only dis-
cussing weak ones. There are also other factors in weak NPI
distribution apart from monotonicity (see Giannakidou 1998;
Barker 2018). Still, we focus on monotonicity as a crucial
factor in NPI acceptability, following evidence discussed in
the rest of the section.



Logical monotonicity Subjective monotonicity
NEG >> AFF; AT MOST > AT LEAST NEG > AT MOST; NO > FEW

NO >> SOME; AT MOST > BETWEEN / EXACTLY NEG > FEW; NO > FEWER

FEW > MANY; FEW > BETWEEN / EXACTLY NEG > FEWER; FEWER > AT MOST

FEWER > MORE; FEWER > BETWEEN / EXACTLY NO > AT MOST; EXACTLY > BETWEEN

Table 1: Graded monotonicity: summary of psycholinguistic experimental results (Geurts, 2003; Sanford et al.,
2007; Chemla et al., 2011; McNabb et al., 2016; Denić et al., 2020). The order in pairs represents that the first
element is judged as a better NPI licenser than the second one or that it better supports DE inferences (or both).
That is, ‘NEG >> AFF’ reads as ‘Sentences with sentential negation show much higher level of NPI acceptability
or support DE inferences more than simple affirmative sentences.’. The ‘Logical monotonicity’ side of the table
groups together all relations expected under the logical view of monotonicity; ‘Subjective monotonicity’ contains
additional asymmetries found experimentally that do not follow from the simple logical view.

subsequent literature). Experimental evidence
shows a bi-directional connection between infer-
ence judgments in a context and NPI acceptability
in that context. Chemla et al. (2011) found that the
inferences a person considers valid in a given lin-
guistic context predict how acceptable they would
find an NPI in that same context. Conversely, Denić
et al. (2020) show that inferential judgments are
modified by the presence of an NPI. So, the two
phenomena show clear mutual influence.

Importantly, both monotonicity and NPI accept-
ability in humans is not an all-or-nothing matter.
Acceptance of logically valid inferences and re-
jection of invalid ones varies to some extent from
person to person – and from context to context
(Geurts, 2003; Sanford et al., 2007; Chemla et al.,
2011; McNabb et al., 2016; Denić et al., 2020).

Chemla et al. (2011) report that logically DE
sentences with no are perceived as DE by human
participants only 72% of the time. At most – also
logically a DE environment – is only recognized as
such 56% of the time. Moreover, less than and at
most – truth-conditionally equivalent environments
– differ in DE inference endorsement by 11%. The
best predictor of NPI acceptability by humans was
found to be not the logical entailment pattern but
the subjective, or perceived, one (Chemla et al.,
2011; Denić et al., 2020).

There is no single overarching psycholinguistic
study testing the whole landscape of contexts. Com-
bined knowledge from an array of studies (Geurts,
2003; Sanford et al., 2007; Chemla et al., 2011;
McNabb et al., 2016; Denić et al., 2020) produces
the picture summarized in Table 1.

3 Previous work

NPIs have been a topic of an investigation in the
context of LRMs, both as a subset of a more general

test dataset (Marvin and Linzen, 2018; Hu et al.,
2020), and as the main object of study (Jumelet
and Hupkes, 2018; Warstadt et al., 2019; Jumelet
et al., 2021; Weber et al., 2021). Here we focus
on (Warstadt et al., 2019) as a representative case,
as it shares with other previous studies its general
set-up: assessment of LRMs against predictions of
linguistic theory.

Warstadt et al. (2019) focus on NPIs in BERT.
Using a variety of testing techniques, both zero-
shot and with fine-tuning, they conclude that
BERT’s ability to recognize NPI licensing envi-
ronments and, therefore, to tell licit uses of NPIs
from illicit ones varies a lot depending on the type
of context, scope configuration and the type of ex-
perimental setting.

This might lead one to conclude that BERT’s
ability to recognize polarity of a sentence is not
so great across the board. Indeed, reports from
other tasks that involve polarity and/or monotonic-
ity seem to support this. In particular, natural
language inference has been reported to be hard
for LRMs (Yanaka et al., 2019a,b; Talmor et al.,
2020; Geiger et al., 2020). Remarkably, Geiger
et al. (2020) report that fine-tuning BERT on the
SNLI dataset and then evaluating it on DE sen-
tences (their NMoNLI dataset) results in 2.2% ac-
curacy – that is, the model practically ignores the
monotonicity profile of the sentence. But is alleged
poor polarity detection to blame here?

Importantly for our study, Warstadt et al. (2019)
judge BERT’s recognition of NPI acceptability
against logical monotonicity rather than subjective
monotonicity as uncovered by psycholinguistic ex-
periments. So, we believe that these results deserve
a second look.

One of the measuring techniques in Warstadt
et al. (2019) is very close to one of the two tech-



niques we will adopt in this paper. It is a version of
Cloze Test adapted for MLM, where probabilities
of candidates for the masked position are compared.
We discuss the set-up in section 4.

Finally, the idea of targeted LRM evaluations
modeled after psycholinguistic experiments is be-
ing used in an increasing number of recent studies,
albeit mainly in the domains of syntax and lexical
semantics (Gulordava et al., 2018; Linzen et al.,
2016; Marvin and Linzen, 2018; Wilcox et al.,
2018; Chowdhury and Zamparelli, 2018; Futrell
et al., 2019; Nair et al., 2020; Abdou et al., 2020;
Ettinger, 2020).

We move on to describing our dataset, procedure
and results.

4 Method

We perform two types of tests using the dataset that
we produce for this purpose. One experiment is
done with BERT, the other one with GPT-2. Both
experiments are performed in a zero-shot setting –
using the pre-trained models without fine-tuning.
The goal of these experiments is to test the contrasts
between types of sentences described in Table 1.
We will do this by comparing the relevant pairs of
contexts along LRM-derived metrics that are meant
to capture grammaticality / acceptability.

First, we describe the dataset; then we explain
the experiment procedure for BERT and GPT-2;
finally, we report and discuss the results.

4.1 The ANY dataset2

Our dataset consists of two parts: one with natural
and one with synthetic data.

4.1.1 Natural data
We scraped the Gutenberg Project and a subset of
English Wikipedia to obtain the list of sentences
that contain any. Next, using a combination of
heuristics3, we filtered the result with regular ex-
pressions to produce two sets of sentences (the
second set underwent additional manual filtering):

• 3844 sentences with sentential negation and a
plural object with any to the right to the verb;

• 330 sentences with nobody / no one as subject
and a plural object with any to the right.

2The data are available at https://github.com/
altsoph/Transformers-in-the-loop

3The script that can be used to reproduce the filtering
procedure is available in the project repository, see fn. 2.

The first set was modified to substitute the negated
verb by its non-negated version, so we contrast
3844 sentences with negation and 3844 affirmative
ones (NEG vs. AFF). In the second dataset, we
substituted nobody for somebody and no one for
someone, to check the SOME vs. NO contrast.

4.1.2 Synthetic data
We used the following procedure. First, we auto-
matically identified the set of verbs and nouns to
build our items from. To do so, we started with
bert-base-uncased4 vocabulary. Taking its
non-subword lexical tokens is an easy way to get
a list of simple and common words. We ran this
list through a SpaCy POS tagger5. Further, we lem-
matized the result using pattern6 and dropped
duplicates. Then, we filtered out modal verbs, sin-
gularia tantum nouns and some visible lemmatiza-
tion mistakes. Finally, we filtered out non-transitive
verbs to give the dataset a bit of a higher baseline
of grammaticality.7

We kept top 100 nouns and top 100 verbs from
the resulting lists – these are the lexical entries we
will deal with. Then, we generated sentences with
these words, using the following pattern:

A(n) nounx verb.PST.SG a(n) nouny8

For this, we iterate over the 100 nouns in the subject
and the object positions (excluding cases where the
same noun appears in both positions) and over the
100 verbs. The procedure gave us 990k sentences
like these:

(7) a. A girl crossed a road.
b. A community hosted a game.
c. A record put an air.

Some are more natural, make more sense and ad-
here to the verb’s selectional restrictions better than
the others. To control for this, we ran the sentences
through GPT-29 and assigned perplexity to all can-
didates. Then we took the bottom 20k of the sen-
tences (≈ the most ‘natural’ ones) as the core of
our synthetic dataset.

4https://huggingface.co/
bert-base-uncased

5https://github.com/explosion/
spacy-models

6https://pypi.org/project/Pattern/
7Our procedure was equivalent to that in github.com/

Mirith/Verb-categorizer
8We use the singular indefinite object for this part of the

procedure to avoid idiomatic verb phrases (change hands, join
forces) at the top of the list.

9https://huggingface.co/gpt2
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We tried to approximate the ‘naturalness’ of ex-
amples by a combination of measures. We rely
on insights from different models (GPT-2, BERT,
corpus-based statistical insights into verb transitiv-
ity) on different stages of the dataset creation. Still,
some sentences sound intuitively ‘weird’. We do
not see this as a problem though – we will not rely
directly on the naturalness of individual examples,
rather we will measure the effect of the NPI across
the dataset (as is common practice when working
with synthetic data – see, for example, Geiger et al.
2020, 2021). The amount of the examples will
allow us to generalize across varying parts of the
sentences to make sure that the results can be at-
tributed to the parts we are interested in: items
responsible for the polarity of the sentence. The
quantity of test items is crucial for reproducing psy-
cholinguistic experiments on LRMs – while in the
former one sentence gives rise to a number of ob-
servations when different human participants make
a judgment, in the latter one test sentence gives one
observation only.

With this in mind, we use the 20k sentences
produced by the previous steps to build the parts
of our synthetic dataset. Each of the sentences
has a pluralized (not singular anymore!) object in
combination with any: any roads. The subject
type varies in different datasets comprising our
synthetic data. Here is what we end up with:

• 12 datasets 20k sentences each:
AFF (8-a); NEG (8-b); SOME (8-c); NO;
MANY; FEW; MORE THAN 5; FEWER THAN

5; AT LEAST 5; AT MOST 5; EXACTLY 5;
BETWEEN 5 AND 10;

• 2 datasets 8230 sentences each:
SOMEBODY / SOMEONE / SOMETHING (8-d);
NOBODY / NO ONE / NOTHING (replacing the
whole subject, duplicates deleted)

(8) a. A girl crossed any roads.
b. A girl didn’t cross any roads.
c. Some girls crossed any roads.
d. Somebody crossed any roads.

Overall, sentences in all parts of our dataset vary
in the type of context it instantiates (simple affir-
mative, negation, different quantifiers) – but all
sentences contain any in the object position in com-
bination with a plural noun.

The next two subsections explain the metrics de-
rived from the two model we study, stemming from

the differences in their architecture and training
objectives.

4.2 BERT: Cloze Test

The Cloze Test on BERT is very similar to that
described in (Warstadt et al., 2019). In each of
the sentences in the dataset, we mask any and ask
BERT for predictions for the masked position:

[CLS] Few girls crossed [MASK] roads . [SEP]

We extract the probability that BERT assigns to
any in the masked position, as well as the rank of
any in BERT vocabulary sorted by the probability
in the masked position.

Further, we compare these values between con-
ditions (= different types of contexts). The compar-
ison between a pair of conditions will be expressed
as the percentage of sentences in our dataset where
any got a higher probability in the first condition
compared to the probability of any in the corre-
sponding sentence in the second condition. The
same for the rank of any instead of probability. For
example, ⟨AFF: NEG⟩ : 0.12% reads as: in 0.12%
of the dataset, any got a higher probability (or a
higher rank) in an affirmative sentence compared
to the corresponding sentence with negation. In-
tuitively: that most of the time, a sentence with
negation makes a better environment for any than
the minimally different affirmative sentence.

4.3 GPT-2: Perplexity difference

In this test, for each sentence in the dataset, we
calculate perplexity of this sentence (9-a) according
to the GPT-2 model – and perplexity of that same
sentence with any deleted (9-b):

(9) a. Few girls crossed any roads.
b. Few girls crossed roads.

We take the difference between these perplexity
values normalized by the number of tokens as our
measure of how much the presence of any affects
the ‘naturalness’ of each particular sentence.

As before, we compare these values for differ-
ent conditions. For example, ⟨AFF: NEG⟩ : 0.25%
reads as: in 0.25% of sentences, the presence of
any leads to a smaller increase in perplexity for the
affirmative sentence, compared to the analogous
negative sentence. That is, most of the time the
presence of any worsens affirmative sentences a lot,
while the corresponding negative one – less so.

This is the closest possible LM analogue of the
acceptability judgment experiments like (Alexan-



(a) BERT-prob comparison across conditions (b) GPT-PPL-diff comparison across conditions

Figure 1: LRM experiment results

dropoulou et al., 2020), which measure the differ-
ences between acceptability scores with and with-
out any for different types of contexts.

5 Results of model evaluation

We will discuss results from BERT and GPT-2 to-
gether, because they mostly agree.

One general result that allows us to limit our at-
tention to one of the two BERT metrics is that
BERT rank and BERT probability produce the
same order on all condition pairs of interest ex-
cept for one (⟨AT MOST, AT LEAST⟩) and we will
only discuss BERT probabilities in this section.

The 20k synthetic data results are summarized
in Fig. 1. The conditions in the 20k results are
sorted for readability. 8k synthetic data results:
⟨NO-, SOME-⟩: 99.76% (BERT-prob); 99.56%
(GPT-PPL-diff).

In short, all predictions based on psycholin-
guistic evidence discussed in section 2 (Table 1)
are confirmed by our LRM data.

As a sanity check, we compare these results with
the results of the same procedure on our natural
dataset, and they are very similar: ⟨NEG, AFF⟩:
97.21% (BERT-prob), 97.17% (GPT-PPL-diff);
⟨NO-, SOME-⟩: 98.29% (BERT-prob), 96.98%
(GPT-PPL-diff).

The take home message from these results is that
LRMs can tell between negative and positive
polarity, as well as between different types of
contexts by their monotonicity, as measured by
NPI acceptability. Moreover, what is encoded is
a subjective version of the relevant property, sim-
ilar to what is reflected in graded non-categorical

judgments seen in psycholinguistic experiments.
Establishing this, first of all, helps us make more

sense of the metrics derived from such models and
helps draw a more accurate line between noise
and meaningful output. Second, it encourages a
closer tie between experiments with humans and
with LRMs: LRMs encode a snapshot of numerous
subjective linguistic intuitions, and maybe we can
use LRMs to get indirect access to speakers’ shared
intuitions as a source of new theoretically relevant
linguistic generalisations. The next section is a
pilot attempt in this direction. We establish a new
generalization looking at LRM data – and then
confirm it in a psycholinguistic experiment.

6 Next step: Cardinality dependency

For the conditions which involve numerals we left
one parameter unexplored so far, namely, the nu-
meral itself. In this section, we look at the depen-
dency between NPI acceptability and the numeral.

There is no experimental data on this. Theoret-
ical literature tentatively suggests that the higher
the numeral, the less acceptable an NPI in its scope
(Crnič, 2014):

(10) Exactly two of the boxes contain anything
(11) ??Exactly 98 of the boxes contain anything

However, the judgments are subtle and theoretical
discussion still waits for an empirical basis. Let us
look at our conditions with numerals (apart from
BETWEEN – we set it aside as too complicated). For
each of the conditions, we keep everything constant
apart from the numeral and check the effect the
numeral has on NPI acceptability.



6.1 As seen in LRMs
We looked at numerals with these numeric values:
[2−20, 30, 40, 50, 60, 70, 80, 90]. As before, we
made pair-wise comparisons between sentences in
our synthetic dataset that differ only in the numeral
it contains. The measures are the same as before.

Both models show an upward trend: the higher
the numeral, the worse the context becomes for any.
This tendency is shown on Fig. 2.

The lines show comparison between sentence
pairs in which the second one has a numeral higher
than the one in the first sentence by n, where n is
plotted on the x axis (so, 10 on the x axis comprises
all pairs that differ by 10 – ⟨2, 12⟩,⟨3, 13⟩...). On y,
we show the percentage of pairs in which the first
sentence showed higher probability of any than the
second one.

Figure 2: The effect of numeral on any.

The effect of the numeral on the NPI acceptabil-
ity can be sometimes quite strong: to the point
of flipping the ‘better NPI licenser’ relation in a
pair of contexts. For example, this is the case for
AT LEAST and MORE THAN in BERT. They have
the same logical monotonicity profile (both UE).
However, we can find a pair of numerals such that
flipping them orders the resulting contexts differ-
ently:

AT LEAST 2 > MORE THAN 70: 94%
MORE THAN 2 > AT LEAST 70: 68%

Let us check the effect of numeral on humans, as
well as a licensing flip due to the numeral.

6.2 In humans
For the ease of comparison between our LRM ex-
periment data in the previous section and the ex-
periment on human participants, we formulate the
latter as a forced-choice task.

The participants saw pairs of sentences and were
instructed to pick the one that is more grammatical.
The study has a 2x2 design with these factors:

• NUMERAL: five vs. seventy
• QUANTIFIER: at least vs. more than

This gives six forced-choice test conditions:

at least five vs. at least seventy
at least five vs. more than five

at least five vs. more than seventy
at least seventy vs. more than five

at least seventy vs. more than seventy
more than five vs. more than seventy

These prefixes were used to generate pairs of sen-
tences using patterns from the 20k synthetic dataset.
We randomly selected 50 out of the 20k patterns,
which results in 2500 pattern pairs. With 6 test
conditions, this amounts to 15k unique test items.

We used Toloka to recruit self-reported native
speakers of English for this experiment.10 They
were allowed to complete the full task after they
passed a test with 10 control items with 7 or more
correctly identified grammatical sentences.

In the main part of the task, each participant saw
38 pairs of sentences: 22 were filler/control items
and 16 test items. All participants saw the same
filler/control items (random order), test items were
taken from the pool of 15k test items in random
order and evaluated with no overlap.

In total, 968 participants were recruited. We
filtered out the data from those who gave wrong
answers to more than 30% of the filter/control items
in the main part of the task. We were left with 656
participants (= 10496 test items; more than a 2/3
of our pool of test items). Fig. 3 shows the results
of the experiment. We used the binomial test to
analyze the data. The boxes in the plot show the
95% confidence interval.
Result #1: The effect of the numeral is confirmed
both within and across the two types of contexts
(lines 1, 6, 9 and 10 in Fig. 3). Result #2: AT

LEAST and MORE THAN are not ordered with re-
spect to each other (lines 7 and 8). It is possible
to find a particular numeral where the difference
reaches significance (line 2), but overall there is
no clear order. Result #3: Our data do not show a
statistically significant flip between contexts with
different numeral values. Even though one side of
the flip is there (line 3), the flip of this pair did not
reach significance (line 5).

10https://toloka.ai/ready-to-go/

https://toloka.ai/ready-to-go/


Figure 3: Human judgments of any-acceptability

Conclusion: The results are generally in line with
the trend observed in section 6: the higher the nu-
meral, the worse the context gets for an NPI. This
is the first experimental confirmation of this effect,
to the best of our knowledge. It is noteworthy that
we first found it via LRM – and then confirmed it
with human participants.

A more specific result of this effect – what we
call a ‘flip’ – is seen in our data as a tendency, but
the effect did not reach significance. It could be an
LRM artifact – or the lack of it could be an artifact
of our experiment. A different choice of numerals
or a higher number of participants could sharpen
these results. We leave this for future work.

7 Discussion and outlook

Our experiments provide solid support for an ap-
proach under which LRM performance is com-
pared directly to psycholinguistic data rather than
to predictions of a linguistic theory. This opens
up prospects for research that will result in a more
empirically grounded picture of where the limits of
LRM abilities lie.

Our results tell us something new about LRMs
but also suggest that LRMs can be included in the
experimental loop of theoretical semantics along-
side with traditional experiments. To pilot this idea,
we conducted an experiment on the effect of the
numeral on NPI acceptability. We confirmed our
LRM findings in a parallel psycholinguistic study.

In this paper, we only explore the connection
between behavioral experiments and LRM-derived
metrics. What about online measures in psycholin-
guistic studies? Can we find a usable analogue to,

for example, eye-tracking or reaction times in self-
paced reading studies – that is, studies that tell us
which parts of input are important in processing?
One obvious LRM-based candidate is attention.

We took a preliminary look at BERT attention
distribution in sentences with any in an attempt to
identify the attention head that contributes most to
monotonicity-via-NPIs (see Voita et al. 2019 for
a discussion of attention head specialization). To
factor out linear position, we focused on the natural
part of our dataset. We took the sentences that con-
tained both a quantifier with a clear monotonicity
profile (somebody, nobody, someone etc.) and any;
calculated attention from any to the quantifier for
every layer and every attention head and averaged
it across sentences. Then we sorted the results and
went through the top of the resulting list.

We found that the attention head (6,2) of
bert-base-uncased model – 6th layer, at-
tention head 2 – seems to specialize in precisely
what we are looking for. Saliency maps below
show that in a variety of contexts beyond the
ones we checked for the purposes of this paper,
monotonicity-affecting items are highlighted – but-
tressing the hypothesis that monotonicity is impor-
tant for NPI licensing (without, do-support in a
question, if, lexical negation):

[CLS] it felt odd without any wards on it . [SEP]

[CLS] do you have any brothers or sisters ? [SEP]

[CLS] if there ’ d been any babies present , he ’

d have been un ##sto ##ppa ##ble . [SEP]

[CLS] we are unable to identify any others who knew

of the scheme at the time it was being considered .

[SEP]

Additionally, this attention head reflects the role of
the numeral in NPI licensing that we established
in section 6: in all contexts with numerals that
we looked at, a lot of attention goes from any to
both the quantifier (say, exactly) and the numeral
that comes with it. Moreover, the higher the nu-
meral, the more attention goes to it, compared to
the amount of attention that goes to the quantifier:

[CLS] exactly two games told any stories . [SEP]

[CLS] exactly ninety games told any stories . [SEP]

More work is needed to verify and interpret these
patterns systematically and compare them to other
attribution measures and to online metrics in psy-
cholinguistic studies.
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Milica Denić, Vincent Homer, Daniel Rothschild, and
Emmanuel Chemla. 2020. The influence of polarity
items on inferential judgments. Submitted.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. volume 8, pages 34–48. MIT
Press.

Gilles Fauconnier. 1975. Polarity and the scale princi-
ple. In Proceedings of Chicago Linguistc Society 11,
pages 188–99.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic subjects:
Representations of syntactic state. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 32–42.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. arXiv preprint arXiv:2106.02997.

Atticus Geiger, Kyle Richardson, and Christopher Potts.
2020. Neural natural language inference models par-
tially embed theories of lexical entailment and nega-
tion. In Proceedings of the Third BlackboxNLP Work-
shop on Analyzing and Interpreting Neural Networks
for NLP, pages 163–173.

Bart Geurts. 2003. Reasoning with quantifiers. Cogni-
tion, 86(3):223–251.

Anastasia Giannakidou. 1998. Polarity sensitivity as
(non) veridical dependency, volume 23. John Ben-
jamins Publishing.

Yoav Goldberg. 2019. Assessing BERT’s syntactic abil-
ities. arXiv preprint arXiv:1901.05287.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless green
recurrent networks dream hierarchically. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1195–1205.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1725–1744.

Jaap Jumelet, Milica Denic, Jakub Szymanik, Dieuwke
Hupkes, and Shane Steinert-Threlkeld. 2021. Lan-
guage models use monotonicity to assess NPI licens-
ing. CoRR, abs/2105.13818.

Jaap Jumelet and Dieuwke Hupkes. 2018. Do lan-
guage models understand anything? on the ability
of lstms to understand negative polarity items. In
BlackboxNLP@ EMNLP.

William A Ladusaw. 1979. Polarity sensitivity as in-
herent scope relations. Ph.D. thesis, Austin, TX:
University of Texas at Austin.

Tal Linzen and Marco Baroni. 2021. Syntactic structure
from deep learning. Annual Review of Linguistics,
7:195–212.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. In Transactions of the As-
sociation for Computational Linguistics, volume 4,
pages 521–535. MIT Press.

https://doi.org/10.18653/v1/2020.acl-main.679
https://doi.org/10.18653/v1/2020.acl-main.679
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
http://arxiv.org/abs/2105.13818
http://arxiv.org/abs/2105.13818
http://arxiv.org/abs/2105.13818


Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1192–1202.

Yaron McNabb, Stavroula Alexandropoulou, Do-
minique Blok, Sofia Bimpikou, and Rick Nouwen.
2016. The likelihood of upper-bound construals
among numeral modifiers. In Proceedings of Sinn
und Bedeutung, volume 20, pages 497–514.

Sathvik Nair, Mahesh Srinivasan, and Stephan Mey-
lan. 2020. Contextualized word embeddings encode
aspects of human-like word sense knowledge. In Pro-
ceedings of the Workshop on the Cognitive Aspects
of the Lexicon, pages 129–141.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Anthony J Sanford, Eugene J Dawydiak, and Linda M
Moxey. 2007. A unified account of quantifer per-
spective effects in discourse. Discourse Processes,
44(1):1–32.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. oLMpics-on what language
model pre-training captures. In Transactions of the
Association for Computational Linguistics, volume 8,
pages 743–758. MIT Press.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Ha-
gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, et al. 2019. Investigating
bert’s knowledge of language: Five analysis methods
with npis. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2877–2887.

Lucas Weber, Jaap Jumelet, Elia Bruni, and Dieuwke
Hupkes. 2021. Language modelling as a multi-task
problem. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 2049–2060,
Online. Association for Computational Linguistics.

Ethan Wilcox, Roger Levy, Takashi Morita, and Richard
Futrell. 2018. What do RNN language models learn
about filler-gap dependencies? In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
211–221.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and
Johan Bos. 2019a. Can neural networks understand
monotonicity reasoning? In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pages 31–40.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and
Johan Bos. 2019b. HELP: A dataset for identify-
ing shortcomings of neural models in monotonic-
ity reasoning. In Proceedings of the Eighth Joint
Conference on Lexical and Computational Semantics
(*SEM 2019), pages 250–255.

https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://www.aclweb.org/anthology/2020.cogalex-1.16
https://www.aclweb.org/anthology/2020.cogalex-1.16
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/D19-1286
https://doi.org/10.18653/v1/2021.eacl-main.176
https://doi.org/10.18653/v1/2021.eacl-main.176
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/W19-4804
https://doi.org/10.18653/v1/W19-4804
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027

